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Abstract

Current Natural Language Inference (NLI)
models achieve impressive results, sometimes
outperforming humans when evaluating on in-
distribution test sets. However, as these mod-
els are known to learn from annotation arte-
facts and dataset biases, it is unclear to what
extent the models are learning the task of NLI
instead of learning from shallow heuristics in
their training data. We address this issue by
introducing a logical reasoning framework for
NLI, creating highly transparent model deci-
sions that are based on logical rules. Un-
like prior work, we show that improved inter-
pretability can be achieved without decreasing
the predictive accuracy. We almost fully retain
performance on SNLI, while also identifying
the exact hypothesis spans that are responsible
for each model prediction. Using the e-SNLI
human explanations, we verify that our model
makes sensible decisions at a span level, de-
spite not using any span labels during train-
ing. We can further improve model perfor-
mance and span-level decisions by using the
e-SNLI explanations during training. Finally,
our model is more robust in a reduced data set-
ting. When training with only 1,000 examples,
out-of-distribution performance improves on
the MNLI matched and mismatched validation
sets by 13% and 16% relative to the baseline.
Training with fewer observations yields further
improvements, both in-distribution and out-of-
distribution.

1 Introduction

The task of Natural Language Inference (NLI) in-
volves reasoning across a premise and hypothe-
sis, determining the relationship between the two
sentences. Either the hypothesis is implied by the
premise (entailment), the hypothesis contradicts the
premise (contradiction), or the hypothesis is neutral
to the premise (neutral). NLI can be a highly chal-
lenging task, requiring lexical, syntactic and logi-
cal reasoning, in addition to sometimes requiring

Premise: the man in the black wetsuit is walking out  
of the water.

Hypothesis: a man in a wetsuit walks out of the water 
carrying a surfboard.

Figure 1: Example of a hypothesis segmented into
spans, with the four different hypothesis spans under-
lined. The model predicts the neutral class only for
‘carrying a surfboard.’, as this is not implied by the
premise.

real-world knowledge (Dagan et al., 2005). While
neural NLI models perform well on in-distribution
test sets, this does not necessarily mean they have
a strong understanding of the underlying task. In-
stead, NLI models are known to learn from anno-
tation artefacts (or biases) in their training data
(Gururangan et al., 2018; Poliak et al., 2018). Mod-
els can therefore be right for the wrong reasons
(McCoy et al., 2019), with no guarantees about the
reasons for each prediction, or whether the predic-
tions are based on a genuine understanding of the
task. We address this issue with our logical rea-
soning framework, creating more interpretable NLI
models that definitively show the specific logical
atoms responsible for each model prediction. One
challenge when applying a logical approach to NLI
is determining the choice of logical atoms. When
constructing examples from knowledge bases, the
relationships between entities in the knowledge
base can be used as logical atoms (Rocktäschel
and Riedel, 2017); in synthetic fact-based datasets,
each fact can become a logical atom (Clark et al.,
2020; Talmor et al., 2020). Neither approach would
be suitable for SNLI (Bowman et al., 2015), which
requires reasoning over gaps in explicitly stated
knowledge (Clark et al., 2020), with observations
covering a range of topics and using different forms
of reasoning. Instead, our novel logical reasoning
framework considers spans of the hypothesis as
logical atoms. We determine the class of each
premise-hypothesis pair based entirely on span-
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level decisions, identifying exactly which parts of
a hypothesis are responsible for each model deci-
sion. By providing a level of assurance about the
cause of each prediction, we can better understand
the reasons for the correct predictions and highlight
any mistakes or misconceptions being made. Using
the e-SNLI dataset (Camburu et al., 2018), we as-
sess the performance of our span-level predictions,
ensuring that the decisions about each hypothesis
span align with human explanations.

To summarise our findings: 1) Our Span Log-
ical Reasoning framework (SLR-NLI) produces
highly interpretable models, identifying exactly
which parts of the hypothesis are responsible for
each model prediction. 2) SLR-NLI almost fully
retains performance on SNLI, while also perform-
ing well on the SICK dataset (Marelli et al., 2014).
This contrasts with previous work, where the inclu-
sion of logical frameworks result in substantially
worse performance. 3) Evaluating the SLR-NLI
predictions at a span level shows that the span-level
decisions are consistent with human explanations,
with further improvements if e-SNLI explanations
are used during training. 4) SLR-NLI improves
model robustness when training in a reduced data
setting, improving performance on unseen, out-of-
distribution NLI datasets.1

2 Span Logical Reasoning

Inspired by previous work on error detection (Rei
and Søgaard, 2018, 2019; Pislar and Rei, 2020; Bu-
jel et al., 2021), we construct models for detecting
spans of the hypothesis that either contradict the
premise (contradiction spans) or are not implied
by the premise (neutral spans). We train the model
with sentence-level labels while also using auxil-
iary losses that guide the model behaviour at the
span level. As no span labels are provided in the
SNLI training data, we supervise our SLR-NLI
model at a span level using logical rules, for ex-
ample requiring a contradiction example to include
at least one contradiction span. The model is eval-
uated based on the span-level decisions for each
logical atom.

2.1 Span-level Approach

We consider each hypothesis as a set of spans
s1, s2, s3, ..., sm where each span is a consecutive
sequence of words in the hypothesis. For exam-
ple, in Figure 1 the hypothesis ‘a man in a wetsuit

1Project code: https://github.com/joestacey/snli_logic

walks out of the water carrying a surfboard.’ con-
tains the following spans: ‘a man’, ‘in a wetsuit’,
‘walks out of the water’, ‘carrying a surfboard.’.
Each span si has a label of either entailment, con-
tradiction or the neutral class. In practice, there are
no predefined spans in NLI datasets, nor are there
labels for any chosen spans. As a result, we pro-
pose a method of dividing hypotheses into spans,
introducing a semi-supervised method to identify
entailment relationships at this span level. In the
example provided in Figure 1, s4=‘carrying a surf-
board.’ has a neutral label, while the other spans
have an entailment label.

We observe that a hypothesis has a contradiction
label if any span present in that hypothesis has a
label of contradiction. Similarly, if a hypothesis
contains a span with a neutral label and no span
with a contradiction label, then the hypothesis be-
longs to the neutral class. Therefore, a hypothesis
only has an entailment class if there are no spans
present with span labels of either contradiction or
neutral.

When evaluating a hypothesis-premise pair in
the test data, our model makes discrete entailment
decisions about each span in the hypothesis. The
sentence-level label is then assigned based on the
presence of any neutral or contradiction spans. This
method highlights the exact parts of a hypothesis
responsible for each entailment decision.

2.2 Span Selection

We identify spans based on the presence of noun
phrases in the hypothesis. Initially, the hypothesis
is segmented into spans, with a span provided for
each noun phrase which includes both the noun
phrase and any preceding text since the last noun
phrase. The first span includes any text up to and
including the first noun phrase, while the last span
includes any text after the last noun phrase. Noun
phrases are identified using spaCy2.

However, the most appropriate segmentation of
a hypothesis may depend on the corresponding
premise, and in some cases, we may need to con-
sider long-range dependencies across the sentence.
As a result, we also provide additional spans that
are constructed from combinations of consecutive
spans. For the example in Figure 1, this means
also including spans such as ‘a man in a wetsuit’
and ‘walks out of the water carrying a surfboard.’.
We set the number of consecutive spans that are

2https://spacy.io
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included as a hyper-parameter. We also experiment
with a dropout mechanism that randomly masks
these additional, consecutive spans for a propor-
tion of the training examples (10%). This ensures
that the model still makes sensible decisions at the
most granular span level, while also being able
to learn from long-range dependencies across the
sentences.

2.3 Modelling Approach
A BERT model (Devlin et al., 2019) is used for en-
coding the NLI premise together with each specific
hypothesis span, masking the parts of the hypoth-
esis that are not included in the given span. The
BERT model provides a [CLS] representation hi
for each span i. A linear layer is applied to these
representations to provide logits Ln,i and Lc,i for
each span, representing the neutral and contradic-
tion classes respectively.

A separate attention layer is created for both the
neutral and contradiction classes that attend to each
span-level output. The neutral attention layer at-
tends more to neutral spans, while the contradiction
attention layer attends more to contradiction spans.
Both the neutral and contradiction attention layers
consider the same [CLS] representation hi.

The two attention layers use the same architec-
ture, with details provided below for the neutral (n)
attention layer. Our span-level predictions will be
based on the unnormalized attention weights ãn,i,
which are calculated as:

ãn,i = σ(Wn,2(tanh (Wn,1hi + bn,1)) + bn,2)
(1)

where Wn,1, Wn,2, bn,1, and bn,2 are trainable pa-
rameters. Equation (1) uses a sigmoid so that the
output is in the range between 0 and 1 for binary
classification. Upon normalisation, the attention
weights an,i define an attention distribution:

an,i =
ãn,i∑m

k=1 ãn,k
(2)

These weights are used to create a logit, Ln:

Ln =
m∑

i=1

an,iLn,i (3)

Using a binary label yn, indicating if the example
is neutral or not, we create a sentence-level loss to
optimise using the sentence labels:

LSent
n = (σ(Wn,3 × Ln + bn,3)− yn)2 (4)

We combine this with an auxiliary span loss on
the model attention weights, LSpan

n :

LSpan
n = (max

i
(ãn,i)− yn)2 (5)

The auxiliary span attention loss has the effect of
encouraging the span-level unnormalized attention
weights to be closer to zero for entailment exam-
ples. This supports our logical framework, which
states that all entailment examples must only con-
sist of entailment spans (i.e. with no contradiction
or neutral spans). As neutral predictions require
at least one neutral span, by supervising the maxi-
mum unnormalized attention weight we encourage
one of the spans to be predicted as neutral if the
sentence label is also neutral. The contradiction-
detection attention layer behaves in a similar way,
detecting the presence of contradiction spans.

We then combine together the auxiliary span
attention loss with the sentence-level loss:

LTotal
n = LSent

n + LSpan
n . (6)

While our model evaluation exclusively makes pre-
dictions from the unnormalized attention weights
for each span, we find in practice that including
a sentence-level objective improves the span-level
decisions. In particular, the sentence supervision
influences the attention values directly in Equa-
tion (3), in addition to supervising the representa-
tions hi. The sentence-level supervision does not
have access to the full hypothesis, separately con-
sidering each span representation hi. See Figure 2
for a model architecture diagram.

2.4 Span-level Supervision with Human
Explanations

To provide our model with more information about
individual spans, we can use the e-SNLI (Camburu
et al., 2018) human explanations, with rationales
highlighting the most important words in each hy-
pothesis. Training models with the e-SNLI expla-
nations can improve both model performance and
robustness (Stacey et al., 2022; Zhao and Vydis-
waran, 2021), although not all prior work has found
these improvements (Kumar and Talukdar, 2020;
Camburu et al., 2018; Carton et al., 2022). We as-
sess whether the human explanations can help our
model make better decisions at the span level, and
also whether the explanations further improve the
performance of SLR-NLI.

To incorporate the human explanations during
training, we consider the highlighted word ratio-
nales for each hypothesis. If any of our SLR-NLI
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Figure 2: Model diagram describing the training process for SLR-NLI

hypothesis spans contain all of the e-SNLI ratio-
nale, we assign the overall sentence label as the
individual span label. If the hypothesis rationale
is not a single consecutive span then we do not
provide any supervision with the explanation, as
we observe that only single-span rationales consis-
tently align with the desired span-level labels.

Let pi be the value of 1 where the hypothesis
rationale is fully contained within the i-th span,
and 0 otherwise. Our neutral auxiliary e-SNLI loss
Le-SNLI
n is defined as:

Le-SNLI
n = λe-SNLI

∑

i

pi(ãn,i − yn)2,

while Le-SNLI
c is defined in a similar way, using ãc,i

and yc.

2.5 Training Process

Our neutral and contradiction attention models
have two class labels, with yn and yc taking values
of 0 or 1. yn = 0 when there are no neutral spans
present, while yn = 1 when there is at least one
neutral span. yc follows the same approach for the
contradiction detection label.

For neutral NLI examples, we train our neutral-
detection model using a sentence-level label of
yn = 1. Using our logical framework, we also
know that a neutral example cannot contain a con-
tradiction span, as any example with a contradic-
tion span would have a contradiction label. There-
fore, we train our contradiction-detection model
using a sentence-level label of yc = 0 for these
examples. For contradiction examples, we do not
train our neutral-detection attention model, as there
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Logical rules for training:

Contradiction

Cont. spans:

=>

Neutral =>

Entailment =>

Neutral spans:

At least one Unknown

None At least one

None None

Logical rules for evaluation:

=> Contradiction

=> Neutral

=> Entailment

At least one

None At least one

None None

Sentence label:

Sentence label:Cont. spans: Neutral spans:

Figure 3: Our logical rules for training and evaluation.
The logical rules for training: 1) for contradiction sen-
tences we use a label of yc = 1, but do not supervise
with a value of yn, 2) for neutral sentences, we super-
vise with yc = 0 and yn = 1, and 3) for entailment sen-
tences we supervise with yc = 0 and yn = 0. The logical
rules for evaluation: 1) the presence of any contradic-
tion span implies the sentence prediction is contradic-
tion, 2) if no contradiction span is present, the presence
of a neutral span implies a neutral sentence prediction,
and 3) otherwise we have an entailment prediction.

may or may not be neutral spans present in addition
to the contradiction spans. For entailment exam-
ples, we train both neutral and contradiction detec-
tion models using the labels yn = 0 and yc = 0.

Therefore, for neutral or entailment examples we
consider the total of both LTotal

n and LTotal
c , whereas

for the contradiction class we only consider LTotal
c .

2.6 Evaluation

We evaluate each NLI sentence based exclusively
on our span-level decisions. Specifically, an NLI
hypothesis is classified as the contradiction class
if any of the unnormalized attention weights are
predicted as contradiction (ãc,i > 0.5). If there are
no contradiction spans present, an NLI example
is classified as neutral if there exists at least one
neutral span (ãn,i > 0.5). Otherwise, the NLI
example is classified as entailment.

The sentence-level logits Ln or Lc are only used
during training and discarded for evaluation – they
consider information across all the spans and there-
fore do not allow for a deterministic evaluation of

which spans are responsible for the model predic-
tions. The logical rules used in both training and
evaluation follow from the inherent nature of NLI
(these rules are summarised in Figure 3).

3 Related Work

3.1 NLI with Neural Theorem Provers

Neural theorem provers can effectively solve a
range of natural language tasks (Rocktäschel and
Riedel, 2017; Weber et al., 2019; Minervini et al.,
2020b,a), many of which could be recast in a simi-
lar form to NLI. These datasets are often built from
knowledge graphs (Sinha et al., 2019; Bouchard
et al., 2015; Kok and Domingos, 2007), for exam-
ple identifying relationships between characters in
short stories (Sinha et al., 2019). Non-neural the-
orem provers have also shown promising results
on the SICK dataset (Martínez-Gómez et al., 2017;
Abzianidze, 2020, 2017; Yanaka et al., 2018), al-
though these methods cannot be easily translated
to SNLI, which covers a wide range of topics and
uses various forms of reasoning.

3.2 Monotonic Reasoning with NLI

Using monotonic reasoning involves matching
components of the hypothesis and premise, and
using external knowledge from resources including
WordNet (Miller, 1995) to determine the entail-
ment relationships between corresponding parts of
both sentences (Kalouli et al., 2020; Hu et al., 2020;
Chen et al., 2021). To improve performance, this
logical approach can be combined with traditional
neural models, learning which examples would ben-
efit from a neural approach rather than using log-
ical rules (Kalouli et al., 2020), or using neural
models to decide the class of examples where en-
tailment and contradiction classes have not been
detected (Hu et al., 2020). A hybrid approach can
improve performance, but at the expense of the
interpretability benefits. Logic models using mono-
tonic reasoning are mostly evaluated on SICK and
other datasets with a small number of differences
between the premise and hypothesis. While our
logical framework is not specifically designed for
these datasets, we show our performance on SICK
still remains competitive with this prior work.

3.3 Logical Reasoning with SNLI

Previous work has applied logical reasoning tech-
niques to SNLI, but with performance substantially
below baseline levels. Feng et al. (2022) segment a
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hypothesis into spans, choosing one of seven log-
ical relations for each hypothesis span. A logical
relation is predicted for each span using a GPT-2
model (Radford et al., 2019) which considers the
premise, the given span and all prior hypothesis
spans, with reinforcement learning training this
span-level behaviour (Feng et al., 2022). Previous
work also predicts the seven logical relations for
individual words rather than for hypothesis spans
(Feng et al., 2020).

Closest to our work, Wu et al. (2021) label spans
as entailment, neutral or contradiction, evaluating
at a sentence level based on the presence of neu-
tral or contradiction spans. Our substantial perfor-
mance improvements compared to Wu et al. (2021)
reflect our different approaches to supervising at
a span level. Wu et al. (2021) provide each span
model with information about the entire premise
and hypothesis, in addition to a hypothesis span
and a corresponding premise span. The span label
is then predicted using a three-class classifier. In
comparison, we create separate additional attention
layers for neutral and contradiction span detection,
combining together multiple different losses to su-
pervise at both the sentence and span level. As we
consider neutral and contradiction span detection
as separate binary tasks, we also introduce logical
rules during training which include not supervis-
ing our neutral detection model for contradiction
examples, and how a neutral label means there are
no contradiction spans present.

We directly compare our results to Feng et al.
(2020), Wu et al. (2021) and Feng et al. (2022).

4 Experiments

We train the SLR-NLI model either using SNLI
(Bowman et al., 2015) or SICK (Marelli et al.,
2014). SNLI is a large corpus of 570k observa-
tions, with a diverse range of reasoning strategies
required to understand the relationship between the
premise and hypothesis. Image captions are used
for premises, with annotators asked to create a hy-
pothesis for each class for each given premise. In
contrast, SICK has 10k observations and initially
uses sentence pairs from image captions and video
descriptions, with additional sentence pairs gen-
erated by applying a series of rules, including re-
placing nouns with pronouns and simplifying verb
phrases. As a result, entailment and contradiction
examples in SICK are often the same except with
one or two small changes. Previous work exploits

this similarity, using logical reasoning to identify
the contradiction and entailment examples (Chen
et al., 2021; Hu et al., 2020). Compared to this
setting, SNLI provides a more challenging dataset
for applying logical reasoning.

We further experiment with training our model
in a reduced data setting, motivated by the hypoth-
esis that forcing our model to learn at a span-level
will make better use of a smaller number of exam-
ples. We expect SLR-NLI to be more robust in a
reduced data setting, with existing models known
to rely on dataset biases when overfitting to small
datasets (Utama et al., 2020b). For the reduced
data experiments, we train SLR-NLI with 100 and
1,000 examples from SICK or SNLI, evaluating out-
of-distribution performance on other unseen NLI
datasets including SNLI-hard (Gururangan et al.,
2018), MNLI (Williams et al., 2018) and HANS
(McCoy et al., 2019). As no explanations are pro-
vided for SICK, we only use explanations when
training on SNLI (reported as SLR-NLI-eSNLI).

For SICK, when we consider out-of-distribution
performance we evaluate on the corrected SICK
dataset (Hu et al., 2020), with labels manually cor-
rected by Hu et al. (2020) and Kalouli et al. (2017).
However, for a fair comparison to previous work,
we use the original SICK dataset when evaluating
in-distribution performance from SICK.

To validate that the model is making sensible
decisions at a span level, we compare the span-level
predictions to the e-SNLI human explanations. For
each single-span hypothesis rationale in e-SNLI,
we consider each model span containing this entire
rationale. Each span that does contain the rationale
is evaluated, with its span predictions compared to
the sentence-level label.

In summary, we consider the following research
questions: 1) Does our interpretable SLR-NLI
model retain performance on SNLI? 2) Is SLR-NLI
a flexible approach that can also work on SICK?
3) Does SLR-NLI improve performance in a re-
duced data setting? 4) In the reduced data setting,
does SLR-NLI also improve robustness? 5) Does
SLR-NLI make sensible decisions at a span level?

5 Results

5.1 Performance on SNLI and SICK

SLR-NLI achieves in-distribution results very close
to the standard BERT model on the SNLI test set,
with 90.33% accuracy compared to the baseline of
90.77% (Table 1). This result outperforms prior
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Accuracy SNLI ∆

BERT (baseline) 90.77

Feng et al. (2020) 81.2 -9.57
Wu et al. (2021) 84.53 -6.24

Feng et al. (2022) 87.8 -2.97

SLR-NLI 90.33 -0.44
SLR-NLI+esnli 90.49 -0.28

Table 1: Performance (accuracy) on the SNLI test-set
from SLR-NLI, with and without the additional e-SNLI
supervision during training. Each condition is tested
across 5 random seeds, including the baseline.

work on logical reasoning for SNLI, as the inclu-
sion of logical frameworks has previously resulted
in large drops in performance (Feng et al., 2022;
Wu et al., 2021; Feng et al., 2020). We achieve this
level of performance without training or evaluating
on the full premise and hypothesis pairs. When
training with the e-SNLI explanations, we see an
additional improvement in accuracy (90.49%).

SLR-NLI compares favourably to prior logical
reasoning work on SICK, despite these baselines
being specifically designed for this dataset (Ta-
ble 2). For example, Chen et al. (2021) aims to
bridge the differences between a hypothesis and
premise, an approach not possible with SNLI. The
strong performance of SLR-NLI on both SNLI and
SICK shows the flexibility of this approach across
different NLI datasets. As SLR-NLI is a model
agnostic framework, we also combine SLR-NLI-
eSNLI with a better performing DEBERTa model
(He et al., 2021). The DeBERTa-base model accu-
racy is 91.65%, compared to 91.48% for SLR-NLI-
eSNLI (-0.17%). This difference in performance is
smaller than for BERT (-0.28%).

5.2 Reduced Data Setting
In a reduced data setting, training SLR-NLI-
eSNLI with 1,000 SNLI observations, there are
significant out-of-distribution improvements on
MNLI matched and mismatched with no loss of
performance in-distribution (see Table 4). We
show that this improved robustness contrasts with
common debiasing methods, including Product
of Experts (Clark et al., 2019; Mahabadi et al.,
2020), Example Reweighting (Clark et al., 2019),
and Confidence Regularization (Utama et al.,
2020a), each trained with a hypothesis-only shal-
low classifier. When training on SICK, we

Accuracy SICK ∆

BERT (baseline) 85.52

Hybrid systems

Hu et al. (2020)+BERT 85.4 -0.1
Kalouli et al. (2020) 86.5 +1.0

Logic-based systems

Hu et al. (2020) 77.2 -8.3
Abzianidze (2017) 81.4 -4.1

Martínez-Gómez et al. (2017) 83.1 -2.4
Yanaka et al. (2018) 84.3 -1.2

Abzianidze (2020) 84.4 -1.1
Chen et al. (2021) 90.3 +4.8

SLR-NLI 85.43 -0.09

Table 2: Performance (accuracy) of SLR-NLI on the
SICK dataset compared to previous work. Results for
SLR-NLI-eSNLI are not provided, as the e-SNLI ex-
planations are specific to SNLI. Results are an average
from across 5 random seeds.

Dataset Baseline SLR-NLI

SICK 81.11 81.33

SNLI-dev 38.50 46.96‡
SNLI-test 38.17 46.88‡

SNLI-hard 38.34 44.58‡
MNLI-mismatch. 40.90 47.85†

MNLI-match. 39.72 46.51†
HANS 53.22 50.61

Table 3: Accuracy of SLR-NLI compared to a BERT
baseline when training with 1,000 SICK examples. The
best results are in bold. All results are an average
across 5 random seeds. Statistically significant results
with p < 0.05 are denoted with †, while results with
p < 0.01 are denoted with ‡, using a two-tailed boot-
strapping hypothesis test (Efron and Tibshirani, 1993).

see out-of-distribution improvements on MNLI-
matched, MNLI-mismatched, SNLI-dev, SNLI-test
and SNLI-hard (see Table 3). As there is no clear
hypothesis-only bias for SICK (Belinkov et al.,
2019), we do not perform the same comparison
to previous robustness work. In-distribution im-
provements are also observed when training with
only 100 SNLI observations, where performance
is 18% higher relative to the baseline, with simi-
lar results observed when training on SICK. Out-
of-distribution improvements also increase when
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Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mis. MNLI-mat. SICK HANS

Baseline 73.98 73.90 59.25 49.17 48.46 52.19 50.27

PoE 60.79 61.26 54.44 41.74 42.03 45.92 50.26
Reweight. 70.69 70.86 59.83 46.99 47.12 48.65 50.03
Conf Reg. 57.32 57.51 49.61 38.05 38.54 38.93 50.84

SLR-NLI-eSNLI 74.22 74.05 59.51 57.05† 54.76† 52.23 50.00

Table 4: Accuracy of SLR-NLI-eSNLI compared to a BERT baseline when training with 1,000 SNLI examples.
The best results for each dataset are in bold. We compare to a Product of Experts (Clark et al., 2019), Example
Reweighting (Clark et al., 2019) and Confidence Regularization (Utama et al., 2020a). All results are an average
across 5 random seeds. For SLR-NLI-eSNLI compared to the baseline, statistically significant results with p <
0.05 are denoted with †, while results with p < 0.01 are denoted with ‡, using a two-tailed bootstrapping hypothesis
test (Efron and Tibshirani, 1993).

Model Sent. acc. Span acc. F-macro F-ent F-neut F-cont

SLR-NLI (Zero-shot) 90.33 84.75 84.61 81.74 84.80 87.27
SLR-NLI + dropout (Zero-shot) 90.33 87.91 87.81 85.96 86.52 90.94

SLR-NLI-eSNLI (Supervised) 90.49 88.29 88.17 86.24 86.99 91.28

Table 5: Span-level performance of SLR-NLI-eSNLI compared to SLR-NLI. Span performance is evaluated on
the three e-SNLI explanations available for each test observation after training on SNLI. A version of SLR-NLI
with a dropout mechanism applied is also included. All results are an average across 5 random seeds.

training with fewer observations (complete results
are available in the Appendix).

The only dataset where SLR-NLI performed
worse than the baseline was HANS, where each
hypothesis consists of words that are also in the
premise. For example, the premise of ‘the doctor
was paid by the actor’ is accompanied by the hy-
pothesis ‘the doctor paid the actor’ (McCoy et al.,
2019). In these examples, evaluating on the smaller
spans provides no additional benefit.

6 Analysis

6.1 Span-Level Evaluation

Even without additional supervision from e-SNLI,
SLR-NLI performs well at a span level, with
84.75% accuracy in a zero-shot setting (Table 5).
This shows that human explanations are not re-
quired for the model to make sensible decisions
at a span level. With the additional e-SNLI su-
pervision, SLR-NLI-eSNLI reaches a span-level
accuracy of 88.29%. We observe that without the
additional e-SNLI supervision, the model tends
to rely more on the longer spans that consist of
consecutive smaller spans. To mitigate this issue,

we experiment with a dropout mechanism during
training which randomly masks large spans consist-
ing of consecutive smaller spans, encouraging the
model to also make sensible decisions at the most
granular span level. In 10% of observations, all
such large spans are masked, leaving only smaller
spans as the model input. This dropout mechanism
improves span performance to 87.91%, although
the sentence-level performance does not improve
in tandem (Table 5).

6.2 Model Interpretability

The main advantage of our span-level approach is
the interpretability of the model predictions, allow-
ing us to understand which specific parts of the
hypothesis are responsible for each predicted label.
We define explanation spans as the set of the small-
est neutral and contradiction spans such that any
longer span that is predicted as neutral or contra-
diction contains one of these spans. As a result,
we only choose longer, multi-segment spans when
there are no smaller spans that explain the model
decisions. For contradiction predictions, we only
include contradiction spans in our explanations.
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two women are embracing while holding to go packages.

the sisters are hugging goodbye while holding to go packages  
after just eating lunch.

a few months ago, carl newton and i wrote a letter asking you to consider 
a financial contribution to graduate endodontics at indiana university.

your contributions were of no help with our students’ 
education.

Example 2 (SNLI-dev):

carl newton and i have never had any previous contact with you.

Example 4 (MNLI-mismatched):

your contribution helped make it possible for us to provide our students  

with a quality education.

Contradiction span Neutral span

Hypothesis:

Premise:

Example 3 (MNLI-mismatched):

Hypothesis:

Premise:

Hypothesis:

Premise:

a woman with a green headscarf, blue shirt and a very big grin.

the woman is young.

Example 1 (SNLI-test):

Hypothesis:

Premise:

Figure 4: Span and sentence level predictions for SNLI-test, SNLI-dev and MNLI-mismatched (out-of-
distribution). Each of the four examples above are correctly predicted by SLR-NLI-eSNLI.

As shown in Figure 4, Example 1, SLR-NLI-
eSNLI consistently makes sensible span-level pre-
dictions for easier, shorter hypotheses. We there-
fore show the results of a longer example (Exam-
ple 2), along with two out-of-distribution examples
from the MNLI-mismatched set (Examples 3 and
4). In each case, the model is making correct de-
cisions in line with our human expectations. To
provide an unbiased sample of the span-level expla-
nations, we show the first eight neutral and contra-
diction examples from SNLI-test in the Appendix.

A qualitative analysis shows that some incorrect
predictions are a result of subjective labels in the
dataset, for example, the model does not find that
people walking behind a car implies that the people
are necessarily on a street, whereas this example
is entailed in SNLI. We also find that the model
does not always perform well when evaluating the
gender of the people mentioned in the premise. For
example, when the premise refers to a girl and ‘an-
other person’, a span of ‘a man’ in the hypothesis
can be predicted as contradiction. The model can
also predict a span of ‘a man’ to be entailed when
a gender is not specified in the premise, for ex-
ample assuming that a tattooed basketball player
mentioned in the premise is a man. This may reveal
specific gender biases that are being learnt in the

model that would otherwise remain hidden. Finally,
the model excels at identifying when multiple dif-
ferent neutral spans are responsible for a neutral
classification. This is demonstrated in Example 2
where the three different reasons for neutrality are
identified by the model.

7 Conclusion

We introduce SLR-NLI as a logical framework that
predicts the class of an NLI sentence pair based
on span-level predictions. SLR-NLI almost fully
retains performance on SNLI, outperforming previ-
ous logical methods, whilst also performing well
on the SICK dataset. The model also outperforms
the baseline in a reduced data setting, with sub-
stantially improved model robustness. Finally, we
create a highly interpretable model whose deci-
sions can easily be understood, highlighting why
these predictions are made and the reasons for any
misclassifications.

8 Limitations

SLR-NLI creates interpretable sentence-level pre-
dictions that are based on span-level decisions,
however each individual span-level decision is no
more interpretable than a standard neural network.
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We find that this approach provides a balance be-
tween maintaining the high performance of neural
networks, while also providing explainable NLI
decisions.

While SLR-NLI provides a guarantee about
which hypothesis spans are responsible for each
model prediction, this does not mean that the span-
level decisions cannot still be influenced by shallow
heuristics. Our approach may help to mitigate some
dataset biases, for example the length of the hypoth-
esis (Gururangan et al., 2018) or the proportion of
words that overlap between the two sentences (Naik
et al., 2018). However, other biases, including how
specific words correlate with individual labels (Gu-
rurangan et al., 2018; Poliak et al., 2018), may still
be influencing the model.

Finally, our framework is designed for hypothe-
ses that are mostly a single sentence. Without
further modifications, this approach is unlikely to
generalise well to more challenging NLI datasets
with longer hypotheses, for example with the ANLI
dataset (Nie et al., 2020).
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A Training in a Reduced Data Setting

Further experimentation was conducted in a smaller
reduced data setting, considering only 100 train-
ing examples in SNLI. In this setting we find sig-
nificant in-distribution improvements for SNLI,
with further out-of-distribution improvements on
SNLI-hard, MNLI-mismatched, MNLI-matched
and SICK (see Table 7). With the exception of the
SICK dataset, SLR-NLI-eSNLI consistently outper-
forms the baseline and the three de-biasing methods
displayed. Statistical testing was conducted using
a two-tailed bootstrapping hypothesis test (Efron
and Tibshirani, 1993).

We find similar improvements when testing SLR-
NLI on a reduced SICK dataset with only 100 ex-
amples. In this case we see better performance
for SLR-NLI compared to the baseline for each
dataset, with statistically significant improvements
in-distribution, in addition to significant improve-
ments on SNLI-dev, SNLI-test and SNLI-hard (see
Table 6).

B Examples of Model Interpretability

We provide the first eight neutral and contradiction
examples within the SNLI test set to show an unbi-
ased sample of the model’s span-level explanations
(see Figure 5). Entailment examples have not been
displayed, as unless these examples have been mis-
classified, no neutral or contradiction spans would
be displayed. With the exception of examples 1 and
8, which are misclassified by the model, the other
examples are correct and show span-level decisions
in line with our human expectations.

C Hyper-Parameter Choices

We use a BERT-base (Devlin et al., 2019) model,
providing a direct comparison to previous work.
We choose the best learning rate for the baseline,

Baseline SLR-NLI

SICK 65.31 71.13‡
SNLI-dev 33.58 39.86‡
SNLI-test 33.41 39.69‡

SNLI-hard 34.07 39.35‡
MNLI-mismatch. 35.84 39.99

MNLI-match. 35.35 39.31
HANS 49.95 50.73

Table 6: Accuracy of SLR-NLI compared to a BERT
baseline in a reduced data setting, training with 100 ex-
amples from SICK. The best results are in bold. All
results are an average across 5 random seeds. Statisti-
cally significant results with p < 0.05 are denoted with
†, while results with p < 0.01 are denoted with ‡. This
uses a two-tailed bootstrapping hypothesis test (Efron
and Tibshirani, 1993).

SLR-NLI and SLR-NLI-eSNLI from {10−6, 2.5×
10−6, 5 × 10−6, 7.5 × 10−6, 10−5}. Each SNLI
model is trained over 2 epochs, using a linear learn-
ing schedule with a warmup and warmdown period
of a single epoch. For the SICK dataset, we train
with 3 warmup and 3 warmdown epochs with a
learning rate of 10−5 to reach a baseline compara-
ble with previous work. λe-SNLI is set as 0.1. We
also consider spans that consist of up to 3 smaller,
consecutive spans. A separate hyper-parameter
search is conducted for the reduced data setting,
with models evaluated with early stopping across
10 epochs. We also perform an additional hyper-
parameter search for the DeBERTa-base model (He
et al., 2021) and for our SLR-NLI-eSNLI model
using this baseline. Each hyper-parameter is tested
across 5 random seeds, comparing the mean results.

For the baseline BERT model, we find the best
performance using a learning rate of 10−5, whereas
SLR-NLI uses a learning rate of 7.5 × 10−6 and
SLR-NLI-eSNLI uses a learning rate of 5× 10−6.
For the DeBERTa-baseline, we find the best perfor-
mance with a learning rate of 7.5×10−6, compared
to 2.5× 10−6 for SLR-NLI-eSNLI when using De-
BERTa.

For each of our experiments in a reduced data
setting, the best performance uses a learning rate
of 10−5 for both SLR-NLI-eSNLI and the baseline.
We use the same learning rates when training our
model on SICK.
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In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mis. MNLI-mat. SICK HANS

Baseline 51.50 51.75 45.34 34.64 34.80 37.72 50.31

PoE 49.11 49.39 45.72 35.99 36.11 35.80 50.07
Reweight. 48.66 49.01 45.56 34.95 35.28 38.44 50.04
Conf Reg. 47.54 47.67 44.82 35.14 35.53 37.99 50.42

SLR-NLI-eSNLI 61.45‡ 60.95‡ 50.46‡ 43.70‡ 42.50† 45.77† 49.99

Table 7: Accuracy of SLR-NLI-eSNLI compared to a BERT baseline in a reduced data setting, training with 100
examples. The best results for each dataset are in bold. We compare to a Product of Experts (Clark et al., 2019),
Example Reweighting (Clark et al., 2019) and Confidence Regularization (Utama et al., 2020a). All results are an
average across 5 random seeds. For SLR-NLI-eSNLI compared to the baseline, statistically significant results with
p < 0.05 are denoted with †, while results with p < 0.01 are denoted with ‡. This uses a two-tailed bootstrapping
hypothesis test (Efron and Tibshirani, 1993).
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Contradiction span

Example 1:

Hypothesis:

Premise:

Neutral span

Example 2:

Hypothesis:

Premise:

Example 3:

Hypothesis:

Premise:

Example 4:

Hypothesis:

Premise:

Example 5:

Hypothesis:

Premise:

Example 6:

Hypothesis:

Premise:

Example 7:

Hypothesis:

Premise:

Example 8:

Hypothesis:

Premise:

this church choir sings to the masses as they sing joyous songs from 
the book at a church.

the church has cracks in the ceiling.

this church choir sings to the masses as they sing joyous songs from 
the book at a church.

a choir sing at a baseball game.

a woman with a green headscarf, blue shirt and a very big grin.

the woman has been shot.

an old man with a package poses in front of an advertisement.

a man poses in front of an ad for beer.

an old man with a package poses in front of an advertisement.

a man walks by an ad.

a statue at a museum that no seems to be looking at.

the statue is offensive and people are mad that it is on display.

a statue at a museum that no seems to be looking at.

tons of people are gathered around the statue.

a land rover is being driven across a river.

a land rover is splashing water as it crosses a river.

Figure 5: Span and sentence level predictions for the first eight neutral and contradiction examples in SNLI-test.
The first example is incorrectly predicted as being contradiction (instead of neutral), while the eighth example is
incorrectly predicted as being neutral (instead of entailment). The other predictions are correct and show that the
model is making sensible span-level decisions. As the fourth SNLI-test observation is displayed in the main paper
we do not repeat this example, and instead we show the ninth example.
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