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Abstract

Current works about false information detec-
tion based on conversation graphs on social net-
works focus primarily on two research streams
from the standpoint of topic distribution: in-
topic and cross-topic techniques, which assume
that the data topic distribution is identical or
cross, respectively. This signifies that all test
data topics are seen or unseen by the model.
However, these assumptions are too harsh for
actual social networks that contain both seen
and unseen topics simultaneously, hence re-
stricting their practical application. In light
of this, this paper develops a novel open-topic
scenario that is better suited to actual social
networks. In this open-topic scenario, we em-
pirically find that the existing models suffer
from impairment in the detection performance
for seen or unseen topic data, resulting in poor
overall model performance. To address this
issue, we propose a novel Contrastive Adver-
sarial Learning Network, CALN, that employs
an unsupervised topic clustering method to
capture topic-specific features to enhance the
model’s performance for seen topics and an un-
supervised adversarial learning method to align
data representation distributions to enhance the
model’s generalisation to unseen topics. Ex-
periments on two benchmark datasets and a
variety of graph neural networks demonstrate
the effectiveness of our approach.

1 Introduction

The convenience and openness of social networks
allow people to quickly engage in discussions on
a wide range of topics (e.g. the COVID-19 epi-
demic and the war in Ukraine), and at the same
time they also cause people to suffer from false in-
formation, the massive spread of which can affect
the political and social order of the real world (Rao
et al., 2021a; Zhang et al., 2021). Therefore, the
detection of false information on social networks is

*Corresponding Author

In-topic

Open-topic

Cross-topic

Seen Topics

Unseen Topics

Train Data

Test Data

(a)

Models Seen Topics Unseen Topics

In-topic 82.58 60.34

Cross-topic 78.41 65.06

(b)

Figure 1: (a) Comparison of topic distribution in three
different scenarios. (b) The accuracy (%) of the in-topic
model and cross-topic model in the open-topic scenario
for seen and unseen topics, respectively.

increasingly attracting the attention of the research
community (Ma et al., 2018; Li et al., 2019; Yu
et al., 2020; Song et al., 2021; Ma et al., 2022).

Currently, there are two main types of detec-
tion models from the perspective of topic distribu-
tion: in-topic models and cross-topic models (Ren
et al., 2021). (1) In-topic models focus on scenarios
where topics of the training and test data are same
(Silva et al., 2021; Song et al., 2021), that is, the
topics in the test set are seen. (2) Cross-topic mod-
els focus on scenarios where topics of the training
and test data are different (Wang et al., 2018; Ren
et al., 2021), which means the topics in the test data
are unseen. However, we argue that the real so-
cial networks contain both seen and unseen topics
simultaneously, and we refer to this phenomenon
as the open-topic scenario. As shown in Figure 1
(a), there is a significant difference among the three
topic distributions.
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To the best of our knowledge, there is no work
on false information detection in open-topic sce-
narios. The intuitive idea is that we could resort
to the existing models to handle detection tasks in
this scenario. To implement the above conception,
we conduct a preliminary validation experiment.
Specifically, we train an in-topic model and a cross-
topic model with the same training data, respec-
tively. Then, we leverage an open-topic dataset,
mixed seen and unseen topics data, as test dataset
to evaluate the performance of the above two mod-
els (More details can be found in Appendix A. ).
The experimental results are shown in Figure 1(b).
From the results, we find that the accuracy of the in-
topic model on unseen topics is significantly lower
than that of the cross-topic model. Although the
cross-topic model improves the accuracy on unseen
topics, the accuracy on seen topics is lower than
that of the in-topic model.

We argue that the reasons for the above phe-
nomenon are as follows. (1) The performance of
the in-topic model benefits from prior knowledge
of the data (Ren et al., 2021; Silva et al., 2021),
also known as topic-specific features, such as spe-
cific topic words. This prior knowledge cannot
be transferred to new topics due to differences be-
tween topic features, resulting in poor generalisa-
tion of in-topic models to unseen topics. (2) The
cross-topic model mainly learns topic-invariant fea-
tures, such as writing style, from the topics of the
train data and transfers these features to the test
data (Wang et al., 2018; Castelo et al., 2019). This
learning mechanism causes the cross-topic model
to discard prior topic knowledge of the data, reduc-
ing the performance of the cross-topic model for
seen topics. Apparently, the deficiencies of existing
methods in open topic scenarios can be alleviated
if both topic-specific and topic-invariant features
can be preserved.

To retain these two types of features, we face two
severe challenges. (1) How to learn topic-specific
features? Some works adopt user features (Silva
et al., 2021) or pre-trained topic models (Ren et al.,
2021) to obtain topic-specific features, which are
sub-optimal since they fail to address the diver-
sity of topics on social networks. (2) How to
learn topic-invariant features? While existing work
has achieved good results using adversarial learn-
ing (Wang et al., 2018), it relies on the topic labels
, which is challenging for information on social
networks because topics are constantly emerging.

To tackle the above problem and challenges, we
propose a novel Contrastive Adversarial Learning
Network (CALN) to obtain and fuse both topic-
specific features and topic-invariant features. Con-
cretely, we use the drop edge technique (Rong
et al., 2020) to generate two augmented graphs
from an original conversation graph and leverage a
graph neural network (GNN) to obtain their graph-
level representations. Since different topic conver-
sation graphs have different topic-specific words
and topic-specific propagation patterns (Silva et al.,
2021; Mosallanezhad et al., 2022), we design an
unsupervised topic feature (TF) learner based on
contrastive learning to obtain topic-specific knowl-
edge. This TF learner can learn the intrinsic invari-
ance of the data by maximizing the mutual infor-
mation between the augmented graphs, ultimately
achieving topic clustering. Then, we resort to clas-
sical adversarial learning (Ganin and Lempitsky,
2015) to design an unsupervised representation
alignment (RA) learner to obtain topic-invariant
features, which is achieved by reversing the gra-
dient signal of contrastive learning and aligning
the representation distribution of the data. Finally,
we fuse the obtained topic-invariant features, topic-
specific features, and graph-level representations to
predict the authenticity of the conversation graph
of false information.

Our contributions are summarized as follows: (1)
We study a new issue of false information detection
in open-topic scenarios and discover the shortcom-
ings of existing methods in such scenarios. (2) We
propose a contrastive adversarial learning network
to obtain and fuse topic-specific and topic-invariant
feature learning to improve the false information
detection in open-topic scenarios. (3) We demon-
strate the effectiveness of our method through com-
parison, ablation and visualization experiments on
two real datasets and various GNNs.

2 Related Work

2.1 False Information Detection

Existing false information detection methods can
be categorized into two types from the perspective
of data distribution: data identical distribution (Rao
et al., 2021b; Song et al., 2021) based approaches
and non-identical distribution (Castelo et al., 2019;
Han et al., 2020) based approaches. Theoretically,
the setting of identical data distributions leads to
training and testing data on the same topics, result-
ing in detection models that cannot handle the new
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Figure 2: An illustration of our proposed networks. The TF learner is short for topic learner and The RA learner is
short for representation alignment learner.

topics, which are constantly emerging on social
networks. Consequently, some researchers have
started to study the case of non-identical data dis-
tribution, such as cross-topic models (Wang et al.,
2018; Castelo et al., 2019; Han et al., 2020; Ren
et al., 2021). The cross-topic model aims to learn
topic-invariant features from source topics and gen-
eralize these features to the different new topics.
However, there is a gap between the assumptions
of the above works and the real social network sce-
nario. We argue that the social networks tend to
be an open-topic scenario. That is, some topics are
persistent, such as conspiracy theories and racism,
while some new topics are emerging, such as the
COIVD-19 epidemic and the war in Ukraine. We
have demonstrated through validation experiments
that this open topic scenarios can lead to perfor-
mance degradation of existing models.

2.2 Contrastive Learning

Contrastive learning is a representational learning
method that utilizes the relevance of data as a sig-
nal for self-supervision and has demonstrated its
powerful performance in various domains of nat-
ural language processing (Li et al., 2021; You
et al., 2022; Ge et al., 2022). Generally, contrastive
learning constructs positive samples by data aug-
mentation methods and treats other data within the
mini-batch as negative samples, forcing the model
to learn the similarities or differences of the data
and thus extract the intrinsic features of the data.
In this paper, we explore the study of unsupervised
topic clustering with contrastive learning. As there
are natural differences between the conversation
graphs across topics, we use contrastive learning to

learn the invariance of the data and form clustering
effects.

2.3 Adversarial Learning

Adversarial learning has been considered a promis-
ing solution for the topic generalization problem
(Wang et al., 2021; Li et al., 2022). The basic idea
(Ganin and Lempitsky, 2015) is to add an adver-
sarial learning layer to the topic classifier to learn
a topic-invariant representation (Zou et al., 2021).
However, most existing adversarial approaches rely
on topic labels for feature alignment (Wang et al.,
2018; Han et al., 2020; Li et al., 2022), which is un-
realistic for complex social networks as we have no
way to obtain labels for new topics that keep emerg-
ing continuously. Based on those mentioned above,
this paper explores using unsupervised adversar-
ial learning to handle cross-topic generalization on
social networks.

3 Methodology

3.1 Problem Statement

For the conversation graph detection task in
open-topic scenarios, we are given ns labeled
source training examples ({Gs

i , y
s
i })ns

i=1 from Ks =
{K1

s , ...,K
m
s } topics where Gs

i ∈ Gs, y
s
i ∈ Ys and

nt unlabeled target test examples ({Gt
j})nt

j=1 from
Kt = {K1

t , ...,K
n
t } topics where Ks ∩ Kt ̸= ∅.

The goal of this paper is to learn a classification
model to predict the conversation graph labels
{ytj}nt

j=1 where ytj ∈ Yt for the test dataset. We
define the task as a binary classification task, where
y ∈ {True, False}. For conversation graphs on
social networks, we follow previous work (Wei
et al., 2019; Li et al., 2020) and define the conversa-
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tion graph as an undirected graph: G = (X,A),
where X ∈ Rd denotes the node features and
A ∈ Rm×m denotes the adjacency matrix.

3.2 Overview

We propose a contrastive adversarial learning net-
work to address the problem of false information
detection in open-topic scenarios. As shown in Fig
2, our model consists of four components: a data
enhancement and encoder module, a TF learner, a
RA learner, and a false information classifier.

3.3 The Data Enhancement and Encoder
Module

We perform data augmentation on an original graph
Gs
i (G for short) to produce two augmented graphs

Ĝi and Ĝj as positive sample pairs. The reason
we adopt the drop edge method for data enhance-
ment is that it can mitigate the influence of the
echo chamber effect in false information propaga-
tion (He et al., 2021). We pass the augmented view
graph to the GNN and READOUT functions to
obtain a graph-level representation.

h = READOUT(GNN(Ĝ)) (1)

where h ∈ Rd1 and the GNN serves as the shared
conversation graph encoder. We adopt global aver-
age pooling (GAP) as the READOUT function.

We denote the process above as fe(·, θe), where
the θe is the parameters to be learned. Thus, we
obtain two enhanced graph-level representations hi
and hj for an original conversation graph G, where
hi = fe(Ĝi, θe) and hj = fe(Ĝj , θe).

3.4 The Topic Feature Learner

The TF learner aims to learn topic-specific fea-
tures as prior knowledge for detection in an unsu-
pervised approach. Existing methods for learning
topic-specific features rely on user information and
pre-trained topic models. However, they ignore the
propagation patterns of conversation graphs, which
are crucial for social networks. Based on the fact
that different topic conversation graphs have differ-
ent topic-specific words and topic-specific propa-
gation patterns (Silva et al., 2021; Mosallanezhad
et al., 2022), we propose an unsupervised topic
clustering method for conversation graphs with con-
trastive learning to obtain topic-specific features.

We first pass the two graph-level representations,
hi and hj , to a neural network to obtain two hidden

features zitf and zjtf . This process can be repre-
sented as follows:

ztf = NN(h) (2)

where ztf ∈ Rdts and NN(·) consist of two layers
of perceptrons and an activation function.

Then, we introduce contrastive learning to maxi-
mize the mutual information between the two hid-
den features, zitf and zjtf , to learn the intrinsic prop-
erties of the data. Since contrastive learning can
capture the similarities and differences among data
to form a natural clustering effect, we refer to such
clustering representations as topic-specific features.
Herein, the contrastive loss for the TF learner is
defined as follows:

LTF (θe, θtf )= EPĜi
{−EP(Ĝi|Ĝj

)T (z
i
tf , z

j
tf )

+ logEPĜj
eT (zitf ,z

j
tf )}

(3)

where the θtf and θe denote the parameters to
be learned. PĜi

and P(Ĝi|Ĝj
) are conditional and

marginal distribution of augmented graphs. T (·, ·)
is a learned score function: sim(zitf , z

j
tf )/τ , where

the sim(·, ·) is a cosine similarity function, and τ
is a temperature factor (You et al., 2020).

The loss function LTF (θe, θtf ) can evaluate the
differences among topics. The smaller the loss is,
the better the clustering result is. Finally, we aim at
minimizing the loss LTF (θe, θtf ) ot the TF learner:

θ̂tf = argmin
θtf

LTF (θe, θtf ) (4)

3.5 The Representation Alignment Learner
The RA learner seeks to align data representa-
tion distributions in an unsupervised manner to
grasp topic-invariant features. Previous works rely
on topic labels to perform topic-invariant learn-
ing (Wang et al., 2018). Due to the diversity and
complexity of information on social networks, it
is impractical to annotate each conversation graph
with an explicit topic label. To learn topic-invariant
features, we resort to classical adversarial learning,
which achieves data representation alignment by
adding a gradient reversal layer (GRL) (Ganin and
Lempitsky, 2015) to fuse data features.

First, similar to the TF learner, we employ a
neural network to obtain two hidden vectors, zira
and zjra. This process is represented as follows:

zra = NN(h) (5)
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where zra ∈ Rdti and NN(·) contains two layers
of perceptrons and an activation function.

Then, we pass zira and zjra into GRL to obtain
two vectors zirev and zjrev. The GRL is a constant
function in forward propagation, while it reverses
the gradient signal by multiplying the parameter
−λ to the previous layer gradient in backward prop-
agation:

zrev = GRL(zra) (6)

Finally, we again use contrastive learning to deter-
mine whether the two vectors come from the same
original conversation graph. The loss for the RA
learner is defined as follows:

LRA(θe, θra) = EPĜi
{−EP(Ĝi|Ĝj

)T (z
i
rev, z

j
rev)

+ logEPĜj
eT (zirev ,z

j
rev)}

(7)
The goal of contrastive loss is to determine the

consistency between two data through maximiz-
ing the mutual information, while the goal of the
graph encoder module is exactly the opposite due to
the GRL, thus forming an adversarial relationship.
As training converges, the RA learner is unable
to distinguish which topic the accepted features
come from. Therefore, the above loss LRA(θe, θra)
is used to evaluate the differences in topics. The
larger the loss, the smaller the topic difference.
The goal of the RA learner is to maximize loss
LRA(θe, θ̂ra):

θ̂rev = argmax
θra

LRA(θe, θra) (8)

3.6 False Information Classifier
The false information classifier is a feed-forward
fusion network with a perceptron and an activa-
tion function, which is designed to predict whether
a conversation graph G is true or false. We con-
catenate the augmented graph representations hi (
hj), topic-specific representations ztf , and topic-
invariant representations zra ( zrev ) and feed them
into this classifier to obtain the prediction results ŷ.

The cross-entropy loss is used to optimize the
classifier:

LCE(θe, θd)) =− E(G,y)∼(Gs
i ,Ys)[y log ŷ

+ (1− y) log ŷ]
(9)

where θd is the parameters of the classifier.

Table 1: The statistics of datasets.

Statistics PHEME5 PHEME9
Graphs 5802 6425
False 3830 4023
True 1972 2402

Avg comments/graph 17.8 16.3
Avg words/comment 13.6 13.6

Comments 103212 105354
Topics 5 9

The parameters θd can be learned by:

(θ̂e, θ̂d) = argmin
θe,θd

LCE(θe, θd) (10)

3.7 Training Objective and Model Analysis

Our training objective is a minimax game between
the TF learner, the RA learner and the classifier.
Thus, the total loss function is defined as follows:

Ltotal(θe, θtf , θra, θd) = LCE(θe, θd)

+αLTF (θe, θtf )− λLRA(θe, θra)
(11)

where α ∈ [0, 1] and −λ are a trade-off factor
We analyze the difference between the in-topic

model (Equation 12), the cross-topic model based
on adversarial learning (Equation 13) and our
model (Equation 14) from the GNN encoder gradi-
ent update perspective. In more detail, the gradient
update for these three models is expressed as fol-
lows, respectively:

θ̂e = θe − η
∂Ly

∂θe
(12)

θ̂e = θe − η(
∂Ly

∂θe
− λ

∂Ld

∂θe
) (13)

θ̂e = θe−η(
∂LCE

∂θe
+
∂LTF

∂θe
+(−λ

∂LRA

∂θe
)) (14)

where the η is the learning rate , Ld is the the
adversarial loss and Ly is the cross-entropy loss.

It can be found that the cross-topic model aligns
the distinct topic representations by adding the
−λ∂Ld

∂θe
term in an adversarial way compared to

the in-topic model. Our model adds an additional
∂LTF
∂θe

term compared to the cross-topic model to al-
leviate this extreme adversarial. The above compar-
ison of gradient update shows that the cross-topic
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Table 2: Summary of false information detection results: "average ± standard deviation" and "improvement" (%).

GNN Method PHEME5 PHEME9
Accuracy △ F1 △ Accuracy △ F1 △

GCN

N/A 72.66±1.43 - 72.35±1.55 - 67.02±1.86 - 64.28 ±2.11 -
EANN 71.96±1.36 ↓0.70 71.74±2.21 ↓0.61 68.37 ±1.99 ↑1.35 65.06 ±3.22 ↑0.78
RDEA 75.25±1.32 ↑2.59 72.08±2.63 ↓0.27 66.70±5.77 ↓0.32 63.40 ±5.23 ↓0.88
CTTM 73.71±1.00 ↑1.05 73.45±1.52 ↑1.10 69.27±0.79 ↑2.25 65.25±1.54 ↑0.97
GACL 73.00±1.04 ↑0.34 72.46±1.59 ↑0.11 67.04±1.29 ↑0.02 64.38±2.01 ↑0.10
CALN 77.01±0.97 ↑4.35 75.89 ±1.90 ↑3.54 71.67±0.95 ↑4.65 66.80±0.93 ↑2.52

SAGE

N/A 74.70±1.04 - 73.91±1.61 - 66.51±3.40 - 63.67±3.21 -
EANN 74.41±1.80 ↓0.29 73.80±1.81 ↓0.10 67.02±2.20 ↑0.51 64.03±2.10 ↑0.36
RDEA 75.59±2.47 ↑0.89 74.25 ±2.71 ↑0.34 65.71±5.78 ↓0.80 63.15 ±4.63 ↓0.52
CTTM 75.66 ±1.96 ↑0.96 75.30 ±1.86 ↑1.40 69.28±2.71 ↑2.77 64.60±2.03 ↑0.93
GACL 73.18±1.21 ↓1.52 72.35±2.12 ↓1.56 69.10±0.59 ↑2.59 64.83±1.52 ↑1.16
CALN 77.47 ±1.76 ↑2.77 76.32 ±1.65 ↑2.41 70.94±1.27 ↑4.43 66.03 ±1.69 ↑2.36

GIN

N/A 73.20±1.73 - 72.39±1.79 - 67.36±5.18 - 63.67±4.39 -
EANN 72.61±2.23 ↓0.59 71.68±3.89 ↓0.71 65.82±3.99 ↓1.51 62.17±3.03 ↓1.50
RDEA 74.32 ±2.31 ↑1.12 70.32 ±2.77 ↓2.07 69.66±2.56 ↑2.30 65.74±4.81 ↑2.07
CTTM 74.33 ±1.00 ↑1.13 73.78±1.17 ↑1.39 69.13±1.68 ↑1.77 64.97±2.48 ↑1.30
GACL 73.73±1.72 ↑0.53 72.35±1.52 ↓2.65 67.69±2.11 ↑0.33 64.74±2.10 ↑1.08
CALN 76.11 ±1.02 ↑2.91 74.70 ±1.64 ↑2.30 71.38 ±3.27 ↑4.02 67.39 ±5.44 ↑3.72

model completely discards the prior topic knowl-
edge of the data due to adversarial loss. In contrast,
our model is a compromise between the in-topic
and cross-topic models, which is consistent with
our goal of improving detection performance in
open-topic scenarios.

4 Experimental Studies

4.1 Datasets

We evaluate the effectiveness of our method
on two publicly available benchmark datasets
from the Twitter social platform. Among them,
PHEME5 (Zubiaga et al., 2016a) contains five top-
ics: the Sydney siege, the Ottawa shooting and Fer-
guson, etc., and PHEME9 (Zubiaga et al., 2016b)
contains nine topics: the Germanwings plane crash
and the Ebola virus, etc. The detailed statistics of
the dataset are shown in Table 1. We reset and split
the dataset to ensure that the test set contains topics
out of the training set to simulate the open-topic
scenario. More details on dataset pre-processing
and splitting can be found in Appendix B.

4.2 Baseline and SOTAs

We utilize the original GNN as a baseline and se-
lect some related in-topic models and cross-topic
models for comparison, including:

EANN (Wang et al., 2018): A cross-topic false
information detection model with adversarial learn-
ing. To learn topic-invariant features, EANN lever-
ages a clustering algorithm to obtain soft topic la-
bels to perform topic adversarial learning.

RDEA (He et al., 2021): An in-topic false infor-
mation detection model with contrastive learning.
To enhance the model’s generalisation, RDEA pre-
trains the GNN encoder with data augmentation
and contrastive learning.

CTTM (Ren et al., 2021): A SOTA cross-topic
false information detection model with the mixture
of experts paradigm (MOE) (Jacobs et al., 1991).
CTTM leverages the pre-trained topic model to
obtain topic vectors to enhance the model’s gener-
alisation to unseen topics.

GACL (Sun et al., 2022): A SOTA in-topic false
information detection model with supervised con-
trastive and adversarial learning. The method uti-
lizes supervised contrastive learning to improve the
model’s generalization and introduces adversarial
learning to boost the robustness of the model.

For a fair and extensive experimental evaluation,
we utilize various GNNs as encoders, including
GCN (Kipf and Welling, 2017), SAGE (Hamilton
et al., 2017) and GIN (Xu et al., 2019). GCN learns
the graph’s multi-layer embedding representation
of each node by aggregating the embeddings of
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adjacent nodes. SAGE expands GCN into an in-
ductive learning task. GIN modifies the neighbour
aggregation and graph readout functions so that the
GNN performance approximates the upper line of
the Weisfeiler-Lehman test (Leman and Weisfeiler,
1968).

4.3 Implementation Details
We chose accuracy and macro F1 as the metrics
for performance evaluation. We use Adam as the
optimizer (Kingma and Ba, 2015). The batch size
is set to 64, and the dropout is set to 0.2 empiri-
cally. we adopt a three-layer GNN as the backbone
network for all models. During the model training
process, we use a grid search technique to choose
the best super-parameters. The trade-off factor α
are selected from {0.1, 0.3, 0.5, 0.7, 0.9}, the GRL
trade-off factor λ is selected from {1, 0.5, 0.1, 0.05,
0.01, 0.005, 0.001} and the learning rate is selected
from {0.001, 0.005, 0.0001, 0.0005}. The tempera-
ture factor τ is set to 0.5. Notably, we leverage a
learning rate decay strategy with linear warm-up
for stable training. All calculations are done on
an NVIDIA Tesla V100 GPU. More details about
the super-parameter selection, baseline and SOTAs
model implementation can be found in the Ap-
pendix C.

4.4 Performance Comparison
The experimental results are shown in Table 2,
where N/A indicates the baseline and △ repre-
sents the performance improvement. It can be
observed that CALN achieves the best results on
several GNN encoders and datasets, such as an ac-
curacy improvement of more than 4% on PHEME5
compared to the baseline. RDEA and GACL are
in-topic models whose performance benefits from
prior knowledge of the topic, resulting in their infe-
rior performance to CALN in open-topic scenarios.
EANN obtains soft topic labels for the data with a
clustering algorithm, and CTTM leverages a pre-
trained model to obtain the topic vector, both of
which induce additional error bias. In contrast, we
naturally perform topic mining in an unsupervised
manner, using the intrinsic relevance of the data as
the driving signal. As a result, our approach avoids
the barriers to applying the model in real-world sce-
narios due to the lack of topic labels. Moreover, the
results on different encoders and datasets demon-
strate that CALN is a model-agnostic approach.

To further evaluate the CALN performance in
open-topic scenarios, we calculate the accuracy
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Figure 3: A comparison of the accuracy (%) of different
models for seen and unseen topics in the open-topic
scenario on PHEME5 dataset.

of various methods on the PHEME5 datasets with
GCN as the encoder for seen and unseen topics.
The experimental results are shown in Figure 3.
We can find that CALN achieves the best results on
both seen and unseen topics for most of the metrics.
For seen topics, EANN performs the worst because
it is a cross-topic model that lacks the topic prior
knowledge of the data. For unseen topics, RDEA
performs poor because it is an in-topic model that
fails to generalize to new topics. Our model utilizes
the TF learner to enable the topic distribution to di-
rectly participate in the model decision, improving
the model’s performance for seen topics, and uti-
lizes the RA learner to align data representations,
improving the model’s generalization to unseen
topics. Moreover, our contrastive clustering allows
for clustering transfer to unseen topics (Section
4.6), further enhancing the model’s generalization
to unseen topics.

4.5 Ablation Study

To investigate the impact of each learner on model
performance, we conduct an ablation study. We
remove the TF learner or the RA learner to observe
the model’s accuracy for seen and unseen topics
in open-topic scenarios, respectively. The exper-
imental results are shown in Table 3. The "w/o
TF" indicates removing the TF leaner, and the "w/o
RA" indicates removing the RA leaner. Although
most metrics show degradation when any leaner is
removed, there is a significant difference between
seen and unseen topics. For seen topics, the perfor-
mance of "w/o TF" degrades more than that of "w/o
RA". For example, "w/o TF" and "w/o RA" mod-
els drop 5.62% and 2.24%, respectively, compared
to CALN on the PHEME5 dataset with SAGE as
encoder, which indicates that the TF leaner is more
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Table 3: The ablation experiment study. The "acc" denotes accuracy (%) and the △ denotes the accuracy change
with respect to CALN .

Topics Method
PHEME5 PHEME9

GCN SAGE GIN GCN SAGE GIN
acc △ acc △ acc △ acc △ acc acc △

Seen
CALN 84.45 - 85.76 - 84.14 - 81.06 - 84.80 - 86.13 -
w/o TF 81.46 ↓2.99 80.14 ↓5.62 81.64 ↓2.50 80.53 ↓0.53 82.13 ↓2.67 82.13 ↓ 4.00
w/o RA 82.39 ↓2.06 83.52 ↓2.24 83.33 ↓ 0.81 80.80 ↓0.26 82.40 ↓2.40 82.13 ↓4.00

Unseen
CALN 66.73 - 67.59 - 64.39 - 69.17 - 67.86 - 69.65 -
w/o TF 67.16 ↑0.43 66.52 ↓1.07 64.00 ↓0.39 67.46 ↓1.71 67.05 ↓0.81 68.29 ↓1.36
w/o RA 65.45 ↓1.28 63.75 ↓3.84 61.83 ↓2.56 65.41 ↓3.76 66.12 ↓1.74 63.55 ↓6.10
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(b) PHEME9

Figure 4: Visualization of the representations obtained
from the TF learner (topic-specific ) and the RA learner
(topic-invariant).

focused on seen topics. The "w/o RA" has more
performance degradation for unseen topics, indi-
cating that the RA leaner is more favourable for
generalising unseen topics. The above experimen-
tal results illustrate the rationality of CALN.

4.6 Visualization Analysis

We perform visualization studies to explore the
TF learner’s ability to capture topic features and
the RA learner’s ability to align data representa-
tions. To better demonstrate the visualization re-
sults, we randomly select some test data to obtain
topic-specific features ztf and topic-invariant rep-
resentation zra (zrev) . We resort to the topic labels
of the original data and use T-SNE for visualization.
The experimental result is shown in Figure 4. We

notice that the topic-specific features ztf can form
apparent topic clustering effects in the PHEME5
dataset, including for unseen topics (red sample
points). It demonstrates that our model can capture
topic features and has a transfer clustering effect
for unseen topics. For the topic-invariant features,
we observe that the distribution of the data repre-
sentations presents aligned results, with no clear
boundaries of distinction among different topics,
compared with the topic-specific representations.
It indicates that the RA learner eliminates the dif-
ference among topics. Moreover, the parameter
λ is significant for the RA learner. Due to space
constraints, the visualizations based on different λ
can be found in the Appendix D.

0 20 40 60 80 100Epoch

Lo
ss

TF

RA

CE

Figure 5: The training loss development.

4.7 Convergence Analysis
To investigate the stability of the training process
of CALN , we collect the changes of the loss LTF

from the TF learner, the loss LRA from the RA
learner and the loss LCE from the classifier during
the training process with GCN as the GNN encoder.
The experimental results are shown in Figure 5. We
find that the loss LTF and LCE keep decreasing
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while the loss LRA shows a slight decrease at the
beginning and then gradually increases. The de-
crease in loss LTF indicates that the TF learner
gradually completes the data intrinsic feature learn-
ing and forms the clustering effect. The increase in
LRA indicates that the representation distribution
of the data tends to be aligned. These three losses
progressively converge to a stable level with the
increase of the epoch.

5 Conclusion

This paper proposes a novel open-topic scenario
containing the seen and unseen topic simultane-
ously for false information detection to comple-
ment existing work. We explore the shortcomings
of existing models in the open-topic scenario and
propose a contrastive adversarial learning network
CALN, containing a topic feature learner and a rep-
resentation alignment learner. The topic feature
learner is an unsupervised topic-based clustering
method to learn topic-specific features, improving
the model’s performance for seen topics. The rep-
resentation alignment learner is an unsupervised
adversarial learning method to learn topic-invariant
features, enhancing the model’s generalize for un-
seen topics. Experiments on various GNN encoders
and two real datasets demonstrate the effectiveness
of our model.

6 Limitations

There are some potential limitations in this study.
First, our model is based on conversation graphs
and relies on the graph structure formed by user
comments, so it is weak for detecting early propa-
gation. Early detection of false information will be
the future direction of our work. Second, the open-
topic scenario we constructed contains at most nine
topics, which is still some gap in topic diversity
from factual scenarios. Therefore, building a more
diverse and large-scale dataset can further advance
the field of false information detection.
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A Validation Experiment Supplement

This section supplements the validation experi-
ments described in the introduction.

For the experiment, we use Bian et al. (2020), a
prominent architecture utilized by several models
for false information detection, as in-topic model,
and select the Wang et al. (2018), a traditional
model with adversarial learning, as the cross-topic
model. The PHEME5 is used as the dataset. We
split the dataset to ensure that the test set contains
topics out of the training set (Section B). In this
manner, we construct a training and test data that
fits the open-topic scenario. We feed the test set to
the above two models and measure the accuracy of
each model for seen and unseen topics detection.

B Dataset Details Supplement

In this section, we present the additional details of
the datasets.

Table 4: The PHEME5 Datasets.

Topics Graphs Tweets False True
Charlie Hebdo 2079 38268 458 1621
Sydney siege 1221 23996 522 699
Ferguson 1143 24175 284 859
Ottawa shooting 890 12284 470 420
Germanwings-crash 469 4489 238 231

In the paper, we use two publicly available
datasets, PHEME5 and PHEME9. These two
datasets derived from the real social platform Twit-
ter and contain the complete user comment text
and reply relationships, which are accessible from
https://figshare.com/articles/dataset/PHEME_datas
et _for_Rumour_Detection_and_Veracity_Classific
ation/6392078 . As shown in Table 4, the PHEME5
dataset contains five different topics. The PHEME9
is developed from PHEME5 and contains nine
topics. In the data pre-processing, we replace
all the user names in the text with "User", and
the hyperlinks address with ’URL’ to avoid user
information leakage. To create an open-topic
dataset, we take PHEME5 as an example. We split
"Charlie Hebdo", "Sydney siege", "Ferguson" and
"Germanwings crash" by 8:1:1 for the training set,
validation set and test set, respectively, ensuring
that the topics in both the training and validation
sets are seen. To guarantee that the test set has
unseen topics, we merge "Ottawa shooting" with

the above test set to create a new test set as the
open-topic scenario.

C Implementation Details Supplement

In this section, we present additional details on the
model implementation.

we adopt a three-layer GNN as the backbone
network for all models. For the Baseline imple-
mentation, we add a perceptron layer as a classifier
on top of the backbone network. We employ the
source code from the original paper to implement
EANN 1, RDEA 2 and GACL 3. Since the original
paper of CTTM does not provide available source
code, we have reproduced it as much as possible ac-
cording to the description of the paper.Specifically,
the CTTM contains two variants of the model, Avg
and Param. As the performance of Param is sig-
nificantly better than Avg in the original paper,we
use the Param model as our comparison model. In
addition, since EANN and CTTM are not graph
neural network-based models, we convert their en-
coders to GNN encoders. We use PyTorch 4 and
PyTorch-geometric 5 (Fey and Lenssen, 2019) to
implement all models. In the data augmentation
process,we use the standard interface of PyTorch-
geometric to drop edge.The drop probability is set
to 0.1 and 0.2 to obtain the two augmented graphs.

D Visualization Analysis Supplement

In this section, we supplement the visualization
results of topic-specific and topic-invariant features
with different λ.

We use PHEME5 as an example to illustrate
the effect of λ on the model. The visualization
experiment results are shown in Figure 6. We can
notice that when λ=1, the excessive adversarial
effect causes the data to collapse in the RA learner
and lose their discriminability completely. When
λ=0.0005, it causes a certain topic clustering effect
in the RA learner. We explain this phenomenon by
the following analysis.

The contrastive loss can be rewritten as follows

1https://github.com/yaqingwang/EANN-KDD18
2https://github.com/hzy-hzy/RDEA
3https://github.com/agangbe/GACL
4https://github.com/pytorch
5https://github.com/pyg-team/pytorch_geometric
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Figure 6: Visualizing Supplement.

6:

L = − log
exp(zim · zjm/τ)

exp(zim · zjm/τ) +
∑

N exp(zim · zn/τ)
(15)

where zim and zjm denote positive sample pairs and
the zn denotes negative sample.

We notice that the contrastive loss aims to pull
closer the positive pairs from the same conversa-
tion graph, and push away the negative samples
from the different conversation graphs within the
batch. Due to adversarial learning, the GNN en-
coder would pull in all negative samples, thus form-
ing a representational alignment. When the ad-
versarial learning is strong enough (λ is large),
it causes the data to shrink completely together,
making it impossible for the data to retain enough
information for the classification task. When the
adversarial learning is small (λ is small), the data
shows a certain topic clustering effect due to con-
trastive learning.

As shown in the Figure 6, we can observe that
when λ = 1 or λ = 0.5, the topic-invariant fea-

6For the relationship between mutual information and con-
trastive learning, please refer to the paper (You et al., 2020)

tures collapse due to excessive adversarial, which
affects the distribution of representations in the TF
learner. At this point, the accuracy of the model
is about 75%. When λ = 0.1 or λ = 0.05, the
data representation distribution of the RA learner is
well-aligned, and the TF learner captures apparent
topic features. The model obtained better results
at this point with an accuracy of 76.5%. When
λ = 0.0005, the adversarial learning power is too
small, leading to the effect of topic clustering in
the RA learner, and the model’s accuracy decreases
at this time.
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