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Abstract

Code-switching has seen growing interest in
recent years as an important multilingual NLP
phenomenon. Generating code-switched text
for data augmentation has been sufficiently
well-explored. However, there is no prior
work on generating code-switched text with
fine-grained control on the degree of code-
switching and the lexical choices used to
convey formality. We present COCOA, an
encoder-decoder translation model that con-
verts monolingual Hindi text to Hindi-English
code-switched text with both encoder-side
and decoder-side interventions to achieve fine-
grained controllable generation. COCOA can
be invoked at test-time to synthesize code-
switched text that is simultaneously faithful
to syntactic and lexical attributes relevant to
code-switching. COCOA outputs were sub-
jected to rigorous subjective and objective
evaluations. Human evaluations establish that
our outputs are of superior quality while be-
ing faithful to desired attributes. We show sig-
nificantly improved BLEU scores when com-
pared with human-generated code-switched
references. Compared to competitive base-
lines, we show 10% reduction in perplexity
on a language modeling task and also demon-
strate clear improvements on a downstream
code-switched sentiment analysis task.

1 Introduction

Bilingual speakers form a significant portion (cur-
rent estimates of 43%1) of the world’s population.
To cater to the human-computer interaction needs
of this user segment, Natural Language Genera-
tion (NLG) and Natural Language Understanding
(NLU) tasks for code-switching (CS) are receiving
increasing amount of attention from the research
community (Zhang et al., 2021). Code-switching in

* Equal contribution
1https://ilanguages.org/bilingual.php

0.00 0.25 0.50
Score

0

100

200

300

Co
un

t

(a) CMI

0.0 0.5 1.0
Score

0

50

100

150

200

Co
un

t

(b) SPI

0.0 0.5 1.0
Score

0

200

400

600

Co
un

t

(c) Formality

Figure 1: Distribution of CMI, SPI and formality scores
over CS samples in the ALLCS test set.

a sentence typically involves switching between a
matrix language L1 and an embedded language L2.
A key challenge in CS that has not been previously
addressed by generation models is to explicitly con-
trol for syntactic and lexical diversity (Doğruöz
et al., 2021). Such controllable NLG models would
help build robust computational models for CS text.
We draw attention to three specific dimensions of
diversity that are commonly observed in CS text. In
this work, we aim to generate text that specifically
spans these three CS dimensions.
1. Language Mix Ratio: The first syntactic di-
mension of diversity refers to the varying number
of L1 and L2 words in a CS sentence that depends
on a number of factors like language pair, socio-
economic context, etc. For instance, Al-Azami
(2006) find that among immigrant Bengalis in the
UK, first-generation immigrants tend to use Ben-
gali and English as L1 and L2 respectively, while
the order is reversed for younger generation immi-
grants. Code-mixing index (CMI) (Gambäck and
Das, 2014) is commonly used to quantify the ratio
of L1 vs. L2.
2. Language Burstiness: The second syntac-
tic dimension of diversity captures burstiness, i.e.
the length of homogenous spans of L1 and L2,
in CS text. This is also a function of the lan-
guages involved and social contexts. For instance,
Czech-English speakers switch to English for high-
information content words in prominent prosodic
positions while speaking Czech (Myslín and Levy,
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2015). I-index (Guzmán et al., 2017), which we
also refer to as switch-point index (SPI) is popularly
used to quantify the extent of burstiness.
3. Formality: This lexical dimension of diversity
refers to the choice of words used in a CS sentence.
A CS sentence can be constructed using either for-
mal or informal words depending on whether it is
used in a news broadcast or a social media post,
respectively. Many studies suggest that CS patterns
and word choices are speaker-dependent (Vu et al.,
2013) and sometimes even gender-dependent (Fin-
nis, 2014).

We further substantiate the practical relevance of
the above three dimensions of diversity by analyz-
ing the test set of the ALLCS benchmark (Tarunesh
et al., 2021a) which consists of 2.5K human-
generated Hindi-English sentences. We compute
CMI/SPI using counts of L1 and L2 words/spans
in CS text and formality is determined using a pre-
trained classifier.2 Figure 1 shows significant vari-
ation of CS text across all three dimensions, thus
offering evidence of diversity in real CS text. Fig-
ure 4 in Appendix A contains ALLCS examples
that span the three dimensions of interest.

In this paper, we tackle the problem of generat-
ing CS text from monolingual text while providing
inference-time levers to control for CMI, SPI and
formality of the generated CS text. To the best of
our knowledge, there is no prior work that can gen-
erate CS text while controlling for these attributes.
For NLU models, data augmentation (Chang et al.,
2018; Volpi et al., 2018; Shen et al., 2020) is a
common and effective way to make them robust
to a wide variety of inputs. Therefore, it follows
that building controllable code-switched genera-
tion models would be very useful in making NLU
(via data augmentation) and NLG models robust to
lexical and syntactic diversity.

We propose COCOA for controllable code-
switched generation using a machine translation-
based model where the source and target languages
are monolingual Hindi text and Hindi-English CS
text, respectively. In practical scenarios, parallel
data with diverse vocabulary in conjunction with di-
verse attribute (CMI, SPI, formality) values for CS
text is not easily available. We tackle this challenge
through task-specific multi-task training objectives.
We employ encoder-side training to control for at-
tributes when parallel training data is available, and
decoder-side control via beam re-weighting when

2More details about these attributes are in Section 3.1.

parallel data is not available. In summary, we make
the following four key contributions:

• We introduce the problem of controllable code-
switching to enable generation of CS text with a
desired set of attributes. (Sections 3.1)

• We propose a modeling methodology for con-
trollable code-switched generation by using both
encoder and decoder level controls (Section 3.2).

• We demonstrate the efficacy of the proposed
approach with detailed ablations and comparison
to state-of-the-art benchmarks. (Section 4, 5, 6).

• We release a new Hindi-English CS dataset,
DIVERSE-ALLCS which is an extension to the
ALLCS dataset with additional diversity of CMI
and SPI (Section 7).

2 Related Work

2.1 Diversity in Code Switching: Linguistic
Perspective

Different from conventional languages, code-
switched languages are complex, personal-
ized (Bawa et al., 2020), evolving languages (Prat-
apa and Choudhury, 2017) that depend on linguis-
tic (Al-Azami, 2006), social (Gardner-Chloros and
Edwards, 2004) and economic contexts (Mohanty,
2006). Below we discuss a few reasons that cause
CS diversity and refer the reader to recent sur-
veys (Sitaram et al., 2019; Doğruöz et al., 2021)
for a more detailed treatment of this topic.

In a linguist’s perspective of code-
switching, Doğruöz et al. (2021) makes a
strong argument that computational linguistics (pri-
marily via large language models) are constrained
by the lack of available of diverse CS training data,
evaluation benchmarks and absence of user-facing
applications. Systematically producing diverse CS
text for robustifying NLU and NLG tasks is stil
an open problem (Doğruöz et al., 2021). Though
computational models of CS exist, they fall short
in terms of coverage of the natural utterances that
a bilingual speaker would produce (Pratapa et al.,
2018).

Despite significant advances in NLP powered by
large pretrained language models, generating and
understanding CS text with the diversity and rich-
ness required by applications is harder compared
to tasks involving monolingual data (Winata et al.,
2021). Doğruöz et al. (2021) observe that while
benchmarks like LINCE (Aguilar et al., 2020) and
GLUECoS (Khanuja et al., 2020a) serve as critical
resources for the CS research community, they do
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not yet represent the entire spectrum of CS. Specif-
ically, many tasks in the above benchmarks consist
of annotated tweets which only represent a certain
type of CS. In this paper, we address this gap by
generating diverse CS text with dimensions of di-
versity inspired from linguistic usage patterns of
CS.

2.2 Computational models for Code-switched
Generation

Prior work on generating synthetic code-switched
text has explored the use of purely generative
models (Garg et al., 2018; Samanta et al., 2019;
Gao et al., 2019; Chang et al., 2019), sequence-
to-sequence models that leverage parallel mono-
lingual text (Winata et al., 2019, 2018) and trans-
duction models that translate from the matrix or
embedded language to code-switched text (Gau-
tam et al., 2021; Gupta et al., 2021; Tarunesh et al.,
2021b). Ours is the first work to tackle the problem
of controllable code-switched generation.

2.3 Controlled Text Generation

Controlled text generation (Hu et al., 2017) using
large pretrained LMs is a popular subarea of NLG,
where control is typically exercised by finetuning a
pretrained LM for an attribute(e.g., (Keskar et al.,
2019)) or combining the pretrained LM with at-
tribute classifiers or other experts (Dathathri et al.,
2019; Yang and Klein, 2021; Liu et al., 2021).
A popular technique for controlled translation is
to introduce a discrete tag at the source and/or
the target (Sennrich et al., 2016). Recent work
by Schioppa et al. (2021) explored the use of addi-
tive control vectors instead of discrete tags for more
fine-grained control. There is no prior work that ex-
plores controllable generation for code-switching
and this paper aims to address that gap.

3 Methodology

3.1 Problem Description

Our goal is to build a model COCOA that trans-
forms a monolingual sentence into a semantically
equivalent CS sentence, while simultaneously sat-
isfying multiple CS attributes specified by the user
at test time. The three main architectural choices
in COCOA are:

• Model architecture: Transformer-based
encoder-decoder models are currently the ubiqui-
tous choice for neural translation (Vaswani et al.,

2017). We use a pretrained text-to-text multilingual
model mT5 (Xue et al., 2021), as our base model.

• Enabling controlled code-switched genera-
tion: Attribute-aware generation can be achieved
via both encoder and decoder-side controls.
Encoder-side controls assume the availability of
(at least a small amount of) parallel monolingual to
CS text with attribute annotations that are further
used to train the model. In contrast, decoder-side
controls are applied only during the decoding step
and hence do not require any training-time inter-
vention. Either approach can be adopted depending
on the type of annotated data that is available.

• Multi-task training: We introduce a multi-
task training objective that involves jointly train-
ing two auxiliary translation tasks from English to
Hindi, and Hindi to English, along with the primary
translation task of Hindi to Hindi-English. For the
primary task, 20% of the source Hindi tokens are
masked. This masking step dramatically reduces
the model’s propensity to copy source tokens, and
was found to be critical for performance especially
when using decoder-side controls.

In this work, we aim at controlling three CS at-
tributes: CMI, SPI and formality. CMI and SPI
values can be deterministically computed for a
CS sentence. CMI for a CS sentence of length
n with η1, η2 tokens in L1 and L2, respectively (i.e.
n = η1 + η2), is written as 1 − max(η1,η2)

n . Low
CMI values indicate monolingualism and the high-
est CMI value of 0.5 indicates an equal number of
L1 and L2 tokens in the sentence. SPI is computed

as
∑n−1

i=1 S(i,i+1)
n−1 , where S(i, i+ 1) is 1 if tokens i

and i + 1 belong to different languages, and is 0
otherwise. SPI varies between 0 (monolingual ut-
terance) and 1 (consecutive tokens coming from L1
and L2). CMI and SPI are dependent attributes. A
low CMI score typically results in a low SPI score,
since low code-switching implies fewer switches
between L1 and L2. In contrast, a high CMI score
can be attained with either a low SPI score (longer
language spans, less interleaving) or a high SPI
score (short language spans, frequent interleaving).
Unlike CMI and SPI that are deterministic func-
tions of the CS text, formality values are obtained
using a binary classifier trained to detect formality
in English text. More details about finetuning the
formality classifier to make it more amenable to
CS are in Appendix B.2.
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Decoder-Side Control

Figure 2: Schematic diagram illustrating the main com-
ponents of COCOA that transforms a monolingual sen-
tence X to a controlled CS sentence Y .

⊕
and

⊗

denote an element-wise addition and multiplication be-
tween vectors.

3.2 Our Approach

COCOA scaffolds on a Transformer-based trans-
lation model consisting of multi-layered encoder
and decoder networks. The encoder E converts
a monolingual sentence X = {xi}ni=1 into a se-
quence of higher-level representations denoted by
Z = {zi}ni=1, zi ∈ Rd that is further passed to
the decoder D. D autoregressively converts the
encoded representations Z into the target CS se-
quence Y = {yj}mj=1 one token at a time. COCOA

additionally provides encoder-side and decoder-
side controls to the base Transformer model to
support fine-grained CS generation. Figure 2 il-
lustrates the main components of COCOA.

Encoder-side Control: A commonly adopted
technique for encoder-side control is to introduce
an explicit attribute tag at the start of the source
sentence as an input to the model (Kobus et al.,
2016; Sennrich et al., 2016). The main limitation
of tag-based control is in dealing with continuous-
valued attributes that have to be discretized into
bins. Keeping the number of bins too small might
result in coarse characterizations of the attribute,
while increasing the number of bins could lead to
limited data being available for each bin. A more
natural handling of continuous-valued attributes
is to directly learn a vector embedding for each

attribute that can be added to the encoder represen-
tations.

Motivated by Schioppa et al. (2021), we define
an attribute vector Va ∈ Rd for each CS attribute a.
Each Va is scaled with a weight wa that is equal to
the attribute value. Multiple attributes are handled
using a linear combination of the attribute vectors,
V =

∑
awaVa. V is added to each encoder repre-

sentation zi from E before being passed as input
to D. Thus, zi now becomes zi + V. The attribute
vectors are learned during training using the end-
to-end translation objective. Parallel text without
attribute annotations can still be used during train-
ing by setting V to 0.

Decoder-side Control: Decoder-side control is
desirable when we want to control for attributes
like formality for which we do not have parallel
text. Towards this, we borrow the idea of condition-
ing an existing autoregressive model on a desired
attribute from the FUDGE framework (Yang and
Klein, 2021).

FUDGE aims to alter the output probabilities
from a trained decoder with the help of an attribute
classifier. The Transformer-based decoder autore-
gressively models the conditional probability dis-
tribution of a CS token at time-step j given the
entire monolingual sequence, i.e., P (yj |y<j , X).
If we want to additionally condition the decoder on
an attribute a, the required probability distribution
would become:

P (yj |y<j , X, a) ∝ P (a|y1:j , X)P (yj |y<j , X)

≈ P (a|y1:j)P (yj |y<j , X) (1)

We assume conditional independence between the
attribute and the monolingual input sentence, given
the prefix of the output sentence. P (yj |y<j , X)
from Equation 1 is already modeled by the
Transformer-based decoder. P (a|y1:j) can be es-
timated using a binary classifier for a given the
prefix y1:j . The binary classifier C predicts whether
the prefix y1:j , when expanded to completion, will
satisfy attribute a or not. During decoding, new
probabilities for each output word yj are obtained
by multiplying and re-normalizing the probability
distributions shown in Equation 1.

4 Experiments and Results

4.1 Evaluation Metrics

Semantic consistency with the source monolingual
sentence is computed using BLEU scores (Papineni
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et al., 2002) between a reference CS sentence and
the generated sentence. Attribute faithfulness for
CMI is measured using two metrics: CMIacc and
CMIcorr. CMIacc measures the percentage of test
instances where the binned CMI score of the gener-
ated CS sentence exactly matches the binned CMI
score of the reference CS sentence. CMIcorr mea-
sures Pearson correlation between real-valued CMI
scores of generated CS sentences and reference CS
sentences. Analogously, we can define SPIacc and
SPIcorr. Unless specified otherwise, we use 3 bins
to compute CMIacc and 2 bins to compute SPIacc.

4.2 Model Architecture and Implementation
Details

For all our experiments, we start with the publicly
available mt5-small checkpoint3, which is further
finetuned on task-specific training data. We use
the AdamW optimizer with a constant learning
rate of 5e-4. All our models are trained on a sin-
gle NVIDIA A100 GPU. We use the harmonic
mean of BLEU and attribute correlation (CMIcorr
and/or SPIcorr) as the checkpoint selection crite-
rion to ensure that the generated outputs are both
attribute-preserving and semantically meaningful.
We also implement the multi-task training objective
of monolingual and masked CS translation that was
described in Section 3.1. More implementation
details appear in Appendix B.1.

For decoder-side control, we use the formality
adapter4 by Krishna et al. (2020), stacked on an
XLM-R Hindi language adapter5 by Pfeiffer et al.
(2020). Recall that our approach requires the clas-
sifier to act on sentence prefixes at every decoding
step, instead of complete sentences. To this end,
we finetune the formality classifier on prefixes of
formal and informal Hindi sentences. More details
of the finetuning dataset are in Appendix B.2.

4.3 Datasets

For parallel Hindi to Hindi-English text, we use
the ALLCS corpus (Tarunesh et al., 2021b) that
consists of around 21K, 1K, and 2.5K samples in
training, dev, and test splits respectively. The do-
main is largely conversational as many of the CS
sentences are extracted from movie scripts. We

3https://huggingface.co/google/mt5-small
4https://adapterhub.ml/adapters/

martiansideofthemoon/xlm-roberta-base_formality_
classify_gyafc_pfeiffer/

5https://adapterhub.ml/adapters/ukp/
xlm-roberta-base-hi-wiki_pfeiffer/

Model BLEU CMIacc CMIcorr SPIacc SPIcorr

COCOA zc 61.06 0.50 0.41 0.66 0.55
COCOA cmi 61.79 0.88 0.92 0.84 0.80
COCOA spi 61.92 0.65 0.61 0.88 0.89
COCOA m,zc 60.74 0.53 0.41 0.67 0.53
COCOA m,cmi 62.72 0.88 0.91 0.82 0.78
COCOA m,spi 61.32 0.68 0.63 0.89 0.87

COCOA cmi,spi 62.70 0.82 0.87 0.91 0.92
COCOA m,cmi,spi 64.37 0.85 0.90 0.90 0.91

Table 1: Evaluating COCOA using single and multiple
attribute control of CMI and SPI. Subscripts zc and m
refer to zero control and use of multi-task training, re-
spectively; others are self-explanatory.

use the IIT Bombay Hindi-English parallel cor-
pus (Kunchukuttan et al., 2017) for multi-task train-
ing.

4.4 Encoder-side Control

4.4.1 Single and Multi-Attribute Control
Table 1 details the performance of COCOA in var-
ious control settings. Going from COCOAzc to
COCOAcmi, we see substantial gains in CMIacc and
CMIcorr. A similar gain in SPIacc and SPIcorr is
seen when we compare COCOAzc with COCOAspi.
Controlling for both CMI and SPI simultaneously
(c.f., last two rows in Table 1) leads to a significant
boost in BLEU scores along with maintaining high
CMI/SPI correlations. Multi-task training leads
to a clear improvement in BLEU scores, but does
not significantly vary performance on the two at-
tributes.

To understand how our model performs with
using smaller amounts of CS training data, we
train COCOA on a random half of ALLCS. Even
with using only 50% of ALLCS during training,
we achieve close to 90% on all evaluation metrics
when compared to using ALLCS in full (BLEU of
60.11; CMIacc, CMIcorr, SPIacc and SPIcorr values
of 0.74, 0.82, 0.79 and 0.84, respectively). This
shows that COCOA is able to generate high-quality
and diverse CS sentences even when trained on
fairly limited amounts of CS data.

4.4.2 Human Evaluation
We sampled 500 Hindi sentences from ALLCS test
and compared CS outputs produced by different
COCOA variants, a competitive baseline (called
TCS) by Tarunesh et al. (2021b), and human ref-
erences. Three human raters with native fluency
in Hindi and English assessed the model outputs
along two dimensions: 1) naturalness indicating
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Method Automated metrics Naturalness Semantic Consistency

verbatim
copy

source
BLEU CMIacc SPIacc

very
natural

somewhat
natural

not at all
natural very well somewhat

well not at all

Human references 1.6 50.60 100 100 94.7 4.4 0.9 94.8 3.8 1.4
TCS 3.6 39.07 48.2 69.2 71.9 15.5 12.6 66.6 19.3 14.1
COCOA zc 11.4 64.08 47.2 69.6 89.6 9.7 0.7 86.8 12.4 0.8
COCOA cmi 2.7 53.13 86.0 87.0 80.9 16.4 2.7 78.0 19.2 2.8
COCOA spi 2.6 53.43 82.4 92.4 79.3 18.0 2.7 76.2 20.8 3.0
COCOA m,cmi 2.4 51.82 87.7 86.8 88.4 9.9 1.7 86.8 11.4 1.8

Table 2: Human evaluations for encoder-side control of CMI or SPI, expressed as a %age.

Model Formality Naturalness Semantic Consistency CMIcorr
more equal less very

natural
somewhat

natural
not at all
natural very well somewhat

well not at all

COCOA zc 54.4 23.6 22.0 67.6 22.4 10.0 59.0 30.8 10.2 0.42
COCOA m,zc 56.6 23.0 20.4 73.8 23.8 2.4 67.6 29.4 3.0 0.44
COCOA m,cmi 45.0 43.0 12.0 85.4 12.4 2.2 79.8 18.0 2.2 0.85

Table 3: Human evaluations for decoder-side control of formality, expressed as a %age.

whether the code-switching is natural, and 2) se-
mantic consistency, measuring how well the model
output preserves the meaning of the monolingual
Hindi sentence. Each dimension was rated using
one of three quality scores shown in Table 2. Ta-
ble 2 also lists a few automated metrics, including
“verbatim copy" that refers to the percentage of
model outputs that are an exact copy of the Hindi
source and “source BLEU" which is the BLEU
score between the generated output and the Hindi
source.

All COCOA variants perform significantly better
than TCS on both naturalness and semantic con-
sistency scores. CMIacc and SPIacc increase sub-
stantially when using controlled COCOA variants
compared to COCOAzc. Among all the models,
COCOAm,cmi has the least propensity to copy, as
evidenced by the lowest scores of verbatim copying
and source-BLEU. Moreover, COCOAm,cmi attains
naturalness and semantic consistency scores very
close to COCOAzc, despite far less copying, which
is truly indicative of superior code-switching.

4.5 Decoder-side Control

We sampled 500 monolingual sentences from the
ALLCS test split and generated two model out-
puts with and without decoder-side control for for-
mality.6 Raters were shown both outputs, and
asked to rate if one was more formal, less for-
mal, or equally formal compared to the other. The

6Formality is measured only using human evaluations. We
do not have ground-truth formal CS reference sentences in
order to compute metrics like BLEU.

formality-controlled outputs were also evaluated
for naturalness and semantic consistency, as in Sec-
tion 4.4.2. From Table 3, we see that for all mod-
els a significant number of formality-controlled
outputs are marked as more formal than their no-
control counterparts. Comparing COCOAzc and
COCOAm,zc, we find that multi-task training dra-
matically improves naturalness and semantic con-
sistency of generated outputs while simultaneously
making them more formal. The ability of the model
to generate more formal outputs drops a little when
also controlling for CMI. However, interestingly,
the encoder-side control for CMI makes the model
more robust to decoder-side interventions, as ev-
idenced by the higher naturalness and semantic
consistency scores in the last row compared to the
previous two rows.

5 Ablations and Model Variants

Comparison with Tagging. Figure 3b shows how
tagging compares to the scaled vector approach for
encoder-side control. On increasing the number of
bins (k) from 3 to 8 for tagging, CMIcorr increases
from 0.77 to 0.89, making it more comparable to
the CMIcorr of 0.92 using the scaled approach. As
we increase the number of bins, k-class CMIacc
drops for both the tagging and scaled vector ap-
proaches, with the latter showing a small but con-
sistent improvement across bins.

Interpolation to Unseen Attributes. The tagging
technique will not be able to generalize to CMI/SPI
bins that were never seen during training. In con-
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Figure 3: Comparing tagging with the scaled vector ap-
proach for encoder-side control.

trast, the scaled vector technique could potentially
interpolate to unseen CMI/SPI values. We test this
out by holding out specific CMI bins and evaluating
performance on all three bins in Table 4. As ex-
pected, the performance on the held-out bin drops
when considering each bin, but only by fairly small
margins. This validates our claim that the scaled
technique is able to successfully interpolate to un-
seen attribute values. A similar analysis is done for
SPI in Table 10 in Appendix C.

Held out
bin

Bin 1 performance Bin 2 performance Bin 3 performance
BLEU CMIacc CMIcorr BLEU CMIacc CMIcorr BLEU CMIacc CMIcorr

None 69.8 0.93 0.71 55.5 0.75 0.49 40.9 0.75 0.41
Bin 1 67.2 0.83 0.62 56.2 0.73 0.41 42.8 0.80 0.43
Bin 2 69.2 0.91 0.63 56.0 0.65 0.46 40.9 0.71 0.46
Bin 3 69.5 0.94 0.70 55.9 0.75 0.42 35.8 0.68 0.36

Table 4: Held-out performance of COCOAcmi over CMI
bins. Held-out bin is highlighted in bold.

Freezing Style Vector. Is it important to learn the
attribute vector or will performance be as good
with an attribute vector whose weights are frozen?
Table 5 shows that while there is a small gain in
performance with using a trained attribute vector,
most of the model’s performance can be attributed
to the decoder effectively learning how to scale the
attribute vector regardless of its actual values.

6 Downstream Tasks

6.1 Language Model Perplexity

We train language models (LMs) on text from
COCOA and other baseline approaches and evalu-
ate perplexity on two different test sets contain-
ing real code-switched data. We start with the

Method BLEU CMIacc CMIcorr

COCOA cmi Frozen 60.96 0.84 0.83
COCOA cmi Trained 61.79 0.88 0.92

Table 5: BLEU, CMIacc, CMIcorr scores after freezing
or training the CMI attribute vector.

XLM-RoBERTa checkpoint7 and finetune it on dif-
ferent synthetic datasets with a causal LM loss,
using the script provided by Huggingface.8

COCOAm,cmi,spi is compared against two prior
techniques - TCS (Tarunesh et al., 2021b) and
GCM (Rizvi et al., 2021). 100K real monolingual
sentences are sampled from the IIT-B Hindi corpus
and used to generate 200K synthetic CS sentences
from each technique. Note that COCOAm,cmi,spi re-
quires both CMI and SPI values to be provided
during inference. We experiment with two sam-
pling schemes for assigning CMI and SPI scores to
monolingual sentences:

1. Random: Each sentence is assigned a CMI
score uniformly sampled from (0, 0.5] and an
SPI score uniformly sampled from (0, 1]. This
scheme does not account for the relationship
between CMI and SPI.

2. Discretized: Each sentence is first as-
signed a CMI score uniformly sampled from
{1/n, 2/n, . . . , dn/2e/n}, where n is the
number of tokens in the monolingual sentence.
If the sampled CMI score is less than or equal
to 0.33, the SPI is uniformly sampled between
(0, 0.6]; otherwise it is uniformly sampled be-
tween (0, 1]. This scheme ensures that the
assigned CMI score is meaningful for a sen-
tence of length n. It also accounts for the
relationship between CMI and SPI by enforc-
ing that low CMI scores co-occur only with
low SPI scores, while high CMI scores can
co-occur with either low or high SPI scores.

Table 6 compares perplexities on the test split of
ALLCS. COCOA models yield the lowest perplex-
ity among all synthetic data generation methods,
and the discretized scheme attains a lower score
compared to the random scheme. The synthetic CS
data is derived starting from the IIT-B Hindi corpus.
LMs trained on this synthetic data are evaluated
on an out-of-domain test set, and hence do not out-
perform the LM trained on ALLCS-train (that is
distributionally similar to ALLCS-test). Table 7
shows how the trend reverses when evaluating per-
plexities on a new test set from HinGE (Srivastava
and Singh, 2021). The LM trained on synthetic

7https://huggingface.co/xlm-roberta-base
8https://github.com/huggingface/transformers/

blob/main/examples/pytorch/language-modeling/
run_clm.py
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Train set Test perplexity ↓
GCM 253.26
TCS 214.04
COCOA zc 212.61
COCOA m,cmi,spiRandom 194.47± 0.38
COCOA m,cmi,spiDiscretized 192.55± 0.41

ALLCS Train (21K samples) 110.42

Table 6: LM perplexities on ALLCS test set.

Train set Test perplexity ↓
COCOA m,cmi,spi,50pc 647.65± 0.29
COCOA m,cmi,spi 613.78± 0.53

ALLCS Train-50pc 794.38
ALLCS Train 637.41

Table 7: LM perplexities on HinGE. Synthetic CS data
is generated with the discretized sampling scheme.

Model Max F1 ↑ Mean F1 ↑
TCS 58.30 57.31
GCM 59.72 58.67
COCOA m,cmi,spi Random 59.90 59.12
COCOA m,cmi,spi Discretized 61.33 59.43

ALLCS Train (21K samples) 61.28 59.56

Table 8: Max and mean F1 scores on GLUECOS sen-
timent analysis task.

data from COCOAm,cmi,spi yields a 3.5% improve-
ment over the LM trained on ALLCS. We also train
an LM on 50% of ALLCS and another on synthetic
sentences from COCOAm,cmi,spi,50pc trained on half
of ALLCS. We observe only a small degradation
in test perplexity when CS training data is halved
for COCOA (c.f., first two rows in Table 7). The
LM trained on 50% of ALLCS sees a large drop
in performance (794.38), while COCOA trained on
this subset is still able to generate diverse samples
with little loss in quality (647.65).

6.2 Code-switched Sentiment Analysis
We show the effect of pretraining with synthetic
text from COCOA on a downstream task with CS
inputs. We select sentiment analysis from the
GLUECoS benchmark (Khanuja et al., 2020b) con-
sisting of roughly 13K, 3K and 1K training/dev/test
instances. We use the same sets of 200K syn-
thetic samples described earlier for TCS, GCM
and COCOAm,cmi,spi. We pretrain an mBERT

Naturalness Semantic Consistency
very

natural
somewhat

natural
not at all
natural very well somewhat

well not at all

83.87 12.21 3.91 83.85 12.78 3.35

Table 9: Distribution of human evaluation scores on
DIVERSE-ALLCS, expressed as a %age.

model (Pires et al., 2019) on this synthetic text
followed by finetuning on the sentiment analysis
data. We identify the best model via the dev set
and report max/mean F1 scores on the test set com-
puted over five random seeds. Table 8 shows that
COCOA performs better than both TCS and GCM,
and the discretized sampling improves slightly over
the random sampling.

7 The Diverse All-CS Dataset

We release a new dataset DIVERSE-ALLCS which
is an extension of ALLCS with more natural diver-
sity in CMI and SPI.9 We select 1928 sentences
from ALLCS-test with a sentence length between 5
and 15 tokens. To mimic the natural distribution of
CMI/SPI scores, we refer to ALLCS-train and di-
vide CMI/SPI values into two bins, resulting in four
CMI, SPI combinations. We use COCOAm,cmi,spi to
generate model outputs and sample proportional to
the number of ALLCS sentences assigned to each
CMI/SPI combination. After removing duplicates,
we have 5380 unique CS sentences that were sub-
jected to human evaluations. Table 9 shows the
distribution of scores for naturalness and semantic
consistency. We release the subset of data that is at
least “Somewhat Natural" and scored “Somewhat
well" or higher on semantic consistency.

8 Discussion and Conclusion

We list a few observations from our experiments.
1. We find that decoder-side control is more brittle
and requires interventions like multi-task training
to improve on naturalness and consistency of the
generated outputs. Encoder-side control, in com-
parison, is more robust. The trade-off is that the
latter requires parallel data that is more tedious
to acquire, while decoder-side control does not.
2. The tagged approach nears the scaled vector
approach in performance on increasing the num-
ber of bins to 8. However, the scaled vector has
the advantage of interpolating to nearby CMI/SPI
values without having seen them explicitly during

9DIVERSE-ALLCS is available at https://www.cse.
iitb.ac.in/~pjyothi/CoCoa.
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training. 3. CMI/SPI could also be controlled on
the decoder side. However, our current method of
classifier-based reweighting would not work since
a classifier will not be able to meaningfully pre-
dict CMI/SPI, which are length-dependent values,
based on only a sentence prefix.

In conclusion, we establish COCOA as a state-of-
the-art controllable code-switched generation tool
with test-time controls that outperforms existing
unconstrained baselines.

9 Limitations

Our method is currently evaluated on a single lan-
guage pair. The main bottleneck that prevented
us from evaluating on a second language pair was
the lack of a high-quality dataset like ALLCS. We
believe our model will be able to generalize to a
different language pair given similar amounts of
resources of comparable quality. We fully intend
to test this out as future work after creating such re-
sources for other languages and publicly releasing
them to the community for further use. It would
also be interesting to investigate how to work with
larger but noisier code-switched text mined from
social media text and whether such resources could
be used to supplement a resource like ALLCS of
much smaller size.

Another limitation relates to the model itself.
COCOA is an encoder-decoder model and inherits
the limitations associated with such models, the
main one being that the model has difficulty scaling
to long sentences.

10 Ethical Considerations

As with all language generation models, the gen-
erated outputs are a function of the data that was
used to train the model. One should be cognizant of
this when deploying such a model in applications
that could benefit from controllable code-switching,
e.g., chatbots.
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A Seza Doğruöz, Sunayana Sitaram, Barbara E Bul-
lock, and Almeida Jacqueline Toribio. 2021. A sur-
vey of code-switching: Linguistic and social per-
spectives for language technologies. In The Joint
Conference of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (ACL-IJCNLP 2021). Association for
Computational Linguistics.

Katerina A Finnis. 2014. Variation within a greek-
cypriot community of practice in london: Code-
switching, gender, and identity. Language in society,
43(3):287–310.

Björn Gambäck and Amitava Das. 2014. On measur-
ing the complexity of code-mixing. In Proceedings
of the 11th International Conference on Natural Lan-
guage Processing, Goa, India, pages 1–7.

Yingying Gao, Junlan Feng, Ying Liu, Leijing Hou,
Xin Pan, and Yong Ma. 2019. Code-switching sen-
tence generation by bert and generative adversarial
networks. In INTERSPEECH, pages 3525–3529.

2474

https://doi.org/10.21437/Interspeech.2019-3214
https://doi.org/10.21437/Interspeech.2019-3214
https://doi.org/10.21437/Interspeech.2019-3214


Penelope Gardner-Chloros and Malcolm Edwards.
2004. Assumptions behind grammatical approaches
to code-switching: when the blueprint is a red
herring. Transactions of the Philological Society,
102(1):103–129.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,
Brussels, Belgium. Association for Computational
Linguistics.

Devansh Gautam, Prashant Kodali, Kshitij Gupta, An-
mol Goel, Manish Shrivastava, and Ponnurangam
Kumaraguru. 2021. Comet: Towards code-mixed
translation using parallel monolingual sentences.
In Proceedings of the Fifth Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 47–55.

Abhirut Gupta, Aditya Vavre, and Sunita Sarawagi.
2021. Training data augmentation for code-mixed
translation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5760–5766.

Gualberto A Guzmán, Joseph Ricard, Jacqueline Seri-
gos, Barbara E Bullock, and Almeida Jacqueline
Toribio. 2017. Metrics for modeling code-switching
across corpora. In INTERSPEECH, pages 67–71.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward
controlled generation of text. In International con-
ference on machine learning, pages 1587–1596.
PMLR.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020a. Gluecos: An evaluation benchmark for code-
switched nlp. arXiv preprint arXiv:2004.12376.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020b. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

Catherine Kobus, Josep Crego, and Jean Senellart.
2016. Domain control for neural machine transla-
tion. arXiv preprint arXiv:1612.06140.

Kalpesh Krishna, John Wieting, and Mohit Iyyer.
2020. Reformulating unsupervised style trans-
fer as paraphrase generation. arXiv preprint
arXiv:2010.05700.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2017. The IIT bombay english-hindi par-
allel corpus. CoRR, abs/1710.02855.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. 2021. DExperts: Decoding-
time controlled text generation with experts and anti-
experts. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 6691–6706, Online. Association for Computa-
tional Linguistics.

Ajit K Mohanty. 2006. Multilingualism of the unequals
and predicaments of education in india: Mother
tongue or other tongue. Imagining multilingual
schools, pages 262–283.

Mark Myslín and Roger Levy. 2015. Code-switching
and predictability of meaning in discourse. Lan-
guage, pages 871–905.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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A Diverse Examples From ALLCS

Figure 4 contains real CS utterances from the
ALLCS test set, with varying scores across the
three diversity dimensions of interest. First two
rows in this table illustrate that a low CMI score co-
occurs typically with low SPI scores. In contrast, a
high CMI score can co-occur with either a low or a
high SPI score, as seen in the last two rows of the
table.

B Implementation Details

B.1 Multi-Task Objective

To implement the multi-task objective, we proceed
as follows. First, we create a monolingual transla-
tion corpus that consists of 800K parallel samples
randomly selected from the IIT Bombay Hindi-
English corpus10. Next, we create a masked CS
translation corpus from the ALLCS train split by
masking each source Hindi token independently
with a probability of 0.2. We then make 10 copies
of this masked CS translation corpus, and merge
it with the monolingual translation corpus. Up-
sampling CS training data in this manner reduces
the skew between the size of monolingual transla-
tion (800K) and CS translation corpus (≈21K). We
train for 3 epochs on this merged dataset, with a
task-specific prefix indicating whether the model
should perform monolingual or CS translation for
the current instance. Metrics are evaluated on the
ALLCS dev split every 500 steps. Checkpoint se-
lection criterion is the harmonic mean of BLEU
and attribute correlation of the attribute(s) of inter-
est. Metrics from the best checkpoint are reported
on the ALLCS test split.

B.2 Formality Classifier

For decoder-side control, we use the formality
task adapter open-sourced by Krishna et al. (2020)
stacked on a Hindi language adapter by Pfeiffer
et al. (2020). This formality classifier is trained
on English sentences from the GYAFC formality
classification dataset released by Rao and Tetreault
(2018). To finetune it on Hindi prefixes, we require
a similar Hindi formality classification dataset. To
the best of our knowledge, no such dataset is pub-
licly available, therefore we attempt to build a syn-
thetic dataset for our purpose.

10From https://www.cfilt.iitb.ac.in/iitb_
parallel/

We sample 500 sentences from the BBC Hindi
News dataset11 and mark them “formal”. This
dataset contains news documents from 14 unique
categories, including Science, International and
Business. Similarly we sample 500 monolin-
gual Hindi sentences from the Movie-CS split of
ALLCS train, and mark them “informal”. The
Movie-CS split contains subtitles from 30 con-
temporary Bollywood movies, and is therefore as-
sumed informal. Our formality classifier is fine-
tuned on all prefixes of length greater than 3 tokens,
derived from this dataset.

We finetune only the task adapter, keeping the
language adapter and base model weights frozen.
We used the official training script provided by
AdapterHub12. Training was done for 2 epochs,
with a constant learning rate of 5e-6.

C Interpolation to Unseen SPI

Held out
bin

Bin 1 performance Bin 2 performance
BLEU SPI acc SPI corr BLEU SPI acc SPI corr

None 64.48 0.87 0.63 52.65 0.85 0.71
Bin 1 62.42 0.71 0.57 52.45 0.83 0.70
Bin 2 64.61 0.87 0.65 50.45 0.75 0.61

Table 10: Held out performance over SPI bins

Similar to the set up in Section 5, we hold out
specific SPI bins during training, and evaluate if the
scaled vector approach can successfully interpolate
to the unseen bin. Results from this analysis are
reported in Table 10. While the performance on
the held-out bin does drop, it is by fairly small
margins, thereby establishing the generalizability
of the scaled vector approach.

D Human Evaluations

To evaluate COCOA model outputs, we created a
template that asks linguistic experts to assess model
outputs on naturalness, semantic consistency and
formality.

Every CS sentence was evaluated along each of
these dimensions by 3 human raters. Annotations
for a single sentence were aggregated according
to a majority vote among raters. There were no
instances where a majority vote could not be com-
puted. Numbers reported in Tables 2 and 3 are
aggregates reported over a set of 500 instances,

11https://github.com/NirantK/hindi2vec/
releases/tag/bbc-hindi-v0.1

12https://docs.adapterhub.ml/training.html#
train-a-task-adapter
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Figure 4: Code-switched examples from ALLCS dataset with varying scores for CMI, SPI, and formality. Roman-
ized sentences are in parenthesis.

sampled randomly from the ALLCS test set. In the
following sections, we provide exact annotation
instructions, as well as relevant details about the
rater pool.

D.1 Naturalness

Raters were shown a monolingual Hindi sentence,
its machine-generated code-switched counterpart,
and asked How natural does the mixed language
sentence sound? They could select one of three
possible options -

Very natural - The mixed language sentence
sounds natural. This is how a bilingual speaker
might speak. The flow between English and Hindi
is spontaneous. The sentence sounds grammati-
cally correct.

Somewhat natural - There may be some awk-
ward construction or minor spelling/grammar er-
rors. Someone who is just learning to speak Hindi,
or a non-native speaker may communicate this way.

Not at all natural - The mixed language sen-
tence sounds awkward and artificial. It mixes En-
glish and Hindi words in a way that is not actually
spoken or written. As a result, the grammar of the
mixed-language sentence is incorrect.

D.2 Semantic Consistency

Raters were shown a monolingual Hindi sentence,
its machine-generated code-switched counterpart,

and asked How well does the mixed-language sen-
tence capture the meaning of the Hindi sentence?
They could select one of three possible options -

Very well - Both sentences are exactly identical
in meaning.

Somewhat well - There is some meaning over-
lap between the Hindi and mixed-language sen-
tence, but they are not identical. The mixed sen-
tence adds or drops some critical component of
meaning from the Hindi sentence.

Not at all - The mixed sentence has no over-
lap with the Hindi sentence; the two are entirely
different.

D.3 Formality

Raters were shown a monolingual Hindi sentence,
two machine generated code-switched outputs, and
asked Which among the code-switched senteces is
more formal? Annotation instructions specified
that formal language was more likely to be seen
while reporting, talking to seniors or colleagues,
and in polite conversation.

D.4 Rater Pool

Evaluations were performed by bilingual raters
from India, who are fluent in Hindi and English.
Every rater either held or was working towards a
Diploma. Raters were paid USD 0.10 for a com-
pleted task, where a task involves evaluating one
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CS text along all three dimensions.
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