
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3074–3085
December 7-11, 2022 ©2022 Association for Computational Linguistics

SetGNER: General Named Entity Recognition as Entity Set Generation

Yuxin He1 and Buzhou Tang1,2,∗
1Department of Computer Science, Harbin Institute of Technology, Shenzhen, China

2Peng Cheng Laboratory, Shenzhen, China
21S051047@stu.hit.edu.cn
tangbuzhou@gmail.com

Abstract

Recently, joint recognition of flat, nested and
discontinuous entities has received increasing
attention. Motivated by the observation that
the target output of NER is essentially a set of
sequences, we propose a novel entity set gener-
ation framework for general NER scenes in this
paper. Different from sequence-to-sequence
NER methods, our method does not force the
entities to be generated in a predefined order
and can get rid of the problem of error propa-
gation and inefficient decoding. Distinguished
from the set-prediction NER framework, our
method treats each entity as a sequence and is
capable of recognizing discontinuous mentions.
Given an input sentence, the model first en-
codes the sentence in word-level and detects po-
tential entity mentions based on the encoder’s
output, then reconstructs entity mentions from
the detected entity heads in parallel. To let
the encoder of our model capture better right-
to-left semantic structure, we also propose an
auxiliary Inverse Generation Training task. Ex-
tensive experiments show that our model (w/o.
Inverse Generation Training) outperforms state-
of-the-art generative NER models by a large
margin on two discontinuous NER datasets,
two nested NER datasets and one flat NER
dataset. Besides, the auxiliary Inverse Genera-
tion Training task is found to further improve
the model’s performance on the five datasets.

1 Introduction

Named entity recognition (NER) is a fundamental
task in the field of information extraction and has
played an important role in the development of
natural language processing. There exist three well-
studied subtasks of NER, i.e. flat NER, nested NER
and discontinuous NER, as illustrated in Figure 1.

Recently, researchers have grown more inter-
est in tackling the three subtasks jointly, which
we refer to as general NER (Li et al., 2021; Dai
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Figure 1: Examples of the discontinuous / nested / flat
NER. It can be observed that entities may overlap with
each other in general NER scenes and these overlapped
entities are inherently unordered. Hence, instead of gen-
erating entities sequentially in a predefined order, it is
more suitable to generate the set of entities concurrently.

et al., 2020; Yan et al., 2021). Existing frame-
works for general NER fall into three categories:
(1) span-based models; (2) sequence-to-sequence
(seq2seq) models; (3) models based on other tech-
niques like hyper-graphs and shift-reduce parsers.
Among them, seq2seq models (Fei et al., 2021; Yan
et al., 2021) have demonstrated SOTA performance.
However, they organize target entities into a single
sequence according to a predetermined order. This
formulation violates the fact that the target enti-
ties are inherently a unordered set, and introduces
an incorrect bias (entity-order confounder) to the
model (Tan et al., 2021; Zhang et al., 2022). In
addition, the conduct of generating target entities
sequentially suffers from two negative side effects:
(1) Low inference speed; (2) Error propagation, i.e.
previous errors will result in a misleading context
for current generation step.

In this paper, we abandon the linear design of tar-
get entity sequence adopted by previous generative
NER methods, and come up with a novel Entity Set
Generation framework, SetGNER. Given an input
sentence, the framework first encodes the sentence
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and detects potential entity mentions based on the
encoder’s output, then utilizes detected entity heads
as a set of initial sequences to reconstruct the set
of target entities. Note that, this procedure is simi-
lar to the way human beings perform NER. While
reading, a human attends to potential mentions of
entities subconsciously. When encountering a plau-
sible start of entities, the mind will activate a cluster
of neurons for it (Kemmerer, 2015), which consis-
tently collects words related to it until all entities
starting with it are recollected. These clusters of
neurons just function as a distributed decoder that
generates a set of entities in parallel.

The distributed nature of our decoding scheme
also brings remarkable inference speed-up. With
a decoding time complexity of O(NL), where N
is the sentence length and L is the average entity
length, our model is efficient enough for both of-
fline and online applications.

To correctly recognize the boundary of an entity,
right-to-left semantic structure is as important as
left-to-right semantic structure, which is ignored
by previous generative NER research. Inspired by
this, we additionally propose an auxiliary learning
task — Inverse Generation Training. Guided by the
inverse generation loss, the encoder can get more
familiar with the right-to-left semantic structure of
entity mentions, making it easier for the decoder to
generate complete entity mentions.

Note that, our work is different from previous
work proposed to address the problems faced with
generative NER models. In Tan et al. (2021), a
sequence-to-set network is proposed to predict the
set of target entities in a sentence. However, it as-
sumes that each entity is a span and cannot handle
the recognition of discontinuous mentions. In con-
trast, our model treats each entity as a sequence and
can naturally tackle the discontinuous mentions.
Zhang et al. (2022) analyze two kinds of incorrect
bias in the seq2seq NER models, i.e. pre-context
confounder (when generating a word of an entity,
a model can be affected by pre-generated words
that has no causal relation with the word to be gen-
erated), entity-order confounder, and propose two
data augmentation methods to address them. How-
ever, their model is still trained to generate entities
sequentially after all.

To sum up, our main contributions include:

• We propose SetGNER, a novel Entity Set Gen-
eration framework for general NER scenes.
Distinct from seq2seq models, it effectively

gets rid of the entity-order confounder and
error propagation caused by linearization as-
sumption, and brings high inference speed-up.

• We also come up with a novel auxiliary learn-
ing task — Inverse Generation Training, to
help the encoder of our model capture better
right-to-left semantic structure.

• Experiment results show that our model out-
performs SOTA seq2seq NER models by
a large margin on two discontinuous NER
datasets, two nested NER datasets and one
flat NER dataset, while being 3 times faster
than SOTA seq2seq NER models.

2 Problem Formulation

We uniformly formulate the task of recognizing flat
/ nested / discontinuous entities as a pointer-based
Entity Set Generation problem.

A pointer is used for copying a source word or a
class tag or a special tag into target sequence. There
are three special tags: ⟨∅⟩, indicating no-entity-
found; ⟨#⟩, indicating fragment of entity is found;
⟨/s⟩, indicating the end of the generated sequence.
Suppose the number of entity classes is C. We
first define the pointer to class tag Ti(0 ≤ i < C)
as Ptr(Ti) = i, the pointers to special tags ⟨∅⟩,
⟨#⟩, ⟨/s⟩ as Ptr(⟨∅⟩) = C, Ptr(⟨#⟩) = C + 1,
Ptr(⟨/s⟩) = C + 2.

Given a sentence with N words [w0, ..., wN−1],
the pointer to word wj is then defined as:

Ptr(wj) = C + 3 + j

To simplify annotation, we generalize the Ptr(·)
operation to sequences of words / tags, i.e.
Ptr( [·] ) = [ Ptr(·) ].

The target output is the set of entity pointer se-
quences

{
Ptr(ei)

}M

i=1
, where M is the number of

entities in the input sentence, ei is the i-th entity
consisting of l words wei0

, wei1
, ..., weil−1

. And the

pointer sequence for entity ei is defined as:

Ptr(ei) = Ptr([wei0
, wei1

, ..., weil−1
, T (ei), ⟨/s⟩])

where T (ei) is the class tag of ei, ⟨/s⟩ indicates the
end of generated sequence.

Under this definition, each head word of entity is
associated with a target sequence or multiple target
sequences (when there are multiple entities starting
with the head word). We additionally appoint a tar-
get sequence Ptr([wj , ⟨∅⟩, ⟨/s⟩]) to word wj , if wj

3075



does not belong to any entity; or Ptr([wj , ⟨#⟩, ⟨/s⟩])
if wj is not an head word but a fragment of entity.

3 Method

As shown in Figure 2, the proposed model consists
of a word-level encoder, a mention detector and
a parallel generator based on copying mechanism.
We train it with a combination of generation loss,
occurrence detection loss and entity part classifi-
cation loss, and leverage an adaptive beam-search
scheme during inference.

3.1 Word-level Encoder

The input sentence [w0, w1, ..., wN−1] is first to-
kenized into [⟨s⟩, t1, t2, ..., tN ′ , ⟨/s⟩] using BPE
(Sennrich et al., 2016) tokenizer, where N ′ is the
length of content tokens. We denote the tokenized
sentence as X.

We then calculate the contextual representation
of the tokenized sentence using pre-trained BART
(Lewis et al., 2020) encoder:

H = Encoder(X) (1)

where H ∈ R|X|×d and d is the dimension of our
model.

To obtain the word-level representation of each
word, we max-pool the contextual representations
of its first and last tokens:

ri = MaxPool(H[startwi ],H[endwi ]) (2)

R = [ri]
N−1
i=0 (3)

where ri is the representation of wi, startwi and
endwi are the indexes of the first and last tokens
of wi respectively, R ∈ RN×d is the word-level
representation matrix.

3.2 Mention Detector

Occurrence Detection
Since there may be multiple entities sharing the
same head word, we have to predict how many
entities have occurred with the head word. This
is achieved by conducting classification over each
word, where the label of a word is the number of
entities starting with it.

Concretely, we first transforms the word-level
representation matrix into feature matrix V:

V = ReLU(WV R+ bV ) (4)

Then utilize a softmax layer to predict the number
of occurrences:

Po = softmax(WoV + bo) (5)

The loss function for occurrence detection is
defined as follows.

Lo =−
N−1∑

i=0

Omax∑

j=1

1(yoi = j)log(Po
ij)

+ 1(yoi ̸= j)log(1−Po
ij)

(6)

where Omax is the maximum number of entities
starting with the same head word in the dataset.
Note that, casting the occurrence prediction prob-
lem as a regression task may be a better choice and
we leave it for future research.

Entity Part Classification
Our model also detects potential parts of entities
by predicting whether a word is the head/tail of
any entity or not, and whether a word belongs to
any entity or not. This is essentially a multi-label
classification task, which can be handled by three
binary classifiers as follows.

ph = sigmoid(WhV + bh) (7)

pt = sigmoid(WtV + bt) (8)

pb = sigmoid(WpV + bb) (9)

where h, t and b stand for “entity head”, “entity
tail” and “belonging to entity” respectively.

We utilize binary cross-entropy loss to optimize
this module:

Le =−
∑

δ∈{h,t,b}

N−1∑

i=0

yδi log(pδ
i )

+ (1− yδi )log(1− pδ
i )

(10)

3.3 Parallel Generation
The backbone of our decoder is the one proposed
by Yan et al. (2021), which is based on BART
decoder and equipped with copying mechanism.

Boundary-guided Initialization
During inference, the decoder first initiates the set
of target sequences with pointers to detected entity
heads. Concretely, the target sequence correspond-
ing to entity head wi is initialized as:

ŷ(i) := [Ptr(wi)] , i ∈ Ωhead (11)

Ωhead = {i | ph
i ≥ 0.5} (12)
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Figure 2: An overview of the proposed Entity Set Generation framework.

where Ωhead is the indexes of detected entity heads.
Such initialization provides explicit left bound-

aries for parallel generation, avoiding the negative
influence of generation errors that may occur ahead
of generating current entities.

Adaptive Position Embeddings
To guide our decoder with the position information
of the sentence’s region that each target sequence
should focus on, we devise adaptive position em-
beddings for the decoder. Concretely, the position
embedding for the t-th pointer in ŷ(i) is defined as

PosEmb(ŷ(i)
t ) = DecoderPosEmb[i · τ + t] (13)

where τ is a hyper-parameter controlling the posi-
tion interval, which intuitively represents the aver-
age number of tokens that each word holds.

Decoding
Since the target sequences are made up of pointers,
they should be converted into words/tags before
decoding. We denote this operation as Retrieve(·),
which is defined as:

Retrieve(ŷ) =





Tŷ, ŷ < C

⟨∅⟩/⟨#⟩/⟨/s⟩, C ≤ ŷ ≤ C + 2

wŷ−C−3, ŷ ≥ C + 3

The decoder then calculates the hidden state of
current time step for each target sequence via cross-
attention over encoder output and self-attention
over hidden states of previous time steps.

d
(i)
t = Decoder(H;Retrieve(ŷ(i)

<t)) (14)

The probability distribution of ŷ(i)t is calculate

via copying mechanism as follows:

P (ŷ
(i)
t ) = softmax(

[
TE ;Emb(⟨∅⟩, ⟨#⟩, ⟨/s⟩); R̃

]

⊙ d
(i)
t )

TE = [Emb(Ti)]
C−1
i=0

R̃ = (R+E)/2

E =
[
MaxPool(Emb(Xstartwi

),Emb(Xendwi
))
]N−1

i=0

where TE is the learnable embeddings of class
tags, R̃ is the combination of word-level repre-
sentations R and word-level embeddings E (trans-
formed from BART token embeddings).

We train the decoder in a teacher-forcing manner
using all ground-truth target sequences defined in
Section 2. The generation loss is as follows:

Lg = −
N−1∑

i=0

logP (y(i)|X; θ) (15)

Note that, there can be multiple ground-truth se-
quences associated with wi, in which case their
losses are all summed up.

Adaptive Beam-search
Since there may exist multiple entities starting with
the same head word, we devise an adaptive beam-
search mechanism to generate multiple entity se-
quences sharing the same start. Concretely, we first
utilize standard beam-search to generate a fixed
number of candidate sequences for each detected
head word wi and then select the top-Ki candi-
date sequences as the entity sequences generated
from wi. Ki here is the predicted number of entity
occurrences corresponding to wi, i.e.,

Ki = argmaxPo
i (16)
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Figure 3: The set of inverse target sequences ỹ for the
instance “Swollen, burning feet and ankles.”

3.4 Training

Inverse Generation Training
Since the forward generation task is biased towards
the left-to-right semantic structure, we propose to
help our model learn better right-to-left semantic
structure via inverse generation training. To realize
this, we instantiate an auxiliary decoder and train it
to generate from entity tail to entity head. For the
instance “Swollen, burning feet and ankles.” , its
inverse target sequences are defined as in Figure 3.
And the inverse generation loss is calculated over
all inverse target sequences ỹ:

Lg̃ = −
N−1∑

i=0

logP (ỹ(i)|X; θ) (17)

Note that, the auxiliary decoder is discarded after
training phase.

Joint Learning
In each optimization step, we alternately train our
model with the forward generation loss and inverse
generation loss, together with the occurrence detec-
tion loss and entity part classification loss:

L = Lg/g̃ + Lo + Le (18)

where Lg/g̃ means alternating between forward
generation loss and inverse generation loss.

4 Experiments

4.1 Datasets and Evaluation Details

We experiment on two discontinuous NER datasets
CADEC and ShARe13, two nested NER datasets
ACE04 and ACE05, and one flat NER dataset
CoNLL03. Please refer to Appendix A for details
and statistics of the five datasets.

For CADEC and ShARe13, we follow the same
data split used in Dai et al. (2020); Yan et al. (2021).
For ACE04 and ACE05, we use the same data split
as in Muis and Lu (2017); Yu et al. (2020). For
CoNLL03, we follow Yu et al. (2020); Yan et al.
(2021) to concatenate the train and development
sets. Strict evaluation metrics is applied, where an
entity is confirmed correct only if its boundary and
type label are both recognized correctly. Precision
(P), Recall (R) and Micro F1 score (F1) are reported
in the results. We report the average performance
on 3 random seeds.

4.2 Implementation Details

We initialize model parameters from pre-trained
BART-Large, which consists of 12 transformer
blocks for encoder and 12 transformer blocks for
decoder. The dimension size of the model is 1024.
We use AdamW optimizer with different learning
rates for encoder and decoder. Linear learning rate
scheduling is employed. We fix the maximum num-
ber of words rather than the number of sentences
in each batch, since the memory occupied by our
model is determined by the number of words in
a batch. Details of hyper-parameter tuning and
settings are included in Appendix B.

4.3 Compared Methods

We compare our model principally with SOTA gen-
erative NER models and the set prediction NER
model. See Section 5 for an introduction of them.
Performances of SOTA discriminative NER mod-
els on the five datasets are also listed for reference.
See Appendix D for an introduction of them.

4.4 Main Results

Discontinuous NER Table 1 shows the overall
results of SetGNER’s performance on discontin-
uous NER datasets. SetGNER outperforms the
SOTA generative model (Fei et al., 2021) by +0.75
F1 and +0.33 F1 on CADEC and ShARe13 respec-
tively, demonstrating the superiority of SetGNER
on the task of discontinuous NER. After introduc-
ing Inverse Generation Training into our frame-
work, the F1 scores of SetGNER further increase
by +0.39 and +0.28.

Nested NER The results on nested NER tasks
are shown in Table 2. SetGNER yields +0.26 and
+0.45 F1 gains over the SOTA generative baseline
(Lu et al., 2022) on ACE04 and ACE05. Compared
with the SOTA set prediction model, SetGNER per-
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Paradigm Model
CADEC ShARe13

P R F1 P R F1

Discriminative
Tang et al. (2018) 67.8 64.9 66.3 - - -
Dai et al. (2020) [ELMO] 68.9 69.0 69.0 80.5 75.0 77.7
Wang et al. (2021b)⋆ [BERT-Large] 70.5 72.5 71.5 83.3 77.0 80.2

Generative

Yan et al. (2021) [BART-Large] 70.08 71.21 70.64 82.09 77.42 79.69
Fei et al. (2021) [BERT-Large] 73.50 71.80 72.40 84.90 77.20 80.30
Zhang et al. (2022)∗ [T5-Base] 71.35 71.86 71.60 81.09 78.13 79.58
SetGNER [BART-Large] 74.57 71.78 73.15 83.58 77.82 80.63
+ Inverse Generation Training 74.42 72.72 73.56 83.45 78.48 80.91

Table 1: Results on discontinuous NER datasets CADEC and ShARe13. ⋆ For a fair comparison on ShARe13, we
replace the ClinicalBERT used by Wang et al. (2021b) with vanilla BERT-Large and rerun their code. ∗ Note that
T5-Base has the same number of Transformer layers as BART-Large and is of a comparable size with BART-Large.
The italic font indicates the results are only listed for reference. The bold font indicates the best score and the
underline font indicates the second-best score.

Paradigm Model
ACE04 ACE05

P R F1 P R F1

Descriminative

Yu et al. (2020)‡ [BERT-Large] 87.30 86.00 86.70 85.20 85.60 85.40
Li et al. (2020) [BERT-Large] 85.83 85.77 85.80 85.01 84.13 84.57
Xu et al. (2021) [BERT-Large] 86.90 85.80 86.30 85.70 85.20 85.40
Shen et al. (2021)† ‡ [BERT-Large] 87.44 87.38 87.41 86.09 87.27 86.67

Set Prediction
Tan et al. (2021)† ‡ [BERT-Large] 88.46 86.10 87.26 87.48 86.63 87.05
Tan et al. (2021)⋆ [BERT-Large] 88.05 85.78 86.94 86.73 86.08 86.38

Generative

Straková et al. (2019) [BERT-Large] - - 84.40 - - 84.33
Yan et al. (2021) [BART-Large] 87.27 86.41 86.84 83.16 86.38 84.74
Zhang et al. (2022) [T5-Base] 86.36 84.54 85.44 82.92 87.05 84.93
Lu et al. (2022) [UIE (T5-Large)] - - 86.89 - - 85.78
SetGNER [BART-Large] 87.61 86.69 87.15 85.88 86.40 86.23
+ Inverse Generation Training 87.45 87.14 87.37 85.86 86.92 86.50

Table 2: Results on nested NER datasets ACE04 and ACE05. † means leveraging extra embeddings (e.g. GloVE,
character embeddings and POS embeddings). ‡ means leveraging extra context. ⋆ means we rerun their code
without using extra embeddings or extra context.

Model
CoNLL03

P R F1

Akbik et al. (2019)† [BERT-Large] - - 92.8
Li et al. (2020) [BERT-Large] 92.3 94.6 93.0
Shen et al. (2021)† ‡ [BERT-Large] 92.1 93.7 92.9
Wang et al. (2021a)‡ [BERT-Large] - - 93.2

Tan et al. (2021)⋆ [BERT-Large] 92.3 93.8 93.0

Straková et al. (2019)† [BERT-Large] - - 93.1
Yan et al. (2021) [BART-Large] 92.6 93.9 93.2
Zhang et al. (2022) [T5-Base] 92.8 93.5 93.1
Lu et al. (2022) [UIE (T5-Large)] - - 93.0
SetGNER [BART-Large] 92.7 93.4 93.1
+ Inverse Generation Training 92.8 93.6 93.2

Table 3: Results on CoNLL03. † means using extra
embeddings. ‡ means using extra context. ⋆ means we
run their code without using extra embeddings /context.

forms better on ACE04 (+ 0.21 F1) while performs
competitively on ACE05. This demonstrates the ef-
fectiveness of SetGNER on tackling nested entities.
Besides, Inverse Generation Training also boosts
the model’s performance on the two datasets.

Flat NER Table 3 shows the results of our
model’s performance on the CoNLL03 dataset. We
can see that SetGNER is competitive with SOTA
models on CoNLL03, verifying that our model can
identify flat entities with high precision and high
recall. When leveraging Inverse Generation Train-
ing, our model achieves SOTA performance on this
NER benchmark.

4.5 Ablation Study
We conduct ablation study on CADEC and ACE04
to verify the effectiveness of different components
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Model
CADEC ACE04

P R F1 P R F1

Yan et al. (2021) [BART-Large] 70.08 71.21 70.64 87.27 86.41 86.84
Zhang et al. (2022) [T5-Base] 71.35 71.86 71.60 86.36 84.54 85.44

SetGNER [BART-Large] 74.57 71.78 73.15 87.61 86.69 87.15
w/o Word-level Representation 74.62 71.66 72.59 (-0.56) 87.21 86.60 86.91 (-0.24)
w/o Adapted Position Embedding 68.27 66.07 67.18 (-5.97) 76.38 74.09 75.37 (-11.8)
w/o Entity Part Classification 73.66 71.72 72.75 (-0.40) 87.18 86.53 86.94 (-0.21)
w/o Occurrence Detection 74.70 63.36 69.09 (-4.06) 87.79 70.53 73.46 (-13.7)

Table 4: Results of ablation study on CADEC and ACE04.

of SetGNER. The results are shown in Table 4. Af-
ter replacing the word-level representations with
the token-level representations and using token-
level pointers, the F1 scores on the two datasets
drop by 0.56 and 0.24 respectively, verifying the
advantage of word-level representations and word-
level pointers. After replacing the adaptive posi-
tion embeddings with vanilla position embeddings,
our model can not function properly. This demon-
strates the necessity of guiding our decoder with
the position information of the sentence’s region
that each target sequence should focus on. After
removing the entity part classification module
and generating from all words rather than detected
head words, the F1-score of SetGNER drops by
0.40 and 0.21 on the two datasets, which means it
is helpful to detect different parts of entities and
generate selectively. Without the occurrence de-
tection module (the adaptive beam-search degrades
to standard beam-search), SetGNER can only gen-
erate one entity from each detected head word, and
the recall of SetGNER drops significantly on the
two datasets.

4.6 Analysis
We conduct a series of experiments to analyze the
advantage of our Entity Set Generation model over
seq2seq NER models and the benefit of Inverse
Generation Training.
4.6.1 Recognizing Overlapped Entities
Since the sequential order assumed by seq2seq
NER models is most untenable when faced with
overlapped entities, we compare SetGNER with
a seq2seq baseline model in terms of the ability
to recognize overlapped entities. The experiment
is conducted on the test sets of two discontinuous
NER datasets and two nested NER datasets, where
the overlaps between entities are common. We
choose (Yan et al., 2021) as the baseline, since its
overall performance on the four datasets is the best

Dataset Scope Yan et al. (2021) SetGNER

CADEC
All 71.21 71.78 (+0.57)

Overlapped 57.38 60.51 (+3.13)

ShARe13
All 77.42 77.82 (+0.40)

Overlapped 59.90 62.16 (+2.26)

ACE04
All 86.41 86.69 (+0.28)

Overlapped 84.57 85.16 (+0.59)

ACE05
All 86.38 86.40 (+0.02)

Overlapped 84.31 85.08 (+0.77)

Table 5: Comparing SetGNER with baseline model
(Yan et al., 2021) in terms of the ability to recognize
overlapped entities (measured in Recall).

among SOTA seq2seq NER models. The results
are shown in Table 5. We can see that SetGNER
greatly boost the Recall of overlapped entities and
the increase is several times higher than the over-
all increase of Recall on each dataset. This means
Entity Set Generation is superior to seq2seq on the
recognition of overlapped entities.

Figure 4: Cases from the CADEC dataset.
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4.6.2 Removing Entity Order Confounder
and Error Propagation

We conduct case study on the CADEC dataset
to verify that SetGNER (w/o Inverse Generation
Training) can overcome the Entity Order Con-
founder and the Error Propagation problem that
seq2seq NER models suffer from. Figure 4 illus-
trates two cases from the dataset. In the first case,
both SetGNER and the seq2seq baseline model
(Yan et al., 2021) can correctly generate all the enti-
ties “bad pains in hands”, “bad pains in arms” and
“bad pains in shoulders”. However, when we shuffle
the order of “hands”, “arms” and “shoulders” in the
sentence, the seq2seq NER model fails to generate
the entity “bad pains in hands”. This means the
seq2seq NER model is biased towards the original
entity order that occurs more frequently in the train-
ing data. And SetGNER can get rid of this incor-
rect bias. In the second case, the seq2seq baseline
model first generates the wrong mention “Burning
sensations in neck shoulders”, which consequently
disturbs the generation of “Burning sensations in
shoulders”. In contrast, such a phenomenon of
error propagation does not occur in our model.

Dataset
Right-boundary Acc. Right-boundary Rec.

SetGNER + IGT SetGNER + IGT

CADEC 72.74 74.86 72.93 73.34
ShARe13 81.99 83.45 77.67 78.22
ACE04 91.16 91.88 90.71 91.79
ACE05 89.67 90.68 91.18 91.58

Table 6: Comparing original SetGNER with SetGNER
trained with Inverse Generation task (+ IGT) in terms
of right-boundary accuracy and right-boundary recall.

4.6.3 Capturing Right-boundaries
We hypothesize that Inverse Generation Training
is effective in teaching our encoder the right-to-
left semantic structure. To verify this, we com-
pare the ability of SetGNER to caputure right-
boundaries before and after Inverse Generation
Training. Concretely, right-boundary accuracy (#
correct boundaries / # correct left-boundaries) and
right-boundary recall (# correct right-boundaries /
# golden right-boundaries) are measured on four
benchmark datasets. As shown in Table 6, after
Inverse Generation Training, the right-boundary
accuracy of SetGNER increases by +2.12, +1.46,
+0.72, + 1.01 and the right-boundary recall of Set-
GNER increases by +0.41, +0.55, +1.08 + 0.40 on
the four datasets respectively. This demonstrates
the effectiveness of Inverse Generation Training.

Methods
# sentences per second

CoNLL03 ACE04 ShARe13

Yan et al. (2021) 48 (1×) 23 (1×) 33 (1×)
Tan et al. (2021) 162 (3.4×) 74 (3.2×) -
SetGNER 149 (3.1×) 65 (2.8×) 122 (3.7×)

Table 7: Efficiency comparison with SOTA seq2seq /
seq2set NER models. Using a Nvidia RTX 3090 GPU.

4.7 Inference Efficiency

We compare the inference speed of SetGNER with
the SOTA seq2seq NER model (Yan et al., 2021)
and the SOTA seq2set NER model (Tan et al., 2021)
on three datasets. For a fair comparison, we fix the
maximum number of source tokens in each batch
as 800 and ensure that the sentence sampling order
in each run is the same. As shown in Table 7,
SetGNER is about 3 times faster than the seq2seq
NER model, thanks to the distributed nature of our
design. However, SetGNER is still slower than the
seq2set NER model based on non-autoregression.

5 Related Work

Seq2seq NER Models Straková et al. (2019) pro-
pose to linearize BILOU labels (Ratinov and Roth,
2009) of source tokens into a target sequence. Their
linearization of BILOU labels follows a heuristic
rule, which may introduce incorrect model bias.

Athiwaratkun et al. (2020) propose an aug-
mented natural language output format for flat
NER, where the type tags of words are placed
along with the words to form a sentence-alike tar-
get sequence. Lu et al. (2022) represent different
information structures with a structured extraction
language and solve general information extraction
tasks with a unified text-to-structure generation
framework. Zhang et al. (2022) point out two kinds
of incorrect bias (pre-context confounder, entity-
order confounder) in the seq2seq NER models and
propose two data augmentation methods to address
them. However, their model is still trained to gen-
erate entities sequentially after all.

There also exist pointer-based target sequences.
Fei et al. (2021) train a LSTM from scratch to
generate the target sequence and devise a novel
memory-augmented pointer mechanism to encour-
age interactions between the current pointer and
the prior recognized entity mentions. Instead,
Yan et al. (2021) combine pre-trained BART with
a delicately-designed copying mechanism and
achieve promising performance on a wide range of
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NER benchmarks. Our work inherits the copying
mechanism proposed in this work.

The seq2set NER model Tan et al. (2021) ob-
serve that nested NER is essentially an unordered
recognition task and propose to predict the set of
entity spans in one pass via a non-autoregressive
model. In contrast, our model treats each entity as a
sequence rather than a span, and is able to handling
discontinuous entity mentions.

6 Conclusion

We observe that existing generative NER models
suffer from the entity order confounder and faces
the problems of error propagation and slow infer-
ence speed. To address this, a novel Entity Set Gen-
eration framework for general NER is proposed in
this paper. We also propose to train our model with
an auxiliary Inverse Generation task that helps the
encoder learn the right-to-left semantic structure.
Experiments on five datasets prove the effective-
ness of our methods.

Limitations

Since both the encoding module and decoding mod-
ule of SetGNER work in the word-level, SetGNER
requires the input sentence to be tokenized into
words beforehand. However, for many language,
e.g. Chinese and Japanese, how to conduct word
segmentation and whether it is necessary to do so
are still open questions. This limits the usage of
SetGNER. To adopt SetGNER to these language,
further research is required.

Another limitation of SetGNER is that when
generating the set of entity sequences, there is not
interaction between target sequences starting with
different head words. This may limit the model’s
performance when explicit information about other
entities is helpful for the recognition of the target
entity.

Last but not least, although SetGNER is about
3 times faster than the SOTA seq2seq NER model
(Yan et al., 2021), it consumes more memory.
The maximum memory occupation of SetGNER is
about 2 times larger than that of (Yan et al., 2021),
when the maximum number of source tokens in
a batch is set as 800. This should be taken into
account when deploying the model on machines
with small graphical memory.
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A Profile of Datasets

Statistics ACE04 ACE05

Train Dev Test Train Dev Test

# Sentences 6200 745 812 7194 969 1047
Avg sent. length 22.5 23.0 23.0 19.2 18.9 17.2

# Entities 22204 2514 3035 24441 3200 2993
# Nested entities 10149 1092 1417 9389 1112 1118

Table 8: Statistics of nested NER datasets ACE04 and
ACE05.

Statistics CADEC ShARe13

# Sentences 7597 18767
Avg sent. length 14.2 12.9

# Entities 6318 11161
# Overlapped entities 923 663
# Discontinuous entities 675 1090

Table 9: Statistics of discontinous NER datasets
CADEC and ShARe13.

Statistics CoNLL03

Train Dev Test

# Sentences 14041 3250 3453
Avg sent. length 13.7 13.5 13.6

# Entities 23326 5902 5613
PER 6532 1829 1597
LOC 7125 1832 1644
ORG 6271 1325 1654
MISC 3398 916 5613

Table 10: Statistics of flat NER dataset CoNLL03.

CADEC1 (Karimi et al., 2015) is a discontinuous
NER dataset with a corpus of adverse drug event.
It originally contains 5 entity type, but only anno-
tations of "ADE" entities are considered. Because
only ADEs include discontinuous entities.

ShARe132 (Suominen et al., 2013) is a discon-
tinuous NER dataset with a corpus of clinical notes
and contains annotations of disorder mentions.

ACE043 and ACE054 (Doddington et al., 2004;
Walker et al., 2006) are two nested NER dataset

1https://data.csiro.au/collection/10948v003
2https://physionet.org/content/shareclefehealth2014task2
3https://catalog.ldc.upenn.edu/LDC2005T09
4https://catalog.ldc.upenn.edu/ LDC2006T06

with corpuses of newswire, broadcast news and
telephone conversations. Both of them contains 7
entity categories: “PER”, “ORG”, “LOC”, “GEP”,
“VEH”, “WEA” and “FAC”.

CoNLL035 Tjong Kim Sang and De Meulder
(2003) is a flat NER dataset with a news corpus and
has annotated 4 types of entities as “PER”, “LOC”,
“ORG” and “MISC”.

Statistics of the five datasets are listed in Tabel
8-10.

B Hyper-parameter Settings

We manually tune the hyper-parameters for each
dataset. Specifically, we trial different values of
each hyper-parameter within a bound and the hyper-
parameter value that results in the best performance
(measured in F1-score) on the development set are
chosen. The search bound of each hyper-parameter
and the final hyper-parameter configuration are
shown in Table 11.

C Sensitivity Analysis

The position interval for adaptive position em-
bedding, τ , and the beam size of adaptive beam
search, β, are two important hyper-parameters of
SetGNER. To analyze their influence on the per-
formance of SetGNER, we experiment with differ-
ent values of them and record the corresponding
F1 scores on four datasets (CADEC, ShARe13,
ACE04 and ACE05). As shown in Figure 5, when
τ = 0 (the adaptive position embedding degrades
to vanilla position embedding), the model can-
not work properly, demonstrating the necessity of
adaptive position embedding for SetGNER. When
τ ≥ 1, the change of τ slightly affects the per-
formance of SetGNER by a margin of around
0.2 ∼ 0.4 F1 on the four datasets. Figure 6 shows
the F1 scores of SetGNER with different beam
sizes. We can see that the performance of Set-
GNER reaches the peak when the beam size is
around 4 ∼ 6, and does not further improve when
the beam size grows bigger.

D Compared Discriminative NER Models

D.1 Models for Discontinuous NER

Tang et al. (2018) use LSTM-CRF to recognize con-
tinuous and discontinuous adverse drug reaction
mentions. (Dai et al., 2020) is a transition-based

5https://www.clips.uantwerpen.be/conll2003/ner/
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Hyper-parameters Bound CADEC ShARe13 ACE04 ACE05 CoNLL03

Epoch [30, 60] 55 50 55 50 50
Warmup ratio [0.001, 0.2] 0.1 0.1 0.01 0.01 0.01

lrencode [5e-6, 2e-5] 7.5e-6 7.5e-6 1.2e-5 1e-5 7.5e-6
lrdecode [5e-6, 2e-5] 1e-5 1e-5 1.6e-5 1.3e-5 1e-5

Max tokens per batch [150, 400] 280 280 190 220 400

Encoder dropout [0.001, 0.05] 0.03 0.03 0.03 0.03 0.03
Decoder dropout [0.001, 0.05] 0.001 0.001 0.02 0.01 0.05

Position interval τ [0, 5] 4 3 2 4 4
Beam size β [1, 8] 4 4 4 4 1

Table 11: The hyper-parameter settings in our experiments.

(a) CADEC (b) ShARe13

(c) ACE04 (d) ACE05

Figure 5: F1 scores under different position interval τ .

method that utilizes shift-reduce parsers to iden-
tify discontinuous entities. Wang et al. (2021b)
solve discontinuous NER via the maximal clique
discovery algorithm based on graph theory.

D.2 Models for Nested NER

Yu et al. (2020) formulate NER as the dependency
parsing task and solve it with TreeCRF. (Li et al.,
2020) is a method based on machine reading com-
prehension. Xu et al. (2021) treat named entity
recognition as multi-class classification of spans
and solve it with a multi-head self-attention mech-
anism. (Shen et al., 2021) is a two-stage entity
identifier, which first generates candidate spans and
then labels the boundary-adjusted span proposals
with the corresponding categories.

(a) CADEC (b) ShARe13

(c) ACE04 (d) ACE05

Figure 6: F1 scores under different beam sizes β.

D.3 Models for Flat NER
Akbik et al. (2019) dynamically aggregate contex-
tualized embeddings of each encountered string
and use a pooling operation to distill a global word
representation from all contextualized instances.
Wang et al. (2021a) use the input sentence as a
query to retrieve external contexts with a search en-
gine and concatenate the sentence with its external
contexts.
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