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Introduction

BlackboxNLP is the fifth workshop on analyzing and interpreting neural networks for NLP, hosted by the
2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022) in Abu Dhabi,
United Arab Emirates, and online (hybrid).

Many recent performance improvements in NLP have come at the cost of understanding of the systems.
How do we assess what representations and computations models learn? How do we formalize desirable
properties of interpretable models, and measure the extent to which existing models achieve them? How
can we build models that better encode these properties? What can new or existing tools tell us about the
inductive biases of systems?

The goal of this workshop is to bring together researchers focused on interpreting and explaining NLP
models by taking inspiration from machine learning, psychology, linguistics, and neuroscience. We hope
the workshop will serve as an interdisciplinary meetup that allows for cross-collaboration.

The topics of the workshop include, but are not limited to: Explanation methods such as saliency, attribu-
tion, free-text explanations, or explanations with structured properties; Probing methods for testing whe-
ther models have acquired or represent certain linguistic properties; Applying analysis techniques from
other disciplines (e.g., neuroscience or computer vision); Examining model performance on simplified or
formal languages; More interpretable model architectures; Open-source tools for analysis, visualization,
or explanation; Evaluation of explanation methods; Opinion pieces about the state of explainable NLP.
We received an impressive number of 76 submissions (including both archival papers and extended ab-
stracts), suggesting that the issue of interpretability of neural networks remains important within the NLP
community. The final program contains three keynote talks, four oral presentations and 74 posters (33
archival papers, 13 extended abstracts, and 28 Findings papers). We hope this workshop provides a ven-
ue for bringing together ideas and stimulate new ways of building methods and resources for facilitating
better analysis and understanding of the inner-dynamics of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing high-quality reviews in a very short period of
time. We are also grateful to our invited speakers, Lena Voita, Catherine Olsson and David Bau, for
contributing to our program. Finally, we are very thankful to our sponsor, Google, that made it possible
for some of our participants to attend the workshop.

Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar, Dieuwke Hupkes, Naomi Saphra, Sarah Wiegreffe
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Keynote Talk: The Two Viewpoints on the NMT Training
Process

Lena Voita
Facebook AI Research

Abstract: In this talk, I illustrate how the same process (in this case, NMT training process) can be
viewed from different perspectives: from the inside of the model and from the outside, i.e. in a black-
box manner. In the first view, we look at the model’s inner workings and try to understand how NMT
balances two different types of context, the source and the prefix of the target sentence. In the second
view, we look at model outputs (i.e. generated translations) at different steps during training and evaluate
how the model acquires different competences. We find that NMT training consists of the stages where
it focuses on the competences mirroring three core SMT components: target-side language modeling,
lexical translation and reordering. Most importantly, the two views show the same process, and we will
see how this process is reflected in these two types of analysis.

Bio: Elena (Lena) Voita is a Research Scientist joining Facebook AI Research. She is mostly intere-
sted in understanding what and how neural models learn. Her analysis works so far include looking at
model components, adapting attribution methods to NLP models, black-box analysis of model outputs,
as well as information-theoretic view on analysis (e.g., probing). Previously, she was a PhD student at
the University of Edinburgh supervised by Ivan Titov and Rico Sennrich, was awarded Facebook PhD
Fellowship, worked as a Research Scientist at Yandex Research side by side with the Yandex Translate
team. She enjoys writing blog posts and teaching; a public version of (a part of) her NLP course is
available at lena-voita.github.io/nlp_course.html.
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Keynote Talk: In-Context Learning and Induction Heads

Catherine Olsson
Anthropic Al

Abstract: “Induction heads” are attention heads that implement a simple algorithm to complete token
sequences like [A][B] ... [A] — [B]. In this work, we present preliminary and indirect evidence for
a hypothesis that induction heads might constitute the mechanism for the majority of all “in-context
learning” in large transformer models (i.e. decreasing loss at increasing token indices). We find that
induction heads develop at precisely the same point as a sudden sharp increase in in-context learning
ability, visible as a bump in the training loss. We present six complementary lines of evidence, arguing
that induction heads may be the mechanistic source of general in-context learning in transformer models
of any size. For small attention-only models, we present strong, causal evidence; for larger models with
MLPs, we present correlational evidence.

Bio: Catherine Olsson is a research engineer at Anthropic, and the lead author on the recent mechanistic
interpretability paper In-context Learning and Induction Heads. She has previously worked in technical
research roles at Google Brain and OpenAl, and as a grantmaker at Open Philanthropy Project funding
academic research in ML robustness.
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Keynote Talk: Direct Model Editing

David Bau
Northeastern Khoury College

Abstract: Can we understand large deep networks well enough to reprogram them by changing their
parameters directly? In this talk I will talk about Direct Model Editing: how to modify the weights of a
large model directly by understanding its structure. We will consider examples in computer vision and
NLP: how to probe and rewrite computations within an image synthesis model to alter compositional
rules that govern rendering of realistic images, and how the ROME method can edit specific factual me-
mories within a large language model, directly tracing and modifying parameters that store associations
within GPT. I will talk about how causal mediation analysis can serve as a key to unlock the secrets
of a huge model; the specificity-generalization trade-off when evaluating knowledge changes in a large
model; and how recent results in our MEMIT work suggest that direct editing in huge models may scale
orders-of-magnitudes better than traditional opaque fine-tuning.

Bio: David Bau is Assistant Professor at the Northeastern University Khoury College of Computer
Science. He received his PhD from MIT and AB from Harvard. He is known for his network dissection
studies of individual neurons in deep networks and has published research on the interpretable structure
of large models in PNAS, CVPR, NeurIPS, and SIGGRAPH. Prof. Bau is also coauthor of the textbook,
Numerical Linear Algebra.
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Abstract

Whether neural networks are capable of com-
positional generalization has been a topic of
much debate. Most previous studies on this
subject investigate the generalization capabili-
ties of state-of-the-art deep learning architec-
tures. We here take a more bottom-up ap-
proach and design a minimal model that dis-
plays generalization on a compositional bench-
mark, namely, the gSCAN dataset. The model
is a hybrid architecture that combines lay-
ers trained with gradient descent and a selec-
tive attention mechanism optimized with an
evolutionary strategy. The architecture has
around 60 times fewer trainable parameters
than models previously tested on gSCAN, and
achieves comparable accuracies on most test
splits, even when trained only on a fraction of
the dataset. On adverb to verb generalization
accuracy, it outperforms previous approaches
by 65 to 86%. Through ablation studies, neu-
ron pruning, and error analyses, we show that
weight decay and attention mechanisms facili-
tate compositional generalization by encourag-
ing sparse representations divorced from irrel-
evant context. We find that the model’s sample
efficiency can mainly be attributed to its selec-
tive attention mechanism.

1 Introduction

Compositionality is a core aspect of human cogni-
tion. It is what allows us to produce and understand
infinite combinations of known concepts, be it in
the realm of language, vision, or motor skills. Re-
garding artificial intelligence (AI) systems, compo-
sitionality holds the promise of more human-like,
robust generalization on out-of-distribution data, as
well as increased sample efficiency. Composition-
ality in neural networks has thus been the subject
of numerous empirical investigations — with mixed
results. Several studies using a variety of deep neu-
ral network architectures have found that models
either failed on compositional tasks or succeeded
given enough data, but could do so without relying

1
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on systematic compositional rules (Baroni, 2020;
Lake and Baroni, 2018; Loula et al., 2018; Subra-
manian et al., 2019; Keysers et al., 2019; Hupkes
et al., 2020; Andreas et al., 2019; Chaabouni et al.,
2020). Others found that such architectures could
reach compositional solutions without being explic-
itly constrained to do so, but that this ability varied
dramatically across random initializations of the
same model (Liska et al., 2018; McCoy et al., 2020;
Weber et al., 2018).

The main focus of these studies has been on
testing whether state-of-the-art deep learning archi-
tectures are able to learn compositionally. We here
take a different approach, namely that of specifi-
cally building a minimal model that is able to solve
a set of compositional generalization tasks, then
using this model as a tool for analyzing when and
how generalization occurs. Our dataset of choice
for this investigation is gSCAN, a challenge bench-
mark for systematic generalization in grounded
language understanding.

The model we use is a hybrid architecture, con-
taining some weights that are trained with gradient
descent, some that are optimized with an evolu-
tionary strategy, and some that are initialized ran-
domly and left frozen. A detailed justification of
these design choices is given in Section 4.2. The
architecture has around 60 times fewer trainable pa-
rameters than models previously tested on gSCAN,
which allows us to run extensive ablation studies
and error analyses to investigate factors contribut-
ing to generalization performance. We find that our
best-performing model breaks down the gSCAN
tasks into simpler, reusable parts and combines
them using only 13 neurons in its final decision
layer. It achieves accuracies comparable with pre-
viously proposed models on most test splits and
outperforms them on adverb to verb generalization
by 65 to 86%, even when trained on as little as 2%
of the full dataset.
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2 Related Work

2.1 Compositional Generalization

A number of works have addressed the challenge
of building Al systems that generalize composition-
ally. Neural Module Networks were designed for
visual question answering and achieve systematic-
ity by dynamically assembling question-specific
models out of trainable reusable components (An-
dreas et al., 2016a,b). Other approaches explore
ways of encouraging compositional representations
in commonly used state-of-the-art models without
major architectural changes. In this vein, Hupkes
et al. (2018) and Baan et al. (2019) find that atten-
tive guidance during training helps develop small
functional groups of neurons that yield more com-
positional solutions by seq2seq models on lookup
table tasks. Andreas (2020) and Akyiirek et al.
(2020) propose data augmentation schemes that
promote compositional learning in instruction fol-
lowing and morphological analysis. Ontanon et al.
(2022) focus on the effect that design decisions
such as position encodings, weight sharing, or
model hyper-parameters can have on the composi-
tional generalization abilities of Transformer mod-
els. Finally Power et al. (2021) identify weight
decay as being particularly effective at improving
generalization on a binary operation table task.

2.2 Grounded instruction following

Several datasets have been proposed in recent years
for training embodied agents to follow instructions
in simulated 2D or 3D environments (Hermann
et al., 2017; Yu et al., 2018a; Misra et al., 2018;
Chaplot et al., 2018; Yu et al., 2018b; Deruyt-
tere et al., 2019; Chevalier-Boisvert et al., 2019;
Shridhar et al., 2020). One such task is gSCAN,
which was specifically introduced as a benchmark
for compositionality in grounded language under-
standing and contains 8 test splits for assessing
different kinds of out-of-distribution generalization
(Ruis et al., 2020). Previous approaches to solv-
ing gSCAN include language-conditioned message
passing (Gao et al., 2020), compositional networks
(Kuo et al., 2021), neuro-symbolic, dual-system
models (Nye et al., 2021), and the introduction of
auxiliary tasks (Jiang and Bansal, 2021; Heinze-
Deml and Bouchacourt, 2020). The most success-
ful model to date uses a general-purpose Trans-
former architecture with cross-modal attention and
solves 5 out of 8 tasks (Qiu et al., 2021).

As outlined in the introduction, our goal is not

necessarily to compete with these previous ap-
proaches. Instead we aim to devise a parameter-
efficient model that can serve as a tool for a more
in-depth investigation of the factors influencing per-
formance on the different gSCAN test splits, and
to contextualise the results with previous findings
on out-of-distribution generalisation.

2.3 Neuroevolution

Evolutionary algorithms (EA) are stochastic,
gradient-free methods that explore multiple areas
of a search space in parallel. This work was par-
ticularly inspired by Tang et al. (2020), who com-
bine neuroevolution techniques with self-attention
to solve vision-based RL tasks. Their model ex-
tracts relevant patches from input images through a
hard (non-differentiable) attention mechanism, op-
timized via an EA rather than more commonly used
techniques like RL. The most attended-to patches
are then passed on to an LSTM controller which
determines the agent’s action. The authors find that
this approach significantly reduces the number of
model parameters needed compared to previous
methods, as well as offering increased interpretabil-
ity and higher robustness to out-of-distribution
modifications (Tang et al., 2020).

3 Background

Our architecture makes use of an Echo-State Net-
work (ESN) and the covariance matrix adaptation
evolution strategy (CMA-ES) to reduce the number
of learnable parameters needed (see Section 4.2).
As both are not commonly used in NLP, we here
provide some background on these techniques.

3.1 Echo-State Networks

A basic ESN consists of an input layer W,", a recur-
rent neural network (RNN) or so-called reservoir,
and an output layer W,. The reservoir’s state is
updated at each discrete time step as follows:

x[n+1] =(1 — a)x[n] + af (W] uln]
+ Wx[n]), (1)

where « is a leak rate, x[n| is the current reser-
voir activation state, f is a the hyperbolic tangent
function, u[n| is the external input, and W’ is the
reservoir’s internal weight matrix. The ESN’s out-
put is computed as

Y[n + 1] :g(WoX[n + 1])’ ()



where g is an activation function. Crucially, W/
and W] are randomly initialized and left untrained.
Only W, is optimized. This leads to considerably
faster training times than for conventional RNNs
where all weights are learned (Gauthier et al., 2021).
ESNs’ main areas of application therefore include
resource-constrained contexts like robotics and
edge computing (Nakajima, 2020).

3.2 CMA-ES

CMA-ES is a black-box optimization algorithm. It
has been empirically shown to perform robustly
on a range of tasks and requires very little pa-
rameter tuning (Hansen et al., 2010), making it
the EA of choice for optimizing the model in
Tang et al. (2020) which inspired our architecture.
CMA-ES works by iteratively sampling A candi-
date solutions from a multivariate normal distribu-
tion N (m, o2, C) with mean m, step size o and
covariance matrix C'. At each generation, the can-
didate solutions’ fitness is evaluated according to
some function f, and m, o, and C' are adjusted to
increase the probability of success. As the CMA-
ES algorithm is not a main focus of this work, we
relegate details on how the parameters are updated
to Appendix A and refer the interested reader to
Hansen and Ostermeier (2001) for a more in-depth
description of the method.

4 Experiment setup

4.1 gSCAN Benchmark

The gSCAN environment is a grid with objects
of various shapes, sizes, and colors. It is repre-
sented as a 16 x 6 x 6 array, where 6 is the grid
size and 16 is the dimension of the binary feature
encoding for each grid cell. The agent receives
synthetically generated English language instruc-
tions which it must carry out using 6 output actions,
such as walking or turning. Some combinations
are held out of the training set. Out-of-distribution
generalization is then assessed on nine separate
test splits, listed in Table 1, measured using exact
match accuracy of predicted action sequences. The
full dataset has ~ 370, 000 training and ~ 20, 000
test sequences. Hupkes et al. (2020) propose to
distinguish between five interpretations of model
compositionality, namely, the systematic recom-
bination of known parts and rules (systematicity),
the extension of predictions beyond lengths seen
during training (productivity), robustness to syn-
onym substitutions (substitutivity), dependence on

Table 1: Overview of gSCAN’s compositional test

splits
Test Split Held-out Examples
A: Random Random (in-distribution)

Yellow squares as targets if

referred to as yellow

Red squares as targets

Targets south-west of the agent
Circles of size 2 referred to as small
(references are relative to other grid
objects, not tied to absolute sizes)
Pushing squares of size 3 (heavy
objects are pushed/pulled twice)

All except k mentions of cautiously
(looking both ways before each step)
Commands containing both pull and
while spinning (turning 4 times)
Action sequences of length > 15

B: Yellow Squares

C: Red Squares
D: Novel Direction

E: Relativity

F: Class inference

G: Adverbk =1

H: Adverb to verb

I: Length

local vs global structures (localism), and the pref-
erence for rules vs exceptions (overgeneralization).
Following this taxonomy, split G tests the model’s
one-shot learning capabilities, or overgeneraliza-
tion. Split I tests for productivity. We mainly con-
sider splits B, C, D, E, F, and H, which focus on
systematic generalization and substitutivity.

4.2 Model

To solve a gSCAN task, the agent requires knowl-
edge of the command to carry out, the grid state,
and its own past actions. The latter is needed to
keep track of e.g. the number of turns completed
when “spinning". In the following, we describe
how these inputs are represented and processed.
Reservoir To create the representation of the
language command we chose an ESN, due to its
ability to capture information about all input words
and their order in a single vector, without requiring
any weight updates. This fit our goal of keeping the
number of trainable parameters low. The instruc-
tion to the agent is tokenized, one-hot encoded, and
input sequentially to a reservoir with 400 hidden
neurons, which is updated after each token accord-
ing to Equation 1. All reservoir neurons are ran-
domly connected to an output layer W, of size 64,
yielding a 64-dimensional command embedding.
Selective attention The selective attention part
of the model is responsible for extracting task-
relevant information from the input grid. The com-
mand embedding Xjang € R1*64 is passed through
a layer Wy € R64x16_ The resulting vector is
convolved with the input grid at each position to
obtain a heatmap over grid G € R16%6x6_ The x-



and y-coordinates and the 16-dimensional feature
vector for the most-attended grid cell g* are then
extracted:

g* = arg max ((xlang - Wiang) * G) 3)

Because this argmax operation is non-
differentiable, we follow Tang et al. (2020)’s
approach of using CMA-ES to optimize Wiyp,.
However, in contrast to Tang et al., we apply the
attention matrix to feature vectors rather than
image patches, and we do not evolve all learnable
parameters in our model. This is because our
model has significantly more parameters than that
of Tang et al. and the time and space complexity
of CMA-ES is quadratic in the dimensionality of
its objective function — restricting its application
to problems with no more than a few hundred
variables (Varelas et al., 2018). Therefore, only this
selective attention part of the model is optimized
using CMA-ES. The rest is trained using gradient
descent. Inspired by joint attention mechanisms
and parental guidance during child learning, the
CMA-ES receives auxiliary feedback on whether
the correct target object was most attended to.
We also test and report the results for a version
where the CMA-ES receives as feedback the
cross-entropy loss produced by the agent’s final
prediction outputs (see Section 5.1).

Action attention The action attention part of
the model serves as the agent’s “memory" of
past outputs. The command embedding under-
goes self-attention, yielding a weighted embedding
ajang € R4, This is then passed through another
attention layer Wy, € R4%290 and multiplied
element-wise with a vector x,o¢ € R299%! contain-
ing the agent’s one-hot encoded past 20 actions and
orientations:

Aact = (alang : Wact) ® Xact “4)

As there is no arg max operation involved, W, is
trained with conventional gradient descent.

Controller Finally, the outputs of the selective
and action attention modules are concatenated with
the agent’s current x- and y-coordinates and orien-
tation, as well as the unweighted command embed-
ding and input to the agent’s controller to predict
the agent’s next step. The controller consists of a
layer normalization layer, a layer with 100 hidden
ReLU units, and an output layer of size 6.

In total, the model has a little under 5 - 10* train-
able parameters, compared to around 3 - 10° for
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Schematic visualization of the proposed

models previously tested on gSCAN (Qiu et al.,
2021). A schematic overview is shown in Figure 1.

4.3 Training details

The weights of the ESN were initialized with a
spectral radius of 0.99 and a density of 1e — 2. The
leaking rate was set to 1e — 1. For the CMA-ES,
we used a population size of 8 and an initial nor-
mal distribution with standard deviation le — 1.
Optimization was implemented with the pycma
library!. For the part of the model trained via gra-
dient descent, we used the Adamax optimizer and
a learning rate cycle with an upper boundary of
le — 2. Weight decay was set to 1e — 4 and models
were trained with batch size 4,096 for 100 epochs
unless otherwise specified. All performance results
are based on 10 runs. Each run used a different ran-
dom seed for model weight initialization. However,
the same 10 seeds were used for all tested modi-
fied or ablated architectures, so that all compared
models started with the same 10 sets of weights.
Experiments were implemented in Pytorch? and
run on a server with 4 NVIDIA RTX 3090 GPUs
and a 24 core Epyc CPU. The training time for
one model was approximately 1.3 hours on the full

loypi.org/project/cma/
2pytorch .org


pypi.org/project/cma/
pytorch.org

dataset, 16 minutes on the 10% subset, and 9 min-
utes on the 2% subset. Code is publicly available
at https://github.com/lemonk6/minmodgscan.

5 Results

5.1 Performance

As shown in Table 2, the model with auxiliary at-
tention feedback reaches competitive accuracy on
splits A, C, E, and F. On split H, it outperforms
previous proposals by 65 to 86%. To see if gener-
alization extended to other combinations, we also
tested two custom splits. The first is a variation of
task C, where not only red squares, but also yellow
squares, green cylinders, and blue circles never ap-
pear as targets during training. The second is an ex-
tension of split H, where in addition to “pull while
spinning", the agent is never told to “push while
zigzagging" or to “walk hesitantly" during train-
ing. The model generalized to test sets containing
only held-out shape-color and verb-adverb combi-
nations, reaching 98.7% =+ 1.5 and 98.9% =+ 0.5
accuracy, respectively.

Table 3 compares the performance of models
trained with and without an auxiliary feedback sig-
nal as well as models receiving perfect target lo-
cation inputs, for reference. As can be seen, the
model without an auxiliary signal does learn to fo-
cus on the target in some cases, but performance
across the 10 runs exhibits a high variation. We
also test a model which instead of absolute loca-
tions receives agent-centric row- and column-wise
distances as input, which is sometimes used in RL
goal navigation tasks. This stronger inductive bias
seems to force the agent to more reliably employ
the selective attention mechanism for target loca-
tion, even when it only receives indirect feedback
in the form of cross-entropy loss. Detailed evalua-
tion results are given in B.

5.2 Sample Efficiency

One of the main advantages of our model is its sam-
ple efficiency. As shown in Figure 2, it achieves
around 90% accuracy on splits A and C when
trained on only 1% of the dataset, and 90 - 97%
accuracy on splits A, C, E, and F with 2% of the
data. This is well below the 40% data requirement
threshold identified by Qiu et al. (2021) for their
cross-modal transformer model. Interestingly, the
exact match accuracy on splits B and C peaks at
the 10% subset and declines slightly when given
more data — something we take a closer look at in
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Figure 2: Sample efficiency on test splits for models
with selective attention and auxiliary feedback

Section 5.3. Performance on task H increases more
slowly than on other splits and requires at least 10%
of the dataset to surpass 90% accuracy.

5.3 Error Analyses

Attention: We first analyze the mistakes made by
the models trained without auxiliary feedback by
treating the task of focusing on the correct target
as a classification, and analyzing the feature-wise
confusion matrices of the models. This reveals
an accumulated false discovery rate of 66.5% for
the “agent” dimension of the grid cell feature vec-
tors, compared to 0% for the models trained with
feedback. This means the models without attentive
guidance tend to overly focus on the agent. The
location of the agent does coincide with the target
object’s location around 18% of the time, which
might lead to an overreliance on this dimension.
We also find that the models trained without atten-
tion supervision struggle more with under-specified
commands. For example, the models focus on an
object of the correct color in ca. 96% of cases when
the color is explicitly mentioned in the command.
When the target object is only referred to by its
shape or size, the accuracy drops to about 90%.
Detailed confusion matrices can be found in D.1.
Yellow squares: In the case of split B, perfor-
mance exhibits a large variation across instantia-
tions of the same model. Out of 10 runs, approxi-
mately half always achieve accuracies in the range
of 90 - 99% while the others only reach 35 - 55%.
The best performance is achieved with a 10% sub-
set of the training set, where all ten models reach
at least 60% accuracy. A look at the confusion
matrices shows that, on average, models correctly
identify a square as their target object in 97% of
test cases. However, their color accuracy is only
around 75%. Taken together, this suggests that the
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Seq2Seq GECA Heinze Gao Kuo Qiu Jiang  Nye Ours Ours
(2020) (2020) (2020) (2020) (2020) (2021) (2021) (2021) (100%) (10%)
A 97.69+£02 87.60+12 94194+0.7 98.60+10 967306 99.95 +0.0 - 747  99.7+0.1 995£0.1
B 5496+39.4 3492+393 8645+63 99.08+0.7 9491+13 99.90 £0.1 - 813 735+254 8l16+143
C 2351+21.8 7877+66 81.07+10.1 8031+245 67.72+£10.8 99.25 £09 - 781  994+£04 99.5+0.2
D 0.00+0.0 0.00 £ 0.0 - 0.16 £0.1 11.52+8.2 0.00 £0.0 - 0.0 22415 35+27
E 3502+24 3319+37 4343+£7.0 8732+£274 76.83+23 99.02 £1.2 - 536 974£20 96.8%19
F 9252+6.8 8599+0.9 - 9933 £05 98.67£0.1 99.98 + 0.0 - 762  99.1+0.6 983+1.7
G 0.00£0.0 0.00 £ 0.0 - - 1.14+0.3 0.00 £0.0 4.9 0.00 0.00£0.0 0.0+£0.1
H 2270+46 11.83+03 - 33.6+20.8 2098+1.4 2224001 280 21.8 984+11 942+37

Table 2: Exact match accuracy on gSCAN compositional splits. For our proposed model, we report both the
performance of models trained on the full dataset and of those trained on a 10% subset.

Table 3: Exact match accuracy and attention match ac-
curacy on gSCAN compositional splits for models with
selective attention, optimized with and without auxil-
iary feedback.

w/o aux. signal w/o aux. signal
abs. loc. rel. dist.
seq. seq. att. seq. att.
match match match match match
100.0  +0.0 593 +£29.1 742 +214 830 +34 928 +22
100.0 +0.0 50.8 +21.1 61.6 +17.0 595 +£157 700 +16.7
100.0 £0.0 700 +£29.5 738 +248 89.7 +£93 911 +84
1.9 +£1.7 01 +02 666 +289 08 +£09 913 +£26
100.0 £0.0 503 +£204 621 *£179 741 £62 841 £76
100.0 £0.0 526 +£250 704 =£20.7 675 £93 844 £80
0.0 +£00 00 +00 630 =+£157 0.0 +£00 730 +£58
993 +1.0 375 £202 744 +149 564 +£62 899 £39

perfect att.

T QTmMmoOw >

models overfit to the absence of yellow squares.
Depending on the random initialization of its selec-
tive attention matrix, a model may be more or less
predisposed to generalization on this task. In the
absence of any samples with yellow squares that
could cause a course correction, this predisposi-
tion may be exacerbated with each update and thus
deteriorate performance in the higher-data regimes.

Novel direction: Similar to previous architec-
tures tested on gSCAN, our model has no trouble
identifying the correct targets in split D (Ruis et al.,
2020; Qiu et al., 2021). Its attention match accu-
racy is 100%. However, it cannot navigate to the
identified target successfully. On average, it ends
up in the correct row in 44% of cases, in the right
column in 23% of cases, and never both.

5.4 Ablations

Weight Decay and Action Attention: As shown
in Table 4, ablating weight decay or attention over
past steps causes the most pronounced performance
drops in splits E, F, and H. To compare structural
differences between the ablated models, we per-
form a neuron pruning experiment (detailed results
in C). For every neuron in the trained models’ final
hidden layer, we record the product of its activation
and outgoing weights at each step when processing
a 2% subset of the training set. We then disable

neurons in ascending order of contribution to the
models’ outputs and assess the pruned model’s ex-
act match accuracy. All full models require only 13
hidden neurons to solve all tasks. Without attention
over past actions, 16 neurons are needed to reach
the final accuracy. Models without weight decay
rely almost equally on all 100 neurons. Pruning
any of them leads to decreased performance.

This difference in learned representations is also
illustrated in Figure 3, which shows the weights be-
tween the agent’s past actions and the hidden layer
of three identically initialized models with different
ablations applied. The model with weight decay
and action attention learns the most sparse weights
and focuses on recent steps. The hidden model
without action attention has a similarly sparse hid-
den layer, but a longer "memory", i.e., it takes into
account past actions from further back in the step
sequence. The model without weight decay is very
densely connected.

Selective Attention: To investigate the effect of
selective attention, we train a soft attention version
of the model. Instead of the isolated feature vector
of the most attended grid cell, this model receives
the attention-weighted whole grid as input, similar
to the action attention mechanism. To account for
the higher dimensionality of the input, we increase
the number of neurons in the hidden units to 500.
The relative amount of neurons needed to reach

full w/o weight w/o action w/o selective

model decay attention attention
A 99.7 + 0.1 925+ 1.8 922+25 89.6+3.3
B 735+ 254 742+ 129 73.0 £21.1 69.5 +21.8
C 99.4 4+ 0.4 95.9 +3.0 929+7.6 78.6 £17.1
D 22+15 0.1 £0.1 0.0£0.0 03+£0.6
E 974+20 739+ 82 85.7+ 6.6 72.1+23
F 99.1 £ 0.6 73.7+78 80.6+9.3 81.6+£9.9
G 0.0+ 0.0 04+02 0.0+ 0.0 0.0+ 0.0
H 984+ 1.1 39.5+ 14.5 23.8+3.7 65.5+ 13.1

Table 4: Exact match accuracy on gSCAN composi-
tional splits for ablated models
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Figure 3: Weights between the agent’s past actions and
the model’s hidden layer, as learned by (a) the full
model, (b) the model with weight decay but no action
attention, and (c) the model with action attention but no
weight decay
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Figure 4: Sample efficiency on test splits for models
without selective attention

full accuracy is similar to the model without action
attention — around 18%. Performance-wise, the
ablation causes a drop-off across the board but still
achieves around 90% accuracy on in-distribution
data when trained on the full dataset. However, the
sample efficiency is greatly reduced (see Figure 4).
L.e., models need to have seen a greater number of
input combinations to start generalizing. This is
also supported by a comparison of the confusion
matrices for models with and without selective at-
tention via a x2-test on split A (details in D.2).
By far the most over-represented feature among
misclassifications by the soft-attention model, as
measured by standardized residuals, is the “square”
dimension. Since squares are held out for splits
B, C, and F, this shape is underrepresented in the
training set. The model thus sees fewer examples
during training, which seems to affect its ability to
generalize to new combinations involving squares
even for in-distribution data.

5.5 “Spontaneous' Generalization

During our ablation studies, we observed that gen-
eralization to the “adverb to verb" split did occur
frequently in models without weight decay and ac-
tion attention, but not in a linear fashion. As shown
in Figure 5, performance on split H would spike on
one training batch, then fall again. Higher system-
atic generalization ability is not necessarily evident
from looking at the performance on in-distribution
data — two models may have the same train loss or
test accuracy, but very different out-of-distribution
accuracies. Such spurious generalization behavior
may also explain the variation in performance on
split H observed by Gao et al. (2020) and Jiang and
Bansal (2021).

One reason often cited for unstable generaliza-
tion is sharp local minima (Keskar et al., 2017).
However, a visualization of the loss landscape of
the models at various points during training shows
relatively flat planes. The landscapes for training
and “adverb to verb" data are simply well aligned
for some model-batch combinations, and less so
for others (see Figure 6). We also investigated
whether the batches used to update the models im-
mediately before out-of-distribution performance
spikes had any special properties that would fa-
cilitate generalization. We saved batches that pre-
ceded an increase on split H accuracy of at least
5%, injected them randomly into the training of
other models, and recorded the difference in perfor-
mance caused. However, we found no statistically
significant improvement over random batches, and
no statistically significant differences in feature or
label distributions of such “spike" batches.

We did find that batch size had an impact on the
likelihood of generalization spikes. We trained 10
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Figure 5: Accuracy on split H over the course of train-
ing for a model without action attention
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Figure 6: Examples of loss landscapes for models
trained without weight decay, visualized with the loss-
landscapes library 3. Lower planes show the landscapes
for a random training batch of size 256. Upper planes
show the landscapes for the entire “adverb to verb"
split. For some model-batch combinations, the two
align well (left). For others, less so (right).

models without weight decay on 5 different batch
sizes using a 2% subset of the training data. All
models were trained for the same number of ab-
solute updates. For all batch sizes, the random
initialization of the ten models used the same ran-
dom seeds. We then sampled the models’ perfor-
mance on split H at 50 points in regular intervals
during training. As shown in Figure 7, generaliza-
tion performance with smaller batches was higher
but more volatile. Comparing the distribution of
sampled “adverb to verb" accuracies across batch
sizes yielded statistically significant Z-scores > 2
between batch sizes < 512 and > 2048. This is
consistent with previous findings that smaller batch
sizes facilitate better generalization (Smith and Le,
2018; Keskar et al., 2017; Smith et al., 2018; Hof-
fer et al., 2017; Masters and Luschi, 2018). Details
on statistical tests are given in E.

6 Discussion

The core of systematic generalization, namely, the
ability to flexibly compose known parts, is not
something neural networks seem incapable of — as
long as they receive atomic units as inputs that are
separated from irrelevant context. Otherwise, they
may overfit and learn solutions that only perform
well on in-distribution data. Seen from this per-
spective, factors identified as helpful to generaliza-
tion, both in the literature and in this study, are all
mechanisms that can contribute to learning atomic
input units. Weight decay facilitates this by serv-
ing as a kind of inductive simplicity bias (Power
et al., 2021; Kirk et al., 2021). So do soft attention
mechanisms, which filter out irrelevant inputs. So
does the hard attention bottleneck employed in this
paper, by decoupling content, which is only rele-

o
)

=4
o

full match accuracy on split H
I o o
S o ©

N
@
>

512 1024 2048 4096
batch size

Figure 7: Distributions of split H accuracy sampled dur-
ing training, for 5 different batch sizes

vant for target identification, from location, which
is only relevant for navigation (Heinze-Deml and
Bouchacourt, 2020; Dubois et al., 2020).

7 Conclusion

In summary, we build on Tang et al.’s neuroevo-
lution approach to selective attention and embed
it in a hybrid model. We apply this model to the
task of systematic generalization in grounded in-
struction following and explore the effect of vari-
ous design decisions on out-of-distribution perfor-
mance. We find that weight decay and attention
mechanisms facilitate compositional generalization
by encouraging sparse representations divorced
from irrelevant context, and that selective atten-
tion dramatically improves the model’s sample effi-
ciency. We also find that, even without weight de-
cay and attention, generalization performance may
improve sporadically during training independent
of in-distribution accuracy, especially with smaller
batch sizes. Studies on out-of-distribution general-
ization should therefore employ a sufficiently high
number of training runs to obtain a reliable estimate
of a models’ generalization robustness.

Although our architecture is specific to the
dataset at hand, the factors contributing to its per-
formance are consistent with related work on sys-
tematic generalization and likely to apply to other
situations as well. However, compositional gener-
alization encompasses a wide range of skills and
even within systematic generalization, solving one
task, e.g., recombining shapes and colors, may not
translate to another, e.g. recombining directions.
Several gSCAN tasks remain unsolved and likely
require different inductive biases than the ones pre-
sented here. We hope that this closer look at the
minimal requirements for generalization on the var-
ious gSCAN test splits can inform future work on
this benchmark going forward.
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A Background on CMA-ES

CMA-ES begins by sampling A individual solu-

. 1 1 .
tions xgg + ), ey :vg\g +1) from a multivariate Gaus-

sian distribution N (m(g), 0(9)20(9)) with mean
m(g), step size o(9) and covariance matrix C'9).
The initial mean, step size and covariance matrix
are then adapted iteratively to increase the likeli-
hood of successful solutions as evaluated by some
function f. Mean adaptation is done by shifting m
by the weighted average of the p best solutions of
generation g (Shala et al., 2020):

o
mtD = @ e Z w; ($§:90+1) _ m(g))7 (5)
i=1
where c,, is a learning rate. The new step size o
is determined as follows (Shala et al., 2020):

(g+1)
(9+1) — (9) o lps |l 1
o = oYexp —_ :
(da (EWOJ)H
(6)

where ¢, is a separate learning rate, d, is a

. 1) .
damping parameter, and pgg 1 s the next gen-
eration’s conjugate evolution path computed as

(Hansen et al., 2003):

W) — (1 —¢,) - pl¥

VHE (g1
+vVer (2—¢5)- E(wfﬁ ) — x&g)).
(7
Finally, the covariance matrix is updated
(Hansen et al., 2003):

CUtD = (1 = ¢opp) - CW
+ e P (PO (8)

where ¢, is another learning rate.

B Detailed Evaluation Results

Parameter Size
Hidden layer 28,800
Layer normalization weights 100
Layer normalization biases 100
Output layer 600
Selective attention key matrix 1,024
Self-attention key matrix 4,096
Action attention key matrix 12,800
Total 47,520

Table 5: Overview of our model’s trainable parameters

0.01 0.02 0.1 0.5 1.0
A | 0.9964 0.002 | 1.000= 0.000 | 1.000+ 0.000 | 1.000+ 0.000 | 1.000+ 0.000
B N/A N/A N/A N/A N/A
C N/A N/A N/A N/A N/A
D | 0.000% 0.000 | 0.000+ 0.000 | 0.034+0.032 | 0.021+0.025 | 0.019 +0.017
E | 09974 0.001 | 1.000£ 0.000 | 1.000+ 0.000 | 1.000+ 0.000 | 1.000 0.000
F | 0.995+0.002 | 1.0004 0.000 | 1.000+ 0.000 | 1.000+ 0.000 | 1.000+ 0.000
G | 0.000 0.000 | 0.000£ 0.000 | 0.000+ 0.000 | 0.000% 0.000 | 0.000 0.000
H | 0.610+ 0.182 | 0.7904 0.165 | 0.999+ 0.001 | 0.988+ 0.028 | 0.993+ 0.01

Table 6: Sequence match accuracies on gSCAN com-
positional splits with perfect selective attention trained
on 1%, 2%, 10%, 50%, and 100% of the dataset

Exact Match

Att. Match Exact Match A Att. Match

A | 0951+ 0.015 | 0.9254 0.018 | 0.988-+ 0.006
B | 0.786+ 0.128 | 0.742+ 0.129 | 0.9884 0.012
C | 0.965+ 0.028 | 0.9594 0.03 | 1.000+ 0.000
D | 0.934+ 0.021 | 0.001+ 0.001 | 0.0014 0.002
E | 0.839+ 0.109 | 0.739+ 0.082 | 0.9094 0.066
F | 0.878+ 0.054 | 0.7374+ 0.078 | 0.8864 0.049
G | 0.7184+0.07 | 0.0044 0.002 | 0.006= 0.003
H | 0.9184+ 0.033 | 0.3954+ 0.145 | 0.441£0.171

Table 7: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without weight decay (trained on the full dataset)

Att. Exact Exact Match
Match Match if Att. Match
A | 0.947+0.020 | 0.9224 0.025 | 0.996+ 0.002
B | 0.781+0.188 | 0.7304 0.211 | 1.000+£ 0.000
C | 0.947+0.066 | 0.9294 0.076 | 1.000+£ 0.000
D | 0.931+0.027 | 0.0004 0.000 | 0.000+ 0.000
E | 0901+ 0.058 | 0.857+ 0.066 | 0.9964 0.003
F | 0.863+0.073 | 0.806+ 0.093 | 0.9944 0.005
G | 0.772+ 0.072 | 0.0004 0.000 | 0.000+ 0.000
H | 0919 +£0.032 | 0.238 £+ 0.037 | 0.272 4+ 0.034

Table 8: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without action attention (trained on the full dataset)
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Exact Match

Att. Match Exact Match if Att. Match
Pull while spinning,
Push while zigzagging, | 0.982+ 0.008 | 0.989+ 0.005 | 0.996+ 0.002
Walk hesitantly
H:Adverb to verb 0.996+ 0.003 | 0.93+0.059 | 0.943+ 0.055

Table 13: Sequence and attention match accuracies
on additional held-out verb-adverb combinations and
split H with selective attention and auxiliary feedback
(trained on the full dataset)

Exact Match

Att. Match Exact Match if Att. Match
Red squares,
Yellow squares, | ) 9,4 013 | 0.987+ 0.015 | 1.000-+ 0.000
Green cylinders,
Blue circles
B:Yellow squares | 0.855+ 0.144 | 0.829+ 0.165 | 1.000=+ 0.000
C:Red squares 0.996+ 0.006 | 0.9924+ 0.007 | 1.000+ 0.000

Table 14: Sequence and attention match accuracies
on additional held-out shape-color target combinations
and splits B and C with selective attention and auxiliary
feedback (trained on the full dataset)

C Neuron pruning

For each neuron in the final hidden layer of the
model, we recorded its activation, multiplied by
its outgoing weight (no biases were used in the
model, except in the layer normalization layer).
We then sorted neurons based on their accumulated
contribution to the final model output and tested
exact sequence accuracy on the gSCAN dev set
with the top X% of neurons active. The rest were
disabled by setting outgoing weights to 0. Detailed
results are shown in Table 15.

% of top hidden unablated w/o action w/o selective w/o weight

neurons active model attention i decay
10% 0.538 4 0.054 | 0.354 £ 0.096 | 0.576 &+ 0.054 | 0.042 + 0.023
11% 0.664 +0.111 | 0.442 £0.117 | 0.627 + 0.057 | 0.044 £ 0.026
12% 0.855 4 0.108 | 0.522 £ 0.158 | 0.671 = 0.051 | 0.068 + 0.027
13% 0.998 4 0.001 | 0.649 +0.164 | 0.715 + 0.045 | 0.073 £ 0.021

14% -
15% -
16% -
17% -
18% -
20% -
30% -
40% -
50% -
60% -
70% -
80% -
90% -
95% -
100% -

0.824 4 0.104 | 0.782 £ 0.034 | 0.079 & 0.025
0.876 £ 0.090 | 0.823 +0.033 | 0.083 & 0.033
0.904 4 0.029 | 0.867 £ 0.034 | 0.093 & 0.032

- 0.902 4 0.024 | 0.087 £ 0.031
0.916 & 0.025 | 0.097 £ 0.053

- 0.126 4 0.092
0.119 & 0.069
0.263 £ 0.149
0.486 4 0.231
0.741 + 0.171
0.810 £ 0.114
0.874 4 0.045
0.880 4 0.048
0.885 £ 0.049
0.906 + 0.025

Table 15: Exact match accuracy on in-distribution data
for ablated and unablated models with different per-
centages of disabled top contributing hidden neurons

D Error analyses

D.1 Confusion matrices

We collected the feature vectors for the grid cells
that were most attended to by the models trained
with selective attention, but without auxiliary feed-
back. We also collected the feature vectors of the
actual target objects. We then created confusion
matrices for the parts of the feature vector relat-
ing to the agent, to color, to size, and to shape
(shown in Figures 8 - 13). For color and size, we
distinguish between situations where the attribute
is mentioned in the command and those where it is
not.

no agent

actual target

agent

no agent agent
predicted target

Figure 8: Confusion matrix for the agent dimension

0.91 0.02
0.03 0.93

0.02 0.02

actual target
red green yellow

0.04 0.02

blue

yellow green  red blue
predicted target

Figure 9: Confusion matrix for the color dimensions
when color is specified in the command

0.82 [ 0.07

0.07 0.84

actual target
red green yellow

0.03 0.03

0.08 0.07

blue

yellow green red blue
predicted target

Figure 10: Confusion matrix for the color dimensions
when color is not specified in the command



actual target

size4 size3 size2 size1

size 1 size2 size3 size4
predicted target

Figure 11: Confusion matrix for the color dimensions
when size is specified in the command

actual target

size 4 size3 size2 size1

size1 size2 size3 size4
predicted target

Figure 12: Confusion matrix for the color dimensions
when size is not specified in the command

actual target
square

circle  cylinder

square  cylinder circle
predicted target

Figure 13: Confusion matrix for the shape dimensions
(always specified in the command)
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D.2 Ablated selective attention

We use a chi-squared test to compare the kind of tar-
get features that models tend to mis-identify when
they are trained with vs. without selective attention.
Figure 14 shows the test’s standardized residuals
for the model trained without selective attention,
i.e., the strength of the difference between observed
and expected values. Squares, the color yellow, and
small object sizes are especially over-represented
in the model’s incorrect target predictions.

yellow
circle

cylinder cylinder
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Y 7rY
W ¥

A _dh.db.d

wrong correct
prediction prediction

wrong correct
prediction prediction

(a) dev set (b) test set

Figure 14: Plots of the standardized residuals of a Chi-
square test comparing the wrong predictions of mod-
els trained with vs. without selective attention, on in-
distribution data. We ran this test both on the dev set
(14a) and the test set (14b) with similar results. Circle
color represents absolute value of the residuals. Red in-
dicates that a feature is over-represented, blue indicates
a feature is under-represented. Circle size represents
the number of occurrences in the tested set.



E

E.1 “Spike'" batches

To test if the batches used to update the model
before a spike in performance on split H had any
special properties, we trained a model with batch
size 256 without action attention for 50 epochs
and saved any batches that preceded at least a 5%
increase in exact match accuracy on a 2% subset
of split H. We then trained 10 additional models
(with the same random seeds as used in the batch
size experiments) and injected one of the “good"
batches during training with a chance of 10%. We
recorded the difference to the performance on the
split H dev set before the batch update. A com-
parison of the distributions of split H performance
differences after an update with “good" batch vs. a
normal batch yields a Z-statistic of 0.665, which is
not significant at the 0.05 level.

Injecting “good" batches also does not seem to
increase the overall likelihood of higher perfor-
mance on split H during training. We compared
the distributions of split H accuracies sampled after
each epoch for the models trained with and without
“good" batch injections in the course of training.
A two-sample Kolmogorov-Smirnov test yielded a
p-value of 0.413, which is well above the threshold
of 0.05 and indicates there is no difference between
the distributions. Finally, we compare the distribu-
tion of labels in the “good" batches vs. the normal
batches with a chi-squared test that yields a p-value
of 0.445 — again, indicating little to no difference
between the distributions.

‘“Spontaneous'' generalization

E.2 Effect of batch size

We trained 10 models without weight decay on a
2% subset of the training data with batch sizes 256,
512, 1024, 2048, and 4096. The number of epochs
was adjusted for each batch size so that all models
were trained for the same number of absolute up-
dates. For all batch sizes, the random initialization
of the ten models used the same random seeds. We
then sampled the models’ performance on split H
at 50 points in regular intervals during training and
compared Z-scores for the resulting distributions.
Results are given in Table 16
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Batch size 1 | Batch size 2 | Z-score
256 512 1.35
256 1024 1.03
256 2048 3
256 4096 4.09
512 256 -1.35
512 1024 -0.09
512 2048 2.33
512 4096 3.95
1024 256 -1.03
1024 512 0.09
1024 1024 1.68
1024 4096 2.74

2048 256 -3

2048 512 -2.33
2048 1024 -1.68
2048 4096 1.77
4096 256 -4.09
4096 512 -3.95
4096 1024 -2.74
4096 2048 -1.77

Table 16: Pairwise comparison of distributions of split
H performance sampled during training, for 5 differ-
ent batch sizes. Statistically significant scores (> |2|)
marked in bold.
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Abstract

There has been a lot of interest in under-
standing what information is captured by hid-
den representations of language models (LMs).
Typically, interpretation methods i) do not
guarantee that the model actually uses the in-
formation found to be encoded, and ii) do
not discover small subsets of neurons respon-
sible for a considered phenomenon. Inspired
by causal mediation analysis, we propose a
method that discovers a small subset of neu-
rons within a neural LM responsible for a
particular linguistic phenomenon, i.e., subsets
causing a change in the corresponding token
emission probabilities. We use a differentiable
relaxation to approximately search through the
combinatorial space. An L( regularization
term ensures that the search converges to dis-
crete and sparse solutions. We apply our
method to analyze subject-verb number agree-
ment and gender bias detection in LSTMs. We
observe that it is fast and finds better solu-
tions than alternatives such as REINFORCE
and Integrated Gradients. Our experiments
confirm that each of these phenomena is me-
diated through a small subset of neurons that
do not play any other discernible role.

1 Introduction

The success of language models (LMs) in many
natural language processing tasks is accompanied
by an increasing interest in interpreting and analyz-
ing such models. One goal in this direction is to
identify how a model employs its hidden represen-
tations to arrive at a prediction (Belinkov and Glass,
2019; Jacovi and Goldberg, 2020). A popular line

of research studies LMs with “diagnostic classifiers”

or “probes” that are trained to predict linguistics
properties from hidden units, with the purpose of
analyzing what information is encoded by the net-
work and where (Alain and Bengio, 2017; Adi et al.,
2017; Hupkes et al., 2018; Voita and Titov, 2020).

*Equal contributions.
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However, this method is sometimes criticized for
generating unfaithful interpretations (Barrett et al.,
2019) since the trained classifiers only measure the
correlation between a model’s representations and
an external property and not whether such property
is actually causing the model’s predictions. Indeed,
several studies pointed out limitations of probes
(Belinkov and Glass, 2019; Vanmassenhove et al.,
2017; Tamkin et al., 2020), including mismatches
between the performance of the probe and the orig-
inal model and the discrepancy between correlation
and causation of hidden units and model outputs.

In response to these limitations, several recent
studies have proposed to interpret neural models
with interventions which aim to measure causal ef-
fects by intervening in representations of the model
and observing a change in the model output (Giu-
lianelli et al., 2018; Elazar et al., 2021; Feder et al.,
2021). These techniques investigate directly if an
LM represents a certain linguistic phenomenon but
are limited when it comes to understanding where
and how this information is represented. There-
fore, an important question that they cannot an-
swer is to what extent modularity — often believed
to be a prerequisite for systematic generalization
(Goyal and Bengio, 2020; Dittadi et al., 2021) —is
a property that emerges naturally in such models.
An adaptation of causal mediation analysis (Pearl,
2001) by Lakretz et al. (2019); Vig et al. (2020);
Lakretz et al. (2021) makes an important step to-
wards enabling such investigations. They consider
neurons one by one by setting their activation to
zero and measuring their effect on the output. How-
ever, these techniques suffer from two major short-
comings: i) they are restricted to detecting single
neurons as systematically ablating combinations of
multiple neurons is computationally infeasible, and
ii) there is no guarantee that setting a unit activation
to zero corresponds to switching the corresponding
function on or off (Sturmfels et al., 2020).

Here, we use a differentiable relaxation of this

Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 16 - 27
December 8, 2022 ©2022 Association for Computational Linguistics
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search problem to overcome both these limitations.
More specifically, our goal is to identify neurons
responsible for shifting the probability from a word
to its alternative in examples exemplifying the phe-
nomena, without affecting other LM predictions.
For example, when investigating subject-verb num-
ber agreement, we want to redistribute the proba-
bility mass from the singular form of an upcoming
verb to the plural one (or vice versa), while dis-
couraging changes in the distributions for other
contexts. In this way, we ensure that the function is
mediated through the detected neurons, and these
neurons do not play any other discernible role.

Building on the framework of differentiable
masking (De Cao et al., 2020; Schlichtkrull et al.,
2021), we formalize this search for a sparse inter-
vention as a constrained optimization problem. We
aim to both detect the responsible neurons and learn
the values to assign them when intervening. We
use a continuous relaxation of the subset-selection
problem, but ensure discreteness and encourage
sparsity through L regularization. The L penalty
determines how many neurons we want to discover.
In our experiments, we use an LSTM-based LM,
previously investigated by (Gulordava et al., 2018;
Lakretz et al., 2019), and consider subject-verb
number agreement and gender bias detection. We
start with validating our method by showing that
we can replicate findings reported in these previous
studies and then dive into a deeper analysis. We
show that our proposed method is effective as well
as computationally efficient — it converges up to 7
times faster than REINFORCE (Williams, 1992)
and surpasses Integrated Gradients (Sundararajan
et al., 2017) in terms of accuracy/sparsity.

2 Related Work

The L regularization was proposed by Louizos
et al. (2018) in the context of pruning neural net-
work weights and biases. It has been used in a
variety of works in NLP as a tool for generating
rationales and attribution (Bastings et al., 2019;
De Cao et al., 2020; Schlichtkrull et al., 2021).
Masking weights and groups of weights was also
used by Csordés et al. (2021) to investigate the
functional modularity of neural networks.

Studies suggested that some of the linguistic phe-
nomena are encoded, at least to a large degree, in
a disentangled and sparse fashion. For example,
Radford et al. (2017) detected a neuron encoding
sentiment polarity and Dai et al. (2021) showed
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that individual facts learned by an LM can be ma-
nipulated by modifying a small number of neurons.
In a similar spirit, Voita et al. (2019) observed that
many Transformer attention heads in a neural ma-
chine translation model are specialized; interest-
ingly, they also used Ly regularization but only to
prune less important heads; the roles played by the
heads were identified by studying their attention
patterns. Our technique can facilitate such studies
by effectively identifying sets of neural network’s
subcomponents playing a given function.

Bau et al. (2019) use different kinds of corre-
lations between neurons from different models to
measure their importance. The authors find that
many individual neurons capture common linguis-
tic phenomena, also showing how to control trans-
lations in predictable ways by modifying their ac-
tivations. Similarly to Lakretz et al. (2021), the
work of Finlayson et al. (2021) instead focuses on
models’ preferences for grammatical inflections,
as well as whether neurons process subject-verb
agreement. The authors include causal mediation
analysis in their methodology.

Conversely, Antverg and Belinkov (2022) criti-
cize recently proposed methodologies for analyz-
ing individual neurons in LMs. In particular, they
discuss methods that rely on an external probe to
rank neurons according to their relevance to some
linguistic attribute. They indicate two main pitfalls:
1) these methodologies confound probe quality and
ranking quality, and 2) they focus on encoded in-
formation rather than information that the model
uses. Their analysis does not apply to ours since
we do not use probes explicit.

Finally, we refer the reader to Sajjad et al. (2021)
for a recent survey of neuron-level interpretation of
NLP models, which includes methods to discover
neurons, evaluation methods, significant findings
and future research directions.

3 Method

We investigate if we can find groups of neurons for
which a modification of their value — which we call
an intervention — systematically leads to a change
of probability for the single token emission related
to a specific phenomenon. Because there is no di-
rect supervision for interventions, we need to learn
them with a proxy objective. Let’s assume we have
an autoregressive model (e.g., an LSTM; Hochre-
iter and Schmidhuber 1997) that assigns a prob-
ability to sequences. For a set of input tokens



x = (x1,...,x,), We obtain the model’s proba-
bility of the token of interest p(x,,|z<y,) along with
the hidden states b = (hy, ..., h,) where h; € R”
(one for each time step). We then intervene in
the model’s computation by modifying a group of
neurons from one or multiple hidden states. The
intervention at a certain time step ¢ < n consists
of a binary mask m € {0, 1}* indicating which
hidden units need intervention and which can be
left unchanged. The intervention is then made sub-
stituting the ¢th hidden state with the altered state

hi=(1—=m)Ohi+mob, (1)

where © indicates the element-wise product and
b € RF is a learned baseline vector that will lead
the desired intervention. We denote p(ay,|Z<n, h;)
as the model’s probability of the target token when
its forward pass has been altered using hi.

In addition, as the main objective of this work,
we are looking for sparse interventions, which we
define as finding a defined small percentage (e.g.,
1-5%) of neurons where to apply an intervention to
while keeping all the rest untouched.

3.1 Learning to Intervene
Because there is no direct supervision to estimate
the mask m and the baseline b, we minimize
p(xn = d|1’<n> hz)

~ )
p<xn = t’$<n7 hz)

Latio (hi7 -T) =

2

where we want to identify neurons responsible for
a change in probability between a predicted word d
and a target word ¢ (e.g., a singular and plural verb
form—where, independently from which form is
correct, d is the form that the model assigns the
highest probability to, and ¢ to the other). In other
words, we optimize to assign more probability mass
to the token ¢ rather than d. In addition, we desire
interventions to be as sparse as possible, because
we want to identify the least number of neurons
responsible for the decision. Such sparsity corre-
sponds to constraining most of the entries of m to
be 0, which corresponds to not interfering. We cast
this in the language of constrained optimization.

A practical way to express the sparsity constraint
is through the Ly ‘norm’. Our constraint is defined
as the total number of neurons we intervene on:

k
Co(m) = Z 1[R;£0] (mz) . (3)
i=1
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The whole optimization problem is then:

%1})1 ZDﬁratio(iLia .%') s.t. CO(m) <a,
Te

“

where D is a dataset and the margin « € (0, 1]
is a hyperparameter that controls the desired spar-
sity (i.e., the lower «, the sparser the solution will
be). Since non-linear constrained optimization is
generally intractable, we employ Lagrangian relax-
ation (Boyd et al., 2004) optimizing

Z Lraiio(hi) + MCo(mi) — @) , (5)
z€D

max min
mg;,b

where A € R is the Lagrangian multiplier. Since
we use binary masks, our loss is discontinuous and
non-differentiable. A default option would be to
use REINFORCE (Williams, 1992), but it is known
to have a noisy gradient and thus slow convergence.
To overcome both problems, we resort to a sparse
relaxation to binary variables, namely using a Hard
Concrete distribution (Louizos et al., 2018) (see
Section 3.5 for more details).

3.2 Stochastic relaxation of the Mask

Our optimization problem poses two difficulties: 1)
Cy is discontinuous and has zero derivative almost
everywhere, and ii) the altered state fzi is discon-
tinuous w.r.t. the binary mask m. A simple way
to overcome both issues is to treat the binary mask
as stochastic and optimize the objective in expecta-
tion. In that case, one natural option is to resort to
score function estimation (REINFORCE; Williams,
1992) while another is to use a sparse relaxation
to binary variables (Louizos et al., 2018; Bastings
et al., 2019; De Cao et al., 2020; Schlichtkrull et al.,
2021). In Section 4 we discuss the two aforemen-
tioned options showing that the latter is much more
effective (results in Table 6). Thus we opt to use
the Hard Concrete distribution, a mixed discrete-
continuous distribution on the closed interval [0, 1].
This distribution assigns a non-zero probability to
exactly zero and one while it also admits contin-
uous outcomes in the unit interval via the repa-
rameterization trick (Kingma and Welling, 2014).
We refer to Louizos et al. (2018) for details, but
also provide a brief summary in Section 3.5. With
a stochastic mask, the objective is computed in
expectation, which addresses both sources of non-
differentiability:

k

=1

Co(m) (6)



Note that during training the mask is sampled and
its values lies in the closed unit interval. After
training, we set the mask entries to exact ones when
their expected values are > 0.5 or to zero otherwise.
To prevent issues due to the discrepancy between
the values of the mask during training and during
inference, we add another constraint

k
Cony = _E[m; € (0,1)], 7
=1

to be < 8. C(p,1) during training constrains the
relaxed mask values not to lie in the open interval
(0, 1) but rather to concentrate in {0, 1}. 8 € (0, 1]
is a hyperparameter (the lower the less discrepancy
is expected).

3.3 Single-step and Every-step intervention

We described how we apply an intervention at a cer-
tain time step ¢ <n as an intervention that directly
modifies h;. We refer to this type as a single-step in-
tervention. The choice of the time step to intervene
should be carefully set to investigate a particular
phenomenon in the LM, and is task dependent; e.g.,
to explore subject-verb agreement, a reasonable
choice is to do the intervention at the hidden state
of the subject. As an extension, we also define
an every-step intervention when instead of altering
only h; we modify all Ay, ..., h,_1 with the same
m and b (similar to Lakretz et al. 2019). The two
types of intervention investigate different proper-
ties of an LM; we experiment with both variants.

3.4 Retaining other predictions

We train interventions to modify the model’s pre-
diction at a specific token position. However, there
is little guarantee that all the other token positions
will have the same output distribution as without
the interventions. This is important as, when in-
vestigating modularity, we would like to ensure
not only that a group of neurons plays a distinct
interpretable role but also that they do not fulfil
any other discernable role. For this reason, we
employ a regularization term in addition to the con-
strained objective. This corresponds to minimizing
a Kullback—Leibler divergence between the output
distributions of the original model and the one from
the model with interventions. The regularization
term is a KL divergence between the output distri-
butions of the original model po and the one from
the model with interventions py averaged at every
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token position: Lx =

T

1

72 Dt (o) || pr(aile<r)) ()
t=1

We sum L, to Equation 5 multiplied by a factor.
This factor is a hyperparameter that controls the
amount of regularization to apply, and we empir-
ically found that 1.0 is a good value. In practice,
as we will discuss in Section 5, the regularization
term does not play an important role.

3.5 The Hard Concrete distribution

The Hard Concrete distribution, assigns density
to continuous outcomes in the open interval (0, 1)
and non-zero mass to exactly 0 and exactly 1. A
particularly appealing property of this distribution
is that sampling can be done via a differentiable
reparameterization (Rezende et al., 2014; Kingma
and Welling, 2014). In this way, the Cy constrain
in Equation 3 becomes an expectation (Equation 6)
whose gradient can be estimated via Monte Carlo
sampling without the need for REINFORCE and
without introducing biases. We did modify the
original Hard Concrete, though only so slightly, in
a way that it gives support to samples in the half-
open interval [0, 1), that is, with non-zero mass
only at 0. That is because we need only distinguish
0 from non-zero, and the value 1 is not particularly
important.!

The distribution A stretched and rectified Bi-
nary Concrete (also known as Hard Concrete) dis-
tribution is obtained applying an affine transforma-
tion to the Binary Concrete distribution (Maddison
et al., 2017; Jang et al., 2017) and rectifying its
samples in the interval [0, 1]. A Binary Concrete
is defined over the open interval (0,1) and it is
parameterised by a location parameter v € R and
temperature parameter 7 € R+ . The location acts
as a logit and it controls the probability mass skew-
ing the distribution towards 0 in case of negative
location and towards 1 in case of positive location.
The temperature parameter controls the concentra-
tion of the distribution. The Binary Concrete is then
stretched with an affine transformation extending
its support to (I,7) with { < 0 and » > 1. Finally,
we obtain a Hard Concrete distribution rectifying
samples in the interval [0, 1]. This corresponds to

'Only a true 0 is guaranteed to completely mask an input
out, while any non-zero value, however small, may leak some
amount of information.



collapsing the probability mass over the interval
(1,0] to 0, and the mass over the interval [1,7) to 1.
This induces a distribution over the close interval
[0, 1] with non-zero mass at 0 and 1. Samples are
obtained using

s=o((logu —log(l —u)+~)/7), ©
z=min (1,max (0,s-({ —7)+71)) ,
where o is the Sigmoid function o(x) = (1 +

e ®)~Yand u ~ U(0,1). We point to the Ap-
pendix B of Louizos et al. (2018) for more informa-
tion about the density of the resulting distribution
and its cumulative density function.

4 Experimental Setting

We study the pre-trained LSTM language model
made available by Gulordava et al. (2018)?, which
has been studied extensively in previous works and
therefore provides a good testing ground for our
method. The studied model is a standard two-
layered LSTM with a hidden dimension of 650.
The embedding layer also has dimensionality 650,
and it is not tied with the output layer. The vo-
cabulary size is 50, 000 and the model was trained
on English Wikipedia data (with around 80M to-
kens training tokens and 10M for validation). We
used this model to compare to previous findings
of Lakretz et al. (2019). We also pre-train this LM
several times with different weights initializations
to make sure our results generalize.

We study the original model, as well as newly
trained models with the same architecture, on two
tasks described below: subject-verb number agree-
ment and gender bias. The evaluation for tasks
naturally follows the defined objective Lrao (hi, )
(see § 3.1). Without intervention, the ratio is al-
ways > 1. Thus, we define a successful interven-
tion when we find a mask and baseline values such
that the ratio becomes < 1. Then, we define the
accuracy of interventions as the average number of
times that the ratio is < 1 across all datapoints in a
given dataset/task. The accuracy thus reflects how
often we can flip the model’s decision.

Subject-verb number agreement Here, we
seek the neurons responsible for predicting the
number of verb forms: for a given sentence, we
wish the intervention to change the number of the
verb from singular to plural or vice versa. For this

https://github.com/facebookresearch/
colorlessgreenRNNs
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task, we employ data made available by Lakretz
et al. (2019)3. The data are synthetic and gener-
ated with a modified version from Linzen et al.
(2016) and Gulordava et al. (2018). Each synthetic
number-agreement instance has a fixed syntax and
varied lexical material. Sentences were randomly
sampled by choosing words from pools of 20 sub-
ject/object nouns, 15 verbs, 10 adverbs, 5 preposi-
tions, 10 proper nouns and 10 location nouns. We
used a total of 11,000 training sentences and 1,000
evaluation sentences. We apply the single-step in-
tervention to the subject of the (only) verb. We
apply two intervention here (i.e., two sets of mask
and baseline values): one where we train the model
to turn the verb into the singular form and one into
the plural one.

Gender bias detection In this task, we seek the
neurons responsible for setting pronoun genders:
for a given sentence, we wish the intervention to
change the pronoun that refers to a person with
a profession and an unspecified gender. For this
task, we employ data made available by Vig et al.
(2020)*. The data are synthetic and generated with
a list of templates from Lu et al. (2020) and sev-
eral other templates, instantiated with professions
from Bolukbasi et al. (2016) (17 templates and 169
professions, resulting in 2,873 examples in total).
We refer to Vig et al. (2020) for the full lists of
templates and professions. The templates have the
form “The [occupation] [verb] because [he/she]”.
Professions are definitionally gender-neutral. We
used a total of 2,673 training sentences and 200
evaluation sentences. Also for his task, we apply
the single-step intervention to the subject of the
sentence, using different interventions for flipping
the pronoun to “he” and to “she”.

5 Results

For the single-step intervention (with regulariza-
tion), our method achieves 91.5 and 93.9 accura-
cies for the number agreement and gender bias
tasks, respectively. On average, our method finds
5.7 and 5.3 units for the two tasks, respectively.
Considering that the LM has 1,300 hidden units,
this intervention is relatively sparse as desired (we
use < 0.41% of the total units). In Figure 1 and 2,
we show examples of hidden state activations with

*https://github.com/FAIRNS/Number_and_
syntax_units_in_LSTM_LMs

*nttps://github.com/sebastianGehrmann/
CausalMediationAnalysis
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Figure 1: Activations of four units we intervene on

(single step intervention at “kid”) for changing number
agreement (at “avoids”).
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Figure 2: Activations of four units we intervene on (sin-
gle step intervention at “ranger”) for changing the pro-
noun (after “because”).

and without interventions for both tasks (see Ap-
pendix A for additional examples). From these
figures, we can see that only one time-step is heav-
ily affected (the one of the intervention) while the
others are minimally corrupted after that time step.
We hypothesize that the model stores the informa-
tion of number or gender in other units (or in cell
states), but the discovered units are the ones re-
sponsible for the initialization of such memory. In
Table 1 and 2, we report the full list of discovered
units and the learned baseline vectors for both tasks
on the single-step intervention.

For the every-step intervention, our method
achieved an almost perfect accuracy of 95.8 and
99.9 for the number agreement and gender bias
tasks, respectively, while using 3 units or less on
average for both tasks. This type of intervention is
much more effective and more intrusive—the num-
ber of changes is larger as it happens at every step).
In Table 3 we report the full list of discovered units
and the learned baseline vectors, comparing to the
one discovered by Lakretz et al. (2019) (every-step

Unit Singular Plural Prevalence
79  -0.96 +0.02  0.99 1o0.01 100%
93  0.95 4003 -0.84 +o.09 100%
243 091 006  0.18 xo0.15 20%
357 -0.99 1001 0.87 xo0.03 40%
498  0.98 +001  -0.96 +o.03 100%
571 -0.99 +0.01  0.93 10.06 80%
630 0.95 003  0.11 o0.26 100%
776 -0.81 005  0.96 +0.01 20%
988  1.00 +0.00 -0.99 +0.00 10%
Table 1: Subject-verb number agreement task with
single-step interventions. Values are averages across
10 runs.

Unit He She Prevalence
193 -0.99 1000 0.91 z0.01 100%
208  0.99 +0.00 -0.96 +o0.01 100%
288  -0.99 1000 -0.47 +o0.14 100%
455 -0.99 000 0.10 +o.01 20%
456 0.99 1000 -0.98 +0.00 100%
513 098 +0.00 -0.74 +o0.00 10%
563  -0.99 +0.00  0.96 +o0.01 100%

21

Table 2: Gender bias task with single-step interven-
tions. Values are averages across 10 runs.

intervention). Noticeably, we re-discover unit 776
which validates our method and confirm their find-
ings. Interestingly, we also discover an extra unit
on average, highlighting that one of the limitations
of Lakretz et al. (2019) was indeed an efficient way
to search units. For a summary of all results see
Table 4, and for the discovered units and baseline
on the gender task see Table 5.

Efficiency To demonstrate the efficiency and
efficacy of our estimation employing the Hard
Concrete distribution, we compare to the stan-
dard Score Function Estimation (aka REIN-
FORCE; Williams 1992) with a moving average
baseline for variance reduction (Botev and Ridder,
2017) and trying different values of « to achieve
a good trade-off between accuracy and number of
units used. We also compare to Integrated Gradi-
ents (Sundararajan et al., 2017) where we intervene
on the top-k influential neurons by setting them
to zero. In Table 6, we summarize the results for
the single-step intervention. REINFORCE takes at
least 7 times more time to converge, and it always
converges at using more units than our method with



Unit  Singular Plural Prevalence Found by Lakretz et al. (2019)
79 -0.76 o023 0.99 +o.003 100% X
776 -0.99 +0.002  0.99 +0.002 100% v

Table 3: Subject-verb number agreement task with every-step interventions. Values are averages across 10 runs.
“Found” indicates how many times our model decides to apply the intervention on a specific unit across runs.

Accuracy  Units KL

Number agreement

Single 909 +1.2 5.7 z05  0.034 +o0.034
SingleR 91.5 xo7 5.7 0.9 0.035 x0.006
Every 96.8 +o.6 2.0 0.0 0.131 +0.003
EveryR 958 104 2.0 100 0.084 +0.002
Gender bias
Single 93.1 a6 5.4 +11 0.009 +o.001
SingleR 93.9 137 5.3 o5 0.009 xo0.001
Every 98.3 25 3.4 tos5 0.176 xo.022
EveryR 999 103 3.0 200 0.117 +0.004

Table 4: Summary of results for both the number agree-
ment and gender bias settings (average across 3 run
for each setting). R indicates KL regularization. Sin-
gle/ Every indicates single-step and every-step interven-
tions respectively.

Unit He She Prevalence
288 -0.98 +0.00 0.53 +o0.05 100%
456 098 t0.00 -0.98 +o.01 100%

1184 -0.98 +0.00  0.99 +0.00 100%

Table 5: Gender bias task with every-step interventions.
Values are averages across 10 runs.

lower accuracy. Note that doing an exact search for
this problem has a time complexity of O(2¥) where
k is the number of neurons—this would amount to
> 10'2 evaluations only for checking combinations
up to 4 neurons.

Robustness To demonstrate that our method is
robust, we tested it on 5 language models initial-
ized with different seeds and trained with the origi-
nal script by Gulordava et al. (2018). We run our
method for the single-step intervention 3 times for
each language model. The average accuracy at con-
vergence is 88.7 & 2.6, and we discover 4.7 + 0.5
units on average. The variability in both accuracy
and number of units is very low, indicating that our
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Acc. (1) Units (}) Speed ()
SFE (a0 = 0.05) 100.0 20.0 5.2h
SFE (a = 0.02) 87.6 6.0 3.6h
IG (o = 0.005) 22.5 7.0 -
IG (a = 0.01) 28.1 13.0 -
IG (e = 0.02) 31.5 26.0 -
Ours (o = 0.02) 91.5 5.7 0.5h

Table 6: Comparison between the solutions found by
Score Function Estimation (SFE aka REINFORCE), In-
tegrated Gradients (IG; Sundararajan et al., 2017), and
our system (average across 10 runs on a single GPU de-
vice). Ours is much faster and finds a sparser solution
with better accuracy.

method is robust to different parameterizations of
the model we applied it to.

Effect of Regularization We ablated the KL reg-
ularization to see whether it affects learning and
the final convergence of our method. On the num-
ber agreement task, we found that the average
KL divergence with respect to the original model
predictions was 0.035/0.084 with regularization
and 0.034/0.131 without regularization (for single-
step and every-step intervention, respectively). We
used different regularization coefficients (i.e., dif-
ferent weights), but we did not observe a substantial
change in the convergence of our models. More-
over, the accuracy and the number of units found
with regularization was almost the same as without
regularization (see Table 4 for all results). This lack
of effect of the regularization suggests the studied
phenomenon is naturally captured by specialized
neurons. In the gender bias task, regularization has
a similar and negligible impact. The regularized
method converges to finding fewer units on average
and with worse accuracy (95.8 as opposed to 98.6)
in the single-step intervention. In the every-step
intervention, the accuracy stays invariant (for both
settings is 100) while the model converges to using
more units.



6 Conclusions

In this work, we present a new method that employs
constraint optimization to efficiently find hidden
units that are responsible for particular language
phenomena of language models. We use an Lg reg-
ularization to find a sparse solution—., our method-
ology discovers few units in the order of 2-6 that is
< 0.41% of all units in the studied LM. We show
such sparse solutions can be found for multiple phe-
nomena (number and gender agreement) and is an
useful tool for analysis of what a LM has learned
and how units influence its token emissions. Al-
though this work focuses on LSTM models, the pro-
posed technique is not architecture-dependent and
thus easily applicable to transformers, convolution-
based models and many others.
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A Additional results
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Figure 3: Subject-verb number agreement: activations of four units we intervene on (single step intervention at the
second token from the left) for changing number agreement (at the last token).
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Figure 4: Gender bias: activations of four units we intervene on (single step intervention at the second token from
the left) for changing the pronoun (after “because” or “that”).
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Abstract

Observing that for certain NLP tasks, such as
semantic role prediction or thematic fit estima-
tion, random embeddings perform as well as
pretrained embeddings, we explore what set-
tings allow for this and examine where most
of the learning is encoded: the word embed-
dings, the semantic role embeddings, or “the
network”. We find nuanced answers, depend-
ing on the task and its relation to the training
objective. We examine these representation
learning aspects in multi-task learning, where
role prediction and role-filling are supervised
tasks, while several thematic fit tasks are out-
side the models’ direct supervision. We ob-
serve a non-monotonous relation between some
tasks’ quality score and the training data size.
In order to better understand this observation,
we analyze these results using easier, per-verb
versions of these tasks.

1 Introduction

We examine to what extent models trained on a
simplified semantic role labeling (SRL) task can
estimate thematic fit (aka semantic fit), as the train-
ing set size grows — and where most of the learning
is stored: in the word embeddings, the thematic
role embeddings, or elsewhere in the neural net.

A major goal of natural language processing
(NLP) is to understand the semantics of language.
One traditional NLP task around this is SRL, which
labels word spans in a sentence with thematic roles.
Consider the sentence “I cut the cake with a knife”.
We can interpret ‘cut’ as the action, ‘I’ as the
Agent (the performer of the action), ‘cake’ as
the Theme of the action (the thing that underwent
the action), and ‘knife’ as the Instrument of

*These authors contributed equally to this work
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the action. These words, labeled with roles such as
Agent, Theme, and Inst rument, would be our
representation of the event that the sentence con-
veys. Other sentences with similar meanings, e.g.,
“the cake was cut with the knife by me”, should
have the same (or very similar) event representa-
tions. In this work, we focus on model training
with a simplified version of SRL: each event is
represented only by the lemmatized syntactic head
of each event argument (including the predicate),
and the semantic roles are the simplified PropBank
roles (Arg0, Argl, etc.). The reason for this is
the current limitations of available evaluation sets
for thematic fit: they are all comprised of lemma-
tized syntactic argument heads as well.

Thematic fit is related to SRL. This task aims
to identify how well a given word or concept fits
into a role of an event. In our example sentence,
consider these potential replacements for ‘knife’:
scissors, fork, and brick. As humans, we under-
stand that while ‘knife’ is the most typical object
for this situation, both ‘scissors’ and ‘fork’ could
also fit, even if not as naturally. This is because
we have the general intuition that all three objects
are plausible instruments for cutting. More so, we
know that ‘brick’ is unlikely to fit given the con-
text of cutting a cake. Since thematic fit datasets
are scarce, one challenge in computational linguis-
tics (and computational psycholinguistics) revolves
around how machine learning models can learn the-
matic fit indirectly — perhaps from SRL training.
To the best of our knowledge, the state-of-art in
this line of work is the residual role-filler averag-
ing model (ResRoFA-MT) proposed by Hong et al.
(2018), with an adjusted embeddings representa-
tion and training data annotation in Marton and
Sayeed (2022).
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It has been repeatedly observed that in some set-
tings, random word embeddings perform as well
as pretrained ones, or very nearly, including in
our baselines (Tilk et al., 2016; Hong et al., 2018;
Marton and Sayeed, 2022). In this paper, we de-
sign experiments to answer the following questions:
Q1. Why is this so in our compositional semantics
and psycholinguistic tasks? Q2. For such seman-
tic tasks and architecture, where is the learning
encoded? Is it in the word embeddings, role em-
beddings, or elsewhere in the neural network? Q3.
Training set size effect: is more data better for this
indirect setting and tasks?

In this work, 1. We compare updating the word
embeddings during training to freezing them. 2. We
modify the ResRoFA-MT model architecture in
various ways to understand what contributes the
most to the learning: the pretrained (or random)
word embeddings, the thematic role embeddings,
or the rest of the network. 3. In order to be able
to train on larger data, we optimized the code of
Hong et al. (2018) and Marton and Sayeed (2022).
We release our optimized codebase”, which trains 6
times faster and includes ablation architectures and
a correction to the training data preparation step.

2 Related Work

In event representation models, the main goal is to
predict the appropriate word in a sentence given
both the role of that word and the surrounding con-
text in the form of word-role pairs. One of the best
early neural models was the non-incremental role-
filler model (NNRF), by Tilk et al. (2016). This
model was based on selectional preferences, or a
probability distribution over the candidate words.
However, one drawback of this model is that repre-
sentations of two similarly-worded sentences differ-
ing hugely in meaning would closely resemble each
other, e.g., “kid watches TV” and “TV watches
kid”. Another drawback is that the embeddings of
the word-role pairs are summed together to repre-
sent the sentence, and so the resulting event repre-
sentation vector does not weight the input vectors
differently based on their importance and is not nor-
malized for varying numbers of roles in a sample.
Hong et al. (2018) extend this model in three
ways: First, in addition to the word prediction task
of NNREF, the task of role prediction given the cor-
responding word is added, and the two tasks are

"https://github.com/MughilM/
RW-Eng-v3-src/tree/arxiv_release
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trained simultaneously (multi-task learning). This
model is known as the non-incremental role-filler
multitask model (NNRF-MT). Second, they ap-
ply the parametric rectified linear unit (PReLU)
non-linear function to each word-role embedding,
which acts as weights on the composition of em-
beddings, and subsequently average the embed-
dings, which normalizes for variable length in-
puts. This model is called the role-filler averaging
model (RoFA-MT). Third, in an effort to tackle the
vanishing gradient problem, residual connections
between the PReLLU output and the averaging input
were added together. This third iteration is known
as the ResRoFA-MT model. They showed that it
performs the best on our thematic fit tasks, and so
we use it as our baseline.

Our work differs from Hong et al. (2018) and
Marton and Sayeed (2022) in that while they fo-
cused more on state-of-the-art performance through
new modeling and annotation methods, we aim
to understand what controls the learning in such
networks. Also, although Hong et al. confirm in
private communication that they found pre-trained
and random embeddings performance similar in
preliminary studies, none of the surveyed previous
work published experiments with pre-trained em-
beddings. We are the first to do so (using GloVe)
and compare that to using random embeddings.

Previous work suggests a difference between
"count" and "predict" models, where "count" mod-
els represent lexical semantics in terms of raw or
adjusted unsupervised frequencies of correlations
between words (such as Local Mutual Information;
Baroni and Lenci, 2010) and syntactic or semantic
phenomena; "predict” models involve supervised
training to achieve their representations, e.g., neu-
ral models. Baroni et al. (2014) do a systematic
exploration of tasks vs. state-of-the-art count and
predict models and find that predict models are
overall superior; for thematic fit, predict models
are the same or better than count models on the
best unsupervised setup for the task, although they
are easily beaten by third-party baselines based on
supervised learning over count models. More re-
cently, Lenci et al. (2022) demonstrate that predict-
models are not reliably superior to count-models,
but depend on the task and the way the models are
trained. They also show that even recent contextual
models (e.g., BERT) are not necessarily better for
out-of-context tasks than well-tuned static represen-
tations, predict or otherwise. See Appendix A for
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details on why we do not use BERT in this work.

3 Datasets

We use the Rollenwechsel-English, Version 2 (RW-
Eng v2) corpus (Marton and Sayeed, 2022) as the
training set for all our experiments. This corpus is
sentence-segmented, annotated with morphological
analyses, syntactic parses, and syntax-independent
PropBank-based semantic role labeling (SRL). The
syntactic head word of each semantic argument is
determined by using several heuristics to match
the parses to the semantic argument spans. Note
that a sentence may have multiple predicates (typi-
cally verbs) and therefore multiple semantic frames
(sometimes called “events”), each with its own se-
mantic arguments, whose span may overlap the
argument span of other frames in the sentence.

The first version of this corpus contained NLTK
lemmas, MaltParser parses, parts-of-speech (POS)
tags, and SENNA SRL tags (Bird, 2006; Nivre
et al., 2006; Collobert and Weston, 2007). The sec-
ond version added layers from more modern tag-
gers: Morfette lemmas, spaCy syntactic parses and
POS tags, and LSGN SRL tags (Chrupala, 2011;
Honnibal and Johnson, 2015; He et al., 2018). In
our experiments here we use the lemmas of the
semantic arguments’ head words in v2.

The sentences themselves are taken from both
the ukWaC (Ferraresi et al., 2008) and the British
National Corpus (BNC). This corpus contains
78M sentences across 2.3M documents. This in-
cludes 210M verbal predicates with 700M associ-
ated role-fillers. We use the same training, valida-
tion, and test split as Hong et al. (2018). That is, we
have 99.2% ( 201.5M samples) in the full training
set, 0.4% in validation, and 0.4% in testing. We
run our training experiments on different subsets of
the training data, ranging from 0.1% up to the full
dataset. We cap our vocabulary size at the 50,000
most common words in that specific subset.

We used the following psycholinguistic test sets:

Padé (Padé etal., 2006) 414 verb-argument pairs
and the associated judgement scores. These were
constructed from 18 verbs that are present in both
FrameNet and PropBank. For each verb, the three
most frequent subjects and objects from each of
the underlying corpora were selected. This pro-
cess yielded six arguments per verb per corpus,
with some overlap between corpora. For each verb-
argument pair, a judgement was collected online
with an average of 21 ratings per item for the ar-
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gument in subject and object role. The rating was
collected on a Likert scale of 1-7 with the ques-
tion "How common is it for [subject] to [verb]?" or
"How common is it for [object] to be [verbed]?"

McRae (McRae et al., 1998) 1444 pairs of verb-
argument pairs in a similar format to Padé. These
were created using a similar rating question as the
Padé dataset, but is a compilation of ratings col-
lected over several studies with considerable over-
lap and heterogeneous selection criteria.

Ferretti-Instruments and Ferretti-Locations
(Ferretti et al., 2001) 274 predicate-location pairs
and 248 predicate-instrument pairs. Based on the
McRae dataset (Psychological norms).

GDS (Greenberg et al.,, 2015) 720 predicate-
object pairs and their ratings. Only objects (no
subjects), matched for high and low polysemy and
frequency, well fitting vs. poorly fitting. Greenberg
and McRae overlap by about a third, but the human
scores are obtained from new surveys.

Bicknell (Bicknell et al., 2010) 64 cases. Congru-
ent vs incongruent Patient in an Agent-Verb-
Patient paradigm. Hand crafted, not corpus-
based, designed for event-related potentials-based
neurolinguistic experiments.

4 Modeling and Methodology

In this setup, an input event is represented as
role-word pairs, where the role is one of the
following PropBank (Palmer et al., 2005) roles:
Arg0O, Argl, ArgM-Mnr, ArgM-Loc,
ArgM-Tmp, and the predicate. The word is the
argument’s syntactic head’s lemma. Both the role
and the head word are taken from RW-Eng v2."
We train a feed-forward network in a multi-task
learning setting to optimize word and role predic-
tion accuracy. For target word prediction we give
the prediction layer the target role and a context
vector formed as a multiplication of the input word—
role pairs. Similarly, for target role prediction we
feed the same context vector along with the tar-
get word, following the ResRoFA-MT architecture
(Hong et al., 2018) (Figure 1a). Since the network
initialization is random, we perform 5 runs of each
experiment and report the mean with a 95% con-
fidence interval. Following Hong et al. (2018);
Marton and Sayeed (2022), we test each model

“Note the input is not a full sentence, precluding the use of
contextual models such as BERT. See Appendices for details.



on the psycholinguistic datasets (Section 3), for
which the models were not directly optimized. The
idea behind using the latter test battery is that the
model, even though trained on (simplified) SRL
and word prediction (aka role-filling) tasks, is ex-
pected to be able to make indirect generalizations
about predicate—argument fit level from the training
data and the related objectives. These psycholin-
guistic tasks are evaluated with Spearman’s rank
correlation between the sorted human scores and
the sorted model scores, except for Bicknell, for
which we take accuracy of predicting which argu-
ment in each Patient role-filler pair is (more)
congruent (Lenci, 2011).

All prior work with the ResRoFA-MT model
uses two random word embedding sets (one for in-
put words and one for the target word) and similarly
two role embedding sets. See Figure 1a.

Our implementation differs in these key aspects:

* Modified model architecture - Using a sin-
gle word embeddings set, shared between the
target and input words, and similarly a sin-
gle role embeddings set (Section 5.1, Fig-
ure 1b). In our experiments, we find the
non-shared, redundant embedding layers do
not affect the performance while adding (vo-
cab size 50,000 x word embedding size 300)
15,000,000 learnable parameters in the model.
Changes in Batching - With previous imple-
mentations, one epoch only resulted in about
a third of the data being traversed. The next
epoch would start on the second third and so
on. Now, we set the data preprocessing so that
one epoch is one pass through all the training
data. Additionally, the data is preprocessed
during the training of each batch, so no time
is lost during training in waiting for the next
batch of data to be preprocessed.

Missing and unknown words handling - Fol-
lowing Marton and Sayeed (2022) but un-
like Hong et al. (2018), we represent out-
of-vocabulary (OOV) words separately from
missing words (empty slots in an event).
Architectural ablation experiments - these
are described in Section 5, for ease of read-
ability.

5 Experiments and Discussion

5.1 Shared Embedding Layer

We modify the network to use a single embeddings
set shared between the input words and target word,
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by using a single index-to-embedding mapping
layer — and similarly a shared embedding-mapping
layer for the input roles and target role (Figure 1b).
This change results in 2x the training speed (Sec-
tion 4) without degradation in performance: role
accuracy remains at 96.6-96.7%, word accuracy at
13.6-13.7%, Pad6 at 52-54%, McRae at 32-33%,
and so on (see first two rows in Tables 1 and 2).
Therefore we use the faster shared architecture for
the rest of the experiments. We train all models
(until Section 5.5) on a uniformly sampled 1% sub-
set, which is large enough to get indicative results
while saving time and cost in experimentation. For
comparison of our results to previous work, see
Section 5.5.

5.2 Random vs. Pre-trained Embeddings

Hong et al. (2018) used random Glorot uniform to
initialize the word embeddings. Private commu-
nication with the authors confirmed random em-
beddings do as well as pretrained ones for these
tasks. We replicate this finding, comparing random
word embeddings to pretrained GloVe embeddings
(Pennington et al., 2014), both of size 300: role ac-
curacy at 96.7%, word accuracy at 13.7%, Padé at
52.8-53.2%, McRae at 32.8-33.8%. Similar trend
follows across all the thematic fit task results with
overlapping 95% confidence intervals of the experi-
ments with random and GloVe embeddings (rows 2
and 3 in the top part of Tables 1 and 2).

(Q1) Why is this so? We note that during train-
ing, embeddings get updated. To check if this up-
date is responsible for bridging the gap between
zero knowledge (random embeddings) and much
knowledge (compressed in the pre-trained GloVe),
we freeze the word embedding layer and rerun the
experiments (see the middle part in the same two
tables). Contrary to our previous experiment, we
find fixed GloVe embeddings do much better than
fixed random embeddings on all our tasks. We also
see tuning helps the model converge much faster
(from 25 epochs down to 11-15).

We conclude that indeed much of the learning
is captured in the word embeddings. Tuning them
even on only 1% of our training data bridges the
knowledge gap from the pre-trained embeddings
almost completely (with possible exceptions on Fer-
retti and Bicknell). But we note that although lower,
the fixed embeddings results are not near-random.
This leads us to (Q2) Where else is learning done,
and to what extent?
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Figure 1: The model architectures for our experiments

5.3 Role Contribution

We now turn to role ablation tests. First we take
away the input roles from the context embeddings
and call this the no-input-roles network NIR (see
Figure 1c and the third part of Tables 1 and 2). We
do not see large drops in word prediction (from
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14.7% to 13.5%), or thematic fit tasks such as
Pado (from 53.2% to 50.2%) and McRae (32.1%
to 32.8%), except role prediction (from 96.7% to
90.4%), which we expect by construction. Note
that when predicting the target word, the NIR
network still receives the target role information,



Embedding Shared? | Tuned? | Role? | Role Accuracy | Word Accuracy | Epochs”
Random N Y Y 9655 +.0014 | .1363 +.0020 | 11(6)
Random Y Y Y 9671 4+.0003 | .13724.0022 | 11(6)

GloVe Y Y Y .9669 +.0003 | .1374 +.0005 | 15(10)
Random Y N Y .6609 £ .0046 | .1208 +.0012 | 25(20)
GloVe Y N Y 9510 £.0011 | .1291 +.0006 | 25(20)
GloVe Y Y NIR" | .9036 & .0013 | .1348 £.0019 | 11(6)
GloVe Y Y NTRT| .9677 4.0006 | .1230+.0017 | 12(7)
GloVe Y Y NR' | .9007 4 .0021 | .1078 & .0010 8(3)
RAND Network* Y Y Y .1530 = .0716 | .0000 % .0000 -
Simpler Network™* Y N Y 9987 £ .0005 | .1208 £ .0020 6(1)

Table 1: Word and Role accuracy on 1% training data.

¥ NIR=No input role (in context); NTR=No target role (in prediction); NR=No role

* Network with no training that uses previously fine tuned word/role embeddings as input

* Simpler Feed forward Network with previously fine tuned word/role embeddings as input

* Epochs in parentheses: the epoch of the effective model (best model before early stopping after patience limit)

Embed. | Shrd | Tuned | Role Padé McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
Random | N Y Y 5474 £ .0345 | .3231 £ .0236 | .4485 £+ .0314 | .2611 £ .0036 | .2282 +.0623 | .5260 + .1185
Random | Y Y Y 5280 £.0274 | .3384 £ .0174 | .4388 £ .0206 | .2532 + .1421 | .2266 +.0391 | .5000 % .0673
GloVe Y Y Y 5316 £.0320 | .3280 £ .0177 | .4534 £.0209 | .2851 £.0301 | .2895+ .0258 | .5438 £+ .0370
Random | Y N Y 14396 +.0344 | .2838 £.0109 | .2841 + .0246 | .1767 +.0273 | .2086 +.0322 | .4781 % .0450
GloVe Y N Y 4941 £.0247 | .3090 £ .0254 | .4349 £ .0229 | .3011 £.0301 | .3439 +.0421 | .5563 £ .0490
GloVe Y Y NIR | .5079 £ .0587 | .3205 £ .0580 | .4217 £.0472 | .3054 £ .0791 | .2543 £ .0796 | .6042 + .0896
GloVe Y Y NTR | .2400 4+.0294 | .0937 4 .0258 | .3845 £ .0083 | .3071 £.0017 | .2621 £ .0531 | .5469 + .0388
GloVe Y Y NR .2496 £+ .1088 | .1139 £ .0150 | .3385 £.0363 | .2955 + .1243 | .2668 £ .0375 | .5885 + .0448
RAND Y Y Y —.0001 £ .1090 | .0109 £ .1604 | .0365 £ .0784 | .0165 £ .1048 | —.0346 + .0785 | .4531 £ .1027
Simpler Y N Y 3271 £.0555 | .2175 £ .0294 | .3356 £ .0345 | .1055 £ .0259 | .0459 +.1239 | .5365 + .0593

Table 2: Thematic Fit tests on 1% training data (same models as in Table 1)

which, together with at least the predicate, is likely
often sufficient information for prediction.

We find it surprising that input role ablation
barely affects performance on the psycholinguistic
tasks. Why is that? One possibility: the input role
contribution is negligible. But another possibility
is that in NIR, all (or almost all) the role informa-
tion was crammed into the target role embeddings.
To tease these apart, we next take away the target
role from the penultimate layer of the network, but
leave the input roles intact. We call this no-target-
role network NTR (see Figure 1d and the row after
NIR in the same tables). Now the role accuracy
goes back to the base level of 96.7% (as expected
by construction), but word accuracy drops (from
13.7% to 12.3%) and so does performance on the
psycholinguistic tasks, e.g., Pad6 (from 53.2% to
24%), McRae (32.8% to 9.4%). We conclude that
target role carries more crucial information than
input roles for our psycholinguistic tasks, and that
role information cramming, if it happens in NIR,
does not happen in the other direction (NTR).

Finally, for completeness, we remove all role
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information from the network. We call this no-role
network NR (see Figure 1e and same tables). This
results in a drastic drop in word accuracy (from
13.7% to 10.8%) in addition to degradation of role
accuracy from NIR experiment as well as the psy-
cholinguistic tasks (Padé falls from 53.2% to 25%,
McRae from 32.8% to 11.4%, and so on). This is
an an interesting finding which supports previous
knowledge about the importance of roles in multi-
task learning setting while at the same time defies
the importance of roles in the context vector (the
output of the residual block in Figure 1). Next, we
turn to learn more about the impact this vector and
the block it is in.

5.4 “It’s the Network!”... Or is it?

In order to see how much the particular
ResRoFA-MT model architecture (aka “the net-
work”) contributes in our tasks, we first use the fine-
tuned GloVe embedding from a previously trained
base model (third row in Table 1) and assign the rest
of the network random weights (“RAND Network”
in Tables 1 and 2). To ensure the random weights



are similar in size to the trained weights, we calcu-
late the mean and standard deviation for each layer
separately and assign that layer random weights
using a Gaussian distribution with the same param-
eters. We see this new model does very poorly,
near random prediction (word accuracy at 0%, role
accuracy at 15.3%, Pad6 at 0%, McRae 1.1% and
so on). This could be due to the learned representa-
tion in the network weights that were ablated here
but also due to incompatibility of the non-trained
random network weights with the very informative
word embeddings.

Therefore next we replace the complex middle
residual block with a plain dense layer but let this
“Simpler Network” (Figure 1f, Tables 1 and 2) learn
during training. In training here we use the fine-
tuned word (and role) embeddings from our base
model. Curiously, we see a notable jump in role
accuracy (from 96.7% to 99.9%), but a drop in
word accuracy (from 13.7% to 12.1%) as well as in
the psycholinguistic tasks (Padé goes down from
53.2% to 32.7% , McRae from 32.8% to 21.8%,
etc.) other than Bicknell’s (53.7-54.4%). We spec-
ulate the latter task is an outlier here because it
involves comparing the plausibility of two two-
participant events with one participant changed. A
simpler network may have an easier time repre-
senting binary distinctions within a pair of simple
events, as opposed to predicting fine-grained scores
of more complex inter-relationships, evaluated with
Spearman’s p in the other datasets. It may even be
able to rely on general collocation statistics here, re-
gardless of roles, but we leave this for future work.
Note that here, we still do multi-task prediction as
before, but in a much simpler network.

This, along with the role ablation experiments,
suggest that while the potential incompatibility of
the non-trained random network weights with the
word embeddings may account for some of the
drop in performance, the context vector formation
through multiplication and likely also the improve-
ments implemented in our base model have a large
impact on the representation learning as tested on
the thematic fit tasks (although not the same impact
on word/role prediction).

We see again that there is no clear correlation
between the increase in directly optimized for
word/role prediction, and the performance on the
psycholinguistic tasks for which the models were
not directly optimized.

To recap, it seems the answer to (Q2) is nuanced:
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Pado6 and McRae are most sensitive to ablated roles;
GDS, and perhaps Bicknell, to non-tuned random
word embeddings; Ferretti to ablated (simplifiled)
networks; and all are sensitive to RAND Networks,
but Bicknell is surprisingly robust even there.

5.5 Training Data Size Effect

Often in machine learning and NLP, models learn
better with more data. However, there are typically
diminishing returns. To test the effect of training
data size, we use our shared layer network with
tuned GloVe embeddings (as in row 3 in Table 1) on
uniformly sampled 1%, 10%, 20% 40% and 100%
of the training dataset. See Table 3 and Table 4.

Sys Role Accuracy | Word Accuracy | Epochs
B1" | .9470 - -
B2 | .9715+.0010 | .1541 & .0045 -
20%M* | .9707 +.0002 | .1450 + .0004 -
0.1% 9446 £ .0015 | .0994 + .0024 12(7)
1% .9669 +.0003 | .1374 £.0005 | 15(10)
10% .9701 4+ .0002 | .1443 4+.0006 | 13(10)
20% 9703 £+ .0004 | .1445 + .0009 9(6)
40% 9704 £.0007 | .1442 + .0011 9(6)
100%" | .9708 +.0006 | .1444 4 .0019 7(4)
Table 3: Comparison of performance with GloVe

(tuned) with varying training set sizes (Sys)

 Hong et al. (2018) 20%

* Marton and Sayeed (2022) 20%

* The average of max value in each trial for fair compari-
son with benchmarks B1,B2

First, in order to compare fairly with previous
work, we report the average of the maximum value
in each training trial on 20% of the data. (Recall
that our 20% of the data is a larger training set than
our baselines’ 20% due to improvements in our
batcher). Our role accuracy (97.1%) is better than
Hong et al. (2018) (94.7%) and similar to Marton
and Sayeed (2022) (97.2%). Our word accuracy
(14.5%) is a bit lower than the latter (15.4%). On
the indirectly supervised thematic fit tasks, our re-
sults are better on Padé (58.6% compared to 53%),
similar on McRae (42.5-43.4%), but lower for the
rest. We suspect that in the previous work authors
reported the best of all the epochs from all trials,
which can explain why the previously reported
scores are higher than our results; but we could
not verify that.

In order to better understand the effect of train-
ing set size (Q3), we use next what we believe
to be more realistic numbers: the average of the
last saved model in each run (best model per our
validation set) in each training subset size.



System Pado McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
Bl .5300 4250 .6080 4630 4770 .7450
B2 5363 £ .0035 | .4322 £ .0232 - - - -
20%M | .5855 £ .0101 | .4338 £ .0181 | .5495 £ .0220 | .3539 = .0239 | .4255 £ .0210 | .6094 £ .0000
0.1% | .2992 + .0441 | .1856 £ .0157 | .1699 £ .0180 | .0891 £ .0306 | .0367 &+ .0203 | .4906 + .0402
1% 5316 +.0320 | .3280 £ .0177 | .4534 £ .0209 | .2851 £ .0301 | .2895 £ .0258 | .5438 £ .0370
10% | .5572 £ .0247 | .3993 £ .0137 | .5409 £ .0150 | .3410 £ .0358 | .3765 £ .0320 | .5906 % .0320
20% | .5241 =+ .0558 | .3708 £ .11827| .5245 + .0148 | .3191 4 .0312 | .3853 & .0454 | .5813 +.0210
40% | .3662 £ .1355 | .3831 £ .0276 | .5467 £ .0183 | .3331 £.0215 | .3660 £ .0284 | .5750 %= .0460
100%* | .3375 +.7293 | .3733 & .5203 | .5338 £ .1328 | .2736 4 .7846 | .3416 + .3297 | .6094 + .1985

Table 4: Thematic Fit with GloVe tuned (same models as in Table 3)

T 1 trial had an outlier score .2026

# All experiments had 5 runs per training subset, except for the 100% with only 2 runs, due to compute resource limitation.

We see incremental improvements from the 0.1%
subset (role accuracy at 94.5%, word accuracy at
9.9%) to the 1% subset (role accuracy at 96.7%,
word accuracy at 13.7%) to the 10% subset (role
accuracy at 97.0%, word accuracy at 14.4%) across
all our evaluation tasks; however, contrary to our
null hypothesis, we see diminishing returns or no
gains in role and word prediction when using 20%
or more of the training set. In most of the psy-
cholinguistic tasks (Table 4), results plateau at 10%
or 20% (GDS at 52.5-54.1%, Ferretti-Loc at 32-
34.1%, Ferretti-Instr at 36.6-38.5% and Bicknell
at 57.5-59.1%) with the notable exception of Padd
(best at 55.7% with 10% training data) and McRae
(best at 40% at 10% training data) , where we see a
negative trend at and beyond 20%. Why is it so, and
only for these two tasks, with mainly Pad6? The
Padé dataset is constructed from high-frequency
fillers. It behaves differently from the other datasets
and gets a high maximum average score on the 20%
subset probably because there is more training data
available for high-frequency fillers, compared to
the other datasets, including McRae. Considering
the small samples in these test sets, they might
quickly become victims of not only high variance,
but also of overfitting, that is to say, the models may
specialize on the corpus distribution, increasingly
with training set size. This distribution is likely to
be different from the WSJ distribution, from which
Padé dataset is drawn (but see also Section 5.6).

How do word/role prediction and thematic fit
tasks relate to each other? We leave this ques-
tion for future research, but our hypothesis is that
psycholinguistic meaning of natural language is
grounded in interaction with other modalities (e.g.,
actions, vision, audio), which a model cannot learn
just from more textual training data.
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This leads potentially to a much bigger question:
how much can a neural model learn natural lan-
guage by just being trained on very large corpora
or billions of parameters, and where is the satura-
tion point? Furthermore, we see role information is
important to our psycholinguistic tasks; how much
does the role definition and granularity (e.g., Prop-
Bank or FrameNet), or the role set size, matter for
these tasks? Possibly, with a richer roleset, we may
see more alignment between word/role prediction
and the psycholinguistic tasks. Perhaps PropBank
roles are too coarse-grained to allow for an analysis
of how a role-prediction task relates to a thematic
fit task, which involves the fine-grained ranking
(via Spearman’s p) of event plausiblities derived
from the underlying semantic characteristics of the
nouns and verbs involved. If so, understanding how
performance on a role-prediction task relates to the-
matic fit judgements may not be possible without a
finer-grained inventory of semantic characteristics,
such as Dowtyan proto-roles (Dowty, 1991).

5.6 Global and Local Correlation

We evaluate both Pad6 and McRae by computing
Spearman’s rank correlation between the sorted list
of model’s probability scores and the sorted list
of averaged human scores, for each dataset. Why
do Pad6é and McRae deteriorate with increasing
training data size? To test if this is due to fluctua-
tion of model scores for unrelated but near-in-score
verb-noun pairs, we averaged correlations for local
subsets, grouped by verb. This should be an easier
task, since some of the globally close competition
is not present in each by-verb subset. Indeed, we
see high jumps of 5-8% for the local correlation
scores in the larger subsets (40% and 100%). But
in the smaller subsets we see changes of 2-3% up



or down. Moreover, the trend of lower correlation
with larger training sets remained. We leave it to fu-
ture work to dig further into why Pad6é and McRae
show such an anomaly.

6 Conclusions and Future Work

In this work, we explored why random word em-
beddings counter-intuitively perform as well as pre-
trained word embeddings on certain compositional
semantic tasks (some being outside the models’
explicit objective), where the learning is actually
stored (teasing apart the word embeddings, role
embeddings, and the rest of the network), and how
training set size affects performance on these tasks.
We found out that tuning (or further tuning) the
word embeddings helps and can bridge the gap be-
tween random and pretrained embeddings. More-
over, our tuned embedding space is different from
pretrained embeddings like GloVe. We saw that the
target role is more important than the input roles on
our tasks. Furthermore, our experiments suggested
that much of the learning happens also in the rest
of the network outside word and role embedding
layers. No single factor (word and role embeddings
or the network) is most important for all tasks.

Training set size had a surprising negative effect
on Pad6 and McRae beyond 20% of the training
data. We attempted explaining this with an alter-
native evaluation method, but this remains to be
explained further.

We release our code, including our preferred
network architecture — a modified version of
ResRoFA-MT with shared embedding layers.

One avenue in which we want to invest is to bet-
ter understand the complex relationship between
word/role accuracy and our psycholinguistic tasks.
While our initial hypothesis was that training the
network to minimize loss on word/role prediction
would also optimize performance on all our tasks,
this did not always hold. We suspect that the
groundedness is the missing link for (artificially
and naturally) learning psycholinguistic tasks, and
therefore adding grounding seems promising to us.

Another future avenue is to investigate the high
variability in psycholinguistic task performance
compared to the fairly stable results on the directly
optimized-for word and role prediction tasks.

Limitations

There are certain limitations that were unavoidable
in this work. One of them is the limited size of
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the available training and evaluation datasets for
testing thematic fit tasks. It is likely that the high
variance we observed is due to both our indirect
supervision approach (in part due to lack of directly
relevant data for training), and the small-size test
sets. We are limited here by the state of the art in
such datasets, not just by their size. It is a com-
plex task to create and evaluate thematic fit with
full phrases and sentences, i.e., not just with the
arguments’ syntactic heads. Since we do not know
of any such datasets, our model was designed with
only syntactic heads in mind.

Another limitation is the training dataset qual-
ity: due to its size, the training data was machine-
annotated (for syntactic parsing, SRL and lemmas)
and therefore unintended noise and bias may have
been introduced in the models. In addition, even
though our training datasets were collected with the
goal of making them domain-general and balanced,
it is hard to enforce and verify that in large sizes.
We take issues such as toxicity and gender bias
seriously, but we think that in our settings, where
the model does not generate language and the test
sets do not involve gendered examples, the related
risks approach zero.

Semantic tasks such as thematic fit would most
likely benefit from training on grounded language,
e.g., combining text and vision, but working with
such datasets is beyond the scope of this work.

Finally, a rather trivial limitation we have is the
number of trials per experiment we could run due
to time and computational constraints. We only
ran 3-5 trials per experiment but a larger number
of trials may yield more robust results. Despite all
these limitations, we believe our work gives a very
comprehensive analysis of the ResRoFaMT model
and opens up some interesting avenues for future
research work.

Ethical Considerations

Our work uses RW-Eng v2 (Marton and Sayeed,
2022), which in turn uses two corpora: ukWaC and
the BNC. Therefore, we have similar ethical con-
cerns as mentioned in that previous work, including
the way the BNC data was collected. Those who so
wish can easily exclude the BNC data (it comprises
only a small part of the whole corpus) and retrain.

The RW-Eng corpus (v1 or v2) could introduce
undesired bias in use outside the UK, since the data
is sourced entirely from UK web pages and other
UK sources from the 20th century. English used



outside the UK, and more recent English anywhere,
differ from this corpus in their word distributions,
and therefore their input may yield sub-optimal
or undesired results. Furthermore, models trained
on it could encode a Western-centric view of the
world.

The silver labels — the automatic parsing and
tagging of the corpus — could introduce bias from
the parsing / tagging algorithms. These parsers /
taggers are also trained models, which could be
affected by their data sources. If this is a concern
for some users, we encourage them to perform
validation of the data and its annotations.

Having said that, we believe that for most if not
all conceivable applications, especially as long as
one keep these limitations in mind, our work should
not pose any practical risk.
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Appendix A: Why Not Use BERT Here?

With the advent of contextual embeddings, static
word embeddings are often regarded as inferior or
outdated. While this is true in many cases, we wish
to point out that (a) there are still cases where static
word embeddings outperform BERT (Lenci et al.
(2022); Henlein and Mehler (2022), inter alia) and
more importantly, (b) not all NLP tasks and test
sets are in the form of complete sentences, which
may render contextual models useless there. More
specifically for our tasks:
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1. As we point out at the end of Section 2, “Lenci
et al. (2022) demonstrate that ... even recent
contextual models such as BERT are not nec-
essarily better for out-of-context tasks than
well-tuned static representations, predict or
otherwise." Our tasks, as represented by sev-
eral psycholinguistic test sets are such out-of-
context tasks. This is the state-of-the-art in
psycholinguistics datasets. The human judg-
ments in these sets were given without a full
sentence or other context beyond the verb-
noun (or noun-verb-noun) items. There is
no reason to assume that BERT, a contextual
model trained on full sentences will do well
on out-of-context tasks, and again, it has been
shown BERT is not necessarily better than
static word embeddings.

2. Even if we wanted to use BERT, we cannot

use a lookup table the same way we can for
static word embeddings. This means we will
either have to decode each sentence on the fly
every training (and evaluation) iteration, or
decode once and save on disk. Simple calcula-
tion shows that the required storage demands,
even for, say, 1% of the data, make this exer-
cise computationally extremely expensive.

3. BERT may break words to several tokens.

How to map these to the verb or noun in the
training or test is not always straightforward,
and this mapping makes embedding extraction
speed 0.5x slower.

4. “Hallucinating” synthetic sentences from the

verb-noun input in order for BERT to receive a
sentence for input would invalidate the ratings
given by the human raters without these (or
other) sentences.

5. In order to validate our claims here, we exper-

imented with BERT on-the-fly in preliminary
studies, using a small training subset of a few
thousand sentences with simple token map-
ping, and the results were dismal while the
training already excruciatingly slow.

6. There is nothing wrong with systematically

exploring models that use static word embed-
dings, even if contextual embeddings excite
many people more. We don’t think we should
defend this choice.
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Appendix B: Dataset Examples

For added clarity we give the readers a few exam-
ples of the training and evaluation data.

1. Each training example is a list of word/role
pairs. Each of these examples are created
with the head words from full sentences,
ie., our final training examples do not
contain full context. We have 6 semantic
roles such as ArgO and Argl etc. + one
placeholder UNK role for roles not included
in our role set. A typical example could
look like this: {0: 6, 1: 97, 2:
43511, 3: 43511, 4: 239, 5:
143, 6: 64}, where the numbers are
pairs of role:word indices. The size of word
vocabulary of the 0.1% training subset is
43,510 with tokenld 43,510 and 43,511
corresponding to UNK and Missing word
(the corresponding role does not have a head
word). Larger training subsets vocabulary is
capped at 50,000.

Each example is used in training 1 or more
times, each time with a different target
word/role pair (see Figures 1a, 1b, and Sec-
tion 4), while the rest of the pairs are used for
input. Note that a pair with a Missing word
cannot serve as a target word/role.

2. Apart from the train / test split, we use
multiple psycholinguistic evaluation sets that
we do not optimize the model on, as men-
tioned in Section 3. While they all vary,
a typical example is {client, advise,
Arg0, 3.7}, which means that human
raters gave an average of 3.7 to “client’ as Ar-
gument O (typically Agent) for ’advise’ (as
in “the client advised the banker that ...”).
In contrast, {client, advise, Argl,
6.6}, means that human raters gave an aver-
age of 6.6 to ’client’ as Argument 1 (typically
Theme/Patient) for *advise’ (as in “the banker
advised the client that ...”). According to these
human raters, ’client’ fits semantically much
better as Argl than Arg0 for "advise’. During
thematic fit evaluation, we sort these test ex-
amples by human rater average scores, and the
model output by model score. Then, we com-
pute Spearman’s rank correlation between the
two sorted lists, as explained in Section 5.6.
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Abstract

It is unclear whether, how and where large
pre-trained language models capture subtle
linguistic traits like ambiguity, grammatical-
ity and sentence complexity. We present re-
sults of automatic classification of these traits
and compare their viability and patterns across
representation types. We demonstrate that
template-based datasets with surface-level ar-
tifacts should not be used for probing, careful
comparisons with baselines should be done and
that t-SNE plots should not be used to deter-
mine the presence of a feature among dense
vectors representations. We also show how fea-
tures might be highly localized in the layers for
these models and get lost in the upper layers.

1 Introduction

Pre-trained language models, such as BERT, M-
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019), while being very efficient at solving
NLP problems, are also notoriously difficult to in-
terpret and their analysis and interpretation is an
active area of research (Belinkov and Glass, 2019).
One such technique of analysis is based on probing
classifiers (Belinkov, 2021), which primarily con-
sists of training and evaluating a shallow network
multi-layer perceptron (MLP) as a classifier on top
of the vector representations. Probing classifiers
are now fairly established in NLP (Adi et al., 2016;
Tenney et al., 2019; Ma et al., 2019).

In this work, we build sentence representations
from layer-wise contextual embeddings obtained
from three different pre-trained language models
and probe them for three linguistic traits: sentence
ambiguity, grammaticality, and complexity using
some well-established datasets.

~Co-first authors.

OCode for the experiments in this paper is open-source:
github.com/ufal/ambiguity—-grammaticality-complexity

In the process, we show why having a reasonable
baseline is a necessity for performance interpreta-
tion. We also demonstrate why simply visually
checking the clustering of embeddings on datasets
using t-SNE, a popular dimension-reduction tech-
nique in probing, can lead to incorrect conclusions.

Motivation. The study of these traits is impor-
tant for example in machine translation where dis-
ambiguation is necessary and grammaticality cor-
rection and simplification sometimes happen im-
plicitly without any control. For the tasks of text
simplification and grammar correction, it is crucial
to be aware of whether and how general-purpose
models encode these traits or whether they abstract
the meaning from them. Specifically, ambiguity
detection has been investigated very little in con-
trast to other features. All of these three traits are
orthogonal in their definitions, although their mu-
tual relationships are unknown. For example, it
may be that ambiguous sentences tend to be more
complex and prone to lower grammaticality. We
assimilate the definition of these traits from the re-
spective datasets but nevertheless include examples
in Table 1.

Contribution. We carry out text classification
tasks of ambiguity, grammaticality and complexity
and demonstrate empirically that:

* having a reasonable baseline is a necessity for
performance interpretation;

* sentence ambiguity is represented much less
than sentence complexity in the models;

* the template-based BLiMP dataset is not suit-
able for probing grammaticality because of
surface-level artefacts;

* t-SNE is not always an adequate tool to see
whether a feature is represented in vectors.

Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 40 - 50
December 8, 2022 ©2022 Association for Computational Linguistics
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Dataset Class Sentence
Ambiguous COCO Ambiguous A metal artwork displays a clock in the middle of a floor.
MS COCO Unambiguous A couple sitting under an umbrella on a park bench.
HCR English Complex For the year, net income tumbled 61% to $ 86 million, or $ 1.55 a share.
HCR English Simple In part, the trust cited the need to retain cash for possible acquisitions.
CoLA Acceptable  The sailors rode the breeze clear of the rocks.
CoLA Unacceptable The problem perceives easily.
BLiMP-Morphology Acceptable  The sketch of those trucks hasn’t hurt Alan.
BLiMP-Morphology Unacceptable The sketch of those trucks haven’t hurt Alan.
BLiMP-Syntax Acceptable  Aaron breaks the glass.
BLiMP-Syntax Unacceptable  Aaron appeared the glass.
BLiMP-Syn_Semantics ~ Acceptable =~ Mary can declare there to be some ladders falling.
BLiMP-Syn_Semantics Unacceptable Mary can entreat there to be some ladders falling.
BLiMP-Semantics Acceptable  There was a rug disappearing.
BLiMP-Semantics Unacceptable There was every rug disappearing.

Table 1: Sentence examples from used datasets.

2 Related Work

Ambiguity. Word-sense disambiguation has
been extensively studied and is a closely related
task (Navigli, 2009). This has also been the fo-
cus of work done with recent NLP tools, which
has mostly concentrated on the determination of
ambiguity at the lexical level and not at the sen-
tence level. Yaghoobzadeh et al. (2019); Sahin
et al. (2020); Meyer and Lewis (2020) classify am-
biguous words. Chen et al. (2020) explore the
geometry of BERT and ELMo (Peters et al., 2018)
using a structural probe to study the representa-
tional geometry of ambiguous sentences. Bordes
et al. (2019) use a combination of visual and text
data to ground the textual representations and make
notes on disambiguation. Ambiguity modelling has
also been a focus of the MT community because
translation often requires disambiguation. This ap-
plies on many levels: lexical (Higinbotham, 1991;
Zou and Zou, 2017; Do et al., 2020; Campolungo
et al., 2022), syntactic (Pericliev, 1984) and se-
mantic (Baker et al., 1994; Stahlberg and Kumar,
2022). Psycholinguists have also studied the effect
of ambiguity resolution on cognitive load (Altmann,
1985; Trueswell, 1996; Papadopoulou, 2005), often
motivated by issues in MT (Sammer et al., 2006;
Scott, 2018). Bhattacharya et al. (2022) explore
ambiguity by the task of translation by human an-
notators.

Grammaticality. This trait has been studied
historically from the perspective of human sen-
tence processing and acceptability (Nagata, 1992;
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Braze, 2002; Mirault and Grainger, 2020). Many
real-world applications utilize tools for automatic
grammaticality prediction (Heilman et al., 2014;
Warstadt et al., 2019), such as automatic essay as-
sessment (Foltz et al., 1999; Landauer, 2003; Dong
et al., 2017) or machine translation (Riezler and
Maxwell III, 2006). For MT, output acceptabil-
ity, or fluency, is a standard evaluation direction
for which many automated metrics exist (Hamon
and Rajman, 2006; Lavie and Denkowski, 2009;
Stymne and Ahrenberg, 2010). In contrast to our
supervised classifier approach, perplexity-based
approach has been used to measure acceptability
(Meister et al., 2021).

Related more closely to our setup, Hewitt and
Manning (2019) use a linear probe and identify
syntax in contextual embeddings. Lu et al. (2020);
Li et al. (2021) examine gramaticality in BERT
layers. Hanna and Bojar (2021) assess BERTScore
effectiveness in spotting grammatical errors.

Complexity. Similarly to other traits, complex-
ity was first studied in the human processing of
language (Richek, 1976; Just et al., 1996; Heinz
and Idsardi, 2011). Brunato et al. (2018) perform a
crowd-sourcing campaign for English along with
an in-depth analysis of the annotator agreement
and complexity perception. Automatic complexity
estimation is vital, especially in the educational
setting for predicting readability (McNamara et al.,
2002; Weller et al., 2020). Ambati et al. (2016)
estimate sentence complexity using a parser while
Stajner et al. (2017) do so using n-grams. Sarti



(2020); Sarti et al. (2021) juxtapose the effect of
complexity on language models and human assess-
ment thereof. Martinc et al. (2021) survey multiple
neural approaches to complexity estimation, includ-
ing using pre-trained LM representation. In con-
trast to our work, they report only the final results
and do not investigate the issue from the perspec-
tive of probing (e.g. what representation to extract
and from which layer).

Probing. Earlier probing studies have shown that
the early layers of BERT capture phrase-level in-
formation and the later layers tend to capture long-
distance dependencies (Jawahar et al., 2019). The
syntax is also captured more in the early layers of
BERT and higher layers are better at representing
semantic information (Tenney et al., 2019). It is not
clear if and how pre-trained models achieve com-
positionality (Kalchbrenner and Blunsom, 2013;
Nefdt, 2020; Kassner et al., 2020) and how linguis-
tic knowledge is represented in sentence embed-
dings. Liu et al. (2019) use probing on a set of
tasks including token labelling, segmentation and
pairwise relation extraction to test the abilities of
contextual embeddings. Mutual information can
be used as a viable alternative to traditional probes
that require optimization (Pimentel et al., 2020).
A conceptual follow-up is V-information (Hewitt
et al., 2021) which is better suited for probing. In
many cases, t-SNE is the prevalent method of vi-
sualization of class clusters in high-dimensional
vector space (Jawahar et al., 2019; Jin et al., 2019;
Wu and Xiong, 2020; Hoyt and Owen, 2021).

3 Data

For each trait, we use a different dataset. Their over-
all sizes are listed in Table 2 and example sentences
in Table 1. We repurpose the datasets and derive
binary labels (positive/negative) from each: am-
biguous/unambiguous, complex/simple and gram-
matical/ungrammatical.

Ambiguity. We use sentences from the MS
COCO (Lin et al., 2014) dataset, for our list of
ambiguous and unambiguous sentences. The MS
COCO dataset comprises of a set of captions de-
scribing an image. Captions containing ambiguous
verbs corresponding to 461 images (Ambiguous
COCO; Elliott et al., 2016) constitute the ambigu-
ous sentences for our experiment. 461 captions
that were randomly sampled from MS COCO con-
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Dataset Sentences
Ambiguity COCO 0.9k
Complexity HCR English 1.2k

PACCSS-IT 1.1k
Grammaticality CoLA 5k

BLiMP 67 x2k

Table 2: Number of sentences for each dataset corre-
sponding to each trait.

stituted the unambiguous sentences for the experi-
ment.

Complexity. Corpus of Sentences rated with Hu-
man Complexity Judgments' (Iavarone et al., 2021)
and PACCSS-IT (Brunato et al., 2016) contain 20
human ratings on the scale from 1 (not complex)
to 7 (very complex) about sentences. We bina-
rize these ratings and consider sentences below
the average to be simple sentences and others to
be complex sentences. The resulting dataset is
class-balanced (complex/simple) in terms of exam-
ples (592 sentences of each class for English and
551 sentences for Italian). The average sentence
length for complex and simple examples is 24.84
and 13.95, respectively for English sentences. For
Italian sentences, the average sentence length for
complex and simple examples is 21.61 and 12.26,
respectively. The complexity could therefore be
encoded solely in the sentence length.

Grammaticality. For experiments under this cat-
egory, we use the Benchmark of Linguistic Min-
imal Pairs (BLiMP; Warstadt et al., 2020) and
the Corpus of Linguistic Acceptability (CoLA;
Warstadt et al., 2019) datasets. BLiMP con-
tains sentence pairs, one of which contains a
mistake in syntax, morphology, or semantics
while the other is correct. The dataset covers
67 different conditions, grouped into 12 phenom-
ena. These phenomena are further categorized as
‘syntax’, ‘morphology’, ‘syntax-semantics’ and ‘se-
mantics’. The CoLA dataset is not contrastive but
contains human annotations of acceptable gram-
maticality.

"English sentences were taken from the Wall Street Journal
section of the Penn Treebank. Italian sentences were taken
from the newspaper section of the Italian Universal Depen-
dency Treebank.



4 Experiments

4.1 Task definition

In the following experiments, we are solving three
classification tasks in parallel. The input is always
the whole sentence and the output one of the two
classes (ambiguous/unambiguous, complex/simple,
acceptable/unacceptable), as shown in Table 1, ap-
plies to the whole sentence. The whole pipeline is
also depicted in Figure 1. When using the TF-IDF
feature extractor, it replaces the pre-trained LM
block.

Visiting
friends can
be annoying.

Pre-trained
LM

MLP
classifier

Ambiguous

[0.1,0.6, 2.3, ..., 0.9] e

representation
model

vector
representation

task-specific

text input o
P classifier

output

Figure 1: Example of the experiment pipeline for ambi-
guity classification. Ambiguous sentence from Stanley
and Gendler Szabé (2000).

4.2 Setup

We use a simple MLP classifier to identify three
linguistic traits from BERT (bert-base or multilin-
gual bert-base) and GPT-2. The resulting vectors
are 768-dimensional.> Both of these models are
Transformer based models and contain 12 layers,
which makes comparison convenient. We perform
probing on each model separately.

* CLS: single vector at the [CLS] token.
* Pooling: single vector from the pooling layer.

» Tokens: vector representations of tokens ag-
gregated with mean or (Hadamard) product to
get a single 768-dimensional vector.

We obtain the layer-wise pre-trained model rep-
resentations using Huggingface (Wolf et al., 2019)
and use them to train a classifier that identifies if a
sentence belongs to the positive class (e.g. ambigu-
ous) or not. We perform a 10-fold cross-validation
each with 10 runs of MLP.

Baseline. The most common class classifier (50%
accuracy) is a poor baseline because it may be that
the ambiguous and non-ambiguous sentences are
distributed differently w.r.t. topic. In an attempt
to alleviate this issue, we, therefore include as the
baseline a TF-IDF-based vectorizer (with a varying
number of maximum features). Probe performance

The CLS and pooling representations apply only to BERT.
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of e.g. 65% would be considered at the first glance
a positive result compared to 50%. However, in
reality, it would be a false positive finding if a
simple lexical feature extractor such as TF-IDF
could yield 70%.

MLP Configuration. For probing we use
MLPClassifier from scikit-learn 1.1.0 (Pe-
dregosa et al., 2011) with most defaults preserved,
as shown in Table 3.

Architecture  Single hidden layer (100)
Activation ReLU
Optimizer Adam

Learning rate 1073

Epochs Early stopping, patience 1

Table 3: MLP classifier configuration.

4.3 Ambiguity & Complexity

Because the dataset is in Italian, we make use of
multilingual BERT for both Complexity datasets.
The probe performance for M-BERT is shown in
Figure 2. At the first glance, it appears that the
model does represent ambiguity internally since
the ambiguity probe is systematically higher than
50%. However, because TF-IDF performs simi-
larly and only uses surface-level features, the probe
is very weak. This is supported by the fact that the
most negative tokens from the classification (ex-
tracted from logistic regression coefficients) con-
tained words such as man or woman, which disam-
biguate, based on gender, some unclear cases with
an unclear referent.

In contrast, the complexity probe is systemati-
cally higher than the TF-IDF baseline. With minor
exceptions, the accuracy remains high regardless
of the layer. The performance for Italian (sentences
taken from PACCSS-IT corpus) is identical to that
for English using M-BERT (not shown). The CLS
representation at layer 0 is 50% in both instances
because it does not contain any information from
the sentence (before the self-attention block).

4.4 Grammaticality

For the morphological task of determiner-noun
agreement, Figure 3 shows a sudden drop in accu-
racy for the CLS representation at the 5th layer. In
all the tasks concerning “Determiner-Noun Agree-
ment”, the sentence minimal pairs focus on the
number agreement between the demonstrative de-
terminers (like this/these) and an associated noun.



Acceptable Sentence

Unacceptable Sentence

Raymond is selling this sketch.
Carmen hadn’t shocked these customers.

Raymond is selling this sketches.
Carmen hadn’t shocked these customer.

Carl cures those horses.
Sally thinks about that story.

Carl cures that horses.
Sally thinks about those story.

Laurie hasn’t lifted those cacti.
The waitresses haven’t cleaned this thesis.

Laurie hasn’t lifted those cactus.
The waitresses haven’t cleaned this theses.

The teachers are running around this concealed
0asis.
Randolf buys those gray fungi.

The teachers are running around these con-
cealed oasis.
Randolf buys that gray fungi.

Cynthia scans these hard books.
Jerry appreciates this lost report.

Cynthia scans this hard books.
Jerry appreciates these lost report.

Table 4: Example minimal sentence pairs from the determiner-noun agreement task of BLiMP.
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Figure 2: MLP dev accuracy for ambiguity and com-
plexity BERT representation across layers.

Examples of minimal pairs from the different tasks
of this kind are shown in Table 4.

While the cause is unclear, it corresponds to the
average norm of the representation being very low
at that particular layer, making it harder for the
classifier optimization.

As Figure 4 shows, many tasks can be “solved”
with a simplistic TF-IDF featurizer, making them
inadequate for determining the usefulness of large
model representations. More adequate datasets
need to be developed for probing stronger mod-
els. Systematically for all cases in morphology
where the TF-IDF failed to work accurately, the per-
formance of CLS representations was worse than
the mean representations. Even in most semantics

Hadamard Pooler

—&— CLS

- TF-IDF
—&— Mean

Accuracy

0 2 4 6 8 10 12
Layer

Figure 3: MLP dev accuracy for determiner noun agree-
ment irregular I task of BLiIMP benchmark for BERT
representation across layers. Each point is represented
with a mean across 10 runs with a 95% confidence in-
terval.

tasks, TF-IDF probes had near-perfect accuracy.
For the 7 out of 26 syntactic tasks where the TF-
IDF classifier was not accurate, the BERT models
show a steep rise in accuracy from the 2nd/3rd layer
for the mean and CLS representations, respectively.
In comparison, GPT-2 does not exhibit this pattern.

5 Discussion

The experiments with ambiguity reveal that the
representations of the pre-trained models do not
encode the ambiguity trait well. The description
detailing how the Ambiguous COCO was created
(Elliott et al., 2017) states that the dataset was cre-
ated with the intention of testing the capabilities
of multimodal translation systems. We posit that
ambiguity as a trait is not encoded in an accessi-
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Figure 4: Accuracy on various BLiMP tasks with a
max of BERT and GPT-2 representations and TF-IDF
baseline. Each task+model is represented as one square.
The lighter squares correspond to greater accuracy and
are hence better.

ble way in the layer representations of pre-trained
models.

For BLiMP tasks related to morphology and
syntax-semantics, the accuracy goes down in the
upper layers, presumably because of increasing ab-
straction for both models (not shown in graphs).
Although we perform experiments without fine-
tuning, the findings are in line with the experimen-
tal results of Mosbach et al. (2020) where finetun-
ing on 3 tasks from the GLUE benchmark (Wang
et al., 2018) showed changes in probing perfor-
mance mostly in the higher layers. Fine-tuning
however led to modest gains. The present setup
which probes sentence representations from pre-
trained models shows that the middle layers fare
far better in our probing tasks than the upper layers.
This leads us to posit that the features of interest
are highly localized and are lost in the upper layers
(even with fine-tuning).

Although both BERT and GPT-2 employ the
Transformer (Vaswani et al., 2017) architecture,
they have very different ways and locations for
storing knowledge in their internal representations
(Rogers et al., 2020; Vuli¢ et al., 2020; Lin et al.,
2019; Kuznetsov and Gurevych, 2020; de Vries
and Nissim, 2021; Liu et al., 2021). The CLS rep-
resentations outperform the mean representations
in only a few cases. This is expected since without
fine-tuning the CLS token in BERT is trained to be
used for the next sentence classification tasks.

6 t-SNE Inadequacy

Given appropriate optimization and classifier, if
two or more classes in a vector space form clusters,
they are linearly separable and therefore the clas-
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Figure 5: t-SNE projections from BERT-based embed-
dings. The first and the second row show high accuracy.
The second and third rows show a lack of visual clusters.
Red/black represent either complex/simple or ambigu-
ous/unambiguous sentences. Percentages include classi-
fier accuracy with the difference to the TF-IDF baseline
in parentheses.
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Figure 6: t-SNE projections from BERT-based embed-
dings (layer 1 of CLS) on ambiguous/unambiguous sen-
tences (58% MLP and 66% TF-IDF accuracy). The
first row is all the vectors and the second is half of
them subsampled by Algorithm 1. Red/black represent
ambiguous/unambiguous sentences.

sifier performs well. Furthermore, if a classifier
probe performs well and is not affected by surface-
level phenomena, it means that the features are
represented in the vectors. Both these statements
are one-way implications:

* clear clustering — high classifier accuracy

* high classifier acc. — feature present



Because t-SNE projects vectors from high di-
mensional space to lower dimensions in a manner
that tries to preserve distances, it may be that vi-
sual clusters are created where there were none
before and vice versa. The following scenarios are
possible:

* clear clusters and high classifier accuracy
* no clusters and high classifier accuracy
* no clusters and low classifier accuracy

The last combination, ‘“‘clear clusters and low
classifier accuracy” is impossible with proper opti-
mization. The three scenarios on probes from the
previous experiments are shown in Figure 5. The
conclusion is that probes should always precede
visual clustering checks using t-SNE because it
may be that the data does not form clear clusters
in t-SNE but the classes are still linearly separable,
meaning that the feature is encoded. The last image
shows two clusters but not those that separate the
two classes.

A plethora of work uses t-SNE to show clusters
of vectors grouped by features (Chi et al., 2020;
Nigam et al., 2020; Wu et al., 2020; Zhang et al.,
2021; Subakti et al., 2022), though some follow-up
with reporting classifier performance. Because t-
SNE visual separation is not easily quantifiable, the
negative results are often underreported (Fanelli,
2012; Mlinari¢ et al., 2017). This issue can be
resolved by using other methods, such as probes.

Algorithm 1 Forcing t-SNE clusters

> Vectors of sentences in the two classes
Load Dy, Dp
> Cluster size, e.g. |[Dal/2
Input ¢/, ¢ + /2
> Two seeds from classes, most distant
SA,SB 4 argmaxy, cD,vpeDyp |[VA — UB||

> Closest points to own seeds

O’y < top-cvep, —|[sa — ||
Clz « top-coepy —||lsp — ||
> Furthest points to opposing seeds
A < top-cvep, |lsB — ||
¢ top-coepy lsa — ol

Ca<+CyuCY
Cp <+ CruUC}
t-SNE(C'4 U Cp)
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6.1 Forcing t-SNE Clusters.

It is possible to start with sentence vectors that
result in a t-SNE graph that does not show any
visual clusters and select half of them such that
running t-SNE will show clusters between the two
classes. The algorithm is described in Algorithm 1.
It is based on first finding two most distant “seeds”
from the two classes and then selecting vectors of
the same class which are closest to the seed or most
distant to the other seed.

An example is shown in Figure 6. While the orig-
inal does not show any clusters between the classes,
the application of the algorithm selects such vectors
that t-SNE shows visual clusters. Simplu randomly
subsampling the vectors would not work but this
shows that using t-SNE to visually determine the
presence of a feature is not robust.

7 Conclusion

In this work, we showed how large pre-trained
language models represent sentence ambiguity in
a much less extractable way than sentence com-
plexity and stress the importance of using reason-
able baselines. We document that template-based
datasets, such as BLiMP used for sentence accept-
ability, are not suitable for probing because of
surface-level artefacts and more datasets should
be developed for probing more performant models.
Finally, we discuss why using t-SNE visually for
determining whether some representations contain
a specific feature is not always a suitable approach.

Future work

Because both t-SNE clustering and classification
(inability to establish a rigid threshold for accu-
racy) can fail for determining whether a specific
feature is represented in the model, more robust
methods for this task should be devised. These
probes should also be replicated in models used for
machine translation, which is the primary motiva-
tion for studying these traits.
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Abstract

Hyperparameter tuning is important for achiev-
ing high accuracy in deep learning models, yet
little interpretability work has focused on hyper-
parameters. We propose to use the Explainable
Boosting Machine (EBM), a glassbox method,
as a post-hoc analysis tool for understanding
how hyperparameters influence model accuracy.
We present a case study on Transformer models
in machine translation to illustrate the kinds of
insights that may be gleaned, and perform ex-
tensive analysis to test the robustness of EBM
under different data conditions.

1 Introduction

Deep neural networks have revolutionized the field
of Al bringing about impressive improvements in
accuracy at various tasks. There is now a growing
interest in interpreting what the model is doing
that leads to these high accuracies (Bastings et al.,
2021). A better understanding is useful in many
ways: it can provide researchers a more in-depth
view of the problem, assist developers to debug
the model, or give users a way to act on the model
result.

Our goal is to improve our understanding of
neural network hyperparameters. While there are
many research efforts on explaining a model’s pre-
diction or interpreting a model’s parameters, there
has been little work on hyperparameters. Hyperpa-
rameters like number of layers and learning rate are
important factors that impact model performance.
In practice, many engineering hours are spent on
tuning hyperparameters. We believe methods and
tools for interpreting hyperparameters are needed
to help practitioners tune more effectively; there are
also applications in the growing field of AutoML
(Hutter et al., 2019), where our understanding of
hyperparameters can help guide researchers design
more effective search spaces.

* These authors contributed equally to this work.
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1. Train Transformers,
record accuracies

Dataset D

{(My, (M)} 2.Fit glassbox

model

3. Interpret
hyperparameters

Figure 1: Proposed framework for post-hoc intepreta-
tion of hyperparameters with EBM.

In this paper, we advocate a post-hoc interpreta-
tion framework for hyperparameters. This frame-
work requires that a set of neural network models
with different hyperparameters are trained, and that
their resulting accuracy metrics are recorded. Then,
a glassbox model is fit on this data to reveal trends
in hyperparameters. We use Explainable Boosting
Machines (EBM, Lou et al. (2013)) as the glassbox
model; it is a Generalized Additive Model similar
to Boosted Trees, except that its additive feature
function is visualizable in 1-D or 2-D plots, making
it well-suited for understanding hyperparameters.

In the following, we first develop further the idea
of post-hoc interpretation of hyperparameters and
contrast it with other types of interpretability re-
search (Section 3). Then we briefly describe the
EBM, which is the glassbox model used in our
interpretability framework (Section 2). Section 4
present a case study on Transformers in machine
translation tasks, to illustrate how our framework
can be used to understand which hyperparameters
are important, how its influence changes according
to different hyperparameter values, and whether
pairwise interactions are present. Finally, Section
5 analyzes the robustness of EBM: it helps charac-
terize under what conditions are the interpretability
results valid.

The contribution of this paper is two-fold: First,
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we advocate a framework for understanding hyper-
parameters with EBMs and present a case study
on machine translation transformers to illustrate
its usefulness. Second, we perform extensive ex-
periments on EBMs to characterize the conditions
where interpretability results are robust.

2 Explainable Boosting Machine

Let’s define input x as a feature vector representing
the hyperparameter setting model M), and y as
the scalar output response variable s(M)). We
use EBM as introduced in (Lou et al., 2012, 2013;
Caruana et al., 2015) and implemented in Nori et al.
(2019). EBM is a generalized additive model with
the form:

Zfij(xiaxj)v (1

9(y) =Bo+ Y filz) +

J ij
where g is a link function that transforms the model
to either a regression or classification setting (iden-
tity or logit, respectively). f; is a feature function
for feature x; that is learnt through bagging and
gradient boosting. Each f; is trained separately at
a time in round-robin fashion. Additionally, EBM
also includes pairwise terms f;; to increase accu-
racy and enable analysis of pairwise interactions
between features. In our experiments, we focus
on 6 Transformer hyperparameters, so x is a vec-
tor of dimension 6 and the EBM model F(-) is a
sum of 6 single-hyperparameter functions f;, up to
(6 x 5)/2 = 15 pairwise functions f;;, and a bias
term fy.

An attractive aspect of EBM is that f;(z;) is
based on a single feature, and can be of arbitrary
shape. See examples of f; in Figure 3: on the left,
we see that f;—; (1) decreases in score as the learn-
ing rate hyperparameter increases; on the right, we
see a different f;—o(x2) increase in score slightly
as BPE hyperparameter from 10k to 30k, then drop
sharply when BPE increases to 50k. Since the f;(-)
are summed linearly to predict the response vari-
able (accuracy or BLEU score), we can obtain an
intuitive understanding of how each hyperparame-
ter impacts the final accuracy. In other words, since
EBM is an additive model, it is straightforward to
infer the contribution of each feature function; at
the same time, the ability to learn arbitrary shapes
for the feature function allows for enhanced inter-
pretability. Refer to the aforementioned papers for
details of how the EBM is trained.
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3 Interpreting Hyperparameters

Proposed framework: Our goal is to gain in-
sights about hyperparameters for a class of deep
neural networks. We require the existence of a set
of models with different hyperparameter settings
trained on the same dataset. For example, assume
a set of Transformer (Vaswani et al., 2017) models
{M)}, A € A where A represents the hyperparame-
ter space, M), represents a model with a specific hy-
perparameter setting (e.g. 6-layer encoder, 2-layer
decoder, 8 heads, 256 word embedding size); each
model has an accuracy metric s(M) ), and a glass-
box model is fit on pairs P = {(M,, s(M)))}. As-
sume there is a person building the models (model
builder) and a person analyzing the models after
the fact (model analyzer); they may or may not be
the same person. Our framework consists of three
steps:

1. On a dataset D, the model builder trains N
models { M)} and record their accuracy met-
ric s(M,). The metric can be any scalar in R;
for this paper, we focus on machine transla-
tion and use the development set BLEU score.

The model analyzer fits an EBM on P £
{(M),s(M),))}. The EBM is a function
F() that maps from hyperparameter space
to BLEU score, /' : A — R. In practice,
a small subset of P is held-out to measure
EBM’s generalization, and we would proceed
only if we trust that the EBM has not over-fit
or under-fit.

. The model analyzer visualizes the internal fea-
tures of EBM to glean insights about hyperpa-
rameters.

The overall framework is shown in Figure 1.
Step 1 is critical because it provides the data for
EBM fitting. How large must N be, and are there
requirements for the samples from A to be indepen-
dent, identically distributed (i.i.d.)? Neural models
can be expensive to train, so we assume that Step 1
is the result of whatever hyperparameter search was
performed by the model builder. Thus, the model
analyzer may not have full control over the models
available for analysis. Section 5 characterizes un-
der what conditions is EBM robust over different
sizes and distributions of P.

Step 2 is the core component of our framework.
Different glassbox regression models are possible,



Type Goal Example Result

Prescriptive | Model build- | Given past experience, we recommend setting embedding size to 256
ing and attention head to 8 on dataset D.

Descriptive | Post-hoc un- | Given N models that are trained on dataset D, we find that embedding

(this work) derstanding | size influences BLEU more than attention heads.

Table 1: Two kinds of goals for Interpretability Research on hyperparameters.

but we choose EBM due to its excellent visualiza-
tion ability. Note that while there is a considerable
amount of work on interpreting a Transformer’s
parameters such as attention weights (Kobayashi
et al., 2020; Abnar and Zuidema, 2020; Tay et al.,
2021; Lim et al., 2018), these methods are not read-
ily applicable due to the non-differentiability and
heterogeneity of hyperparameters. Thus, an exter-
nal model ' : A — R that treats hyperparameters
as input features is more amenable. This external
model is essentially finding hyperparameter "fea-
tures" that are predictive of accuracy. As long as
this model is glassbox in the sense that it’s inter-
nals are viewable, then we are able to interpret the
results in Step 3.

Broader context: We would like to provide con-
text on what our framework does and does not
do. In the Explainable Al literature, one way to
characterize explainablity/interpretability research
is to ask where the method sits on the local vs.
global and self-explaining vs post-hoc continuum
(Danilevsky et al., 2020). Local methods explain
the model’s behavior on a specific input, whereas
global methods inspects the model generally. Our
framework is global in the sense that it identifies hy-
perparameter trends based on accuracy on a batch
of inputs. Self-explaining methods generate expla-
nations as part of the model’s prediction process,
whereas post-hoc method builds an external model
after the predictions have been made. Our frame-
work sits squarely in the post-hoc camp because
we work on top of trained Transformers, but it is in-
teresting to note that the glassbox EBM employed
can be called a self-explaining method.

In terms of research on hyperparameters, there
is a branch of work (Bahar et al., 2017; Britz et al.,
2017; Araabi and Monz, 2020) aiming at finding
the optimal choices of hyperparameter values. In
those work, hyperparameters are usually manu-
ally tuned based on experience and massive ex-
periments are conducted to gather results. Those
work would make recommendations on which hy-
perparameter combinations to use in general. We
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call this approach prescriptive; they are useful to
inform the building of specific models.

In contrast, our framework is descriptive: mod-
els have already been trained, and we are interested
in understanding the relationship between hyperpa-
rameters and accuracy. In other words, rather than
predicting whether to set embedding size to 256 or
512, we are more interested in seeing how accu-
racy changes according to various embedding sizes
and understanding whether other hyperparameters
like number of layers would interact. This is an
example of post-hoc analysis, which is also used in
medicine (TDI, 2022; Srinivas et al., 2015) — after
the effectiveness of a new treatment is tested, post-
hoc analysis on both the failed and successful trials
are conducted. It is not the intent of the original
study, but it is the support for further trials. The
distinctions between the two kinds of interpretation
work are summarized in Table 1.

Post-hoc interpretation on hyperparameters is
well-suit to the following two scenario: (a) Sup-
pose a practitioner has already performed exten-
sive hyperparameter tuning, and has deployed the
best model. It would be a waste to throw away all
the data pairs P. Running post-hoc interpretation
allows us to extract more knowledge out of the
data. Knowledge about which hyperparameters are
important, for example, may inform future hyper-
parameter tuning experiments; it may also assist
AutoML researchers to design more efficient search
spaces for hyperparameter optimization and neu-
ral architecture search. (b) Suppose a researcher
proposes a new neural network model. Provid-
ing a post-hoc analysis of hyperparameters is akin
to showing feature ablation experiments. In sum,
our work can be considered as an effort to unpack
“blackbox" deep learning models at the level of
hyperparameters.

4 Case Study: Post-hoc Interpretation

We now provide a case study on Transformer hy-
perparameters for machine translation to illustrate
the kinds of insight we can learn from the proposed
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post-hoc interpretation framework.

4.1 Dataset and Setup

Machine Translation (MT) Datasets Our experi-
ments are conducted on a tabular dataset published
by Zhang and Duh (2020), which contains 1,983
pairs of hyperparameter configurations and BLEU
scores in total. To obtain those pairs, they trained
all the Transformers to convergence on 6 MT cor-
pora. Those 6 MT datasets are distinct on sizes
— ranging from 24K training samples to 4M; do-
mains — either in a single domain like TED Talks
or in mixed-domain; language pairs — including
Chinese-English (zh-en), Russian-English (ru-en),
Japanese-English (ja-en), English-Japanese (en-ja),
Swahili-English (sw-en) and Somali-English (so-
en). The large size of the tabular dataset enables
efficient post-hoc investigation. Its diversity also
allows further study on the generalization of the
observations.

Following Zhang and Duh (2020), we will be fo-
cusing on the effect of 6 different hyperparameters.

* Preprocessing configurations: number of
BPE symbols (bpe).

* Training settings: initial learning rate (Ir) for
the Adam optimizer.

* Architecture designs: number of layers (lay-
ers), embedding size (#embed), number of
hidden units in each layer (#hidden), number
of heads in self-attention (attn).

These hyperparameters appear frequently in MT
literature as a part of the description of experiment
setups. Practitioners aiming at a better model
spend a large amount of time tuning them manually.
We are interested in examining whether they are
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really equally important and deserve the efforts.
We will answer these questions in the following
section.

EBM Setup We adopt the implementation
of EBM from Nori et al. (2019). To be specific, we
train a EBM regressor on each of the language pair,
which results in 6 models. Due to space limitation,
we will only show results on selected language
pairs, the rest can be found in Appendix.

4.2 Findings

In this section, we show how EBM can be used to
interpret Transformer hyperparameters and report
three types of findings.

4.2.1 Hyperparameter Importance

EBM learns an importance score for each feature,
which indicates how much the model performance
would change with varying feature values. It is
computed as the absolute expected value of f; over
the dataset. Figure 2 plots the hyperparameter im-
portance ranking on ru-en and zh-en. As shown in
the figure, hyperparameters are not equally impor-
tant and there is a large discrepancy between fea-
tures. On ru-en, #embed and [r are the most critical
hyperparameters in determining Transformer’s per-
formance followed by bpe; while adjusting #layers,
attn and #hidden (not shown in the figure) would
only slightly affect the results. On zh-en, /r and
#embed are also at the top of the listing, but the
overall ranking is different from ru-en. Some im-
portant hyperparameters for ru-en, e.g. bpe, rank
low on zh-en. Some insignificant hyperparame-
ters for ru-en, e.g. #hidden, are elevated to higher
positions on zh-en.

https://github.com/interpretml/interpret



In summary, there are only a limited number of
critical hyperparameters for Transformers, and it
would be more efficient to focus more on tuning
them when developing a model. Across 6 language
pairs, #attn is always ranked low and can be proba-
bly dropped from future hyperparameter search.

4.2.2 Single Hyperparameter Analysis

Besides the macro view of contributions of all the
hyperparameters, EBM also provides a micro view
studying how the segments within each hyperpa-
rameter relate. Figure 3 depicts the single feature
function extracted from the trained EBM model
on en-ja. As [r increases from 0.0003 to 0.001,
BLEU score decreases significantly. While it is not
the case for bpe, where the BLEU score does not
change monotonically — it rises a little when bpe in-
creases from 10k to 30k, then drops notably when
bpe becomes 50k. This finding tell us both 10k and
30k are positively correlated with BLEU and the
difference is not so distinct, but 50k is definitely
not desirable.

4.2.3 Pairwise Interactions

EBM can automatically detect and include pairwise
interaction terms in its modeling. Figure 4 shows
an example of how two hyperparameters interact
to determine Transformer’s performance. On en-ja,
#embed with size of 1024 and [r with the size of
0.0003 produce the highest BLEU score among all
the combinations. On the contrary, #embed 1024
and /r 0.001 output the worst Transformer. This is
consistent with Figure 3 Left — larger /r worsens
the performance.

However, this does not hold true for #embed
256 and 512: given these values, there is not so
strong of a (negative) correlation between /r and
BLEU score. This seems to imply that while Ir is
sensitive for a large #embed 1024, it is less sensitive
when #embed is small. We do have to interpret this
result carefully because there may be confounding
factors from the individual feature functions f; that
are added, but this is illustrative of the potential
insights we may gain from this case study.

Theoretically, the EBM formulation can allow
for higher-order interactions (e.g. three-way). This
may be a promising direction for future work.

5 Analysis of EBM Robustness

To ensure the validity of our post-hoc interpreta-
tion framework, we need to analyze the robust-
ness of EBM to different kinds of data sizes and
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distributions. Specifically, one important require-
ment for our framework is the availability of P £
{(My, s(M)))}; one might not be able to fully
control how this data is acquired. It may be a by-
product of an extensive grid search, a manual and
focused hyperparameter tuning guided by an engi-
neer’s intuition, or an AutoML experiment. This
implies the that hyperparameters may not be sam-
pled uniformly from the space A, and the number
of samples for EBM fitting may not be very large.

In order to gain better understanding of EBM’s
robustness under different conditions, we conduct
four experiments. We first study how EBM’s fitting
ability would be affected if the size or the distribu-
tion of training data changes. We then make con-
nections to Hyperparameter Optimization (HPO),
and examine EBM’s performance on data gener-
ated by sampling from two different HPO methods.
Finally, we investigate the generalization ability of
EBM. To be more specific, we test whether a EBM
model trained on one dataset can perform well on
another dataset.

The experiments following are all conducted on
sw-en except for the one in Section 5.4. We split
the sw-en dataset, the largest dataset among the six
datasets provided by Zhang and Duh (2020) which
contains 767 (configuration, BLEU score) pairs,
into a train set with 614 samples and a test set with
153 samples. An EBM regressor is trained on a
subset of the train set and its performance on the
test set is reported. We repeat the process 5 times
with different random seeds to generate 5 different
train-test splits. Thus, results reported below are
all averaged over 5 runs.

5.1 Varying Data Sizes

In practice, it is often infeasible to get a tabular
dataset as large as the one in Zhang and Duh (2020),
where around 2,000 Transformers are trained. This
raises the question how EBM would perform with
insufficient training data. In other words, it is in
doubt if its interpretations on hyperparameters (e.g.
observations shown in Section 4.2) are trustworthy
when it is trained with less data.

In order to answer the questions above, we create
datasets with different sizes by randomly sampling
from the train set of sw-en. We experimented with
subsets ranging from containing only 5% of the
training samples, that is 31 samples, to the whole
" Data here refers to the (hyperparameter configuration,

BLEU score) pairs, instead of the sentence pairs that are used
to train a MT Transformer.
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We use the following metrics to measure EBM’s

performance:

Figure 4: Pairwise interaction between embedding size
and initial learning rate on en-ja. Higher score (yellow)

indicates higher odds to get higher BLEU scores.
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different random seeds.
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* Mean Squared Error (MSE) We calculate
the average of the squared difference between
the actual BLEU scores and EBM regressor’s
predictions given hyperparameter configura-
tions. As a widely used measure of an es-
timator’s quality, MSE is useful when com-
pared between estimators. To be more spe-
cific, when there are multiple MSE scores,
a lower one indicates a stronger estimator.
While when there is only a single MSE score,
it is hard to judge whether it is low enough
to testify a good EBM model. Thus, we pro-
pose the following metrics as complements to
MSE.

* Spearman’s Rank Correlation Coefficient
(SRC) We measure SRC between the ranking
of real BLEU scores and EBM’s predictions.
For the purpose of interpreting hyperparame-
ters, it is not necessary that EBM would pre-
dict the exact BLEU scores. Instead, it is
more important that it recovers the ranking.
For SRC, higher is better.

* Mean Reciprocal Rank (MRR) In some

cases, for example, in hyperparameter search,
one might be more interested in getting the
best configuration and would be less con-
cerned with the ranking of all the configu-
rations. Reciprocal rank is defined as ﬁ’
where rank is the position of the best config-
uration predicted by EBM in the real ranking.
MRR, in our case, is the average over 5 runs.

It is better if MRR is closer to 1.



Size(%) 5 10 20 30 40 50 60 70 80 90 100
Mean 1843 1440 9.58 6.79 6.26 584 572 5.17 488 4.73 459
Std 351 156 084 054 041 057 032 016 031 0.13 0.10

Table 2: The mean and standard deviation of MSE on sw-en test set. EBM is trained on subsets of train set with
various sizes and data compositions. Each subset is sampled 5 times with different random seeds.

We plot EBM’s performance with varying data
sizes in Figure 5. It can be observed that al-
though MSE rises drastically when the data size
shrinks from 30% to 5%, it remains roughly at the
same level when the size is larger than 30%. This
means that a relatively accurate EBM model can
be obtained with only 185 samples, and data sizes
smaller than that would worsen the model signifi-
cantly.

Same trend is also shown in other metrics and
30% is the turning point for all the lines. SRC ends
up getting close to 1 when the data size increases,
suggesting EBM’s great ability to recover the rank-
ing. MRR stops at % that means EBM mistakes the
third best configuration as the best one. However,
the difference between the BLEU score of the top
three and top one is small, which is only 0.41.

5.2 Varying Data Distributions

Section 5.1 shows that a comparably good EBM
model can be obtained by training on as few as
185 samples. Would this stay true if those 185
samples are replaced with other 185 samples? In
other words, would EBM be robust to varying data
distributions?

We evaluate EBM models trained with different
data compositions and data sizes. Results are sum-
marized in Table 2. As the amount of training data
increases, the standard deviation of MSE decreases
gradually, i.e. the EBM model becomes more ro-
bust. When given limited data, EBM is more prone
to underfitting and generalize poorly to the test set.
It can be inferred that hyperparameter interpreta-
tions produced by EBM models trained with more
samples are more trustworthy and accurate than
those trained with limited data.

5.3 Connections to HPO

The goal of HPO is to find an optimal hyperpa-
rameter configuration with as few evaluations of
the model as possible. Most of the HPO methods

100% refers to using all the samples in the train set, which
takes up 80% of the original sw-en dataset. MSE here is not
determined because we also randomly sampled train set from
the whole dataset multiple times.
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Figure 6: The performance of EBM trained on sw-en
data sampled by BO, GB and randomly sampling. EBM
is evaluated on a held-out test set, which takes up 20%
of the sw-en data.

can be classified as sequential model-based opti-
mization (SMBO). SMBO employs 1) a surrogate
model to approximate the underlying function be-
tween hyperparameters and model performance, 2)
an acquisition function to propose hyperparameter
configurations to explore. SMBO works iteratively.
Considering applying HPO to MT Transformer,
at each iteration, the acquisition function selects
configuration candidates to query the Transformer;
after training and evaluation, a BLEU score is re-
turned; the surrogate model then fits on the result-
ing pairs of configurations and BLEU scores and
make predictions on unevaluated configurations,
which are further used by the acquisition function
as bases for making candidate suggestions. Thus,
the fitting ability of the surrogate model is crucial
to the success of the HPO method.

In this section, we focus on investigating how
EBM would fit the sampling by HPO methods,
where sampling refers to the candidates proposed
by acquisition function along one complete run
of HPO - this is related to Section 5.2, since HPO
sampling generates another unique data distribution
for EBM to train on.

We experiment with two HPO methods,
Bayesian Optimization (BO) and a Graph-Based
HPO method (GB, Zhang and Duh (2020)). For
BO, we use Gaussian Processes as surrogate model
and expected improvement as acquisition function.



For GB, we use Matérn52 kernel and expected in-
fluence. We run BO and GB separately on sw-en
and record the sampling order of hyperparameter
configurations. We then compare the performance
of EBM models trained on the first n% data points
in the sampling with those trained on randomly
sampled data. Results are plotted in Figure 6.

BO and random show similar trends with MSE
falling sharply when the training data increases
from 5% to 30%. While GB drops at a slower pace
with MSE always staying the highest among the
three. The discrepancy between the curves testifies
the discrepancy between the sampling of BO and
GB. Compared to random and BO, the distribution
of GB sampling is more skewed. At size 15%, BO
surpasses random and maintains the lowest MSE
till size 100%. This suggests that BO sampling
makes EBM a better model than random sampling.

EBM can be used in combination with HPO in
two ways: 1) During the run of HPO, EBM can be
adopted as an analysis tool. By fitting the HPO sam-
pling, it can provide insights on hyperparameter im-
portance (Section 4.2.1) and make suggestions on
hyperparameter values (Section 4.2.2). The HPO
algorithm can then adjust its search space accord-
ingly for later runs. But one should be cautious
when the HPO algorithm in employment gener-
ates poor sampling distribution like GB does. 2)
EBM can also be adopted as an alternative surro-
gate model considering its good fitting ability.

5.4 Transferability

So far, we have examined EBM’s behaviours on
specific language pairs. We have trained isolated
EBM models on 6 MT tasks. Next, we explore
whether EBM can leverage knowledge learned
from one task and transfer it to another. Specif-
ically, we evaluate each trained model on the test
set of each of the language pair respectively. Figure
7 summarizes the results.

EBM faces difficulty on some of the transfers,
for example, from sw-en (y-axis) to so-en (X-axis)
and from so-en to sw-en. Meanwhile, there are
also some successful transfers, for example, from
en-ja to ru-en and from ru-en to en-ja. Surprisingly,
EBM trained on en-ja generalizes so well on ja-
en and ru-en that MSE obtained on those two test
sets is even lower than that obtained on en-ja’s
test set. However, overall, there does not exist a
single dataset that can produce a good EBM that
can generalize well on all the other datasets.
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An interesting future work is to implement in-
terpretability tools to analyze when transfer works
and when it does not.

6 Related Work

Previous work that explores the effect of choices
of hyperparameters can be mainly divided into two
categories: the prescriptive approach aims to offer
advice on the configurations by large-scale experi-
mental runs and those developing tools to improve
the understanding of the hyperparameters, as cited
in Section 3. Our work follows the descriptive ap-
proach, which seeks to interpret trends from a set of
already-trained models. Related are some studies
that measure hyperparameter importance: Hutter
et al. (2014) and Sharma et al. (2019) applied a
functional ANOVA framework to assess the impor-
tance, while Probst et al. (2019) adopted a variant
term, hyperparameter tunability, conditioned on
the difference on the performance of default and
optimal settings of hyperparameters.

Exploration of the hyperparameter space also
appears in research on HPO interpretability (Pfis-
terer et al., 2019; Freitas, 2019; Xanthopoulos et al.,
2020). Moosbauer et al. (2021) attempted to inter-
pret the HPO process with a variant of the partial
dependence plot and showed what the surrogate
model learned about the search space and how the
final model is found.

7 Conclusions

In this work, we propose a framework for interpret-
ing the hyperparameters of a set of Transformer
models. Our framework work uses EBM as a post-
hoc analysis tool, and we show that as a glassbox



model, EBM is effectively at interpreting hyperpa-
rameters. While the computational needs of gen-
erating training data for EBM may seem large at
first glance, we emphasize that we advocate for
post-hoc analysis. In other words, the analysis is
performed on the results of whatever hyperparam-
eter search the model builder needs to perform to
deploy a model.

Our MT case study demonstrates the kinds of
insights one can glean regarding the relationship
between hyperparameter configurations and Trans-
former performance; for example, we discover that
that not all hyperparameters are equally important,
and some hyperparameters exhibit non-monotic
corelation with BLEU scores. Further, we con-
ducted a series of analyses to test the robustness
of EBM’s fitting ability under varying data sizes
and distributions. We show that EBM fits well un-
der limited data, yet struggles with transfer across
different MT datasets. It should also be noted that
the conclusions drawn from MT tasks might not be
applicable to other Transformer-based tasks.

Hyperparameter tuning is often viewed as a crit-
ical yet un-intuitive part of the model building pro-
cess. We hope that our proposal provides a first
step in unveiling the mysterious masks of hard-to-
interpret hyperparameters in deep learning models.
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A Hyperparameter Importance
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Abstract

Humans can systematically generalize to novel
compositions of existing concepts. Recent stud-
ies argue that neural networks appear inherently
ineffective in such cognitive capacity, leading
to a pessimistic view and a lack of attention
to optimistic results. We revisit this controver-
sial topic from the perspective of meaningful
learning, an exceptional capability of humans
to learn novel concepts by connecting them
with known ones. We reassess the composi-
tional skills of sequence-to-sequence models
conditioned on the semantic links between new
and old concepts. Our observations suggest
that models can successfully one-shot general-
ize to novel concepts and compositions through
semantic linking, either inductively or deduc-
tively. We demonstrate that prior knowledge
plays a key role as well. In addition to synthetic
tests, we further conduct proof-of-concept ex-
periments in machine translation and semantic
parsing, showing the benefits of meaningful
learning in applications. We hope our positive
findings will encourage excavating modern neu-
ral networks’ potential in systematic generaliza-
tion through more advanced learning schemes.

1 Introduction

As a crucial characteristic of human cognition,
systematic generalization reflects people’s talents
to learn infinite combinations of finite concepts
(Chomsky, 1956; Montague et al., 1970). Whether
connectionist networks can express language and
thoughts systematically has been controversial for
many years (Fodor and Pylyshyn, 1988; Hadley,
1994; Marcus, 1998; Fodor and Lepore, 2002;
Brakel and Frank, 2009; Frank et al., 2009; Marcus,
2018). To date, the systematic compositionality
in neural networks remains an appealing research
topic. Evidence on multiple explicitly proposed
language-based generalization challenges suggests

* Work was done at Alibaba Group.
* Zhouhan Lin is the corresponding author.
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Prior Knowledge
"walk left and jump left" —> LTURN WALK LTURN JUMP
(XL

A New Concept
Deductive Variant Rule
"turn left and walk" ?LTURN WALK

"turn left and walk and jump right" —>LTURN WALK RTURN JUMP
Inductive Variant Sample

oo
(===

"turn left and walk and jump left" 7: LTURN WALK LTURN JUMP

One-shot Generalization

Figure 1: An example of the one-shot compositional
generalization from the old concept “walk left” to the
new one “turn left and walk” in SCAN. The model is
able to generalize from the command “walk left and
Jump left” to “turn left and walk and jump left” through
the semantic relationship between the old and new con-
cepts because they refer to the same action “LTURN
WALK?”. Such semantic linking can be established by
either an inductive sample or a deductive rule.

that models lack such cognitive capacity (Bastings
et al., 2018; Loula et al., 2018; Sinha et al., 2019;
Keysers et al., 2020; Hupkes et al., 2020; Kim and
Linzen, 2020; Li et al., 2021). Tremendous ef-
forts are made to tackle these challenges through
architectural modifications (Li et al., 2019; Gordon
et al., 2020; Oren et al., 2020; Akyurek and An-
dreas, 2021; Chaabouni et al., 2021), meta-learning
(Lake, 2019; Conklin et al., 2021), grammar (Kim,
2021; Shaw et al., 2021), neuro-symbolic mod-
els (Chen et al., 2020; Liu et al., 2020; Nye et al.,
2020), data augmentation (Andreas, 2020; Akyiirek
et al., 2021; Auersperger and Pecina, 2021; Jiang
and Bansal, 2021; Patel et al., 2022), and loss de-
sign (Yin et al., 2021). Despite their astounding
accomplishments, standard sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014) appear
to have relatively weak inductive biases, failing to
capture underlying hierarchical structure.

In contrast, the successful one-shot generaliza-
tion in the turn-left experiment on the Simplified
CommALI Navigation (SCAN) task reveals the po-
tential of seq2seq recurrent networks in controlled
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.................................................

Figure 2: Adapted examples from Geography. In the left one, intuitively, knowing how the new concept (e.g.,
“USA”) relates to the other existing ones (e.g., “US”) can boost the learning and memory of this knowledge as a
whole. In the right one, bidirectional arrows denote symmetric relations. “Mississippi” and “California” are two
specific states, and thus both are hyponyms of “state”. In turn, “state” is a hypernym of them. Due to a common
hypernym, “Mississippi” and “California” become a co-hyponym for each other. {“heavily populated”, “congested”,
“populus”} is a group of synonyms as sharing similar semantics. Finally, “U.S.”, as a kind of abbreviation, is a

lexical variant of “United States”.

environments (Lake and Baroni, 2018). Although
models are only exposed to the primitive command
before, they are able to understand most composed
commands of “furn left”. One assumption is that
models study new commands with a primitive from
other action sequences containing the basic action
it denotes. However, there is still a missing formal
exploration to answer the question raised by Lake
and Baroni (2018) on page 8 that “what are, pre-
cisely, the generalization mechanisms that subtend
the networks’ success in these experiments”.

In this work, as a response to the call, we ques-
tion whether neural networks are indeed deficient
or just conventional learning protocols unable to
exploit their full potential (Csordds et al., 2021;
Dankers et al., 2022b). We revisit the systematic
generalization of seq2seq models from a mean-
ingful learning perspective (Ausubel, 1963; Oke-
bukola and Jegede, 1988; Mayer, 2002). Given the
idea that humans are used to memorizing concepts
in a relational manner, we hypothesize that the suc-
cess of the turn-left experiment results from the
semantic relationships between old concepts and
new ones. For example, in Figure 1, a model can
understand the meaning of “turn left and walk and
Jjump left” from “walk left and jump left” via the
semantic link between two concepts (in bold) since
both denote to the same action “LTURN WALK”.

To validate our hypothesis, we reproduce the one-
shot compositional generalization by semantic link-
ing that exposes semantic relationships through ei-
ther inductive learning or deductive learning (Ham-
merly, 1975; Shaffer, 1989; Thornbury, 1999). On
the one hand, by introducing new concepts sharing
the same context, we hope the model can capture
the underlying semantic connections inductively.
On the other hand, by involving a rule-like concept
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dictionary without specific context information, we

hope the model can utilize the general cross-lingual

supervised signals as anchor points so as to launch
the semantic linking deductively.

In experiments, we treat concepts in the initial
data set as primitives and generate variant samples
and rules accordingly. Next, we mix them up and
construct a seq2seq task after a random split. We
repeatedly train and evaluate models but slowly de-
crease the number of times they see each variant
until one-shot learning. We observe there is hardly
a performance drop in SCAN for three represen-
tative model structures. This evidences that, with
semantic linking, even canonical neural networks
can generalize systematically to new concepts and
compositions. Such observation holds consistently
across two more semantic parsing (SP) datasets.
The followed sensitivity analysis shows that prior
knowledge also takes essential parts. Lastly, as a
proof-of-concept, we demonstrate how meaning-
ful learning already benefits models in standard
machine translation (MT) and SP. Overall, our con-
tributions' are as follows:

* We revisit systematic generalization from a mean-
ingful learning perspective by either inductive or
deductive semantic linking.

* We find that modern seq2seq models can gen-
eralize to new concepts and compositions after
semantic linking, which empirically answers the
question by Lake and Baroni (2018).

* We show in the sensitivity analysis that both se-
mantic linking and prior knowledge play a key
role, in line with meaningful learning theory.

* We extend to standard MT and SP and demon-
strate how meaningful learning already benefits
models in solving realistic problems.

!Code and data are publicly available at GitHub.


https://github.com/ShiningLab/Systematic-Generalization-via-Meaningful-Learning

2 Meaningful Learning

In educational psychology, meaningful learning
refers to learning new concepts by relating them to
old ones (Ausubel, 1963; Mayer, 2002). In Figure
2, intuitively, the utilization of meaningful learning
can encourage learners to understand information
continuously built on concepts the learners already
understand (Okebukola and Jegede, 1988). Follow-
ing this, we intend to examine models’ systematic
compositionality by exploring semantic linking that
establishes semantic relations between primitives
(old concepts) and their variants (new concepts).
We propose to spoon-feed semantic knowledge to
models for semantic linking in two ways, that is,
inductive learning and deductive learning (Ham-
merly, 1975; Shaffer, 1989; Thornbury, 1999). In
this section, we discuss the process of semantic
linking and take “jump" from SCAN as an example
primitive to illustrate the learning scheme.

2.1 Semantic links

We focus on three semantic relationships, namely,
lexical variant, co-hyponym, and synonym. Lexi-
cal Variant refers to an alternative expression form
for the same concept. Co-hyponym is a linguis-
tic term to designate a semantic relation between
two group members belonging to the same broader
class, where each member is a hyponym and the
class is a hypernym (Lyons and John, 1995). Syn-
onym stands for a word, morpheme, or phrase that
shares exactly or nearly the same semantics with
another one. We provide an example in Figure 2
and a detailed description in Appendix A.

2.2 Inductive learning

Inductive learning is a bottom-up approach from
the more specific to the more general. In gram-
mar teaching, inductive learning is a rule-discovery
approach starting with the presentation of specific
examples from which a general rule can be inferred
(Thornbury, 1999). In semantic linking, we pro-
pose to introduce variant samples sharing the same
context with their primitives during training. The
assumption is that models can observe the inter-
change of primitives and their variants surrounded
by the same context in the hope of coming up
with a general hypothesis that there is a seman-
tic linking between primitives and their variants
(Harris, 1954). To test the generalization, we de-
sign a prompt “[concept] twice” from a primitive
sample “jump twice”. After that, we fill in the con-
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cept slot with “jump_0" and generate the variant
sample “jump_0 twice”. There is no change from
the target side. Finally, by training models on the
generated variant sample in combination with prior
knowledge (all the other primitive samples), we
aim to establish the semantic relationship between
“jump” and “jump_0” inductively.

2.3 Deductive learning

Deductive Learning, the opposite of inductive learn-
ing, is a top-down approach from the more general
to the more specific. As a rule-driven approach,
teaching in a deductive manner often begins with
presenting a general rule followed by specific ex-
amples in practice where the rule is applied (Thorn-
bury, 1999). To align with this definition, we intend
to do semantic linking deductively by combining a
bilingual dictionary that maps primitives and their
variants to the same in the target domain. This addi-
tional dictionary, hence, mixes the original training
task with word translation (Mikolov et al., 2013b).
Without any specific context, we hope the model
can utilize the general cross-lingual supervised sig-
nals as anchor points so as to launch the semantic
linking. We want to point out that deductive learn-
ing is partially different from deductive reasoning.
Although there is an overlap, it is not necessary for
the former to extract rules from observations like
the inference conducted by the latter. In this work,
we care more about the learning outcomes, rather
than the reasoning process, through empirical eval-
uations. In practice, given the same example above,
we directly make use of primitive “jump’ and its
variant “jump_0” as the source sequences, as well
as the action “JUMP” as their identical target se-
quences. Words and phrases can be treated as text
sequences of relatively short length. By exposing
both the primitive rule “jump” — “JUMP” and the
variants rule “jump_0"— “JUMP” during training,
we aim to build the semantic connections between
“jump” and “jump_0” deductively.

3 Systematic Generalization

The following section specifies the setup and out-
come of the experiments. We first employ SCAN as
the initial testbed to reproduce the one-shot general-
ization conditioned on the semantic linking. Then,
we examine neural networks’ potential to achieve
this on SCAN and two real-world tasks of SP, fol-
lowed by a sensitivity analysis.
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3.1 Datasets with primitives. An example variant of “new york

Some suggest SCAN is not enough to fully verify city” is “houston city" and both are in the same

compositionality (Bastings et al., 2018; Keysers varle}b.le group “CITY—NAME_”‘ .

et al., 2020; Dankers et al., 2022a). Thus, we intro-  ‘xdVising includes 4,570 questions on course infor-
mation paired with SQL queries (Finegan-Dollak
et al., 2018). ADV is generated from Advising.
We treat 4 of 26 annotated variables as hypernyms.

duce GEO and ADV generated respectively from
real SP datasets: Geography and Advising.” Exam-
ple inputs and outputs can be found in Table 6. . o ’ .,
SCAN (Lake and Baroni, 2018) is a diagnostic ‘I‘Drec1se1y, W? ?‘elfCt { ‘a”hf:vtor):' of amertcgn.ﬁ.lm ’
dataset proposed to investigate neural networks’ aaron mag id coaap bs", “100" } as 4 prgmtlves
compositionality.® It includes 20,910 pairs of com- with their variants as co-hyponyms sharing the

mands to their instructed actions such as the exam- sgme V'?pables.hFor 1nstancfe‘,‘ c;lc.lvanced arai t.edl_
ple in Figure 1 We SeleCt {“jump", “ZOOk", “run", nlql/f'es IS'a CO- yponymo a lstO}’y Ofamerlcan
film" sharing the same variable “TOPIC".

“walk" } as 4 primitives to be in line with previ-
ous works. We focus on lexical variants and create
them by adding a suffix that consists of an under-
line and a unique number. We control the size of =~ Models. After testing many adapted versions, we
the variants set by setting the upper limit of this = employ three dominant model candidates, that is,
number. An example variant of “jump” is “jump_0"  RNN, CNN, and TFM. In terms of RNN, we re-
and both mean the same action “JUMP". produce bi-directional recurrent networks (Schus-
Geography is a common SP dataset (Zelle and  ter and Paliwal, 1997) with long short-term mem-
Mooney, 1996; Srinivasan et al., 2017), containing  ory units (Hochreiter and Schmidhuber, 1997) and
880 examples of queries paired with corresponding  an attention mechanism (Bahdanau et al., 2015).
expressions. It is later formatted to SQL language  We follow the convolutional seq2seq architecture
with variables in the target sequences (Finegan-  presented by Gehring et al. (2017) with regard to
Dollak et al., 2018). GEO is generated from Ge- CNN and the attention-based structure proposed
ography. We regard 4 of 9 annotated variables by Vaswani et al. (2017) in the case of TFM. More
as hypernyms and keep them as they are in SQL.  details are in Appendix B.
sequences. The other variables are restored by en-  Training. We apply the mini-batch strategy to sam-
tities from the source sequence accordingly. Asa  ple 128 sequence pairs for each training step. We
result, the overall data size is 618 after processing.  use Adam optimizer (Kingma and Ba, 2015) with
We can make use of the “is-a" hypernymy relation  an ¢, gradient clipping of 5.0 (Pascanu et al., 2013)
for semantic linking. Specifically, we select {“new  and a learning rate of le=%. We freeze the maxi-
york city", “mississippi rivier", “dc", “dover" } as4 ~ mum training epoch at 320 for CNN and 640 for
primitives* with their variants consisting of entities ~ RNN and TFM. To prevent uncontrolled interfer-
as co-hyponyms sharing the same variable group  ence, we train all models from scratch instead of
fine-tuning (Devlin et al., 2019). For the same rea-
a1 thub. com/brendenlake/SCAN son, we break words by whitespace tokenization
*We randomly select 4 primitives from GEO and ADV to rather than subword modeling. So, we can guar-
align with SCAN. antee that words are treated separately as distinct
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3.2 Models and experimental setup

2github.com/jkkummerfeld/tethsql—da’ca


github.com/jkkummerfeld/text2sql-data
github.com/brendenlake/SCAN

SCAN GEO ADV
Data Exp. IL Exp. DL Exp. IL Exp. DL Exp. IL Exp. DL
Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.
Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614

Table 1: Dataset statistics for inductive learning (IL) and deductive learning (DL) across Standard (Sta.), Difficult

(Dif.), and Challenging (Cha.) in Section 3.4.

tokens with completely different embeddings.
Evaluation. Token and sequence accuracy serve as
two primary metrics. The former allows partial er-
rors in a sequence, while the latter strictly does not.
Every reported number, along with the standard
deviation, is the mean of five runs.

3.3 Experiment: meaningful learning

Thanks to their incredible algebraic composition-
ality (Chomsky, 1956), humans can effectively
capture the underlying semantic connections be-
tween new and old concepts and generalize the
prior knowledge to novel combinations by mean-
ingful learning (Ausubel, 1963). To investigate
the extent to which models can do the same, we
probe the models’ compositionality by introduc-
ing semantic linking. It is reasonable to illustrate
the function of semantic linking through an abla-
tion study, while its missing will lead to an out-
of-vocabulary (OOV) issue since there will be no
sample to expose variants during training. Replac-
ing variants with other tokens (e.g., “[unk]”’) goes
against our intent to investigate the generalization
from primitives to their variants. It also leads to
an unfair comparison, where all the variants, for
example, go to the same unknown token and cause
poor test accuracy. Instead, we gradually remove
training samples for each variant until the one-shot
learning scenario. We hope to observe the presence
of models’ meaningful learning by measuring the
corresponding performance loss.

Experimental setup. Following section 2.2, we
make use of 40 variants for 4 primitives and pro-
duce a total of 329,190 samples, including both
primitive and variant samples. We randomly split
them into a training set (80%) and a test set (20%).
The training set is further processed to remove sam-
ples having multiple variants to ensure that each
variant occurs only once in each sample. Even-
tually, the training set contains 235,002 samples.
Models directly trained on this full dataset serve
as baselines. Then, to format a gradual transition
from baselines to the meaningful learning, we train
the same models on various datasets with a decreas-
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ing number of augmented samples for each variant
until the one-shot learning setting. Besides, we use
the variant rule “jump_0" — “JUMP” as the only
training sample for “jump_0” in the end as a case
of our deductive learning introduced in Section 2.3
and consider the rest as our inductive learning.
Results. As elaborated in Figure 3, the solid line
(SCAN) in green denotes the total training data size
against the decreasing number of training samples
per variant. The dashed line in other colors de-
notes the test sequence accuracy against the same
horizontal axis. RNN has no significant perfor-
mance drop when the training size is reduced from
100% to 1. It still achieves 99.92% test sequence
accuracy when there is only one training sample
for each variant. The same happens for CNN and
TFM. Despite a slight fluctuation, they keep the
results almost consistent regardless of whether the
number of training variant samples is all or 1. It
is not necessary to augment the training set nearly
14 times from 16,736 to 235,002 to cover all the
possible variant compositions. The participation of
a single sample is able to launch semantic linking
via either inductive learning (a variant sample) or
deductive learning (a variant rule), thus enabling
models to achieve one-shot generalization. We put
two plots in one figure to emphasize such a surpris-
ing observation through the strong contrast.

3.4 Experiment: semantic linking injection

The following two experiments evaluate models’
systematic generalization, particularly for prior
knowledge and semantic linking. A sliding scale
of difficulty is carefully designed by weakening
these two factors according to the assumption that
the greater the difficulty, the more compositional
skills are required. We further validate our findings
on GEO and ADV. We use the same evaluation
protocol across different datasets in this section.
Taking the base dataset as prior knowledge, we
replace the primitives in source sequences with
their variants to generate novel compositions, as
introduced in Section 2.2. So far, the produced
variant samples are not in the training set but in the



Data  Model Token Acc.% Seq. Acc.%
Standard Difficult Challenging Standard Difficult Challenging
RNN  99.994+0.03 99.80+£0.19 99.96 +£0.02 99.95+0.08 99.85+£0.08 99.80+£0.31
SCAN CNN 99.96 +£0.08 99.76 +=0.54 98.89+244 99.85+£0.34 99.52+1.07 97.57+£5.24
TFM  98.91+0.78 98.90+1.10 98.76 £0.85 97.35+1.62 96.86+2.64 96.38 +2.81
RNN  75.71£8.42 75.69+£6.12 73.46+£3.05 44.95+14.69 43.27+£13.47 36.77£5.60
GEO CNN  87.99+2.67 79.51+6.03 77.40+2.48 69.46+5.78 51.20£8.64 48.58 £ 3.40
TFM  75.37+£7.84 75.11+4.88 68.41+4.76 4593+12.42 44.594+9.76 36.93 £ 7.47
RNN  58.61+6.18 59.74+£5.67 58.11+5.82 36.18+5.75 35.69+6.05 35.45+6.69
ADV  CNN  57.83+£7.55 54.05+£5.74 53.66+2.57 45.084+9.32 42.14+6.90 41.37+4.04
TFM  53.43£2.80 51.51+£4.50 49.17+2.58 42.594+3.65 41.28+4.35 38.88 £ 2.68

Table 2: Evaluation results over RNN, CNN, and TFM on SCAN, GEO, and ADV across Standard, Difficult, and

Challenging in Section 3.4.1.

test set. Hence, variants exist as OOV now. Then,
we either incorporate one variant sample to intro-
duce variants in training inductively or one variant
rule to do so deductively. In the one-shot learning
scenario, we ensure each variant only has a single
sample and appears only once during training. For
convenience, we keep the same settings for each
primitive to have 10 variants in SCAN and a full
variant set in GEO (e.g., 39 variants for “new york
city"). It is noted in ADV that we randomly sample
5 variants for each primitive so that we cover all
the variants with an appropriate test size.

3.4.1 Inductive learning

Experimental setup. We increase the difficulty
by excluding primitive samples from the training
set. It is worth noting that models have to gener-
alize to not only new concepts but also their new
compositions with a higher level of difficulty.

» Standard: Models are trained on prior knowl-
edge and one variant sample per variant.
Difficult: We remove from the prior knowledge
primitive samples sharing the same context with
their variant samples. For example, we remove
“jump twice” due to “jump_0 twice”, and thus
models have to generalize to “jump_0 twice’
without seeing “jump twice”.

Challenging: We also exclude from the prior
knowledge primitive samples of the same length
as their variant samples. For instance, models
have to reproduce the same generalization to
“jump_0 twice” without seeing primitive samples
of length 2, including “jump twice”, “jump right”,
“jump left", to name a few.’

SCAN. What stands out in Table 2 is an excel-
lent one-shot generalization for all three networks.

B

SWe remove samples that will not lead to unknown tokens.
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Data  Model Token Acc.% Seq. Acc.%
Standard Difficult Standard Difficult
RNN 99.48 +0.71 98.70 £0.92  98.27+2.38  95.39 4+ 2.72
SCAN CNN 99.99+0.01  98.594+3.10 99.96+0.03  96.66 = 7.27
TFM 96.90 £ 1.78  96.68 +2.21 91.94+4.04 91.26 £5.80
RNN 5444 £7.15 39.71+18.38 13.61£7.08 7.76 £5.34
GEO CNN 41.86 £3.38  41.07+7.48 4.85 £+ 4.66 4.04 £2.18
TFM 67.02 +6.91 65.97+£5.17 36.38 +£10.08 31.57 +7.42
RNN 36.50 £7.66  36.42+7.39 12.84 £4.31 12.66 £ 5.19
ADV CNN 43561 £11.31 35.34 +£14.68 32.33+12.93 23.58 +16.04

TFM 56.824+3.79  53.334+3.85 47.434+3.71 43.24+5.14

Table 3: Evaluation results over RNN, CNN, and TFM
on SCAN, GEO, and ADV across Standard and Difficult
in Section 3.4.2.

The participation of variant samples induces a near-
perfect generalization. Even the worst results ob-
tained by TFM in Challenging are around 98.76%
and 96.38% in terms of token and sequence accu-
racy. The outcomes confirm that networks can in-
ductively learn semantic relations from the context
after semantic linking. The disappearance of train-
ing samples in Difficult and Challenging causes
a performance drop. This is well in line with the
widely accepted belief in meaningful learning the-
ory that prior knowledge matters to generalization.
GEO & ADV. The more apparent changes in met-
rics again verify that prior knowledge is essential.
Either excluding primitive samples containing the
same context or those of the same sequence length
can produce a steep fall in the generalization. On
GEO, CNN can lose an absolute sequence accu-
racy of 18.26% from Standard to Difficult, and that
for TFM drops 7.66%. This upholds our argument
that generalization via meaningful learning is in-
separable from sufficient prior knowledge. The
overall decline in performance can be attributed
to the switch from toy sets to actual datasets since
both GEO and ADV own a much more complex
encoding and decoding space than SCAN. There-



fore, we conclude that both prior knowledge and
semantic linking exert powerful effects upon the
potential of models to generalize systematically.

3.4.2 Deductive learning

Experimental setup. We increase the difficulty
of compositional learning by excluding primitive
rules from the training set as follows:

» Standard: Models are trained on the prior knowl-
edge, primitive rules, and variant rules.

* Difficult: We remove primitive rules from the
training set. Consequently, semantic links are
weakened and depend on variant rules only.

SCAN. By incorporating deductive semantic link-
ing, all three networks attain satisfying composi-
tional generalization as shown in Table 3. CNN
achieves the highest 99.96% in Standard, while
TFM takes the lowest 91.26% in Difficult with re-
gard to sequence accuracy. We can see a consistent
decline in accuracy when we undermine the se-
mantic linking by removing primitive rules from
the training set. The most significant sequence ac-
curacy drop of 3.3% comes from CNN when the
difficulty upgrades. However, in Difficult, even the
lowest one is impressive as there is only one variant
rule to introduce each variant during training.
GEO & ADV. There is a persistent performance
loss because of the absence of primitive rules from
the training set across models. Concretely in GEO,
the grade of CNN declines from 32.33% in Stan-
dard to 23.58% in Difficult in terms of sequence
accuracy. The causal role of semantic linking is
also demonstrated by varying the difficulty. The
difference between Standard and Difficult indicated
that either concept rules and just variant rules can
connect primitives with their variants semantically,
though the former is better than the latter. More-
over, models appear to realize systematic general-
ization better in an inductive way. By comparing
Table 2 with Table 3, we find that current black-box
neural nets are more capable of exploring patterns
from specific samples with context information
rather than understanding knowledge from general
rules in our experiments. This sheds light on why
current machine learning is still highly data-driven
and can hardly break through the bottleneck to con-
duct advanced logic reasoning as human beings.

3.5 Sensitivity analysis

Regarding deductive learning, we conduct sensitiv-
ity analysis with a varying number of primitives
(#primitives) from {1,2,3,4} and that of variants
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Figure 4: Experiments over RNN on SCAN with vary-
ing #primitives (a) and #variants (b).

per primitive (#variants) from {1,5,10,15,20} over
RNN on SCAN. The experimental setup is bor-
rowed from Standard in Section 3.4.2.

Impact of #primitives. In Figure 4 (a), the gen-
eralization performance improves w.r.t. accuracy
boosting and variance reduction when #primitives
grows simultaneously. This is counter-intuitive as
we thought primitive rules should work indepen-
dently. A potential reason is semantic linking built
by various independent primitive rules can profit
each other to trigger a more robust and stable gen-
eralization. For example, “jump” — “JUMP” and
“look” — “LOOK” may separate them from the
context such as “jump right” and “look right”. So,
“[concept] right” functions as a compositional rule
shared among primitive samples and finally encour-
ages models to generalize more effectively.
Impact of #variants. As presented in Figure 4 (b),
RNN generalizes consistently well when #variants
goes up. Therefore, we report that the generaliza-
tion among variants of the same primitive has a
certain degree of independence within a reasonable
range (e.g., #variants < 20).

4 From SCAN to Real Data

Thus far, we have argued the feasibility of sys-
tematic generalization activated by semantic link-
ing. We move on to discuss how it already ben-
efits machines in solving real problems. Many
recent papers propose to improve systematic gener-
alization by techniques such as data augmentation
(Andreas, 2020; Akyiirek et al., 2021) and meta-
learning (Lake, 2019; Conklin et al., 2021). The
success is reasonable given our findings. Replacing
fragments in real training samples with others that
share similar contexts is supported by our induc-
tive learning. We have demonstrated that similar
context information can help establish the seman-
tic links between new concepts and old ones, thus
enabling models to generalize compositionally. By



IWSLT 14 IWSLT’15

Model En-De De-En En-Fr Fr-En

BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU
Baselines
LSTM (Luong et al., 2015) 24.98 24.88 30.18 32.62 38.06 42.93 37.34 39.36
Transformer (Vaswani et al., 2017) 28.95 28.85 35.24 37.60 41.82 46.41 40.45 42.61
Dynamic Conv. (Wu et al., 2019) 27.39 27.28 33.33 3554 40.41 45.32 39.61 41.42
+Vocabulary Augmentation
LSTM (Luong et aL, 20]5) 25.35'%.37 25.38T0,50 30499T0.81 33.63T1,01 38-32T0.26 43.30T0,37 37.77T0.43 39.83'“),47
Transformer (Vaswani etal., 2017) 29.407\0,/15 29.29?0.4/1 35‘727\0_43 38‘077*0_47 42‘191“()_37 46.68T0_27 41.04T0_59 43, 15T0,5,1
Dynamic Conv. (Wu et al., 2019) 27.6070.21 27507022  33.627029 36.00T04¢  40.87T046  45.95T063 39.95T034 41.86T0.44

Table 4: Evaluation results over LSTM, Transformer, and Dynamic Conv. on IWSLT’ 14 En-De (English-German)
and De-En, IWSLT’ 15 En-Fr (English-French) and Fr-En translations.

considering concepts as pointers in the memory,
meta-learning equips models with memory loading
to make connections between new and old con-
cepts as semantic linking. The utility of similar
unsupervised techniques (Xie et al., 2020) in both
compositional generalization and real tasks can be
attributed to inductive learning as well. Besides,
our sensitivity analysis in Section 3.5 shows that
adding seemingly independent primitive samples
or rules can also improve the generalization, which
has been further validated recently (Auersperger
and Pecina, 2021; Patel et al., 2022).

In addition to inductive-based methods, some
works (Mikolov et al., 2013b; Arthur et al., 2016;
Nag et al., 2020), incorporating bilingual dictio-
naries in low-resource MT, can fall in the field
of deductive-based ones. As a proof-of-concept,
we reproduce the word-to-word augmentation, or
called deductive learning in this work, by train-
ing models on not only the base training set but
also concept rules. Intuitively, we wonder to
which extent deductive semantic linking can pro-
mote models’ performance in MT (IWSLT’ 14 and
IWSLT’15) and SP (Geography and Advising). We
report the evaluation results in Table 4 and Table
5. Details of models and data can be found in Ap-
pendix B and Appendix C.

4.1 Machine translation

Setup. We evaluate our approach on IWSLT’ 14
(Cettolo et al., 2014) English-German (En-De)
and German-English (De-En), IWSLT’15 (Cettolo
et al., 2015) English-French (En-Fr) and French-
English (Fr-En) translation tasks. We follow the
standard evaluation protocol (Ott et al., 2019)
that keeps the original training set and valida-
tion set but combines multiple previous test sets
for final evaluation. The test set of IWSLT 14
consists of IWSLT14.TED.dev{2010, 2012} and
IWSLT14.TED.tst{2010, 2011, 2012}. That
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of IWSLT’15 includes IWSLT15.TED.tst{2014,
2015} (Ottet al., 2019). We apply BPE with 10K
tokens for all tasks and report both BLEU (Papineni
et al., 2002) and SacreBLEU (Post, 2018) scores
for three baselines: LSTM (Luong et al., 2015),
Transformer (Vaswani et al., 2017), and Dynamic
Conv. (Wu et al., 2019) in comparsion with same
structures augmented by our method.

Vocabulary augmentation. We introduce concept
rules as vocabulary augmentation in MT. The se-
mantic links between primitives and their variants
can be built upon the synonymous relations be-
tween tokens such as “heavily populated" and “pop-
ulous". From this, the source words paired with
translated ones can be regarded as concept rules.
It is noted that such relationships are reversible as
shown in Figure 2, so a primitive can be a variant
of the other primitive as well. In practice, we col-
lect a dictionary of tokens in the source language
and feed them to the Google Translation® so as
to obtain a token map from the source language
to the target one. The same operation can be re-
peated from the target language to the source one.
Two dictionaries are combined into one with du-
plicates removed. Consequently, we get 144,874
token-level samples as a training supplementary
for IWSLT’ 14 En-De and De-En, and 110,099 for
IWSLT’ 15 En-Fr and Fr-En, which leads to a total
of 305,113 training samples for IWSLT’ 14 En-De
and De-En and 315,671 for IWSLT’ 15 En-Fr and
Fr-En after such vocabulary augmentation.
Results. From Table 4, we observe a consistent im-
provement in both BLEU and SacreBLEU over all
baselines after vocabulary augmentation, particu-
larly up to 1 in SacreBIEU. The additional synonym
pairs not only construct the semantic linking be-
tween tokens in two languages explicitly, but also
create a complicated semantic linking network im-

bcloud. google.com/translate


cloud.google.com/translate

Geography Advising

Model Train Test Train Test

Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.%
Baselines
RNN 89.05 17.39 69.81 9.68 92.22 3.64 60.41 6.11
CNN 98.45 70.74 78.44 55.91 99.74 81.62 81.74 51.13
TFM 99.45 84.95 80.24 49.82 99.68 76.90 78.51 29.67
+Entity Augmentation
RNN 87.47 29.96 72.3912 58 15.0575.37 88.82 30.97 71.17110.76 16.0679.95
CNN 97.54 76.03 80.3271 83 60.9375 02 99.65 87.01 84.5072.76 56.0214.89
TFM 99.30 85.73 81.0910.85 54.8475.02 99.57 86.94 84.2675.75 35.0875.41

Table 5: Evaluation results over RNN, CNN, and TFM on Geography and Advising.

plicitly because of synonyms within the single lan-
guage and the transitivity nature of synonym rela-
tion. Our experiments prove that semantic linking,
which allows models to generalize systematically,
can be beneficial for improving MT performance.

4.2 Semantic parsing

Setup. We evaluate our method on two SP bench-
marks, Geography, and Advising. We train the
same models (i.e., RNN, CNN, and TFM) as we
analyzed before without further hyperparameter
tuning. There are some changes for CNN, where
the learning rate is S5e~* in Geography, and the
maximum sequence length for the decoder posi-
tion embedding is 312 in Advising. We split 10%
training samples as the validation set to find the
converged epoch and then add it back to the train-
ing set for the final report.

Entity augmentation. We introduce concept rules
as entity augmentation in SP. The semantic links
are established among co-hyponyms. We con-
sider a variable as a hypernym for its values. By
that, entities belonging to the same variable are
co-hyponyms. Thus, we can regard entity val-
ues as primitives and the translations from primi-
tives (e.g., “new york city”) to their variables (e.g.,
“CITY_NAME”) as primitive rules. To be specific,
We construct entity dictionaries by collecting en-
tities such as “new york city”. They are translated
to themselves since they do not change from the
source natural language to the target SQL. For a
fair comparison, a token from this extra dataset will
be marked as a unique unknown mark, “/unk]", if
it does not exist in the original base training set.
After that, we have a map of 103 entity translations
for Geography and 1846 for Advising, resulting in
a training size change from 701 to 804 for Geogra-
phy and from 3814 to 5660 for Advising.

Results. As elaborated in Table 5, all three net-
works can achieve better performance in terms of
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both accuracy and variance. A 10.76% token ac-
curacy and 9.95% sequence accuracy boosting are
observed from RNN on Advising after such entity
augmentation. The results suggest that models can
learn semantic linking or be more familiar with
similar contexts from those primitive rules in a
deductive way to enhance model systematic gener-
alization and finally lead to better outcomes.

5 Conclusion

We revisit systematic generalization from a mean-
ingful learning perspective. According to the the-
ory, we conduct semantic linking to expose se-
mantic relations between new and old concepts
via either inductive learning or deductive learn-
ing. Experimental results on SCAN, GEO, and
ADV support that seq2seq neural networks, as a
class of modern machine learning methods, can be-
have systematically after semantic linking. Testing
with various difficulties indicates that both seman-
tic linking and prior knowledge are two essential
factors in such generalization, in agreement with
what humans do in meaningful learning. Finally,
we group recent methods in either the inductive-
based or deductive-based category, followed by a
proof-of-concept, to highlight the already-existing
advantages of meaningful learning in applications
such as machine translation and semantic parsing.
We want to underline that, to the best of our
knowledge, this work is the first one exploring the
optimistic results observed by Lake and Baroni
(2018). Our positive findings oppose the recent pre-
vailing view that neural networks appear inherently
ineffective in such cognitive capacity, thus confirm-
ing the mixed picture. By rationalizing recent find-
ings from a meaningful learning perspective, we
hope to encourage followers to interpret the excep-
tional generalization ability through the connection
between neural nets and human cognition.



Limitations

We establish semantic relationships between primi-
tives and their variants by either inductive or deduc-
tive learning. The incorporation of both learning
skills is worth exploring further. We primarily uti-
lize data augmentation techniques to expose the
semantic information to models. Apart from that,
there should be many other methods to achieve
the same goal. Which method is most appropriate
to realize semantic linking remains an open topic.
Meanwhile, the application of meaningful learning
to promote systematic generalization in practice
(e.g., MT and SP) could have been expanded.
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A Semantic Links

Lexical Variant refers to an alternative expression
form for the same concept, where the various forms
may derive from foreign languages, abbreviations,
and even mistakes. A basic assumption is that all
languages change over time due to non-linguistic
factors. Since the rise of sociolinguistics in the
1960s, studies on linguistic variability, a character-
istic of language, are central to the language use
and motivations for speakers to vary the pronun-
ciation, word choice, or morphology of existing
concepts (Labov, 1963). Taking “United States
of America” as an example, people have generally
accepted the semantic connections among its lex-
ical variants in history, including “America” and
“United States”, as well as the initialisms “U.S.” and
“U.S.A”. Many efforts have been devoted on lexical
variants representation (Nguyen and Grieve, 2020),
detection (Barteld, 2017), normalization (Baldwin
et al., 2015) to keep machines up with the trend of
the times.

Co-hyponym is a linguistic term to designate a
semantic relation between two group members be-
longing to the same broader class, where each mem-
ber is a hyponym, also called subtype or subordi-
nate, and the class is a hypernym (Lyons and John,
1995). The “is-a” hypernymy relation between a
generic hypernym and its specific hyponyms builds
semantic connections among co-hyponyms. An
example of such a hierarchical structure can be
“Mississippi” and “California” in the domain of
“state”. Specifically, “Mississippi” and “Califor-
nia” are two hyponyms, and “state” is a hyper-
nym. Thus, “Mississippi” and “California” are se-
mantically connected to be co-hyponyms for each
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other. Harvesting hypernymy relations (Wang and
He, 2020) plays an essential role for downstream
knowledge graph construction (Ji et al., 2021), out-
vocabulary generalization (Dash et al., 2020), and
taxonomy expansion (Yu et al., 2020b).

Synonym stands for a word, morpheme, or phrase
that shares exactly or nearly the same semantics
with another one. Many tend to assume syn-
onyms are utterances that occur in most contexts in
common, so they are semantically closely related
enough to be synonyms for each other (Rubenstein
and Goodenough, 1965; Harris, 1954). The exis-
tence of the association to contexts is a basic as-
sumption supporting the advance of recent masked
language modeling (Devlin et al., 2019). Given
that, one of the definitions of a synonymous rela-
tion is a semantic link between two expressions
if substitution of one for the other never hurts the
true value of the context (Stanojevic et al., 2009).
For instance, the substitution of “heavily populated”
for “populous” will seldom alter the truth of the
sentence in Figure 2. Such semantic similarity
can be observed in continuous vector space from
a trained representation as well (Mikolov et al.,
2013a). Synonym discovery (Yu et al., 2020a) has
been a fundamental job to construct knowledge
base and thus benefits substantial researches.

B Models

All models are built within the encoder-decoder
framework (Sutskever et al., 2014). We reproduce
RNN, CNN, and TFM by ourselves to have fewer
parameters than the original versions for the ex-
perimental purposes. The dropout rate is 0.5 for
RNN, CNN, and TFM (Srivastava et al., 2014).
We implement LSTM, Transformer, and Dynamic
Conv. within the library fairseq.” (Ott et al., 2019)
and inherit its default model structures.® In con-
trast to early stopping (Prechelt, 1998), we prefer
a fixed training regime sufficient enough for mod-
els to fully converge in practice with a focus on
the systematic generalization observation instead
of superior structure exploration. Training is on a
single Nvidia Tesla V100. Without specific notes,
hyperparameters are shared throughout the work.

RNN denotes bi-directional recurrent network
(Schuster and Paliwal, 1997; Hochreiter and
Schmidhuber, 1997) with long short-term memory

"https://github.com/pytorch/fairseq

8.STM is adapted from Istm_luong_wmt_en_de; Trans-
former is adapted from transformer_iwslt_de_en; Dynamic
Conv. is adapted from lightconv_iwslt_de_en.


https://github.com/pytorch/fairseq

Data Sequence

Source Jjump twice
SCAN Target JUMP JUMP
GEO Source how many people in new york city
Target SELECT CITY aliasO . POPULATION FROM CITY AS CITY aliasO WHERE CITY aliasO . CITY_NAME = CITY_NAME ;
ADV Source Which department includes a history of american film ?
Target SELECT DISTINCT COURSE aliasO . DEPARTMENT FROM COURSE AS COURSE alias0 WHERE COURSE aliasO . NAME LIKE TOPIC ;
Geoerah Source how many people live in new york
Sraphy Target SELECT STATE aliasO . POPULATION FROM STATE AS STATE alias0 WHERE STATE aliasO . STATE_NAME = " new york " ;
Source I would like to see A History of American Film courses of 2 credits .
Advising SELECT DISTINCT COURSE aliasO . DEPARTMENT , COURSE aliasO . NAME , COURSE aliasO . NUMBER FROM

Target

COURSE AS COURSE aliasO WHERE ( COURSE alias0 . DESCRIPTION LIKE "% A History of American Film %"

OR COURSE aliasO . NAME LIKE "% A History of American Film %" ) AND COURSE aliasO . CREDITS =2 ;

Table 6: Example source and target sequences from SCAN, GEO, ADV, Geography, and Advising.

Concept Rule

Data Primitive Semantic Links Variant
Primitive Rule Variant Rule
Jjump Jjump_0 Jjump — JUMP Jjump_0 — JUMP
look . . look_0 look — LOOK look_0 — LOOK
SCAN run Lexical Variant run_0 run — RUN run_0 — RUN
walk walk_0 walk — WALK walk_0 — WALK
new york city houston city new york city — CITY_NAME houston city — CITY_NAME
GEO mississippi rivier Co-hyponym red rivier mississippi rivier — RIVER_NAME  red rivier — RIVER_NAME
de ypony kansas dc — STATE_NAME kansas — STATE_NAME
dover salem dover — CAPITAL_NAME salem — CAPITAL_NAME
a history of american film advanced ai techniques  a history of american film — TOPIC  advanced ai techniques — TOPIC
ADV aaron magid Co-hyponym cargo aaron magid — INSTRUCTOR cargo — INSTRUCTOR
aaptis ypony survimeth aaptis — DEPARTMENT survmeth — DEPARTMENT
100 171 100 - NUMBER 171 — NUMBER

Table 7: Concept rules with primitives and their example variants.

units and an attention mechanism (Bahdanau et al.,
2015). Its encoder consists of two layers with a hid-
den size of 256 in each direction, and its decoder
has one layer with a hidden size of 512. The em-
bedding size is 512 for both encoder and decoder.
There are a total of 5.29M trainable parameters.
Teacher forcing with a rate of 0.5 serves to spur up
the training process (Williams and Zipser, 1989).
CNN denotes the fully convolutional seq2seq net-
work (Gehring et al., 2017). The size of the posi-
tion embedding layer is 128 for encoding and 256
for decoding, while that of the token embedding
layer is 512 for both encoding and decoding. There
are 10 convolutional layers with 512 as the hidden
size and 3 as the kernel size in both encoder and
decoder, resulting in a total of 33.55M trainable
parameters.

TFM denotes transformers, an attention-based net-
work (Vaswani et al., 2017). As a tiny version,
TFM has 2 layers for each encoder and decoder
with 8 attention heads and a dimension of 512. The
size of the feedforward layer is 2048. We utilize
the cyclic nature of sin and cos functions to repre-
sent token positions. There are a total of 15.02M
trainable parameters.

LSTM is adapted from the recurrent network used
by Luong et al. (2015) for statistical MT. The size
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of the embedding layer is 1000. There are 4 layers
in both encoder and decoder with a hidden size of
512 and a dropout rate of 0.2.

Transformer, the same as TFM, is adapted from
the base version of transformers in the work of
Vaswani et al. (2017), while TFM is a tiny version
to test systematic generalization. The dimension is
512 for the embedding layer, 1024 for the feedfor-
ward layer, and 512 for the attention layer. There
are 6 attention blocks in both encoder and decoder
with 4 attention heads and 0.3 dropout probability.
Dynamic Conv. is adapted from the seq2seq con-
volutional network proposed by Wu et al. (2019),
where the hidden size of the embedding layer, en-
coder layer, and decoder layer is 512. The number
of attention heads is 4, and the dimension of the
feedforward layer is 1024 for both encoder and
encoder. There are 6 layers in the encoder and 7
layers in the decoder. The dropout rate is 0.1 for
both attention and weight units.

C Data

IWSLT involves IWSLT’ 14 (Cettolo et al., 2014)
English-German (En-De) and German-English (De-
En), IWSLT 15 (Cettolo et al., 2015) English-
French (En-Fr) and French-English (Fr-En) trans-
lation tasks. The goal is to translate a sen-



Data Primitive Variant #Variants Prompt

SCAN Jjump Jjump_0 10 [concept] twice
new york city houston city 39 how many people in [concept]
GEO mississippi rivier red rivier 9 how long is [concept]
dc kansas 49 where is [concept]
dover salem 8 what states capital is [concept]
a history of american film advanced ai techniques 5/424 who teaches [concept] ?
aaron magid cargo 5/492 does [concept] give upper-level courses ?
ADV .
aaptis survmeth 5/1720 name core courses for [concept] .
100 171 5/1895 can undergrads take [concept] ?

Table 8: Prompts with example primitives and sampled variants. In SCAN, primitives share the same prompt and the
number of variants can be changed. In GEO, we make use of the full variants set. In ADV, we randomly sample 5
variants for each source sequence so that we cover all the variants with a test set of an appropriate size. We generate
variant samples by filling the prompt with variants accordingly.

SCAN GEO ADV Geography Advising
Data Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Bas. Aug. Bas. Aug.
Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.
Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036 598 701 3814 5660
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614 279 279 573 573
RNN 21 5 19 4 5 27 35
Time CNN 17 12 11 1 1.2 12 19
TFM 7 0.5 5 04 05 6 8

Table 9: Data statistics and training time per epoch in seconds. The batch size of each epoch for GEO and Geography
is 32, and that for the others is 128.

tence from one language to the other. The D.2 Deductive learning
IWSLT’ 14 En-De and De-EN have 160,239 se-
quence pairs for training and 7,283 for validation.
We make use of IWSLT14.TED.dev{2010, 2012} (e ¢ information in the training set instead of spe-
and IWSLT14.TED.tst{2010, 2011, 2012} to mea-  ;q¢ sequence samples. Example concept rules for
sure translation performance, resulting in a total of  gCAN. GEO. and ADV are presented in Table 7.
6,750 test samples. In terms of IWSLT'1S En-Fr - pegaijeq experimental results with respect to two

and Fr-En, there are 205,572 sequence pairs for  jovels can be found in Table 13 and Table 14.
training. We employ IWSLT15.TED.dev2010 and

IWSLT15.TED.tst{2010, 2011, 2012, 2013} asthe ~ D.3  Sensitivity analysis
validation set and IWSLT15.tst{2014, 2015} asthe 1, sensitivity analysis, we adjust the number of

test set. As a consequence, there are 5,519 samples  primitives (#primitives) and the number of variants

for validation and 2,385 for evaluation. For all four per primitive (#variants) over RNN on SCAN. The

translation tasks, we apply BPE with 10K tokens  complete versions of Figure 4 in Section 3.5 are

to share. presented as Figure 5 and Figure 6 for #primitives
and #variants respectively.

Semantic linking can be established via deductive
learning, where we put concept rules without con-

D Experiments

D.1 Inductive learning

Semantic linking can be operated via inductive
learning, where we replace the concept in the
prompt with primitives and their variants. The
learning rate to train CNN in GEO is changed to
5e~*. Prompts used in SCAN, GEO, and ADV are
expressed in Table 8. Detailed experimental results
with respect to three levels can be found in Table
10, Table 11, and Table 12.
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Data  Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.%  Seq. Acc.%
RNN  0.00£0.00 100.00+0.00 99.99+0.02 0.00+£0.00 99.99+0.03 99.95+0.08
SCAN CNN 0.00£0.00 99.814+0.09 98.78+0.55 0.00£0.00 99.96 +0.08 99.85+0.34
TFM  0.00£0.00 99.82+0.02 98.83+0.12 0.06+0.03 9891+0.78 97.35+1.62
RNN 0.154+0.02 97.734+0.42 80.254+2.81 1.36+£0.48 75.71+8.42 44.954+ 14.69
GEO CNN 0.07£0.01 98.23+0.39 76.80+225 9.01+4.26 87.99+2.67 69.46+5.78
TFM 0.02+0.00 99.63+0.07 91.60+1.41 455+1.39 75.37+7.84 45.934+12.42
RNN  0.03+0.01 99.40+0.13 82.74+2.78 6.04+0.95 58.61+6.18 36.18+5.75
ADV CNN 0.01£0.01 99.59+0.07 85.13+£195 2356+4.95 57.83+755 45.08+9.32
TFM 0.00£0.00 99.92+0.01 96.14+0.28 15.124+1.00 53.43+2.80 42.59 4+ 3.65
Table 10: Results of Standard inductive learning.
Data  Model Train Test
Loss Token Acc.%  Seq. Acc.% Loss Token Acc.%  Seq. Acc.%
RNN 0.00£0.00 100.00+0.00 99.99+0.01 0.00£0.00 99.96£0.02 99.85+0.08
SCAN CNN 0.00£0.00 99.77+0.19 98.62+1.13 0.03+0.06 99.76 £0.54  99.52 + 1.07
TFM  0.00£0.00 99.79 £0.03 98.59+0.12 0.06+0.03 98.90+1.10 96.86 + 2.64
RNN 0.16 £0.03 97.39+0.67 78.33+4.31 1.29+0.27 75.69+£6.12 43.27 4+ 13.47
GEO CNN 0.07+£0.01 98.254+0.13 76.53+1.68 13.87+3.19 79.51+6.03 51.20£8.64
TFM 0.00£0.11 99.60£0.11 91.33+1.46 4.50£0.80 75.11+4.88 44.591+9.76
RNN  0.03£0.01 99.26+0.21 79.57+4.12 5.80+0.92 59.74+567 35.69+£6.05
ADV  CNN 0.02£0.00 99.56+0.05 84.06+1.57 24.58+3.40 54.056+5.74 42.144+6.90
TFM 0.00£0.00 99.914+0.01 95.884+0.23 1584+1.51 51.51+4.50 41.28£4.35
Table 11: Results of Difficult inductive learning.
Data  Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%
RNN  0.00£0.00 100.00£0.00 99.99+£0.02 0.204£0.45 99.954+0.08 99.80+0.31
SCAN CNN 0.00+0.00 99.85+0.05 99.00+0.30 0.14+0.31 98.80 £244 97.57+5.24
TFM  0.00£0.00 99.824+0.05 98.85+£0.27 0.07+0.05 98.76+0.85 96.38 +2.81
RNN  0.15+0.04 97.764+0.74 79.77+4.19 1524+0.29 73.46+3.05 36.77+5.60
GEO CNN 0.07+£0.01 98.23+0.17 7598+ 1.46 15.83+4.56 77.40+248 48.53+3.40
TFM 0.024+0.00 99.60£0.06 91.004+1.20 6.014+1.03 68.414+4.76 36.93 +7.47
RNN  0.03+£0.01 99.234+0.13 7990+£1.85 595+0.90 58.11+5.82 35.45+6.69
ADV  CNN 0.01£0.01 99.68+£0.15 87.90+5.05 23.08+6.34 53.66+2.57 41.37+4.04
TFM  0.00£0.00 99.934+0.01 96.41+£0.24 16.59+£0.98 49.17+2.58 38.88 1+ 2.68
Table 12: Results of Challenging inductive learning.
Data  Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.%  Seq. Acc.%
RNN 0.00 £0.00 99.99£0.03 99.90£0.23 0.05£0.06 99.48 £0.71  98.27 +£2.38
SCAN CNN  0.00+£0.00 99.79+0.14 98.78+0.79 0.00£0.00 99.99+0.01  99.96 &+ 0.03
TFM 0.00 = 0.00 99.824+0.03 98.78£0.17 0.27+0.22 96.90 £1.78  91.94 +4.04
RNN 0.17+0.03 97.50+0.30 78.54+2.16 2.83+0.69 54.44 +£7.15 13.61 + 7.08
GEO CNN 0.08+0.01 97.974+0.24 77.03£1.42 51.084+25.97 41.86+3.38 4.85 £ 4.66
TFM 0.02+0.00 99.544+0.31 91.82+£227 6.03£1.56 67.02+6.91 36.38 £ 10.08
RNN 0.08+0.02 98.64+0.31 68.84+457 7.95+1.13 36.50 £7.66 12.84 £4.31
ADV  CNN 0.02+0.00 99.53+0.07 84.64+£1.20 31.12+£4.76 43.51£11.31 32.33+£12.93
TFM 0.00+£0.00 99.91£0.02 96.33£0.37 13.72+£141 56.82+3.79 47.43+3.71

Table 13: Results of Standard deductive learning.
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Data  Model Train Test
Loss Token Acc.%  Seq. Acc.% Loss Token Acc.%  Seq. Acc.%
RNN  0.00+£0.00 99.994+0.01 99.95+£0.07 0.08+£0.08 98.70+0.92 95.39+2.72
SCAN CNN 0.00 £0.00 99.62+£0.34 98.82£1.09 0.13£0.29 98.59+3.10 96.66 &+ 7.27
TFM 0.004+0.00 99.824+0.03 98.78+0.12 0.21 +0.20 96.68 £+ 2.21 91.26 £+ 5.80
RNN 0.20£0.03 96.93+0.71 7535£3.57 440+£250 39.71+1838 7.67+5.34
GEO CNN 0.08+0.01 97.77£0.76 76.41£280 32.94+£4.26 41.07+£7.48 4.04 £2.18
TFM 0.0240.00 99.56 +0.11 91.08 £ 1.56 5.97 + 1.05 65.97+5.17  31.57+7.42
RNN 0.08+0.02 9854+£0.28 67.10£3.45 787+£1.01 3642+739 12.66+5.19
ADV  CNN 0.04 £0.05 98.78£1.91 77.144+23.28 32.44+£6.07 35.34£14.68 23.58+16.04
TFM 0.00+£0.00 99.92+0.02 96.41+0.26 14.92+1.31 53.33+3.85 43.24 +5.14
Table 14: Results of Difficult deductive learning.
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Figure 5: The complete version of Figure 4 in Section 3.5 regarding #primitives.
1.0 1.0
0.6 EF :E = T = [5
0.9 0.9
0.4 ] j
\ g g
o c0.8 10.8
3 7] o
~ 9]
0.2 Q n
@ 0.7 0.7
0.0 ["]
i &5 10 15 20 96 5 10 15 20 %61 5 10 15
#Variants #Variants #Variants

Figure 6: The complete version of Figure 4 in Section 3.5 regarding #variants.
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Abstract

Researchers often use games to analyze the abil-
ities of Artificial Intelligence models. In this
work, we use the game of Twenty Questions to
study the world knowledge of language models.
Despite its simplicity for humans, this game
requires a broad knowledge of the world to
answer yes/no questions. We evaluate several
language models on this task and find that only
the largest model has enough world knowledge
to play it well, although it still has difficulties
with the shape and size of objects. We also
present a new method to improve the knowl-
edge of smaller models by leveraging external
information from the web. Finally, we release
our dataset and Twentle, a website to interac-
tively test the knowledge of language models
by playing Twenty Questions.

1 Introduction

Generative language models achieve strong perfor-
mance on multiple NLP tasks by using an unsuper-
vised training objective: predicting the next token
in a string of text (Brown et al., 2020; Chowdhery
et al., 2022; Zhang et al., 2022).

Despite the simple training objective, these mod-
els capture a significant amount of world knowl-
edge (Roberts et al., 2020; Jiang et al., 2020; Tal-
mor et al., 2020). However, we can quickly uncover
some limitations by asking simple questions. For
example, GPT-3 (Brown et al., 2020) is more likely
to complete the following sentence qguestion: is a
kettle smaller than a tennis ball? answer: ___ with
yes than no. While trivial for a human, GPT-3 has
trouble comparing the size of a kettle and a tennis
ball.

We can use the let’s think step by step method to
look into the chain of reasoning of GPT-3 (Kojima
et al., 2022): question: is a kettle smaller than a
tennis ball? answer: let’s think step by step. [...]
a tennis ball is about 6 inches in diameter [...] a
typical kettle is about 8-10 inches tall and has a
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~-- Isit electronic? Yes
;LmDoes it have a seat? No-
& - Is it made of glass? No---+--- o
Is it flat? Yes -
Is it a keyboard? Yes -

Figure 1: Example Twenty Questions game: a human
must discover the hidden entity (a keyboard) by asking
yes/no questions to the language model. In this case,
the model needs to know about the shape, composition,
and purpose of a keyboard to correctly answer all ques-
tions. While trivial for humans, our results show that
this is not the case for most language models, except for
GPT-3, which displays fantastic world knowledge on all
questions except size-related questions.

diameter of about 4-5 inches. So, a kettle is smaller
than a tennis ball. According to this example, GPT-
3 predicts that a tennis ball is twice its actual size,
leading to the wrong conclusion that a kettle is
smaller than a tennis ball.

In this work, we try to analyze the world knowl-
edge of language models through the game of
Twenty Questions. We collected a dataset of 2000+
questions and tried to understand the strength and
weaknesses of language models by classifying
questions into nine categories of knowledge (us-
age, size & shape, appearance).

Our results show that GPT-3, a 175 billion pa-
rameters language model, can play Twenty Ques-
tions thanks to a consistent world knowledge on
all categories identified, except for size & shape
questions (e.g., is it bigger than a foot). Unfortu-
nately, we also show that smaller models do not
display the same consistency. However, leverag-
ing the web improved the knowledgeability of TO
by 10% and brought it to a level competitive with
GPT-3, despite having 16 times fewer parameters.

Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 80 - 90
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Our contributions are the following:

* We release the first dataset consisting of
Twenty Questions games.

* We show that very large language models have
a consistent world knowledge, while smaller
models do not.

* We provide a method to improve the knowl-
edgeability of smaller models using back-
ground information from the web.

We publicly release our dataset on HuggingFace
(Wolf et al., 2020).! We also present Twentle, a
website to interactively test the world knowledge
of language model by playing the game of Twenty
Questions.

2 Related Work

Although analyzing the capabilities of language
models through the game of Twenty Questions is
new, researching the amount of general knowledge
and common sense of language models is not.

Unfortunately, the knowledge stored by lan-
guage models is not symbolic. Therefore, we can-
not look into the model and inspect its knowledge.
Instead, previous work relied on multiple proxy
tasks.

One option is to use regular reading comprehen-
sion datasets in a closed-book format. Roberts et al.
(2020) follow this approach. They evaluate how
much knowledge can be stored inside the weights
of a text-to-text TS5 model (Raffel et al., 2020). The
authors repurposed three reading comprehension
datasets to closed-book question answering: Web
Questions (Berant et al., 2013), Trivia QA (Joshi
et al., 2017) and Natural Questions (Kwiatkowski
et al., 2019). They concluded that TS5 performs
on par with specialized machine comprehension
models. GPT-3 (Brown et al., 2020) was also eval-
uated on the same closed-book question-answering
datasets. The largest model (175B parameters)
achieved state-of-the-art results on TriviaQA de-
spite not being trained for the task.

Unfortunately, it has been demonstrated later
by Lewis et al. (2021) that the datasets used by
Roberts et al. (2020) and Brown et al. (2020) suffer
from a considerable overlap between the training
and test set, invalidating the authors’ conclusion
based on these datasets. Furthermore, when the

"https://huggingface.co/datasets/maximedb/twentle
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overlap between the training and test set is removed,
the performance of BART (Lewis et al., 2020a)
diminishes from 26.7% to 0.8% on TriviaQA (Joshi
et al., 2017), suggesting that the model is unable to
generalize to previously unseen questions.

To overcome the previously mentioned overlap
problem, Wang et al. (2021) repurposed SQuAD
(Rajpurkar et al., 2016), a popular reading com-
prehension dataset, as a closed-book question an-
swering dataset. They evaluated the performance
of BART on this new dataset and concluded that
it was still challenging for generative models to
perform closed-book question answering.

Another approach is to look at how a language
model fills in blanks (i.e., masking). One can es-
timate what the language model knows by care-
fully analyzing the model’s suggestion. This is the
approach followed by Petroni et al. (2019). The
authors introduce a new dataset LAMA to test the
factual and commonsense knowledge in language
models. It provides a set of cloze tasks, e.g., ravens
can with the associated answer fly.

The oLMpic Games (Talmor et al., 2020) tests
the symbolic reasoning of language models through
eight synthetic tasks. While very similar to our
work, the dataset uses masking to probe the lan-
guage model. Mask tokens are only applicable to
encoder language models, while we are interested
in generative language models.

Previous studies have shown that providing gen-
erative language models with background informa-
tion improves their performance. (Borgeaud et al.,
2021; Lewis et al., 2020b; Komeili et al., 2022;
De Bruyn et al., 2020; Lazaridou et al., 2022) Simi-
lar to Lazaridou et al. (2022), we find that including
external knowledge improves the language model’s
performance, however, we obtain better results by
restricting the source of knowledge to Wikipedia
instead of the entire Internet.

To summarize, we are the first to analyze the
world knowledge of generative language models
through the game of Twenty Questions. We depart
from the work of Roberts et al. (2020) and Wang
et al. (2021) in several ways. First, we only have
yes/no answers, which simplifies the evaluation
and removes the surface-form problem (Holtzman
et al., 2021). Second, using generic questions al-
lows disentangling the understanding of the object
and the question.


https://huggingface.co/datasets/maximedb/twentle

Twenty Questions

Questions 2,832
Generic questions 915
Entities 126
Words (per question) 6.8
Yes 35%
No 65%

Table 1: Summary of the Twenty Questions dataset. We
collected 2,832 questions from 126 different entities.
We make the distinction between generic and regular
questions. Generic questions refer to the entity as "it"
(e.g. does it [a rake] have a seat). Generic questions are
asked multiple times over different entities (on average
3). We use this unique feature to disentangle the under-
standing of the question and the entity.

3 Data

This section presents our dataset based on the
Twenty Questions game — the first boolean closed-
book question answering dataset regarding world
and commonsense knowledge. We start this sec-
tion by introducing the Twenty Questions game.
We then explain our data collection process. Fi-
nally, we analyze the type of knowledge required
to perform well on this dataset.

3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a spoken
parlor game that encourages deductive reasoning
and creativity. In the traditional game, one player
(the answerer) chooses a subject and does not reveal
it. The other players are questioners and must find
the hidden entity by asking yes/no questions.

Previous research focused on playing the ques-
tioner (Hu et al., 2018; Chen et al., 2018), however,
we are interested in the role of the answerer — the
player responsible for answering the yes/no ques-
tions using his knowledge of the world. According
to our research, this is the first attempt at playing
the role of the answerer.

3.2 Akinator

Instead of organizing games using Amazon Me-
chanical Turk, we used Akinator? to collect many
questions. Akinator is an online game where users
can play games of Twenty Questions against a prob-
abilistic model.

Users first pick an entity (without revealing it),
and Akinator will then ask yes/no questions to find

*https://akinator.com/
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the hidden entity. It can guess animals, objects, or
characters. The player can answer with 5 possi-
ble options: yes, no, probably yes, probably not,
and don’t know. Although the original Twenty
Questions game used a maximum of 20 questions,
Akinator will ask questions until it finds the cor-
rect entity. We provide examples of questions and
entities in Table 2. We were pleasantly surprised
by the quality of the Akinator model. It was able
to find our hidden entities in most instances. We
removed questions from the few instances where it
was not capable of finding the correct entity.

3.2.1 Generic Questions

Akinator does not know the entity when asking the
question and refers to the entity using "it". Because
of its probabilistic nature, Akinator will likely ask
the same generic question for multiple entities. We
list the most common generic questions in Table
3. For example is a rake bigger than a foot and is
a tennis ball bigger than a foot are two different
questions but share the same generic question is if
bigger than a foot. The average generic question
(e.g., is it bigger than a foot) is asked for three dif-
ferent entities. However, the distribution is highly
skewed, with many specific questions asked only
once.

3.2.2 Choice of Entities

We restricted our choice of entities to objects, as
we think characters and animals are too culture-
dependent to be deemed general knowledge. As
much as possible, we tried to choose objects which
are not specific to a particular place or culture.

3.2.3 Post-processing

As we are interested in yes/no questions, we re-
move all questions with probably yes, probably
not, or don’t know as answer. We use simple regex
rules to inject entities into generic questions. We
removed all questions about sex or the user’s per-
sonal experience (e.g., do you have one at home?)
as these require personal knowledge.

3.3 Knowledge Category

In order to understand the reasoning abilities of the
language model, we need to understand the type
of knowledge required to answer each question
correctly.

After carefully reviewing the questions in our
dataset, we classified each question into one of the
following nine categories: usage, size & shape,



Generic Question Entity Answer
Is it bigger than a foot? Padlock No
Does it work with electricity? Magnifying glass No
Does it have a seat? Forklift Yes
Does it work with the feet? Lawn mowner No
Can it be made of wood? Rake Yes
Is it mostly for girls? Belt No
Does it have a relationship with school? Wallet No
Can it be read? Worldmap Yes
Is it made of rubber? Balloon Yes
Is it bigger than a foot? Saw Yes

Table 2: Example questions in our dataset. Akinator does not know the entity when asking the question, and refers
to the entity using "it". To avoid any bias toward a specific culture we only used well-known objects as hidden

entities. We did not use animals or characters.

Question Entities
Is it bigger than a foot? 68
Does it go into the mouth? 67
Is it something we wear? 56
Can we buy it? 55
Is it a toy? 50
Is it made of metal? 48
Is it soft? 45
Can it be opened or closed? 42
Is it electronic? 34
Can it be found in a kitchen? 31

Table 3: Most common generic questions in the dataset.

location, composition, description, relatedness, ap-
pearance, functioning, and purpose. Finally, we
provide an overview with examples in Table 4.

Shape and Size To answer this kind of question,
the model should understand an object’s shape and
be able to compare it with others. For example, is
it bigger than a foot?

Usage The model should know how an object is
used in everyday life to answer these questions. For
example, the model should know that a question
like is it something we wear? applies to a pair of
sunglasses, but not a forklift.

Location The model must know in which place
or circumstances an object is used. For example,
can we find it in a bathroom or, is it outside.

Composition These questions require knowing
the composition of an object. For example, is it
liquid, or is it made of glass.

&3

Description The model should know how hu-
mans describe this object with adjectives. For ex-
ample, is it heavy, or is it sticky.

Relatedness To answer these questions, the
model must be able to relate two categories of ob-
jects or concepts together. For example, does it
have a relation with water, or is it a toy.

Functioning These questions require knowing
how an object works. This category is broad and
includes questions such as can it be opened or
closed, or does it work with electricity.

Appearance This category is related to the de-
scription category but focuses on how an object
looks. For example, it includes questions such as
does it have a seat, or does it have eyes.

Purpose This kind of question focuses on the
purpose of objects. It is related to the usage cate-
gory but focuses on why we use objects instead of
how. It includes questions like is it useful to sleep,
or do we use it for travel.

3.4 Human Agreement

Answering yes/no question is not always straight-
forward. A single question can be approached in
multiple ways. For example, some people answer
the question, " is a DVD smaller than a tennis ball
with yes because the height of a DVD is smaller
than that of a tennis ball, while others look at the
diameter and answer no. We asked four annotators
to answer 100 randomly sampled questions. On
average, they share the same answer as the one in
the dataset 94% of the time. The inter-annotator
agreement is good, with a Cohen’s Kappa score of
0.76 (Cohen, 1968).



Object Knowledge Example Question Percentage
Shape and Size Is it bigger than a foot? Is it flat? 12.7
Usage Is it something we wear? Do we use it for a sport? 15.5
Location Can it be found in houses? Is it outside? 10.9
Composition Is it liquid? Is it made of glass? 7.8
Description Is it heavy? Is it sticky? 7.1
Relatedness Does it have a relation with water? Is it a toy? 14.5
Functioning Does it work with electricity? Can it be opened or closed? 14.8
Appearance Does it have eyes? Does it have a seat? 6.9
Purpose Is it useful to sleep? Do we use it for travel? 7.4

Table 4: We classified each question of the dataset into nine categories depending on the type of knowledge required

to answer the question.

4 Language Models

In this section, we review the subjects of this work:
generative language models. Language models
come in all forms and shapes. However, we focus
on two types: encoder-decoder and decoder-only
models.

4.1 Encoder-Decoder Models

Encoder-decoder models treat every NLP task as
a text-to-text problem using an encoder-decoder
Transformer. When this framework is applied to
question answering, the model is trained to gen-
erate the literal text of the answer in a free-form
fashion (Roberts et al., 2020).

TS is a text-to-text model pre-trained on multiple
tasks simultaneously: translation, summarization,
classification, reading comprehension, and an unsu-
pervised span corruption task (Raffel et al., 2020).
We experiment with the 11 billion parameters ver-
sion.

TO further trains TS on 1700 English datasets
(Sanh et al., 2022). The resulting model outper-
forms GPT-3 (Brown et al., 2020) on several tasks
despite being 16x smaller. We use the TOpp ver-
sion with 11 billion parameters. Conveniently,
TO has already been pre-trained on BoolQ (Clark
et al., 2019), a reading comprehension dataset with
boolean answers.

4.2 Decoder Models

Decoder models use the decoder part of the original
Transformer (Vaswani et al., 2017) model. These
models were not trained for a specific task but with
an unsupervised objective: predict the next token
in a piece of text. Due to their extensive training
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corpora, these models have already seen many ex-
amples of Trivia style questions.

GPT-3 is an auto-regressive language model
(Brown et al., 2020). The largest version has 175
billion parameters. The model weights are not pub-
licly available, although the model’s predictions
are available through a paid API.3

GPT-J is a 6 billion parameters autoregressive
language model (Wang and Komatsuzaki, 2021)
trained on the Pile (Gao et al., 2021).

GPT-Neo-X is a 20 billion parameters autore-
gressive language model (Black et al., 2022)
trained on the Pile (Gao et al., 2021).

OPT is a similar model to GPT-3, but the models’
weights were publicly released (Zhang et al., 2022),
except for the largest version (175 billion parame-
ters), which is available upon request. Similar to
GPT-J, it was trained on the Pile along with data
from Reddit. We experiment with the 30 billion
parameters version.

S Experiments

In this section, we report on our experiments using
our dataset of Twenty Questions. We experimented
with three setups: zero-shot, few-shot, and zero-
shot with knowledge augmentation. We use these
results in the section to understand the scale of the
world knowledge stored by language models.

5.1 Experimental Settings

Our experiments do not require any training, we
use language models as-is without fine-tuning. We
use the entirety of our dataset for evaluation. We

3https://openai.com/api/



Model Size F1  Accuracy
Majority - 0 65.0
GPT-J 6B 48.6 49.0
T5 11B 246 68.4
TO 11B  68.5 81.9
GPT-Neo-X 20B  51.8 349
OPT 30B 528 38.2
GPT-3 I13B 594 60.2
GPT-3 175B  66.4 81.3

Table 5: Result of the zero-shot evaluation. Best perfor-
mance is achieved by GPT-3 and TO. The other models
struggle to reach the majority vote baseline.

measure the probability of the yes answer by sum-
ming the probability of the yes, Yes, true, and True
tokens. The same is done for the no answer with no,
No, false and False. Our dataset contains 65% of no
answers, we use F1 (binary) as primary evaluation
metric and also report accuracy.

5.2 Zero-shot

In the zero-shot setting, models answer the question
with only a textual description of the task. We
expect T5 and TO to perform well in this setup as
they were pre-trained using the same setup, while
this is not the case for decoder-only models.

Prompt We use the same prompt for both
encoder-decoders and decoder-only models.

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}

Answer:

Results We report the results of our zero-shot ex-
periment in Table 5. As expected, TO achieves the
best results with an F1 of 68.5% and an accuracy
of 81.9%. GPT-3 also performs nicely in this setup,
with 16x more parameters than TO. However, all
the other models show an accuracy lower than the
majority vote baseline.

5.3 Few-shot

In the few-shot setup, models receive identical in-
structions as in the zero-shot setup, in addition to
a few examples. This setup benefits decoder-only
models as they can now learn the task on the fly
using in-context learning (Beltagy et al., 2022).

Prompt We augment the zero-shot prompt with
four examples. There are two examples with yes
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Model Size F1 Accuracy
Majority - 0,0 65.0
GPT-J 6B  57.7 57.7
TS 11B 0.0 65.8
TO 11B 6.7 65.8
GPT-Neo-X 20B 584 58.3
OPT 30B  60.4 71.6
GPT-3 13B 58.2 60.2
GPT-3 175B  83.0 87.9

Table 6: Result of the few-shot evaluation. GPT-3’s F1
improves by 9% to reach 83%. The performance of OPT
barely improves compared to the zero-shot reasoning,
while as expected the performance of encoder-decoder
models plummets.

and two with no. We randomly select examples
from different entities and generic questions.*

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question_example_1 }}

Answer: {{ answer_example_1 }}

Question: {{ question_example_n }}
Answer: {{ answer_example_n }}
Question: {{ question }}

Answer:

Results We provide an overview of the few-shots
results in Table 6. As expected, the performance
of decoder-only models increases, while the perfor-
mance of encoder-decoder decreases”. For exam-
ple, GPT-3’s F1 increased from 66.4% to a record
83.0%. Unfortunately, these results also show that
(relatively) smaller decoder-only models do not
reach TO’s performance in a zero-shot setup.

5.4 Zero-shot with Knowledge Augmentation

The performance of GPT-3 is exceptional. How-
ever, it comes at a steep computational and envi-
ronmental cost. Moreover, as TO has fewer param-
eters than GPT-3, it has less "space" to store world
knowledge. In this section, we try to augment TO
with external knowledge to help it bridge the per-
formance gap with GPT-3. We use two sources of
background knowledge: the entire Internet using
Bing search and the Wikipedia page of the entity.

Prompt We follow the same prompt as in the
zero-shot analysis. In addition, we augment it with
a space for background knowledge.

*This setup is similar to the start of a Twenty Questions
game where the model does not have previous examples for
the same entity.

>These models were zero-shot inference, not few-shot.



Model Size F1 Accuracy
TO (ZS) 11B  68.5 81.9
TO (Bing) 1B 69.7 75.7
TO (Wiki) 1B 79.3 86.0
GPT-3 (FS) 175B 83.0 87.9

Table 7: Augmenting TO with background information
improves its F1 score by 10% and brings it to a compet-
itive level with GPT-3.

Text: {{ background_knowledge }}

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}

Answer:

Bing We run a bing search for every question
and only keep the text snippet returned by Bing.
We compare each text snippet to the question us-
ing a cross-encoder from Sentence Transformers
(Reimers and Gurevych, 2019). We then keep the
snippet with the highest score. We do not restrict
Bing, so it can also choose to return pages from
Wikipedia.

Wikipedia We chunk the Wikipedia page of each
entity into passages of around 256 tokens. Then,
we re-rank the passages using the same cross-
encoder.

Results We provide an overview of the few-shots
results in Table 7. The Bing search results are
disappointing. The F1 score barely improves by
1%. On the other hand, the Wikipedia search results
are outstanding: F1 improves by over 10% and
accuracy by 4%.

This section concludes that GPT-3 (few-shot)
is the best model for playing the answerer in a
game of Twenty Questions. However, GPT-3 is
computationally and environmentally costly. We
showed that incorporating background knowledge
from Wikipedia can improve T0’s performance to
a competitive level with GPT-3 despite having 16
times fewer parameters.

6 World Knowledge Analysis

We now use the results of the previous section to an-
alyze the world knowledge of the three best models:
GPT-3, TO, and TO Knowledge Grounded (KG).

6.1 Knowledge Category

We list the accuracy by category of knowledge
in Table 8. The most striking result is the low
performance of the three models in the Shape &
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Knowledge Type GPT-3 T0 TO0-KG OPT
Shape & Size 66 56 69 60
Usage 86 82 86 75
Location 88 74 89 60
Composition 90 78 78 69
Description 81 69 73 65
Relatedness 95 94 88 79
Functioning 87 79 74 71
Appearance 91 83 83 89
Purpose 91 88 82 75

Table 8: Accuracy (%) by category of knowledge. GPT-
3 outperforms TO on every knowledge type. Shape &
Size questions stand out as a weak spot for GPT-3 and
TO.

Size category. For example, GPT-3 has a difference
of 20% between the worst category (Shape & Size)
and the second-worst category (Usage).

On the other hand, GPT-3 and TO can answer
questions relating to two objects or concepts ex-
ceptionally well (e.g., is it related to water or is it
a toy). Intriguingly, incorporating knowledge into
the prompt diminishes the score on relatedness for
TO-KG.

We now dig deeper into size & shape questions
and try to understand if there are specific kinds
of questions mishandled by the language models.
We list the average accuracy by questions in the
Shape & Size category in Table 9. We notice that
questions 1, 3 & 4 are not specific enough. On
which dimension should we compare the size of
the tennis ball? ¢ The inter-annotator score on
Shape & Size question is 0.75, almost equivalent to
the global inter-annotator score of 0.76. We believe
humans have enough common sense to decide on
which dimension to evaluate the size of objects.

6.2 Entities

Inspired by previous research (Razeghi et al., 2022),
we look for a correlation between the average ac-
curacy of an entity and its frequency in the pre-
training data.” We do not find any significant cor-
relation, except a small 0.05 correlation for TO.
We believe the conclusion would be different with
lesser-known objects.

We notice that ambiguous entities such as a rule®

®Is a DVD smaller than a tennis ball because of its thick-
ness?

"We use the first 10 billion tokens of the C4 dataset (Raffel
et al., 2020) to estimate the frequency of entities in the pre-
training data.

8As in a 30 cm rule/ruler



Question GPT-3 TO0 TO0-KG
Is it smaller than a tennis ball? 50 55 60
Is it globe-shaped? 55 77 71
Is it bigger than a foot? 60 47 67
Can we transport it in a pocket? 62 50 50
Is it flat? 66 55 61
Is it round? 68 43 69
Is it long? 71 28 57
Is it rectangular? 72 81 72
Is it taller than a man? 78 78 71
Does it have a square shape? 80 80 100
Is it pointed? 85 71 71
Is it bigger than a bus? 100 100 100

Table 9: Accuracy (%) of GPT-3, TO, and TO-KG on
Shape & Size questions. GPT-3 struggles with compar-
ing the size of entities with the size of a tennis ball.

and a racket’ are not well managed by all models
for understandable reasons.

6.3 Knowledge Augmentation

In this section, we try to understand why Wikipedia
is a much better source of background knowledge
than Bing’s search over the Internet.

Knowledge Source We manually reviewed and
compared the background knowledge provided by
Bing and Wikipedia. We found that the knowledge
returned by Bing can be specific, whereas the game
of Twenty Questions requires general knowledge.
For example, when asked does a printer have a
seat, the obvious answer is no. However, Bing
returns a text saying [...] each used printer takes
one license seat. [...] confusing the model into
thinking printers do have seats. Another example
is the question is a litter box a weapon. The cor-
rect answer is no. Bing, however, returns a text
saying /[...] cat litter box used as a weapon in fight
over prescription drugs [...] confusing the model
into thinking a litter box is a weapon. In both in-
stances, the knowledge returned by Wikipedia is
the introductory paragraph describing the entity.

Knowledge Category According to Table 8, in-
corporating background knowledge helps in Loca-
tion (+15%) and Usage (+13%) questions. On the
other hand, it hurts performance on Relatedness
questions (-6%).

This section concludes that GPT-3 performs con-
sistently on all categories of questions, except
Shape and Size. Although competitive, TO does not
show the same consistency as GPT-3, even when
augmented with background information.

°As in a tennis racket
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7 Twentle

We present an interactive website to let anyone
test the world knowledge of TO-KG by playing the
game of Twenty Questions. Inspired by Wordle,
we named our website Twentle, available at twen-
tle.com.

8 Future Work

Reducing the world to yes/no questions is not an
easy task. Our human agreement section demon-
strates that humans do not agree on all answers.
Future work is needed to compare the agreement
of humans and language models by category of
question. In this study, we limited ourselves to the
study of the answerer. However, GPT-3 could po-
tentially also play the role of the questioner. Future
work is needed to study the knowledgeability of
language models on lesser-known objects. In this
case, we anticipate that large models will also need
to leverage the web for information.

9 Conclusion

In this work, we analyzed the world knowledge
of language models through the game of Twenty
Questions. Our analysis reveals that most language
models do not have the world knowledge required
to play this game. GPT-3 is a notable exception. It
displays impressive world knowledge on all cate-
gories of questions identified, except for shape &
size questions — is it smaller than a tennis ball.
Furthermore, we showed how grounding smaller
models on information from the web improves their
knowledgeability. Through this work, we demon-
strated the need for more clarity on which model
architecture and pre-training method best captures
world knowledge.

10 Limitations

We intentionally limited our analysis to well-known
objects. We anticipate a lower performance on
lesser-known objects. Furthermore, our work uses
well-defined questions with little noise, whereas
real-world questions by humans could be more
challenging for language models to understand.
The dataset we collected could contain biases al-
ready present in our society. Unfortunately, the
same is true for the answers given by the language
model.


https://twentle.com
https://twentle.com
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A Computing Infrastructure

We ran all our experiments on a server running 8
NVIDIA GPU (12GB) with 128GB of RAM and
24 CPU. All models ran in parallel using the de-
vice_map argument of the from_pretained method.

B Hyperparameter Search

We did not engage in a hyperparameter search. Fu-
ture research could look for the optimal prompt,
balance of yes and no examples.

C Correlation With Token Frequency

We display the correlation between the average
accuracy of an entity and its relative frequency in
the pre-training data in Table 10.
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Model Correlation P-value
GPT-3 -0.02 0.35
TO 0.05 0.01
TO-KG -0.01 0.45

Table 10: Spearman correlation of the average accuracy
of an entity with its frequency in the pre-training data.
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Abstract

Arabic is a Semitic language which is
widely spoken with many dialects. Given
the success of pre-trained language models,
many transformer models trained on Arabic
and its dialects have surfaced. While
there have been an extrinsic evaluation of
these models with respect to downstream
NLP tasks, no work has been carried
out to analyze and compare their internal
representations. We probe how linguistic
information is encoded in the transformer
models, trained on different Arabic dialects.
We perform a layer and neuron analysis
on the models using morphological tagging
tasks for different dialects of Arabic and a
dialectal identification task. Our analysis
enlightens interesting findings such as: i) word
morphology is learned at the lower and middle
layers, ii) while syntactic dependencies are
predominantly captured at the higher layers,
iii) despite a large overlap in their vocabulary,
the MSA-based models fail to capture the
nuances of Arabic dialects, iv) we found that
neurons in embedding layers are polysemous
in nature, while the neurons in middle layers
are exclusive to specific properties.

1 Introduction

Arabic is a linguistically rich language, with its
structures realized using both concatenative and
templatic morphology. The agglutinating aspect
of the language adds to the complexity where
a given word could be formed using multiple
morphemes. For example, the word oge5™ i

(fOsqynAkmwh! — and we gave it to you to drink)

combines a conjunction, a verb, and three pronouns.

At another longitude, Arabic has three variants:
Classical Arabic (CA), Modern Standard Arabic
(MSA) and Dialectal Arabic (DA). While the
MSA is traditionally considered as the de facto

*The work was done while the author was at QCRI
'Using Safe Buckwalter Arabic (SBA) encoding.
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Figure 1: Data regimes of various pre-trained
Transformer models of Arabic

standard in the written medium and DA being
the predominantly spoken counterpart, this has
changed recently (Mubarak and Darwish, 2014;
Zaidan and Callison-Burch, 2014; Durrani et al.,
2014). Due to the recent influx of Social Media
platforms, dialectal Arabic also enjoys a significant
presence in the written medium.

Transfer learning using contextualized
representations in pre-trained language models
have revolutionized the arena of downstream
NLP tasks. A plethora of transformer-based
language models, trained in dozens of languages
are uploaded every day now. Arabic is no
different. Several researchers have released and
benchmarked pre-trained Arabic transformer
models such as AraBERT (Antoun et al., 2020),
ArabicBERT (Safaya et al., 2020), CAMeLBERT
(Inoue et al., 2021), MARBERT (Abdul-Mageed
et al., 2020) and QARIB (Abdelali et al., 2021) etc.
These models have demonstrated state-of-the-art
performance on many tasks as well as their
ability to learn salient features for Arabic. One
of the main differences among these models is
the genre and amount of Arabic data they are
trained on. For example, AraBERT was trained
only on the MSA (Modern Standard Arabic),

Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 91 - 103
December 8, 2022 ©2022 Association for Computational Linguistics



ArabicBERT additionally used DA during training,
and CAMeIBERT-mix used a combination of all
types of Arabic text for training. Multilingual
models such as mBERT and XLM are mostly
trained on Wikipedia and CommonCrawl data
which is predominantly MSA (Suwaileh et al.,
2016). Figure 1 summarizes the training data
regimes of these models.

This large variety of Arabic pre-trained
models motivates us to question how their
representations encode various linguistic
concepts? To this end, we present the first
work on interpreting deep Arabic models.
We experiment with nine transformer models
including: five Arabic BERT models, Arabic
ALBERT, Arabic Electra, and two multilingual
models (mBERT and XLLM). We analyze their
representations using MSA and dialectal parts-
of-speech tagging and dialect identification tasks.
This allows us to compare the representations of
Arabic transformer models using tasks involving
different varieties of Arabic dialects.

We analyze representations of the network at
layer-level and at neuron-level using diagnostic
classifier framework (Belinkov et al., 2017; Hupkes
et al., 2018). The overall idea is to extract feature
vectors from the learned representations and train
probing classifiers towards understudied auxiliary
tasks (of predicting morphology or identifying
dialect). ~We additionally use the Linguistic
Correlation Analysis method (Dalvi et al., 2019a;
Durrani et al., 2020) to identify salient neurons
with respect to a downstream task. Our results
show that:

Network and Layer Analysis

e Lower and middle layers capture word
morphology

* The Ilong-range contextual knowledge
required to solve the dialectal identification is
preserved in the higher layers

Neuron Analysis

* The salient neurons with respect to a property
are well distributed across the network

* First (embedding) and last layers of the
models contribute a substantial amount of
salient neurons for any downstream task

* The neurons of embedding layer layer are
polysemous in nature while the neurons of
middle layers specializes in specific properties

92

MSA vs. Dialect

* Although dialects of Arabic are closely related
to MSA, the pre-trained models trained using
MSA only do not implicitly learn nuances of
dialectal Arabic

2 Methodology

Our methodology is based on the class of
interpretation methods called as the Probing
Classifiers. The central idea is to extract the
activation vectors from a pre-trained language
model as static features. These activation vectors
are then trained towards the task of predicting
a property of interest, a linguistic task that we
would like to probe the representation against. The
underlying assumption is that if the classifier can
predict the property, the representations implicitly
encode this information. We train layer (Belinkov
et al., 2020) and neuron probes (Durrani et al.,
2022) using logistic-regression classifiers.
Formally, consider a pre-trained neural language
model M with L layers: {l1,l2,...,l1}. Given
a dataset DD {wi,we, .., wy} with a
corresponding set of linguistic annotations T =
{tw,,twys --s twy }» we map each word w; in the
data D to a sequence of latent representations:

D= {z1,...,zN}. The layer-wise probing
classifier is trained by minimizing the following
loss function:

L) = — Zlog Py(tw, | wi)

where Py (ty, |w;) % is the

probability that word ¢ is assigned property ¢, .

For neuron analysis, we use Linguistic
Correlation Analysis (LCA) as described in (Dalvi
et al., 2019a). LCA is also based on the probing
classifier paradigm. However, they used elastic-net
regularization (Zou and Hastie, 2005) that enables
the selection of both focused and distributed
neurons. The loss function is as follows:

L) = =Y log Py(tu, [wi) + |18l + A2]16]13

The regularization parameters A; and A\, are tuned
using a grid-search algorithm. The classifier
assigns weight to each feature (neuron) which
serves as their importance with respect to a class
like Noun. We ranked the neurons based on the



absolute weights for every class. We select salient
neurons for the task such as POS by iteratively
selecting top neurons of every class.

A minimum set of neurons is identified by
iteratively selecting top neurons that achieves
classification performance comparable (within a
certain threshold) to the Oracle — accuracy of
the classifier trained using all the features in the
network.

Data Size Tokens Vocab Type
AraBERT 23GB 2.7B 64K MSA
ArabicBERT 95GB 8.2B 32K MSA
CAMeLBERT 167B 17.3B 30K  MSA/CA/DA
MARBERT 128GB 15.6B 100K MSA/DA
mBERT - 1.5B 110K MSA
QARIiB 127GB 14.0B 64K MSA/DA
AraELECTRA  77GB 8.6B 64K MSA
ALBERT - 4.4B 30K MSA
XLM 2.5TB - 250K MSA

Table 1: Pretrained Models data and statistics.

3 Experimental Setup

In this section, we describe our experimental setup
including the Arabic transformer models, probing
tasks that we have used to carry the analysis and
the classifier settings.

3.1 Pre-trained Models

We select a number of Arabic transformer models,
trained using various varieties of Arabic and based
on different architectures. Table 1 provides a
summary of these models. In the following, we
describe each model and the dataset used for their
training.

AraBERT was trained using a combination of 70
million sentences from Arabic Wikipedia Dumps,
1.5B words Arabic Corpus (El-khair, 2016) and the
Open Source International Arabic News Corpus
(OSIAN) from (Zeroual et al., 2019). The final
corpus contained mostly MSA news from different
Arab regions.

ArabicBERT Safaya et al. (2020) pretrained a
BERT model using a concatenation of Arabic
version of OSCAR (Ortiz Suérez et al., 2019), a
filtered subset from Common Crawl and a dump of
Arabic Wikipedia totalling to 8.2B words.

CAMeLBERT Inoue et al. (2021) combined a
mixed collection of MSA, Dialectal and Classical
Arabic texts with a total of 17.3B tokens. They used
the data to pre-train CAMeLBERT-Mix model.
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MARBERT Abdul-Mageed et al. (2020)
combined a dataset of 1B tweets that covering
mostly Arabic dialects and Arabic Gigaword 5th
Edition,> OSCAR (Ortiz Sudrez et al., 2019),
OSIAN (Zeroual et al., 2019) and Wikipedia dump
totally up to 15.6B tokens.

QARIB Abdelali et al. (2021) combined Arabic
Gigaword Fourth Edition,> 1.5B words Arabic
Corpus (El-khair, 2016), the Arabic part of Open
Subtitles (Lison and Tiedemann, 2016) and 440M
tweets collected between 2012 and 2020. The data
was processed using Farasa (Abdelali et al., 2016).

ALBERT used a subset of OSCAR (Ortiz Suarez
et al., 2019) and a dump of Wikipedia, selecting
around 4.4 Billion words (Safaya, 2020). The
model differs from BERT using factorized
embedding and repeating layers which results in a
small memory footprint (Lan et al., 2020).

AraELECTRA ELECTRA, model Clark et al.
(2020) is trained to distinguish "real" vs "fake"
input tokens generated by another neural network.
The Arabic ELECTRA was trained on 77GB of
data combining OSCAR dataset, Arabic Wikipedia
dump, the 1.5B words Arabic Corpus, the OSIAN
Corpus and Assafir news articles (Antoun et al.,
2021). Different than other models, AraELECTRA
uses a hidden layer size of 256 while all other
models have 768 neurons per layer.

Multilingual BERT Google research released
BERT multilingual base model pretrained on the
concatenation of monolingual Wikipedia corpora
from 104 languages with a shared word piece
vocabulary of 110K.

XLM Conneau et al. (2020) is a multi-
lingual version of RoBERTa, trained on 2.5TB
CommonCrawl data. The model is trained on 100
different languages.

3.2 Probing Tasks

We consider morphological tagging on a variety
of Arabic dialects and dialectal identification tasks
to analyze and compare the models. Below we
describe the task details.

POS Tagging on Arabic Treebank (ATB): The
Arabic Treebank Partl v2.0 and Part3 v1.0 with a
total of 515k tokens labeled at the segment level
with POS tags. The data is a combination of

2LDC Catalogue LDC2011T11
3LDC Catalogue LDC2009T30



Text ¢ J.ab:“ olgtus | ghai sb\ Lias o J sy UJLB
ATB | Labels VBD NNP IN NN NN NN NN DT+JJ PUNC
SBA wAErb byrswl En dhcth AzAC tTwr mstwAh AlmtwASI ,
Gloss. And Peirsol expressed his surprise at the continuous development of his level ,
Text gux?_jwiéjsiu!
CRS | Labels VERB NOUN+PRON DET+ADJC PREP+VERB+PREP+PRON NOUN PUNC
SBA nT Oxwy AlSgyr wjbly my !
Gloss. My little brother jumped and brought me water !
Text cm%;u%yicgwu@jzcmgucuwug
DiA | Labels | ADV NOUN ADJ PART ADV NOUN PUNC CONJ ADV NOUN ADJ PART PART ADV NOUN
SBA fy nAs mnAH mA fy mtln , w fy nAs mnyH Ally mA fy mtln
Gloss. | There are good people who are unparalleled, and there are people that it is good they are unparalleled.
Text Sl iugiie Jo3l lsag 4!
pIp | Labels langl langl ambiguous lang?2 lang2 other
SBA Ih mjddA Oqwl mfqwsp Owy
Gloss. For him again I say (I am) very upset !
Text G b cdale b Bl Caew
GMR | Labels NOUN_PROP:MS PUNC:- PRON:1S PART:- VERB:P1S VERB:P1S NOUN:MS
SBA syf : AnA mA gITt qlt Sdq
Gloss. Saif: I wasn’t wrong, I said the truth.

Table 2: Examples of Arabic annotated text and their corresponding labels for each task.

newswire text from An-Nahar and Agence France
Presse corpus (Maamouri et al., 2004). The data is
labeled with 42 distinct tags.

Gumar POS Tagging on Gulf Arabic (GMR):
Khalifa et al.( 2020) compiled a collection of
15,225 sentences from eight different novels
written in the Emirati Arabic dialect from the
Gumar Corpus (Khalifa et al., 2018). The data
was manually annotated for tokenization, part-
of-speech, lemmatization, spelling adjustment,
English glosses and sentence level dialect
identification, using 169 tags.

Curras POS Tagging on Palestinian Arabic
dialect (CRS): Jarrar et al.(2017) collected around
5K sentences written in Palestinian Arabic dialect
from web blogs, Twitter and Facebook comments
and transcripts from a TV Shows Watan Aa Watar.
The sentences were manually annotated for part-
of-speech (POS), stem, prefix, suffix, lemma, and
gloss using 260 tags.

POS Multidialects (DIA): A total of 1.4k
tweets from four Arabic dialects, namely
Egyptian (EGY), Levantine (LEV), Gulf
(GLF), and Maghrebi (MGR). The tweets were
morphologically tagged (Samih et al., 2017) using
areduced subset of 22 tags.

Dialect IDentification (DID): This task
is related to code switching and language
identification (LID) between MSA and Egyptian
dialect on social media content. The data
comprises intrasentential code switched sentences
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(mixing languages between utterances) used for the
Second Shared Task on Language Identification in
Code-Switched Data. The data contains over 11k
sentences, where each token in the sentences is
labeled with one of the eight labels:lang1, lang2,
fw, mixed, unk, ambiguous, other and named
entities (ne) (Molina et al., 2016).

Figure2 shows examples for each of the probing
tasks with their respective labels.

3.3 Post-hoc Classifier

We used the NeuroX toolkit (Dalvi et al., 2019b)
to perform our analysis. Our probe is a linear
classifier with categorical cross-entropy loss,
optimized by Adam (Kingma and Ba, 2014). For
neuron-analysis, the classifier additionally used the
elastic-net regularization (Zou and Hastie, 2005).
The regularization weights are trained using grid-
search algorithm. Training is run with shuffled
mini-batches of size 512 and stopped after 10
epochs. Linear classifiers are a popular choice
in analyzing deep NLP models due to their better
interpretability (Qian et al., 2016). Hewitt and
Liang (2019) have also shown linear probes to have
higher Selectivity, a property deemed desirable for
more interpretable probes. We perform control task
experiments to ensure that our probes are reflective
of the linguistic knowledge that representations
capture. For sub-word based models, we use the
average activation value (Durrani et al., 2019) to
be the representative of the word. We additionally



Task ATB CRS DIA DID GMR Avg. Acc
Model Acc. Sel. | Acc. Sel. | Acc. Sel. | Acc. Sel. | Acc. Sel. ’ ’
AraBERT 939 48.1 | 773 221|790 581 | 847 374|904 064 85.06
ArabicBERT 952 482|805 247|836 504|912 347|916 05.1 88.43
CAMeIBERT | 95.8 392 | 829 236 | 8.0 372|920 213|930 05.6 89.94
MARBERT 95.6 514|842 275 | 848 488|931 339|934 073 90.22
QARiB 958 50.6 | 840 289 | 854 450|933 288|933 06.7 90.38
mBERT 944 488 | 73.7 227 | 776 584 | 81.7 363 | 88.0 044 83.08
AraELECTRA | 944 469 | 72.7 284 | 79.0 56.2 | 87.9 343 | 89.1 08.1 84.64
ALBERT 952 409|770 283|821 398|883 27.1|902 094 86.56
XLM 95.7 437|750 206 | 789 421|867 293 | 882 06.0 84.90
Table 3: Classifier performance on Test sets using top layers
Task ATB CRS DIA DID GMR
Threshold § 5% 10% 10% 7% 5%
Model Acc. Sel. | Acc. Sel. | Acc. Sel. | Acc. Sel. | Acc. Sel
AraBERT 934 488 | 82.1 335|793 399860 215|899 18.1
ArabicBERT 94.0 50.8 | 83.6 31.6| 833 449 | 90.1 263|910 125
CAMeIBERT | 949 51.1 | 86.1 37.0 | 8.1 47.5 | 91.0 272|926 226
MARBERT 945 516 | 862 30.0| 84.2 485 | 91.6 29.2 | 923 15.0
QARiB 95.0 52.7|86.1 31.0| 83.6 46.7|91.7 300|924 11.6
mBERT 94.1 485|784 331|775 377|832 17.0| 87.6 134
AraELECTRA | 91.2 533 ] 79.0 339 | 794 450 | 882 256 | 876 13.1
ALBERT 94.7 56.8 | 80.7 33.7 | 81.8 47.4 | 885 259 | 89.8 12.0
XLM 953 518 | 785 279 | 79.0 445 | 865 21.7 | 88.0 124

Table 4: Classifier performance on Test sets using top neurons as features

normalize the embeddings using znorm as it has
shown to provide better ranking of neurons with
respect to a property (Sajjad et al., 2021a).

4 Analysis and Discussion

Our goal is to carry out a comparative investigation
of the knowledge encoded in different Arabic
transformer models.  First we compare the
representations in terms of how much linguistic
information is preserved in the network using the
overall accuracy on the understudied auxiliary
tasks. Then we analyze how such information is
preserved across individual layers of the model.
Lastly, we analyze the distribution of neurons
across the model with respect to these tasks.

4.1 Network Analysis

We use the feature vectors* generated from

different dialects of Arabic to train post-
hoc classifiers towards the task of predicting
morphology in these dialects or predicting the
dialect themselves. Table 3 gives accuracy
of the classifiers on different dialectal tasks.
Firstly, the high accuracy numbers show that

*We concatenated the features from all layers of the
network to train the classifier.
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the representations learn non-trivial linguistic
knowledge. We found all the models to do
well on the task of predicting MSA morphology
unsurprisingly, since all these models have
been trained on a large amount of MSA data.
Contrastingly, the performance varied a lot on
the dialectal tasks with different models giving
optimal performance on different dialects. Note
that the models that were trained only using MSA
performed much worse despite the fact that MSA
and dialect have a significant vocabulary overlap.
This shows that to capture specific dialectal
nuances these transformer models need to train
on dialectal data. Comparing the models, we
found dialectal models (QARiB, MARBERT
and CAMeLBERT) to perform considerably well
across all the tasks. Lastly the high selectivity
numbers in Table 3 validate the fact that our
classifiers are not memorizing the tasks and are
a true reflection of the knowledge captured within
the underlying representations.

4.2 Layer-wise Analysis

We now analyze how the understudied linguistic
knowledge is distributed across the layers. We
train a classifier for each probing task using
representations of individual layers as features. The
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Figure 2: Layer-wise accuracy for different selected tasks.

performance of the classifier serves as a proxy
to the amount of task knowledge learned in each
layer representation. Figure 2 provides per-layer
accuracy for the CRS (morphological tagging for
Palestinian dialect) and DID (Dialect Identification)
tasks.” We found that the word morphology is
captured predominantly in the lower layers of
the model, retained in the middle layers before
declining in the final layers. The higher layers
are reserved for complex phenomenon such
as capturing non-local dependencies. This is
confirmed from our DID results. Identifying dialect
requires learning non-local dependencies and
sentence level phenomenon to accurately predict
the dialect. For example, a lexical form can belong
to two different dialects depending on the context to
disambiguate the dialect of the word. For example,
>l “HAjp” (thing or need) is MSA in the

context: Q;\f b o “Ist fy HAjp 1On” (I am

not in need to) or Egyptian: . Wi Sl e
“mfyc HAjp OSEb mn” (there is no thing difficult
than). The contextual knowledge is essential to
disambiguate in such cases.

4.3 Neurons Analysis

We now study how the information is spread
across neurons instead of layer by carrying a fine-
grained analysis. We discover neurons that learn
a particular linguistic property using LCA (Dalvi
et al., 2019a) and analyze: i) how many neurons
can sufficiently capture a concept, ii) how these
neurons are distributed across the layers. LCA
provides a ranked list of neurons with respect to
the understudied property. We select a minimumal

SWe limit the presentation to fewer models for clarity

purposes. Our observations consistently hold for all dialectal
tasks. See Appendix for complete results.
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set of top neurons from the ranked list that yield
close to the oracle performance.®

Minimal Neurons: We found 5% neurons to be
optimal for ATB, and GMR; while 10% for both
CRS and DIA tasks, due to their more granular
tag-set. For the DID task, we found 7% neurons
to be optimal (Table 4 shows results — please
also see Appendix for a more detailed result
using different neuron thresholds). Our results
show that a small subset of features can achieve
close to oracle performance. This entails that
re-trainable features are available in the network
as also shown by Dalvi et al. (2020). Such
a finding entails interesting frontier in efficient
feature-based transfer learning, which is considered
as a viable alternative to the traditional fine-tuning
based transfer learning (Peters et al., 2019; Durrani
et al., 2021; Alrowili and Shanker, 2021).

Neuron Distribution: Let us now turn our
attention towards how these neurons are distributed
in the network. In Figure 3 we plot salient
neurons across the layers (See Appendix for all
the tasks). A dominant pattern that we observed
was that the embedding and final layers of the
model consistently contribute the most number
of salient neurons. This entails that while the
neurons in middle layers capture intricate details
of the task, the input and output layers of the
model that are closer to the actual words possess
most lexical information required to for accurate
predictions. The model uses the embedding layer
to focus on more localized information and final
layers to capture contextual dependencies. An
exception to this overall pattern was the ALBERT

® Accuracy when using the entire network or best layer,
whichever is higher.
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Figure 3: Distribution of selected neurons across the layers

model, where the embedding layer has close
to zero contribution in the salient neurons and
relatively higher number of neurons from the initial
contextualized layers. Recall that ALBERT has a
different architecture where parameters are shared
across the encoder layers. Moreover the model
factorizes the embedding layer. These architectural
choices perhaps explain the difference of neuron
distribution pattern. A detailed analysis of word
embedding layers using lexical tasks such as word
similarity and word relatedness is required to fully
understand this.

Property Distribution: We have seen how
salient neurons distribute across the network. Now
we analyze how these neurons distribute across
sub-properties within a task. A morphological
tagging task for example is composed of different
properties such as Noun, Verb, Adjective etc. In
Figure 4 we plot the number of salient neurons
required to capture different properties on the task
of predicting classes in the ATB task. We observed
that closed class categories such as personal
pronoun (PRP) are localized to fewer neurons,
where as the open-class words such as past-
tense verbs (VBD) that exhibit a variety of roles
in different contexts require a large number of
neurons. We found this observation to be true
for all the models across different dialectal tasks
(Please see Appendix for more results).

Layer-wise Property Distribution: We also
analyzed how individual properties are encoded
across the layers in the network, Do they have
similar neuron distribution pattern or are the
specific properties learned more on higher layers
than lower layers and vice versa? Figure 5 shows
the distribution of selected neurons of ALBERT,
AraBERT and QARIiB for a few properties. We
observed a very consistent pattern to the overall
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neuron distribution that we saw in Figure 3.
For most of the properties salient neurons were
contributed from the embedding and final layers,
and middle layers contributed less than 20 neurons.
Another interesting pattern to be noted is that noun
neurons were more prevalent in the embedding
layer (layer 1-2 for ALBERT) but verb neurons
were dominantly found in the final layers. Verbs
are considered to be structural center in linguistic
theories as they connect to all other syntactic
units in a sentence (Hudson, 2010). This further
reinforces our result that the higher layers of the
model capture long distance dependencies.

Polysemous Neurons: Neurons are multi-
variate in nature and may capture multiple
concepts.  For example Bau et al. (2019)
discovered switch neurons that activate positively
for present-tense verbs and negatively for the
past-tense verbs in LSTM encoders. We also
analyzed the overlaps between salient neurons
that learn different linguistic properties in an
attempt to discover polysemous neurons. Figure 6
shows the overlap of neurons across properties
in different layers in the QARiB model. The
zeros means that none of the top neurons between
the properties overlap. Note that there is a high
concentration of overlapping neurons between
determiners (DT), adjectives (JJ) and nouns (NN)
or between determiners and verbs. The intersection
was around 54% in the case of Determiner “DT”
and Noun “NN”. We believe this is an artifact of
concatenative morphology that Arabic exhibits,
where it is common for affixes such as preposition
or determiner to join with nouns or adjectives to
form composite constructions. We also observed
that the number of polysemous neurons exist more
dominantly in the embedding layer. Higher layers
(Exp. Figure 6e and 6f) show less shared and
overlapping neurons.
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5 Related Work

Work done on interpreting deep NLP models
can be broadly classified into Concept Analysis
and Attribution Analysis. The former thrives
on post-hoc decomposability, where we analyze
representations to uncover linguistic (and non-
linguistic) phenomenon that are captured as the
network is trained towards any NLP task (Conneau
et al.,, 2018; Liu et al., 2019; Tenney et al.,
2019; Sajjad et al., 2022; Dalvi et al., 2022)
and the latter characterize the role of model
components and input features towards a specific
prediction (Linzen et al., 2016; Gulordava et al.,
2018; Marvin and Linzen, 2018). Our work
falls into the former category. We carry out
a layer and neuron-wise analysis on the Arabic
transformer models. We used Diagnostic classifiers
(Belinkov et al., 2017) to train layer and neuron-
wise probes towards predicting linguistic properties
of interest. To the best of our knowledge this is
the first work on analyzing Arabic transformer
models. Suau et al. (2020) used max-pooling
to identify relevant neurons (aka Expert units)
in pre-trained models, with respect to a specific
concept (for example word-sense). Mu and
Andreas (2020) proposed a Masked-based Corpus
Selection method to determine important neurons
with respect to a concept. See Sajjad et al. (2021b)
for a comprehensive survey of these techniques.
We used the Linguistic Correlation Analysis of
Dalvi et al. (2019a) to perform neuron analysis.

6 Conclusion and Future Work

In this paper we carry out a post-hoc analysis on
a number of Arabic transformer models using five
linguistic tasks. Our results enlighten interesting
insights: 1) neural networks learn non-trivial
amount of linguistic knowledge with lower and
middle layers capturing word morphology and
higher layers learning more universal phenomenon,
ii) we found that salient neurons are distributed
across the network, but some layers contribute
more salient neurons towards a task, iii) we found
some neurons to be polysemous in nature while
other capturing very specialized properties, iv)
lastly we showed that MSA-based models do not
capture dialectal nuances despite having a large
overlap with dialects. For future work, we aim
to expand this analysis to include more tasks and
explore related languages such as the families of
Semitic, Germanic or Latin languages.
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A Appendix

Table 5 shows the performance loss for different thresholds. Highlighted thresholds were selected based
on the 1% average performance loss. For the case of DIA, some overfitting is noticeable. Such case is
reported in literature where the classifiers with large contextualized vectors tend to overfit when supervised
data is insufficient (Hameed, 2018).

Task Threshold

232|888 |2 |8|¢
5 | &z | x| |8 |&8|z]|z=
o a D & o] 7~ =) us)
~ =] o ™ — [es] ~
= = & = q =
& = = z
3.00% 0914 | 0915 | 0.929 | 0916 | 0.924 | 0.924 | 0.868 | 0.935 | 0.938
5.00% 0.934 | 0.940 | 0.949 | 0.945 | 0.950 | 0.941 | 0912 | 0.947 | 0.953
7.00% 0.939 | 0.949 | 0.957 | 0.952 | 0.957 | 0.945 | 0.934 | 0.953 | 0.957

ATB | 10.00% 0.943 | 0.953 | 0.960 | 0.957 | 0.961 | 0.947 | 0.945 | 0.954 | 0.960
20.00% 0.945 | 0.956 | 0.960 | 0.958 | 0.962 | 0.948 | 0.954 | 0.953 | 0.961
50.00% 0.940 | 0.953 | 0.955 | 0.954 | 0.958 | 0.941 | 0.957 | 0.948 | 0.955
100.00% 0.937 | 0.954 | 0.957 | 0.955 | 0.955 | 0.938 | 0.954 | 0.947 | 0.953

3.00% 0.769 | 0.767 | 0.803 | 0.784 | 0.787 | 0.725 | 0.658 | 0.763 | 0.714
5.00% 0.798 | 0.809 | 0.834 | 0.831 | 0.828 | 0.757 | 0.723 | 0.791 | 0.755
7.00% 0.791 | 0.811 | 0.842 | 0.840 | 0.845 | 0.755 | 0.789 | 0.782 | 0.761

CRS | 10.00% 0.821 | 0.836 | 0.861 | 0.862 | 0.861 | 0.784 | 0.790 | 0.807 | 0.785
20.00% 0.822 | 0.844 | 0.868 | 0.864 | 0.866 | 0.796 | 0.824 | 0.809 | 0.797
50.00% 0.804 | 0.827 | 0.858 | 0.857 | 0.861 | 0.776 | 0.825 | 0.792 | 0.792
100.00% 0.788 | 0.824 | 0.839 | 0.845 | 0.847 | 0.763 | 0.816 | 0.779 | 0.780

3.00% 0.753 | 0.780 | 0.798 | 0.766 | 0.783 | 0.732 | 0.683 | 0.779 | 0.753
5.00% 0.774 | 0.812 | 0.835 | 0.809 | 0.820 | 0.748 | 0.747 | 0.808 | 0.767
7.00% 0.788 | 0.831 | 0.847 | 0.830 | 0.834 | 0.757 | 0.776 | 0.815 | 0.783

DIA | 10.00% 0.793 | 0.833 | 0.851 | 0.842 | 0.836 | 0.775 | 0.794 | 0.818 | 0.790
20.00% 0.794 | 0.840 | 0.857 | 0.850 | 0.851 | 0.768 | 0.809 | 0.814 | 0.806
50.00% 0.784 | 0.832 | 0.840 | 0.844 | 0.847 | 0.752 | 0.814 | 0.798 | 0.799
100.00% 0.770 | 0.818 | 0.831 | 0.826 | 0.829 | 0.734 | 0.803 | 0.790 | 0.776

3.00% 0.829 | 0.876 | 0.879 | 0.879 | 0.885 | 0.809 | 0.840 | 0.864 | 0.833
5.00% 0.854 | 0.892 | 0.897 | 0.907 | 0.908 | 0.821 | 0.868 | 0.881 | 0.860
7.00% 0.860 | 0.901 | 0.910 | 0.916 | 0.917 | 0.832 | 0.882 | 0.885 | 0.865

DID | 10.00% 0.872 | 0.905 | 0.914 | 0.918 | 0.920 | 0.837 | 0.887 | 0.892 | 0.878
20.00% 0.880 | 0.908 | 0.917 | 0.922 | 0.923 | 0.846 | 0.900 | 0.893 | 0.878
50.00% 0.876 | 0.902 | 0.909 | 0.915 | 0.915 | 0.840 | 0.906 | 0.888 | 0.871
100.00% 0.864 | 0.892 | 0.896 | 0.903 | 0.903 | 0.823 | 0.906 | 0.877 | 0.858

3.00% 0.881 | 0.891 | 0.913 | 0.907 | 0.912 | 0.856 | 0.833 | 0.885 | 0.856
5.00% 0.899 | 0.910 | 0.926 | 0.923 | 0.924 | 0.876 | 0.876 | 0.898 | 0.880
7.00% 0913 | 0.925 | 0.929 | 0.936 | 0.934 | 0.892 | 0.892 | 0.909 | 0.891

GMR | 10.00% 0.908 | 0.920 | 0.931 | 0.930 | 0.929 | 0.890 | 0.901 | 0.905 | 0.897
20.00% 0.907 | 0.920 | 0.926 | 0.929 | 0.925 | 0.891 | 0.914 | 0.904 | 0.898
50.00% 0.899 | 0.909 | 0918 | 0.919 | 0915 | 0.876 | 0.911 | 0.889 | 0.884
100.00% 0.890 | 0.900 | 0.910 | 0.909 | 0.908 | 0.865 | 0.901 | 0.880 | 0.878

Table 5: Performance per models using different threshold §
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Figure 7: Layer-wise accuracy for ATB, DIA, GMR tasks.
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Selected Neurons per Layer
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Figure 8: Distribution of neurons per property
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Figure 9: Distribution of selected neurons across the layers
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Abstract

The automatic scoring of summaries is impor-
tant as it guides the development of summa-
rizers. Scoring is also complex, as it involves
multiple aspects such as fluency, grammar, and
even textual entailment with the source text.
However, summary scoring has not been con-
sidered a machine learning task to study its ac-
curacy and robustness. In this study, we place
automatic scoring in the context of regression
machine learning tasks and perform evasion
attacks to explore its robustness. Attack sys-
tems predict a non-summary string from each
input, and these non-summary strings achieve
competitive scores with good summarizers on
the most popular metrics: ROUGE, METEOR,
and BERTScore. Attack systems also "outper-
form" state-of-the-art summarization methods
on ROUGE-1 and ROUGE-L, and score the
second-highest on METEOR. Furthermore, a
BERTScore backdoor is observed: a simple
trigger can score higher than any automatic
summarization method. The evasion attacks in
this work indicate the low robustness of cur-
rent scoring systems at the system level. We
hope that our highlighting of these proposed
attacks will facilitate the development of sum-
mary scores.

1 Introduction

A long-standing paradox has plagued the task of
automatic summarization. On the one hand, for
about 20 years, there has not been any automatic
scoring available as a sufficient or necessary condi-
tion to demonstrate summary quality, such as ade-
quacy, grammaticality, cohesion, fidelity, etc. On
the other hand, contemporaneous research more
often uses one or several automatic scores to en-
dorse a summarizer as state-of-the-art. More than
90% of works on language generation neural mod-
els choose automatic scoring as the main basis,
and about half of them rely on automatic scoring
only (van der Lee et al., 2021). However, these

I'm here fo rate this
summary you wrote.

———

I wrote a summary
of a document.

Figure 1: Automatic summarization (left) and automatic
scoring (right) should be considered as two systems of
the same rank, representing conditional language gener-
ation and natural language understanding, respectively.
As a stand-alone system, the accuracy and robustness of
automatic scoring are also important. In this study, we
create systems that use bad summaries to fool existing
scoring systems. This work shows that optimizing to-
wards a flawed scoring does more harm than good, and
flawed scoring methods are not able to indicate the true
performance of summarizers, even at a system level.

scoring methods have been found to be insuffi-
cient (Novikova et al., 2017), oversimplified (van
der Lee et al., 2021), difficult to interpret (Sai et al.,
2022), inconsistent with the way humans assess
summaries (Rankel et al., 2013; Bohm et al., 2019),
or even contradict each other (Gehrmann et al.,
2021; Bhandari et al., 2020).

Why do we have