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Abstract
Recent graph-based models for joint multiple
intent detection and slot filling have obtained
promising results through modeling the guid-
ance from the prediction of intents to the de-
coding of slot filling. However, existing meth-
ods (1) only model the unidirectional guidance
from intent to slot; (2) adopt homogeneous
graphs to model the interactions between the
slot semantics nodes and intent label nodes,
which limit the performance. In this paper,
we propose a novel model termed Co-guiding
Net, which implements a two-stage framework
achieving the mutual guidances between the
two tasks. In the first stage, the initial estimated
labels of both tasks are produced, and then they
are leveraged in the second stage to model the
mutual guidances. Specifically, we propose
two heterogeneous graph attention networks
working on the proposed two heterogeneous
semantics-label graphs, which effectively rep-
resent the relations among the semantics nodes
and label nodes. Experiment results show that
our model outperforms existing models by a
large margin, obtaining a relative improvement
of 19.3% over the previous best model on Mix-
ATIS dataset in overall accuracy.

1 Introduction

Spoken language understanding (SLU) (Young
et al., 2013) is a fundamental task in dialog sys-
tems. Its objective is to capture the comprehen-
sive semantics of user utterances, and it typically
includes two subtasks: intent detection and slot fill-
ing (Tur and De Mori, 2011). Intent detection aims
to predict the intention of the user utterance and
slot filling aims to extract additional information
or constraints expressed in the utterance.

Recently, researchers discovered that these two
tasks are closely tied, and a bunch of models (Goo
et al., 2018; Li et al., 2018; Liu et al., 2019a; E et al.,
2019; Qin et al., 2019) are proposed to combine the
single-intent detection and slot filling in multi-task
frameworks to leverage their correlations.
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Figure 1: (a) Previous framework which only models the
unidirectional guidance from multi-intent predictions to
slot filling. (b) Our framework which models the mutual
guidances between the two tasks.

However, in real-world scenarios, a user usu-
ally expresses multiple intents in a single utterance.
To this end, (Kim et al., 2017) begin to tackle the
multi-intent detection task and (Gangadharaiah and
Narayanaswamy, 2019) make the first attempt to
jointly model the multiple intent detection and slot
filling in a multi-task framework. (Qin et al., 2020)
propose an AGIF model to adaptively integrate
the fine-grained multi-intent prediction information
into the autoregressive decoding process of slot fill-
ing via graph attention network (GAT) (Velickovic
et al., 2018). And (Qin et al., 2021b) further pro-
pose a non-autoregressive GAT-based model which
enhances the interactions between the predicted
multiple intents and the slot hidden states, obtain-
ing state-of-the-art results and significant speedup.

Despite the promising progress that existing
multi-intent SLU joint models have achieved, we
discover that they suffer from two main issues:

(1) Ignoring the guidance from slot to intent.
Since previous researchers realized that “slot labels
could depend on the intent” (Gangadharaiah and
Narayanaswamy, 2019), existing models leverage
the information of the predicted intents to guide
slot filling, as shown in Fig. 1(a). However, they ig-
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Figure 2: Illustration of the bidirectional interrelations
between intent (blue) and slot (red) labels. The sample
is retrieved from MixSNIPS dataset.

nore that slot labels can also guide the multi-intent
detection task. Based on our observations, multi-
intent detection and slot filling are bidirectionally
interrelated and can mutually guide each other. For
example, in Fig 2, not only the intents can indicate
the slots, but also the slots can infer the intents.
However, in previous works, the only guidance that
the multiple intent detection task can get from the
joint model is sharing the basic semantics with the
slot filling task. As a result, the lack of guidance
from slot to intent limits multiple intent detection,
and so the joint task.

(2) Node and edge ambiguity in the semantics-
label graph. (Qin et al., 2020, 2021b) apply GATs
over the constructed graphs to model the interac-
tions among the slot semantics nodes and intent
label nodes. However, their graphs are homoge-
neous, in which all nodes and edges are treated
as the same type. For a slot semantics node, the
information from intent label nodes and other slot
semantics nodes play different roles, while the ho-
mogeneous graph cannot discriminate their specific
contributions, causing ambiguity. Therefore, the
heterogeneous graphs should be designed to repre-
sent the relations among the semantic nodes and
label nodes to facilitate better interactions.

In this paper, we propose a novel model termed
Co-guiding Net to tackle the above two issues.
For the first issue, Co-guiding Net implements
a two-stage framework as shown in Fig. 1 (b).
The first stage produces the initial estimated la-
bels for the two tasks and the second stage lever-
ages the estimated labels as prior label informa-
tion to allow the two tasks mutually guide each
other. For the second issue, we propose two het-
erogeneous semantics-label graphs (HSLGs): (1)
a slot-to-intent semantics-label graph (S2I-SLG)
that effectively represents the relations among the
intent semantics nodes and slot label nodes; (2)

an intent-to-slot semantics-label graph (I2S-SLG)
that effectively represents the relations among the
slot semantics nodes and intent label nodes. More-
over, two heterogeneous graph attention networks
(HGATs) are proposed to work on the two proposed
graphs for modeling the guidances from slot to in-
tent and intent to slot, respectively. Experiment
results show that our Co-guiding Net significantly
outperforms previous models, and model analysis
further verifies the advantages of our model.

The contributions of our work are three-fold: (1)
We propose Co-guiding Net1, which implements a
two-stage framework allowing multiple intent de-
tection and slot filling mutually guide each other.
We make the first attempt to achieve the mutual
guidances between the two tasks. (2) We propose
two heterogeneous semantics-label graphs as appro-
priate platforms for interactions between semantics
nodes and label nodes. And we propose two het-
erogeneous graph attention networks to model the
mutual guidances between the two tasks. (3) Exper-
iment results demonstrate that our model achieves
new state-of-the-art performance.

2 Co-guiding

Problem Definition Given a input utterance de-
noted as U = {ui}n1 , multiple intent detection can
be formulated as a multi-label classification task
that outputs multiple intent labels corresponding to
the input utterance. And slot filling is a sequence
labeling task that maps each ui into a slot label.

Next, before diving into the details of Co-
guiding Net’s architecture, we first introduce the
construction of the two heterogeneous graphs.

2.1 Graph Construction
2.1.1 Slot-to-Intent Semantics-Label Graph
To provide an appropriate platform for modeling
the guidance from the estimated slot labels to mul-
tiple intent detection, we design a slot-to-intent
semantics-label graph (S2I-SLG), which represents
the relations among the semantics of multiple intent
detection and the estimated slot labels. S2I-SLG
is a heterogeneous graph and an example is shown
in Fig. 3 (a). It contains two types of nodes: in-
tent semantics nodes (e.g., I1, ..., I5) and slot label
(SL) nodes (e.g., SL1, ..., SL5). And there are four
types of edges in S2I-SLG, as shown in Fig. 3 (b).
Each edge type corresponds to an individual kind
of information aggregation on the graph.

1https://github.com/XingBowen714/Co-guiding
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Figure 3: The illustration of S2I-SLG and its relation
types. w.l.o.g, only the edges directed into SL3 and I3
are shown, and the local window size is 1.

Mathematically, the S2I-SLG can be denoted
as Gs2i = (Vs2i, Es2i,As2i,Rs2i), in which Vs2i is
the set of all nodes, Es2i is the set of all edges, As2i

is the set of two node types and Rs2i is the set of
four edge types. Each node vs2i and each edge es2i
are associated with their type mapping functions
τ(vs2i) : Vs2i → As2i and ϕ(es2i) : Es2i → Rs2i.
For instance, in Fig. 3, the SL2 node belongs to
Vs2i, while its node type SL belongs to As2i; the
edge from SL2 to I3 belongs to Es2i, while its edge
type slot_to_intent_guidance belongs to Rs2i. Be-
sides, edges in S2I-SLG are based on local con-
nections. For example, node Ii is connected to
{Ii−w, ..., Ii+w} and {SLi−w, ...,SLi+w}, where w
is a hyper-parameter of the local window size.

2.1.2 Intent-to-Slot Semantics-Label Graph
To present a platform for accommodating the guid-
ance from the estimated intent labels to slot filling,
we design an intent-to-slot semantics-label graph
(I2S-SLG) that represents the relations among the
slot semantics nodes and the intent label nodes.
I2S-SLG is also a heterogeneous graph and an ex-
ample is shown in Fig. 4 (a). It contains two types
of nodes: slot semantics nodes (e.g., S1, ..., S5) and
intent label (IL) nodes (e.g., IL1, ..., IL5). And Fig.
4 (b) shows the four edge types. Each edge type
corresponds to an individual kind of information
aggregation on the graph.

Mathematically, the I2S-SLG can be denoted
as Gi2s = (Vi2s, Ei2s,Ai2s,Ri2s). Each node vi2s
and each edge ei2s are associated with their type
mapping functions τ(vi2s) and ϕ(ei2s). The con-
nections in I2S-SLG are a little different from
S2I-SLG. Since intents are sentence-level, each
IL node is globally connected with all nodes. For

S1 S2 S3 S4 S5

IL1 IL2 IL3

(a) Intent-to-Slot Semantics-Label Graphs (I2S-SLG)
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(b) Relation types of I2S-SLG

IL

Figure 4: The illustration of I2G-SLG and its relation
types. w.l.o.g, only the edges directed into IL3 and S3

are shown, and the local window size is 1.

Si node, it is connected to {Si−w, ...,Si+w} and
{IL1, ..., ILm}, where w is the local window size
and m is the number of estimated intents.

2.2 Model Architecture
In this section, we introduce the details of our Co-
guiding Net, whose architecture is shown in Fig.5.

2.2.1 Shared Self-Attentive Encoder
Following (Qin et al., 2020, 2021b), we adopt a
shared self-attentive encoder to produce the initial
hidden states containing the basic semantics. It
includes a BiLSTM and a self-attention module.
BiLSTM captures the temporal dependencies:

hi = BiLSTM
(
xi, hi−1, hi+1

)
(1)

where xi is the word vector of ui. Now we obtain
the context-sensitive hidden states Ĥ = {ĥi}n1 .

Self-attention captures the global dependencies:

H′ = softmax

(
QK⊤
√
dk

)
V (2)

where H ′ is the global contextual hidden states
output by self-attention; Q,K and V are matrices
obtained by applying different linear projections
on the input utterance word vector matrix.

Then we concatenate the output of BiLSTM and
self-attention to form the output of the shared self-
attentive encoder: H = Ĥ∥H ′, where H =
{hi}n1 and ∥ denotes concatenation operation.

2.2.2 Initial Estimation
Multiple Intent Detection To obtain the task-
specific features for multiple intent detection, we
apply a BiLSTM layer over H:

h
[I,0]
i = BiLSTMI

(
hi, h

[I,0]
i−1 , h

[I,0]
i+1

)
(3)

161
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Figure 5: The architecture of Co-guiding Net. Each
HGAT is triggered by its own task’s semantics and
the counterpart’s predicted labels. The green and blue
dashed arrow lines denote the projected label represen-
tations from the predicted intents and slots, respectively.
The green solid arrow line denotes the intent distribution
generated by the Intent Decoder at the first stage.

Following (Qin et al., 2020, 2021b), we conduct
token-level multi-intent detection. Each h

[I,0]
i is

fed into the intent decoder. Specifically, the intent
label distributions of the i-th word are obtained by:

y
[I,0]
i = sigmoid

(
W 1

I

(
σ(W 2

Ih
[I,0]
i +b2I)

)
+b1I

)
(4)

where σ denotes the non-linear activation function;
W∗ and b∗ are model parameters.

Then the estimated sentence-level intent labels
{IL1, ..., ILm} are obtained by the token-level in-
tent voting (Qin et al., 2021b).

Slot Filling (Qin et al., 2021b) propose a non-
autoregressive paradigm for slot filling decoding,
which achieves significant speedup. In this paper,
we also conduct parallel slot filling decoding.

We first apply a BiLSTM over H to obtain the
task-specific features for slot filling:

h
[S,0]
i = BiLSTMS(hi, h

[S,0]
i−1 , h

[S,0]
i+1 ) (5)

Then use a softmax classifier to generate the slot
label distribution for each word:

y
[S,0]
i = softmax

(
W 1

S

(
σ(W 2

Sh
[S,0]
i +b2S)

)
+b1S

)
(6)

And the estimated slot label for each word is ob-
tained by SLi = arg max(y

[S,0]
i ).

2.2.3 Heterogeneous Graph Attention
Network

State-of-the-art models (Qin et al., 2020, 2021b)
use a homogeneous graph to connect the seman-
tic nodes of slot filling and the intent label nodes.
And GAT (Velickovic et al., 2018) is adopted to
achieve information aggregation. In Sec. 1, we
propose that this manner cannot effectively learn
the interactions between one task’s semantics and
the estimated labels of the other task. To tackle this
issue, we propose two heterogeneous graphs (S2I-
SLG and I2S-SLG) to effectively represent the re-
lations among the semantic nodes and label nodes.
To model the interactions between semantics and
labels on the proposed graphs, we propose a Hetero-
geneous Graph Attention Network (HGAT). When
aggregating the information into a node, HGAT can
discriminate the specific information from different
types of nodes along different relations. And two
HGATs (S2I-HGAT and I2S-HGAT) are applied on
S2I-SLG and I2S-SLG, respectively. Specifically,
S2I-HGAT can be formulated as follows:

hl+1
i =

K

∥
k=1

σ


 ∑

j∈N i
s2i

W
[r,k,1]
s2i α

[r,k]
ij hl

j


, r = ϕ

(
e
[j,i]
s2i

)

α
[r,k]
ij =

exp

((
W

[r,k,2]
s2i hl

i

)(
W

[r,k,3]
s2i hl

j

)T

/
√
d

)

∑
u∈Nr,i

s2i

exp

((
W

[r,k,2]
s2i hl

i

)(
W

[r,k,3]
s2i hl

u

)T

/
√
d

)
(7)

where K denotes the total head number; N i
s2i de-

notes the set of incoming neighbors of node i on
S2I-SLG; W [r,k,∗]

s2i are weight matrices of edge type
r on the k-th head; e[j,i]s2i denotes the edge from node
j to node i on S2I-SLG; N r,i

s2i denotes the nodes
connected to node i with r-type edges on S2I-SLG;
d is the dimension of node hidden state.

I2S-HGAT can be derived like Eq. 7.

2.2.4 Intent Decoding with Slot Guidance
In the first stage, we obtain the initial intent fea-
tures H [I,0] = {hI,0i }ni and the initial estimated slot
labels sequence {SL1, ...,SLn}. Now we project
the slot labels into vector form using the slot label
embedding matrix, obtaining Esl = {e1sl, ..., ensl}.

Then we feed H [I,0] and Esl into S2I-HGAT to
model their interactions, allowing the estimated
slot label information to guide the intent decoding:

H [I,L] = S2I-HGAT
(
[H [I,0], Esl],Gs2i, θI

)
(8)
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where [H [I,0], Esl] denotes the input node repre-
sentation; θI denotes S2I-HGAT’s parameters. L
denotes the total layer number.

Finally, H [I,L] is fed to intent decoder, produc-
ing the intent label distributions for the utterance
words: Y [I,1] = {y[I,1]i , ..., y

[I,1]
n }. And the final

output sentence-level intents are obtained via ap-
plying token-level intent voting over Y [I,1].

2.2.5 Slot Decoding with Intent Guidance

Intent-aware BiLSTM Since the B-I-O tags of
slot labels have temporal dependencies, we use
an intent-aware BiLSTM to model the temporal
dependencies among slot hidden states with the
guidance of estimated intents:

h̃
[S,0]
i = BiLSTM(y

[I,0]
i ∥h[S,0]

i , h̃
[S,0]
i−1 , h̃

[S,0]
i+1 ) (9)

I2S-HGAT We first project the estimated intent
labels {ILj}m1 into vectors using the intent label
embedding matrix, obtaining Eil = {e1il, ..., emil }.
Then we feed H̃S and Eil into I2S-HGAT to model
their interactions, allowing the estimated intent la-
bel information to guide the slot decoding:

H [S,L] = I2S-HGAT
(
[H̃S , Eil],Gi2s, θS

)
(10)

where [H̃ [S], Eil] denotes the input node represen-
tation; θS denotes I2S-HGAT’s parameters.

Finally, H [S,L] is fed to slot decoder, producing
the slot label distributions for each word: Y [S,1] =
{y[S,1]i , ..., y

[S,1]
n }. And the final output slot labels

are obtained by applying arg max over Y [S,1].

2.2.6 Training Objective

Loss Function The loss function for multiple
intent detection is:

CE(ŷ, y) = ŷ log(y) + (1− ŷ) log(1− y)

LI =
1∑

t=0

n∑

i=1

NI∑

j=1

CE
(
ŷI
i [j], y

[I,t]
i [j]

) (11)

And the loss function for slot filling is:

LS =
1∑

t=0

n∑

i=1

NS∑

j=1

ŷS
i [j] log

(
y
[S,t]
i [j]

)
(12)

where NI and NS denote the total numbers of in-
tent labels and slot labels; ŷIi and ŷSi denote the
ground-truth intent labels and slot labels.

Margin Penalty The core of our model is to let
the two tasks mutually guide each other. Intuitively,
the predictions in the second stage should be better
than those in the first stage. To force our model
obey this rule, we design a margin penalty (Lmp)
for each task, whose aim is to improve the proba-
bilities of the correct labels. Specifically, the for-
mulations of Lmp

I and Lmp
S are:

Lmp
I =

n∑

i=1

NI∑

j=1

ŷI
i [j] max

(
0, y

[I,0]
i [j]− y

[I,1]
i [j]

)

Lmp
S =

n∑

i=1

NS∑

j=1

ŷS
i [j]max

(
0, y

[S,0]
i [j]− y

[S,1]
i [j]

) (13)

Model Training The training objective L is the
weighted sum of loss functions and margin regular-
izations of the two tasks:

L = γ (LI + βILmp
I ) + (1− γ) (LS + βSLmp

S ) (14)

where γ is the coefficient balancing the two tasks;
βI and βS are the coefficients of the margin regu-
larization for the two tasks.

3 Experiments

3.1 Datasets and Metrics
Following previous works, MixATIS and MixS-
NIPS (Hemphill et al., 1990; Coucke et al., 2018;
Qin et al., 2020) are taken as testbeds. MixATIS
includes 13,162 utterances for training, 756 ones
for validation and 828 ones for testing. MixSNIPS
includes 39,776 utterances for training, 2,198 ones
for validation and 2,199 ones for testing.

As for evaluation metrics, following previous
works, we adopt accuracy (Acc) for multiple intent
detection, F1 score for slot filling, and overall accu-
racy for the sentence-level semantic frame parsing.
Overall accuracy denotes the ratio of sentences
whose intents and slots are all correctly predicted.

3.2 Implementation Details
Following previous works, the word and label em-
beddings are trained from scratch2. The dimen-
sions of word embedding, label embedding, and
hidden state are 256 on MixATIS, while on MixS-
NIPS they are 256, 128, and 256. The layer number
of all GNNs is 2. Adam (Kingma and Ba, 2015)
is used to train our model with a learning rate of
1e−3 and a weight decay of 1e−6. As for the co-
efficients Eq.14, γ is 0.9 on MixATIS and 0.8 on

2Due to space limitation, the experiments using pre-trained
language model as the encoder are presented in Appendix.
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Models
MixATIS MixSNIPS

Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Attention BiRNN (Liu and Lane, 2016) 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated (Goo et al., 2018) 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model (Wang et al., 2018) 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID (E et al., 2019) 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation (Qin et al., 2019) 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF (Gangadharaiah and Narayanaswamy, 2019) 36.1 84.6 73.4 62.9 90.6 95.1
AGIF (Qin et al., 2020) 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN (Qin et al., 2021b) 43.0 88.2 76.3 73.7 94.0 95.7

Co-guiding Net (ours) 51.3† 89.8† 79.1† 77.5† 95.1† 97.7†

Table 1: Results comparison. † denotes our model significantly outperforms baselines with p < 0.01 under t-test.

MixSNIPS; on both datasets, βI is 1e−6 and βS is
1e0. The model performing best on the dev set is
selected then we report its results on the test set.
All experiments are conducted on RTX 6000. Our
source code will be released.

3.3 Main Results

The performance comparison of Co-guiding Net
and baselines are shown in Table 1, from which we
have the following observations:

(1) Co-guiding Net gains significant and consis-
tent improvements on all tasks and datasets. Specif-
ically, on MixATIS dataset, it overpasses the pre-
vious state-of-the-art model GL-GIN by 19.3%,
1.8%, and 3.7% on sentence-level semantic frame
parsing, slot filling, and multiple intent detection,
respectively; on MixSNIPS dataset, it overpasses
GL-GIN by 5.2%, 1.2% and 2.1% on sentence-
level semantic frame parsing, slot filling and multi-
ple intent detection, respectively. This is because
our model achieves the mutual guidances between
multiple intent detection and slot filling, allowing
the two tasks to provide crucial clues for each other.
Besides, our designed HSLGs and HGATs can ef-
fectively model the interactions among the seman-
tics nodes and label nodes, extracting the indicative
clues from initial predictions.

(2) Co-guiding Net achieves a larger improve-
ment on multiple intent detection than slot fill-
ing. The reason is that except for the guidance
from multiple intent detection to slot filling, our
model also achieves the guidance from slot fill-
ing to multiple intent detection, while previous
models all ignore this. Besides, previous meth-
ods model the semantics-label interactions by ho-
mogeneous graph and GAT, limiting the perfor-
mance. Differently, our model uses the heteroge-
neous semantics-label graphs to represent different
relations among the semantic nodes and the label

nodes, then applies the proposed HGATs over the
graphs to achieve the interactions. Consequently,
their performances (especially on multiple intent
detection) are significantly inferior to our model.

(3) The improvements in overall accuracy are
much sharper. We suppose the reason is that the
achieved mutual guidances make the two tasks
deeply coupled and allow them to stimulate each
other using their initial predictions. For each task,
its final outputs are guided by its and another task’s
initial predictions. By this means, the correct pre-
dictions of the two tasks can be better aligned. As a
result, more test samples get correct sentence-level
semantic frame parsing results, and then overall
accuracy is boosted.

3.4 Model Analysis

We conduct a set of ablation experiments to verify
the advantages of our work from different perspec-
tives, and the results are shown in Table 2.

3.4.1 Effect of Slot-to-Intent Guidance
One of the core contributions of our work is achiev-
ing the mutual guidances between multiple intent
detection and slot filling, while previous works only
leverage the one-way message from intent to slot.
Therefore, compared with previous works, one of
the advantages of our work is modeling the slot-to-
intent guidance. To verify this, we design a variant
termed w/o S2I-guidance and its result is shown in
Table 2. We can observe that Intent Acc drops by
2.0% on MixATIS and 0.8% on MixSNIPS. More-
over, Overall Acc drops more significantly: 3.6%
on MixATIS and 0.9% on MixSNIPS. This proves
that the guidance from slot to intent can effectively
benefit multiple intent detection, and achieving the
mutual guidances between the two tasks can signif-
icantly improve Overall Acc.

Besides, although both of w/o S2I-guidance and
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Models
MixATIS MixSNIPS

Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Co-guiding Net 51.3 89.8 79.1 77.5 95.1 97.7

w/o S2I-guidance 47.7 (↓3.6) 88.8 (↓1.0) 77.1 (↓2.0) 76.6 (↓0.9) 94.7 (↓0.4) 96.9 (↓0.8)
w/o I2S-guidance 47.7 (↓3.6) 88.7 (↓1.1) 77.5 (↓1.6) 76.5 (↓1.0) 94.9 (↓0.2) 97.5 (↓0.2)
w/o relations 46.0 (↓5.3) 88.3 (↓1.5) 77.8 (↓1.3) 76.3 (↓1.2) 94.7 (↓0.5) 97.2 (↓0.4)
+ Local Slot-aware GAT 51.1 (↓0.2) 89.4 (↓0.4) 79.0 (↓0.1) 75.9 (↓1.6) 94.7 (↓0.4) 96.4 (↓1.4)

Table 2: Results of ablation experiments.

GL-GIN only leverage the one-way message from
intent to slot, w/o S2I-guidance outperforms GL-
GIN by large margins. We attribute this to our pro-
posed heterogeneous semantics-label graphs and
heterogeneous graph attention networks, whose ad-
vantages are verified in Sec. 3.4.3.

3.4.2 Effect of Intent-to-Slot Guidance
To verify the effectiveness of intent-to-slot guid-
ance, we design a variant termed w/o I2S-guidance
and its result is shown in Table 2. We can find that
the intent-to-slot guidance has a significant impact
on performance. Specifically, w/o I2S-guidance
cause nearly the same extent of performance drop
on Overall Acc, proving that both of the intent-to-
slot guidance and slot-to-intent guidance are indis-
pensable and achieving the mutual guidances can
significantly boost the performance.

3.4.3 Effect of HSLGs and HGATs
In this paper, we design two HSLGs: (i.e., S2I-
SLG, I2S-SLG) and two HGATs (i.e., S2I-HGAT,
I2S-HGAT). To verify their effectiveness, we de-
sign a variant termed w/o relations by removing
the relations on the two HSLGs. In this case, S2I-
SLG/I2S-SLG collapses to a homogeneous graph,
and S2I-HGAT/I2S-HGAT collapses to a general
GAT based on multi-head attentions. From Ta-
ble 2, we can observe that w/o relations obtains
dramatic drops on all metrics on both datasets.
The apparent performance gap between w/o re-
lations and Co-guiding Net verifies that (1) our
proposed HSLGs can effectively represent the dif-
ferent relations among the semantics nodes and
label nodes, providing appropriate platforms for
modeling the mutual guidances between the two
tasks; (2) our proposed HGATs can sufficiently and
effectively model interactions between the seman-
tics and indicative label information via achieving
the relation-specific attentive information aggrega-
tion on the HSLGs.

Besides, although w/o relations obviously un-

derperforms Co-guiding Net, it still significantly
outperforms all baselines. We attribute this to the
fact that our model achieves the mutual guidances
between the two tasks, which allows them to pro-
mote each other via cross-task correlations.

3.4.4 Effect of I2S-HGAT for Capturing Local
Slot Dependencies

Qin et al. (2021b) propose a Local Slot-aware GAT
module to alleviate the uncoordinated slot prob-
lem (e.g., B-singer followed by I-song) (Wu et al.,
2020) caused by the non-autoregressive fashion
of slot filling. And the ablation study in (Qin
et al., 2021b) proves that this module effectively
improves the slot filling performance by modeling
the local dependencies among slot hidden states.
In their model (GL-GIN), the local dependencies
are modeled in both of the local slot-aware GAT
and subsequent global intent-slot GAT. We sup-
pose the reason why GL-GIN needs the local Slot-
aware GAT is that the global intent-slot GAT in
GL-GIN cannot effectively capture the local slot
dependencies. GL-GIN’s global slot-intent graph
is homogeneous, and the GAT working on it treats
the slot semantics nods and the intent label nodes
equally without discrimination. Therefore, each
slot hidden state receives indiscriminate informa-
tion from both of its local slot hidden states and
all intent labels, making it confusing to capture
the local slot dependencies. In contrast, we be-
lieve our I2S-HLG and I2S-HGAT can effectively
capture the slot local dependencies along the spe-
cific slot_semantics_dependencies relation, which
is modeled together with other relations. There-
fore, our Co-guiding Net does not include another
module to capture the slot local dependencies.

To verify this, we design a variant termed +Lo-
cal Slot-aware GAT, which is implemented by aug-
menting Co-guiding Net with the Local Slot-aware
GAT (Qin et al., 2021b) located after the Intent-
aware BiLSTMs (the same position with GL-GIN).
And its result is shown in Table 2. We can observe
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New          York           city         to    Las          Vegas     and    Memphis   to   Las          Vegas     on   SundayUtterance:
B-fromloc.
city_name

I-fromloc.
city_name

I-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-depart_date.
day_name

 Slot:

Intent: atis_airport     atis_flight
Sentence-level Semantic Frame Parsing: Incorrect Stage I

B-fromloc.
city_name

I-fromloc.
city_name

I-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-fromloc.
city_name

O B-toloc.
city_name

I-toloc.
city_name

O B-depart_date.
day_name

 Slot:

Intent: atis_flight
Sentence-level Semantic Frame Parsing: Correct Stage II

(A)

Tell   me   about    the   m80     aircraft   and   also   how   much   is   the   limousine          service   in   BostonUtterance:
O O O O B-mod O O O O O O O B-transport_type O O B-city_name Slot:

Intent: atis_aircraft     atis_ground_fare
Sentence-level Semantic Frame Parsing: Incorrect Stage I

(B)
O O O O B-aircraft

_code
O O O O O O O B-transport_type O O B-city_name Slot:

Intent: atis_aircraft     atis_ground_fare
Sentence-level Semantic Frame Parsing: Correct Stage II

Figure 6: Case study of slot-to-intent guidance (A) and intent-to-slot guidance (B). Red color denotes error.

that not only the Local Slot-aware GAT does not
bring improvement, it even causes performance
drops. This proves that our I2S-HGAT can effec-
tively capture the local slot dependencies.

3.5 Case Study

To demonstrate how our model allows the two tasks
to guide each other, we present two cases in Fig. 6.

Slot-to-Intent Guidance From Fig. 6 (A), we
can observe that in the first stage, all slots are cor-
rectly predicted, while multiple intent detection
obtains a redundant intent atis_airport. In
the second stage, our proposed S2I-HGAT oper-
ates on S2I-HLG. It aggregates and analyzes the
slot label information from the slot predictions of
the first stage, extracting the indicative information
that most slot labels are about city_name while
no information about airport is mentioned. Then
this beneficial guidance information is passed into
intent semantics nodes whose representations are
then fed to the intent decoder for prediction. In this
way, the guidance from slot filling helps multiple
intent detection predict correctly.

Intent-to-Slot Guidance In the example shown
in Fig. 6 (B), in the first stage, correct intents are
predicted, while there is an error in the predicted
slots. In the second stage, our proposed I2S-HGAT
operates on I2S-HLG. It comprehensively analyzes
the indicative information of airecraft from both of
slot semantics node aircraft and intent label node
atis_aircraft. Then this beneficial guidance
information is passed into the slot semantics of
m80, whose slot is therefore correctly inferred.

4 Related Work

The correlations between intent detection and slot
filling have been widely recognized. To leverage
them, a group of models (Zhang and Wang, 2016;
Hakkani-Tür et al., 2016; Goo et al., 2018; Li et al.,
2018; E et al., 2019; Liu et al., 2019a; Qin et al.,
2019; Zhang et al., 2019; Wu et al., 2020; Qin et al.,
2021a; Ni et al., 2021) are proposed to tackle the
joint task of intent detection and slot filling in a
multi-task manner. However, the intent detection
modules in the above models can only handle the
utterances expressing a single intent, which may
not be practical in real-world scenarios, where there
are usually multi-intent utterances.

To this end, Kim et al. (2017) propose a
multi-intent SLU model, and (Gangadharaiah and
Narayanaswamy, 2019) propose the first model
to jointly model the tasks of multiple intent de-
tection and slot filling via a slot-gate mechanism.
Furthermore, as graph neural networks have been
widely utilized in various tasks (Cao et al., 2019;
Wang et al., 2020; Shi et al., 2021; Xing and
Tsang, 2022e,a,b), they have been leveraged to
model the correlations between intent and slot. Qin
et al. (2020) propose an adaptive graph-interactive
framework to introduce the fine-grained multiple
intent information into slot filling achieved by
GATs. More recently, Qin et al. (2021b) propose
another GAT-based model, which includes a non-
autoregressive slot decoder conducting parallel de-
coding for slot filling and achieves the state-of-the-
art performance.

Our work also tackles the joint task of multiple
intent detection and slot filling. Existing methods

166



only model the one-way guidance from multiple
intent detection to slot filling. Besides, they adopt
homogeneous graphs and vanilla GATs to achieve
the interactions between the predicted intents and
slot semantics. In contrast, we (1) achieve the mu-
tual guidances between the two tasks; (2) propose
the heterogeneous semantics-label graphs to rep-
resent the dependencies among the semantics and
predicted labels; (3) we propose the Heterogeneous
Graph Attention Network to model the semantics-
label interactions on the heterogeneous semantics-
label graphs.

5 Conclusion

In this paper, we propose a novel Co-guiding Net
based on a two-stage framework that allows the two
tasks to guide each other in the second stage using
the predicted labels at the first stage. To represent
the relations among the semantics node and label
nodes, we propose two heterogeneous semantics-
label graphs, and two heterogeneous graph atten-
tion networks are proposed to model the mutual
guidances between intents and slots. Experiment
results on benchmark datasets show that our model
significantly outperforms previous models. Future
work will focus on leveraging syntactic information
to enhance utterance understanding.

Limitations

Although our Co-guiding Net achieves significant
improvement over existing models, we suppose
that its sentence understanding module (the self-
attentive encoder) is not sufficient enough and lim-
its the performance to some extent. In recent years,
the syntactic information extracted from the sen-
tence’s syntax/dependency tree, which is output
by an off-the-shelf dependency parser, has been
widely leveraged to assist the models in compre-
hensively understanding the sentence (Wang et al.,
2020; Jiang and Cohn, 2021; Tian et al., 2021; Xing
and Tsang, 2022c,d). And in SLU, each utterance
is a sentence, and we believe that leveraging the
syntactic information can improve the performance
by enriching the word representations.
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A Experiments using Pre-trained
Language Model

A.1 Settings
To evaluate Co-guiding Net’s performance based
on the pre-trained language model, we use the pre-
trained RoBERTa (Liu et al., 2019b) encoder to re-
place the original self-attentive encoder. We adopt
the pre-trained RoBERTa-base version provided
by Transformers (Wolf et al., 2020). For each
word, its first subwords’ hidden state generated
by RoBERTa is taken as the word representation.
AdamW (Loshchilov and Hutter, 2019) optimizer
is used for model training with the default setting,
and RoBERTa is fine-tuned with model training.
Other model components are identical to the Co-
guiding Net based on LSTM, and we use the same
hyper-parameters of the model rather than search
for the optimal ones for RoBERTa+Co-guiding Net
due to our limited computation resource.

A.2 Results
Table 3 shows the result comparison of Co-
guiding Net, RoBERTa+Co-guiding Net, and
their state-of-the-art counterparts: AGIF, GL-GIN,
RoBERTa+AGIF, and RoBERTa+GL-GIN. We
can find that although RoBERTa boosts the mod-
els’ performance, RoBERTa+Co-guiding Net still
significantly outperforms RoBERTa+AGIF and
RoBERTa+GL-GIN. This can be attributed to the
fact that although the pre-trained language model
(PTLM) can enhance the word representations, it
cannot achieve the guidance between the two tasks
or the interactions between the semantics and label
information, which are exactly the advantages of
our Co-guiding Net. Therefore, collaborating with
PTLM that has strong ability of language modeling,
RoBERTa+Co-guiding Net gets its performance
further boosted, achieving new state-of-the-art.

Models MixATIS MixSNIPS
Overall(Acc) Overall(Acc)

AGIF 40.8 74.2
GL-GIN 43.0 73.7
Co-guiding Net (ours) 51.3† 77.5†

RoBERTa+AGIF 50.0 80.7
RoBERTa+GL-GIN 53.6 82.6
RoBERTa+Co-guiding Net (ours) 57.5† 85.3†

Table 3: Results comparison. † denotes our model sig-
nificantly outperforms the corresponding counterparts
with p < 0.01 under t-test.
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