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Abstract
Efficient k-nearest neighbor search is a fun-
damental task, foundational for many prob-
lems in NLP. When the similarity is measured
by dot-product between dual-encoder vectors
or ℓ2-distance, there already exist many scal-
able and efficient search methods. But not so
when similarity is measured by more accurate
and expensive black-box neural similarity mod-
els, such as cross-encoders, which jointly en-
code the query and candidate neighbor. The
cross-encoders’ high computational cost typi-
cally limits their use to reranking candidates
retrieved by a cheaper model, such as dual en-
coder or TF-IDF. However, the accuracy of
such a two-stage approach is upper-bounded by
the recall of the initial candidate set, and poten-
tially requires additional training to align the
auxiliary retrieval model with the cross-encoder
model. In this paper, we present an approach
that avoids the use of a dual-encoder for re-
trieval, relying solely on the cross-encoder. Re-
trieval is made efficient with CUR decomposi-
tion, a matrix decomposition approach that ap-
proximates all pairwise cross-encoder distances
from a small subset of rows and columns of the
distance matrix. Indexing items using our ap-
proach is computationally cheaper than training
an auxiliary dual-encoder model through distil-
lation. Empirically, for k > 10, our approach
provides test-time recall-vs-computational cost
trade-offs superior to the current widely-used
methods that re-rank items retrieved using a
dual-encoder or TF-IDF.

1 Introduction

Finding top-k scoring items for a given query is a
fundamental sub-routine of recommendation and
information retrieval systems (Kowalski, 2007; Das
et al., 2017). For instance, in question answering
systems, the query corresponds to a question and
the item corresponds to a document or a passage.
Neural networks are widely used to model the sim-
ilarity between a query and an item in such ap-
plications (Zamani et al., 2018; Hofstätter et al.,

2019; Karpukhin et al., 2020; Qu et al., 2021). In
this work, we focus on efficient k-nearest neigh-
bor search for one such similarity function – the
cross-encoder model.

Cross-encoder models output a scalar similarity
score by jointly encoding the query-item pair and
often generalize better to new domains and unseen
data (Chen et al., 2020; Wu et al., 2020; Thakur
et al., 2021) as compared to dual-encoder 1 models
which independently embed the query and the item
in a vector space, and use simple functions such as
dot-product to measure similarity. However, due
to the black-box nature of the cross-encoder based
similarity function, the computational cost for brute
force search with cross-encoders is prohibitively
high. This often limits the use of cross-encoder
models to re-ranking items retrieved using a sepa-
rate retrieval model such as a dual-encoder or a TF-
IDF-based model (Logeswaran et al., 2019; Zhang
and Stratos, 2021; Qu et al., 2021). The accuracy of
such a two-stage approach is upper bounded by the
recall of relevant items by the initial retrieval model.
Much of recent work either attempts to distill in-
formation from an expensive but more expressive
cross-encoder model into a cheaper student model
such as a dual-encoder (Wu et al., 2020; Hofstätter
et al., 2020; Lu et al., 2020; Qu et al., 2021; Liu
et al., 2022), or focuses on cheaper alternatives to
the cross-encoder model while attempting to cap-
ture fine-grained interactions between the query
and the item (Humeau et al., 2020; Khattab and
Zaharia, 2020; Luan et al., 2021).

In this work, we tackle the fundamental task
of efficient k-nearest neighbor search for a given
query according to the cross-encoder. Our pro-
posed approach, ANNCUR, uses CUR decompo-
sition (Mahoney and Drineas, 2009), a matrix fac-
torization approach, to approximate cross-encoder
scores for all items, and retrieves k-nearest neigh-
bor items while only making a small number of

1also referred to as two-tower models, Siamese networks
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Figure 1: Model architecture and score distribution for three neural scoring functions. Dual-Encoders (DE) score
a query-item pair using independently computed query and item embeddings. [CLS]-CE computes the score by
jointly encoding the query-item pair followed by passing the joint query-item embedding through a linear layer. Our
proposed [EMB]-CE embeds special tokens amongst query and item tokens, and computes the query-item score
using query and item embeddings extracted using the special tokens after jointly encoding the query-item pair.

calls to the cross-encoder. Our proposed method
selects a fixed set of anchor queries and anchor
items, and uses scores between anchor queries and
all items to generate latent embeddings for indexing
the item set. At test time, we generate latent em-
bedding for the query using cross-encoder scores
for the test query and anchor items, and use it to
approximate scores of all items for the given query
and/or retrieve top-k items according to the approx-
imate scores. In contrast to distillation-based ap-
proaches, our proposed approach does not involve
any additional compute-intensive training of a stu-
dent model such as dual-encoder via distillation.

In general, the performance of a matrix
factorization-based method depends on the rank of
the matrix being factorized. In our case, the entries
of the matrix are cross-encoder scores for query-
item pairs. To further improve rank of the score
matrix, and in-turn performance of the proposed
matrix factorization based approach, we propose
[EMB]-CE which uses a novel dot-product based
scoring mechanism for cross-encoder models (see
Figure 1a). In contrast to the widely used [CLS]-
CE approach of pooling query-item representation
into a single vector followed by scoring using a
linear layer, [EMB]-CE produces a score matrix
with a much lower rank while performing at par
with [CLS]-CE on the downstream task.

We run extensive experiments with cross-
encoder models trained for the downstream task
of entity linking. The query and item in this case
correspond to a mention of an entity in text and a
document with an entity description respectively.
For the task of retrieving k-nearest neighbors ac-
cording to the cross-encoder, our proposed ap-
proach presents superior recall-vs-computational

cost trade-offs over using dual-encoders trained
via distillation as well as over unsupervised TF-
IDF-based methods (§3.2). We also evaluate the
proposed method for various indexing and test-time
cost budgets as well as study the effect of various
design choices in §3.3 and §3.4.

2 Matrix Factorization for Nearest
Neighbor Search

2.1 Task Description and Background
Given a scoring function fθ : Q × I → R that
maps a query-item pair to a scalar score, and a
query q ∈ Q, the k-nearest neighbor task is to
retrieve top-k scoring items according to the given
scoring function fθ from a fixed item set I.

In NLP, queries and items are typically repre-
sented as a sequence of tokens and the scoring func-
tion is typically parameterized using deep neural
models such as transformers (Vaswani et al., 2017).
There are two popular choices for the scoring func-
tion – the cross-encoder (CE) model, and the dual-
encoder (DE) model. The CE model scores a given
query-item pair by concatenating the query and the
item using special tokens, passing them through a
model (such as a transformer T ) to obtain repre-
sentation for the input pair followed by computing
the score using linear weights w ∈ Rd.

f
(CE)
θ (q, i) = w⊤pool(T (concat(q, i)))

While effective, computing a similarity between
a query-item pair requires a full forward pass of the
model, which is often quite computationally bur-
densome. As a result, previous work uses auxiliary
retrieval models such as BM25 (Robertson et al.,
1995) or a trained dual-encoder (DE) model to ap-
proximate the CE. The DE model independently
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where

Figure 2: CUR decomposition of a matrix (Mcomb =

[
Manc
Mtest

]
) using a subset of its columns (Ccomb =

[
Canc
Ctest

]
) and

rows (Ranc). The blue rows (Ranc) corresponding to the anchor queries and U = C†
anc are used for indexing the

items to obtain item embeddings EI = U ×Ranc and the green row corresponds to the test query. Note that the test
row (Mtest) can be approximated using a subset of its columns (Ctest) and the latent representation of items (EI).

embeds the query and the item in Rd, for instance
by using a transformer T followed by pooling the
final layer representations into a single vector (e.g.
using CLS token). The DE score for the query-item
pair is computed using dot-product of the query
embedding and the item embedding.

f (DE)
θ (q, i) = pool(T (q))⊤pool(T (i))

In this work, we propose a method based on
CUR matrix factorization that allows efficient re-
trieval of top-k items by directly approximating the
cross-encoder model rather than using an auxiliary
(trained) retrieval model.

CUR Decomposition (Mahoney and Drineas,
2009) In CUR matrix factorization, a matrix M ∈
Rn×m is approximated using a subset of its rows
R = M [Sr, :] ∈ Rk1×m, a subset of its columns
C = M [:, Sc] ∈ Rn×k2 and a joining matrix U ∈
Rk2×k1 as follows

M̃ = CUR

where Sr and Sc are the indices corresponding to
rows R and columns C respectively, and the joining
matrix U optimizes the approximation error. In this
work, we set U to be the Moore-Penrose pseudo-
inverse of M [Sr, Sc], the intersection of matrices
C and R, in which case M̃ is known as the skeleton
approximation of M (Goreinov et al., 1997).

2.2 Proposed Method Overview
Our proposed method ANNCUR, which stands for
Approximate Nearest Neighbor search using CUR
decomposition, begins by selecting a fixed set of kq
anchor queries (Qanc) and ki anchor items (Ianc).

It uses scores between queries q ∈ Qanc and all
items i ∈ I to index the item set by generating
latent item embeddings. At test time, we compute
exact scores between the test query qtest and the
anchor items Ianc, and use it to approximate scores
of all items for the given query and/or retrieve top-
k items according to the approximate scores. We
could optionally retrieve kr > k items, re-rank
them using exact fθ scores and return top-k items.

Let Mcomb =

[
Manc
Mtest

]
and Ccomb =

[
Canc
Ctest

]

where Manc = Ranc ∈ Rkq×|I| contains scores for
the anchor queries and all items, Mtest ∈ R1×|I|

contains scores for a test query and all items,
Canc ∈ Rkq×ki contains scores for the anchor
queries and the anchor items, and Ctest ∈ R1×ki

contains scores for the test query paired with the
anchor items.

Using CUR decomposition, we can approximate
Mcomb using a subset of its columns (Ccomb) cor-
responding to the anchor items and a subset of its
rows (Ranc) corresponding to the anchor queries as

M̃comb = CcombURanc[
M̃anc

M̃test

]
=

[
Canc
Ctest

]
URanc

M̃anc = CancURanc and M̃test = CtestURanc

Figure 2 shows CUR decomposition of matrix
Mcomb. At test time, M̃test containing approximate
item scores for the test query can be computed us-
ing Ctest, U , and Ranc where Ctest contains exact fθ
scores between the test query and the anchor items.
Matrices U and Ranc can be computed offline as
these are independent of the test query.
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2.3 Offline Indexing
The indexing process first computes Ranc contain-
ing scores between the anchor queries and all items.

Ranc(q, i) = fθ(q, i), ∀(q, i) ∈ Qanc × I
We embed all items in Rki as

EI = U ×Ranc

where U = C†
anc is the pseudo-inverse of Canc.

Each column of EI ∈ Rki×|I| corresponds to a
latent item embedding.

2.4 Test-time Inference
At test time, we embed the test query q in Rki using
scores between q and anchor items Ianc.

eq = [fθ(q, i)]i∈Ianc
We approximate the score for a query-item pair
(q, i) using inner-product of eq and EI [:, i] where
EI [:, i] ∈ Rki is the embedding of item i.

f̂θ(q, i) = e⊤q E
I [:, i]

We can use eq ∈ Rki along with an off-the-
shelf nearest-neighbor search method for maximum
inner-product search (Malkov and Yashunin, 2018;
Johnson et al., 2019; Guo et al., 2020) and retrieve
top-scoring items for the given query q according
to the approximate query-item scores without ex-
plicitly approximating scores for all the items.

2.5 Time Complexity
During indexing stage, we evaluate fθ for kq|I|
query-item pairs, and compute the pseudo-inverse
of a kq ×ki matrix. The overall time complexity of
the indexing stage is O(Cfθkq|I|+ Ckq ,ki

inv ), where
Ckq ,ki

inv is the cost of computing the pseudo-inverse
of a kq×ki matrix, and Cfθ is the cost of computing
fθ on a query-item pair. For CE models used in
this work, we observe that Cfθkq|I| ≫ Ckq ,ki

inv .
At test time, we need to compute fθ for ki query-

item pairs followed by optionally re-ranking kr
items retrieved by maximum inner-product search
(MIPS). Overall time complexity for inference is
O
(
(ki+kr)Cfθ +C|I|,kr

MIPS

)
, where O(C|I|,kr

MIPS ) is the
time complexity of MIPS over |I| items to retrieve
top-kr items.

2.6 Improving score distribution of CE
models for matrix factorization

The rank of the query-item score matrix, and in
turn, the approximation error of a matrix factor-
ization method depends on the scores in the ma-
trix. Figure 1b shows a histogram of query-item

score distribution (adjusted to have zero mean)
for a dual-encoder and [CLS]-CE model. We use
[CLS]-CE to refer to a cross-encoder model pa-
rameterized using transformers which uses CLS

token to compute a pooled representation of the
input query-item pair. Both the models are trained
for zero-shot entity linking (see §3.1 for details).
As shown in the figure, the query-item score dis-
tribution for the [CLS]-CE model is significantly
skewed with only a small fraction of items (enti-
ties) getting high scores while the score distribution
for a dual-encoder model is less so as it is gener-
ated explicitly using dot-product of query and item
embeddings. The skewed score distribution from
[CLS]-CE leads to a high rank query-item score
matrix, which results in a large approximation error
for matrix decomposition methods.

We propose a small but important change to the
scoring mechanism of the cross-encoder so that it
yields a less skewed score distribution, thus making
it much easier to approximate the corresponding
query-item score matrix without adversely affect-
ing the downstream task performance. Instead of
using CLS token representation to score a given
query-item pair, we add special tokens amongst
the query and the item tokens and extract contex-
tualized query and item representations using the
special tokens after jointly encoding the query-item
pair using a model such as a transformer T .

eCE
q , eCE

i = pool(T (concat(q, i)))

The final score for the given query-item pair is
computed using dot-product of the contextualized
query and item embeddings.

f
([EMB]-CE)
θ (q, i) = (eCE

q )⊤eCE
i

We refer to this model as [EMB]-CE. Figure 1a
shows high-level model architecture for dual-
encoders, [CLS]-CE and [EMB]-CE model.

As shown in Figure 1b, the query-item score dis-
tribution from an [EMB]-CE model resembles that
from a DE model. Empirically, we observe that
rank of the query-item score matrix for [EMB]-CE
model is much lower than the rank of a similar
matrix computed using [CLS]-CE, thus making it
much easier to approximate using matrix decompo-
sition based methods.

3 Experiments

In our experiments, we use CE models trained for
zero-shot entity linking on ZESHEL dataset (§3.1).
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We evaluate the proposed method and various base-
lines on the task of finding k-nearest neighbors
for cross-encoder models in §3.2, and evaluate the
proposed method for various indexing and test-
time cost budgets as well as study the effect of
various design choices in §3.3 and §3.4. All re-
sources for the paper including code for all ex-
periments and model checkpoints is available at
https://github.com/iesl/anncur

ZESHEL Dataset The Zero-Shot Entity
Linking (ZESHEL) dataset was constructed
by Logeswaran et al. (2019) from Wikia. The task
of zero-shot entity linking involves linking entity
mentions in text to an entity from a list of entities
with associated descriptions. The dataset consists
of 16 different domains with eight, four, and four
domains in training, dev, and test splits respectively.
Each domain contains non-overlapping sets of
entities, thus at test time, mentions need to be
linked to unseen entities solely based on entity
descriptions. Table 1 in the appendix shows
dataset statistics. In this task, queries correspond
to mentions of entities along with the surrounding
context, and items correspond to entities with their
associated descriptions.

3.1 Training DE and CE models on ZESHEL

Following the precedent set by recent papers (Wu
et al., 2020; Zhang and Stratos, 2021), we first
train a dual-encoder model on ZESHEL training
data using hard negatives. We train a cross-encoder
model for the task of zero-shot entity-linking on
all eight training domains using cross-entropy loss
with ground-truth entity and negative entities mined
using the dual-encoder. We refer the reader to Ap-
pendix A.1 for more details.

Results on downstream task of Entity Linking
To evaluate the cross-encoder models, we retrieve
64 entities for each test mention using the dual-
encoder model and re-rank them using a cross-
encoder model. The top-64 entities retrieved by the
DE contain the ground-truth entity for 87.95% men-
tions in test data and 92.04% mentions in dev data.
The proposed [EMB]-CE model achieves an aver-
age accuracy of 65.49 and 66.86 on domains in test
and dev set respectively, and performs at par with
the widely used and state-of-the-art 2 [CLS]-CE

2We observe that our implementation of [CLS]-CE obtains
slightly different results as compared to state-of-the-art (see
Table 2 in Zhang and Stratos (2021) ) likely due to minor
implementation/training differences.

architecture which achieves an accuracy of 65.87
and 67.67 on test and dev set respectively. Since
[EMB]-CE model performs at par with [CLS]-CE
on the downstream task of entity linking, and rank
of the score matrix from [EMB]-CE is much lower
than that from [CLS]-CE, we use [EMB]-CE in
subsequent experiments.

3.2 Evaluating on k-NN search for CE

Experimental Setup For all experiments in this
section, we use the [EMB]-CE model trained on
original ZESHEL training data on the task of
zero-shot entity linking, and evaluate the proposed
method and baselines for the task of retrieving k-
nearest neighbor entities (items) for a given men-
tion (query) according to the cross-encoder model.

We run experiments separately on five domains
from ZESHEL containing 10K to 100K items. For
each domain, we compute the query-item score
matrix for a subset or all of the queries (mentions)
and all items (entities) in the domain. We randomly
split the query set into a training set (Qtrain) and a
test set (Qtest). We use the queries in training data
to train baseline DE models. For ANNCUR, we
use the training queries as anchor queries and use
CE scores between the anchor queries and all items
for indexing as described in §2.3. All approaches
are then evaluated on the task of finding top-k CE
items for queries in the corresponding domain’s
test split. For a fair comparison, we do not train
DE models on multiple domains at the same time.

3.2.1 Baseline Retrieval Methods
TF-IDF: All queries and items are embedded us-
ing a TF-IDF vectorizer trained on item descriptions
and top-k items are retrieved using the dot-product
of query and item embeddings.

DE models: We experiment with DEBASE, the
DE model trained on ZESHEL for the task of en-
tity linking (see §3.1), and the following two DE
models trained via distillation from the CE.

• DEBERT+CE: DE initialized with BERT (Devlin
et al., 2019) and trained only using training
signal from the cross-encoder model.

• DEBASE+CE: DEBASE model further fine-tuned
via distillation using the cross-encoder model.

We refer the reader to Appendix A.3 for hyper-
parameter and optimization details.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that cost is the
number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also includes CE calls to
embed the test query by comparing with anchor items.

Figure 3: Top-k-Recall results for domain=YuGiOh and |Qtrain| = 500

Evaluation metric We evaluate all approaches
under the following two settings.

• In the first setting, we retrieve kr items for
a given query, re-rank them using exact CE
scores and keep top-k items. We evaluate each
method using Top-k-Recall@kr which is the
percentage of top-k items according to the CE
model present in the kr retrieved items.

• In the second setting, we operate under a fixed
test-time cost budget where the cost is defined
as the number of CE calls made during infer-
ence. Baselines such as DE and TF-IDF will
use the entire cost budget for re-ranking items
using exact CE scores while our proposed ap-
proach will have to split the budget between
the number of anchor items (ki) used for em-
bedding the query (§2.4) and the number of
items (kr) retrieved for final re-ranking.

We refer to our proposed method as ANNCURki

when using fixed set of ki anchor items chosen uni-
formly at random, and we refer to it as ANNCUR
when operating under a fixed test-time cost budget
in which case different values of ki and kr are used
in each setting.

3.2.2 Results
Figures 3a and 3b show recall of top-k cross-
encoder nearest neighbors for k ∈ {1, 10, 50, 100}
on ZESHEL domain = YuGiOh when using 500
queries for training, and evaluating on the remain-
ing 2874 test queries. Figure 3a shows recall when
each method retrieves the same number of items
and Figure 3b shows recall when each method op-
erates under a fixed inference cost budget.

Performance for k ≥ 10 In Figure 3a, our pro-
posed approach outperforms all baselines at finding
top-k = 10, 50, and 100 nearest neighbors when
all models retrieve the same number of items for
re-ranking. In Figure 3b, when operating under
the same cost budget, ANNCUR outperforms DE
baselines at larger cost budgets for k = 10, 50, and
100. Recall that at a smaller cost budget, ANNCUR
is able to retrieve fewer number of items for exact
re-ranking than the baselines as it needs to use a
fraction of the cost budget i.e. CE calls to compare
the test-query with anchor items in order to embed
the query for retrieving relevant items. Generally,
the optimal budget split between the number of an-
chor items (ki) and the number of items retrieved

2176



100 500 1000
Number of Queries in Indexing/Training Data (|Qtrain|)

0

25

50

75

100

T
op

-1
00

-R
ec

al
l@

C
os

t=
50

0

Pro-Wrestling

100 500 2000

YuGiOh

100 500 2000

Star-Trek

100 500 2000

Doctor-Who

100 500 2000

Military

DEbase DEbase+ce DEbert+ce annCUR

Figure 4: Bar plot showing Top-100-Recall@Cost=500 for different methods as we increase |Qtrain|, the size of
indexing/training data for five different domains.

for exact re-ranking (kr) allocates around 40-60%
of the budget to ki and the remaining budget to kr.

Performance for k = 1 The top-1 nearest neigh-
bor according to the CE is likely to be the ground-
truth entity (item) for the given mention (query).
Note that DEBASE was trained using a massive
amount of entity linking data (all eight training
domains in ZESHEL, see §3.1) using the ground-
truth entity (item) as the positive item. Thus, it
is natural for top-1 nearest neighbor for both of
these models to be aligned. For this reason, we
observe that DEBASE and DEBASE+CE outperform
ANNCUR for k = 1. However, our proposed ap-
proach either outperforms or is competitive with
DEBERT+CE, a DE model trained only using CE
scores for 500 queries after initializing with BERT.
In Figure 3a, ANNCUR100 and ANNCUR200 out-
perform DEBERT+CE and in Figure 3b ANNCUR
outperforms DEBERT+CE at larger cost budgets.

We refer the reader to Appendix B.3 for results
on all combinations of top-k values, domains, and
training data size values.

Effect of training data size (|Qtrain|) Figure 4
shows Top-100-Recall@Cost=500 on test queries
for various methods as we increase the number of
queries in training data (|Qtrain|). For DE base-
lines, the trend is not consistent across all do-
mains. On YuGiOh, the performance consistently
improves with |Qtrain|. However, on Military,
the performance of distilled DE drops on going
from 100 to 500 training queries but improves on
going from 500 to 2000 training queries. Simi-
larly, on Pro_Wrestling, performance of distilled
DEBASE+CE does not consistently improve with
training data size while it does for DEBERT+CE. We
suspect that this is due to a combination of var-
ious factors such as overfitting on training data,
sub-optimal hyper-parameter configuration, diver-
gence of model parameters etc. In contrast, our
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Figure 5: Bar plot with Top-100-Recall@Cost=500 for
five domains in ZESHEL when using |Qtrain| = 500
queries for training/indexing and a line-plot showing
the number of items (entities) in each domain.

proposed method, ANNCUR, always shows con-
sistent improvements as we increase the number
of queries in training data, and avoids the perils
of gradient-based training that often require large
amounts of training data to avoid overfitting as well
expensive hyper-parameter tuning in order to con-
sistently work well across various domains.

Effect of domain size Figure 5 shows Top-100-
Recall@Cost=500 for ANNCUR and DE baselines
on primary y-axis and size of the domain i.e. total
number of items on secondary y-axis for five differ-
ent domains in ZESHEL. Generally, as the number
of items in the domain increases, the performance
of all methods drops.

Indexing Cost The indexing process starts by
computing query-item CE scores for queries in
train split. ANNCUR uses these scores for index-
ing the items (see §2.3) while DE baselines use
these scores to find ground-truth top-k items for
each query followed by training DE models us-
ing CE query-item scores. For domain=YuGiOh
with 10031 items, and |Qtrain| = 500, the time
taken to compute query-item scores for train/anchor
queries (tCE-Mat) ≈ 10 hours on an NVIDIA
GeForce RTX2080Ti GPU/12GB memory, and
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Figure 6: Top-10-Recall@500 of ANNCUR for non-
anchor queries on domain = YuGiOh for two cross-
encoder models – [CLS]-CE and [EMB]-CE.

training a DE model further takes additional time
(tDE-train) ≈ 4.5 hours on two instances of the same
GPU. Both tCE-Mat and tDE-train increase linearly
with domain size and |Qtrain|, however the query-
item score computation can be trivially parallelized.
We ignore the time to build a nearest-neighbor
search index over item embeddings produced by
ANNCUR or DE as that is negligible in comparison
to time spent on CE score computation and training
of DE models. We refer the reader to Appendix A.3
for more details.

3.3 Analysis of ANNCUR

We compute the query-item score matrix for both
[CLS]-CE and [EMB]-CE and compute the rank of
these matrices using numpy (Harris et al., 2020) for
domain=YuGiOh with 3374 queries (mentions) and
10031 items (entities). Rank of the score matrix for
[CLS]-CE = 315 which is much higher than rank
of the corresponding matrix for [EMB]-CE = 45
due to the query-item score distribution produced
by [CLS]-CE model being much more skewed than
that produced by [EMB]-CE model (see Fig. 1b).

Figures 6a and 6b show Top-10-Recall@500 on
domain=YuGiOh for [CLS]-CE and [EMB]-CE re-
spectively on different combinations of number of
anchor queries (kq) and anchor items (ki). Both an-
chor queries and anchor items are chosen uniformly
at random, and for a given set of anchor queries,
we evaluate on the remaining set of queries.

[CLS]-CE versus [EMB]-CE For the same
choice of anchor queries and anchor items, the
proposed method performs better with [EMB]-CE
model as compared [CLS]-CE due to the query-
item score matrix for [EMB]-CE having much
lower rank thus making it easier to approximate.

Effect of kq and ki Recall that the indexing time
for ANNCUR is directly proportional to the num-
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Figure 7: Bar plot showing Top-100-Recall for do-
main=YuGiOh when indexing using 500 anchor items
for FIXEDITEM and ITEMCUR and 500 anchor queries
for ANNCUR.

ber of anchor queries (kq) while the number of
anchor items (ki) influences the test-time infer-
ence latency. Unsurprisingly, performance of AN-
NCUR increases as we increase ki and kq, and
these can be tuned as per user’s requirement to
obtain desired recall-vs-indexing time and recall-
vs-inference time trade-offs. We refer the reader
to Appendix B.2 for a detailed explanation for the
drop in performance when kq = ki.

3.4 Item-Item Similarity Baselines

We additionally compare with the following base-
lines that index items by comparing against a fixed
set of anchor items 3 instead of anchor queries.

• FIXEDITEM: Embed all items and test-query
in Rki using CE scores with a fixed set of
ki items chosen uniformly at random, and re-
trieve top-kr items for the test query based on
dot-product of these ki-dim embeddings. We
use ki = 500.

• ITEMCUR-ki: This is similar to the proposed
approach except that it indexes the items by
comparing them against kind

i anchor items in-
stead of anchor queries for computing Ranc
and Canc matrices in the indexing step in §2.3.
At test time, it performs inference just like
ANNCUR (see §2.4) by comparing against a
different set of fixed ki anchor items. We use
kind
i = 500.

Figure 7 shows Top-100-Recall for FIXEDITEM,
ITEMCUR, and ANNCUR on domain = YuGiOh.
ITEMCUR performs better than FIXEDITEM in-
dicating that the latent item embeddings produced
using CUR decomposition of the item-item similar-
ity matrix are better than those built by comparing

3See appendix A.2 for details on computing item-item
scores using a CE model trained to score query-item pairs.
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the items against a fixed set of anchor items. ITEM-
CUR performs worse than ANNCUR apparently
because the CE was trained on query-item pairs
and was not calibrated for item-item comparisons.

4 Related Work

Matrix Decomposition Classic matrix decompo-
sition methods such as SVD, QR decomposition
have been used for approximating kernel matrices
and distance matrices (Musco and Woodruff, 2017;
Tropp et al., 2017; Bakshi and Woodruff, 2018;
Indyk et al., 2019). Interpolative decomposition
methods such as Nyström method and CUR decom-
position allow approximation of the matrix even
when given only a subset of rows and columns of
the matrix. Unsurprisingly, performance of these
methods can be further improved if given the entire
matrix as it allows for a better selection of rows
and columns on the matrix used in the decomposi-
tion process (Goreinov et al., 1997; Drineas et al.,
2005; Kumar et al., 2012; Wang and Zhang, 2013).
Recent work, Ray et al. (2022) proposes sublinear
Nyström approximations and considers CUR-based
approaches for approximating non-PSD similarity
matrices that arise in NLP tasks such as coreference
resolution and document classification. Unlike pre-
vious work, our goal is to use the approximate
scores to support retrieval of top scoring items. Al-
though matrix decomposition methods for sparse
matrices based on SVD (Berry, 1992; Keshavan
et al., 2010; Hastie et al., 2015; Ramlatchan et al.,
2018) can be used instead of CUR decomposition,
such methods would require a) factorizing a sparse
matrix at test time in order to obtain latent em-
beddings for all items and the test query, and b)
indexing the latent item embeddings to efficiently
retrieve top-scoring items for the given query. In
this work, we use CUR decomposition as, unlike
other sparse matrix decomposition methods, CUR
decomposition allows for offline computation and
indexing of item embeddings and the latent embed-
ding for a test query is obtained simply by using its
cross-encoder scores against the anchor items.

Cross-Encoders and Distillation Due to high
computational costs, use of cross-encoders (CE) is
often limited to either scoring a fixed set of items or
re-ranking items retrieved by a separate (cheaper)
retrieval model (Logeswaran et al., 2019; Qu et al.,
2021; Bhattacharyya et al., 2021; Ayoola et al.,
2022). CE models are also widely used for train-
ing computationally cheaper models via distilla-

tion on the training domain (Wu et al., 2020; Reddi
et al., 2021), or for improving performance of these
cheaper models on the target domain (Chen et al.,
2020; Thakur et al., 2021) by using cross-encoders
to score a fixed or heuristically retrieved set of
items/datapoints. The DE baselines used in this
work, in contrast, are trained using k-nearest neigh-
bors for a given query according to the CE.

Nearest Neighbor Search For applications
where the inputs are described as vectors in Rn,
nearest neighbor search has been widely studied
for various (dis-)similarity functions such as ℓ2 dis-
tance (Chávez et al., 2001; Hjaltason and Samet,
2003), inner-product (Jegou et al., 2010; John-
son et al., 2019; Guo et al., 2020), and Bregman-
divergences (Cayton, 2008). Recent work on
nearest neighbor search with non-metric (para-
metric) similarity functions explores various tree-
based (Boytsov and Nyberg, 2019b) and graph-
based nearest neighbor search indices (Boytsov
and Nyberg, 2019a; Tan et al., 2020, 2021). In con-
trast, our approach approximates the scores of the
parametric similarity function using the latent em-
beddings generated using CUR decomposition and
uses off-the-shelf maximum inner product search
methods with these latent embeddings to find k-
nearest neighbors for the CE. An interesting avenue
for future work would be to combine our approach
with tree-based and graph-based approaches to fur-
ther improve efficiency of these search methods.

5 Conclusion

In this paper, we proposed, ANNCUR, a matrix
factorization-based approach for nearest neighbor
search for a cross-encoder model without relying
on an auxiliary model such as a dual-encoder for
retrieval. ANNCUR approximates the test query’s
scores with all items by scoring the test-query only
with a small number of anchor items, and retrieves
items using the approximate scores. Empirically,
for k > 10, our approach provides test-time recall-
vs-computational cost trade-offs superior to the
widely-used approach of using cross-encoders to re-
rank items retrieved using a dual-encoder or a TF-
IDF-based model. This work is a step towards en-
abling efficient retrieval with expensive similarity
functions such as cross-encoders, and thus, moving
beyond using such models merely for re-ranking
items retrieved by auxiliary retrieval models such
as dual-encoders and TF-IDF-based models.
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Limitations

In this work, we use cross-encoders parameter-
ized using transformer models. Computing query-
item scores using such models can be computa-
tionally expensive. For instance, on an NVIDIA
GeForce RTX 2080Ti GPU with 12GB memory,
we can achieve a throughput of approximately 140
scores/second, and computing a score matrix for
100 queries and 10K items takes about two hours.
Although this computation can be trivially paral-
lelized, the total amount of GPU hours required for
this computation can be very high. However, note
that these scores need to be computed even for dis-
tillation based DE baselines as we need to identify
k-nearest neighbors for each query according to the
cross-encoder model for training a dual-encoder
model on this task.

Our proposed approach allows for indexing the
item set only using scores from cross-encoder with-
out any additional gradient based training but it
is not immediately clear how it can benefit from
data on multiple target domains at the same time.
Parametric models such as dual-encoders on the
other hand can benefit from training and knowledge
distillation on multiple domains at the same time.

Ethical Consideration

Our proposed approach considers how to speed
up the computation of nearest neighbor search for

cross-encoder models. The cross-encoder model,
which our approach approximates, may have cer-
tain biases / error tendencies. Our proposed ap-
proach does not attempt to mitigate those biases. It
is not clear how those biases would propagate in
our approximation, which we leave for future work.
An informed user would scrutinize both the cross-
encoder model and the resulting approximations
used in this work.
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Domain |E| |M| |Mk−NN|
Training Data

Military 104520 13063 2400
Pro Wrestling 10133 1392 1392
Doctor Who 40281 8334 4000
American Football 31929 3898 -
Fallout 16992 3286 -
Star Wars 87056 11824 -
World of Warcraft 27677 1437 -

Validation Data

Coronation Street 17809 1464 -
Muppets 21344 2028 -
Ice Hockey 28684 2233 -
Elder Scrolls 21712 4275 -

Test Data

Star Trek 34430 4227 4227
YuGiOh 10031 3374 3374
Forgotten Realms 15603 1200 -
Lego 10076 1199 -

Table 1: Statistics on number of entities |E| (items),
total number of mentions |M| (queries), and number of
mentions used in k-NN experiments (|Mk−NN|) in §3.2
for each domain in ZESHEL dataset.

A Training Details

A.1 Training DE and CE for Entity Linking
on ZESHEL

We initialize all models with bert-base-uncased
and train using Adam (Kingma and Ba, 2015) op-
timizer with learning rate = 10−5, and warm-up
proportion=0.01 for four epochs. We evaluate on
dev set five times during each epoch, and pick the
model checkpoint that maximises accuracy on dev
set. While training the dual-encoder model, we
update negatives after each epoch using the latest
dual-encoder model parameters to mine hard nega-
tives. We trained the cross-encoder with a fixed set
of 63 negatives items (entities) for each query (men-
tion) mined using the dual-encoder model. We use
batch size of 8 and 4 for training the dual-encoder
and cross-encoder respectively.

Dual-encoder and cross-encoder models took
34 an 44 hours respectively for training on two
NVIDIA GeForce RTX 8000 GPUs each with
48GB memory. The dual-encoder model has
2×110M parameters as it consists of separate query
and item encoder models while the cross-encoder
model has 110M parameters.

Tokenization details We use word-piece tok-
enization (Wu et al., 2016) for with a maximum of

128 tokens including special tokens for tokenizing
entities and mentions. The mention representation
consists of the word-piece tokens of the context
surrounding the mention and the mention itself as

[CLS] ctxtl [Ms] ment [Me] ctxtr [SEP]

where ment, ctxtl, and ctxtr are word-piece to-
kens of the mention, context before and after the
mention respectively, and [Ms], [Me] are special
tokens to tag the mention.

The entity representation is also composed of
word-piece tokens of the entity title and description.
The input to our entity model is:

[CLS] title [ENT] description [SEP]

where title, description are word-pieces to-
kens of entity title and description, and [ENT] is a
special token to separate entity title and description
representation.

The cross-encoder model takes as input the con-
catenated query (mention) and item (entity) rep-
resentation with the [CLS] token stripped off the
item (entity) tokenization as shown below

[CLS] ctxtl [Ms] ment [Me] ctxtr [SEP]

title [ENT] description [SEP]

A.2 Using query-item CE model for
computing item-item similarity

We compute item-item similarity using a cross-
encoder trained to score query-item pairs as fol-
lows. The query and item in our case correspond
to mention of an entity with surrounding context
and entity with its associated title and description
respectively. We feed in first entity in the pair in the
query slot by using mention span tokens around the
title of the entity, and using entity description to fill
in the right context of the mention. We feed in the
second entity in the entity slot as usual. The con-
catenated representation of the entity pair (e1, e2)
is given by

[CLS] [Ms] te1 [Me] de1 [SEP] te2 [E] de2 [SEP]

where te1, te2 are the tokenized titles of the enti-
ties, de1, de2 are the tokenized entity descriptions,
[Me], [Ms] are special tokens denoting mention
span boundary and [E] is a special token separat-
ing entity title from its description.
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A.3 Training DE for k-NN retrieval with CE
We train dual-encoder models using k-nearest
neighbor items according to cross-encoder model
for each query using two loss functions. Let S(DE)

and S(CE) be matrices containing score for all items
for each query in training data. Let TCE

kd
(q), TDE

kd
(q)

be top-kd items for query q according to the cross-
encoder and dual-encoder respectively, and let
NDE

kd
(q) be top-kd items for query q according to

dual-encoder that are not present in TCE
kd
(q).

We use loss functions Lmatch and Lpair described
below for training the dual-encoder model using a
cross-encoder model.

Lmatch =
∑

q∈Qtrain

H
(
σ(S(DE)

[q,:] ), σ(S
(CE)
[q,:] )

)

where H is the cross-entropy function, and σ(.)
is the softmax function. In words, Lmatch is the
cross-entropy loss between the dual-encoder and
cross-encoder query-item score distribution over
all items. Due to computational and memory limi-
tations, we train by minimizing Lmatch using items
in TCE

kd
(q) for each query q ∈ Qtrain.

Lpair =
∑

q∈Qtrain

∑

(i,j)∈Pq

H([0, 1], σ([S(DE)
q,i , S(DE)

q,j ]))

where,Pq = {(TCE
kd
(q)j , NDE

kd
(q)j)}kdj=0

Lpair treats items in TCE
kd
(q) as a positive item, pairs

it with hard negatives from NDE
kd

(q), and minimiz-
ing Lpair increases dual-encoder’s score for items
in TCE

kd
(q), thus aligning TDE

kd
(q) with TCE

kd
(q) for

queries in training data.

Training and optimization details We train all
dual-encoder models using Adam optimizer with
learning rate=10−5 for 10 epochs. We use a sepa-
rate set of parameters for query and item encoders.
We use 10% of training queries for validation and
train on the remaining 90% of the queries. For each
domain and training data size, we train with both
Lmatch and Lpair loss functions, and pick the model
that performs best on validation queries for k-NN
retrieval according to the cross-encoder model.

We train models for with loss Lpair on two
NVIDIA GeForce RTX 2080Ti GPUs with 12GB
GPU memory and with loss Lmatch on two NVIDIA
GeForce RTX 8000 GPUs with 48GB GPU mem-
ory as we could not train with kd = 100 on 2080Tis

due to GPU memory limitations. For loss Lpair,
we update the the list of negative items (NDE

kd
(q)

) for each query after each epoch by mining hard
negative items using the latest dual-encoder model
parameters.

|Qtrain| Model tCE-Mat ttrain ttotal

100 DE-Lpair 2 2.5 4.5
100 DE-Lmatch 2 0.5 2.5
100 ANNCUR 2 - 2

500 DE-Lpair 10 4.5 14.5
500 DE-Lmatch 10 1 11
500 ANNCUR 10 - 10

2000 DE-Lpair 40 11 51
2000 DE-Lmatch 40 3 43
2000 ANNCUR 40 - 40

(a) Indexing time (in hrs) for ANNCUR and distillation
based DE baselines for different number of anchor/train
queries (|Qtrain|) for domain=YuGiOh.

Domain (w/ size) Model tCE-Mat ttrain ttotal

YuGiOh-10K DE-Lpair 10 4.5 14.5
YuGiOh-10K ANNCUR 10 - 10

Pro_Wrest-10K DE-Lpair 10 4.4 14.4
Pro_Wrest-10K ANNCUR 10 - 10

Star_Trek-34K DE-Lpair 40 5.1 45.1
Star_Trek-34K ANNCUR 40 - 40

Doctor_Who-40K DE-Lpair 40 5.2 45.2
Doctor_Who-40K ANNCUR 40 - 40

Military-104K DE-Lpair 102 5.1 107.1
Military-104K ANNCUR 102 - 102

(b) Indexing time (in hrs) for ANNCUR and distilla-
tion based DE baselines for various domains when using
|Qtrain|=500 anchor/train queries.

Table 2: Indexing time breakdown for ANNCUR and
DE models trained via distillation.

Indexing and Training Time Table 2a shows
overall indexing time for the proposed method AN-
NCUR and for DE models trained using two distil-
lation losses – Lpair and Lmatch on domain=YuGiOh.
Training time (ttrain) for loss Lmatch is much less as
compared to that for Lpair as the former is trained
on more powerful GPUs (two NVIDIA RTX8000s
with 48GB memory each) due to its GPU mem-
ory requirements while the latter is trained on two
NVIDIA 2080Ti GPUs with 12 GB memory each.
The total indexing time (ttotal) for DE models in-
cludes the time taken to compute CE score matrix
(tCE-Mat) because in order to train a DE model for
the task of k-nearest neighbor search for a CE, we
need to first find exact k-nearest neighbor items
for the training queries. Note that this is different
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Training Dev Set Test Set
Negatives [CLS]-CE [EMB]-CE [CLS]-CE [EMB]-CE

Random 59.60 57.74 58.72 56.56
TF-IDF 62.19 62.29 58.20 58.36

DE 67.67 66.86 65.87 65.49

(a) Macro-Average of Entity Linking Accuracy for [CLS]-CE and
[EMB]-CE models on test and dev set in ZESHEL.

Training [CLS]-CE [EMB]-CENegatives

Random 816 354
TF-IDF 396 67

DE 315 45

(b) Rank of 3374 × 10031 mention-entity cross-
encoder score matrix for test domain = YuGiOh

Table 3: Accuracy on the downstream task of entity linking and rank of query-item (mention-entity) score matrix
for [CLS]-CE and [EMB]-CE trained using different types of negatives.

from the "standard" way of training of DE models
via distillation where the DE is often distilled us-
ing CE scores on a fixed or heuristically retrieved
set of items, and not on k-nearest neighbor items
according to the cross-encoder for a given query.

Table 2b shows indexing time for ANNCUR and
DEs trained via distillation for five domains in
ZESHEL. As the size of the domain increases, the
time take for computing cross-encoder scores on
training queries (tCE-Mat) also increases. The time
takes to train dual-encoder via distillation roughly
remains the same as we train with fixed number of
positive and negative items during distillation.

B Additional Results and Analysis

B.1 Comparing [EMB]-CE and [CLS]-CE
In addition to training cross-encoder models with
negatives mined using a dual-encoder, we train
both [CLS]-CE and [EMB]-CE models using ran-
dom negatives and negatives mined using TF-IDF

embeddings of mentions and entities. To evaluate
the cross-encoder models, we retrieve 64 entities
for each test mention using a dual-encoder model
and re-rank them using a cross-encoder model.

Table 3a shows macro-averaged accuracy on the
downstream task of entity linking over test and
dev domains in ZESHEL dataset, and Table 3b
shows rank of query-item score matrices on do-
main=YuGiOh for both cross-encoder models. The
proposed [EMB]-CE model performs at par with
the widely used [CLS]-CE architecture for all three
kinds of negative mining strategies while produc-
ing a query-item score matrix with lower rank as
compared to [CLS]-CE.

Figure 8 shows approximation error of AN-
NCUR for different combinations of number of
anchor queries and anchor items for [CLS]-CE
and [EMB]-CE. For a given set of anchor queries,
the approximation error is evaluated on the re-
maining set of queries. The error between a ma-
trix M and its approximation M̃ is measured as

∥M − M̃∥F / ∥M∥F where ∥.∥F is the Frobenius
norm of a matrix. For the same choice of anchor
queries and anchor items, the approximation er-
ror is lower for [EMB]-CE model as compared to
[CLS]-CE. This aligns with the observation that
rank of the query-item score matrix from [EMB]-
CE is lower than the corresponding matrix from
[CLS]-CE as shown in Table 3b.
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Figure 8: Matrix approximation error evaluated on non-
anchor queries for CUR decomposition on domain =
YuGiOh for [CLS]-CE and [EMB]-CE models. The
total number of queries including both anchor and non-
anchor (test) queries is 3374 and the total number of
items is 10031.

B.2 Understanding poor performance of
ANNCUR for ki = kq

Figure 6 in §3.3 shows Top-10-Recall@500 on
domain=YuGiOh for [CLS]-CE and [EMB]-CE re-
spectively on different combinations of number of
anchor queries (kq) and anchor items (ki). Note
that the performance of ANNCUR drops signifi-
cantly when kq = ki. Recall that the indexing
step (§2.3) requires computing pseudo-inverse of
matrix A = M [Qanc, Ianc] containing scores
between anchor queries (Qanc) and anchor items
(Ianc). Performance drops significantly when A is
a square matrix i.e. kq = ki as the matrix tends to
be ill-conditioned, with several very small eigenval-
ues that are ‘blown up’ in A†, the pseudo-inverse

2185



50 100 200 500 1000
Number of anchor items

1000

500

200

100

50N
um

b
er

of
an

ch
or

qu
er

ie
s

1.5 1.3 1.1 0.8 0.7

1.5 1.3 1.1 0.9 0.8

1.6 1.4 1.2 1.1 1.1

1.6 1.5 1.4 1.3 1.3

1.7 1.6 1.5 1.5 1.5

(a) Top-10-Recall@Cost=500

50 100 200 500 1000
Number of anchor items

1000

500

200

100

50N
um

b
er

of
an

ch
or

qu
er

ie
s

1.5 1.3 1.1 0.8 0.7

1.5 1.3 1.1 0.9 0.8

1.6 1.4 1.2 1.1 1.1

1.6 1.5 1.4 1.3 1.3

1.7 1.6 1.5 1.5 1.5

(b) Matrix Approx. Error

Figure 9: Performance of ANNCUR on non-anchor/test
queries on domain = YuGiOh using U = C†MR† for
[EMB]-CE. The total number of queries including both
anchor and non-anchor (test) queries is 3374 and the
total number of items is 10031.

of A. This, in-turn, leads to a significant approxi-
mation error (Ray et al., 2022). Choosing different
number of anchor queries and anchor items yields
a rectangular matrix A whose eigenvalues are un-
likely to be small, thus resulting in much better
approximation of the matrix M .

Oracle CUR Decomposition An alternate way
of computing the matrix U in CUR decomposition
of a matrix M for a given subset of rows (R) and
columns (C) is to set U = C†MR†. This can

provide a much stable approximation of the matrix
M even when kq = ki (Mahoney and Drineas,
2009). However, it requires computing all values
of M before computing its low-rank approximation.
In our case, we are trying to approximate a matrix
M which also contains scores between test-queries
and all items in order to avoid scoring all items
using the CE model at test-time, thus we can not
use U = C†MR†. Figure 9 shows results for an
oracle experiment where we use U = C†MR†, and
as expected it provides significant improvement
when kq = ki and minor improvement otherwise
over using U = M [Qanc, Ianc]†.

B.3 k-NN experiment results for all domains
For brevity, we show results for all top-k values
only for domain=YuGiOh in the main paper. For
the sake of completeness and for interested readers,
we add results for combinations of top-k values,
domains, and training data size values. Figure 10
- 24 contain results for top-k ∈ {1, 10, 50, 100},
for domain YuGiOh, Pro_Wrestling, Doctor_Who,
Star_Trek, Military, and training data size
|Qtrain| ∈ {100, 500, 2000}. For Pro_Wrestling,
since the domain contains 1392 queries, we use
maximum value of |Qtrain| = 1000 instead of 2000.
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 10: Top-k-Recall results for domain=YuGiOh and |Qtrain| = 100
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 11: Top-k-Recall results for domain=YuGiOh and |Qtrain| = 500
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 12: Top-k-Recall results for domain=YuGiOh and |Qtrain| = 2000
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 13: Top-k-Recall results for domain=Pro_Wrestling and |Qtrain| = 100

2188



50 100 200 500 1000
Number of Items Retrieved

0

25

50

75

100

T
op

-k
-R

ec
al

l
k=1

50 100 200 500 1000

k=10

50 100 200 500 1000

k=50

100 200 500 1000

k=100

TF-IDF DEbase DEbase+ce DEbert+ce annCUR50 annCUR100 annCUR200

(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 14: Top-k-Recall results for domain=Pro_Wrestling and |Qtrain| = 500
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 15: Top-k-Recall results for domain=Pro_Wrestling and |Qtrain| = 1000

2189



50 100 200 500 1000
Number of Items Retrieved

0

25

50

75

100

T
op

-k
-R

ec
al

l
k=1

50 100 200 500 1000

k=10

50 100 200 500 1000

k=50

100 200 500 1000

k=100

TF-IDF DEbase DEbase+ce DEbert+ce annCUR50 annCUR100 annCUR200

(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 16: Top-k-Recall results for domain=Doctor_Who and |Qtrain| = 100
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 17: Top-k-Recall results for domain=Doctor_Who and |Qtrain| = 500
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 18: Top-k-Recall results for domain=Doctor_Who and |Qtrain| = 2000
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 19: Top-k-Recall results for domain=Star_Trek and |Qtrain| = 100
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 20: Top-k-Recall results for domain=Star_Trek and |Qtrain| = 500
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 21: Top-k-Recall results for domain=Star_Trek and |Qtrain| = 2000
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 22: Top-k-Recall results for domain=Military and |Qtrain| = 100
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 23: Top-k-Recall results for domain=Military and |Qtrain| = 500
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(a) Top-k-Recall@kr for ANNCUR and baselines when all methods retrieve and rerank the same number of items (kr).
The subscript ki in ANNCURki refers to the number of anchor items used for embedding the test query.
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(b) Top-k-Recall for ANNCUR and baselines when all methods operate under a fixed test-time cost budget. Recall that
cost is the number of CE calls made during inference for re-ranking retrieved items and, in case of ANNCUR, it also
includes CE calls to embed the test query by comparing with anchor items.

Figure 24: Top-k-Recall results for domain=Military and |Qtrain| = 2000
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