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Introduction

BlackboxNLP is the fifth workshop on analyzing and interpreting neural networks for NLP, hosted by the
2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022) in Abu Dhabi,
United Arab Emirates, and online (hybrid).
Many recent performance improvements in NLP have come at the cost of understanding of the systems.
How do we assess what representations and computations models learn? How do we formalize desirable
properties of interpretable models, and measure the extent to which existing models achieve them? How
can we build models that better encode these properties? What can new or existing tools tell us about the
inductive biases of systems?
The goal of this workshop is to bring together researchers focused on interpreting and explaining NLP
models by taking inspiration from machine learning, psychology, linguistics, and neuroscience. We hope
the workshop will serve as an interdisciplinary meetup that allows for cross-collaboration.
The topics of the workshop include, but are not limited to: Explanation methods such as saliency, attribu-
tion, free-text explanations, or explanations with structured properties; Probing methods for testing whe-
ther models have acquired or represent certain linguistic properties; Applying analysis techniques from
other disciplines (e.g., neuroscience or computer vision); Examining model performance on simplified or
formal languages; More interpretable model architectures; Open-source tools for analysis, visualization,
or explanation; Evaluation of explanation methods; Opinion pieces about the state of explainable NLP.
We received an impressive number of 76 submissions (including both archival papers and extended ab-
stracts), suggesting that the issue of interpretability of neural networks remains important within the NLP
community. The final program contains three keynote talks, four oral presentations and 74 posters (33
archival papers, 13 extended abstracts, and 28 Findings papers). We hope this workshop provides a ven-
ue for bringing together ideas and stimulate new ways of building methods and resources for facilitating
better analysis and understanding of the inner-dynamics of neural networks for NLP.
BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing high-quality reviews in a very short period of
time. We are also grateful to our invited speakers, Lena Voita, Catherine Olsson and David Bau, for
contributing to our program. Finally, we are very thankful to our sponsor, Google, that made it possible
for some of our participants to attend the workshop.
Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar, Dieuwke Hupkes, Naomi Saphra, Sarah Wiegreffe
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Keynote Talk: The Two Viewpoints on the NMT Training
Process
Lena Voita

Facebook AI Research

Abstract: In this talk, I illustrate how the same process (in this case, NMT training process) can be
viewed from different perspectives: from the inside of the model and from the outside, i.e. in a black-
box manner. In the first view, we look at the model’s inner workings and try to understand how NMT
balances two different types of context, the source and the prefix of the target sentence. In the second
view, we look at model outputs (i.e. generated translations) at different steps during training and evaluate
how the model acquires different competences. We find that NMT training consists of the stages where
it focuses on the competences mirroring three core SMT components: target-side language modeling,
lexical translation and reordering. Most importantly, the two views show the same process, and we will
see how this process is reflected in these two types of analysis.

Bio: Elena (Lena) Voita is a Research Scientist joining Facebook AI Research. She is mostly intere-
sted in understanding what and how neural models learn. Her analysis works so far include looking at
model components, adapting attribution methods to NLP models, black-box analysis of model outputs,
as well as information-theoretic view on analysis (e.g., probing). Previously, she was a PhD student at
the University of Edinburgh supervised by Ivan Titov and Rico Sennrich, was awarded Facebook PhD
Fellowship, worked as a Research Scientist at Yandex Research side by side with the Yandex Translate
team. She enjoys writing blog posts and teaching; a public version of (a part of) her NLP course is
available at lena-voita.github.io/nlp_course.html.
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Keynote Talk: In-Context Learning and Induction Heads
Catherine Olsson

Anthropic AI

Abstract: “Induction heads” are attention heads that implement a simple algorithm to complete token
sequences like [A][B] . . . [A] → [B]. In this work, we present preliminary and indirect evidence for
a hypothesis that induction heads might constitute the mechanism for the majority of all “in-context
learning” in large transformer models (i.e. decreasing loss at increasing token indices). We find that
induction heads develop at precisely the same point as a sudden sharp increase in in-context learning
ability, visible as a bump in the training loss. We present six complementary lines of evidence, arguing
that induction heads may be the mechanistic source of general in-context learning in transformer models
of any size. For small attention-only models, we present strong, causal evidence; for larger models with
MLPs, we present correlational evidence.

Bio: Catherine Olsson is a research engineer at Anthropic, and the lead author on the recent mechanistic
interpretability paper In-context Learning and Induction Heads. She has previously worked in technical
research roles at Google Brain and OpenAI, and as a grantmaker at Open Philanthropy Project funding
academic research in ML robustness.
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Keynote Talk: Direct Model Editing
David Bau

Northeastern Khoury College

Abstract: Can we understand large deep networks well enough to reprogram them by changing their
parameters directly? In this talk I will talk about Direct Model Editing: how to modify the weights of a
large model directly by understanding its structure. We will consider examples in computer vision and
NLP: how to probe and rewrite computations within an image synthesis model to alter compositional
rules that govern rendering of realistic images, and how the ROME method can edit specific factual me-
mories within a large language model, directly tracing and modifying parameters that store associations
within GPT. I will talk about how causal mediation analysis can serve as a key to unlock the secrets
of a huge model; the specificity-generalization trade-off when evaluating knowledge changes in a large
model; and how recent results in our MEMIT work suggest that direct editing in huge models may scale
orders-of-magnitudes better than traditional opaque fine-tuning.

Bio: David Bau is Assistant Professor at the Northeastern University Khoury College of Computer
Science. He received his PhD from MIT and AB from Harvard. He is known for his network dissection
studies of individual neurons in deep networks and has published research on the interpretable structure
of large models in PNAS, CVPR, NeurIPS, and SIGGRAPH. Prof. Bau is also coauthor of the textbook,
Numerical Linear Algebra.
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Abstract
Whether neural networks are capable of com-
positional generalization has been a topic of
much debate. Most previous studies on this
subject investigate the generalization capabili-
ties of state-of-the-art deep learning architec-
tures. We here take a more bottom-up ap-
proach and design a minimal model that dis-
plays generalization on a compositional bench-
mark, namely, the gSCAN dataset. The model
is a hybrid architecture that combines lay-
ers trained with gradient descent and a selec-
tive attention mechanism optimized with an
evolutionary strategy. The architecture has
around 60 times fewer trainable parameters
than models previously tested on gSCAN, and
achieves comparable accuracies on most test
splits, even when trained only on a fraction of
the dataset. On adverb to verb generalization
accuracy, it outperforms previous approaches
by 65 to 86%. Through ablation studies, neu-
ron pruning, and error analyses, we show that
weight decay and attention mechanisms facili-
tate compositional generalization by encourag-
ing sparse representations divorced from irrel-
evant context. We find that the model’s sample
efficiency can mainly be attributed to its selec-
tive attention mechanism.

1 Introduction

Compositionality is a core aspect of human cogni-
tion. It is what allows us to produce and understand
infinite combinations of known concepts, be it in
the realm of language, vision, or motor skills. Re-
garding artificial intelligence (AI) systems, compo-
sitionality holds the promise of more human-like,
robust generalization on out-of-distribution data, as
well as increased sample efficiency. Composition-
ality in neural networks has thus been the subject
of numerous empirical investigations – with mixed
results. Several studies using a variety of deep neu-
ral network architectures have found that models
either failed on compositional tasks or succeeded
given enough data, but could do so without relying

on systematic compositional rules (Baroni, 2020;
Lake and Baroni, 2018; Loula et al., 2018; Subra-
manian et al., 2019; Keysers et al., 2019; Hupkes
et al., 2020; Andreas et al., 2019; Chaabouni et al.,
2020). Others found that such architectures could
reach compositional solutions without being explic-
itly constrained to do so, but that this ability varied
dramatically across random initializations of the
same model (Liška et al., 2018; McCoy et al., 2020;
Weber et al., 2018).

The main focus of these studies has been on
testing whether state-of-the-art deep learning archi-
tectures are able to learn compositionally. We here
take a different approach, namely that of specifi-
cally building a minimal model that is able to solve
a set of compositional generalization tasks, then
using this model as a tool for analyzing when and
how generalization occurs. Our dataset of choice
for this investigation is gSCAN, a challenge bench-
mark for systematic generalization in grounded
language understanding.

The model we use is a hybrid architecture, con-
taining some weights that are trained with gradient
descent, some that are optimized with an evolu-
tionary strategy, and some that are initialized ran-
domly and left frozen. A detailed justification of
these design choices is given in Section 4.2. The
architecture has around 60 times fewer trainable pa-
rameters than models previously tested on gSCAN,
which allows us to run extensive ablation studies
and error analyses to investigate factors contribut-
ing to generalization performance. We find that our
best-performing model breaks down the gSCAN
tasks into simpler, reusable parts and combines
them using only 13 neurons in its final decision
layer. It achieves accuracies comparable with pre-
viously proposed models on most test splits and
outperforms them on adverb to verb generalization
by 65 to 86%, even when trained on as little as 2%
of the full dataset.
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2 Related Work

2.1 Compositional Generalization
A number of works have addressed the challenge
of building AI systems that generalize composition-
ally. Neural Module Networks were designed for
visual question answering and achieve systematic-
ity by dynamically assembling question-specific
models out of trainable reusable components (An-
dreas et al., 2016a,b). Other approaches explore
ways of encouraging compositional representations
in commonly used state-of-the-art models without
major architectural changes. In this vein, Hupkes
et al. (2018) and Baan et al. (2019) find that atten-
tive guidance during training helps develop small
functional groups of neurons that yield more com-
positional solutions by seq2seq models on lookup
table tasks. Andreas (2020) and Akyürek et al.
(2020) propose data augmentation schemes that
promote compositional learning in instruction fol-
lowing and morphological analysis. Ontanon et al.
(2022) focus on the effect that design decisions
such as position encodings, weight sharing, or
model hyper-parameters can have on the composi-
tional generalization abilities of Transformer mod-
els. Finally Power et al. (2021) identify weight
decay as being particularly effective at improving
generalization on a binary operation table task.

2.2 Grounded instruction following
Several datasets have been proposed in recent years
for training embodied agents to follow instructions
in simulated 2D or 3D environments (Hermann
et al., 2017; Yu et al., 2018a; Misra et al., 2018;
Chaplot et al., 2018; Yu et al., 2018b; Deruyt-
tere et al., 2019; Chevalier-Boisvert et al., 2019;
Shridhar et al., 2020). One such task is gSCAN,
which was specifically introduced as a benchmark
for compositionality in grounded language under-
standing and contains 8 test splits for assessing
different kinds of out-of-distribution generalization
(Ruis et al., 2020). Previous approaches to solv-
ing gSCAN include language-conditioned message
passing (Gao et al., 2020), compositional networks
(Kuo et al., 2021), neuro-symbolic, dual-system
models (Nye et al., 2021), and the introduction of
auxiliary tasks (Jiang and Bansal, 2021; Heinze-
Deml and Bouchacourt, 2020). The most success-
ful model to date uses a general-purpose Trans-
former architecture with cross-modal attention and
solves 5 out of 8 tasks (Qiu et al., 2021).

As outlined in the introduction, our goal is not

necessarily to compete with these previous ap-
proaches. Instead we aim to devise a parameter-
efficient model that can serve as a tool for a more
in-depth investigation of the factors influencing per-
formance on the different gSCAN test splits, and
to contextualise the results with previous findings
on out-of-distribution generalisation.

2.3 Neuroevolution

Evolutionary algorithms (EA) are stochastic,
gradient-free methods that explore multiple areas
of a search space in parallel. This work was par-
ticularly inspired by Tang et al. (2020), who com-
bine neuroevolution techniques with self-attention
to solve vision-based RL tasks. Their model ex-
tracts relevant patches from input images through a
hard (non-differentiable) attention mechanism, op-
timized via an EA rather than more commonly used
techniques like RL. The most attended-to patches
are then passed on to an LSTM controller which
determines the agent’s action. The authors find that
this approach significantly reduces the number of
model parameters needed compared to previous
methods, as well as offering increased interpretabil-
ity and higher robustness to out-of-distribution
modifications (Tang et al., 2020).

3 Background

Our architecture makes use of an Echo-State Net-
work (ESN) and the covariance matrix adaptation
evolution strategy (CMA-ES) to reduce the number
of learnable parameters needed (see Section 4.2).
As both are not commonly used in NLP, we here
provide some background on these techniques.

3.1 Echo-State Networks

A basic ESN consists of an input layer W r
i , a recur-

rent neural network (RNN) or so-called reservoir,
and an output layer Wo. The reservoir’s state is
updated at each discrete time step as follows:

x[n+ 1] =(1− α)x[n] + αf
(
W r
i u[n]

+W r
r x[n]

)
, (1)

where α is a leak rate, x[n] is the current reser-
voir activation state, f is a the hyperbolic tangent
function, u[n] is the external input, and W r

r is the
reservoir’s internal weight matrix. The ESN’s out-
put is computed as

y[n+ 1] =g(Wox[n+ 1]), (2)
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where g is an activation function. Crucially, W r
i

and W r
r are randomly initialized and left untrained.

Only Wo is optimized. This leads to considerably
faster training times than for conventional RNNs
where all weights are learned (Gauthier et al., 2021).
ESNs’ main areas of application therefore include
resource-constrained contexts like robotics and
edge computing (Nakajima, 2020).

3.2 CMA-ES

CMA-ES is a black-box optimization algorithm. It
has been empirically shown to perform robustly
on a range of tasks and requires very little pa-
rameter tuning (Hansen et al., 2010), making it
the EA of choice for optimizing the model in
Tang et al. (2020) which inspired our architecture.
CMA-ES works by iteratively sampling λ candi-
date solutions from a multivariate normal distribu-
tion N (m,σ2, C) with mean m, step size σ and
covariance matrix C. At each generation, the can-
didate solutions’ fitness is evaluated according to
some function f , and m, σ, and C are adjusted to
increase the probability of success. As the CMA-
ES algorithm is not a main focus of this work, we
relegate details on how the parameters are updated
to Appendix A and refer the interested reader to
Hansen and Ostermeier (2001) for a more in-depth
description of the method.

4 Experiment setup

4.1 gSCAN Benchmark

The gSCAN environment is a grid with objects
of various shapes, sizes, and colors. It is repre-
sented as a 16 × 6 × 6 array, where 6 is the grid
size and 16 is the dimension of the binary feature
encoding for each grid cell. The agent receives
synthetically generated English language instruc-
tions which it must carry out using 6 output actions,
such as walking or turning. Some combinations
are held out of the training set. Out-of-distribution
generalization is then assessed on nine separate
test splits, listed in Table 1, measured using exact
match accuracy of predicted action sequences. The
full dataset has ≈ 370, 000 training and ≈ 20, 000
test sequences. Hupkes et al. (2020) propose to
distinguish between five interpretations of model
compositionality, namely, the systematic recom-
bination of known parts and rules (systematicity),
the extension of predictions beyond lengths seen
during training (productivity), robustness to syn-
onym substitutions (substitutivity), dependence on

Table 1: Overview of gSCAN’s compositional test
splits

Test Split Held-out Examples

A: Random Random (in-distribution)

B: Yellow Squares
Yellow squares as targets if
referred to as yellow

C: Red Squares Red squares as targets
D: Novel Direction Targets south-west of the agent

E: Relativity
Circles of size 2 referred to as small
(references are relative to other grid
objects, not tied to absolute sizes)

F: Class inference
Pushing squares of size 3 (heavy
objects are pushed/pulled twice)

G: Adverb k = 1
All except k mentions of cautiously
(looking both ways before each step)

H: Adverb to verb
Commands containing both pull and
while spinning (turning 4 times)

I: Length Action sequences of length ≥ 15

local vs global structures (localism), and the pref-
erence for rules vs exceptions (overgeneralization).
Following this taxonomy, split G tests the model’s
one-shot learning capabilities, or overgeneraliza-
tion. Split I tests for productivity. We mainly con-
sider splits B, C, D, E, F, and H, which focus on
systematic generalization and substitutivity.

4.2 Model
To solve a gSCAN task, the agent requires knowl-
edge of the command to carry out, the grid state,
and its own past actions. The latter is needed to
keep track of e.g. the number of turns completed
when “spinning". In the following, we describe
how these inputs are represented and processed.

Reservoir To create the representation of the
language command we chose an ESN, due to its
ability to capture information about all input words
and their order in a single vector, without requiring
any weight updates. This fit our goal of keeping the
number of trainable parameters low. The instruc-
tion to the agent is tokenized, one-hot encoded, and
input sequentially to a reservoir with 400 hidden
neurons, which is updated after each token accord-
ing to Equation 1. All reservoir neurons are ran-
domly connected to an output layer Wo of size 64,
yielding a 64-dimensional command embedding.

Selective attention The selective attention part
of the model is responsible for extracting task-
relevant information from the input grid. The com-
mand embedding xlang ∈ R1×64 is passed through
a layer Wlang ∈ R64×16. The resulting vector is
convolved with the input grid at each position to
obtain a heatmap over grid G ∈ R16×6×6. The x-
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and y-coordinates and the 16-dimensional feature
vector for the most-attended grid cell g∗ are then
extracted:

g∗ = argmax
(
(xlang ·Wlang) ∗G

)
(3)

Because this argmax operation is non-
differentiable, we follow Tang et al. (2020)’s
approach of using CMA-ES to optimize Wlang.
However, in contrast to Tang et al., we apply the
attention matrix to feature vectors rather than
image patches, and we do not evolve all learnable
parameters in our model. This is because our
model has significantly more parameters than that
of Tang et al. and the time and space complexity
of CMA-ES is quadratic in the dimensionality of
its objective function – restricting its application
to problems with no more than a few hundred
variables (Varelas et al., 2018). Therefore, only this
selective attention part of the model is optimized
using CMA-ES. The rest is trained using gradient
descent. Inspired by joint attention mechanisms
and parental guidance during child learning, the
CMA-ES receives auxiliary feedback on whether
the correct target object was most attended to.
We also test and report the results for a version
where the CMA-ES receives as feedback the
cross-entropy loss produced by the agent’s final
prediction outputs (see Section 5.1).

Action attention The action attention part of
the model serves as the agent’s “memory" of
past outputs. The command embedding under-
goes self-attention, yielding a weighted embedding
alang ∈ R1×64. This is then passed through another
attention layer Wact ∈ R64×200 and multiplied
element-wise with a vector xact ∈ R200×1 contain-
ing the agent’s one-hot encoded past 20 actions and
orientations:

aact = (alang ·Wact)� xact (4)

As there is no argmax operation involved, Wa is
trained with conventional gradient descent.

Controller Finally, the outputs of the selective
and action attention modules are concatenated with
the agent’s current x- and y-coordinates and orien-
tation, as well as the unweighted command embed-
ding and input to the agent’s controller to predict
the agent’s next step. The controller consists of a
layer normalization layer, a layer with 100 hidden
ReLU units, and an output layer of size 6.

In total, the model has a little under 5 · 104 train-
able parameters, compared to around 3 · 106 for

“Walk to a yellow 
small cylinder”

0 0 1 0 0 1

hidden layer

self - 
attention

attention

attention 
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Figure 1: Schematic visualization of the proposed
model

models previously tested on gSCAN (Qiu et al.,
2021). A schematic overview is shown in Figure 1.

4.3 Training details

The weights of the ESN were initialized with a
spectral radius of 0.99 and a density of 1e− 2. The
leaking rate was set to 1e − 1. For the CMA-ES,
we used a population size of 8 and an initial nor-
mal distribution with standard deviation 1e − 1.
Optimization was implemented with the pycma
library1. For the part of the model trained via gra-
dient descent, we used the Adamax optimizer and
a learning rate cycle with an upper boundary of
1e− 2. Weight decay was set to 1e− 4 and models
were trained with batch size 4,096 for 100 epochs
unless otherwise specified. All performance results
are based on 10 runs. Each run used a different ran-
dom seed for model weight initialization. However,
the same 10 seeds were used for all tested modi-
fied or ablated architectures, so that all compared
models started with the same 10 sets of weights.
Experiments were implemented in Pytorch2 and
run on a server with 4 NVIDIA RTX 3090 GPUs
and a 24 core Epyc CPU. The training time for
one model was approximately 1.3 hours on the full

1pypi.org/project/cma/
2pytorch.org
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dataset, 16 minutes on the 10% subset, and 9 min-
utes on the 2% subset. Code is publicly available
at https://github.com/lemonk6/minmodgscan.

5 Results

5.1 Performance

As shown in Table 2, the model with auxiliary at-
tention feedback reaches competitive accuracy on
splits A, C, E, and F. On split H, it outperforms
previous proposals by 65 to 86%. To see if gener-
alization extended to other combinations, we also
tested two custom splits. The first is a variation of
task C, where not only red squares, but also yellow
squares, green cylinders, and blue circles never ap-
pear as targets during training. The second is an ex-
tension of split H, where in addition to “pull while
spinning", the agent is never told to “push while
zigzagging" or to “walk hesitantly" during train-
ing. The model generalized to test sets containing
only held-out shape-color and verb-adverb combi-
nations, reaching 98.7% ± 1.5 and 98.9% ± 0.5
accuracy, respectively.

Table 3 compares the performance of models
trained with and without an auxiliary feedback sig-
nal as well as models receiving perfect target lo-
cation inputs, for reference. As can be seen, the
model without an auxiliary signal does learn to fo-
cus on the target in some cases, but performance
across the 10 runs exhibits a high variation. We
also test a model which instead of absolute loca-
tions receives agent-centric row- and column-wise
distances as input, which is sometimes used in RL
goal navigation tasks. This stronger inductive bias
seems to force the agent to more reliably employ
the selective attention mechanism for target loca-
tion, even when it only receives indirect feedback
in the form of cross-entropy loss. Detailed evalua-
tion results are given in B.

5.2 Sample Efficiency

One of the main advantages of our model is its sam-
ple efficiency. As shown in Figure 2, it achieves
around 90% accuracy on splits A and C when
trained on only 1% of the dataset, and 90 - 97%
accuracy on splits A, C, E, and F with 2% of the
data. This is well below the 40% data requirement
threshold identified by Qiu et al. (2021) for their
cross-modal transformer model. Interestingly, the
exact match accuracy on splits B and C peaks at
the 10% subset and declines slightly when given
more data – something we take a closer look at in

Figure 2: Sample efficiency on test splits for models
with selective attention and auxiliary feedback

Section 5.3. Performance on task H increases more
slowly than on other splits and requires at least 10%
of the dataset to surpass 90% accuracy.

5.3 Error Analyses
Attention: We first analyze the mistakes made by
the models trained without auxiliary feedback by
treating the task of focusing on the correct target
as a classification, and analyzing the feature-wise
confusion matrices of the models. This reveals
an accumulated false discovery rate of 66.5% for
the “agent" dimension of the grid cell feature vec-
tors, compared to 0% for the models trained with
feedback. This means the models without attentive
guidance tend to overly focus on the agent. The
location of the agent does coincide with the target
object’s location around 18% of the time, which
might lead to an overreliance on this dimension.
We also find that the models trained without atten-
tion supervision struggle more with under-specified
commands. For example, the models focus on an
object of the correct color in ca. 96% of cases when
the color is explicitly mentioned in the command.
When the target object is only referred to by its
shape or size, the accuracy drops to about 90%.
Detailed confusion matrices can be found in D.1.

Yellow squares: In the case of split B, perfor-
mance exhibits a large variation across instantia-
tions of the same model. Out of 10 runs, approxi-
mately half always achieve accuracies in the range
of 90 - 99% while the others only reach 35 - 55%.
The best performance is achieved with a 10% sub-
set of the training set, where all ten models reach
at least 60% accuracy. A look at the confusion
matrices shows that, on average, models correctly
identify a square as their target object in 97% of
test cases. However, their color accuracy is only
around 75%. Taken together, this suggests that the
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Seq2Seq
(2020)

GECA
(2020)

Heinze
(2020)

Gao
(2020)

Kuo
(2020)

Qiu
(2021)

Jiang
(2021)

Nye
(2021)

Ours
(100%)

Ours
(10%)

A 97.69± 0.2 87.60± 1.2 94.19± 0.7 98.60± 1.0 96.73± 0.6 99.95 ± 0.0 - 74.7 99.7± 0.1 99.5± 0.1
B 54.96± 39.4 34.92± 39.3 86.45± 6.3 99.08± 0.7 94.91± 1.3 99.90 ± 0.1 - 81.3 73.5± 25.4 81.6± 14.3
C 23.51± 21.8 78.77± 6.6 81.07± 10.1 80.31± 24.5 67.72± 10.8 99.25 ± 0.9 - 78.1 99.4± 0.4 99.5± 0.2
D 0.00± 0.0 0.00± 0.0 - 0.16± 0.1 11.52± 8.2 0.00 ± 0.0 - 0.0 2.2± 1.5 3.5± 2.7
E 35.02± 2.4 33.19± 3.7 43.43± 7.0 87.32± 27.4 76.83± 2.3 99.02 ± 1.2 - 53.6 97.4± 2.0 96.8± 1.9
F 92.52± 6.8 85.99± 0.9 - 99.33± 0.5 98.67± 0.1 99.98 ± 0.0 - 76.2 99.1± 0.6 98.3± 1.7
G 0.00± 0.0 0.00± 0.0 - - 1.14± 0.3 0.00 ± 0.0 4.9 0.00 0.00± 0.0 0.0± 0.1
H 22.70± 4.6 11.83± 0.3 - 33.6± 20.8 20.98± 1.4 22.2± 0.01 28.0 21.8 98.4± 1.1 94.2± 3.7

Table 2: Exact match accuracy on gSCAN compositional splits. For our proposed model, we report both the
performance of models trained on the full dataset and of those trained on a 10% subset.

Table 3: Exact match accuracy and attention match ac-
curacy on gSCAN compositional splits for models with
selective attention, optimized with and without auxil-
iary feedback.

perfect att. w/o aux. signal
abs. loc.

w/o aux. signal
rel. dist.

seq.
match

seq.
match

att.
match

seq.
match

att.
match

A 100.0 ± 0.0 59.3 ± 29.1 74.2 ± 21.4 83.0 ± 3.4 92.8 ± 2.2
B 100.0 ± 0.0 50.8 ± 21.1 61.6 ± 17.0 59.5 ± 15.7 70.0 ± 16.7
C 100.0 ± 0.0 70.0 ± 29.5 73.8 ± 24.8 89.7 ± 9.3 91.1 ± 8.4
D 1.9 ± 1.7 0.1 ± 0.2 66.6 ± 28.9 0.8 ± 0.9 91.3 ± 2.6
E 100.0 ± 0.0 50.3 ± 20.4 62.1 ± 17.9 74.1 ± 6.2 84.1 ± 7.6
F 100.0 ± 0.0 52.6 ± 25.0 70.4 ± 20.7 67.5 ± 9.3 84.4 ± 8.0
G 0.0 ± 0.0 0.0 ± 0.0 63.0 ± 15.7 0.0 ± 0.0 73.0 ± 5.8
H 99.3 ± 1.0 37.5 ± 20.2 74.4 ± 14.9 56.4 ± 6.2 89.9 ± 3.9

models overfit to the absence of yellow squares.
Depending on the random initialization of its selec-
tive attention matrix, a model may be more or less
predisposed to generalization on this task. In the
absence of any samples with yellow squares that
could cause a course correction, this predisposi-
tion may be exacerbated with each update and thus
deteriorate performance in the higher-data regimes.

Novel direction: Similar to previous architec-
tures tested on gSCAN, our model has no trouble
identifying the correct targets in split D (Ruis et al.,
2020; Qiu et al., 2021). Its attention match accu-
racy is 100%. However, it cannot navigate to the
identified target successfully. On average, it ends
up in the correct row in 44% of cases, in the right
column in 23% of cases, and never both.

5.4 Ablations

Weight Decay and Action Attention: As shown
in Table 4, ablating weight decay or attention over
past steps causes the most pronounced performance
drops in splits E, F, and H. To compare structural
differences between the ablated models, we per-
form a neuron pruning experiment (detailed results
in C). For every neuron in the trained models’ final
hidden layer, we record the product of its activation
and outgoing weights at each step when processing
a 2% subset of the training set. We then disable

neurons in ascending order of contribution to the
models’ outputs and assess the pruned model’s ex-
act match accuracy. All full models require only 13
hidden neurons to solve all tasks. Without attention
over past actions, 16 neurons are needed to reach
the final accuracy. Models without weight decay
rely almost equally on all 100 neurons. Pruning
any of them leads to decreased performance.

This difference in learned representations is also
illustrated in Figure 3, which shows the weights be-
tween the agent’s past actions and the hidden layer
of three identically initialized models with different
ablations applied. The model with weight decay
and action attention learns the most sparse weights
and focuses on recent steps. The hidden model
without action attention has a similarly sparse hid-
den layer, but a longer "memory", i.e., it takes into
account past actions from further back in the step
sequence. The model without weight decay is very
densely connected.

Selective Attention: To investigate the effect of
selective attention, we train a soft attention version
of the model. Instead of the isolated feature vector
of the most attended grid cell, this model receives
the attention-weighted whole grid as input, similar
to the action attention mechanism. To account for
the higher dimensionality of the input, we increase
the number of neurons in the hidden units to 500.
The relative amount of neurons needed to reach

full
model

w/o weight
decay

w/o action
attention

w/o selective
attention

A 99.7± 0.1 92.5± 1.8 92.2± 2.5 89.6± 3.3
B 73.5± 25.4 74.2± 12.9 73.0± 21.1 69.5± 21.8
C 99.4± 0.4 95.9± 3.0 92.9± 7.6 78.6± 17.1
D 2.2± 1.5 0.1± 0.1 0.0± 0.0 0.3± 0.6
E 97.4± 2.0 73.9± 8.2 85.7± 6.6 72.1± 2.3
F 99.1± 0.6 73.7± 7.8 80.6± 9.3 81.6± 9.9
G 0.0± 0.0 0.4± 0.2 0.0± 0.0 0.0± 0.0
H 98.4± 1.1 39.5± 14.5 23.8± 3.7 65.5± 13.1

Table 4: Exact match accuracy on gSCAN composi-
tional splits for ablated models
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Figure 3: Weights between the agent’s past actions and
the model’s hidden layer, as learned by (a) the full
model, (b) the model with weight decay but no action
attention, and (c) the model with action attention but no
weight decay

Figure 4: Sample efficiency on test splits for models
without selective attention

full accuracy is similar to the model without action
attention – around 18%. Performance-wise, the
ablation causes a drop-off across the board but still
achieves around 90% accuracy on in-distribution
data when trained on the full dataset. However, the
sample efficiency is greatly reduced (see Figure 4).
I.e., models need to have seen a greater number of
input combinations to start generalizing. This is
also supported by a comparison of the confusion
matrices for models with and without selective at-
tention via a χ2-test on split A (details in D.2).
By far the most over-represented feature among
misclassifications by the soft-attention model, as
measured by standardized residuals, is the “square"
dimension. Since squares are held out for splits
B, C, and F, this shape is underrepresented in the
training set. The model thus sees fewer examples
during training, which seems to affect its ability to
generalize to new combinations involving squares
even for in-distribution data.

5.5 “Spontaneous" Generalization

During our ablation studies, we observed that gen-
eralization to the “adverb to verb" split did occur
frequently in models without weight decay and ac-
tion attention, but not in a linear fashion. As shown
in Figure 5, performance on split H would spike on
one training batch, then fall again. Higher system-
atic generalization ability is not necessarily evident
from looking at the performance on in-distribution
data – two models may have the same train loss or
test accuracy, but very different out-of-distribution
accuracies. Such spurious generalization behavior
may also explain the variation in performance on
split H observed by Gao et al. (2020) and Jiang and
Bansal (2021).

One reason often cited for unstable generaliza-
tion is sharp local minima (Keskar et al., 2017).
However, a visualization of the loss landscape of
the models at various points during training shows
relatively flat planes. The landscapes for training
and “adverb to verb" data are simply well aligned
for some model-batch combinations, and less so
for others (see Figure 6). We also investigated
whether the batches used to update the models im-
mediately before out-of-distribution performance
spikes had any special properties that would fa-
cilitate generalization. We saved batches that pre-
ceded an increase on split H accuracy of at least
5%, injected them randomly into the training of
other models, and recorded the difference in perfor-
mance caused. However, we found no statistically
significant improvement over random batches, and
no statistically significant differences in feature or
label distributions of such “spike" batches.

We did find that batch size had an impact on the
likelihood of generalization spikes. We trained 10

2github.com/marcellodebernardi/
loss-landscapes

Figure 5: Accuracy on split H over the course of train-
ing for a model without action attention
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Figure 6: Examples of loss landscapes for models
trained without weight decay, visualized with the loss-
landscapes library 3. Lower planes show the landscapes
for a random training batch of size 256. Upper planes
show the landscapes for the entire “adverb to verb"
split. For some model-batch combinations, the two
align well (left). For others, less so (right).

models without weight decay on 5 different batch
sizes using a 2% subset of the training data. All
models were trained for the same number of ab-
solute updates. For all batch sizes, the random
initialization of the ten models used the same ran-
dom seeds. We then sampled the models’ perfor-
mance on split H at 50 points in regular intervals
during training. As shown in Figure 7, generaliza-
tion performance with smaller batches was higher
but more volatile. Comparing the distribution of
sampled “adverb to verb" accuracies across batch
sizes yielded statistically significant Z-scores > 2
between batch sizes ≤ 512 and ≥ 2048. This is
consistent with previous findings that smaller batch
sizes facilitate better generalization (Smith and Le,
2018; Keskar et al., 2017; Smith et al., 2018; Hof-
fer et al., 2017; Masters and Luschi, 2018). Details
on statistical tests are given in E.

6 Discussion

The core of systematic generalization, namely, the
ability to flexibly compose known parts, is not
something neural networks seem incapable of – as
long as they receive atomic units as inputs that are
separated from irrelevant context. Otherwise, they
may overfit and learn solutions that only perform
well on in-distribution data. Seen from this per-
spective, factors identified as helpful to generaliza-
tion, both in the literature and in this study, are all
mechanisms that can contribute to learning atomic
input units. Weight decay facilitates this by serv-
ing as a kind of inductive simplicity bias (Power
et al., 2021; Kirk et al., 2021). So do soft attention
mechanisms, which filter out irrelevant inputs. So
does the hard attention bottleneck employed in this
paper, by decoupling content, which is only rele-

Figure 7: Distributions of split H accuracy sampled dur-
ing training, for 5 different batch sizes

vant for target identification, from location, which
is only relevant for navigation (Heinze-Deml and
Bouchacourt, 2020; Dubois et al., 2020).

7 Conclusion

In summary, we build on Tang et al.’s neuroevo-
lution approach to selective attention and embed
it in a hybrid model. We apply this model to the
task of systematic generalization in grounded in-
struction following and explore the effect of vari-
ous design decisions on out-of-distribution perfor-
mance. We find that weight decay and attention
mechanisms facilitate compositional generalization
by encouraging sparse representations divorced
from irrelevant context, and that selective atten-
tion dramatically improves the model’s sample effi-
ciency. We also find that, even without weight de-
cay and attention, generalization performance may
improve sporadically during training independent
of in-distribution accuracy, especially with smaller
batch sizes. Studies on out-of-distribution general-
ization should therefore employ a sufficiently high
number of training runs to obtain a reliable estimate
of a models’ generalization robustness.

Although our architecture is specific to the
dataset at hand, the factors contributing to its per-
formance are consistent with related work on sys-
tematic generalization and likely to apply to other
situations as well. However, compositional gener-
alization encompasses a wide range of skills and
even within systematic generalization, solving one
task, e.g., recombining shapes and colors, may not
translate to another, e.g. recombining directions.
Several gSCAN tasks remain unsolved and likely
require different inductive biases than the ones pre-
sented here. We hope that this closer look at the
minimal requirements for generalization on the var-
ious gSCAN test splits can inform future work on
this benchmark going forward.
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A Background on CMA-ES

CMA-ES begins by sampling λ individual solu-
tions x(g+1)

1 , ..., x
(g+1)
λ from a multivariate Gaus-

sian distribution N
(
m(g), σ(g)

2
C(g)

)
with mean

m(g), step size σ(g) and covariance matrix C(g).
The initial mean, step size and covariance matrix
are then adapted iteratively to increase the likeli-
hood of successful solutions as evaluated by some
function f . Mean adaptation is done by shifting m
by the weighted average of the µ best solutions of
generation g (Shala et al., 2020):

m(g+1) = m(g)+cm

µ∑

i=1

wi
(
x
(g+1)
i:σ −m(g)

)
, (5)

where cm is a learning rate. The new step size σ
is determined as follows (Shala et al., 2020):

σ(g+1) = σ(g)exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖ − 1

))
,

(6)
where cσ is a separate learning rate, dσ is a

damping parameter, and p
(g+1)
σ is the next gen-

eration’s conjugate evolution path computed as
(Hansen et al., 2003):

p(g+1)
σ = (1− cσ) · p(g)

σ

+
√
cσ · (2− cσ) ·

√
µ

σ(g)
(
x(g+1)
µ − x(g)µ ).

(7)

Finally, the covariance matrix is updated
(Hansen et al., 2003):

C(g+1) = (1− ccov) · C(g)

+ ccov · p(g+1)
c

(
p(g+1)
c

)T
, (8)

where ccov is another learning rate.

B Detailed Evaluation Results

Parameter Size
Hidden layer 28,800
Layer normalization weights 100
Layer normalization biases 100
Output layer 600
Selective attention key matrix 1,024
Self-attention key matrix 4,096
Action attention key matrix 12,800
Total 47,520

Table 5: Overview of our model’s trainable parameters

0.01 0.02 0.1 0.5 1.0

A 0.996± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
B N/A N/A N/A N/A N/A
C N/A N/A N/A N/A N/A
D 0.000± 0.000 0.000± 0.000 0.034± 0.032 0.021± 0.025 0.019 ± 0.017
E 0.997± 0.001 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
F 0.995± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
G 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
H 0.610± 0.182 0.790± 0.165 0.999± 0.001 0.988± 0.028 0.993± 0.01

Table 6: Sequence match accuracies on gSCAN com-
positional splits with perfect selective attention trained
on 1%, 2%, 10%, 50%, and 100% of the dataset

Att. Match Exact Match
Exact Match
if Att. Match

A 0.951± 0.015 0.925± 0.018 0.988± 0.006
B 0.786± 0.128 0.742± 0.129 0.988± 0.012
C 0.965± 0.028 0.959± 0.03 1.000± 0.000
D 0.934± 0.021 0.001± 0.001 0.001± 0.002
E 0.839± 0.109 0.739± 0.082 0.909± 0.066
F 0.878± 0.054 0.737± 0.078 0.886± 0.049
G 0.718± 0.07 0.004± 0.002 0.006± 0.003
H 0.918± 0.033 0.395± 0.145 0.441± 0.171

Table 7: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without weight decay (trained on the full dataset)

Att.
Match

Exact
Match

Exact Match
if Att. Match

A 0.947± 0.020 0.922± 0.025 0.996± 0.002
B 0.781± 0.188 0.730± 0.211 1.000± 0.000
C 0.947± 0.066 0.929± 0.076 1.000± 0.000
D 0.931± 0.027 0.000± 0.000 0.000± 0.000
E 0.901± 0.058 0.857± 0.066 0.996± 0.003
F 0.863± 0.073 0.806± 0.093 0.994± 0.005
G 0.772± 0.072 0.000± 0.000 0.000± 0.000
H 0.919 ± 0.032 0.238 ± 0.037 0.272 ± 0.034

Table 8: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without action attention (trained on the full dataset)
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Att. Match Exact Match
Exact Match
if Att. Match

Pull while spinning,
Push while zigzagging,
Walk hesitantly

0.982± 0.008 0.989± 0.005 0.996± 0.002

H:Adverb to verb 0.996± 0.003 0.93± 0.059 0.943± 0.055

Table 13: Sequence and attention match accuracies
on additional held-out verb-adverb combinations and
split H with selective attention and auxiliary feedback
(trained on the full dataset)

Att. Match Exact Match
Exact Match
if Att. Match

Red squares,
Yellow squares,
Green cylinders,
Blue circles

0.991± 0.013 0.987± 0.015 1.000± 0.000

B:Yellow squares 0.855± 0.144 0.829± 0.165 1.000± 0.000
C:Red squares 0.996± 0.006 0.992± 0.007 1.000± 0.000

Table 14: Sequence and attention match accuracies
on additional held-out shape-color target combinations
and splits B and C with selective attention and auxiliary
feedback (trained on the full dataset)

C Neuron pruning

For each neuron in the final hidden layer of the
model, we recorded its activation, multiplied by
its outgoing weight (no biases were used in the
model, except in the layer normalization layer).
We then sorted neurons based on their accumulated
contribution to the final model output and tested
exact sequence accuracy on the gSCAN dev set
with the top X% of neurons active. The rest were
disabled by setting outgoing weights to 0. Detailed
results are shown in Table 15.

% of top hidden
neurons active

unablated
model

w/o action
attention

w/o selective
attention

w/o weight
decay

10% 0.538 ± 0.054 0.354 ± 0.096 0.576 ± 0.054 0.042 ± 0.023
11% 0.664 ± 0.111 0.442 ± 0.117 0.627 ± 0.057 0.044 ± 0.026
12% 0.855 ± 0.108 0.522 ± 0.158 0.671 ± 0.051 0.068 ± 0.027
13% 0.998 ± 0.001 0.649 ± 0.164 0.715 ± 0.045 0.073 ± 0.021
14% - 0.824 ± 0.104 0.782 ± 0.034 0.079 ± 0.025
15% - 0.876 ± 0.090 0.823 ± 0.033 0.083 ± 0.033
16% - 0.904 ± 0.029 0.867 ± 0.034 0.093 ± 0.032
17% - - 0.902 ± 0.024 0.087 ± 0.031
18% - - 0.916 ± 0.025 0.097 ± 0.053
20% - - - 0.126 ± 0.092
30% - - - 0.119 ± 0.069
40% - - - 0.263 ± 0.149
50% - - - 0.486 ± 0.231
60% - - - 0.741 ± 0.171
70% - - - 0.810 ± 0.114
80% - - - 0.874 ± 0.045
90% - - - 0.880 ± 0.048
95% - - - 0.885 ± 0.049
100% - - - 0.906 ± 0.025

Table 15: Exact match accuracy on in-distribution data
for ablated and unablated models with different per-
centages of disabled top contributing hidden neurons

D Error analyses

D.1 Confusion matrices
We collected the feature vectors for the grid cells
that were most attended to by the models trained
with selective attention, but without auxiliary feed-
back. We also collected the feature vectors of the
actual target objects. We then created confusion
matrices for the parts of the feature vector relat-
ing to the agent, to color, to size, and to shape
(shown in Figures 8 - 13). For color and size, we
distinguish between situations where the attribute
is mentioned in the command and those where it is
not.

Figure 8: Confusion matrix for the agent dimension

Figure 9: Confusion matrix for the color dimensions
when color is specified in the command

Figure 10: Confusion matrix for the color dimensions
when color is not specified in the command
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Figure 11: Confusion matrix for the color dimensions
when size is specified in the command

Figure 12: Confusion matrix for the color dimensions
when size is not specified in the command

Figure 13: Confusion matrix for the shape dimensions
(always specified in the command)

D.2 Ablated selective attention

We use a chi-squared test to compare the kind of tar-
get features that models tend to mis-identify when
they are trained with vs. without selective attention.
Figure 14 shows the test’s standardized residuals
for the model trained without selective attention,
i.e., the strength of the difference between observed
and expected values. Squares, the color yellow, and
small object sizes are especially over-represented
in the model’s incorrect target predictions.

(a) dev set (b) test set

Figure 14: Plots of the standardized residuals of a Chi-
square test comparing the wrong predictions of mod-
els trained with vs. without selective attention, on in-
distribution data. We ran this test both on the dev set
(14a) and the test set (14b) with similar results. Circle
color represents absolute value of the residuals. Red in-
dicates that a feature is over-represented, blue indicates
a feature is under-represented. Circle size represents
the number of occurrences in the tested set.
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E “Spontaneous" generalization

E.1 “Spike" batches
To test if the batches used to update the model
before a spike in performance on split H had any
special properties, we trained a model with batch
size 256 without action attention for 50 epochs
and saved any batches that preceded at least a 5%
increase in exact match accuracy on a 2% subset
of split H. We then trained 10 additional models
(with the same random seeds as used in the batch
size experiments) and injected one of the “good"
batches during training with a chance of 10%. We
recorded the difference to the performance on the
split H dev set before the batch update. A com-
parison of the distributions of split H performance
differences after an update with “good" batch vs. a
normal batch yields a Z-statistic of 0.665, which is
not significant at the 0.05 level.

Injecting “good" batches also does not seem to
increase the overall likelihood of higher perfor-
mance on split H during training. We compared
the distributions of split H accuracies sampled after
each epoch for the models trained with and without
“good" batch injections in the course of training.
A two-sample Kolmogorov-Smirnov test yielded a
p-value of 0.413, which is well above the threshold
of 0.05 and indicates there is no difference between
the distributions. Finally, we compare the distribu-
tion of labels in the “good" batches vs. the normal
batches with a chi-squared test that yields a p-value
of 0.445 – again, indicating little to no difference
between the distributions.

E.2 Effect of batch size
We trained 10 models without weight decay on a
2% subset of the training data with batch sizes 256,
512, 1024, 2048, and 4096. The number of epochs
was adjusted for each batch size so that all models
were trained for the same number of absolute up-
dates. For all batch sizes, the random initialization
of the ten models used the same random seeds. We
then sampled the models’ performance on split H
at 50 points in regular intervals during training and
compared Z-scores for the resulting distributions.
Results are given in Table 16

Batch size 1 Batch size 2 Z-score
256 512 1.35
256 1024 1.03
256 2048 3
256 4096 4.09
512 256 -1.35
512 1024 -0.09
512 2048 2.33
512 4096 3.95

1024 256 -1.03
1024 512 0.09
1024 1024 1.68
1024 4096 2.74
2048 256 -3
2048 512 -2.33
2048 1024 -1.68
2048 4096 1.77
4096 256 -4.09
4096 512 -3.95
4096 1024 -2.74
4096 2048 -1.77

Table 16: Pairwise comparison of distributions of split
H performance sampled during training, for 5 differ-
ent batch sizes. Statistically significant scores (≥ |2|)
marked in bold.
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Abstract

There has been a lot of interest in under-
standing what information is captured by hid-
den representations of language models (LMs).
Typically, interpretation methods i) do not
guarantee that the model actually uses the in-
formation found to be encoded, and ii) do
not discover small subsets of neurons respon-
sible for a considered phenomenon. Inspired
by causal mediation analysis, we propose a
method that discovers a small subset of neu-
rons within a neural LM responsible for a
particular linguistic phenomenon, i.e., subsets
causing a change in the corresponding token
emission probabilities. We use a differentiable
relaxation to approximately search through the
combinatorial space. An L0 regularization
term ensures that the search converges to dis-
crete and sparse solutions. We apply our
method to analyze subject-verb number agree-
ment and gender bias detection in LSTMs. We
observe that it is fast and finds better solu-
tions than alternatives such as REINFORCE
and Integrated Gradients. Our experiments
confirm that each of these phenomena is me-
diated through a small subset of neurons that
do not play any other discernible role.

1 Introduction

The success of language models (LMs) in many
natural language processing tasks is accompanied
by an increasing interest in interpreting and analyz-
ing such models. One goal in this direction is to
identify how a model employs its hidden represen-
tations to arrive at a prediction (Belinkov and Glass,
2019; Jacovi and Goldberg, 2020). A popular line
of research studies LMs with “diagnostic classifiers”
or “probes” that are trained to predict linguistics
properties from hidden units, with the purpose of
analyzing what information is encoded by the net-
work and where (Alain and Bengio, 2017; Adi et al.,
2017; Hupkes et al., 2018; Voita and Titov, 2020).

*Equal contributions.

However, this method is sometimes criticized for
generating unfaithful interpretations (Barrett et al.,
2019) since the trained classifiers only measure the
correlation between a model’s representations and
an external property and not whether such property
is actually causing the model’s predictions. Indeed,
several studies pointed out limitations of probes
(Belinkov and Glass, 2019; Vanmassenhove et al.,
2017; Tamkin et al., 2020), including mismatches
between the performance of the probe and the orig-
inal model and the discrepancy between correlation
and causation of hidden units and model outputs.

In response to these limitations, several recent
studies have proposed to interpret neural models
with interventions which aim to measure causal ef-
fects by intervening in representations of the model
and observing a change in the model output (Giu-
lianelli et al., 2018; Elazar et al., 2021; Feder et al.,
2021). These techniques investigate directly if an
LM represents a certain linguistic phenomenon but
are limited when it comes to understanding where
and how this information is represented. There-
fore, an important question that they cannot an-
swer is to what extent modularity – often believed
to be a prerequisite for systematic generalization
(Goyal and Bengio, 2020; Dittadi et al., 2021) – is
a property that emerges naturally in such models.
An adaptation of causal mediation analysis (Pearl,
2001) by Lakretz et al. (2019); Vig et al. (2020);
Lakretz et al. (2021) makes an important step to-
wards enabling such investigations. They consider
neurons one by one by setting their activation to
zero and measuring their effect on the output. How-
ever, these techniques suffer from two major short-
comings: i) they are restricted to detecting single
neurons as systematically ablating combinations of
multiple neurons is computationally infeasible, and
ii) there is no guarantee that setting a unit activation
to zero corresponds to switching the corresponding
function on or off (Sturmfels et al., 2020).

Here, we use a differentiable relaxation of this
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search problem to overcome both these limitations.
More specifically, our goal is to identify neurons
responsible for shifting the probability from a word
to its alternative in examples exemplifying the phe-
nomena, without affecting other LM predictions.
For example, when investigating subject-verb num-
ber agreement, we want to redistribute the proba-
bility mass from the singular form of an upcoming
verb to the plural one (or vice versa), while dis-
couraging changes in the distributions for other
contexts. In this way, we ensure that the function is
mediated through the detected neurons, and these
neurons do not play any other discernible role.

Building on the framework of differentiable
masking (De Cao et al., 2020; Schlichtkrull et al.,
2021), we formalize this search for a sparse inter-
vention as a constrained optimization problem. We
aim to both detect the responsible neurons and learn
the values to assign them when intervening. We
use a continuous relaxation of the subset-selection
problem, but ensure discreteness and encourage
sparsity through L0 regularization. The L0 penalty
determines how many neurons we want to discover.
In our experiments, we use an LSTM-based LM,
previously investigated by (Gulordava et al., 2018;
Lakretz et al., 2019), and consider subject-verb
number agreement and gender bias detection. We
start with validating our method by showing that
we can replicate findings reported in these previous
studies and then dive into a deeper analysis. We
show that our proposed method is effective as well
as computationally efficient – it converges up to 7
times faster than REINFORCE (Williams, 1992)
and surpasses Integrated Gradients (Sundararajan
et al., 2017) in terms of accuracy/sparsity.

2 Related Work

The L0 regularization was proposed by Louizos
et al. (2018) in the context of pruning neural net-
work weights and biases. It has been used in a
variety of works in NLP as a tool for generating
rationales and attribution (Bastings et al., 2019;
De Cao et al., 2020; Schlichtkrull et al., 2021).
Masking weights and groups of weights was also
used by Csordás et al. (2021) to investigate the
functional modularity of neural networks.

Studies suggested that some of the linguistic phe-
nomena are encoded, at least to a large degree, in
a disentangled and sparse fashion. For example,
Radford et al. (2017) detected a neuron encoding
sentiment polarity and Dai et al. (2021) showed

that individual facts learned by an LM can be ma-
nipulated by modifying a small number of neurons.
In a similar spirit, Voita et al. (2019) observed that
many Transformer attention heads in a neural ma-
chine translation model are specialized; interest-
ingly, they also used L0 regularization but only to
prune less important heads; the roles played by the
heads were identified by studying their attention
patterns. Our technique can facilitate such studies
by effectively identifying sets of neural network’s
subcomponents playing a given function.

Bau et al. (2019) use different kinds of corre-
lations between neurons from different models to
measure their importance. The authors find that
many individual neurons capture common linguis-
tic phenomena, also showing how to control trans-
lations in predictable ways by modifying their ac-
tivations. Similarly to Lakretz et al. (2021), the
work of Finlayson et al. (2021) instead focuses on
models’ preferences for grammatical inflections,
as well as whether neurons process subject-verb
agreement. The authors include causal mediation
analysis in their methodology.

Conversely, Antverg and Belinkov (2022) criti-
cize recently proposed methodologies for analyz-
ing individual neurons in LMs. In particular, they
discuss methods that rely on an external probe to
rank neurons according to their relevance to some
linguistic attribute. They indicate two main pitfalls:
1) these methodologies confound probe quality and
ranking quality, and 2) they focus on encoded in-
formation rather than information that the model
uses. Their analysis does not apply to ours since
we do not use probes explicit.

Finally, we refer the reader to Sajjad et al. (2021)
for a recent survey of neuron-level interpretation of
NLP models, which includes methods to discover
neurons, evaluation methods, significant findings
and future research directions.

3 Method

We investigate if we can find groups of neurons for
which a modification of their value – which we call
an intervention – systematically leads to a change
of probability for the single token emission related
to a specific phenomenon. Because there is no di-
rect supervision for interventions, we need to learn
them with a proxy objective. Let’s assume we have
an autoregressive model (e.g., an LSTM; Hochre-
iter and Schmidhuber 1997) that assigns a prob-
ability to sequences. For a set of input tokens
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x = 〈x1, . . . , xn〉, we obtain the model’s proba-
bility of the token of interest p(xn|x<n) along with
the hidden states h = 〈h1, . . . , hn〉 where hi ∈ Rk
(one for each time step). We then intervene in
the model’s computation by modifying a group of
neurons from one or multiple hidden states. The
intervention at a certain time step i < n consists
of a binary mask m ∈ {0, 1}k indicating which
hidden units need intervention and which can be
left unchanged. The intervention is then made sub-
stituting the ith hidden state with the altered state

ĥi = (1−m)� hi +m� b , (1)

where � indicates the element-wise product and
b ∈ Rk is a learned baseline vector that will lead
the desired intervention. We denote p(xn|x<n, ĥi)
as the model’s probability of the target token when
its forward pass has been altered using ĥi.

In addition, as the main objective of this work,
we are looking for sparse interventions, which we
define as finding a defined small percentage (e.g.,
1-5%) of neurons where to apply an intervention to
while keeping all the rest untouched.

3.1 Learning to Intervene

Because there is no direct supervision to estimate
the mask m and the baseline b, we minimize

Lratio(ĥi, x) =
p(xn = d|x<n, ĥi)
p(xn = t|x<n, ĥi)

, (2)

where we want to identify neurons responsible for
a change in probability between a predicted word d
and a target word t (e.g., a singular and plural verb
form—where, independently from which form is
correct, d is the form that the model assigns the
highest probability to, and t to the other). In other
words, we optimize to assign more probability mass
to the token t rather than d. In addition, we desire
interventions to be as sparse as possible, because
we want to identify the least number of neurons
responsible for the decision. Such sparsity corre-
sponds to constraining most of the entries of m to
be 0, which corresponds to not interfering. We cast
this in the language of constrained optimization.

A practical way to express the sparsity constraint
is through the L0 ‘norm’. Our constraint is defined
as the total number of neurons we intervene on:

C0(m) =
k∑

i=1

1[R 6=0](mi) . (3)

The whole optimization problem is then:

min
m,b

∑

x∈D
Lratio(ĥi, x) s.t. C0(m) ≤ α , (4)

where D is a dataset and the margin α ∈ (0, 1]
is a hyperparameter that controls the desired spar-
sity (i.e., the lower α, the sparser the solution will
be). Since non-linear constrained optimization is
generally intractable, we employ Lagrangian relax-
ation (Boyd et al., 2004) optimizing

max
λ

min
mi,b

∑

x∈D
Lratio(ĥi) + λ(C0(mi)− α) , (5)

where λ ∈ R≥0 is the Lagrangian multiplier. Since
we use binary masks, our loss is discontinuous and
non-differentiable. A default option would be to
use REINFORCE (Williams, 1992), but it is known
to have a noisy gradient and thus slow convergence.
To overcome both problems, we resort to a sparse
relaxation to binary variables, namely using a Hard
Concrete distribution (Louizos et al., 2018) (see
Section 3.5 for more details).

3.2 Stochastic relaxation of the Mask
Our optimization problem poses two difficulties: i)
C0 is discontinuous and has zero derivative almost
everywhere, and ii) the altered state ĥi is discon-
tinuous w.r.t. the binary mask m. A simple way
to overcome both issues is to treat the binary mask
as stochastic and optimize the objective in expecta-
tion. In that case, one natural option is to resort to
score function estimation (REINFORCE; Williams,
1992) while another is to use a sparse relaxation
to binary variables (Louizos et al., 2018; Bastings
et al., 2019; De Cao et al., 2020; Schlichtkrull et al.,
2021). In Section 4 we discuss the two aforemen-
tioned options showing that the latter is much more
effective (results in Table 6). Thus we opt to use
the Hard Concrete distribution, a mixed discrete-
continuous distribution on the closed interval [0, 1].
This distribution assigns a non-zero probability to
exactly zero and one while it also admits contin-
uous outcomes in the unit interval via the repa-
rameterization trick (Kingma and Welling, 2014).
We refer to Louizos et al. (2018) for details, but
also provide a brief summary in Section 3.5. With
a stochastic mask, the objective is computed in
expectation, which addresses both sources of non-
differentiability:

C0(m) =
k∑

i=1

Ep(mi) [mi 6= 0] . (6)
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Note that during training the mask is sampled and
its values lies in the closed unit interval. After
training, we set the mask entries to exact ones when
their expected values are> 0.5 or to zero otherwise.
To prevent issues due to the discrepancy between
the values of the mask during training and during
inference, we add another constraint

C(0,1) =
k∑

i=1

E[mi ∈ (0, 1)] , (7)

to be ≤ β. C(0,1) during training constrains the
relaxed mask values not to lie in the open interval
(0, 1) but rather to concentrate in {0, 1}. β ∈ (0, 1]
is a hyperparameter (the lower the less discrepancy
is expected).

3.3 Single-step and Every-step intervention

We described how we apply an intervention at a cer-
tain time step i<n as an intervention that directly
modifies hi. We refer to this type as a single-step in-
tervention. The choice of the time step to intervene
should be carefully set to investigate a particular
phenomenon in the LM, and is task dependent; e.g.,
to explore subject-verb agreement, a reasonable
choice is to do the intervention at the hidden state
of the subject. As an extension, we also define
an every-step intervention when instead of altering
only hi we modify all h1, . . . , hn−1 with the same
m and b (similar to Lakretz et al. 2019). The two
types of intervention investigate different proper-
ties of an LM; we experiment with both variants.

3.4 Retaining other predictions

We train interventions to modify the model’s pre-
diction at a specific token position. However, there
is little guarantee that all the other token positions
will have the same output distribution as without
the interventions. This is important as, when in-
vestigating modularity, we would like to ensure
not only that a group of neurons plays a distinct
interpretable role but also that they do not fulfil
any other discernable role. For this reason, we
employ a regularization term in addition to the con-
strained objective. This corresponds to minimizing
a Kullback–Leibler divergence between the output
distributions of the original model and the one from
the model with interventions. The regularization
term is a KL divergence between the output distri-
butions of the original model pO and the one from
the model with interventions pI averaged at every

token position: LKL =

1

T

T∑

t=1

DKL (pO(xt|x<t) ‖ pI(xt|x<t)) (8)

We sum LKL to Equation 5 multiplied by a factor.
This factor is a hyperparameter that controls the
amount of regularization to apply, and we empir-
ically found that 1.0 is a good value. In practice,
as we will discuss in Section 5, the regularization
term does not play an important role.

3.5 The Hard Concrete distribution

The Hard Concrete distribution, assigns density
to continuous outcomes in the open interval (0, 1)
and non-zero mass to exactly 0 and exactly 1. A
particularly appealing property of this distribution
is that sampling can be done via a differentiable
reparameterization (Rezende et al., 2014; Kingma
and Welling, 2014). In this way, the C0 constrain
in Equation 3 becomes an expectation (Equation 6)
whose gradient can be estimated via Monte Carlo
sampling without the need for REINFORCE and
without introducing biases. We did modify the
original Hard Concrete, though only so slightly, in
a way that it gives support to samples in the half-
open interval [0, 1), that is, with non-zero mass
only at 0. That is because we need only distinguish
0 from non-zero, and the value 1 is not particularly
important.1

The distribution A stretched and rectified Bi-
nary Concrete (also known as Hard Concrete) dis-
tribution is obtained applying an affine transforma-
tion to the Binary Concrete distribution (Maddison
et al., 2017; Jang et al., 2017) and rectifying its
samples in the interval [0, 1]. A Binary Concrete
is defined over the open interval (0, 1) and it is
parameterised by a location parameter γ ∈ R and
temperature parameter τ ∈ R>0. The location acts
as a logit and it controls the probability mass skew-
ing the distribution towards 0 in case of negative
location and towards 1 in case of positive location.
The temperature parameter controls the concentra-
tion of the distribution. The Binary Concrete is then
stretched with an affine transformation extending
its support to (l, r) with l ≤ 0 and r ≥ 1. Finally,
we obtain a Hard Concrete distribution rectifying
samples in the interval [0, 1]. This corresponds to

1Only a true 0 is guaranteed to completely mask an input
out, while any non-zero value, however small, may leak some
amount of information.
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collapsing the probability mass over the interval
(l, 0] to 0, and the mass over the interval [1, r) to 1.
This induces a distribution over the close interval
[0, 1] with non-zero mass at 0 and 1. Samples are
obtained using

s = σ ((log u− log(1− u) + γ) /τ) ,

z = min (1,max (0, s · (l − r) + r)) ,
(9)

where σ is the Sigmoid function σ(x) = (1 +
e−x)−1 and u ∼ U(0, 1). We point to the Ap-
pendix B of Louizos et al. (2018) for more informa-
tion about the density of the resulting distribution
and its cumulative density function.

4 Experimental Setting

We study the pre-trained LSTM language model
made available by Gulordava et al. (2018)2, which
has been studied extensively in previous works and
therefore provides a good testing ground for our
method. The studied model is a standard two-
layered LSTM with a hidden dimension of 650.
The embedding layer also has dimensionality 650,
and it is not tied with the output layer. The vo-
cabulary size is 50, 000 and the model was trained
on English Wikipedia data (with around 80M to-
kens training tokens and 10M for validation). We
used this model to compare to previous findings
of Lakretz et al. (2019). We also pre-train this LM
several times with different weights initializations
to make sure our results generalize.

We study the original model, as well as newly
trained models with the same architecture, on two
tasks described below: subject-verb number agree-
ment and gender bias. The evaluation for tasks
naturally follows the defined objective Lratio(ĥi, x)
(see § 3.1). Without intervention, the ratio is al-
ways > 1. Thus, we define a successful interven-
tion when we find a mask and baseline values such
that the ratio becomes < 1. Then, we define the
accuracy of interventions as the average number of
times that the ratio is < 1 across all datapoints in a
given dataset/task. The accuracy thus reflects how
often we can flip the model’s decision.

Subject-verb number agreement Here, we
seek the neurons responsible for predicting the
number of verb forms: for a given sentence, we
wish the intervention to change the number of the
verb from singular to plural or vice versa. For this

2https://github.com/facebookresearch/
colorlessgreenRNNs

task, we employ data made available by Lakretz
et al. (2019)3. The data are synthetic and gener-
ated with a modified version from Linzen et al.
(2016) and Gulordava et al. (2018). Each synthetic
number-agreement instance has a fixed syntax and
varied lexical material. Sentences were randomly
sampled by choosing words from pools of 20 sub-
ject/object nouns, 15 verbs, 10 adverbs, 5 preposi-
tions, 10 proper nouns and 10 location nouns. We
used a total of 11,000 training sentences and 1,000
evaluation sentences. We apply the single-step in-
tervention to the subject of the (only) verb. We
apply two intervention here (i.e., two sets of mask
and baseline values): one where we train the model
to turn the verb into the singular form and one into
the plural one.

Gender bias detection In this task, we seek the
neurons responsible for setting pronoun genders:
for a given sentence, we wish the intervention to
change the pronoun that refers to a person with
a profession and an unspecified gender. For this
task, we employ data made available by Vig et al.
(2020)4. The data are synthetic and generated with
a list of templates from Lu et al. (2020) and sev-
eral other templates, instantiated with professions
from Bolukbasi et al. (2016) (17 templates and 169
professions, resulting in 2,873 examples in total).
We refer to Vig et al. (2020) for the full lists of
templates and professions. The templates have the
form “The [occupation] [verb] because [he/she]”.
Professions are definitionally gender-neutral. We
used a total of 2,673 training sentences and 200
evaluation sentences. Also for his task, we apply
the single-step intervention to the subject of the
sentence, using different interventions for flipping
the pronoun to “he” and to “she”.

5 Results

For the single-step intervention (with regulariza-
tion), our method achieves 91.5 and 93.9 accura-
cies for the number agreement and gender bias
tasks, respectively. On average, our method finds
5.7 and 5.3 units for the two tasks, respectively.
Considering that the LM has 1,300 hidden units,
this intervention is relatively sparse as desired (we
use < 0.41% of the total units). In Figure 1 and 2,
we show examples of hidden state activations with

3https://github.com/FAIRNS/Number_and_
syntax_units_in_LSTM_LMs

4https://github.com/sebastianGehrmann/
CausalMediationAnalysis
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Figure 1: Activations of four units we intervene on
(single step intervention at “kid”) for changing number
agreement (at “avoids”).
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Figure 2: Activations of four units we intervene on (sin-
gle step intervention at “ranger”) for changing the pro-
noun (after “because”).

and without interventions for both tasks (see Ap-
pendix A for additional examples). From these
figures, we can see that only one time-step is heav-
ily affected (the one of the intervention) while the
others are minimally corrupted after that time step.
We hypothesize that the model stores the informa-
tion of number or gender in other units (or in cell
states), but the discovered units are the ones re-
sponsible for the initialization of such memory. In
Table 1 and 2, we report the full list of discovered
units and the learned baseline vectors for both tasks
on the single-step intervention.

For the every-step intervention, our method
achieved an almost perfect accuracy of 95.8 and
99.9 for the number agreement and gender bias
tasks, respectively, while using 3 units or less on
average for both tasks. This type of intervention is
much more effective and more intrusive—the num-
ber of changes is larger as it happens at every step).
In Table 3 we report the full list of discovered units
and the learned baseline vectors, comparing to the
one discovered by Lakretz et al. (2019) (every-step

Unit Singular Plural Prevalence

79 -0.96 ±0.02 0.99 ±0.01 100%
93 0.95 ±0.03 -0.84 ±0.09 100%

243 0.91 ±0.06 0.18 ±0.15 20%
357 -0.99 ±0.01 0.87 ±0.03 40%
498 0.98 ±0.01 -0.96 ±0.03 100%
571 -0.99 ±0.01 0.93 ±0.06 80%
630 0.95 ±0.03 0.11 ±0.26 100%
776 -0.81 ±0.05 0.96 ±0.01 20%
988 1.00 ±0.00 -0.99 ±0.00 10%

Table 1: Subject-verb number agreement task with
single-step interventions. Values are averages across
10 runs.

Unit He She Prevalence

193 -0.99 ±0.00 0.91 ±0.01 100%
208 0.99 ±0.00 -0.96 ±0.01 100%
288 -0.99 ±0.00 -0.47 ±0.14 100%
455 -0.99 ±0.00 0.10 ±0.01 20%
456 0.99 ±0.00 -0.98 ±0.00 100%
513 0.98 ±0.00 -0.74 ±0.00 10%
563 -0.99 ±0.00 0.96 ±0.01 100%

Table 2: Gender bias task with single-step interven-
tions. Values are averages across 10 runs.

intervention). Noticeably, we re-discover unit 776
which validates our method and confirm their find-
ings. Interestingly, we also discover an extra unit
on average, highlighting that one of the limitations
of Lakretz et al. (2019) was indeed an efficient way
to search units. For a summary of all results see
Table 4, and for the discovered units and baseline
on the gender task see Table 5.

Efficiency To demonstrate the efficiency and
efficacy of our estimation employing the Hard
Concrete distribution, we compare to the stan-
dard Score Function Estimation (aka REIN-
FORCE; Williams 1992) with a moving average
baseline for variance reduction (Botev and Ridder,
2017) and trying different values of α to achieve
a good trade-off between accuracy and number of
units used. We also compare to Integrated Gradi-
ents (Sundararajan et al., 2017) where we intervene
on the top-k influential neurons by setting them
to zero. In Table 6, we summarize the results for
the single-step intervention. REINFORCE takes at
least 7 times more time to converge, and it always
converges at using more units than our method with
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Unit Singular Plural Prevalence Found by Lakretz et al. (2019)

79 -0.76 ±0.023 0.99 ±0.003 100% 7

776 -0.99 ±0.002 0.99 ±0.002 100% 3

Table 3: Subject-verb number agreement task with every-step interventions. Values are averages across 10 runs.
“Found” indicates how many times our model decides to apply the intervention on a specific unit across runs.

Accuracy Units KL

Number agreement

Single 90.9 ±1.2 5.7 ±0.5 0.034 ±0.034

SingleR 91.5 ±0.7 5.7 ±0.9 0.035 ±0.006

Every 96.8 ±0.6 2.0 ±0.0 0.131 ±0.003

EveryR 95.8 ±0.4 2.0 ±0.0 0.084 ±0.002

Gender bias

Single 93.1 ±4.6 5.4 ±1.1 0.009 ±0.001

SingleR 93.9 ±3.7 5.3 ±0.5 0.009 ±0.001

Every 98.3 ±2.8 3.4 ±0.5 0.176 ±0.022

EveryR 99.9 ±0.3 3.0 ±0.0 0.117 ±0.004

Table 4: Summary of results for both the number agree-
ment and gender bias settings (average across 3 run
for each setting). R indicates KL regularization. Sin-
gle/ Every indicates single-step and every-step interven-
tions respectively.

Unit He She Prevalence

288 -0.98 ±0.00 0.53 ±0.05 100%
456 0.98 ±0.00 -0.98 ±0.01 100%

1184 -0.98 ±0.00 0.99 ±0.00 100%

Table 5: Gender bias task with every-step interventions.
Values are averages across 10 runs.

lower accuracy. Note that doing an exact search for
this problem has a time complexity ofO(2k) where
k is the number of neurons—this would amount to
> 1012 evaluations only for checking combinations
up to 4 neurons.

Robustness To demonstrate that our method is
robust, we tested it on 5 language models initial-
ized with different seeds and trained with the origi-
nal script by Gulordava et al. (2018). We run our
method for the single-step intervention 3 times for
each language model. The average accuracy at con-
vergence is 88.7± 2.6, and we discover 4.7± 0.5
units on average. The variability in both accuracy
and number of units is very low, indicating that our

Acc. (↑) Units (↓) Speed (↓)

SFE (α = 0.05) 100.0 20.0 5.2h
SFE (α = 0.02) 87.6 6.0 3.6h
IG (α = 0.005) 22.5 7.0 –
IG (α = 0.01) 28.1 13.0 –
IG (α = 0.02) 31.5 26.0 –
Ours (α = 0.02) 91.5 5.7 0.5h

Table 6: Comparison between the solutions found by
Score Function Estimation (SFE aka REINFORCE), In-
tegrated Gradients (IG; Sundararajan et al., 2017), and
our system (average across 10 runs on a single GPU de-
vice). Ours is much faster and finds a sparser solution
with better accuracy.

method is robust to different parameterizations of
the model we applied it to.

Effect of Regularization We ablated the KL reg-
ularization to see whether it affects learning and
the final convergence of our method. On the num-
ber agreement task, we found that the average
KL divergence with respect to the original model
predictions was 0.035/0.084 with regularization
and 0.034/0.131 without regularization (for single-
step and every-step intervention, respectively). We
used different regularization coefficients (i.e., dif-
ferent weights), but we did not observe a substantial
change in the convergence of our models. More-
over, the accuracy and the number of units found
with regularization was almost the same as without
regularization (see Table 4 for all results). This lack
of effect of the regularization suggests the studied
phenomenon is naturally captured by specialized
neurons. In the gender bias task, regularization has
a similar and negligible impact. The regularized
method converges to finding fewer units on average
and with worse accuracy (95.8 as opposed to 98.6)
in the single-step intervention. In the every-step
intervention, the accuracy stays invariant (for both
settings is 100) while the model converges to using
more units.
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6 Conclusions

In this work, we present a new method that employs
constraint optimization to efficiently find hidden
units that are responsible for particular language
phenomena of language models. We use an L0 reg-
ularization to find a sparse solution—., our method-
ology discovers few units in the order of 2-6 that is
< 0.41% of all units in the studied LM. We show
such sparse solutions can be found for multiple phe-
nomena (number and gender agreement) and is an
useful tool for analysis of what a LM has learned
and how units influence its token emissions. Al-
though this work focuses on LSTM models, the pro-
posed technique is not architecture-dependent and
thus easily applicable to transformers, convolution-
based models and many others.
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A Additional results
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Figure 3: Subject-verb number agreement: activations of four units we intervene on (single step intervention at the
second token from the left) for changing number agreement (at the last token).
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Figure 4: Gender bias: activations of four units we intervene on (single step intervention at the second token from
the left) for changing the pronoun (after “because” or “that”).
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Abstract

Observing that for certain NLP tasks, such as
semantic role prediction or thematic fit estima-
tion, random embeddings perform as well as
pretrained embeddings, we explore what set-
tings allow for this and examine where most
of the learning is encoded: the word embed-
dings, the semantic role embeddings, or “the
network”. We find nuanced answers, depend-
ing on the task and its relation to the training
objective. We examine these representation
learning aspects in multi-task learning, where
role prediction and role-filling are supervised
tasks, while several thematic fit tasks are out-
side the models’ direct supervision. We ob-
serve a non-monotonous relation between some
tasks’ quality score and the training data size.
In order to better understand this observation,
we analyze these results using easier, per-verb
versions of these tasks.

1 Introduction

We examine to what extent models trained on a
simplified semantic role labeling (SRL) task can
estimate thematic fit (aka semantic fit), as the train-
ing set size grows – and where most of the learning
is stored: in the word embeddings, the thematic
role embeddings, or elsewhere in the neural net.

A major goal of natural language processing
(NLP) is to understand the semantics of language.
One traditional NLP task around this is SRL, which
labels word spans in a sentence with thematic roles.
Consider the sentence “I cut the cake with a knife”.
We can interpret ‘cut’ as the action, ‘I’ as the
Agent (the performer of the action), ‘cake’ as
the Theme of the action (the thing that underwent
the action), and ‘knife’ as the Instrument of

*These authors contributed equally to this work

the action. These words, labeled with roles such as
Agent, Theme, and Instrument, would be our
representation of the event that the sentence con-
veys. Other sentences with similar meanings, e.g.,
“the cake was cut with the knife by me”, should
have the same (or very similar) event representa-
tions. In this work, we focus on model training
with a simplified version of SRL: each event is
represented only by the lemmatized syntactic head
of each event argument (including the predicate),
and the semantic roles are the simplified PropBank
roles (Arg0, Arg1, etc.). The reason for this is
the current limitations of available evaluation sets
for thematic fit: they are all comprised of lemma-
tized syntactic argument heads as well.

Thematic fit is related to SRL. This task aims
to identify how well a given word or concept fits
into a role of an event. In our example sentence,
consider these potential replacements for ‘knife’:
scissors, fork, and brick. As humans, we under-
stand that while ‘knife’ is the most typical object
for this situation, both ‘scissors’ and ‘fork’ could
also fit, even if not as naturally. This is because
we have the general intuition that all three objects
are plausible instruments for cutting. More so, we
know that ‘brick’ is unlikely to fit given the con-
text of cutting a cake. Since thematic fit datasets
are scarce, one challenge in computational linguis-
tics (and computational psycholinguistics) revolves
around how machine learning models can learn the-
matic fit indirectly – perhaps from SRL training.
To the best of our knowledge, the state-of-art in
this line of work is the residual role-filler averag-
ing model (ResRoFA-MT) proposed by Hong et al.
(2018), with an adjusted embeddings representa-
tion and training data annotation in Marton and
Sayeed (2022).
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It has been repeatedly observed that in some set-
tings, random word embeddings perform as well
as pretrained ones, or very nearly, including in
our baselines (Tilk et al., 2016; Hong et al., 2018;
Marton and Sayeed, 2022). In this paper, we de-
sign experiments to answer the following questions:
Q1. Why is this so in our compositional semantics
and psycholinguistic tasks? Q2. For such seman-
tic tasks and architecture, where is the learning
encoded? Is it in the word embeddings, role em-
beddings, or elsewhere in the neural network? Q3.
Training set size effect: is more data better for this
indirect setting and tasks?

In this work, 1. We compare updating the word
embeddings during training to freezing them. 2. We
modify the ResRoFA-MT model architecture in
various ways to understand what contributes the
most to the learning: the pretrained (or random)
word embeddings, the thematic role embeddings,
or the rest of the network. 3. In order to be able
to train on larger data, we optimized the code of
Hong et al. (2018) and Marton and Sayeed (2022).
We release our optimized codebase*, which trains 6
times faster and includes ablation architectures and
a correction to the training data preparation step.

2 Related Work

In event representation models, the main goal is to
predict the appropriate word in a sentence given
both the role of that word and the surrounding con-
text in the form of word-role pairs. One of the best
early neural models was the non-incremental role-
filler model (NNRF), by Tilk et al. (2016). This
model was based on selectional preferences, or a
probability distribution over the candidate words.
However, one drawback of this model is that repre-
sentations of two similarly-worded sentences differ-
ing hugely in meaning would closely resemble each
other, e.g., “kid watches TV” and “TV watches
kid”. Another drawback is that the embeddings of
the word-role pairs are summed together to repre-
sent the sentence, and so the resulting event repre-
sentation vector does not weight the input vectors
differently based on their importance and is not nor-
malized for varying numbers of roles in a sample.

Hong et al. (2018) extend this model in three
ways: First, in addition to the word prediction task
of NNRF, the task of role prediction given the cor-
responding word is added, and the two tasks are

*https://github.com/MughilM/
RW-Eng-v3-src/tree/arxiv_release

trained simultaneously (multi-task learning). This
model is known as the non-incremental role-filler
multitask model (NNRF-MT). Second, they ap-
ply the parametric rectified linear unit (PReLU)
non-linear function to each word-role embedding,
which acts as weights on the composition of em-
beddings, and subsequently average the embed-
dings, which normalizes for variable length in-
puts. This model is called the role-filler averaging
model (RoFA-MT). Third, in an effort to tackle the
vanishing gradient problem, residual connections
between the PReLU output and the averaging input
were added together. This third iteration is known
as the ResRoFA-MT model. They showed that it
performs the best on our thematic fit tasks, and so
we use it as our baseline.

Our work differs from Hong et al. (2018) and
Marton and Sayeed (2022) in that while they fo-
cused more on state-of-the-art performance through
new modeling and annotation methods, we aim
to understand what controls the learning in such
networks. Also, although Hong et al. confirm in
private communication that they found pre-trained
and random embeddings performance similar in
preliminary studies, none of the surveyed previous
work published experiments with pre-trained em-
beddings. We are the first to do so (using GloVe)
and compare that to using random embeddings.

Previous work suggests a difference between
"count" and "predict" models, where "count" mod-
els represent lexical semantics in terms of raw or
adjusted unsupervised frequencies of correlations
between words (such as Local Mutual Information;
Baroni and Lenci, 2010) and syntactic or semantic
phenomena; "predict" models involve supervised
training to achieve their representations, e.g., neu-
ral models. Baroni et al. (2014) do a systematic
exploration of tasks vs. state-of-the-art count and
predict models and find that predict models are
overall superior; for thematic fit, predict models
are the same or better than count models on the
best unsupervised setup for the task, although they
are easily beaten by third-party baselines based on
supervised learning over count models. More re-
cently, Lenci et al. (2022) demonstrate that predict-
models are not reliably superior to count-models,
but depend on the task and the way the models are
trained. They also show that even recent contextual
models (e.g., BERT) are not necessarily better for
out-of-context tasks than well-tuned static represen-
tations, predict or otherwise. See Appendix A for
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details on why we do not use BERT in this work.

3 Datasets

We use the Rollenwechsel-English, Version 2 (RW-
Eng v2) corpus (Marton and Sayeed, 2022) as the
training set for all our experiments. This corpus is
sentence-segmented, annotated with morphological
analyses, syntactic parses, and syntax-independent
PropBank-based semantic role labeling (SRL). The
syntactic head word of each semantic argument is
determined by using several heuristics to match
the parses to the semantic argument spans. Note
that a sentence may have multiple predicates (typi-
cally verbs) and therefore multiple semantic frames
(sometimes called “events”), each with its own se-
mantic arguments, whose span may overlap the
argument span of other frames in the sentence.

The first version of this corpus contained NLTK
lemmas, MaltParser parses, parts-of-speech (POS)
tags, and SENNA SRL tags (Bird, 2006; Nivre
et al., 2006; Collobert and Weston, 2007). The sec-
ond version added layers from more modern tag-
gers: Morfette lemmas, spaCy syntactic parses and
POS tags, and LSGN SRL tags (Chrupala, 2011;
Honnibal and Johnson, 2015; He et al., 2018). In
our experiments here we use the lemmas of the
semantic arguments’ head words in v2.

The sentences themselves are taken from both
the ukWaC (Ferraresi et al., 2008) and the British
National Corpus (BNC). This corpus contains
78M sentences across 2.3M documents. This in-
cludes 210M verbal predicates with 700M associ-
ated role-fillers. We use the same training, valida-
tion, and test split as Hong et al. (2018). That is, we
have 99.2% ( 201.5M samples) in the full training
set, 0.4% in validation, and 0.4% in testing. We
run our training experiments on different subsets of
the training data, ranging from 0.1% up to the full
dataset. We cap our vocabulary size at the 50,000
most common words in that specific subset.

We used the following psycholinguistic test sets:

Padó (Padó et al., 2006) 414 verb-argument pairs
and the associated judgement scores. These were
constructed from 18 verbs that are present in both
FrameNet and PropBank. For each verb, the three
most frequent subjects and objects from each of
the underlying corpora were selected. This pro-
cess yielded six arguments per verb per corpus,
with some overlap between corpora. For each verb-
argument pair, a judgement was collected online
with an average of 21 ratings per item for the ar-

gument in subject and object role. The rating was
collected on a Likert scale of 1-7 with the ques-
tion "How common is it for [subject] to [verb]?" or
"How common is it for [object] to be [verbed]?"

McRae (McRae et al., 1998) 1444 pairs of verb-
argument pairs in a similar format to Padó. These
were created using a similar rating question as the
Padó dataset, but is a compilation of ratings col-
lected over several studies with considerable over-
lap and heterogeneous selection criteria.

Ferretti-Instruments and Ferretti-Locations
(Ferretti et al., 2001) 274 predicate-location pairs
and 248 predicate-instrument pairs. Based on the
McRae dataset (Psychological norms).

GDS (Greenberg et al., 2015) 720 predicate-
object pairs and their ratings. Only objects (no
subjects), matched for high and low polysemy and
frequency, well fitting vs. poorly fitting. Greenberg
and McRae overlap by about a third, but the human
scores are obtained from new surveys.

Bicknell (Bicknell et al., 2010) 64 cases. Congru-
ent vs incongruent Patient in an Agent-Verb-
Patient paradigm. Hand crafted, not corpus-
based, designed for event-related potentials-based
neurolinguistic experiments.

4 Modeling and Methodology

In this setup, an input event is represented as
role-word pairs, where the role is one of the
following PropBank (Palmer et al., 2005) roles:
Arg0, Arg1, ArgM-Mnr, ArgM-Loc,
ArgM-Tmp, and the predicate. The word is the
argument’s syntactic head’s lemma. Both the role
and the head word are taken from RW-Eng v2.*

We train a feed-forward network in a multi-task
learning setting to optimize word and role predic-
tion accuracy. For target word prediction we give
the prediction layer the target role and a context
vector formed as a multiplication of the input word–
role pairs. Similarly, for target role prediction we
feed the same context vector along with the tar-
get word, following the ResRoFA-MT architecture
(Hong et al., 2018) (Figure 1a). Since the network
initialization is random, we perform 5 runs of each
experiment and report the mean with a 95% con-
fidence interval. Following Hong et al. (2018);
Marton and Sayeed (2022), we test each model

*Note the input is not a full sentence, precluding the use of
contextual models such as BERT. See Appendices for details.
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on the psycholinguistic datasets (Section 3), for
which the models were not directly optimized. The
idea behind using the latter test battery is that the
model, even though trained on (simplified) SRL
and word prediction (aka role-filling) tasks, is ex-
pected to be able to make indirect generalizations
about predicate–argument fit level from the training
data and the related objectives. These psycholin-
guistic tasks are evaluated with Spearman’s rank
correlation between the sorted human scores and
the sorted model scores, except for Bicknell, for
which we take accuracy of predicting which argu-
ment in each Patient role-filler pair is (more)
congruent (Lenci, 2011).

All prior work with the ResRoFA-MT model
uses two random word embedding sets (one for in-
put words and one for the target word) and similarly
two role embedding sets. See Figure 1a.

Our implementation differs in these key aspects:

• Modified model architecture - Using a sin-
gle word embeddings set, shared between the
target and input words, and similarly a sin-
gle role embeddings set (Section 5.1, Fig-
ure 1b). In our experiments, we find the
non-shared, redundant embedding layers do
not affect the performance while adding (vo-
cab size 50,000 × word embedding size 300)
15,000,000 learnable parameters in the model.

• Changes in Batching - With previous imple-
mentations, one epoch only resulted in about
a third of the data being traversed. The next
epoch would start on the second third and so
on. Now, we set the data preprocessing so that
one epoch is one pass through all the training
data. Additionally, the data is preprocessed
during the training of each batch, so no time
is lost during training in waiting for the next
batch of data to be preprocessed.

• Missing and unknown words handling - Fol-
lowing Marton and Sayeed (2022) but un-
like Hong et al. (2018), we represent out-
of-vocabulary (OOV) words separately from
missing words (empty slots in an event).

• Architectural ablation experiments - these
are described in Section 5, for ease of read-
ability.

5 Experiments and Discussion

5.1 Shared Embedding Layer
We modify the network to use a single embeddings
set shared between the input words and target word,

by using a single index-to-embedding mapping
layer – and similarly a shared embedding-mapping
layer for the input roles and target role (Figure 1b).
This change results in 2x the training speed (Sec-
tion 4) without degradation in performance: role
accuracy remains at 96.6-96.7%, word accuracy at
13.6-13.7%, Padó at 52-54%, McRae at 32-33%,
and so on (see first two rows in Tables 1 and 2).
Therefore we use the faster shared architecture for
the rest of the experiments. We train all models
(until Section 5.5) on a uniformly sampled 1% sub-
set, which is large enough to get indicative results
while saving time and cost in experimentation. For
comparison of our results to previous work, see
Section 5.5.

5.2 Random vs. Pre-trained Embeddings

Hong et al. (2018) used random Glorot uniform to
initialize the word embeddings. Private commu-
nication with the authors confirmed random em-
beddings do as well as pretrained ones for these
tasks. We replicate this finding, comparing random
word embeddings to pretrained GloVe embeddings
(Pennington et al., 2014), both of size 300: role ac-
curacy at 96.7%, word accuracy at 13.7%, Padó at
52.8-53.2%, McRae at 32.8-33.8%. Similar trend
follows across all the thematic fit task results with
overlapping 95% confidence intervals of the experi-
ments with random and GloVe embeddings (rows 2
and 3 in the top part of Tables 1 and 2).

(Q1) Why is this so? We note that during train-
ing, embeddings get updated. To check if this up-
date is responsible for bridging the gap between
zero knowledge (random embeddings) and much
knowledge (compressed in the pre-trained GloVe),
we freeze the word embedding layer and rerun the
experiments (see the middle part in the same two
tables). Contrary to our previous experiment, we
find fixed GloVe embeddings do much better than
fixed random embeddings on all our tasks. We also
see tuning helps the model converge much faster
(from 25 epochs down to 11-15).

We conclude that indeed much of the learning
is captured in the word embeddings. Tuning them
even on only 1% of our training data bridges the
knowledge gap from the pre-trained embeddings
almost completely (with possible exceptions on Fer-
retti and Bicknell). But we note that although lower,
the fixed embeddings results are not near-random.
This leads us to (Q2) Where else is learning done,
and to what extent?
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(a) Original ResRoFA-MT architecture (b) Shared Embedding Layer

(c) NIR network (d) NTR network

(e) NR network (f) Simple network

Figure 1: The model architectures for our experiments

5.3 Role Contribution

We now turn to role ablation tests. First we take
away the input roles from the context embeddings
and call this the no-input-roles network NIR (see
Figure 1c and the third part of Tables 1 and 2). We
do not see large drops in word prediction (from

14.7% to 13.5%), or thematic fit tasks such as
Padó (from 53.2% to 50.2%) and McRae (32.1%
to 32.8%), except role prediction (from 96.7% to
90.4%), which we expect by construction. Note
that when predicting the target word, the NIR
network still receives the target role information,
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Embedding Shared? Tuned? Role? Role Accuracy Word Accuracy Epochs*

Random N Y Y .9655± .0014 .1363± .0020 11(6)
Random Y Y Y .9671± .0003 .1372± .0022 11(6)
GloVe Y Y Y .9669± .0003 .1374± .0005 15(10)

Random Y N Y .6609± .0046 .1208± .0012 25(20)
GloVe Y N Y .9510± .0011 .1291± .0006 25(20)

GloVe Y Y NIR† .9036± .0013 .1348± .0019 11(6)
GloVe Y Y NTR† .9677± .0006 .1230± .0017 12(7)
GloVe Y Y NR† .9007± .0021 .1078± .0010 8(3)

RAND Network‡ Y Y Y .1530± .0716 .0000± .0000 -
Simpler Network+ Y N Y .9987± .0005 .1208± .0020 6(1)

Table 1: Word and Role accuracy on 1% training data.
† NIR=No input role (in context); NTR=No target role (in prediction); NR=No role
‡ Network with no training that uses previously fine tuned word/role embeddings as input
+ Simpler Feed forward Network with previously fine tuned word/role embeddings as input
* Epochs in parentheses: the epoch of the effective model (best model before early stopping after patience limit)

Embed. Shrd Tuned Role Padó McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
Random N Y Y .5474± .0345 .3231± .0236 .4485± .0314 .2611± .0036 .2282± .0623 .5260± .1185
Random Y Y Y .5280± .0274 .3384± .0174 .4388± .0206 .2532± .1421 .2266± .0391 .5000± .0673
GloVe Y Y Y .5316± .0320 .3280± .0177 .4534± .0209 .2851± .0301 .2895± .0258 .5438± .0370

Random Y N Y .4396± .0344 .2838± .0109 .2841± .0246 .1767± .0273 .2086± .0322 .4781± .0450
GloVe Y N Y .4941± .0247 .3090± .0254 .4349± .0229 .3011± .0301 .3439± .0421 .5563± .0490

GloVe Y Y NIR .5079± .0587 .3205± .0580 .4217± .0472 .3054± .0791 .2543± .0796 .6042± .0896
GloVe Y Y NTR .2400± .0294 .0937± .0258 .3845± .0083 .3071± .0017 .2621± .0531 .5469± .0388
GloVe Y Y NR .2496± .1088 .1139± .0150 .3385± .0363 .2955± .1243 .2668± .0375 .5885± .0448

RAND Y Y Y −.0001± .1090 .0109± .1604 .0365± .0784 .0165± .1048 −.0346± .0785 .4531± .1027
Simpler Y N Y .3271± .0555 .2175± .0294 .3356± .0345 .1055± .0259 .0459± .1239 .5365± .0593

Table 2: Thematic Fit tests on 1% training data (same models as in Table 1)

which, together with at least the predicate, is likely
often sufficient information for prediction.

We find it surprising that input role ablation
barely affects performance on the psycholinguistic
tasks. Why is that? One possibility: the input role
contribution is negligible. But another possibility
is that in NIR, all (or almost all) the role informa-
tion was crammed into the target role embeddings.
To tease these apart, we next take away the target
role from the penultimate layer of the network, but
leave the input roles intact. We call this no-target-
role network NTR (see Figure 1d and the row after
NIR in the same tables). Now the role accuracy
goes back to the base level of 96.7% (as expected
by construction), but word accuracy drops (from
13.7% to 12.3%) and so does performance on the
psycholinguistic tasks, e.g., Padó (from 53.2% to
24%), McRae (32.8% to 9.4%). We conclude that
target role carries more crucial information than
input roles for our psycholinguistic tasks, and that
role information cramming, if it happens in NIR,
does not happen in the other direction (NTR).

Finally, for completeness, we remove all role

information from the network. We call this no-role
network NR (see Figure 1e and same tables). This
results in a drastic drop in word accuracy (from
13.7% to 10.8%) in addition to degradation of role
accuracy from NIR experiment as well as the psy-
cholinguistic tasks (Padó falls from 53.2% to 25%,
McRae from 32.8% to 11.4%, and so on). This is
an an interesting finding which supports previous
knowledge about the importance of roles in multi-
task learning setting while at the same time defies
the importance of roles in the context vector (the
output of the residual block in Figure 1). Next, we
turn to learn more about the impact this vector and
the block it is in.

5.4 “It’s the Network!”... Or is it?

In order to see how much the particular
ResRoFA-MT model architecture (aka “the net-
work”) contributes in our tasks, we first use the fine-
tuned GloVe embedding from a previously trained
base model (third row in Table 1) and assign the rest
of the network random weights (“RAND Network”
in Tables 1 and 2). To ensure the random weights
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are similar in size to the trained weights, we calcu-
late the mean and standard deviation for each layer
separately and assign that layer random weights
using a Gaussian distribution with the same param-
eters. We see this new model does very poorly,
near random prediction (word accuracy at 0%, role
accuracy at 15.3%, Padó at 0%, McRae 1.1% and
so on). This could be due to the learned representa-
tion in the network weights that were ablated here
but also due to incompatibility of the non-trained
random network weights with the very informative
word embeddings.

Therefore next we replace the complex middle
residual block with a plain dense layer but let this
“Simpler Network” (Figure 1f, Tables 1 and 2) learn
during training. In training here we use the fine-
tuned word (and role) embeddings from our base
model. Curiously, we see a notable jump in role
accuracy (from 96.7% to 99.9%), but a drop in
word accuracy (from 13.7% to 12.1%) as well as in
the psycholinguistic tasks (Padó goes down from
53.2% to 32.7% , McRae from 32.8% to 21.8%,
etc.) other than Bicknell’s (53.7-54.4%). We spec-
ulate the latter task is an outlier here because it
involves comparing the plausibility of two two-
participant events with one participant changed. A
simpler network may have an easier time repre-
senting binary distinctions within a pair of simple
events, as opposed to predicting fine-grained scores
of more complex inter-relationships, evaluated with
Spearman’s ρ in the other datasets. It may even be
able to rely on general collocation statistics here, re-
gardless of roles, but we leave this for future work.
Note that here, we still do multi-task prediction as
before, but in a much simpler network.

This, along with the role ablation experiments,
suggest that while the potential incompatibility of
the non-trained random network weights with the
word embeddings may account for some of the
drop in performance, the context vector formation
through multiplication and likely also the improve-
ments implemented in our base model have a large
impact on the representation learning as tested on
the thematic fit tasks (although not the same impact
on word/role prediction).

We see again that there is no clear correlation
between the increase in directly optimized for
word/role prediction, and the performance on the
psycholinguistic tasks for which the models were
not directly optimized.

To recap, it seems the answer to (Q2) is nuanced:

Padó and McRae are most sensitive to ablated roles;
GDS, and perhaps Bicknell, to non-tuned random
word embeddings; Ferretti to ablated (simplifiled)
networks; and all are sensitive to RAND Networks,
but Bicknell is surprisingly robust even there.

5.5 Training Data Size Effect

Often in machine learning and NLP, models learn
better with more data. However, there are typically
diminishing returns. To test the effect of training
data size, we use our shared layer network with
tuned GloVe embeddings (as in row 3 in Table 1) on
uniformly sampled 1%, 10%, 20% 40% and 100%
of the training dataset. See Table 3 and Table 4.

Sys Role Accuracy Word Accuracy Epochs
B1† .9470 - -
B2‡ .9715± .0010 .1541± .0045 -

20%M+ .9707± .0002 .1450± .0004 -
0.1% .9446± .0015 .0994± .0024 12(7)
1% .9669± .0003 .1374± .0005 15(10)

10% .9701± .0002 .1443± .0006 13(10)
20% .9703± .0004 .1445± .0009 9(6)
40% .9704± .0007 .1442± .0011 9(6)

100%* .9708± .0006 .1444± .0019 7(4)

Table 3: Comparison of performance with GloVe
(tuned) with varying training set sizes (Sys)

† Hong et al. (2018) 20%
‡ Marton and Sayeed (2022) 20%
+ The average of max value in each trial for fair compari-

son with benchmarks B1,B2

First, in order to compare fairly with previous
work, we report the average of the maximum value
in each training trial on 20% of the data. (Recall
that our 20% of the data is a larger training set than
our baselines’ 20% due to improvements in our
batcher). Our role accuracy (97.1%) is better than
Hong et al. (2018) (94.7%) and similar to Marton
and Sayeed (2022) (97.2%). Our word accuracy
(14.5%) is a bit lower than the latter (15.4%). On
the indirectly supervised thematic fit tasks, our re-
sults are better on Padó (58.6% compared to 53%),
similar on McRae (42.5-43.4%), but lower for the
rest. We suspect that in the previous work authors
reported the best of all the epochs from all trials,
which can explain why the previously reported
scores are higher than our results; but we could
not verify that.

In order to better understand the effect of train-
ing set size (Q3), we use next what we believe
to be more realistic numbers: the average of the
last saved model in each run (best model per our
validation set) in each training subset size.
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System Padó McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
B1 .5300 .4250 .6080 .4630 .4770 .7450
B2 .5363± .0035 .4322± .0232 - - - -

20%M .5855± .0101 .4338± .0181 .5495± .0220 .3539± .0239 .4255± .0210 .6094± .0000

0.1% .2992± .0441 .1856± .0157 .1699± .0180 .0891± .0306 .0367± .0203 .4906± .0402
1% .5316± .0320 .3280± .0177 .4534± .0209 .2851± .0301 .2895± .0258 .5438± .0370
10% .5572± .0247 .3993± .0137 .5409± .0150 .3410± .0358 .3765± .0320 .5906± .0320
20% .5241± .0558 .3708± .1182† .5245± .0148 .3191± .0312 .3853± .0454 .5813± .0210
40% .3662± .1355 .3831± .0276 .5467± .0183 .3331± .0215 .3660± .0284 .5750± .0460
100%‡ .3375± .7293 .3733± .5203 .5338± .1328 .2736± .7846 .3416± .3297 .6094± .1985

Table 4: Thematic Fit with GloVe tuned (same models as in Table 3)
† 1 trial had an outlier score .2026
‡ All experiments had 5 runs per training subset, except for the 100% with only 2 runs, due to compute resource limitation.

We see incremental improvements from the 0.1%
subset (role accuracy at 94.5%, word accuracy at
9.9%) to the 1% subset (role accuracy at 96.7%,
word accuracy at 13.7%) to the 10% subset (role
accuracy at 97.0%, word accuracy at 14.4%) across
all our evaluation tasks; however, contrary to our
null hypothesis, we see diminishing returns or no
gains in role and word prediction when using 20%
or more of the training set. In most of the psy-
cholinguistic tasks (Table 4), results plateau at 10%
or 20% (GDS at 52.5-54.1%, Ferretti-Loc at 32-
34.1%, Ferretti-Instr at 36.6-38.5% and Bicknell
at 57.5-59.1%) with the notable exception of Padó
(best at 55.7% with 10% training data) and McRae
(best at 40% at 10% training data) , where we see a
negative trend at and beyond 20%. Why is it so, and
only for these two tasks, with mainly Padó? The
Padó dataset is constructed from high-frequency
fillers. It behaves differently from the other datasets
and gets a high maximum average score on the 20%
subset probably because there is more training data
available for high-frequency fillers, compared to
the other datasets, including McRae. Considering
the small samples in these test sets, they might
quickly become victims of not only high variance,
but also of overfitting, that is to say, the models may
specialize on the corpus distribution, increasingly
with training set size. This distribution is likely to
be different from the WSJ distribution, from which
Padó dataset is drawn (but see also Section 5.6).

How do word/role prediction and thematic fit
tasks relate to each other? We leave this ques-
tion for future research, but our hypothesis is that
psycholinguistic meaning of natural language is
grounded in interaction with other modalities (e.g.,
actions, vision, audio), which a model cannot learn
just from more textual training data.

This leads potentially to a much bigger question:
how much can a neural model learn natural lan-
guage by just being trained on very large corpora
or billions of parameters, and where is the satura-
tion point? Furthermore, we see role information is
important to our psycholinguistic tasks; how much
does the role definition and granularity (e.g., Prop-
Bank or FrameNet), or the role set size, matter for
these tasks? Possibly, with a richer roleset, we may
see more alignment between word/role prediction
and the psycholinguistic tasks. Perhaps PropBank
roles are too coarse-grained to allow for an analysis
of how a role-prediction task relates to a thematic
fit task, which involves the fine-grained ranking
(via Spearman’s ρ) of event plausiblities derived
from the underlying semantic characteristics of the
nouns and verbs involved. If so, understanding how
performance on a role-prediction task relates to the-
matic fit judgements may not be possible without a
finer-grained inventory of semantic characteristics,
such as Dowtyan proto-roles (Dowty, 1991).

5.6 Global and Local Correlation

We evaluate both Padó and McRae by computing
Spearman’s rank correlation between the sorted list
of model’s probability scores and the sorted list
of averaged human scores, for each dataset. Why
do Padó and McRae deteriorate with increasing
training data size? To test if this is due to fluctua-
tion of model scores for unrelated but near-in-score
verb-noun pairs, we averaged correlations for local
subsets, grouped by verb. This should be an easier
task, since some of the globally close competition
is not present in each by-verb subset. Indeed, we
see high jumps of 5-8% for the local correlation
scores in the larger subsets (40% and 100%). But
in the smaller subsets we see changes of 2-3% up
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or down. Moreover, the trend of lower correlation
with larger training sets remained. We leave it to fu-
ture work to dig further into why Padó and McRae
show such an anomaly.

6 Conclusions and Future Work

In this work, we explored why random word em-
beddings counter-intuitively perform as well as pre-
trained word embeddings on certain compositional
semantic tasks (some being outside the models’
explicit objective), where the learning is actually
stored (teasing apart the word embeddings, role
embeddings, and the rest of the network), and how
training set size affects performance on these tasks.
We found out that tuning (or further tuning) the
word embeddings helps and can bridge the gap be-
tween random and pretrained embeddings. More-
over, our tuned embedding space is different from
pretrained embeddings like GloVe. We saw that the
target role is more important than the input roles on
our tasks. Furthermore, our experiments suggested
that much of the learning happens also in the rest
of the network outside word and role embedding
layers. No single factor (word and role embeddings
or the network) is most important for all tasks.

Training set size had a surprising negative effect
on Padó and McRae beyond 20% of the training
data. We attempted explaining this with an alter-
native evaluation method, but this remains to be
explained further.

We release our code, including our preferred
network architecture – a modified version of
ResRoFA-MT with shared embedding layers.

One avenue in which we want to invest is to bet-
ter understand the complex relationship between
word/role accuracy and our psycholinguistic tasks.
While our initial hypothesis was that training the
network to minimize loss on word/role prediction
would also optimize performance on all our tasks,
this did not always hold. We suspect that the
groundedness is the missing link for (artificially
and naturally) learning psycholinguistic tasks, and
therefore adding grounding seems promising to us.

Another future avenue is to investigate the high
variability in psycholinguistic task performance
compared to the fairly stable results on the directly
optimized-for word and role prediction tasks.

Limitations

There are certain limitations that were unavoidable
in this work. One of them is the limited size of

the available training and evaluation datasets for
testing thematic fit tasks. It is likely that the high
variance we observed is due to both our indirect
supervision approach (in part due to lack of directly
relevant data for training), and the small-size test
sets. We are limited here by the state of the art in
such datasets, not just by their size. It is a com-
plex task to create and evaluate thematic fit with
full phrases and sentences, i.e., not just with the
arguments’ syntactic heads. Since we do not know
of any such datasets, our model was designed with
only syntactic heads in mind.

Another limitation is the training dataset qual-
ity: due to its size, the training data was machine-
annotated (for syntactic parsing, SRL and lemmas)
and therefore unintended noise and bias may have
been introduced in the models. In addition, even
though our training datasets were collected with the
goal of making them domain-general and balanced,
it is hard to enforce and verify that in large sizes.
We take issues such as toxicity and gender bias
seriously, but we think that in our settings, where
the model does not generate language and the test
sets do not involve gendered examples, the related
risks approach zero.

Semantic tasks such as thematic fit would most
likely benefit from training on grounded language,
e.g., combining text and vision, but working with
such datasets is beyond the scope of this work.

Finally, a rather trivial limitation we have is the
number of trials per experiment we could run due
to time and computational constraints. We only
ran 3-5 trials per experiment but a larger number
of trials may yield more robust results. Despite all
these limitations, we believe our work gives a very
comprehensive analysis of the ResRoFaMT model
and opens up some interesting avenues for future
research work.

Ethical Considerations

Our work uses RW-Eng v2 (Marton and Sayeed,
2022), which in turn uses two corpora: ukWaC and
the BNC. Therefore, we have similar ethical con-
cerns as mentioned in that previous work, including
the way the BNC data was collected. Those who so
wish can easily exclude the BNC data (it comprises
only a small part of the whole corpus) and retrain.

The RW-Eng corpus (v1 or v2) could introduce
undesired bias in use outside the UK, since the data
is sourced entirely from UK web pages and other
UK sources from the 20th century. English used
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outside the UK, and more recent English anywhere,
differ from this corpus in their word distributions,
and therefore their input may yield sub-optimal
or undesired results. Furthermore, models trained
on it could encode a Western-centric view of the
world.

The silver labels – the automatic parsing and
tagging of the corpus – could introduce bias from
the parsing / tagging algorithms. These parsers /
taggers are also trained models, which could be
affected by their data sources. If this is a concern
for some users, we encourage them to perform
validation of the data and its annotations.

Having said that, we believe that for most if not
all conceivable applications, especially as long as
one keep these limitations in mind, our work should
not pose any practical risk.
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Appendix A: Why Not Use BERT Here?

With the advent of contextual embeddings, static
word embeddings are often regarded as inferior or
outdated. While this is true in many cases, we wish
to point out that (a) there are still cases where static
word embeddings outperform BERT (Lenci et al.
(2022); Henlein and Mehler (2022), inter alia) and
more importantly, (b) not all NLP tasks and test
sets are in the form of complete sentences, which
may render contextual models useless there. More
specifically for our tasks:

1. As we point out at the end of Section 2, “Lenci
et al. (2022) demonstrate that ... even recent
contextual models such as BERT are not nec-
essarily better for out-of-context tasks than
well-tuned static representations, predict or
otherwise." Our tasks, as represented by sev-
eral psycholinguistic test sets are such out-of-
context tasks. This is the state-of-the-art in
psycholinguistics datasets. The human judg-
ments in these sets were given without a full
sentence or other context beyond the verb-
noun (or noun-verb-noun) items. There is
no reason to assume that BERT, a contextual
model trained on full sentences will do well
on out-of-context tasks, and again, it has been
shown BERT is not necessarily better than
static word embeddings.

2. Even if we wanted to use BERT, we cannot
use a lookup table the same way we can for
static word embeddings. This means we will
either have to decode each sentence on the fly
every training (and evaluation) iteration, or
decode once and save on disk. Simple calcula-
tion shows that the required storage demands,
even for, say, 1% of the data, make this exer-
cise computationally extremely expensive.

3. BERT may break words to several tokens.
How to map these to the verb or noun in the
training or test is not always straightforward,
and this mapping makes embedding extraction
speed 0.5x slower.

4. “Hallucinating” synthetic sentences from the
verb-noun input in order for BERT to receive a
sentence for input would invalidate the ratings
given by the human raters without these (or
other) sentences.

5. In order to validate our claims here, we exper-
imented with BERT on-the-fly in preliminary
studies, using a small training subset of a few
thousand sentences with simple token map-
ping, and the results were dismal while the
training already excruciatingly slow.

6. There is nothing wrong with systematically
exploring models that use static word embed-
dings, even if contextual embeddings excite
many people more. We don’t think we should
defend this choice.
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Appendix B: Dataset Examples

For added clarity we give the readers a few exam-
ples of the training and evaluation data.

1. Each training example is a list of word/role
pairs. Each of these examples are created
with the head words from full sentences,
i.e., our final training examples do not
contain full context. We have 6 semantic
roles such as Arg0 and Arg1 etc. + one
placeholder UNK role for roles not included
in our role set. A typical example could
look like this: {0: 6, 1: 97, 2:
43511, 3: 43511, 4: 239, 5:
143, 6: 64}, where the numbers are
pairs of role:word indices. The size of word
vocabulary of the 0.1% training subset is
43,510 with tokenId 43,510 and 43,511
corresponding to UNK and Missing word
(the corresponding role does not have a head
word). Larger training subsets vocabulary is
capped at 50,000.

Each example is used in training 1 or more
times, each time with a different target
word/role pair (see Figures 1a, 1b, and Sec-
tion 4), while the rest of the pairs are used for
input. Note that a pair with a Missing word
cannot serve as a target word/role.

2. Apart from the train / test split, we use
multiple psycholinguistic evaluation sets that
we do not optimize the model on, as men-
tioned in Section 3. While they all vary,
a typical example is {client, advise,
Arg0, 3.7}, which means that human
raters gave an average of 3.7 to ’client’ as Ar-
gument 0 (typically Agent) for ’advise’ (as
in “the client advised the banker that ...”).
In contrast, {client, advise, Arg1,
6.6}, means that human raters gave an aver-
age of 6.6 to ’client’ as Argument 1 (typically
Theme/Patient) for ’advise’ (as in “the banker
advised the client that ...”). According to these
human raters, ’client’ fits semantically much
better as Arg1 than Arg0 for ’advise’. During
thematic fit evaluation, we sort these test ex-
amples by human rater average scores, and the
model output by model score. Then, we com-
pute Spearman’s rank correlation between the
two sorted lists, as explained in Section 5.6.
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Abstract

It is unclear whether, how and where large
pre-trained language models capture subtle
linguistic traits like ambiguity, grammatical-
ity and sentence complexity. We present re-
sults of automatic classification of these traits
and compare their viability and patterns across
representation types. We demonstrate that
template-based datasets with surface-level ar-
tifacts should not be used for probing, careful
comparisons with baselines should be done and
that t-SNE plots should not be used to deter-
mine the presence of a feature among dense
vectors representations. We also show how fea-
tures might be highly localized in the layers for
these models and get lost in the upper layers.

1 Introduction

Pre-trained language models, such as BERT, M-
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019), while being very efficient at solving
NLP problems, are also notoriously difficult to in-
terpret and their analysis and interpretation is an
active area of research (Belinkov and Glass, 2019).
One such technique of analysis is based on probing
classifiers (Belinkov, 2021), which primarily con-
sists of training and evaluating a shallow network
multi-layer perceptron (MLP) as a classifier on top
of the vector representations. Probing classifiers
are now fairly established in NLP (Adi et al., 2016;
Tenney et al., 2019; Ma et al., 2019).

In this work, we build sentence representations
from layer-wise contextual embeddings obtained
from three different pre-trained language models
and probe them for three linguistic traits: sentence
ambiguity, grammaticality, and complexity using
some well-established datasets.

=Co-first authors.
Code for the experiments in this paper is open-source:

github.com/ufal/ambiguity-grammaticality-complexity

In the process, we show why having a reasonable
baseline is a necessity for performance interpreta-
tion. We also demonstrate why simply visually
checking the clustering of embeddings on datasets
using t-SNE, a popular dimension-reduction tech-
nique in probing, can lead to incorrect conclusions.

Motivation. The study of these traits is impor-
tant for example in machine translation where dis-
ambiguation is necessary and grammaticality cor-
rection and simplification sometimes happen im-
plicitly without any control. For the tasks of text
simplification and grammar correction, it is crucial
to be aware of whether and how general-purpose
models encode these traits or whether they abstract
the meaning from them. Specifically, ambiguity
detection has been investigated very little in con-
trast to other features. All of these three traits are
orthogonal in their definitions, although their mu-
tual relationships are unknown. For example, it
may be that ambiguous sentences tend to be more
complex and prone to lower grammaticality. We
assimilate the definition of these traits from the re-
spective datasets but nevertheless include examples
in Table 1.

Contribution. We carry out text classification
tasks of ambiguity, grammaticality and complexity
and demonstrate empirically that:

• having a reasonable baseline is a necessity for
performance interpretation;

• sentence ambiguity is represented much less
than sentence complexity in the models;

• the template-based BLiMP dataset is not suit-
able for probing grammaticality because of
surface-level artefacts;

• t-SNE is not always an adequate tool to see
whether a feature is represented in vectors.
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Dataset Class Sentence

Ambiguous COCO Ambiguous A metal artwork displays a clock in the middle of a floor.
MS COCO Unambiguous A couple sitting under an umbrella on a park bench.

HCR English Complex For the year, net income tumbled 61% to $ 86 million, or $ 1.55 a share.
HCR English Simple In part, the trust cited the need to retain cash for possible acquisitions.

CoLA Acceptable The sailors rode the breeze clear of the rocks.
CoLA Unacceptable The problem perceives easily.

BLiMP-Morphology Acceptable The sketch of those trucks hasn’t hurt Alan.
BLiMP-Morphology Unacceptable The sketch of those trucks haven’t hurt Alan.

BLiMP-Syntax Acceptable Aaron breaks the glass.
BLiMP-Syntax Unacceptable Aaron appeared the glass.

BLiMP-Syn_Semantics Acceptable Mary can declare there to be some ladders falling.
BLiMP-Syn_Semantics Unacceptable Mary can entreat there to be some ladders falling.

BLiMP-Semantics Acceptable There was a rug disappearing.
BLiMP-Semantics Unacceptable There was every rug disappearing.

Table 1: Sentence examples from used datasets.

2 Related Work

Ambiguity. Word-sense disambiguation has
been extensively studied and is a closely related
task (Navigli, 2009). This has also been the fo-
cus of work done with recent NLP tools, which
has mostly concentrated on the determination of
ambiguity at the lexical level and not at the sen-
tence level. Yaghoobzadeh et al. (2019); Şahin
et al. (2020); Meyer and Lewis (2020) classify am-
biguous words. Chen et al. (2020) explore the
geometry of BERT and ELMo (Peters et al., 2018)
using a structural probe to study the representa-
tional geometry of ambiguous sentences. Bordes
et al. (2019) use a combination of visual and text
data to ground the textual representations and make
notes on disambiguation. Ambiguity modelling has
also been a focus of the MT community because
translation often requires disambiguation. This ap-
plies on many levels: lexical (Higinbotham, 1991;
Zou and Zou, 2017; Do et al., 2020; Campolungo
et al., 2022), syntactic (Pericliev, 1984) and se-
mantic (Baker et al., 1994; Stahlberg and Kumar,
2022). Psycholinguists have also studied the effect
of ambiguity resolution on cognitive load (Altmann,
1985; Trueswell, 1996; Papadopoulou, 2005), often
motivated by issues in MT (Sammer et al., 2006;
Scott, 2018). Bhattacharya et al. (2022) explore
ambiguity by the task of translation by human an-
notators.

Grammaticality. This trait has been studied
historically from the perspective of human sen-
tence processing and acceptability (Nagata, 1992;

Braze, 2002; Mirault and Grainger, 2020). Many
real-world applications utilize tools for automatic
grammaticality prediction (Heilman et al., 2014;
Warstadt et al., 2019), such as automatic essay as-
sessment (Foltz et al., 1999; Landauer, 2003; Dong
et al., 2017) or machine translation (Riezler and
Maxwell III, 2006). For MT, output acceptabil-
ity, or fluency, is a standard evaluation direction
for which many automated metrics exist (Hamon
and Rajman, 2006; Lavie and Denkowski, 2009;
Stymne and Ahrenberg, 2010). In contrast to our
supervised classifier approach, perplexity-based
approach has been used to measure acceptability
(Meister et al., 2021).

Related more closely to our setup, Hewitt and
Manning (2019) use a linear probe and identify
syntax in contextual embeddings. Lu et al. (2020);
Li et al. (2021) examine gramaticality in BERT
layers. Hanna and Bojar (2021) assess BERTScore
effectiveness in spotting grammatical errors.

Complexity. Similarly to other traits, complex-
ity was first studied in the human processing of
language (Richek, 1976; Just et al., 1996; Heinz
and Idsardi, 2011). Brunato et al. (2018) perform a
crowd-sourcing campaign for English along with
an in-depth analysis of the annotator agreement
and complexity perception. Automatic complexity
estimation is vital, especially in the educational
setting for predicting readability (McNamara et al.,
2002; Weller et al., 2020). Ambati et al. (2016)
estimate sentence complexity using a parser while
Štajner et al. (2017) do so using n-grams. Sarti
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(2020); Sarti et al. (2021) juxtapose the effect of
complexity on language models and human assess-
ment thereof. Martinc et al. (2021) survey multiple
neural approaches to complexity estimation, includ-
ing using pre-trained LM representation. In con-
trast to our work, they report only the final results
and do not investigate the issue from the perspec-
tive of probing (e.g. what representation to extract
and from which layer).

Probing. Earlier probing studies have shown that
the early layers of BERT capture phrase-level in-
formation and the later layers tend to capture long-
distance dependencies (Jawahar et al., 2019). The
syntax is also captured more in the early layers of
BERT and higher layers are better at representing
semantic information (Tenney et al., 2019). It is not
clear if and how pre-trained models achieve com-
positionality (Kalchbrenner and Blunsom, 2013;
Nefdt, 2020; Kassner et al., 2020) and how linguis-
tic knowledge is represented in sentence embed-
dings. Liu et al. (2019) use probing on a set of
tasks including token labelling, segmentation and
pairwise relation extraction to test the abilities of
contextual embeddings. Mutual information can
be used as a viable alternative to traditional probes
that require optimization (Pimentel et al., 2020).
A conceptual follow-up is V-information (Hewitt
et al., 2021) which is better suited for probing. In
many cases, t-SNE is the prevalent method of vi-
sualization of class clusters in high-dimensional
vector space (Jawahar et al., 2019; Jin et al., 2019;
Wu and Xiong, 2020; Hoyt and Owen, 2021).

3 Data

For each trait, we use a different dataset. Their over-
all sizes are listed in Table 2 and example sentences
in Table 1. We repurpose the datasets and derive
binary labels (positive/negative) from each: am-
biguous/unambiguous, complex/simple and gram-
matical/ungrammatical.

Ambiguity. We use sentences from the MS
COCO (Lin et al., 2014) dataset, for our list of
ambiguous and unambiguous sentences. The MS
COCO dataset comprises of a set of captions de-
scribing an image. Captions containing ambiguous
verbs corresponding to 461 images (Ambiguous
COCO; Elliott et al., 2016) constitute the ambigu-
ous sentences for our experiment. 461 captions
that were randomly sampled from MS COCO con-

Dataset Sentences

Ambiguity COCO 0.9k

Complexity HCR English 1.2k
PACCSS-IT 1.1k

Grammaticality CoLA 5k
BLiMP 67×2k

Table 2: Number of sentences for each dataset corre-
sponding to each trait.

stituted the unambiguous sentences for the experi-
ment.

Complexity. Corpus of Sentences rated with Hu-
man Complexity Judgments1 (Iavarone et al., 2021)
and PACCSS-IT (Brunato et al., 2016) contain 20
human ratings on the scale from 1 (not complex)
to 7 (very complex) about sentences. We bina-
rize these ratings and consider sentences below
the average to be simple sentences and others to
be complex sentences. The resulting dataset is
class-balanced (complex/simple) in terms of exam-
ples (592 sentences of each class for English and
551 sentences for Italian). The average sentence
length for complex and simple examples is 24.84
and 13.95, respectively for English sentences. For
Italian sentences, the average sentence length for
complex and simple examples is 21.61 and 12.26,
respectively. The complexity could therefore be
encoded solely in the sentence length.

Grammaticality. For experiments under this cat-
egory, we use the Benchmark of Linguistic Min-
imal Pairs (BLiMP; Warstadt et al., 2020) and
the Corpus of Linguistic Acceptability (CoLA;
Warstadt et al., 2019) datasets. BLiMP con-
tains sentence pairs, one of which contains a
mistake in syntax, morphology, or semantics
while the other is correct. The dataset covers
67 different conditions, grouped into 12 phenom-
ena. These phenomena are further categorized as
‘syntax’,‘morphology’,‘syntax-semantics’ and ‘se-
mantics’. The CoLA dataset is not contrastive but
contains human annotations of acceptable gram-
maticality.

1English sentences were taken from the Wall Street Journal
section of the Penn Treebank. Italian sentences were taken
from the newspaper section of the Italian Universal Depen-
dency Treebank.
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4 Experiments

4.1 Task definition
In the following experiments, we are solving three
classification tasks in parallel. The input is always
the whole sentence and the output one of the two
classes (ambiguous/unambiguous, complex/simple,
acceptable/unacceptable), as shown in Table 1, ap-
plies to the whole sentence. The whole pipeline is
also depicted in Figure 1. When using the TF-IDF
feature extractor, it replaces the pre-trained LM
block.

Visiting

friends can


 be annoying. 

Pre-trained
LM

MLP
classifier

[0.1, 0.6, 2.3, ..., 0.9] Ambiguous

(0.95)

text input task-specific

classifier

vector

representation

outputrepresentation

model

Figure 1: Example of the experiment pipeline for ambi-
guity classification. Ambiguous sentence from Stanley
and Gendler Szabó (2000).

4.2 Setup
We use a simple MLP classifier to identify three
linguistic traits from BERT (bert-base or multilin-
gual bert-base) and GPT-2. The resulting vectors
are 768-dimensional.2 Both of these models are
Transformer based models and contain 12 layers,
which makes comparison convenient. We perform
probing on each model separately.

• CLS: single vector at the [CLS] token.

• Pooling: single vector from the pooling layer.

• Tokens: vector representations of tokens ag-
gregated with mean or (Hadamard) product to
get a single 768-dimensional vector.

We obtain the layer-wise pre-trained model rep-
resentations using Huggingface (Wolf et al., 2019)
and use them to train a classifier that identifies if a
sentence belongs to the positive class (e.g. ambigu-
ous) or not. We perform a 10-fold cross-validation
each with 10 runs of MLP.

Baseline. The most common class classifier (50%
accuracy) is a poor baseline because it may be that
the ambiguous and non-ambiguous sentences are
distributed differently w.r.t. topic. In an attempt
to alleviate this issue, we, therefore include as the
baseline a TF-IDF-based vectorizer (with a varying
number of maximum features). Probe performance

2The CLS and pooling representations apply only to BERT.

of e.g. 65% would be considered at the first glance
a positive result compared to 50%. However, in
reality, it would be a false positive finding if a
simple lexical feature extractor such as TF-IDF
could yield 70%.

MLP Configuration. For probing we use
MLPClassifier from scikit-learn 1.1.0 (Pe-
dregosa et al., 2011) with most defaults preserved,
as shown in Table 3.

Architecture Single hidden layer (100)
Activation ReLU
Optimizer Adam

Learning rate 10−3

Epochs Early stopping, patience 1

Table 3: MLP classifier configuration.

4.3 Ambiguity & Complexity
Because the dataset is in Italian, we make use of
multilingual BERT for both Complexity datasets.
The probe performance for M-BERT is shown in
Figure 2. At the first glance, it appears that the
model does represent ambiguity internally since
the ambiguity probe is systematically higher than
50%. However, because TF-IDF performs simi-
larly and only uses surface-level features, the probe
is very weak. This is supported by the fact that the
most negative tokens from the classification (ex-
tracted from logistic regression coefficients) con-
tained words such as man or woman, which disam-
biguate, based on gender, some unclear cases with
an unclear referent.

In contrast, the complexity probe is systemati-
cally higher than the TF-IDF baseline. With minor
exceptions, the accuracy remains high regardless
of the layer. The performance for Italian (sentences
taken from PACCSS-IT corpus) is identical to that
for English using M-BERT (not shown). The CLS
representation at layer 0 is 50% in both instances
because it does not contain any information from
the sentence (before the self-attention block).

4.4 Grammaticality
For the morphological task of determiner-noun
agreement, Figure 3 shows a sudden drop in accu-
racy for the CLS representation at the 5th layer. In
all the tasks concerning “Determiner-Noun Agree-
ment”, the sentence minimal pairs focus on the
number agreement between the demonstrative de-
terminers (like this/these) and an associated noun.
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Acceptable Sentence Unacceptable Sentence

Raymond is selling this sketch. Raymond is selling this sketches.
Carmen hadn’t shocked these customers. Carmen hadn’t shocked these customer.

Carl cures those horses. Carl cures that horses.
Sally thinks about that story. Sally thinks about those story.

Laurie hasn’t lifted those cacti. Laurie hasn’t lifted those cactus.
The waitresses haven’t cleaned this thesis. The waitresses haven’t cleaned this theses.

The teachers are running around this concealed
oasis.

The teachers are running around these con-
cealed oasis.

Randolf buys those gray fungi. Randolf buys that gray fungi.

Cynthia scans these hard books. Cynthia scans this hard books.
Jerry appreciates this lost report. Jerry appreciates these lost report.

Table 4: Example minimal sentence pairs from the determiner-noun agreement task of BLiMP.
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Figure 2: MLP dev accuracy for ambiguity and com-
plexity BERT representation across layers.

Examples of minimal pairs from the different tasks
of this kind are shown in Table 4.

While the cause is unclear, it corresponds to the
average norm of the representation being very low
at that particular layer, making it harder for the
classifier optimization.

As Figure 4 shows, many tasks can be “solved”
with a simplistic TF-IDF featurizer, making them
inadequate for determining the usefulness of large
model representations. More adequate datasets
need to be developed for probing stronger mod-
els. Systematically for all cases in morphology
where the TF-IDF failed to work accurately, the per-
formance of CLS representations was worse than
the mean representations. Even in most semantics
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Figure 3: MLP dev accuracy for determiner noun agree-
ment irregular 1 task of BLiMP benchmark for BERT
representation across layers. Each point is represented
with a mean across 10 runs with a 95% confidence in-
terval.

tasks, TF-IDF probes had near-perfect accuracy.
For the 7 out of 26 syntactic tasks where the TF-
IDF classifier was not accurate, the BERT models
show a steep rise in accuracy from the 2nd/3rd layer
for the mean and CLS representations, respectively.
In comparison, GPT-2 does not exhibit this pattern.

5 Discussion

The experiments with ambiguity reveal that the
representations of the pre-trained models do not
encode the ambiguity trait well. The description
detailing how the Ambiguous COCO was created
(Elliott et al., 2017) states that the dataset was cre-
ated with the intention of testing the capabilities
of multimodal translation systems. We posit that
ambiguity as a trait is not encoded in an accessi-
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Figure 4: Accuracy on various BLiMP tasks with a
max of BERT and GPT-2 representations and TF-IDF
baseline. Each task+model is represented as one square.
The lighter squares correspond to greater accuracy and
are hence better.

ble way in the layer representations of pre-trained
models.

For BLiMP tasks related to morphology and
syntax-semantics, the accuracy goes down in the
upper layers, presumably because of increasing ab-
straction for both models (not shown in graphs).
Although we perform experiments without fine-
tuning, the findings are in line with the experimen-
tal results of Mosbach et al. (2020) where finetun-
ing on 3 tasks from the GLUE benchmark (Wang
et al., 2018) showed changes in probing perfor-
mance mostly in the higher layers. Fine-tuning
however led to modest gains. The present setup
which probes sentence representations from pre-
trained models shows that the middle layers fare
far better in our probing tasks than the upper layers.
This leads us to posit that the features of interest
are highly localized and are lost in the upper layers
(even with fine-tuning).

Although both BERT and GPT-2 employ the
Transformer (Vaswani et al., 2017) architecture,
they have very different ways and locations for
storing knowledge in their internal representations
(Rogers et al., 2020; Vulić et al., 2020; Lin et al.,
2019; Kuznetsov and Gurevych, 2020; de Vries
and Nissim, 2021; Liu et al., 2021). The CLS rep-
resentations outperform the mean representations
in only a few cases. This is expected since without
fine-tuning the CLS token in BERT is trained to be
used for the next sentence classification tasks.

6 t-SNE Inadequacy

Given appropriate optimization and classifier, if
two or more classes in a vector space form clusters,
they are linearly separable and therefore the clas-

Complexity, [CLS] layer 2 | Cluster | 86% (+38%)

Complexity, mean layer 12 | No cluster | 83% (+35%)

Ambiguity, [CLS] layer 2 | No cluster | 75% (-9.2%)

Figure 5: t-SNE projections from BERT-based embed-
dings. The first and the second row show high accuracy.
The second and third rows show a lack of visual clusters.
Red/black represent either complex/simple or ambigu-
ous/unambiguous sentences. Percentages include classi-
fier accuracy with the difference to the TF-IDF baseline
in parentheses.

461A + 461U

231A + 231U

Figure 6: t-SNE projections from BERT-based embed-
dings (layer 1 of CLS) on ambiguous/unambiguous sen-
tences (58% MLP and 66% TF-IDF accuracy). The
first row is all the vectors and the second is half of
them subsampled by Algorithm 1. Red/black represent
ambiguous/unambiguous sentences.

sifier performs well. Furthermore, if a classifier
probe performs well and is not affected by surface-
level phenomena, it means that the features are
represented in the vectors. Both these statements
are one-way implications:

• clear clustering→ high classifier accuracy

• high classifier acc. → feature present
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Because t-SNE projects vectors from high di-
mensional space to lower dimensions in a manner
that tries to preserve distances, it may be that vi-
sual clusters are created where there were none
before and vice versa. The following scenarios are
possible:

• clear clusters and high classifier accuracy

• no clusters and high classifier accuracy

• no clusters and low classifier accuracy

The last combination, “clear clusters and low
classifier accuracy” is impossible with proper opti-
mization. The three scenarios on probes from the
previous experiments are shown in Figure 5. The
conclusion is that probes should always precede
visual clustering checks using t-SNE because it
may be that the data does not form clear clusters
in t-SNE but the classes are still linearly separable,
meaning that the feature is encoded. The last image
shows two clusters but not those that separate the
two classes.

A plethora of work uses t-SNE to show clusters
of vectors grouped by features (Chi et al., 2020;
Nigam et al., 2020; Wu et al., 2020; Zhang et al.,
2021; Subakti et al., 2022), though some follow-up
with reporting classifier performance. Because t-
SNE visual separation is not easily quantifiable, the
negative results are often underreported (Fanelli,
2012; Mlinarić et al., 2017). This issue can be
resolved by using other methods, such as probes.

Algorithm 1 Forcing t-SNE clusters
▷ Vectors of sentences in the two classes

Load DA, DB

▷ Cluster size, e.g. |DA|/2
Input c′, c← c′/2

▷ Two seeds from classes, most distant
sA, sB ← argmaxvA∈DA,vB∈DB

||vA − vB||

▷ Closest points to own seeds
C ′
A ← top-c v∈DA

−||sA − v||
C ′
B ← top-c v∈DB

−||sB − v||
▷ Furthest points to opposing seeds

C ′′
A ← top-c v∈DA

||sB − v||
C ′′
B ← top-c v∈DB

||sA − v||

CA ← C ′
A ∪ C ′′

A

CB ← C ′
B ∪ C ′′

B

t-SNE(CA ∪ CB)

6.1 Forcing t-SNE Clusters.
It is possible to start with sentence vectors that
result in a t-SNE graph that does not show any
visual clusters and select half of them such that
running t-SNE will show clusters between the two
classes. The algorithm is described in Algorithm 1.
It is based on first finding two most distant “seeds”
from the two classes and then selecting vectors of
the same class which are closest to the seed or most
distant to the other seed.

An example is shown in Figure 6. While the orig-
inal does not show any clusters between the classes,
the application of the algorithm selects such vectors
that t-SNE shows visual clusters. Simplu randomly
subsampling the vectors would not work but this
shows that using t-SNE to visually determine the
presence of a feature is not robust.

7 Conclusion

In this work, we showed how large pre-trained
language models represent sentence ambiguity in
a much less extractable way than sentence com-
plexity and stress the importance of using reason-
able baselines. We document that template-based
datasets, such as BLiMP used for sentence accept-
ability, are not suitable for probing because of
surface-level artefacts and more datasets should
be developed for probing more performant models.
Finally, we discuss why using t-SNE visually for
determining whether some representations contain
a specific feature is not always a suitable approach.

Future work
Because both t-SNE clustering and classification
(inability to establish a rigid threshold for accu-
racy) can fail for determining whether a specific
feature is represented in the model, more robust
methods for this task should be devised. These
probes should also be replicated in models used for
machine translation, which is the primary motiva-
tion for studying these traits.
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Sunit Bhattacharya, Věra Kloudová, Vilém Zouhar,
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Abstract

Hyperparameter tuning is important for achiev-
ing high accuracy in deep learning models, yet
little interpretability work has focused on hyper-
parameters. We propose to use the Explainable
Boosting Machine (EBM), a glassbox method,
as a post-hoc analysis tool for understanding
how hyperparameters influence model accuracy.
We present a case study on Transformer models
in machine translation to illustrate the kinds of
insights that may be gleaned, and perform ex-
tensive analysis to test the robustness of EBM
under different data conditions.

1 Introduction

Deep neural networks have revolutionized the field
of AI, bringing about impressive improvements in
accuracy at various tasks. There is now a growing
interest in interpreting what the model is doing
that leads to these high accuracies (Bastings et al.,
2021). A better understanding is useful in many
ways: it can provide researchers a more in-depth
view of the problem, assist developers to debug
the model, or give users a way to act on the model
result.

Our goal is to improve our understanding of
neural network hyperparameters. While there are
many research efforts on explaining a model’s pre-
diction or interpreting a model’s parameters, there
has been little work on hyperparameters. Hyperpa-
rameters like number of layers and learning rate are
important factors that impact model performance.
In practice, many engineering hours are spent on
tuning hyperparameters. We believe methods and
tools for interpreting hyperparameters are needed
to help practitioners tune more effectively; there are
also applications in the growing field of AutoML
(Hutter et al., 2019), where our understanding of
hyperparameters can help guide researchers design
more effective search spaces.

* These authors contributed equally to this work.

Figure 1: Proposed framework for post-hoc intepreta-
tion of hyperparameters with EBM.

In this paper, we advocate a post-hoc interpreta-
tion framework for hyperparameters. This frame-
work requires that a set of neural network models
with different hyperparameters are trained, and that
their resulting accuracy metrics are recorded. Then,
a glassbox model is fit on this data to reveal trends
in hyperparameters. We use Explainable Boosting
Machines (EBM, Lou et al. (2013)) as the glassbox
model; it is a Generalized Additive Model similar
to Boosted Trees, except that its additive feature
function is visualizable in 1-D or 2-D plots, making
it well-suited for understanding hyperparameters.

In the following, we first develop further the idea
of post-hoc interpretation of hyperparameters and
contrast it with other types of interpretability re-
search (Section 3). Then we briefly describe the
EBM, which is the glassbox model used in our
interpretability framework (Section 2). Section 4
present a case study on Transformers in machine
translation tasks, to illustrate how our framework
can be used to understand which hyperparameters
are important, how its influence changes according
to different hyperparameter values, and whether
pairwise interactions are present. Finally, Section
5 analyzes the robustness of EBM: it helps charac-
terize under what conditions are the interpretability
results valid.

The contribution of this paper is two-fold: First,
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we advocate a framework for understanding hyper-
parameters with EBMs and present a case study
on machine translation transformers to illustrate
its usefulness. Second, we perform extensive ex-
periments on EBMs to characterize the conditions
where interpretability results are robust.

2 Explainable Boosting Machine

Let’s define input x as a feature vector representing
the hyperparameter setting model Mλ, and y as
the scalar output response variable s(Mλ). We
use EBM as introduced in (Lou et al., 2012, 2013;
Caruana et al., 2015) and implemented in Nori et al.
(2019). EBM is a generalized additive model with
the form:

g(y) = β0 +
∑

j

fj(xj) +
∑

ij

fij(xi, xj), (1)

where g is a link function that transforms the model
to either a regression or classification setting (iden-
tity or logit, respectively). fj is a feature function
for feature xj that is learnt through bagging and
gradient boosting. Each fj is trained separately at
a time in round-robin fashion. Additionally, EBM
also includes pairwise terms fij to increase accu-
racy and enable analysis of pairwise interactions
between features. In our experiments, we focus
on 6 Transformer hyperparameters, so x is a vec-
tor of dimension 6 and the EBM model F (·) is a
sum of 6 single-hyperparameter functions fj , up to
(6× 5)/2 = 15 pairwise functions fij , and a bias
term β0.

An attractive aspect of EBM is that fj(xj) is
based on a single feature, and can be of arbitrary
shape. See examples of fj in Figure 3: on the left,
we see that fj=1(x1) decreases in score as the learn-
ing rate hyperparameter increases; on the right, we
see a different fj=2(x2) increase in score slightly
as BPE hyperparameter from 10k to 30k, then drop
sharply when BPE increases to 50k. Since the fj(·)
are summed linearly to predict the response vari-
able (accuracy or BLEU score), we can obtain an
intuitive understanding of how each hyperparame-
ter impacts the final accuracy. In other words, since
EBM is an additive model, it is straightforward to
infer the contribution of each feature function; at
the same time, the ability to learn arbitrary shapes
for the feature function allows for enhanced inter-
pretability. Refer to the aforementioned papers for
details of how the EBM is trained.

3 Interpreting Hyperparameters

Proposed framework: Our goal is to gain in-
sights about hyperparameters for a class of deep
neural networks. We require the existence of a set
of models with different hyperparameter settings
trained on the same dataset. For example, assume
a set of Transformer (Vaswani et al., 2017) models
{Mλ}, λ ∈ Λ where Λ represents the hyperparame-
ter space, Mλ represents a model with a specific hy-
perparameter setting (e.g. 6-layer encoder, 2-layer
decoder, 8 heads, 256 word embedding size); each
model has an accuracy metric s(Mλ), and a glass-
box model is fit on pairs P ≜ {(Mλ, s(Mλ))}. As-
sume there is a person building the models (model
builder) and a person analyzing the models after
the fact (model analyzer); they may or may not be
the same person. Our framework consists of three
steps:

1. On a dataset D, the model builder trains N
models {Mλ} and record their accuracy met-
ric s(Mλ). The metric can be any scalar in R;
for this paper, we focus on machine transla-
tion and use the development set BLEU score.

2. The model analyzer fits an EBM on P ≜
{(Mλ, s(Mλ))}. The EBM is a function
F (·) that maps from hyperparameter space
to BLEU score, F : Λ → R. In practice,
a small subset of P is held-out to measure
EBM’s generalization, and we would proceed
only if we trust that the EBM has not over-fit
or under-fit.

3. The model analyzer visualizes the internal fea-
tures of EBM to glean insights about hyperpa-
rameters.

The overall framework is shown in Figure 1.
Step 1 is critical because it provides the data for
EBM fitting. How large must N be, and are there
requirements for the samples from Λ to be indepen-
dent, identically distributed (i.i.d.)? Neural models
can be expensive to train, so we assume that Step 1
is the result of whatever hyperparameter search was
performed by the model builder. Thus, the model
analyzer may not have full control over the models
available for analysis. Section 5 characterizes un-
der what conditions is EBM robust over different
sizes and distributions of P .

Step 2 is the core component of our framework.
Different glassbox regression models are possible,
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Type Goal Example Result
Prescriptive Model build-

ing
Given past experience, we recommend setting embedding size to 256
and attention head to 8 on dataset D.

Descriptive
(this work)

Post-hoc un-
derstanding

Given N models that are trained on dataset D, we find that embedding
size influences BLEU more than attention heads.

Table 1: Two kinds of goals for Interpretability Research on hyperparameters.

but we choose EBM due to its excellent visualiza-
tion ability. Note that while there is a considerable
amount of work on interpreting a Transformer’s
parameters such as attention weights (Kobayashi
et al., 2020; Abnar and Zuidema, 2020; Tay et al.,
2021; Lim et al., 2018), these methods are not read-
ily applicable due to the non-differentiability and
heterogeneity of hyperparameters. Thus, an exter-
nal model F : Λ→ R that treats hyperparameters
as input features is more amenable. This external
model is essentially finding hyperparameter "fea-
tures" that are predictive of accuracy. As long as
this model is glassbox in the sense that it’s inter-
nals are viewable, then we are able to interpret the
results in Step 3.

Broader context: We would like to provide con-
text on what our framework does and does not
do. In the Explainable AI literature, one way to
characterize explainablity/interpretability research
is to ask where the method sits on the local vs.
global and self-explaining vs post-hoc continuum
(Danilevsky et al., 2020). Local methods explain
the model’s behavior on a specific input, whereas
global methods inspects the model generally. Our
framework is global in the sense that it identifies hy-
perparameter trends based on accuracy on a batch
of inputs. Self-explaining methods generate expla-
nations as part of the model’s prediction process,
whereas post-hoc method builds an external model
after the predictions have been made. Our frame-
work sits squarely in the post-hoc camp because
we work on top of trained Transformers, but it is in-
teresting to note that the glassbox EBM employed
can be called a self-explaining method.

In terms of research on hyperparameters, there
is a branch of work (Bahar et al., 2017; Britz et al.,
2017; Araabi and Monz, 2020) aiming at finding
the optimal choices of hyperparameter values. In
those work, hyperparameters are usually manu-
ally tuned based on experience and massive ex-
periments are conducted to gather results. Those
work would make recommendations on which hy-
perparameter combinations to use in general. We

call this approach prescriptive; they are useful to
inform the building of specific models.

In contrast, our framework is descriptive: mod-
els have already been trained, and we are interested
in understanding the relationship between hyperpa-
rameters and accuracy. In other words, rather than
predicting whether to set embedding size to 256 or
512, we are more interested in seeing how accu-
racy changes according to various embedding sizes
and understanding whether other hyperparameters
like number of layers would interact. This is an
example of post-hoc analysis, which is also used in
medicine (TDI, 2022; Srinivas et al., 2015) – after
the effectiveness of a new treatment is tested, post-
hoc analysis on both the failed and successful trials
are conducted. It is not the intent of the original
study, but it is the support for further trials. The
distinctions between the two kinds of interpretation
work are summarized in Table 1.

Post-hoc interpretation on hyperparameters is
well-suit to the following two scenario: (a) Sup-
pose a practitioner has already performed exten-
sive hyperparameter tuning, and has deployed the
best model. It would be a waste to throw away all
the data pairs P . Running post-hoc interpretation
allows us to extract more knowledge out of the
data. Knowledge about which hyperparameters are
important, for example, may inform future hyper-
parameter tuning experiments; it may also assist
AutoML researchers to design more efficient search
spaces for hyperparameter optimization and neu-
ral architecture search. (b) Suppose a researcher
proposes a new neural network model. Provid-
ing a post-hoc analysis of hyperparameters is akin
to showing feature ablation experiments. In sum,
our work can be considered as an effort to unpack
“blackbox" deep learning models at the level of
hyperparameters.

4 Case Study: Post-hoc Interpretation

We now provide a case study on Transformer hy-
perparameters for machine translation to illustrate
the kinds of insight we can learn from the proposed

53



Figure 2: Hyperparameter contribution rank on ru-en (left) and zh-en (right). Hyperparameters are ordered by
importance score – for ru-en, #embed x lr is the most important, while attn is the least important. Hyperparameters
that are not included in the plots are in lower ranks than shown ones.

post-hoc interpretation framework.

4.1 Dataset and Setup
Machine Translation (MT) Datasets Our experi-
ments are conducted on a tabular dataset published
by Zhang and Duh (2020), which contains 1,983
pairs of hyperparameter configurations and BLEU
scores in total. To obtain those pairs, they trained
all the Transformers to convergence on 6 MT cor-
pora. Those 6 MT datasets are distinct on sizes
– ranging from 24K training samples to 4M; do-
mains – either in a single domain like TED Talks
or in mixed-domain; language pairs – including
Chinese-English (zh-en), Russian-English (ru-en),
Japanese-English (ja-en), English-Japanese (en-ja),
Swahili-English (sw-en) and Somali-English (so-
en). The large size of the tabular dataset enables
efficient post-hoc investigation. Its diversity also
allows further study on the generalization of the
observations.

Following Zhang and Duh (2020), we will be fo-
cusing on the effect of 6 different hyperparameters.

• Preprocessing configurations: number of
BPE symbols (bpe).

• Training settings: initial learning rate (lr) for
the Adam optimizer.

• Architecture designs: number of layers (lay-
ers), embedding size (#embed), number of
hidden units in each layer (#hidden), number
of heads in self-attention (attn).

These hyperparameters appear frequently in MT
literature as a part of the description of experiment
setups. Practitioners aiming at a better model
spend a large amount of time tuning them manually.
We are interested in examining whether they are

really equally important and deserve the efforts.
We will answer these questions in the following
section.

EBM Setup We adopt the implementation
of EBM from Nori et al. (2019). To be specific, we
train a EBM regressor on each of the language pair,
which results in 6 models. Due to space limitation,
we will only show results on selected language
pairs, the rest can be found in Appendix.

4.2 Findings

In this section, we show how EBM can be used to
interpret Transformer hyperparameters and report
three types of findings.

4.2.1 Hyperparameter Importance
EBM learns an importance score for each feature,
which indicates how much the model performance
would change with varying feature values. It is
computed as the absolute expected value of fj over
the dataset. Figure 2 plots the hyperparameter im-
portance ranking on ru-en and zh-en. As shown in
the figure, hyperparameters are not equally impor-
tant and there is a large discrepancy between fea-
tures. On ru-en, #embed and lr are the most critical
hyperparameters in determining Transformer’s per-
formance followed by bpe; while adjusting #layers,
attn and #hidden (not shown in the figure) would
only slightly affect the results. On zh-en, lr and
#embed are also at the top of the listing, but the
overall ranking is different from ru-en. Some im-
portant hyperparameters for ru-en, e.g. bpe, rank
low on zh-en. Some insignificant hyperparame-
ters for ru-en, e.g. #hidden, are elevated to higher
positions on zh-en.

https://github.com/interpretml/interpret
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In summary, there are only a limited number of
critical hyperparameters for Transformers, and it
would be more efficient to focus more on tuning
them when developing a model. Across 6 language
pairs, #attn is always ranked low and can be proba-
bly dropped from future hyperparameter search.

4.2.2 Single Hyperparameter Analysis
Besides the macro view of contributions of all the
hyperparameters, EBM also provides a micro view
studying how the segments within each hyperpa-
rameter relate. Figure 3 depicts the single feature
function extracted from the trained EBM model
on en-ja. As lr increases from 0.0003 to 0.001,
BLEU score decreases significantly. While it is not
the case for bpe, where the BLEU score does not
change monotonically – it rises a little when bpe in-
creases from 10k to 30k, then drops notably when
bpe becomes 50k. This finding tell us both 10k and
30k are positively correlated with BLEU and the
difference is not so distinct, but 50k is definitely
not desirable.

4.2.3 Pairwise Interactions
EBM can automatically detect and include pairwise
interaction terms in its modeling. Figure 4 shows
an example of how two hyperparameters interact
to determine Transformer’s performance. On en-ja,
#embed with size of 1024 and lr with the size of
0.0003 produce the highest BLEU score among all
the combinations. On the contrary, #embed 1024
and lr 0.001 output the worst Transformer. This is
consistent with Figure 3 Left – larger lr worsens
the performance.

However, this does not hold true for #embed
256 and 512: given these values, there is not so
strong of a (negative) correlation between lr and
BLEU score. This seems to imply that while lr is
sensitive for a large #embed 1024, it is less sensitive
when #embed is small. We do have to interpret this
result carefully because there may be confounding
factors from the individual feature functions fj that
are added, but this is illustrative of the potential
insights we may gain from this case study.

Theoretically, the EBM formulation can allow
for higher-order interactions (e.g. three-way). This
may be a promising direction for future work.

5 Analysis of EBM Robustness

To ensure the validity of our post-hoc interpreta-
tion framework, we need to analyze the robust-
ness of EBM to different kinds of data sizes and

distributions. Specifically, one important require-
ment for our framework is the availability of P ≜
{(Mλ, s(Mλ))}; one might not be able to fully
control how this data is acquired. It may be a by-
product of an extensive grid search, a manual and
focused hyperparameter tuning guided by an engi-
neer’s intuition, or an AutoML experiment. This
implies the that hyperparameters may not be sam-
pled uniformly from the space Λ, and the number
of samples for EBM fitting may not be very large.

In order to gain better understanding of EBM’s
robustness under different conditions, we conduct
four experiments. We first study how EBM’s fitting
ability would be affected if the size or the distribu-
tion of training data changes. We then make con-
nections to Hyperparameter Optimization (HPO),
and examine EBM’s performance on data gener-
ated by sampling from two different HPO methods.
Finally, we investigate the generalization ability of
EBM. To be more specific, we test whether a EBM
model trained on one dataset can perform well on
another dataset.

The experiments following are all conducted on
sw-en except for the one in Section 5.4. We split
the sw-en dataset, the largest dataset among the six
datasets provided by Zhang and Duh (2020) which
contains 767 (configuration, BLEU score) pairs,
into a train set with 614 samples and a test set with
153 samples. An EBM regressor is trained on a
subset of the train set and its performance on the
test set is reported. We repeat the process 5 times
with different random seeds to generate 5 different
train-test splits. Thus, results reported below are
all averaged over 5 runs.

5.1 Varying Data Sizes

In practice, it is often infeasible to get a tabular
dataset as large as the one in Zhang and Duh (2020),
where around 2,000 Transformers are trained. This
raises the question how EBM would perform with
insufficient training data. In other words, it is in
doubt if its interpretations on hyperparameters (e.g.
observations shown in Section 4.2) are trustworthy
when it is trained with less data.

In order to answer the questions above, we create
datasets with different sizes by randomly sampling
from the train set of sw-en. We experimented with
subsets ranging from containing only 5% of the
training samples, that is 31 samples, to the whole

Data here refers to the (hyperparameter configuration,
BLEU score) pairs, instead of the sentence pairs that are used
to train a MT Transformer.
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Figure 3: Single hyperparameter feature function on en-ja. Left: initial learning rate. Right: bpe symbols. Higher
score indicates a higher chance to get a high BLEU score. Density refers to the number of samples in the dataset.

Figure 4: Pairwise interaction between embedding size
and initial learning rate on en-ja. Higher score (yellow)
indicates higher odds to get higher BLEU scores.

Figure 5: EBM’s fitting ability with varying data sizes
of sw-en. Subsets are generated by randomly sampling
from the train set. Results are averaged over 5 runs with
different random seeds.

train set, i.e. 614 samples.
We use the following metrics to measure EBM’s

performance:

• Mean Squared Error (MSE) We calculate
the average of the squared difference between
the actual BLEU scores and EBM regressor’s
predictions given hyperparameter configura-
tions. As a widely used measure of an es-
timator’s quality, MSE is useful when com-
pared between estimators. To be more spe-
cific, when there are multiple MSE scores,
a lower one indicates a stronger estimator.
While when there is only a single MSE score,
it is hard to judge whether it is low enough
to testify a good EBM model. Thus, we pro-
pose the following metrics as complements to
MSE.

• Spearman’s Rank Correlation Coefficient
(SRC) We measure SRC between the ranking
of real BLEU scores and EBM’s predictions.
For the purpose of interpreting hyperparame-
ters, it is not necessary that EBM would pre-
dict the exact BLEU scores. Instead, it is
more important that it recovers the ranking.
For SRC, higher is better.

• Mean Reciprocal Rank (MRR) In some
cases, for example, in hyperparameter search,
one might be more interested in getting the
best configuration and would be less con-
cerned with the ranking of all the configu-
rations. Reciprocal rank is defined as 1

rank ,
where rank is the position of the best config-
uration predicted by EBM in the real ranking.
MRR, in our case, is the average over 5 runs.
It is better if MRR is closer to 1.
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Size(%) 5 10 20 30 40 50 60 70 80 90 100
Mean 18.43 14.40 9.58 6.79 6.26 5.84 5.72 5.17 4.88 4.73 4.59
Std 3.51 1.56 0.84 0.54 0.41 0.57 0.32 0.16 0.31 0.13 0.10

Table 2: The mean and standard deviation of MSE on sw-en test set. EBM is trained on subsets of train set with
various sizes and data compositions. Each subset is sampled 5 times with different random seeds.

We plot EBM’s performance with varying data
sizes in Figure 5. It can be observed that al-
though MSE rises drastically when the data size
shrinks from 30% to 5%, it remains roughly at the
same level when the size is larger than 30%. This
means that a relatively accurate EBM model can
be obtained with only 185 samples, and data sizes
smaller than that would worsen the model signifi-
cantly.

Same trend is also shown in other metrics and
30% is the turning point for all the lines. SRC ends
up getting close to 1 when the data size increases,
suggesting EBM’s great ability to recover the rank-
ing. MRR stops at 1

3 , that means EBM mistakes the
third best configuration as the best one. However,
the difference between the BLEU score of the top
three and top one is small, which is only 0.41.

5.2 Varying Data Distributions

Section 5.1 shows that a comparably good EBM
model can be obtained by training on as few as
185 samples. Would this stay true if those 185
samples are replaced with other 185 samples? In
other words, would EBM be robust to varying data
distributions?

We evaluate EBM models trained with different
data compositions and data sizes. Results are sum-
marized in Table 2. As the amount of training data
increases, the standard deviation of MSE decreases
gradually, i.e. the EBM model becomes more ro-
bust. When given limited data, EBM is more prone
to underfitting and generalize poorly to the test set.
It can be inferred that hyperparameter interpreta-
tions produced by EBM models trained with more
samples are more trustworthy and accurate than
those trained with limited data.

5.3 Connections to HPO

The goal of HPO is to find an optimal hyperpa-
rameter configuration with as few evaluations of
the model as possible. Most of the HPO methods

100% refers to using all the samples in the train set, which
takes up 80% of the original sw-en dataset. MSE here is not
determined because we also randomly sampled train set from
the whole dataset multiple times.

Figure 6: The performance of EBM trained on sw-en
data sampled by BO, GB and randomly sampling. EBM
is evaluated on a held-out test set, which takes up 20%
of the sw-en data.

can be classified as sequential model-based opti-
mization (SMBO). SMBO employs 1) a surrogate
model to approximate the underlying function be-
tween hyperparameters and model performance, 2)
an acquisition function to propose hyperparameter
configurations to explore. SMBO works iteratively.
Considering applying HPO to MT Transformer,
at each iteration, the acquisition function selects
configuration candidates to query the Transformer;
after training and evaluation, a BLEU score is re-
turned; the surrogate model then fits on the result-
ing pairs of configurations and BLEU scores and
make predictions on unevaluated configurations,
which are further used by the acquisition function
as bases for making candidate suggestions. Thus,
the fitting ability of the surrogate model is crucial
to the success of the HPO method.

In this section, we focus on investigating how
EBM would fit the sampling by HPO methods,
where sampling refers to the candidates proposed
by acquisition function along one complete run
of HPO – this is related to Section 5.2, since HPO
sampling generates another unique data distribution
for EBM to train on.

We experiment with two HPO methods,
Bayesian Optimization (BO) and a Graph-Based
HPO method (GB, Zhang and Duh (2020)). For
BO, we use Gaussian Processes as surrogate model
and expected improvement as acquisition function.
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For GB, we use Matérn52 kernel and expected in-
fluence. We run BO and GB separately on sw-en
and record the sampling order of hyperparameter
configurations. We then compare the performance
of EBM models trained on the first n% data points
in the sampling with those trained on randomly
sampled data. Results are plotted in Figure 6.

BO and random show similar trends with MSE
falling sharply when the training data increases
from 5% to 30%. While GB drops at a slower pace
with MSE always staying the highest among the
three. The discrepancy between the curves testifies
the discrepancy between the sampling of BO and
GB. Compared to random and BO, the distribution
of GB sampling is more skewed. At size 15%, BO
surpasses random and maintains the lowest MSE
till size 100%. This suggests that BO sampling
makes EBM a better model than random sampling.

EBM can be used in combination with HPO in
two ways: 1) During the run of HPO, EBM can be
adopted as an analysis tool. By fitting the HPO sam-
pling, it can provide insights on hyperparameter im-
portance (Section 4.2.1) and make suggestions on
hyperparameter values (Section 4.2.2). The HPO
algorithm can then adjust its search space accord-
ingly for later runs. But one should be cautious
when the HPO algorithm in employment gener-
ates poor sampling distribution like GB does. 2)
EBM can also be adopted as an alternative surro-
gate model considering its good fitting ability.

5.4 Transferability

So far, we have examined EBM’s behaviours on
specific language pairs. We have trained isolated
EBM models on 6 MT tasks. Next, we explore
whether EBM can leverage knowledge learned
from one task and transfer it to another. Specif-
ically, we evaluate each trained model on the test
set of each of the language pair respectively. Figure
7 summarizes the results.

EBM faces difficulty on some of the transfers,
for example, from sw-en (y-axis) to so-en (x-axis)
and from so-en to sw-en. Meanwhile, there are
also some successful transfers, for example, from
en-ja to ru-en and from ru-en to en-ja. Surprisingly,
EBM trained on en-ja generalizes so well on ja-
en and ru-en that MSE obtained on those two test
sets is even lower than that obtained on en-ja’s
test set. However, overall, there does not exist a
single dataset that can produce a good EBM that
can generalize well on all the other datasets.

Figure 7: MSE of EBMs trained on one dataset (x-axis)
and tested on another (y-axis).

An interesting future work is to implement in-
terpretability tools to analyze when transfer works
and when it does not.

6 Related Work

Previous work that explores the effect of choices
of hyperparameters can be mainly divided into two
categories: the prescriptive approach aims to offer
advice on the configurations by large-scale experi-
mental runs and those developing tools to improve
the understanding of the hyperparameters, as cited
in Section 3. Our work follows the descriptive ap-
proach, which seeks to interpret trends from a set of
already-trained models. Related are some studies
that measure hyperparameter importance: Hutter
et al. (2014) and Sharma et al. (2019) applied a
functional ANOVA framework to assess the impor-
tance, while Probst et al. (2019) adopted a variant
term, hyperparameter tunability, conditioned on
the difference on the performance of default and
optimal settings of hyperparameters.

Exploration of the hyperparameter space also
appears in research on HPO interpretability (Pfis-
terer et al., 2019; Freitas, 2019; Xanthopoulos et al.,
2020). Moosbauer et al. (2021) attempted to inter-
pret the HPO process with a variant of the partial
dependence plot and showed what the surrogate
model learned about the search space and how the
final model is found.

7 Conclusions

In this work, we propose a framework for interpret-
ing the hyperparameters of a set of Transformer
models. Our framework work uses EBM as a post-
hoc analysis tool, and we show that as a glassbox
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model, EBM is effectively at interpreting hyperpa-
rameters. While the computational needs of gen-
erating training data for EBM may seem large at
first glance, we emphasize that we advocate for
post-hoc analysis. In other words, the analysis is
performed on the results of whatever hyperparam-
eter search the model builder needs to perform to
deploy a model.

Our MT case study demonstrates the kinds of
insights one can glean regarding the relationship
between hyperparameter configurations and Trans-
former performance; for example, we discover that
that not all hyperparameters are equally important,
and some hyperparameters exhibit non-monotic
corelation with BLEU scores. Further, we con-
ducted a series of analyses to test the robustness
of EBM’s fitting ability under varying data sizes
and distributions. We show that EBM fits well un-
der limited data, yet struggles with transfer across
different MT datasets. It should also be noted that
the conclusions drawn from MT tasks might not be
applicable to other Transformer-based tasks.

Hyperparameter tuning is often viewed as a crit-
ical yet un-intuitive part of the model building pro-
cess. We hope that our proposal provides a first
step in unveiling the mysterious masks of hard-to-
interpret hyperparameters in deep learning models.
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B Single Hyperparameter Analysis

Figure 9: Single hyperparameter feature functions for
en-ja. Higher score indicates a higher chance to get
a high BLEU score. Density refers to the number of
samples in the dataset.

C Pairwise Interactions

Figure 10: Pairwise interaction between features on en-
ja. Higher score (yellow) indicates higher odds to get
higher BLEU scores.
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Abstract

Humans can systematically generalize to novel
compositions of existing concepts. Recent stud-
ies argue that neural networks appear inherently
ineffective in such cognitive capacity, leading
to a pessimistic view and a lack of attention
to optimistic results. We revisit this controver-
sial topic from the perspective of meaningful
learning, an exceptional capability of humans
to learn novel concepts by connecting them
with known ones. We reassess the composi-
tional skills of sequence-to-sequence models
conditioned on the semantic links between new
and old concepts. Our observations suggest
that models can successfully one-shot general-
ize to novel concepts and compositions through
semantic linking, either inductively or deduc-
tively. We demonstrate that prior knowledge
plays a key role as well. In addition to synthetic
tests, we further conduct proof-of-concept ex-
periments in machine translation and semantic
parsing, showing the benefits of meaningful
learning in applications. We hope our positive
findings will encourage excavating modern neu-
ral networks’ potential in systematic generaliza-
tion through more advanced learning schemes.

1 Introduction

As a crucial characteristic of human cognition,
systematic generalization reflects people’s talents
to learn infinite combinations of finite concepts
(Chomsky, 1956; Montague et al., 1970). Whether
connectionist networks can express language and
thoughts systematically has been controversial for
many years (Fodor and Pylyshyn, 1988; Hadley,
1994; Marcus, 1998; Fodor and Lepore, 2002;
Brakel and Frank, 2009; Frank et al., 2009; Marcus,
2018). To date, the systematic compositionality
in neural networks remains an appealing research
topic. Evidence on multiple explicitly proposed
language-based generalization challenges suggests

∗∗ Work was done at Alibaba Group.
†∗ Zhouhan Lin is the corresponding author.

"turn left and walk" LTURN WALK

"walk left and jump left" LTURN WALK LTURN JUMP
Prior Knowledge

A New Concept

"turn left and walk and jump left" LTURN WALK LTURN JUMP

One-shot Generalization

"turn left and walk and jump right" LTURN WALK RTURN JUMP
OR

Deductive Variant Rule

Inductive Variant Sample

Figure 1: An example of the one-shot compositional
generalization from the old concept “walk left” to the
new one “turn left and walk” in SCAN. The model is
able to generalize from the command “walk left and
jump left” to “turn left and walk and jump left” through
the semantic relationship between the old and new con-
cepts because they refer to the same action “LTURN
WALK”. Such semantic linking can be established by
either an inductive sample or a deductive rule.

that models lack such cognitive capacity (Bastings
et al., 2018; Loula et al., 2018; Sinha et al., 2019;
Keysers et al., 2020; Hupkes et al., 2020; Kim and
Linzen, 2020; Li et al., 2021). Tremendous ef-
forts are made to tackle these challenges through
architectural modifications (Li et al., 2019; Gordon
et al., 2020; Oren et al., 2020; Akyurek and An-
dreas, 2021; Chaabouni et al., 2021), meta-learning
(Lake, 2019; Conklin et al., 2021), grammar (Kim,
2021; Shaw et al., 2021), neuro-symbolic mod-
els (Chen et al., 2020; Liu et al., 2020; Nye et al.,
2020), data augmentation (Andreas, 2020; Akyürek
et al., 2021; Auersperger and Pecina, 2021; Jiang
and Bansal, 2021; Patel et al., 2022), and loss de-
sign (Yin et al., 2021). Despite their astounding
accomplishments, standard sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014) appear
to have relatively weak inductive biases, failing to
capture underlying hierarchical structure.

In contrast, the successful one-shot generaliza-
tion in the turn-left experiment on the Simplified
CommAI Navigation (SCAN) task reveals the po-
tential of seq2seq recurrent networks in controlled
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Co-hyponymAntonymSynonymLexical Variant Hypernym Hyponym
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The United States of America

US

Rote Learning

United States

The United States of America

US

Meaningful Learning

USA

Figure 2: Adapted examples from Geography. In the left one, intuitively, knowing how the new concept (e.g.,
“USA”) relates to the other existing ones (e.g., “US”) can boost the learning and memory of this knowledge as a
whole. In the right one, bidirectional arrows denote symmetric relations. “Mississippi” and “California” are two
specific states, and thus both are hyponyms of “state”. In turn, “state” is a hypernym of them. Due to a common
hypernym, “Mississippi” and “California” become a co-hyponym for each other. {“heavily populated”, “congested”,
“populus”} is a group of synonyms as sharing similar semantics. Finally, “U.S.”, as a kind of abbreviation, is a
lexical variant of “United States”.

environments (Lake and Baroni, 2018). Although
models are only exposed to the primitive command
before, they are able to understand most composed
commands of “turn left”. One assumption is that
models study new commands with a primitive from
other action sequences containing the basic action
it denotes. However, there is still a missing formal
exploration to answer the question raised by Lake
and Baroni (2018) on page 8 that “what are, pre-
cisely, the generalization mechanisms that subtend
the networks’ success in these experiments”.

In this work, as a response to the call, we ques-
tion whether neural networks are indeed deficient
or just conventional learning protocols unable to
exploit their full potential (Csordás et al., 2021;
Dankers et al., 2022b). We revisit the systematic
generalization of seq2seq models from a mean-
ingful learning perspective (Ausubel, 1963; Oke-
bukola and Jegede, 1988; Mayer, 2002). Given the
idea that humans are used to memorizing concepts
in a relational manner, we hypothesize that the suc-
cess of the turn-left experiment results from the
semantic relationships between old concepts and
new ones. For example, in Figure 1, a model can
understand the meaning of “turn left and walk and
jump left” from “walk left and jump left” via the
semantic link between two concepts (in bold) since
both denote to the same action “LTURN WALK”.

To validate our hypothesis, we reproduce the one-
shot compositional generalization by semantic link-
ing that exposes semantic relationships through ei-
ther inductive learning or deductive learning (Ham-
merly, 1975; Shaffer, 1989; Thornbury, 1999). On
the one hand, by introducing new concepts sharing
the same context, we hope the model can capture
the underlying semantic connections inductively.
On the other hand, by involving a rule-like concept

dictionary without specific context information, we
hope the model can utilize the general cross-lingual
supervised signals as anchor points so as to launch
the semantic linking deductively.

In experiments, we treat concepts in the initial
data set as primitives and generate variant samples
and rules accordingly. Next, we mix them up and
construct a seq2seq task after a random split. We
repeatedly train and evaluate models but slowly de-
crease the number of times they see each variant
until one-shot learning. We observe there is hardly
a performance drop in SCAN for three represen-
tative model structures. This evidences that, with
semantic linking, even canonical neural networks
can generalize systematically to new concepts and
compositions. Such observation holds consistently
across two more semantic parsing (SP) datasets.
The followed sensitivity analysis shows that prior
knowledge also takes essential parts. Lastly, as a
proof-of-concept, we demonstrate how meaning-
ful learning already benefits models in standard
machine translation (MT) and SP. Overall, our con-
tributions1 are as follows:
• We revisit systematic generalization from a mean-

ingful learning perspective by either inductive or
deductive semantic linking.

• We find that modern seq2seq models can gen-
eralize to new concepts and compositions after
semantic linking, which empirically answers the
question by Lake and Baroni (2018).

• We show in the sensitivity analysis that both se-
mantic linking and prior knowledge play a key
role, in line with meaningful learning theory.

• We extend to standard MT and SP and demon-
strate how meaningful learning already benefits
models in solving realistic problems.

1Code and data are publicly available at GitHub.
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2 Meaningful Learning

In educational psychology, meaningful learning
refers to learning new concepts by relating them to
old ones (Ausubel, 1963; Mayer, 2002). In Figure
2, intuitively, the utilization of meaningful learning
can encourage learners to understand information
continuously built on concepts the learners already
understand (Okebukola and Jegede, 1988). Follow-
ing this, we intend to examine models’ systematic
compositionality by exploring semantic linking that
establishes semantic relations between primitives
(old concepts) and their variants (new concepts).
We propose to spoon-feed semantic knowledge to
models for semantic linking in two ways, that is,
inductive learning and deductive learning (Ham-
merly, 1975; Shaffer, 1989; Thornbury, 1999). In
this section, we discuss the process of semantic
linking and take “jump" from SCAN as an example
primitive to illustrate the learning scheme.

2.1 Semantic links

We focus on three semantic relationships, namely,
lexical variant, co-hyponym, and synonym. Lexi-
cal Variant refers to an alternative expression form
for the same concept. Co-hyponym is a linguis-
tic term to designate a semantic relation between
two group members belonging to the same broader
class, where each member is a hyponym and the
class is a hypernym (Lyons and John, 1995). Syn-
onym stands for a word, morpheme, or phrase that
shares exactly or nearly the same semantics with
another one. We provide an example in Figure 2
and a detailed description in Appendix A.

2.2 Inductive learning

Inductive learning is a bottom-up approach from
the more specific to the more general. In gram-
mar teaching, inductive learning is a rule-discovery
approach starting with the presentation of specific
examples from which a general rule can be inferred
(Thornbury, 1999). In semantic linking, we pro-
pose to introduce variant samples sharing the same
context with their primitives during training. The
assumption is that models can observe the inter-
change of primitives and their variants surrounded
by the same context in the hope of coming up
with a general hypothesis that there is a seman-
tic linking between primitives and their variants
(Harris, 1954). To test the generalization, we de-
sign a prompt “[concept] twice” from a primitive
sample “jump twice”. After that, we fill in the con-

cept slot with “jump_0” and generate the variant
sample “jump_0 twice”. There is no change from
the target side. Finally, by training models on the
generated variant sample in combination with prior
knowledge (all the other primitive samples), we
aim to establish the semantic relationship between
“jump” and “jump_0” inductively.

2.3 Deductive learning

Deductive Learning, the opposite of inductive learn-
ing, is a top-down approach from the more general
to the more specific. As a rule-driven approach,
teaching in a deductive manner often begins with
presenting a general rule followed by specific ex-
amples in practice where the rule is applied (Thorn-
bury, 1999). To align with this definition, we intend
to do semantic linking deductively by combining a
bilingual dictionary that maps primitives and their
variants to the same in the target domain. This addi-
tional dictionary, hence, mixes the original training
task with word translation (Mikolov et al., 2013b).
Without any specific context, we hope the model
can utilize the general cross-lingual supervised sig-
nals as anchor points so as to launch the semantic
linking. We want to point out that deductive learn-
ing is partially different from deductive reasoning.
Although there is an overlap, it is not necessary for
the former to extract rules from observations like
the inference conducted by the latter. In this work,
we care more about the learning outcomes, rather
than the reasoning process, through empirical eval-
uations. In practice, given the same example above,
we directly make use of primitive “jump” and its
variant “jump_0” as the source sequences, as well
as the action “JUMP” as their identical target se-
quences. Words and phrases can be treated as text
sequences of relatively short length. By exposing
both the primitive rule “jump”→ “JUMP” and the
variants rule “jump_0”→ “JUMP” during training,
we aim to build the semantic connections between
“jump” and “jump_0” deductively.

3 Systematic Generalization

The following section specifies the setup and out-
come of the experiments. We first employ SCAN as
the initial testbed to reproduce the one-shot general-
ization conditioned on the semantic linking. Then,
we examine neural networks’ potential to achieve
this on SCAN and two real-world tasks of SP, fol-
lowed by a sensitivity analysis.
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Figure 3: Experiments on SCAN expressing the total training size (left) and the test sequence accuracy (right) when
the number of training samples per variant decreases from the complete set (100%) to a single sample (1).

3.1 Datasets

Some suggest SCAN is not enough to fully verify
compositionality (Bastings et al., 2018; Keysers
et al., 2020; Dankers et al., 2022a). Thus, we intro-
duce GEO and ADV generated respectively from
real SP datasets: Geography and Advising.2 Exam-
ple inputs and outputs can be found in Table 6.
SCAN (Lake and Baroni, 2018) is a diagnostic
dataset proposed to investigate neural networks’
compositionality.3 It includes 20,910 pairs of com-
mands to their instructed actions such as the exam-
ple in Figure 1. We select {“jump", “look", “run",
“walk" } as 4 primitives to be in line with previ-
ous works. We focus on lexical variants and create
them by adding a suffix that consists of an under-
line and a unique number. We control the size of
the variants set by setting the upper limit of this
number. An example variant of “jump” is “jump_0"
and both mean the same action “JUMP".
Geography is a common SP dataset (Zelle and
Mooney, 1996; Srinivasan et al., 2017), containing
880 examples of queries paired with corresponding
expressions. It is later formatted to SQL language
with variables in the target sequences (Finegan-
Dollak et al., 2018). GEO is generated from Ge-
ography. We regard 4 of 9 annotated variables
as hypernyms and keep them as they are in SQL
sequences. The other variables are restored by en-
tities from the source sequence accordingly. As a
result, the overall data size is 618 after processing.
We can make use of the “is-a" hypernymy relation
for semantic linking. Specifically, we select {“new
york city", “mississippi rivier", “dc", “dover" } as 4
primitives4 with their variants consisting of entities
as co-hyponyms sharing the same variable group

2github.com/jkkummerfeld/text2sql-data
3github.com/brendenlake/SCAN
4We randomly select 4 primitives from GEO and ADV to

align with SCAN.

with primitives. An example variant of “new york
city” is “houston city" and both are in the same
variable group “CITY_NAME”.
Advising includes 4,570 questions on course infor-
mation paired with SQL queries (Finegan-Dollak
et al., 2018). ADV is generated from Advising.
We treat 4 of 26 annotated variables as hypernyms.
Precisely, we select { “a history of american film",
“aaron magid", “aaptis", “100" } as 4 primitives
with their variants as co-hyponyms sharing the
same variables. For instance, “advanced at ai tech-
niques" is a co-hyponym of “a history of american
film" sharing the same variable “TOPIC".

3.2 Models and experimental setup

Models. After testing many adapted versions, we
employ three dominant model candidates, that is,
RNN, CNN, and TFM. In terms of RNN, we re-
produce bi-directional recurrent networks (Schus-
ter and Paliwal, 1997) with long short-term mem-
ory units (Hochreiter and Schmidhuber, 1997) and
an attention mechanism (Bahdanau et al., 2015).
We follow the convolutional seq2seq architecture
presented by Gehring et al. (2017) with regard to
CNN and the attention-based structure proposed
by Vaswani et al. (2017) in the case of TFM. More
details are in Appendix B.
Training. We apply the mini-batch strategy to sam-
ple 128 sequence pairs for each training step. We
use Adam optimizer (Kingma and Ba, 2015) with
an ℓ2 gradient clipping of 5.0 (Pascanu et al., 2013)
and a learning rate of 1e−4. We freeze the maxi-
mum training epoch at 320 for CNN and 640 for
RNN and TFM. To prevent uncontrolled interfer-
ence, we train all models from scratch instead of
fine-tuning (Devlin et al., 2019). For the same rea-
son, we break words by whitespace tokenization
rather than subword modeling. So, we can guar-
antee that words are treated separately as distinct
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SCAN GEO ADV

Data Exp. IL Exp. DL Exp. IL Exp. DL Exp. IL Exp. DL

Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.

Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614

Table 1: Dataset statistics for inductive learning (IL) and deductive learning (DL) across Standard (Sta.), Difficult
(Dif.), and Challenging (Cha.) in Section 3.4.

tokens with completely different embeddings.
Evaluation. Token and sequence accuracy serve as
two primary metrics. The former allows partial er-
rors in a sequence, while the latter strictly does not.
Every reported number, along with the standard
deviation, is the mean of five runs.

3.3 Experiment: meaningful learning

Thanks to their incredible algebraic composition-
ality (Chomsky, 1956), humans can effectively
capture the underlying semantic connections be-
tween new and old concepts and generalize the
prior knowledge to novel combinations by mean-
ingful learning (Ausubel, 1963). To investigate
the extent to which models can do the same, we
probe the models’ compositionality by introduc-
ing semantic linking. It is reasonable to illustrate
the function of semantic linking through an abla-
tion study, while its missing will lead to an out-
of-vocabulary (OOV) issue since there will be no
sample to expose variants during training. Replac-
ing variants with other tokens (e.g., “[unk]”) goes
against our intent to investigate the generalization
from primitives to their variants. It also leads to
an unfair comparison, where all the variants, for
example, go to the same unknown token and cause
poor test accuracy. Instead, we gradually remove
training samples for each variant until the one-shot
learning scenario. We hope to observe the presence
of models’ meaningful learning by measuring the
corresponding performance loss.
Experimental setup. Following section 2.2, we
make use of 40 variants for 4 primitives and pro-
duce a total of 329,190 samples, including both
primitive and variant samples. We randomly split
them into a training set (80%) and a test set (20%).
The training set is further processed to remove sam-
ples having multiple variants to ensure that each
variant occurs only once in each sample. Even-
tually, the training set contains 235,002 samples.
Models directly trained on this full dataset serve
as baselines. Then, to format a gradual transition
from baselines to the meaningful learning, we train
the same models on various datasets with a decreas-

ing number of augmented samples for each variant
until the one-shot learning setting. Besides, we use
the variant rule “jump_0”→ “JUMP” as the only
training sample for “jump_0” in the end as a case
of our deductive learning introduced in Section 2.3
and consider the rest as our inductive learning.
Results. As elaborated in Figure 3, the solid line
(SCAN) in green denotes the total training data size
against the decreasing number of training samples
per variant. The dashed line in other colors de-
notes the test sequence accuracy against the same
horizontal axis. RNN has no significant perfor-
mance drop when the training size is reduced from
100% to 1. It still achieves 99.92% test sequence
accuracy when there is only one training sample
for each variant. The same happens for CNN and
TFM. Despite a slight fluctuation, they keep the
results almost consistent regardless of whether the
number of training variant samples is all or 1. It
is not necessary to augment the training set nearly
14 times from 16,736 to 235,002 to cover all the
possible variant compositions. The participation of
a single sample is able to launch semantic linking
via either inductive learning (a variant sample) or
deductive learning (a variant rule), thus enabling
models to achieve one-shot generalization. We put
two plots in one figure to emphasize such a surpris-
ing observation through the strong contrast.

3.4 Experiment: semantic linking injection

The following two experiments evaluate models’
systematic generalization, particularly for prior
knowledge and semantic linking. A sliding scale
of difficulty is carefully designed by weakening
these two factors according to the assumption that
the greater the difficulty, the more compositional
skills are required. We further validate our findings
on GEO and ADV. We use the same evaluation
protocol across different datasets in this section.

Taking the base dataset as prior knowledge, we
replace the primitives in source sequences with
their variants to generate novel compositions, as
introduced in Section 2.2. So far, the produced
variant samples are not in the training set but in the

66



Data Model Token Acc.% Seq. Acc.%

Standard Difficult Challenging Standard Difficult Challenging

RNN 99.99± 0.03 99.89± 0.19 99.96± 0.02 99.95± 0.08 99.85± 0.08 99.80± 0.31
SCAN CNN 99.96± 0.08 99.76± 0.54 98.89± 2.44 99.85± 0.34 99.52± 1.07 97.57± 5.24

TFM 98.91± 0.78 98.90± 1.10 98.76± 0.85 97.35± 1.62 96.86± 2.64 96.38± 2.81

RNN 75.71± 8.42 75.69± 6.12 73.46± 3.05 44.95± 14.69 43.27± 13.47 36.77± 5.60
GEO CNN 87.99± 2.67 79.51± 6.03 77.40± 2.48 69.46± 5.78 51.20± 8.64 48.58± 3.40

TFM 75.37± 7.84 75.11± 4.88 68.41± 4.76 45.93± 12.42 44.59± 9.76 36.93± 7.47

RNN 58.61± 6.18 59.74± 5.67 58.11± 5.82 36.18± 5.75 35.69± 6.05 35.45± 6.69
ADV CNN 57.83± 7.55 54.05± 5.74 53.66± 2.57 45.08± 9.32 42.14± 6.90 41.37± 4.04

TFM 53.43± 2.80 51.51± 4.50 49.17± 2.58 42.59± 3.65 41.28± 4.35 38.88± 2.68

Table 2: Evaluation results over RNN, CNN, and TFM on SCAN, GEO, and ADV across Standard, Difficult, and
Challenging in Section 3.4.1.

test set. Hence, variants exist as OOV now. Then,
we either incorporate one variant sample to intro-
duce variants in training inductively or one variant
rule to do so deductively. In the one-shot learning
scenario, we ensure each variant only has a single
sample and appears only once during training. For
convenience, we keep the same settings for each
primitive to have 10 variants in SCAN and a full
variant set in GEO (e.g., 39 variants for “new york
city"). It is noted in ADV that we randomly sample
5 variants for each primitive so that we cover all
the variants with an appropriate test size.

3.4.1 Inductive learning
Experimental setup. We increase the difficulty
by excluding primitive samples from the training
set. It is worth noting that models have to gener-
alize to not only new concepts but also their new
compositions with a higher level of difficulty.
• Standard: Models are trained on prior knowl-

edge and one variant sample per variant.
• Difficult: We remove from the prior knowledge

primitive samples sharing the same context with
their variant samples. For example, we remove
“jump twice” due to “jump_0 twice”, and thus
models have to generalize to “jump_0 twice”
without seeing “jump twice”.

• Challenging: We also exclude from the prior
knowledge primitive samples of the same length
as their variant samples. For instance, models
have to reproduce the same generalization to
“jump_0 twice” without seeing primitive samples
of length 2, including “jump twice”, “jump right”,
“jump left", to name a few.5

SCAN. What stands out in Table 2 is an excel-
lent one-shot generalization for all three networks.

5We remove samples that will not lead to unknown tokens.

Data Model Token Acc.% Seq. Acc.%

Standard Difficult Standard Difficult

RNN 99.48± 0.71 98.70± 0.92 98.27± 2.38 95.39± 2.72
SCAN CNN 99.99± 0.01 98.59± 3.10 99.96± 0.03 96.66± 7.27

TFM 96.90± 1.78 96.68± 2.21 91.94± 4.04 91.26± 5.80

RNN 54.44± 7.15 39.71± 18.38 13.61± 7.08 7.76± 5.34
GEO CNN 41.86± 3.38 41.07± 7.48 4.85± 4.66 4.04± 2.18

TFM 67.02± 6.91 65.97± 5.17 36.38± 10.08 31.57± 7.42

RNN 36.50± 7.66 36.42± 7.39 12.84± 4.31 12.66± 5.19
ADV CNN 43.51± 11.31 35.34± 14.68 32.33± 12.93 23.58± 16.04

TFM 56.82± 3.79 53.33± 3.85 47.43± 3.71 43.24± 5.14

Table 3: Evaluation results over RNN, CNN, and TFM
on SCAN, GEO, and ADV across Standard and Difficult
in Section 3.4.2.

The participation of variant samples induces a near-
perfect generalization. Even the worst results ob-
tained by TFM in Challenging are around 98.76%
and 96.38% in terms of token and sequence accu-
racy. The outcomes confirm that networks can in-
ductively learn semantic relations from the context
after semantic linking. The disappearance of train-
ing samples in Difficult and Challenging causes
a performance drop. This is well in line with the
widely accepted belief in meaningful learning the-
ory that prior knowledge matters to generalization.
GEO & ADV. The more apparent changes in met-
rics again verify that prior knowledge is essential.
Either excluding primitive samples containing the
same context or those of the same sequence length
can produce a steep fall in the generalization. On
GEO, CNN can lose an absolute sequence accu-
racy of 18.26% from Standard to Difficult, and that
for TFM drops 7.66%. This upholds our argument
that generalization via meaningful learning is in-
separable from sufficient prior knowledge. The
overall decline in performance can be attributed
to the switch from toy sets to actual datasets since
both GEO and ADV own a much more complex
encoding and decoding space than SCAN. There-
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fore, we conclude that both prior knowledge and
semantic linking exert powerful effects upon the
potential of models to generalize systematically.

3.4.2 Deductive learning
Experimental setup. We increase the difficulty
of compositional learning by excluding primitive
rules from the training set as follows:
• Standard: Models are trained on the prior knowl-

edge, primitive rules, and variant rules.
• Difficult: We remove primitive rules from the

training set. Consequently, semantic links are
weakened and depend on variant rules only.

SCAN. By incorporating deductive semantic link-
ing, all three networks attain satisfying composi-
tional generalization as shown in Table 3. CNN
achieves the highest 99.96% in Standard, while
TFM takes the lowest 91.26% in Difficult with re-
gard to sequence accuracy. We can see a consistent
decline in accuracy when we undermine the se-
mantic linking by removing primitive rules from
the training set. The most significant sequence ac-
curacy drop of 3.3% comes from CNN when the
difficulty upgrades. However, in Difficult, even the
lowest one is impressive as there is only one variant
rule to introduce each variant during training.
GEO & ADV. There is a persistent performance
loss because of the absence of primitive rules from
the training set across models. Concretely in GEO,
the grade of CNN declines from 32.33% in Stan-
dard to 23.58% in Difficult in terms of sequence
accuracy. The causal role of semantic linking is
also demonstrated by varying the difficulty. The
difference between Standard and Difficult indicated
that either concept rules and just variant rules can
connect primitives with their variants semantically,
though the former is better than the latter. More-
over, models appear to realize systematic general-
ization better in an inductive way. By comparing
Table 2 with Table 3, we find that current black-box
neural nets are more capable of exploring patterns
from specific samples with context information
rather than understanding knowledge from general
rules in our experiments. This sheds light on why
current machine learning is still highly data-driven
and can hardly break through the bottleneck to con-
duct advanced logic reasoning as human beings.

3.5 Sensitivity analysis

Regarding deductive learning, we conduct sensitiv-
ity analysis with a varying number of primitives
(#primitives) from {1,2,3,4} and that of variants
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Figure 4: Experiments over RNN on SCAN with vary-
ing #primitives (a) and #variants (b).

per primitive (#variants) from {1,5,10,15,20} over
RNN on SCAN. The experimental setup is bor-
rowed from Standard in Section 3.4.2.
Impact of #primitives. In Figure 4 (a), the gen-
eralization performance improves w.r.t. accuracy
boosting and variance reduction when #primitives
grows simultaneously. This is counter-intuitive as
we thought primitive rules should work indepen-
dently. A potential reason is semantic linking built
by various independent primitive rules can profit
each other to trigger a more robust and stable gen-
eralization. For example, “jump”→ “JUMP” and
“look” → “LOOK” may separate them from the
context such as “jump right” and “look right”. So,
“[concept] right” functions as a compositional rule
shared among primitive samples and finally encour-
ages models to generalize more effectively.
Impact of #variants. As presented in Figure 4 (b),
RNN generalizes consistently well when #variants
goes up. Therefore, we report that the generaliza-
tion among variants of the same primitive has a
certain degree of independence within a reasonable
range (e.g., #variants ≤ 20).

4 From SCAN to Real Data

Thus far, we have argued the feasibility of sys-
tematic generalization activated by semantic link-
ing. We move on to discuss how it already ben-
efits machines in solving real problems. Many
recent papers propose to improve systematic gener-
alization by techniques such as data augmentation
(Andreas, 2020; Akyürek et al., 2021) and meta-
learning (Lake, 2019; Conklin et al., 2021). The
success is reasonable given our findings. Replacing
fragments in real training samples with others that
share similar contexts is supported by our induc-
tive learning. We have demonstrated that similar
context information can help establish the seman-
tic links between new concepts and old ones, thus
enabling models to generalize compositionally. By
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IWSLT’14 IWSLT’15

Model En-De De-En En-Fr Fr-En

BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU

Baselines
LSTM (Luong et al., 2015) 24.98 24.88 30.18 32.62 38.06 42.93 37.34 39.36
Transformer (Vaswani et al., 2017) 28.95 28.85 35.24 37.60 41.82 46.41 40.45 42.61
Dynamic Conv. (Wu et al., 2019) 27.39 27.28 33.33 35.54 40.41 45.32 39.61 41.42

+Vocabulary Augmentation
LSTM (Luong et al., 2015) 25.35↑0.37 25.38↑0.50 30.99↑0.81 33.63↑1.01 38.32↑0.26 43.30↑0.37 37.77↑0.43 39.83↑0.47
Transformer (Vaswani et al., 2017) 29.40↑0.45 29.29↑0.44 35.72↑0.48 38.07↑0.47 42.19↑0.37 46.68↑0.27 41.04↑0.59 43.15↑0.54
Dynamic Conv. (Wu et al., 2019) 27.60↑0.21 27.50↑0.22 33.62↑0.29 36.00↑0.46 40.87↑0.46 45.95↑0.63 39.95↑0.34 41.86↑0.44

Table 4: Evaluation results over LSTM, Transformer, and Dynamic Conv. on IWSLT’14 En-De (English-German)
and De-En, IWSLT’15 En-Fr (English-French) and Fr-En translations.

considering concepts as pointers in the memory,
meta-learning equips models with memory loading
to make connections between new and old con-
cepts as semantic linking. The utility of similar
unsupervised techniques (Xie et al., 2020) in both
compositional generalization and real tasks can be
attributed to inductive learning as well. Besides,
our sensitivity analysis in Section 3.5 shows that
adding seemingly independent primitive samples
or rules can also improve the generalization, which
has been further validated recently (Auersperger
and Pecina, 2021; Patel et al., 2022).

In addition to inductive-based methods, some
works (Mikolov et al., 2013b; Arthur et al., 2016;
Nag et al., 2020), incorporating bilingual dictio-
naries in low-resource MT, can fall in the field
of deductive-based ones. As a proof-of-concept,
we reproduce the word-to-word augmentation, or
called deductive learning in this work, by train-
ing models on not only the base training set but
also concept rules. Intuitively, we wonder to
which extent deductive semantic linking can pro-
mote models’ performance in MT (IWSLT’14 and
IWSLT’15) and SP (Geography and Advising). We
report the evaluation results in Table 4 and Table
5. Details of models and data can be found in Ap-
pendix B and Appendix C.

4.1 Machine translation

Setup. We evaluate our approach on IWSLT’14
(Cettolo et al., 2014) English-German (En-De)
and German-English (De-En), IWSLT’15 (Cettolo
et al., 2015) English-French (En-Fr) and French-
English (Fr-En) translation tasks. We follow the
standard evaluation protocol (Ott et al., 2019)
that keeps the original training set and valida-
tion set but combines multiple previous test sets
for final evaluation. The test set of IWSLT’14
consists of IWSLT14.TED.dev{2010, 2012} and
IWSLT14.TED.tst{2010, 2011, 2012}. That

of IWSLT’15 includes IWSLT15.TED.tst{2014,
2015} (Ott et al., 2019). We apply BPE with 10K
tokens for all tasks and report both BLEU (Papineni
et al., 2002) and SacreBLEU (Post, 2018) scores
for three baselines: LSTM (Luong et al., 2015),
Transformer (Vaswani et al., 2017), and Dynamic
Conv. (Wu et al., 2019) in comparsion with same
structures augmented by our method.
Vocabulary augmentation. We introduce concept
rules as vocabulary augmentation in MT. The se-
mantic links between primitives and their variants
can be built upon the synonymous relations be-
tween tokens such as “heavily populated" and “pop-
ulous". From this, the source words paired with
translated ones can be regarded as concept rules.
It is noted that such relationships are reversible as
shown in Figure 2, so a primitive can be a variant
of the other primitive as well. In practice, we col-
lect a dictionary of tokens in the source language
and feed them to the Google Translation6 so as
to obtain a token map from the source language
to the target one. The same operation can be re-
peated from the target language to the source one.
Two dictionaries are combined into one with du-
plicates removed. Consequently, we get 144,874
token-level samples as a training supplementary
for IWSLT’14 En-De and De-En, and 110,099 for
IWSLT’15 En-Fr and Fr-En, which leads to a total
of 305,113 training samples for IWSLT’14 En-De
and De-En and 315,671 for IWSLT’15 En-Fr and
Fr-En after such vocabulary augmentation.
Results. From Table 4, we observe a consistent im-
provement in both BLEU and SacreBLEU over all
baselines after vocabulary augmentation, particu-
larly up to 1 in SacreBlEU. The additional synonym
pairs not only construct the semantic linking be-
tween tokens in two languages explicitly, but also
create a complicated semantic linking network im-

6cloud.google.com/translate
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Geography Advising

Model Train Test Train Test

Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.%

Baselines
RNN 89.05 17.39 69.81 9.68 92.22 3.64 60.41 6.11
CNN 98.45 70.74 78.44 55.91 99.74 81.62 81.74 51.13
TFM 99.45 84.95 80.24 49.82 99.68 76.90 78.51 29.67

+Entity Augmentation
RNN 87.47 29.96 72.39↑2.58 15.05↑5.37 88.82 30.97 71.17↑10.76 16.06↑9.95
CNN 97.54 76.03 80.32↑1.88 60.93↑5.02 99.65 87.01 84.50↑2.76 56.02↑4.89
TFM 99.30 85.73 81.09↑0.85 54.84↑5.02 99.57 86.94 84.26↑5.75 35.08↑5.41

Table 5: Evaluation results over RNN, CNN, and TFM on Geography and Advising.

plicitly because of synonyms within the single lan-
guage and the transitivity nature of synonym rela-
tion. Our experiments prove that semantic linking,
which allows models to generalize systematically,
can be beneficial for improving MT performance.

4.2 Semantic parsing

Setup. We evaluate our method on two SP bench-
marks, Geography, and Advising. We train the
same models (i.e., RNN, CNN, and TFM) as we
analyzed before without further hyperparameter
tuning. There are some changes for CNN, where
the learning rate is 5e−4 in Geography, and the
maximum sequence length for the decoder posi-
tion embedding is 312 in Advising. We split 10%
training samples as the validation set to find the
converged epoch and then add it back to the train-
ing set for the final report.
Entity augmentation. We introduce concept rules
as entity augmentation in SP. The semantic links
are established among co-hyponyms. We con-
sider a variable as a hypernym for its values. By
that, entities belonging to the same variable are
co-hyponyms. Thus, we can regard entity val-
ues as primitives and the translations from primi-
tives (e.g., “new york city”) to their variables (e.g.,
“CITY_NAME”) as primitive rules. To be specific,
We construct entity dictionaries by collecting en-
tities such as “new york city”. They are translated
to themselves since they do not change from the
source natural language to the target SQL. For a
fair comparison, a token from this extra dataset will
be marked as a unique unknown mark, “[unk]", if
it does not exist in the original base training set.
After that, we have a map of 103 entity translations
for Geography and 1846 for Advising, resulting in
a training size change from 701 to 804 for Geogra-
phy and from 3814 to 5660 for Advising.
Results. As elaborated in Table 5, all three net-
works can achieve better performance in terms of

both accuracy and variance. A 10.76% token ac-
curacy and 9.95% sequence accuracy boosting are
observed from RNN on Advising after such entity
augmentation. The results suggest that models can
learn semantic linking or be more familiar with
similar contexts from those primitive rules in a
deductive way to enhance model systematic gener-
alization and finally lead to better outcomes.

5 Conclusion

We revisit systematic generalization from a mean-
ingful learning perspective. According to the the-
ory, we conduct semantic linking to expose se-
mantic relations between new and old concepts
via either inductive learning or deductive learn-
ing. Experimental results on SCAN, GEO, and
ADV support that seq2seq neural networks, as a
class of modern machine learning methods, can be-
have systematically after semantic linking. Testing
with various difficulties indicates that both seman-
tic linking and prior knowledge are two essential
factors in such generalization, in agreement with
what humans do in meaningful learning. Finally,
we group recent methods in either the inductive-
based or deductive-based category, followed by a
proof-of-concept, to highlight the already-existing
advantages of meaningful learning in applications
such as machine translation and semantic parsing.

We want to underline that, to the best of our
knowledge, this work is the first one exploring the
optimistic results observed by Lake and Baroni
(2018). Our positive findings oppose the recent pre-
vailing view that neural networks appear inherently
ineffective in such cognitive capacity, thus confirm-
ing the mixed picture. By rationalizing recent find-
ings from a meaningful learning perspective, we
hope to encourage followers to interpret the excep-
tional generalization ability through the connection
between neural nets and human cognition.
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Limitations

We establish semantic relationships between primi-
tives and their variants by either inductive or deduc-
tive learning. The incorporation of both learning
skills is worth exploring further. We primarily uti-
lize data augmentation techniques to expose the
semantic information to models. Apart from that,
there should be many other methods to achieve
the same goal. Which method is most appropriate
to realize semantic linking remains an open topic.
Meanwhile, the application of meaningful learning
to promote systematic generalization in practice
(e.g., MT and SP) could have been expanded.
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A Semantic Links

Lexical Variant refers to an alternative expression
form for the same concept, where the various forms
may derive from foreign languages, abbreviations,
and even mistakes. A basic assumption is that all
languages change over time due to non-linguistic
factors. Since the rise of sociolinguistics in the
1960s, studies on linguistic variability, a character-
istic of language, are central to the language use
and motivations for speakers to vary the pronun-
ciation, word choice, or morphology of existing
concepts (Labov, 1963). Taking “United States
of America” as an example, people have generally
accepted the semantic connections among its lex-
ical variants in history, including “America” and
“United States”, as well as the initialisms “U.S.” and
“U.S.A”. Many efforts have been devoted on lexical
variants representation (Nguyen and Grieve, 2020),
detection (Barteld, 2017), normalization (Baldwin
et al., 2015) to keep machines up with the trend of
the times.
Co-hyponym is a linguistic term to designate a
semantic relation between two group members be-
longing to the same broader class, where each mem-
ber is a hyponym, also called subtype or subordi-
nate, and the class is a hypernym (Lyons and John,
1995). The “is-a” hypernymy relation between a
generic hypernym and its specific hyponyms builds
semantic connections among co-hyponyms. An
example of such a hierarchical structure can be
“Mississippi” and “California” in the domain of
“state”. Specifically, “Mississippi” and “Califor-
nia” are two hyponyms, and “state” is a hyper-
nym. Thus, “Mississippi” and “California” are se-
mantically connected to be co-hyponyms for each

other. Harvesting hypernymy relations (Wang and
He, 2020) plays an essential role for downstream
knowledge graph construction (Ji et al., 2021), out-
vocabulary generalization (Dash et al., 2020), and
taxonomy expansion (Yu et al., 2020b).
Synonym stands for a word, morpheme, or phrase
that shares exactly or nearly the same semantics
with another one. Many tend to assume syn-
onyms are utterances that occur in most contexts in
common, so they are semantically closely related
enough to be synonyms for each other (Rubenstein
and Goodenough, 1965; Harris, 1954). The exis-
tence of the association to contexts is a basic as-
sumption supporting the advance of recent masked
language modeling (Devlin et al., 2019). Given
that, one of the definitions of a synonymous rela-
tion is a semantic link between two expressions
if substitution of one for the other never hurts the
true value of the context (Stanojević et al., 2009).
For instance, the substitution of “heavily populated”
for “populous” will seldom alter the truth of the
sentence in Figure 2. Such semantic similarity
can be observed in continuous vector space from
a trained representation as well (Mikolov et al.,
2013a). Synonym discovery (Yu et al., 2020a) has
been a fundamental job to construct knowledge
base and thus benefits substantial researches.

B Models

All models are built within the encoder-decoder
framework (Sutskever et al., 2014). We reproduce
RNN, CNN, and TFM by ourselves to have fewer
parameters than the original versions for the ex-
perimental purposes. The dropout rate is 0.5 for
RNN, CNN, and TFM (Srivastava et al., 2014).
We implement LSTM, Transformer, and Dynamic
Conv. within the library fairseq.7 (Ott et al., 2019)
and inherit its default model structures.8 In con-
trast to early stopping (Prechelt, 1998), we prefer
a fixed training regime sufficient enough for mod-
els to fully converge in practice with a focus on
the systematic generalization observation instead
of superior structure exploration. Training is on a
single Nvidia Tesla V100. Without specific notes,
hyperparameters are shared throughout the work.
RNN denotes bi-directional recurrent network
(Schuster and Paliwal, 1997; Hochreiter and
Schmidhuber, 1997) with long short-term memory

7https://github.com/pytorch/fairseq
8LSTM is adapted from lstm_luong_wmt_en_de; Trans-

former is adapted from transformer_iwslt_de_en; Dynamic
Conv. is adapted from lightconv_iwslt_de_en.
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Data Sequence

SCAN
Source jump twice
Target JUMP JUMP

GEO
Source how many people in new york city
Target SELECT CITY alias0 . POPULATION FROM CITY AS CITY alias0 WHERE CITY alias0 . CITY_NAME = CITY_NAME ;

ADV
Source Which department includes a history of american film ?
Target SELECT DISTINCT COURSE alias0 . DEPARTMENT FROM COURSE AS COURSE alias0 WHERE COURSE alias0 . NAME LIKE TOPIC ;

Geography
Source how many people live in new york
Target SELECT STATE alias0 . POPULATION FROM STATE AS STATE alias0 WHERE STATE alias0 . STATE_NAME = " new york " ;

Advising

Source I would like to see A History of American Film courses of 2 credits .

Target
SELECT DISTINCT COURSE alias0 . DEPARTMENT , COURSE alias0 . NAME , COURSE alias0 . NUMBER FROM
COURSE AS COURSE alias0 WHERE ( COURSE alias0 . DESCRIPTION LIKE "% A History of American Film %"
OR COURSE alias0 . NAME LIKE "% A History of American Film %" ) AND COURSE alias0 . CREDITS = 2 ;

Table 6: Example source and target sequences from SCAN, GEO, ADV, Geography, and Advising.

Data Primitive Semantic Links Variant Concept Rule

Primitive Rule Variant Rule

SCAN

jump

Lexical Variant

jump_0 jump→ JUMP jump_0→ JUMP
look look_0 look→ LOOK look_0→ LOOK
run run_0 run→ RUN run_0→ RUN

walk walk_0 walk→WALK walk_0→WALK

GEO

new york city

Co-hyponym

houston city new york city→ CITY_NAME houston city→ CITY_NAME
mississippi rivier red rivier mississippi rivier→ RIVER_NAME red rivier→ RIVER_NAME

dc kansas dc→ STATE_NAME kansas→ STATE_NAME
dover salem dover→ CAPITAL_NAME salem→ CAPITAL_NAME

ADV

a history of american film

Co-hyponym

advanced ai techniques a history of american film→ TOPIC advanced ai techniques→ TOPIC
aaron magid cargo aaron magid→ INSTRUCTOR cargo→ INSTRUCTOR

aaptis survmeth aaptis→ DEPARTMENT survmeth→ DEPARTMENT
100 171 100→ NUMBER 171→ NUMBER

Table 7: Concept rules with primitives and their example variants.

units and an attention mechanism (Bahdanau et al.,
2015). Its encoder consists of two layers with a hid-
den size of 256 in each direction, and its decoder
has one layer with a hidden size of 512. The em-
bedding size is 512 for both encoder and decoder.
There are a total of 5.29M trainable parameters.
Teacher forcing with a rate of 0.5 serves to spur up
the training process (Williams and Zipser, 1989).
CNN denotes the fully convolutional seq2seq net-
work (Gehring et al., 2017). The size of the posi-
tion embedding layer is 128 for encoding and 256
for decoding, while that of the token embedding
layer is 512 for both encoding and decoding. There
are 10 convolutional layers with 512 as the hidden
size and 3 as the kernel size in both encoder and
decoder, resulting in a total of 33.55M trainable
parameters.
TFM denotes transformers, an attention-based net-
work (Vaswani et al., 2017). As a tiny version,
TFM has 2 layers for each encoder and decoder
with 8 attention heads and a dimension of 512. The
size of the feedforward layer is 2048. We utilize
the cyclic nature of sin and cos functions to repre-
sent token positions. There are a total of 15.02M
trainable parameters.
LSTM is adapted from the recurrent network used
by Luong et al. (2015) for statistical MT. The size

of the embedding layer is 1000. There are 4 layers
in both encoder and decoder with a hidden size of
512 and a dropout rate of 0.2.
Transformer, the same as TFM, is adapted from
the base version of transformers in the work of
Vaswani et al. (2017), while TFM is a tiny version
to test systematic generalization. The dimension is
512 for the embedding layer, 1024 for the feedfor-
ward layer, and 512 for the attention layer. There
are 6 attention blocks in both encoder and decoder
with 4 attention heads and 0.3 dropout probability.
Dynamic Conv. is adapted from the seq2seq con-
volutional network proposed by Wu et al. (2019),
where the hidden size of the embedding layer, en-
coder layer, and decoder layer is 512. The number
of attention heads is 4, and the dimension of the
feedforward layer is 1024 for both encoder and
encoder. There are 6 layers in the encoder and 7
layers in the decoder. The dropout rate is 0.1 for
both attention and weight units.

C Data

IWSLT involves IWSLT’14 (Cettolo et al., 2014)
English-German (En-De) and German-English (De-
En), IWSLT’15 (Cettolo et al., 2015) English-
French (En-Fr) and French-English (Fr-En) trans-
lation tasks. The goal is to translate a sen-
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Data Primitive Variant #Variants Prompt

SCAN jump jump_0 10 [concept] twice

GEO

new york city houston city 39 how many people in [concept]
mississippi rivier red rivier 9 how long is [concept]

dc kansas 49 where is [concept]
dover salem 8 what states capital is [concept]

ADV

a history of american film advanced ai techniques 5/424 who teaches [concept] ?
aaron magid cargo 5/492 does [concept] give upper-level courses ?

aaptis survmeth 5/1720 name core courses for [concept] .
100 171 5/1895 can undergrads take [concept] ?

Table 8: Prompts with example primitives and sampled variants. In SCAN, primitives share the same prompt and the
number of variants can be changed. In GEO, we make use of the full variants set. In ADV, we randomly sample 5
variants for each source sequence so that we cover all the variants with a test set of an appropriate size. We generate
variant samples by filling the prompt with variants accordingly.

SCAN GEO ADV Geography Advising

Data Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2
Bas. Aug. Bas. Aug.

Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.

Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036 598 701 3814 5660
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614 279 279 573 573

Time
RNN 21 5 19 4 5 27 35
CNN 17 1.2 11 1 1.2 12 19
TFM 7 0.5 5 0.4 0.5 6 8

Table 9: Data statistics and training time per epoch in seconds. The batch size of each epoch for GEO and Geography
is 32, and that for the others is 128.

tence from one language to the other. The
IWSLT’14 En-De and De-EN have 160,239 se-
quence pairs for training and 7,283 for validation.
We make use of IWSLT14.TED.dev{2010, 2012}
and IWSLT14.TED.tst{2010, 2011, 2012} to mea-
sure translation performance, resulting in a total of
6,750 test samples. In terms of IWSLT’15 En-Fr
and Fr-En, there are 205,572 sequence pairs for
training. We employ IWSLT15.TED.dev2010 and
IWSLT15.TED.tst{2010, 2011, 2012, 2013} as the
validation set and IWSLT15.tst{2014, 2015} as the
test set. As a consequence, there are 5,519 samples
for validation and 2,385 for evaluation. For all four
translation tasks, we apply BPE with 10K tokens
to share.

D Experiments

D.1 Inductive learning

Semantic linking can be operated via inductive
learning, where we replace the concept in the
prompt with primitives and their variants. The
learning rate to train CNN in GEO is changed to
5e−4. Prompts used in SCAN, GEO, and ADV are
expressed in Table 8. Detailed experimental results
with respect to three levels can be found in Table
10, Table 11, and Table 12.

D.2 Deductive learning
Semantic linking can be established via deductive
learning, where we put concept rules without con-
text information in the training set instead of spe-
cific sequence samples. Example concept rules for
SCAN, GEO, and ADV are presented in Table 7.
Detailed experimental results with respect to two
levels can be found in Table 13 and Table 14.

D.3 Sensitivity analysis
In sensitivity analysis, we adjust the number of
primitives (#primitives) and the number of variants
per primitive (#variants) over RNN on SCAN. The
complete versions of Figure 4 in Section 3.5 are
presented as Figure 5 and Figure 6 for #primitives
and #variants respectively.
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Data Model Train Test

Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.02 0.00± 0.00 99.99± 0.03 99.95± 0.08
SCAN CNN 0.00± 0.00 99.81± 0.09 98.78± 0.55 0.00± 0.00 99.96± 0.08 99.85± 0.34

TFM 0.00± 0.00 99.82± 0.02 98.83± 0.12 0.06± 0.03 98.91± 0.78 97.35± 1.62

RNN 0.15± 0.02 97.73± 0.42 80.25± 2.81 1.36± 0.48 75.71± 8.42 44.95± 14.69
GEO CNN 0.07± 0.01 98.23± 0.39 76.80± 2.25 9.01± 4.26 87.99± 2.67 69.46± 5.78

TFM 0.02± 0.00 99.63± 0.07 91.60± 1.41 4.55± 1.39 75.37± 7.84 45.93± 12.42

RNN 0.03± 0.01 99.40± 0.13 82.74± 2.78 6.04± 0.95 58.61± 6.18 36.18± 5.75
ADV CNN 0.01± 0.01 99.59± 0.07 85.13± 1.95 23.56± 4.95 57.83± 7.55 45.08± 9.32

TFM 0.00± 0.00 99.92± 0.01 96.14± 0.28 15.12± 1.00 53.43± 2.80 42.59± 3.65

Table 10: Results of Standard inductive learning.

Data Model Train Test

Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.01 0.00± 0.00 99.96± 0.02 99.85± 0.08
SCAN CNN 0.00± 0.00 99.77± 0.19 98.62± 1.13 0.03± 0.06 99.76± 0.54 99.52± 1.07

TFM 0.00± 0.00 99.79± 0.03 98.59± 0.12 0.06± 0.03 98.90± 1.10 96.86± 2.64

RNN 0.16± 0.03 97.39± 0.67 78.33± 4.31 1.29± 0.27 75.69± 6.12 43.27± 13.47
GEO CNN 0.07± 0.01 98.25± 0.13 76.53± 1.68 13.87± 3.19 79.51± 6.03 51.20± 8.64

TFM 0.00± 0.11 99.60± 0.11 91.33± 1.46 4.50± 0.80 75.11± 4.88 44.59± 9.76

RNN 0.03± 0.01 99.26± 0.21 79.57± 4.12 5.80± 0.92 59.74± 5.67 35.69± 6.05
ADV CNN 0.02± 0.00 99.56± 0.05 84.06± 1.57 24.58± 3.40 54.05± 5.74 42.14± 6.90

TFM 0.00± 0.00 99.91± 0.01 95.88± 0.23 15.84± 1.51 51.51± 4.50 41.28± 4.35

Table 11: Results of Difficult inductive learning.

Data Model Train Test

Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.02 0.20± 0.45 99.95± 0.08 99.80± 0.31
SCAN CNN 0.00± 0.00 99.85± 0.05 99.00± 0.30 0.14± 0.31 98.89± 2.44 97.57± 5.24

TFM 0.00± 0.00 99.82± 0.05 98.85± 0.27 0.07± 0.05 98.76± 0.85 96.38± 2.81

RNN 0.15± 0.04 97.76± 0.74 79.77± 4.19 1.52± 0.29 73.46± 3.05 36.77± 5.60
GEO CNN 0.07± 0.01 98.23± 0.17 75.98± 1.46 15.83± 4.56 77.40± 2.48 48.53± 3.40

TFM 0.02± 0.00 99.60± 0.06 91.00± 1.20 6.01± 1.03 68.41± 4.76 36.93± 7.47

RNN 0.03± 0.01 99.23± 0.13 79.90± 1.85 5.95± 0.90 58.11± 5.82 35.45± 6.69
ADV CNN 0.01± 0.01 99.68± 0.15 87.90± 5.05 23.08± 6.34 53.66± 2.57 41.37± 4.04

TFM 0.00± 0.00 99.93± 0.01 96.41± 0.24 16.59± 0.98 49.17± 2.58 38.88± 2.68

Table 12: Results of Challenging inductive learning.

Data Model Train Test

Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 99.99± 0.03 99.90± 0.23 0.05± 0.06 99.48± 0.71 98.27± 2.38
SCAN CNN 0.00± 0.00 99.79± 0.14 98.78± 0.79 0.00± 0.00 99.99± 0.01 99.96± 0.03

TFM 0.00± 0.00 99.82± 0.03 98.78± 0.17 0.27± 0.22 96.90± 1.78 91.94± 4.04

RNN 0.17± 0.03 97.50± 0.30 78.54± 2.16 2.83± 0.69 54.44± 7.15 13.61± 7.08
GEO CNN 0.08± 0.01 97.97± 0.24 77.03± 1.42 51.08± 25.97 41.86± 3.38 4.85± 4.66

TFM 0.02± 0.00 99.54± 0.31 91.82± 2.27 6.03± 1.56 67.02± 6.91 36.38± 10.08

RNN 0.08± 0.02 98.64± 0.31 68.84± 4.57 7.95± 1.13 36.50± 7.66 12.84± 4.31
ADV CNN 0.02± 0.00 99.53± 0.07 84.64± 1.20 31.12± 4.76 43.51± 11.31 32.33± 12.93

TFM 0.00± 0.00 99.91± 0.02 96.33± 0.37 13.72± 1.41 56.82± 3.79 47.43± 3.71

Table 13: Results of Standard deductive learning.
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Data Model Train Test

Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 99.99± 0.01 99.95± 0.07 0.08± 0.08 98.70± 0.92 95.39± 2.72
SCAN CNN 0.00± 0.00 99.62± 0.34 98.82± 1.09 0.13± 0.29 98.59± 3.10 96.66± 7.27

TFM 0.00± 0.00 99.82± 0.03 98.78± 0.12 0.21± 0.20 96.68± 2.21 91.26± 5.80

RNN 0.20± 0.03 96.93± 0.71 75.35± 3.57 4.40± 2.50 39.71± 18.38 7.67± 5.34
GEO CNN 0.08± 0.01 97.77± 0.76 76.41± 2.80 32.94± 4.26 41.07± 7.48 4.04± 2.18

TFM 0.02± 0.00 99.56± 0.11 91.08± 1.56 5.97± 1.05 65.97± 5.17 31.57± 7.42

RNN 0.08± 0.02 98.54± 0.28 67.10± 3.45 7.87± 1.01 36.42± 7.39 12.66± 5.19
ADV CNN 0.04± 0.05 98.78± 1.91 77.14± 23.28 32.44± 6.07 35.34± 14.68 23.58± 16.04

TFM 0.00± 0.00 99.92± 0.02 96.41± 0.26 14.92± 1.31 53.33± 3.85 43.24± 5.14

Table 14: Results of Difficult deductive learning.
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Figure 5: The complete version of Figure 4 in Section 3.5 regarding #primitives.
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Figure 6: The complete version of Figure 4 in Section 3.5 regarding #variants.
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Abstract

Researchers often use games to analyze the abil-
ities of Artificial Intelligence models. In this
work, we use the game of Twenty Questions to
study the world knowledge of language models.
Despite its simplicity for humans, this game
requires a broad knowledge of the world to
answer yes/no questions. We evaluate several
language models on this task and find that only
the largest model has enough world knowledge
to play it well, although it still has difficulties
with the shape and size of objects. We also
present a new method to improve the knowl-
edge of smaller models by leveraging external
information from the web. Finally, we release
our dataset and Twentle, a website to interac-
tively test the knowledge of language models
by playing Twenty Questions.

1 Introduction

Generative language models achieve strong perfor-
mance on multiple NLP tasks by using an unsuper-
vised training objective: predicting the next token
in a string of text (Brown et al., 2020; Chowdhery
et al., 2022; Zhang et al., 2022).

Despite the simple training objective, these mod-
els capture a significant amount of world knowl-
edge (Roberts et al., 2020; Jiang et al., 2020; Tal-
mor et al., 2020). However, we can quickly uncover
some limitations by asking simple questions. For
example, GPT-3 (Brown et al., 2020) is more likely
to complete the following sentence question: is a
kettle smaller than a tennis ball? answer: with
yes than no. While trivial for a human, GPT-3 has
trouble comparing the size of a kettle and a tennis
ball.

We can use the let’s think step by step method to
look into the chain of reasoning of GPT-3 (Kojima
et al., 2022): question: is a kettle smaller than a
tennis ball? answer: let’s think step by step. [...]
a tennis ball is about 6 inches in diameter [...] a
typical kettle is about 8-10 inches tall and has a

Figure 1: Example Twenty Questions game: a human
must discover the hidden entity (a keyboard) by asking
yes/no questions to the language model. In this case,
the model needs to know about the shape, composition,
and purpose of a keyboard to correctly answer all ques-
tions. While trivial for humans, our results show that
this is not the case for most language models, except for
GPT-3, which displays fantastic world knowledge on all
questions except size-related questions.

diameter of about 4-5 inches. So, a kettle is smaller
than a tennis ball. According to this example, GPT-
3 predicts that a tennis ball is twice its actual size,
leading to the wrong conclusion that a kettle is
smaller than a tennis ball.

In this work, we try to analyze the world knowl-
edge of language models through the game of
Twenty Questions. We collected a dataset of 2000+
questions and tried to understand the strength and
weaknesses of language models by classifying
questions into nine categories of knowledge (us-
age, size & shape, appearance).

Our results show that GPT-3, a 175 billion pa-
rameters language model, can play Twenty Ques-
tions thanks to a consistent world knowledge on
all categories identified, except for size & shape
questions (e.g., is it bigger than a foot). Unfortu-
nately, we also show that smaller models do not
display the same consistency. However, leverag-
ing the web improved the knowledgeability of T0
by 10% and brought it to a level competitive with
GPT-3, despite having 16 times fewer parameters.
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Our contributions are the following:

• We release the first dataset consisting of
Twenty Questions games.

• We show that very large language models have
a consistent world knowledge, while smaller
models do not.

• We provide a method to improve the knowl-
edgeability of smaller models using back-
ground information from the web.

We publicly release our dataset on HuggingFace
(Wolf et al., 2020).1 We also present Twentle, a
website to interactively test the world knowledge
of language model by playing the game of Twenty
Questions.

2 Related Work

Although analyzing the capabilities of language
models through the game of Twenty Questions is
new, researching the amount of general knowledge
and common sense of language models is not.

Unfortunately, the knowledge stored by lan-
guage models is not symbolic. Therefore, we can-
not look into the model and inspect its knowledge.
Instead, previous work relied on multiple proxy
tasks.

One option is to use regular reading comprehen-
sion datasets in a closed-book format. Roberts et al.
(2020) follow this approach. They evaluate how
much knowledge can be stored inside the weights
of a text-to-text T5 model (Raffel et al., 2020). The
authors repurposed three reading comprehension
datasets to closed-book question answering: Web
Questions (Berant et al., 2013), Trivia QA (Joshi
et al., 2017) and Natural Questions (Kwiatkowski
et al., 2019). They concluded that T5 performs
on par with specialized machine comprehension
models. GPT-3 (Brown et al., 2020) was also eval-
uated on the same closed-book question-answering
datasets. The largest model (175B parameters)
achieved state-of-the-art results on TriviaQA de-
spite not being trained for the task.

Unfortunately, it has been demonstrated later
by Lewis et al. (2021) that the datasets used by
Roberts et al. (2020) and Brown et al. (2020) suffer
from a considerable overlap between the training
and test set, invalidating the authors’ conclusion
based on these datasets. Furthermore, when the

1https://huggingface.co/datasets/maximedb/twentle

overlap between the training and test set is removed,
the performance of BART (Lewis et al., 2020a)
diminishes from 26.7% to 0.8% on TriviaQA (Joshi
et al., 2017), suggesting that the model is unable to
generalize to previously unseen questions.

To overcome the previously mentioned overlap
problem, Wang et al. (2021) repurposed SQuAD
(Rajpurkar et al., 2016), a popular reading com-
prehension dataset, as a closed-book question an-
swering dataset. They evaluated the performance
of BART on this new dataset and concluded that
it was still challenging for generative models to
perform closed-book question answering.

Another approach is to look at how a language
model fills in blanks (i.e., masking). One can es-
timate what the language model knows by care-
fully analyzing the model’s suggestion. This is the
approach followed by Petroni et al. (2019). The
authors introduce a new dataset LAMA to test the
factual and commonsense knowledge in language
models. It provides a set of cloze tasks, e.g., ravens
can with the associated answer fly.

The oLMpic Games (Talmor et al., 2020) tests
the symbolic reasoning of language models through
eight synthetic tasks. While very similar to our
work, the dataset uses masking to probe the lan-
guage model. Mask tokens are only applicable to
encoder language models, while we are interested
in generative language models.

Previous studies have shown that providing gen-
erative language models with background informa-
tion improves their performance. (Borgeaud et al.,
2021; Lewis et al., 2020b; Komeili et al., 2022;
De Bruyn et al., 2020; Lazaridou et al., 2022) Simi-
lar to Lazaridou et al. (2022), we find that including
external knowledge improves the language model’s
performance, however, we obtain better results by
restricting the source of knowledge to Wikipedia
instead of the entire Internet.

To summarize, we are the first to analyze the
world knowledge of generative language models
through the game of Twenty Questions. We depart
from the work of Roberts et al. (2020) and Wang
et al. (2021) in several ways. First, we only have
yes/no answers, which simplifies the evaluation
and removes the surface-form problem (Holtzman
et al., 2021). Second, using generic questions al-
lows disentangling the understanding of the object
and the question.
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Twenty Questions
Questions 2,832
Generic questions 915
Entities 126
Words (per question) 6.8
Yes 35%
No 65%

Table 1: Summary of the Twenty Questions dataset. We
collected 2,832 questions from 126 different entities.
We make the distinction between generic and regular
questions. Generic questions refer to the entity as "it"
(e.g. does it [a rake] have a seat). Generic questions are
asked multiple times over different entities (on average
3). We use this unique feature to disentangle the under-
standing of the question and the entity.

3 Data

This section presents our dataset based on the
Twenty Questions game — the first boolean closed-
book question answering dataset regarding world
and commonsense knowledge. We start this sec-
tion by introducing the Twenty Questions game.
We then explain our data collection process. Fi-
nally, we analyze the type of knowledge required
to perform well on this dataset.

3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a spoken
parlor game that encourages deductive reasoning
and creativity. In the traditional game, one player
(the answerer) chooses a subject and does not reveal
it. The other players are questioners and must find
the hidden entity by asking yes/no questions.

Previous research focused on playing the ques-
tioner (Hu et al., 2018; Chen et al., 2018), however,
we are interested in the role of the answerer — the
player responsible for answering the yes/no ques-
tions using his knowledge of the world. According
to our research, this is the first attempt at playing
the role of the answerer.

3.2 Akinator

Instead of organizing games using Amazon Me-
chanical Turk, we used Akinator2 to collect many
questions. Akinator is an online game where users
can play games of Twenty Questions against a prob-
abilistic model.

Users first pick an entity (without revealing it),
and Akinator will then ask yes/no questions to find

2https://akinator.com/

the hidden entity. It can guess animals, objects, or
characters. The player can answer with 5 possi-
ble options: yes, no, probably yes, probably not,
and don’t know. Although the original Twenty
Questions game used a maximum of 20 questions,
Akinator will ask questions until it finds the cor-
rect entity. We provide examples of questions and
entities in Table 2. We were pleasantly surprised
by the quality of the Akinator model. It was able
to find our hidden entities in most instances. We
removed questions from the few instances where it
was not capable of finding the correct entity.

3.2.1 Generic Questions
Akinator does not know the entity when asking the
question and refers to the entity using "it". Because
of its probabilistic nature, Akinator will likely ask
the same generic question for multiple entities. We
list the most common generic questions in Table
3. For example is a rake bigger than a foot and is
a tennis ball bigger than a foot are two different
questions but share the same generic question is it
bigger than a foot. The average generic question
(e.g., is it bigger than a foot) is asked for three dif-
ferent entities. However, the distribution is highly
skewed, with many specific questions asked only
once.

3.2.2 Choice of Entities
We restricted our choice of entities to objects, as
we think characters and animals are too culture-
dependent to be deemed general knowledge. As
much as possible, we tried to choose objects which
are not specific to a particular place or culture.

3.2.3 Post-processing
As we are interested in yes/no questions, we re-
move all questions with probably yes, probably
not, or don’t know as answer. We use simple regex
rules to inject entities into generic questions. We
removed all questions about sex or the user’s per-
sonal experience (e.g., do you have one at home?)
as these require personal knowledge.

3.3 Knowledge Category

In order to understand the reasoning abilities of the
language model, we need to understand the type
of knowledge required to answer each question
correctly.

After carefully reviewing the questions in our
dataset, we classified each question into one of the
following nine categories: usage, size & shape,
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Generic Question Entity Answer
Is it bigger than a foot? Padlock No
Does it work with electricity? Magnifying glass No
Does it have a seat? Forklift Yes
Does it work with the feet? Lawn mowner No
Can it be made of wood? Rake Yes
Is it mostly for girls? Belt No
Does it have a relationship with school? Wallet No
Can it be read? Worldmap Yes
Is it made of rubber? Balloon Yes
Is it bigger than a foot? Saw Yes

Table 2: Example questions in our dataset. Akinator does not know the entity when asking the question, and refers
to the entity using "it". To avoid any bias toward a specific culture we only used well-known objects as hidden
entities. We did not use animals or characters.

Question Entities
Is it bigger than a foot? 68
Does it go into the mouth? 67
Is it something we wear? 56
Can we buy it? 55
Is it a toy? 50
Is it made of metal? 48
Is it soft? 45
Can it be opened or closed? 42
Is it electronic? 34
Can it be found in a kitchen? 31

Table 3: Most common generic questions in the dataset.

location, composition, description, relatedness, ap-
pearance, functioning, and purpose. Finally, we
provide an overview with examples in Table 4.

Shape and Size To answer this kind of question,
the model should understand an object’s shape and
be able to compare it with others. For example, is
it bigger than a foot?

Usage The model should know how an object is
used in everyday life to answer these questions. For
example, the model should know that a question
like is it something we wear? applies to a pair of
sunglasses, but not a forklift.

Location The model must know in which place
or circumstances an object is used. For example,
can we find it in a bathroom or, is it outside.

Composition These questions require knowing
the composition of an object. For example, is it
liquid, or is it made of glass.

Description The model should know how hu-
mans describe this object with adjectives. For ex-
ample, is it heavy, or is it sticky.

Relatedness To answer these questions, the
model must be able to relate two categories of ob-
jects or concepts together. For example, does it
have a relation with water, or is it a toy.

Functioning These questions require knowing
how an object works. This category is broad and
includes questions such as can it be opened or
closed, or does it work with electricity.

Appearance This category is related to the de-
scription category but focuses on how an object
looks. For example, it includes questions such as
does it have a seat, or does it have eyes.

Purpose This kind of question focuses on the
purpose of objects. It is related to the usage cate-
gory but focuses on why we use objects instead of
how. It includes questions like is it useful to sleep,
or do we use it for travel.

3.4 Human Agreement
Answering yes/no question is not always straight-
forward. A single question can be approached in
multiple ways. For example, some people answer
the question, " is a DVD smaller than a tennis ball
with yes because the height of a DVD is smaller
than that of a tennis ball, while others look at the
diameter and answer no. We asked four annotators
to answer 100 randomly sampled questions. On
average, they share the same answer as the one in
the dataset 94% of the time. The inter-annotator
agreement is good, with a Cohen’s Kappa score of
0.76 (Cohen, 1968).
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Object Knowledge Example Question Percentage
Shape and Size Is it bigger than a foot? Is it flat? 12.7
Usage Is it something we wear? Do we use it for a sport? 15.5
Location Can it be found in houses? Is it outside? 10.9
Composition Is it liquid? Is it made of glass? 7.8
Description Is it heavy? Is it sticky? 7.1
Relatedness Does it have a relation with water? Is it a toy? 14.5
Functioning Does it work with electricity? Can it be opened or closed? 14.8
Appearance Does it have eyes? Does it have a seat? 6.9
Purpose Is it useful to sleep? Do we use it for travel? 7.4

Table 4: We classified each question of the dataset into nine categories depending on the type of knowledge required
to answer the question.

4 Language Models

In this section, we review the subjects of this work:
generative language models. Language models
come in all forms and shapes. However, we focus
on two types: encoder-decoder and decoder-only
models.

4.1 Encoder-Decoder Models

Encoder-decoder models treat every NLP task as
a text-to-text problem using an encoder-decoder
Transformer. When this framework is applied to
question answering, the model is trained to gen-
erate the literal text of the answer in a free-form
fashion (Roberts et al., 2020).

T5 is a text-to-text model pre-trained on multiple
tasks simultaneously: translation, summarization,
classification, reading comprehension, and an unsu-
pervised span corruption task (Raffel et al., 2020).
We experiment with the 11 billion parameters ver-
sion.

T0 further trains T5 on 1700 English datasets
(Sanh et al., 2022). The resulting model outper-
forms GPT-3 (Brown et al., 2020) on several tasks
despite being 16x smaller. We use the T0pp ver-
sion with 11 billion parameters. Conveniently,
T0 has already been pre-trained on BoolQ (Clark
et al., 2019), a reading comprehension dataset with
boolean answers.

4.2 Decoder Models

Decoder models use the decoder part of the original
Transformer (Vaswani et al., 2017) model. These
models were not trained for a specific task but with
an unsupervised objective: predict the next token
in a piece of text. Due to their extensive training

corpora, these models have already seen many ex-
amples of Trivia style questions.

GPT-3 is an auto-regressive language model
(Brown et al., 2020). The largest version has 175
billion parameters. The model weights are not pub-
licly available, although the model’s predictions
are available through a paid API.3

GPT-J is a 6 billion parameters autoregressive
language model (Wang and Komatsuzaki, 2021)
trained on the Pile (Gao et al., 2021).

GPT-Neo-X is a 20 billion parameters autore-
gressive language model (Black et al., 2022)
trained on the Pile (Gao et al., 2021).

OPT is a similar model to GPT-3, but the models’
weights were publicly released (Zhang et al., 2022),
except for the largest version (175 billion parame-
ters), which is available upon request. Similar to
GPT-J, it was trained on the Pile along with data
from Reddit. We experiment with the 30 billion
parameters version.

5 Experiments

In this section, we report on our experiments using
our dataset of Twenty Questions. We experimented
with three setups: zero-shot, few-shot, and zero-
shot with knowledge augmentation. We use these
results in the section to understand the scale of the
world knowledge stored by language models.

5.1 Experimental Settings

Our experiments do not require any training, we
use language models as-is without fine-tuning. We
use the entirety of our dataset for evaluation. We

3https://openai.com/api/
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Model Size F1 Accuracy
Majority - 0 65.0
GPT-J 6B 48.6 49.0
T5 11B 24.6 68.4
T0 11B 68.5 81.9
GPT-Neo-X 20B 51.8 34.9
OPT 30B 52.8 38.2
GPT-3 13 B 59.4 60.2
GPT-3 175B 66.4 81.3

Table 5: Result of the zero-shot evaluation. Best perfor-
mance is achieved by GPT-3 and T0. The other models
struggle to reach the majority vote baseline.

measure the probability of the yes answer by sum-
ming the probability of the yes, Yes, true, and True
tokens. The same is done for the no answer with no,
No, false and False. Our dataset contains 65% of no
answers, we use F1 (binary) as primary evaluation
metric and also report accuracy.

5.2 Zero-shot

In the zero-shot setting, models answer the question
with only a textual description of the task. We
expect T5 and T0 to perform well in this setup as
they were pre-trained using the same setup, while
this is not the case for decoder-only models.

Prompt We use the same prompt for both
encoder-decoders and decoder-only models.

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Results We report the results of our zero-shot ex-
periment in Table 5. As expected, T0 achieves the
best results with an F1 of 68.5% and an accuracy
of 81.9%. GPT-3 also performs nicely in this setup,
with 16x more parameters than T0. However, all
the other models show an accuracy lower than the
majority vote baseline.

5.3 Few-shot

In the few-shot setup, models receive identical in-
structions as in the zero-shot setup, in addition to
a few examples. This setup benefits decoder-only
models as they can now learn the task on the fly
using in-context learning (Beltagy et al., 2022).

Prompt We augment the zero-shot prompt with
four examples. There are two examples with yes

Model Size F1 Accuracy
Majority - 0,0 65.0
GPT-J 6B 57.7 57.7
T5 11B 0.0 65.8
T0 11B 6.7 65.8
GPT-Neo-X 20B 58.4 58.3
OPT 30B 60.4 71.6
GPT-3 13B 58.2 60.2
GPT-3 175B 83.0 87.9

Table 6: Result of the few-shot evaluation. GPT-3’s F1
improves by 9% to reach 83%. The performance of OPT
barely improves compared to the zero-shot reasoning,
while as expected the performance of encoder-decoder
models plummets.

and two with no. We randomly select examples
from different entities and generic questions.4

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question_example_1 }}
Answer: {{ answer_example_1 }}
...
Question: {{ question_example_n }}
Answer: {{ answer_example_n }}
Question: {{ question }}
Answer:

Results We provide an overview of the few-shots
results in Table 6. As expected, the performance
of decoder-only models increases, while the perfor-
mance of encoder-decoder decreases5. For exam-
ple, GPT-3’s F1 increased from 66.4% to a record
83.0%. Unfortunately, these results also show that
(relatively) smaller decoder-only models do not
reach T0’s performance in a zero-shot setup.

5.4 Zero-shot with Knowledge Augmentation
The performance of GPT-3 is exceptional. How-
ever, it comes at a steep computational and envi-
ronmental cost. Moreover, as T0 has fewer param-
eters than GPT-3, it has less "space" to store world
knowledge. In this section, we try to augment T0
with external knowledge to help it bridge the per-
formance gap with GPT-3. We use two sources of
background knowledge: the entire Internet using
Bing search and the Wikipedia page of the entity.

Prompt We follow the same prompt as in the
zero-shot analysis. In addition, we augment it with
a space for background knowledge.

4This setup is similar to the start of a Twenty Questions
game where the model does not have previous examples for
the same entity.

5These models were zero-shot inference, not few-shot.
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Model Size F1 Accuracy
T0 (ZS) 11B 68.5 81.9
T0 (Bing) 11B 69.7 75.7
T0 (Wiki) 11B 79.3 86.0
GPT-3 (FS) 175B 83.0 87.9

Table 7: Augmenting T0 with background information
improves its F1 score by 10% and brings it to a compet-
itive level with GPT-3.

Text: {{ background_knowledge }}
You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Bing We run a bing search for every question
and only keep the text snippet returned by Bing.
We compare each text snippet to the question us-
ing a cross-encoder from Sentence Transformers
(Reimers and Gurevych, 2019). We then keep the
snippet with the highest score. We do not restrict
Bing, so it can also choose to return pages from
Wikipedia.

Wikipedia We chunk the Wikipedia page of each
entity into passages of around 256 tokens. Then,
we re-rank the passages using the same cross-
encoder.

Results We provide an overview of the few-shots
results in Table 7. The Bing search results are
disappointing. The F1 score barely improves by
1%. On the other hand, the Wikipedia search results
are outstanding: F1 improves by over 10% and
accuracy by 4%.

This section concludes that GPT-3 (few-shot)
is the best model for playing the answerer in a
game of Twenty Questions. However, GPT-3 is
computationally and environmentally costly. We
showed that incorporating background knowledge
from Wikipedia can improve T0’s performance to
a competitive level with GPT-3 despite having 16
times fewer parameters.

6 World Knowledge Analysis

We now use the results of the previous section to an-
alyze the world knowledge of the three best models:
GPT-3, T0, and T0 Knowledge Grounded (KG).

6.1 Knowledge Category
We list the accuracy by category of knowledge
in Table 8. The most striking result is the low
performance of the three models in the Shape &

Knowledge Type GPT-3 T0 T0-KG OPT
Shape & Size 66 56 69 60
Usage 86 82 86 75
Location 88 74 89 60
Composition 90 78 78 69
Description 81 69 73 65
Relatedness 95 94 88 79
Functioning 87 79 74 71
Appearance 91 83 83 89
Purpose 91 88 82 75

Table 8: Accuracy (%) by category of knowledge. GPT-
3 outperforms T0 on every knowledge type. Shape &
Size questions stand out as a weak spot for GPT-3 and
T0.

Size category. For example, GPT-3 has a difference
of 20% between the worst category (Shape & Size)
and the second-worst category (Usage).

On the other hand, GPT-3 and T0 can answer
questions relating to two objects or concepts ex-
ceptionally well (e.g., is it related to water or is it
a toy). Intriguingly, incorporating knowledge into
the prompt diminishes the score on relatedness for
T0-KG.

We now dig deeper into size & shape questions
and try to understand if there are specific kinds
of questions mishandled by the language models.
We list the average accuracy by questions in the
Shape & Size category in Table 9. We notice that
questions 1, 3 & 4 are not specific enough. On
which dimension should we compare the size of
the tennis ball? 6 The inter-annotator score on
Shape & Size question is 0.75, almost equivalent to
the global inter-annotator score of 0.76. We believe
humans have enough common sense to decide on
which dimension to evaluate the size of objects.

6.2 Entities

Inspired by previous research (Razeghi et al., 2022),
we look for a correlation between the average ac-
curacy of an entity and its frequency in the pre-
training data.7 We do not find any significant cor-
relation, except a small 0.05 correlation for T0.
We believe the conclusion would be different with
lesser-known objects.

We notice that ambiguous entities such as a rule8

6Is a DVD smaller than a tennis ball because of its thick-
ness?

7We use the first 10 billion tokens of the C4 dataset (Raffel
et al., 2020) to estimate the frequency of entities in the pre-
training data.

8As in a 30 cm rule/ruler
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Question GPT-3 T0 T0-KG
Is it smaller than a tennis ball? 50 55 60
Is it globe-shaped? 55 77 77
Is it bigger than a foot? 60 47 67
Can we transport it in a pocket? 62 50 50
Is it flat? 66 55 61
Is it round? 68 43 69
Is it long? 71 28 57
Is it rectangular? 72 81 72
Is it taller than a man? 78 78 71
Does it have a square shape? 80 80 100
Is it pointed? 85 71 71
Is it bigger than a bus? 100 100 100

Table 9: Accuracy (%) of GPT-3, T0, and T0-KG on
Shape & Size questions. GPT-3 struggles with compar-
ing the size of entities with the size of a tennis ball.

and a racket9 are not well managed by all models
for understandable reasons.

6.3 Knowledge Augmentation
In this section, we try to understand why Wikipedia
is a much better source of background knowledge
than Bing’s search over the Internet.

Knowledge Source We manually reviewed and
compared the background knowledge provided by
Bing and Wikipedia. We found that the knowledge
returned by Bing can be specific, whereas the game
of Twenty Questions requires general knowledge.
For example, when asked does a printer have a
seat, the obvious answer is no. However, Bing
returns a text saying [...] each used printer takes
one license seat. [...] confusing the model into
thinking printers do have seats. Another example
is the question is a litter box a weapon. The cor-
rect answer is no. Bing, however, returns a text
saying [...] cat litter box used as a weapon in fight
over prescription drugs [...] confusing the model
into thinking a litter box is a weapon. In both in-
stances, the knowledge returned by Wikipedia is
the introductory paragraph describing the entity.

Knowledge Category According to Table 8, in-
corporating background knowledge helps in Loca-
tion (+15%) and Usage (+13%) questions. On the
other hand, it hurts performance on Relatedness
questions (-6%).

This section concludes that GPT-3 performs con-
sistently on all categories of questions, except
Shape and Size. Although competitive, T0 does not
show the same consistency as GPT-3, even when
augmented with background information.

9As in a tennis racket

7 Twentle

We present an interactive website to let anyone
test the world knowledge of T0-KG by playing the
game of Twenty Questions. Inspired by Wordle,
we named our website Twentle, available at twen-
tle.com.

8 Future Work

Reducing the world to yes/no questions is not an
easy task. Our human agreement section demon-
strates that humans do not agree on all answers.
Future work is needed to compare the agreement
of humans and language models by category of
question. In this study, we limited ourselves to the
study of the answerer. However, GPT-3 could po-
tentially also play the role of the questioner. Future
work is needed to study the knowledgeability of
language models on lesser-known objects. In this
case, we anticipate that large models will also need
to leverage the web for information.

9 Conclusion

In this work, we analyzed the world knowledge
of language models through the game of Twenty
Questions. Our analysis reveals that most language
models do not have the world knowledge required
to play this game. GPT-3 is a notable exception. It
displays impressive world knowledge on all cate-
gories of questions identified, except for shape &
size questions — is it smaller than a tennis ball.
Furthermore, we showed how grounding smaller
models on information from the web improves their
knowledgeability. Through this work, we demon-
strated the need for more clarity on which model
architecture and pre-training method best captures
world knowledge.

10 Limitations

We intentionally limited our analysis to well-known
objects. We anticipate a lower performance on
lesser-known objects. Furthermore, our work uses
well-defined questions with little noise, whereas
real-world questions by humans could be more
challenging for language models to understand.
The dataset we collected could contain biases al-
ready present in our society. Unfortunately, the
same is true for the answers given by the language
model.
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Abstract

Arabic is a Semitic language which is
widely spoken with many dialects. Given
the success of pre-trained language models,
many transformer models trained on Arabic
and its dialects have surfaced. While
there have been an extrinsic evaluation of
these models with respect to downstream
NLP tasks, no work has been carried
out to analyze and compare their internal
representations. We probe how linguistic
information is encoded in the transformer
models, trained on different Arabic dialects.
We perform a layer and neuron analysis
on the models using morphological tagging
tasks for different dialects of Arabic and a
dialectal identification task. Our analysis
enlightens interesting findings such as: i) word
morphology is learned at the lower and middle
layers, ii) while syntactic dependencies are
predominantly captured at the higher layers,
iii) despite a large overlap in their vocabulary,
the MSA-based models fail to capture the
nuances of Arabic dialects, iv) we found that
neurons in embedding layers are polysemous
in nature, while the neurons in middle layers
are exclusive to specific properties.

1 Introduction

Arabic is a linguistically rich language, with its
structures realized using both concatenative and
templatic morphology. The agglutinating aspect
of the language adds to the complexity where
a given word could be formed using multiple
morphemes. For example, the word èñÒ» A 	JJ
 �®�



A 	̄

(fOsqynAkmwh1 – and we gave it to you to drink)
combines a conjunction, a verb, and three pronouns.
At another longitude, Arabic has three variants:
Classical Arabic (CA), Modern Standard Arabic
(MSA) and Dialectal Arabic (DA). While the
MSA is traditionally considered as the de facto

∗The work was done while the author was at QCRI
1Using Safe Buckwalter Arabic (SBA) encoding.

Figure 1: Data regimes of various pre-trained
Transformer models of Arabic

standard in the written medium and DA being
the predominantly spoken counterpart, this has
changed recently (Mubarak and Darwish, 2014;
Zaidan and Callison-Burch, 2014; Durrani et al.,
2014). Due to the recent influx of Social Media
platforms, dialectal Arabic also enjoys a significant
presence in the written medium.

Transfer learning using contextualized
representations in pre-trained language models
have revolutionized the arena of downstream
NLP tasks. A plethora of transformer-based
language models, trained in dozens of languages
are uploaded every day now. Arabic is no
different. Several researchers have released and
benchmarked pre-trained Arabic transformer
models such as AraBERT (Antoun et al., 2020),
ArabicBERT (Safaya et al., 2020), CAMeLBERT
(Inoue et al., 2021), MARBERT (Abdul-Mageed
et al., 2020) and QARIB (Abdelali et al., 2021) etc.
These models have demonstrated state-of-the-art
performance on many tasks as well as their
ability to learn salient features for Arabic. One
of the main differences among these models is
the genre and amount of Arabic data they are
trained on. For example, AraBERT was trained
only on the MSA (Modern Standard Arabic),
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ArabicBERT additionally used DA during training,
and CAMelBERT-mix used a combination of all
types of Arabic text for training. Multilingual
models such as mBERT and XLM are mostly
trained on Wikipedia and CommonCrawl data
which is predominantly MSA (Suwaileh et al.,
2016). Figure 1 summarizes the training data
regimes of these models.

This large variety of Arabic pre-trained
models motivates us to question how their
representations encode various linguistic
concepts? To this end, we present the first
work on interpreting deep Arabic models.
We experiment with nine transformer models
including: five Arabic BERT models, Arabic
ALBERT, Arabic Electra, and two multilingual
models (mBERT and XLM). We analyze their
representations using MSA and dialectal parts-
of-speech tagging and dialect identification tasks.
This allows us to compare the representations of
Arabic transformer models using tasks involving
different varieties of Arabic dialects.

We analyze representations of the network at
layer-level and at neuron-level using diagnostic
classifier framework (Belinkov et al., 2017; Hupkes
et al., 2018). The overall idea is to extract feature
vectors from the learned representations and train
probing classifiers towards understudied auxiliary
tasks (of predicting morphology or identifying
dialect). We additionally use the Linguistic
Correlation Analysis method (Dalvi et al., 2019a;
Durrani et al., 2020) to identify salient neurons
with respect to a downstream task. Our results
show that:

Network and Layer Analysis

• Lower and middle layers capture word
morphology

• The long-range contextual knowledge
required to solve the dialectal identification is
preserved in the higher layers

Neuron Analysis

• The salient neurons with respect to a property
are well distributed across the network

• First (embedding) and last layers of the
models contribute a substantial amount of
salient neurons for any downstream task

• The neurons of embedding layer layer are
polysemous in nature while the neurons of
middle layers specializes in specific properties

MSA vs. Dialect

• Although dialects of Arabic are closely related
to MSA, the pre-trained models trained using
MSA only do not implicitly learn nuances of
dialectal Arabic

2 Methodology

Our methodology is based on the class of
interpretation methods called as the Probing
Classifiers. The central idea is to extract the
activation vectors from a pre-trained language
model as static features. These activation vectors
are then trained towards the task of predicting
a property of interest, a linguistic task that we
would like to probe the representation against. The
underlying assumption is that if the classifier can
predict the property, the representations implicitly
encode this information. We train layer (Belinkov
et al., 2020) and neuron probes (Durrani et al.,
2022) using logistic-regression classifiers.

Formally, consider a pre-trained neural language
model M with L layers: {l1, l2, . . . , lL}. Given
a dataset D = {w1, w2, ..., wN} with a
corresponding set of linguistic annotations T =
{tw1 , tw2 , ..., twN }, we map each word wi in the
data D to a sequence of latent representations:
D M7−→ z = {z1, . . . , zN}. The layer-wise probing
classifier is trained by minimizing the following
loss function:

L(θ) = −
∑

i

logPθ(twi |wi)

where Pθ(twi |wi) = exp(θl·zi)∑
l′ exp(θl′ ·zi)

is the
probability that word i is assigned property twi .

For neuron analysis, we use Linguistic
Correlation Analysis (LCA) as described in (Dalvi
et al., 2019a). LCA is also based on the probing
classifier paradigm. However, they used elastic-net
regularization (Zou and Hastie, 2005) that enables
the selection of both focused and distributed
neurons. The loss function is as follows:

L(θ) = −
∑

i

logPθ(twi |wi) + λ1‖θ‖1 + λ2‖θ‖22

The regularization parameters λ1 and λ2 are tuned
using a grid-search algorithm. The classifier
assigns weight to each feature (neuron) which
serves as their importance with respect to a class
like Noun. We ranked the neurons based on the
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absolute weights for every class. We select salient
neurons for the task such as POS by iteratively
selecting top neurons of every class.

A minimum set of neurons is identified by
iteratively selecting top neurons that achieves
classification performance comparable (within a
certain threshold) to the Oracle – accuracy of
the classifier trained using all the features in the
network.

Data Size Tokens Vocab Type

AraBERT 23GB 2.7B 64K MSA
ArabicBERT 95GB 8.2B 32K MSA
CAMeLBERT 167B 17.3B 30K MSA/CA/DA
MARBERT 128GB 15.6B 100K MSA/DA
mBERT - 1.5B 110K MSA
QARiB 127GB 14.0B 64K MSA/DA
AraELECTRA 77GB 8.6B 64K MSA
ALBERT - 4.4B 30K MSA
XLM 2.5TB - 250K MSA

Table 1: Pretrained Models data and statistics.

3 Experimental Setup

In this section, we describe our experimental setup
including the Arabic transformer models, probing
tasks that we have used to carry the analysis and
the classifier settings.

3.1 Pre-trained Models
We select a number of Arabic transformer models,
trained using various varieties of Arabic and based
on different architectures. Table 1 provides a
summary of these models. In the following, we
describe each model and the dataset used for their
training.

AraBERT was trained using a combination of 70
million sentences from Arabic Wikipedia Dumps,
1.5B words Arabic Corpus (El-khair, 2016) and the
Open Source International Arabic News Corpus
(OSIAN) from (Zeroual et al., 2019). The final
corpus contained mostly MSA news from different
Arab regions.

ArabicBERT Safaya et al. (2020) pretrained a
BERT model using a concatenation of Arabic
version of OSCAR (Ortiz Suárez et al., 2019), a
filtered subset from Common Crawl and a dump of
Arabic Wikipedia totalling to 8.2B words.

CAMeLBERT Inoue et al. (2021) combined a
mixed collection of MSA, Dialectal and Classical
Arabic texts with a total of 17.3B tokens. They used
the data to pre-train CAMeLBERT-Mix model.

MARBERT Abdul-Mageed et al. (2020)
combined a dataset of 1B tweets that covering
mostly Arabic dialects and Arabic Gigaword 5th
Edition,2 OSCAR (Ortiz Suárez et al., 2019),
OSIAN (Zeroual et al., 2019) and Wikipedia dump
totally up to 15.6B tokens.

QARIB Abdelali et al. (2021) combined Arabic
Gigaword Fourth Edition,3 1.5B words Arabic
Corpus (El-khair, 2016), the Arabic part of Open
Subtitles (Lison and Tiedemann, 2016) and 440M
tweets collected between 2012 and 2020. The data
was processed using Farasa (Abdelali et al., 2016).

ALBERT used a subset of OSCAR (Ortiz Suárez
et al., 2019) and a dump of Wikipedia, selecting
around 4.4 Billion words (Safaya, 2020). The
model differs from BERT using factorized
embedding and repeating layers which results in a
small memory footprint (Lan et al., 2020).

AraELECTRA ELECTRA, model Clark et al.
(2020) is trained to distinguish "real" vs "fake"
input tokens generated by another neural network.
The Arabic ELECTRA was trained on 77GB of
data combining OSCAR dataset, Arabic Wikipedia
dump, the 1.5B words Arabic Corpus, the OSIAN
Corpus and Assafir news articles (Antoun et al.,
2021). Different than other models, AraELECTRA
uses a hidden layer size of 256 while all other
models have 768 neurons per layer.

Multilingual BERT Google research released
BERT multilingual base model pretrained on the
concatenation of monolingual Wikipedia corpora
from 104 languages with a shared word piece
vocabulary of 110K.

XLM Conneau et al. (2020) is a multi-
lingual version of RoBERTa, trained on 2.5TB
CommonCrawl data. The model is trained on 100
different languages.

3.2 Probing Tasks
We consider morphological tagging on a variety
of Arabic dialects and dialectal identification tasks
to analyze and compare the models. Below we
describe the task details.

POS Tagging on Arabic Treebank (ATB): The
Arabic Treebank Part1 v2.0 and Part3 v1.0 with a
total of 515k tokens labeled at the segment level
with POS tags. The data is a combination of

2LDC Catalogue LDC2011T11
3LDC Catalogue LDC2009T30
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ATB

Text , É�@ñ�JÖÏ @ è @ñ�J�Ó Pñ¢�� Z@ 	P@ é�J ��ëX 	á« Èñ�Q�
K. H. Q«@ð
Labels VBD NNP IN NN NN NN NN DT+JJ PUNC
SBA wAErb byrswl En dhcth AzAC tTwr mstwAh AlmtwASl ,

Gloss. And Peirsol expressed his surprise at the continuous development of his level ,

CRS

Text ú
× ú
ÎJ.k. ð Q�
 	ª�Ë@ ø
 ñ 	k


@ ¡	� !

Labels VERB NOUN+PRON DET+ADJC PREP+VERB+PREP+PRON NOUN PUNC
SBA nT Oxwy AlSgyr wjbly my !

Gloss. My little brother jumped and brought me water !

DIA

Text 	áÊ�JÓ ú

	̄ AÓ ú
ÎË @ iJ
 	JÓ �A 	K ú


	̄ ð , 	áÊ�JÓ ú

	̄ AÓ hA 	JÓ �A 	K ú


	̄

Labels ADV NOUN ADJ PART ADV NOUN PUNC CONJ ADV NOUN ADJ PART PART ADV NOUN
SBA fy nAs mnAH mA fy mtln , w fy nAs mnyH Ally mA fy mtln

Gloss. There are good people who are unparalleled, and there are people that it is good they are unparalleled.

DID

Text ø
 ð


@ �é�ñ�® 	®Ó Èñ�̄


@ @XYm.× éË !
Labels lang1 lang1 ambiguous lang2 lang2 other
SBA lh mjddA Oqwl mfqwsp Owy

Gloss. For him again I say (I am) very upset !

GMR

Text ��Y� �IÊ�̄ �I¢Ê 	« AÓ A 	K @ : 	­J
�
Labels NOUN_PROP:MS PUNC:- PRON:1S PART:- VERB:P1S VERB:P1S NOUN:MS
SBA syf : AnA mA glTt qlt Sdq

Gloss. Saif: I wasn’t wrong, I said the truth.

Table 2: Examples of Arabic annotated text and their corresponding labels for each task.

newswire text from An-Nahar and Agence France
Presse corpus (Maamouri et al., 2004). The data is
labeled with 42 distinct tags.

Gumar POS Tagging on Gulf Arabic (GMR):
Khalifa et al.( 2020) compiled a collection of
15,225 sentences from eight different novels
written in the Emirati Arabic dialect from the
Gumar Corpus (Khalifa et al., 2018). The data
was manually annotated for tokenization, part-
of-speech, lemmatization, spelling adjustment,
English glosses and sentence level dialect
identification, using 169 tags.

Curras POS Tagging on Palestinian Arabic
dialect (CRS): Jarrar et al.(2017) collected around
5K sentences written in Palestinian Arabic dialect
from web blogs, Twitter and Facebook comments
and transcripts from a TV Shows Watan Aa Watar.
The sentences were manually annotated for part-
of-speech (POS), stem, prefix, suffix, lemma, and
gloss using 260 tags.

POS Multidialects (DIA): A total of 1.4k
tweets from four Arabic dialects, namely
Egyptian (EGY), Levantine (LEV), Gulf
(GLF), and Maghrebi (MGR). The tweets were
morphologically tagged (Samih et al., 2017) using
a reduced subset of 22 tags.

Dialect IDentification (DID): This task
is related to code switching and language
identification (LID) between MSA and Egyptian
dialect on social media content. The data
comprises intrasentential code switched sentences

(mixing languages between utterances) used for the
Second Shared Task on Language Identification in
Code-Switched Data. The data contains over 11k
sentences, where each token in the sentences is
labeled with one of the eight labels:lang1, lang2,
fw, mixed, unk, ambiguous, other and named
entities (ne) (Molina et al., 2016).

Figure2 shows examples for each of the probing
tasks with their respective labels.

3.3 Post-hoc Classifier

We used the NeuroX toolkit (Dalvi et al., 2019b)
to perform our analysis. Our probe is a linear
classifier with categorical cross-entropy loss,
optimized by Adam (Kingma and Ba, 2014). For
neuron-analysis, the classifier additionally used the
elastic-net regularization (Zou and Hastie, 2005).
The regularization weights are trained using grid-
search algorithm. Training is run with shuffled
mini-batches of size 512 and stopped after 10
epochs. Linear classifiers are a popular choice
in analyzing deep NLP models due to their better
interpretability (Qian et al., 2016). Hewitt and
Liang (2019) have also shown linear probes to have
higher Selectivity, a property deemed desirable for
more interpretable probes. We perform control task
experiments to ensure that our probes are reflective
of the linguistic knowledge that representations
capture. For sub-word based models, we use the
average activation value (Durrani et al., 2019) to
be the representative of the word. We additionally
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Task ATB CRS DIA DID GMR
Avg. Acc.

Model Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel.
AraBERT 93.9 48.1 77.3 22.1 79.0 58.1 84.7 37.4 90.4 06.4 85.06
ArabicBERT 95.2 48.2 80.5 24.7 83.6 50.4 91.2 34.7 91.6 05.1 88.43
CAMelBERT 95.8 39.2 82.9 23.6 86.0 37.2 92.0 21.3 93.0 05.6 89.94
MARBERT 95.6 51.4 84.2 27.5 84.8 48.8 93.1 33.9 93.4 07.3 90.22
QARiB 95.8 50.6 84.0 28.9 85.4 45.0 93.3 28.8 93.3 06.7 90.38
mBERT 94.4 48.8 73.7 22.7 77.6 58.4 81.7 36.3 88.0 04.4 83.08
AraELECTRA 94.4 46.9 72.7 28.4 79.0 56.2 87.9 34.3 89.1 08.1 84.64
ALBERT 95.2 40.9 77.0 28.3 82.1 39.8 88.3 27.1 90.2 09.4 86.56
XLM 95.7 43.7 75.0 20.6 78.9 42.1 86.7 29.3 88.2 06.0 84.90

Table 3: Classifier performance on Test sets using top layers

Task ATB CRS DIA DID GMR
Threshold δ 5% 10% 10% 7% 5%
Model Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel.
AraBERT 93.4 48.8 82.1 33.5 79.3 39.9 86.0 21.5 89.9 18.1
ArabicBERT 94.0 50.8 83.6 31.6 83.3 44.9 90.1 26.3 91.0 12.5
CAMelBERT 94.9 51.1 86.1 37.0 85.1 47.5 91.0 27.2 92.6 22.6
MARBERT 94.5 51.6 86.2 30.0 84.2 48.5 91.6 29.2 92.3 15.0
QARiB 95.0 52.7 86.1 31.0 83.6 46.7 91.7 30.0 92.4 11.6
mBERT 94.1 48.5 78.4 33.1 77.5 37.7 83.2 17.0 87.6 13.4
AraELECTRA 91.2 53.3 79.0 33.9 79.4 45.0 88.2 25.6 87.6 13.1
ALBERT 94.7 56.8 80.7 33.7 81.8 47.4 88.5 25.9 89.8 12.0
XLM 95.3 51.8 78.5 27.9 79.0 44.5 86.5 21.7 88.0 12.4

Table 4: Classifier performance on Test sets using top neurons as features

normalize the embeddings using znorm as it has
shown to provide better ranking of neurons with
respect to a property (Sajjad et al., 2021a).

4 Analysis and Discussion

Our goal is to carry out a comparative investigation
of the knowledge encoded in different Arabic
transformer models. First we compare the
representations in terms of how much linguistic
information is preserved in the network using the
overall accuracy on the understudied auxiliary
tasks. Then we analyze how such information is
preserved across individual layers of the model.
Lastly, we analyze the distribution of neurons
across the model with respect to these tasks.

4.1 Network Analysis

We use the feature vectors4 generated from
different dialects of Arabic to train post-
hoc classifiers towards the task of predicting
morphology in these dialects or predicting the
dialect themselves. Table 3 gives accuracy
of the classifiers on different dialectal tasks.
Firstly, the high accuracy numbers show that

4We concatenated the features from all layers of the
network to train the classifier.

the representations learn non-trivial linguistic
knowledge. We found all the models to do
well on the task of predicting MSA morphology
unsurprisingly, since all these models have
been trained on a large amount of MSA data.
Contrastingly, the performance varied a lot on
the dialectal tasks with different models giving
optimal performance on different dialects. Note
that the models that were trained only using MSA
performed much worse despite the fact that MSA
and dialect have a significant vocabulary overlap.
This shows that to capture specific dialectal
nuances these transformer models need to train
on dialectal data. Comparing the models, we
found dialectal models (QARiB, MARBERT
and CAMeLBERT) to perform considerably well
across all the tasks. Lastly the high selectivity
numbers in Table 3 validate the fact that our
classifiers are not memorizing the tasks and are
a true reflection of the knowledge captured within
the underlying representations.

4.2 Layer-wise Analysis
We now analyze how the understudied linguistic
knowledge is distributed across the layers. We
train a classifier for each probing task using
representations of individual layers as features. The
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(a) CRS (b) DID

Figure 2: Layer-wise accuracy for different selected tasks.

performance of the classifier serves as a proxy
to the amount of task knowledge learned in each
layer representation. Figure 2 provides per-layer
accuracy for the CRS (morphological tagging for
Palestinian dialect) and DID (Dialect Identification)
tasks.5 We found that the word morphology is
captured predominantly in the lower layers of
the model, retained in the middle layers before
declining in the final layers. The higher layers
are reserved for complex phenomenon such
as capturing non-local dependencies. This is
confirmed from our DID results. Identifying dialect
requires learning non-local dependencies and
sentence level phenomenon to accurately predict
the dialect. For example, a lexical form can belong
to two different dialects depending on the context to
disambiguate the dialect of the word. For example,
�ék. Ag “HAjp” (thing or need) is MSA in the

context: 	à


B �ék. Ag ú


	̄ �I�Ë “lst fy HAjp lOn” (I am

not in need to) or Egyptian: 	áÓ I. ª�


@ �ék. Ag ���
 	®Ó

“mfyc HAjp OSEb mn” (there is no thing difficult
than). The contextual knowledge is essential to
disambiguate in such cases.

4.3 Neurons Analysis
We now study how the information is spread
across neurons instead of layer by carrying a fine-
grained analysis. We discover neurons that learn
a particular linguistic property using LCA (Dalvi
et al., 2019a) and analyze: i) how many neurons
can sufficiently capture a concept, ii) how these
neurons are distributed across the layers. LCA
provides a ranked list of neurons with respect to
the understudied property. We select a minimumal

5We limit the presentation to fewer models for clarity
purposes. Our observations consistently hold for all dialectal
tasks. See Appendix for complete results.

set of top neurons from the ranked list that yield
close to the oracle performance.6

Minimal Neurons: We found 5% neurons to be
optimal for ATB, and GMR; while 10% for both
CRS and DIA tasks, due to their more granular
tag-set. For the DID task, we found 7% neurons
to be optimal (Table 4 shows results – please
also see Appendix for a more detailed result
using different neuron thresholds). Our results
show that a small subset of features can achieve
close to oracle performance. This entails that
re-trainable features are available in the network
as also shown by Dalvi et al. (2020). Such
a finding entails interesting frontier in efficient
feature-based transfer learning, which is considered
as a viable alternative to the traditional fine-tuning
based transfer learning (Peters et al., 2019; Durrani
et al., 2021; Alrowili and Shanker, 2021).

Neuron Distribution: Let us now turn our
attention towards how these neurons are distributed
in the network. In Figure 3 we plot salient
neurons across the layers (See Appendix for all
the tasks). A dominant pattern that we observed
was that the embedding and final layers of the
model consistently contribute the most number
of salient neurons. This entails that while the
neurons in middle layers capture intricate details
of the task, the input and output layers of the
model that are closer to the actual words possess
most lexical information required to for accurate
predictions. The model uses the embedding layer
to focus on more localized information and final
layers to capture contextual dependencies. An
exception to this overall pattern was the ALBERT

6Accuracy when using the entire network or best layer,
whichever is higher.
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(a) ATB (b) DIA (c) DID

Figure 3: Distribution of selected neurons across the layers

model, where the embedding layer has close
to zero contribution in the salient neurons and
relatively higher number of neurons from the initial
contextualized layers. Recall that ALBERT has a
different architecture where parameters are shared
across the encoder layers. Moreover the model
factorizes the embedding layer. These architectural
choices perhaps explain the difference of neuron
distribution pattern. A detailed analysis of word
embedding layers using lexical tasks such as word
similarity and word relatedness is required to fully
understand this.

Property Distribution: We have seen how
salient neurons distribute across the network. Now
we analyze how these neurons distribute across
sub-properties within a task. A morphological
tagging task for example is composed of different
properties such as Noun, Verb, Adjective etc. In
Figure 4 we plot the number of salient neurons
required to capture different properties on the task
of predicting classes in the ATB task. We observed
that closed class categories such as personal
pronoun (PRP) are localized to fewer neurons,
where as the open-class words such as past-
tense verbs (VBD) that exhibit a variety of roles
in different contexts require a large number of
neurons. We found this observation to be true
for all the models across different dialectal tasks
(Please see Appendix for more results).

Layer-wise Property Distribution: We also
analyzed how individual properties are encoded
across the layers in the network, Do they have
similar neuron distribution pattern or are the
specific properties learned more on higher layers
than lower layers and vice versa? Figure 5 shows
the distribution of selected neurons of ALBERT,
AraBERT and QARiB for a few properties. We
observed a very consistent pattern to the overall

neuron distribution that we saw in Figure 3.
For most of the properties salient neurons were
contributed from the embedding and final layers,
and middle layers contributed less than 20 neurons.
Another interesting pattern to be noted is that noun
neurons were more prevalent in the embedding
layer (layer 1-2 for ALBERT) but verb neurons
were dominantly found in the final layers. Verbs
are considered to be structural center in linguistic
theories as they connect to all other syntactic
units in a sentence (Hudson, 2010). This further
reinforces our result that the higher layers of the
model capture long distance dependencies.

Polysemous Neurons: Neurons are multi-
variate in nature and may capture multiple
concepts. For example Bau et al. (2019)
discovered switch neurons that activate positively
for present-tense verbs and negatively for the
past-tense verbs in LSTM encoders. We also
analyzed the overlaps between salient neurons
that learn different linguistic properties in an
attempt to discover polysemous neurons. Figure 6
shows the overlap of neurons across properties
in different layers in the QARiB model. The
zeros means that none of the top neurons between
the properties overlap. Note that there is a high
concentration of overlapping neurons between
determiners (DT), adjectives (JJ) and nouns (NN)
or between determiners and verbs. The intersection
was around 54% in the case of Determiner “DT”
and Noun “NN”. We believe this is an artifact of
concatenative morphology that Arabic exhibits,
where it is common for affixes such as preposition
or determiner to join with nouns or adjectives to
form composite constructions. We also observed
that the number of polysemous neurons exist more
dominantly in the embedding layer. Higher layers
(Exp. Figure 6e and 6f) show less shared and
overlapping neurons.
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Figure 4: Distribution of neurons per property (ATB)

(a) ALBERT (b) AraBERT (c) QARiB

Figure 5: Property-wise distribution of neurons across the layers in ATB

(a) Layer 0 (b) Layer 1 (c) Layer 5

(d) Layer 6 (e) Layer 11 (f) Layer 12

Figure 6: QARiB: Neurons overlap across the ATB properties
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5 Related Work

Work done on interpreting deep NLP models
can be broadly classified into Concept Analysis
and Attribution Analysis. The former thrives
on post-hoc decomposability, where we analyze
representations to uncover linguistic (and non-
linguistic) phenomenon that are captured as the
network is trained towards any NLP task (Conneau
et al., 2018; Liu et al., 2019; Tenney et al.,
2019; Sajjad et al., 2022; Dalvi et al., 2022)
and the latter characterize the role of model
components and input features towards a specific
prediction (Linzen et al., 2016; Gulordava et al.,
2018; Marvin and Linzen, 2018). Our work
falls into the former category. We carry out
a layer and neuron-wise analysis on the Arabic
transformer models. We used Diagnostic classifiers
(Belinkov et al., 2017) to train layer and neuron-
wise probes towards predicting linguistic properties
of interest. To the best of our knowledge this is
the first work on analyzing Arabic transformer
models. Suau et al. (2020) used max-pooling
to identify relevant neurons (aka Expert units)
in pre-trained models, with respect to a specific
concept (for example word-sense). Mu and
Andreas (2020) proposed a Masked-based Corpus
Selection method to determine important neurons
with respect to a concept. See Sajjad et al. (2021b)
for a comprehensive survey of these techniques.
We used the Linguistic Correlation Analysis of
Dalvi et al. (2019a) to perform neuron analysis.

6 Conclusion and Future Work

In this paper we carry out a post-hoc analysis on
a number of Arabic transformer models using five
linguistic tasks. Our results enlighten interesting
insights: i) neural networks learn non-trivial
amount of linguistic knowledge with lower and
middle layers capturing word morphology and
higher layers learning more universal phenomenon,
ii) we found that salient neurons are distributed
across the network, but some layers contribute
more salient neurons towards a task, iii) we found
some neurons to be polysemous in nature while
other capturing very specialized properties, iv)
lastly we showed that MSA-based models do not
capture dialectal nuances despite having a large
overlap with dialects. For future work, we aim
to expand this analysis to include more tasks and
explore related languages such as the families of
Semitic, Germanic or Latin languages.
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A Appendix

Table 5 shows the performance loss for different thresholds. Highlighted thresholds were selected based
on the 1% average performance loss. For the case of DIA, some overfitting is noticeable. Such case is
reported in literature where the classifiers with large contextualized vectors tend to overfit when supervised
data is insufficient (Hameed, 2018).
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ATB

3.00% 0.914 0.915 0.929 0.916 0.924 0.924 0.868 0.935 0.938
5.00% 0.934 0.940 0.949 0.945 0.950 0.941 0.912 0.947 0.953
7.00% 0.939 0.949 0.957 0.952 0.957 0.945 0.934 0.953 0.957
10.00% 0.943 0.953 0.960 0.957 0.961 0.947 0.945 0.954 0.960
20.00% 0.945 0.956 0.960 0.958 0.962 0.948 0.954 0.953 0.961
50.00% 0.940 0.953 0.955 0.954 0.958 0.941 0.957 0.948 0.955
100.00% 0.937 0.954 0.957 0.955 0.955 0.938 0.954 0.947 0.953
3.00% 0.769 0.767 0.803 0.784 0.787 0.725 0.658 0.763 0.714
5.00% 0.798 0.809 0.834 0.831 0.828 0.757 0.723 0.791 0.755
7.00% 0.791 0.811 0.842 0.840 0.845 0.755 0.789 0.782 0.761
10.00% 0.821 0.836 0.861 0.862 0.861 0.784 0.790 0.807 0.785
20.00% 0.822 0.844 0.868 0.864 0.866 0.796 0.824 0.809 0.797
50.00% 0.804 0.827 0.858 0.857 0.861 0.776 0.825 0.792 0.792

CRS

100.00% 0.788 0.824 0.839 0.845 0.847 0.763 0.816 0.779 0.780
3.00% 0.753 0.780 0.798 0.766 0.783 0.732 0.683 0.779 0.753
5.00% 0.774 0.812 0.835 0.809 0.820 0.748 0.747 0.808 0.767
7.00% 0.788 0.831 0.847 0.830 0.834 0.757 0.776 0.815 0.783
10.00% 0.793 0.833 0.851 0.842 0.836 0.775 0.794 0.818 0.790
20.00% 0.794 0.840 0.857 0.850 0.851 0.768 0.809 0.814 0.806
50.00% 0.784 0.832 0.840 0.844 0.847 0.752 0.814 0.798 0.799

DIA

100.00% 0.770 0.818 0.831 0.826 0.829 0.734 0.803 0.790 0.776
3.00% 0.829 0.876 0.879 0.879 0.885 0.809 0.840 0.864 0.833
5.00% 0.854 0.892 0.897 0.907 0.908 0.821 0.868 0.881 0.860
7.00% 0.860 0.901 0.910 0.916 0.917 0.832 0.882 0.885 0.865
10.00% 0.872 0.905 0.914 0.918 0.920 0.837 0.887 0.892 0.878
20.00% 0.880 0.908 0.917 0.922 0.923 0.846 0.900 0.893 0.878
50.00% 0.876 0.902 0.909 0.915 0.915 0.840 0.906 0.888 0.871

DID

100.00% 0.864 0.892 0.896 0.903 0.903 0.823 0.906 0.877 0.858
3.00% 0.881 0.891 0.913 0.907 0.912 0.856 0.833 0.885 0.856
5.00% 0.899 0.910 0.926 0.923 0.924 0.876 0.876 0.898 0.880
7.00% 0.913 0.925 0.929 0.936 0.934 0.892 0.892 0.909 0.891
10.00% 0.908 0.920 0.931 0.930 0.929 0.890 0.901 0.905 0.897
20.00% 0.907 0.920 0.926 0.929 0.925 0.891 0.914 0.904 0.898
50.00% 0.899 0.909 0.918 0.919 0.915 0.876 0.911 0.889 0.884

GMR

100.00% 0.890 0.900 0.910 0.909 0.908 0.865 0.901 0.880 0.878

Table 5: Performance per models using different threshold δ

(a) ATB (b) DIA (c) GMR

Figure 7: Layer-wise accuracy for ATB, DIA, GMR tasks.
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(a) ATB

(b) CRS

(c) DIA (d) DID

(e) GMR

Figure 8: Distribution of neurons per property

(a) ATB (b) CRS (c) DIA

(d) DID (e) GMR

Figure 9: Distribution of selected neurons across the layers
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Abstract

The automatic scoring of summaries is impor-
tant as it guides the development of summa-
rizers. Scoring is also complex, as it involves
multiple aspects such as fluency, grammar, and
even textual entailment with the source text.
However, summary scoring has not been con-
sidered a machine learning task to study its ac-
curacy and robustness. In this study, we place
automatic scoring in the context of regression
machine learning tasks and perform evasion
attacks to explore its robustness. Attack sys-
tems predict a non-summary string from each
input, and these non-summary strings achieve
competitive scores with good summarizers on
the most popular metrics: ROUGE, METEOR,
and BERTScore. Attack systems also "outper-
form" state-of-the-art summarization methods
on ROUGE-1 and ROUGE-L, and score the
second-highest on METEOR. Furthermore, a
BERTScore backdoor is observed: a simple
trigger can score higher than any automatic
summarization method. The evasion attacks in
this work indicate the low robustness of cur-
rent scoring systems at the system level. We
hope that our highlighting of these proposed
attacks will facilitate the development of sum-
mary scores.

1 Introduction

A long-standing paradox has plagued the task of
automatic summarization. On the one hand, for
about 20 years, there has not been any automatic
scoring available as a sufficient or necessary condi-
tion to demonstrate summary quality, such as ade-
quacy, grammaticality, cohesion, fidelity, etc. On
the other hand, contemporaneous research more
often uses one or several automatic scores to en-
dorse a summarizer as state-of-the-art. More than
90% of works on language generation neural mod-
els choose automatic scoring as the main basis,
and about half of them rely on automatic scoring
only (van der Lee et al., 2021). However, these

I wrote a summary
 of a document.

I'm here to rate this
 summary you wrote.

Figure 1: Automatic summarization (left) and automatic
scoring (right) should be considered as two systems of
the same rank, representing conditional language gener-
ation and natural language understanding, respectively.
As a stand-alone system, the accuracy and robustness of
automatic scoring are also important. In this study, we
create systems that use bad summaries to fool existing
scoring systems. This work shows that optimizing to-
wards a flawed scoring does more harm than good, and
flawed scoring methods are not able to indicate the true
performance of summarizers, even at a system level.

scoring methods have been found to be insuffi-
cient (Novikova et al., 2017), oversimplified (van
der Lee et al., 2021), difficult to interpret (Sai et al.,
2022), inconsistent with the way humans assess
summaries (Rankel et al., 2013; Böhm et al., 2019),
or even contradict each other (Gehrmann et al.,
2021; Bhandari et al., 2020).

Why do we have to deal with this paradox? The
current work may not have suggested that summa-
rizers assessed by automatic scoring are de facto
ineffective. However, optimizing for flawed evalua-
tions (Gehrmann et al., 2021; Peyrard et al., 2017),
directly or indirectly, ultimately harms the develop-
ment of automatic summarization (Narayan et al.,
2018; Kryscinski et al., 2019; Paulus et al., 2018).
One of the most likely drawbacks is shortcut learn-
ing (surface learning, Geirhos et al., 2020), where
summarizing models may fail to generate text with
more widely accepted qualities such as adequacy
and authenticity, but instead pleasing scores. Here,
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we quote and adapt1 this hypothetical story by
Geirhos et al..

"Alice loves literature. Always has, proba-
bly always will. At this very moment, how-
ever, she is cursing the subject: After spend-
ing weeks immersing herself in the world of
Shakespeare’s The Tempest, she is now faced with
a number of exam questions that are (in her opin-
ion) to equal parts dull and difficult. ’How many
times is Duke of Milan addressed’... Alice notices
that Bob, sitting in front of her, seems to be doing
very well. Bob of all people, who had just boasted
how he had learned the whole book chapter by rote
last night ..."

According to Geirhos et al., Bob might get bet-
ter grades and consequently be considered a better
student than Alice, which is an example of surface
learning. The same could be the case with auto-
matic summarization, where we might end up with
significant differences between expected and ac-
tual learning outcomes (Paulus et al., 2018). To
avoid going astray, it is important to ensure that the
objective is correct.

In addition to understanding the importance of
correct justification, we also need to know what
caused the fallacy of the justification process for
these potentially useful summarizers. There are
three mainstream speculations that are not mutually
exclusive. (1) The transition from extractive sum-
marization to abstractive summarization (Kryscin-
ski et al., 2019) could have been underestimated.
For example, the popular score ROUGE (Lin, 2004)
was originally used to judge the ranking of sen-
tences selected from documents. Due to constraints
on sentence integrity, the generated summaries can
always be fluent and undistorted, except some-
times when anaphora is involved. However, when
it comes to free-form language generation, sen-
tence integrity is no longer guaranteed, but the
metric continues to be used. (2) Many metrics,
while flawed in judging individual summaries, of-
ten make sense at the system level (Reiter, 2018;
Gehrmann et al., 2021; Böhm et al., 2019). In other
words, it might have been believed that few sum-
marization systems can consistently output poor-
quality but high-scoring strings. (3) Researchers
have not figured out how humans interpret or un-
derstand texts (van der Lee et al., 2021; Gehrmann
et al., 2021; Schluter, 2017), thus the decision about
how good a summary really is varies from person

1We underline adaptations.

to person, let alone automated scoring. In fact,
automatic scoring is more of a natural language
understanding (NLU) task, a task that is far from
solved. From this viewpoint, automatic scoring
itself is fairly challenging.

Nevertheless, the current work is not to advocate
(and certainly does not disparage) human evalua-
tion. Instead, we argue that automatic scoring itself
is not just a sub-module of automatic summariza-
tion, and that automatic scoring is a stand-alone
system that needs to be studied for its own accu-
racy and robustness. The primary reason is that
NLU is clearly required to characterize summary
quality, e.g., semantic similarity to determine ade-
quacy (Morris, 2020), or textual entailment (Dagan
et al., 2006) to determine fidelity. Besides, sum-
mary scoring is similar to automated essay scor-
ing (AES), which is a 50-year-old task measuring
grammaticality, cohesion, relevance etc. of writ-
ten texts (Ke and Ng, 2019). Moreover, recent
advances in automatic scoring also support this
argument well. Automatic scoring is gradually
transitioning from well-established metrics measur-
ing N-gram overlap (BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), etc.) to emerging metrics aimed at
computing semantic similarity through pre-trained
neural models (BERTScore (Zhang et al., 2019b),
MoverScore (Zhao et al., 2019), BLEURT (Sellam
et al., 2020), etc.) These emerging scores exhibit
two characteristics that stand-alone machine learn-
ing systems typically have: one is that some can
be fine-tuned for human cognition; the other is that
they still have room to improve and still have to
learn how to match human ratings.

Machine learning systems can be attacked. At-
tacks can help improve their generality, robustness,
and interpretability. In particular, evasion attacks
are an intuitive way to further expose the weak-
nesses of current automatic scoring systems. Eva-
sion attack is the parent task of adversarial attack,
which aims to make the system fail to correctly
identify the input, and thus requires defence against
certain exposed vulnerabilities.

In this work, we try to answer the question: do
current representative automatic scoring systems
really work well at the system level? How hard
is it to say they do not work well at the system
level? In summary, we make the following major
contributions in this study:

• We are the first to treat automatic summariza-
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System Summary Document
Gold Kevin Pietersen was sacked by England 14 months ago after Ashes defeat. Batsman scored

170 on his county cricket return for Surrey last week. Pietersen wants to make a sensational
return to the England side this year. But Andrew Flintoff thinks time is running out for him to
resurrect career. (ROUGE-1, ROUGE-2, ROUGE-L, METEOR, BERTScore)

Andrew Flintoff fears Kevin Pietersen is
’running out of time’ to resurrect his England
career. The dual Ashes-winning all-rounder is
less convinced, however, about Pietersen’s
prospects of forcing his way back into Test
contention. Kevin Pietersen scored 170 for
Surrey in The Parks as he bids to earn a recall
to the England squad... ... Flintoff senses he
no longer has age on his side. Pietersen has
not featured for England since he was
unceremoniously sacked 14 months ago. ... ...
Flintoff said ... ’If he’d started the season last
year with Surrey, and scored run after run and
put himself in the position... whereas now I
think he’s looking at the Ashes ... ... you get
the sense everyone within the England set-up
wants him as captain,’ he said.’ ... The former
England star is hoping to win back his Test
place with a return to red ball cricket. ... ...
’this stands up as a competition.’

Good (Liu
and Liu,
2021)

Kevin pietersen scored 170 for surrey against mccu oxford. Former england star andrew flintoff
fears pietersen is ’running out of time’ to resurrect his england career. Pietersen has been
surplus to requirements since being sacked 14 months ago. Flintoff sees a bright future for
’probably the premier tournament’ in this country. (55.45, 18.18, 41.58, 40.03, 85.56)

Broken Andrew Flintoff fears Kevin Pietersen is running out of time to resurrect his England ca-
reer Flintoff. Pietersen scored 170 for Surrey in The. Former England star Andrew. bats-
man has been . since being sacked 14 months ago after. three in the. the Ashes and he s.
> (56.84, 21.51, 44.21, 47.26, 85.95)

A dot . (0, 0, 0, 0, 88.47)
Scrambled
code

\x03\x18$\x18...\x03$\x03|...\x0f\x01<<$$\x04...\x0e \x04#
$...\x0f\x0f\x0f...\x0e...\x0f...\x0f\x0f$\x0f \x04\x0f\x0f
(many tokens omitted) (0, 0, 0, 0, 87.00)

Scrambled
code +
broken

\x03\x18$\x18...\x03$\x03|...\x0f\x01<<$$\x04...\x0e \x04#
$...\x0f\x0f\x0f...\x0e...\x0f...\x0f\x0f$\x0f \x04\x0f\x0f...
Andrew Flintoff fears Kevin Pietersen is running out of time to resurrect his England career
Flintoff. Pietersen scored 170 for Surrey in The. Former England star Andrew. batsman has
been . since being sacked 14 months ago after. three in the. the Ashes and he s. (many tokens
omitted) (56.84, 21.51, 44.21, 47.26, 87.00)

Table 1: We created non-summarizing systems, each of which produces bad text when processing any document.
Broken sentences get higher lexical scores; non-alphanumeric characters outperform good summaries on BERTScore.
Concatenating two strings produces equally bad text, but scores high on both. The example is from CNN/DailyMail
(for visualization, document is abridged to keep content most consistent with the corresponding gold summary).

tion scoring as an NLU regression task and
perform evasion attacks.

• We are the first to perform a universal, tar-
geted attack on NLP regression models.

• Our evasion attacks support that it is not dif-
ficult to deceive the three most popular auto-
matic scoring systems simultaneously.

• The proposed attacks can be directly applied
to test emerging scoring systems.

2 Related Work

2.1 Evasion Attacks in NLP

In an evasion attack, the attacker modifies the input
data so that the NLP model incorrectly identifies
the input. The most widely studied evasion at-
tack is the adversarial attack, in which insignificant
changes are made to the input to make "adversar-
ial examples" that greatly affect the model’s out-
put (Szegedy et al., 2014). There are other types of
evasion attacks, and evasion attacks can be classi-
fied from at least three perspectives. (1) Targeted
evasion attacks and untargeted evasion attacks (Cao
and Gong, 2017). The former is intended for the
model to predict a specific wrong output for that ex-
ample. The latter is designed to mislead the model
to predict any incorrect output. (2) Universal at-
tacks and input-dependent attacks (Wallace et al.,
2019; Song et al., 2021). The former, also known
as an "input-agnostic" attack, is a "unique model

analysis tool". They are more threatening and ex-
pose more general input-output patterns learned by
the model. The opposite is often referred to as an
input-dependent attack, and is sometimes referred
to as a local or typical attack. (3) Black-box attacks
and white-box attacks. The difference is whether
the attacker has access to the detailed computation
of the victim model. The former does not, and the
latter does. Often, targeted, universal, black-box
attacks are more challenging. Evasion attacks have
been used to expose vulnerabilities in sentiment
analysis, natural language inference (NLI), auto-
matic short answer grading (ASAG), and natural
language generation (NLG) (Alzantot et al., 2018;
Wallace et al., 2019; Song et al., 2021; Filighera
et al., 2020, 2022; Zang et al., 2020; Behjati et al.,
2019).

2.2 Universal Triggers in Attacks on
Classification

A prefix can be a universal trigger. When a prefix
is added to any input, it can cause the classifier to
misclassify sentiment, textual entailment (Wallace
et al., 2019), or if a short answer is correct (Fil-
ighera et al., 2020). These are usually untargeted
attacks in a white-box setting2, where the gradients
of neural models are computed during the trigger
search phase.

2When the number of categories is small, the line between
targeted and non-targeted attacks is blurred, especially when
there are only two categories.
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Wallace et al. also used prefixes to trigger a read-
ing comprehension model to specifically choose an
odd answer or an NLG model to generate some-
thing similar to an egregious set of targets. These
two are universal, targeted attacks, but are mainly
for classification tasks. Given that automatic scor-
ing is a regression task, more research is needed.

2.3 Adversarial Examples Search for
Regression Models

Compared with classification tasks in NLP, regres-
sion tasks (such as determining text similarity) are
fewer and less frequently attacked. For example,
the Universal Sentence Encoder (USE, Cer et al.,
2018) and BERTScore (Zhang et al., 2019b) are
often taken as two constraints when searching ad-
versarial examples for other tasks (Alzantot et al.,
2018). However, these regression models may also
be flawed, vulnerable or not robust, which may
invalidate the constraints (Morris, 2020).

Morris (2020) shows that adversarial attacks
could also threaten these regression models. For
example, Maheshwary et al. (2021) adopt a black-
box setting to maximize the semantic similarity
between the altered input text sequence and the
original text. Similar attacks are mostly input-
dependent, probably because these regression mod-
els are mostly used as constraints. In contrast, uni-
versal attacks may better reveal the vulnerabilities
of these regression models.

2.4 Victim Scoring Systems
Every (existing) automatic summary scoring is a
monotonic regression model. Most scoring requires
at least one gold-standard text to be compared to the
output from summarizers. One can opt to combine
multiple available systems in one super system (La-
montagne and Abi-Zeid, 2006). We will focus on
the three most frequently used systems, including
rule-based systems and neural systems. ROUGE
(Recall-Oriented Understudy for Gisting Evalua-
tion Lin, 2004) measures the number of overlap-
ping N-grams or the longest common subsequence
(LCS) between the generated summary and a set of
gold reference summaries. Particularly, ROUGE-1
corresponds to unigrams, ROUGE-2 to bigrams,
and ROUGE-L to LCS. F-measures of ROUGE are
often used (See et al., 2017). METEOR (Banerjee
and Lavie, 2005) measures overlapping unigrams,
equating a unigram with its stemmed form, syn-
onyms, and paraphrases. BERTScore (Zhang et al.,
2019b) measures soft overlap between two token-

aligned texts, by selecting alignments, BERTScore
returns the maximum cosine similarity between
contextual BERT (Devlin et al., 2019) embeddings.

2.5 Targeted Threshold for Attacks
We use a threshold to determine whether a targeted
attack on the regression model was successful. In-
tuitively, the threshold is given by the scores of the
top summarizers, and we consider our attack to be
successful if an attacker obtains a score higher than
the threshold using clearly inferior summaries. We
use representative systems that once achieved the
state-of-the-art in the past five years: Pointer Gener-
ator (See et al., 2017), Bottom-Up (Gehrmann et al.,
2018), PNBERT (Zhong et al., 2019), T5 (Raffel
et al., 2019), BART (Lewis et al., 2020), and Sim-
CLS (Liu and Liu, 2021).

3 Universal Evasion Attacks

We develop universal evasion attacks for individ-
ual scoring system, and make sure that the com-
bined attacker can fool ROUGE, METEOR, and
BERTScore at the same time. It incorporates two
parts, a white-box attacker on ROUGE, and a
black-box universal trigger search algorithm for
BERTScore, based on genetic algorithms. ME-
TEOR can be attacked directly by the one designed
for ROUGE. Concatenating output strings from
black-box and white-box attackers leads to a sole
universal evasion attacking string.

3.1 Problem Formulation
Summarization is conditional generation. A system
σ that performs this conditional generation takes an
input text (a) and outputs a text (ŝ), i.e., ŝ = σ(a).
In single-reference scenario, there is a gold refer-
ence sequence sref. A summary scoring system γ
calculates the "closeness" between sequence ŝ and
sref. In order for a scoring system to be sufficient to
justify a good summarizer, the following condition
should always be avoided:

γ(σfar worse(a), sref) > γ(σbetter(a), sref). (1)

Indeed, to satisfy the condition above is our at-
tacking task. In this section, we detail how we find
a suitable σfar worse.

3.2 White-box Input-agnostic Attack on
ROUGE and METEOR

In general, attacking ROUGE or METEOR can
only be done with a white-box setup, since even
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the most novice attacker (developer) will under-
stand how these two formulae calculate the overlap
between two strings. We choose to game ROUGE
with the most obvious bad system output (broken
sentences) such that no additional human evalu-
ation is required. In contrast, for other gaming
methods, such as reinforcement learning (Paulus
et al., 2018), even if a high score is achieved, hu-
man evaluation is still needed to measure how bad
the quality of the text is.

We utilize a hybrid approach (we refer to it
as σROUGE) of token classification neural mod-
els and simple rule-based ordering, since we
know that ROUGE compares each pair of se-
quences (s1, s2) via hard N-gram overlapping. In
bag algebra, extended from set algebra (Bertossi
et al., 2018), two trendy variants of ROUGE:
ROUGE-N (RN(n, s1, s2), n ∈ Z+) and ROUGE-
L(RL(s1, s2)) calculate as follows:

RN(n, s1, s2) =
2 · |b(n, s1) ∩ b(n, s2)|
|b(n, s1)|+ |b(n, s2)|

, (2)

RL(s1, s2) =
2 · |b(1,LCS(s1, s1))|
|b(1, s1)|+ |b(1, s2)|

, (3)

where |·| denotes the size of a bag, ∩ denotes
bag intersection, and bag of N-grams is calculated
as follows:

b(n, s) = {x | x is an n-gram in s }bag . (4)

In our hybrid approach, the first step is that the
neural model tries to predict the target’s bag of
words b(1, sref), given any input a and correspond-
ing target sref. Then, words in the predicted bag are
ordered according to their occurrence in the input
a. Formally, training of the neural model (ϕ) is:

min
ϕ

1

|A|
∑

a∈A

∑

w∈a
H(Pref(· | w), P (· | w, ϕ)),

(5)
where H is the cross-entropy between the prob-

ability distribution of the reference word count and
the predicted word count. An approximation is
that the model tries to predict b(1, sref) ∩ b(1,a).
Empirically, three-quarters of words in reference
summaries can be found in their corresponding in-
put texts.

Referencing the input text (a) and predicted bag
of words (Ŵ ) to construct a sequence is straight-
forward, as seen in Algorithm 1.

Algorithm 1 From bag of words to sequence

Require: a, Ŵ return ŝ
ŝ← ()

while
∣∣∣Ŵ

∣∣∣ > 0 do

Salient Sequence l← (x | for x ∈ a if [x ∈ Ŵ ])
c← Longest Consecutive Salient Subsequence of l
if |c| < C then ▷ Constant about 3

break
end if
ŝ← ŝ+ c ▷ Concatenate c to ŝ
Ŵ ← Ŵ − c ▷ Remove used words

end while

Algorithm 1 uses salient words to highlight the
longest consecutive salient subsequences in a, until
the words in Ŵ are exhausted, or when each con-
secutive salient sequence is less than three words
(C = 3).

3.3 Black-box Universal Trigger Search on
BERTScore

Finding a σfar worse for BERTScore alone to sat-
isfy condition1 is easy. A single dot (".") is an
imitator of all strings, as if it is a "backdoor" left
by developers. We notice that, on default setting
of BERTScore3, using a single dot can achieve
around 0.892 on average when compared with any
natural sentences. This figure "outperforms" all
existing summarizers, making outputing a dot a
good enough σfar worse instance.

This example is very intriguing because it high-
lights the extent to which many vulnerabilities
go unnoticed, although it cannot be combined di-
rectly with the attacker for ROUGE. Intuitively,
there could be various clever methods to attack
BERTScore as well, such as adding a prefix to
each string (Wallace et al., 2019; Song et al., 2021).
However, we here opt to develop a system that
could output (one of) the most obviously bad
strings (scrambled codes) to score high.

BERTScore is generally classified as a neural,
untrained score (Sai et al., 2022). In other words,
part of its forward computation (e.g., greedy match-
ing) is rule-based, while the rest (e.g., getting every
token embedded in the sequence) is not. There-
fore, it is difficult to "design" an attack rationally.
Gradient methods (white-box) or discrete optimiza-
tion (black-box) are preferable. Likewise, while
letting BERTScore generate soft predictions (Jau-
regi Unanue et al., 2021) may allow attacks in a

3https://huggingface.co/metrics/
bertscore
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white-box setting, we found that black-box opti-
mization is sufficient.

Inspired by the single-dot backdoor in
BERTScore, we hypothesize that we can form
longer catch-all emulators by using only non-
alphanumeric tokens. Such an emulator has two
benefits: first, it requires a small fitting set, which
is important in targeted attacks on regression
models. We will see that once an emulator is
optimized to fit one natural sentence, it can also
emulate almost any other natural sentence. The
total number of natural sentences that need to
be fitted before it can imitate decently is usually
less than ten. Another benefit is that using
non-alphanumeric tokens does not affect ROUGE.

Genetic Algorithm (GA, Holland, 2012) was
used to discretely optimize the proposed non-
alphanumeric strings. Genetic algorithm is a
search-based optimization technique inspired by
the natural selection process. GA starts by ini-
tializing a population of candidate solutions and
iteratively making them progress towards better
solutions. In each iteration, GA uses a fitness func-
tion to evaluate the quality of each candidate. High-
quality candidates are likely to be selected and
crossover-ed to produce the next set of candidates.
New candidates are mutated to ensure search space
diversity and better exploration. Applying GA to
attacks has shown effectiveness and efficiency in
maximizing the probability of a certain classifica-
tion label (Alzantot et al., 2018) or the semantic
similarity between two text sequences (Mahesh-
wary et al., 2021). Our single fitness function is as
follows,

ŝemu = argmin
ŝ
−B(ŝ, sref), (6)

where B stands for BERTScore. As for termination,
we either use a threshold of -0.88, or maximum of
2000 iterations.

To fit ŝemu to a set of natural sentences, we cal-
culate BERTScore for each sentence in the set after
each termination. We then select a proper sref to
fit for the next round. We always select the nat-
ural sentence (in a finite set) that has the lowest
BERTScore with the optimized ŝemu at the current
stage. We then repeat this process till the average
BERTScore achieved by this string is higher than
many reputable summarizers.

Finally, to simultaneously game ROUGE and
BERTScore, we concatenate ŝemu and the input-
agnostic σROUGE(a). If we set the number of to-

kens in ŝemu greater than 512 (the max sequence
length for BERT), σROUGE(a) would then not af-
fect the effectiveness of ŝemu, and we technically
game them both. Additionally, this concatenated
string games METEOR, too.

4 Experiments

We instantiate our evasion attack by conducting
experiments on non-anonymized CNN/DailyMail
(CNNDM, Nallapati et al., 2016; See et al., 2017),
a dataset that contains news articles and associ-
ated highlights as summaries. CNNDM includes
287,226 training pairs, 13,368 validation pairs and
11,490 test pairs.

For σROUGE we use RoBERTa (base model, Liu
et al., 2019) to instantiate ϕ, which is an optimized
pretrained encoding with a randomly initialized
linear layer on top of the hidden states. Number
of classes is set to three because we assume that
each word appears at most twice in a summary.
All 124,058,116 parameters are trained as a whole
on CNNDM train split for one epoch. When the
batch size is eight, the training time on an NVIDIA
Tesla K80 graphics processing unit (GPU) is less
than 14 hours. It then takes about 20 minutes
to predict (including word ordering) all 11,490
samples in the CNNDM test split. Scripts and re-
sults are available at https://github.com/
cestwc/universal-evasion.git.

For the universal trigger to BERTScore, we use
the library from Blank and Deb (2020) for discrete
optimizing, set population size at 10, and terminate
at 2000 generations. ŝemu is a sequence of indepen-
dent randomly initialized non-alphanumeric char-
acters. For a reference sref from CNNDM, we start
from randomly pick a summary text from train split
and optimize for ŝemu,i=0. We then pick the sref
that is farthest away from ŝemu,i=0 to optimize for
ŝemu,i=1, with ŝemu,i=1 as initial population. Prac-
tically, we found that we can stop iterating when
i = 5. Each iteration takes less than two hours on
a 2vCPU (Intel Xeon @ 2.30GHz).

5 Results

We compare ROUGE-1/2/L, METEOR, and
BERTScore of our threat model with that achieved
by the top summarizers in Table 2. We present
two versions of threat models with a minor differ-
ence. As the results indicate, each version alone
can exceed state-of-the-art summarizing algorithms
on both ROUGE-1 and ROUGE-L. For METEOR,
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System ROUGE-1 ROUGE-2 ROUGE-L ROUGE-A.M. ROUGE-G.M. METEOR BERTScore
Pointer-generator(coverage) (See et al., 2017) 39.53 17.28 36.38 31.06 29.18 33.1 86.44
Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34 32.75 30.91 34.2 87.71
PNBERT (Zhong et al., 2019) 42.69 19.60 38.85 33.71 31.91 41.2 87.73
T5 (Raffel et al., 2019) 43.52 21.55 40.69 35.25 33.67 38.6 88.66
BART (Lewis et al., 2020) 44.16 21.28 40.90 35.45 33.75 40.5 88.62
SimCLS (Liu and Liu, 2021) 46.67 22.15 43.54 37.45 35.57 40.5 88.85
Scrambled code + broken 46.71 20.39 43.56 36.89 34.62 39.6 87.80
Scrambled code + broken (alter) 48.18 19.84 45.35 37.79 35.13 40.6 87.80

Table 2: Results on CNNDM. Besides ROUGE-1/2/L, METEOR, and BERTScore, we also compute the arithmetic
mean (A.M.) and geometric mean (G.M.) of ROUGE-1/2/L, which is commonly adopted (Zhang et al., 2019a; Bae
et al., 2019; Chowdhery et al., 2022). The best score in each column is in bold, the runner-up underlined. Our attack
system is compared with well-known summarizers from the past five years. The alternative version (last row) of our
system changes C in Algorithm 1 from 3 to 2.

the threat model ranks second. As for ROUGE-2
and BERTScore, the threat model can score higher
than other BERT-based summarizing algorithms4.
Overall, we rank the systems by averaging their
three relative ranking on ROUGE5, METEOR, and
BERTScore; our threat model gets runner-up (2.7),
right behind SimCLS (1.7) and ahead of BART
(3.3). This suggests that at the system level, even a
combination of mainstream metrics is questionable
in justifying the excellence of the summarizer.

These results reveal low robustness of popu-
lar metrics and how certain models can obtain
high scores with inferior summaries. For exam-
ple, our threat model is able to grasp the essence
of ROUGE-1/2/L using a general but lightweight
model, which requires less running time than sum-
marizing algorithms. The training strategies for the
model and word order are trivial. Not surprisingly,
its output texts do not resemble human understand-
able "summaries" (Table 1).

6 Discussion

6.1 How does Shortcut Learning Come
about?

As suggested in the hypothetical story by Geirhos
et al., scoring draws students’ attention (Filighera
et al., 2022) and Bob is thus considered a better
student. Similarly, in automatic summarization,
there are already works that are explicitly opti-
mized for various scoring systems (Jauregi Unanue
et al., 2021; Pasunuru and Bansal, 2018). Even in
some cases, people subscribe more to automatic
scoring than "aspects of good summarization". For

4except MatchSum (Zhong et al., 2020) and Dis-
coBERT (Xu et al., 2020), where our method is about 0.5
lower in ROUGE-2. We present the same results in tables with
additional target thresholds in Appendix B

5Conservatively, We take geometric mean (Chowdhery
et al., 2022). Combining metrics in other ways shows similar
trends.

example, Pasunuru and Bansal (2018) employ rein-
forcement learning where entailment is one of the
rewards, but in the end, ROUGE, not textual entail-
ment, is the only justification for this summarizer.

We use a threat model to show that optimizing to-
ward a flawed indicator does more harm than good.
This is consistent with the findings by Paulus et al.
but more often, not everyone scrutinizes the output
like Paulus et al. do, and these damages can be
overshadowed by a staggering increase in metrics,
or made less visible by optimizing with other objec-
tives. This is also because human evaluations are
usually only used as a supplement, and it is only
one per cent of the scale of automatic scoring, and
how human evaluations are done also varies from
group to group (van der Lee et al., 2021).

6.2 Simple defence

For score robustness, we believe that simply taking
more scores as benchmark (Gehrmann et al., 2021)
may not be enough. Instead, fixing the existing
scoring system might be a better option. A well-
defined attack leads to a well-defined defence. Our
attacks can be detected, or neutralised through a
few defences such as adversarial example detec-
tion (Xu et al., 2018; Metzen et al., 2017; Carlini
and Wagner, 2017). During the model inference
phase, detectors, determining if the sample is flu-
ent/grammatical, can be applied before the input
samples are scored. An even easier defence is to
check whether there is a series of non-alphanumeric
characters. Practically, grammar-based measures,
like grammatical error correction (GEC6), could be
promising (Napoles et al., 2016; Novikova et al.,
2017), although they are also under development.
To account for grammar in text, one can also try
to parse predictions and references, and calculate

6https://github.com/
PrithivirajDamodaran/Gramformer
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System Parse GEC
Pointer-generator(coverage) (See et al., 2017) 0.131 1.73
Bottom-Up (Gehrmann et al., 2018) 0.145 1.88
PNBERT (Zhong et al., 2020) 0.179 2.15
T5 (Raffel et al., 2019) 0.198 1.59
BART (Lewis et al., 2020) 0.170 2.07
SimCLS (Liu and Liu, 2021) 0.202 2.17
Scrambled code + broken 0.168 2.64

Table 3: Input sanitization checks, Parse and GEC, on
the 100-sample CNNDM test split given by Graham
(2015). They penalize non-summary texts, but may
introduce more disagreement with human evaluation,
e.g., high-scoring Pointer-generator on GEC. Thus, their
actual summary-evaluating capabilities on linguistic fea-
tures (grammar, dependencies, or co-reference) require
further investigation.

F1-score of dependency triple overlap (Riezler
et al., 2003; Clarke and Lapata, 2006). Dependency
triples compare grammatical relations of two texts.
We found both useful to ensure input sanitization
(Table 3).

6.3 Potential Objections on the Proposed
Attacks

The Flaw was Known. That many summariza-
tion scoring can be gamed is well known. For
example, ROUGE grows when prediction length in-
creases (Sun et al., 2019). ROUGE-L is not reliable
when output space is relatively large (Krishna et al.,
2021). That ROUGE correlates badly with human
judgments at a system level has been revealed by
findings of Paulus et al.. And, BERTScore does not
improve upon the correlation of ROUGE (Fabbri
et al., 2021; Gehrmann et al., 2021).

The current work goes beyond most conven-
tional arguments and analyses against the met-
rics, and actually constructs a system that sets out
to game ROUGE, METEOR, and BERTScore to-
gether. We believe that clearly showing the vulner-
ability is beneficial for scoring remediation efforts.
From a behavioural viewpoint, each step of defence
against an attack makes the scoring more robust.
Compared with findings by Paulus et al., we cover
more metrics, and provide a more thorough over-
throw of the monotonicity of the scoring systems,
i.e., outputs from our threat model are significantly
worse.

Shoddy Attack? The proposed attack is easy to
detect, so its effectiveness may be questioned. In
fact, since we are the first to see automatic scoring
as a decent NLU task and attack the most widely
used systems, evasion attacks are relatively easy.
This just goes to show that even the crudest attack

can work on these scoring systems. Certainly, as
the scoring system becomes more robust, the at-
tack has to be more crafted. For example, if the
minimum accepted input to the scoring system is a
"grammatically correct" sentence, an attacker may
have to search for fluent but factually incorrect sen-
tences. With a contest like this, we may end up
with a robust scoring system.

As for attack scope, we believe it is more urgent
to explore popular metrics, as they currently have
the greatest impact on summarization. Nonethe-
less, we will expand to a wider range of scor-
ing and catch up with emerging ratings such as
BLEURT (Sellam et al., 2020).

6.4 Potential Difficulties

Performing evasion attacks with bad texts is easy,
when texts are as bad as broken sentences or scram-
bled codes in Table 1. In this case, the output of
the threat system does not need to be scrutinized by
human evaluators. However, human evaluation of
attack examples may be required to identify more
complex flaws, such as untrue statements or those
that the document does not entail. Therefore, more
effort may be required when performing evasion
attacks on more robust scoring systems.

7 Conclusion

We hereby answer the question: it is easy to create
a threat system that simultaneously scores high on
ROUGE, METEOR, and BERTScore using worse
text. In this work, we treat automatic scoring as
a regression machine learning task and conduct
evasion attacks to probe its robustness or reliabil-
ity. Our attacker, whose score competes with top-
level summarizers, actually outputs non-summary
strings. This further suggests that current main-
stream scoring systems are not a sufficient con-
dition to support the plausibility of summarizers,
as they ignore the linguistic information required
to compute sentence proximity. Intentionally or
not, optimizing for flawed scores can prevent algo-
rithms from summarizing well. The practical effec-
tiveness of existing summarizing algorithms is not
affected by this, since most of them optimize maxi-
mum likelihood estimation. Based on the exposed
vulnerabilities, careful fixes to scoring systems that
measure summary quality and sentence similarity
are necessary.
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Ethical considerations

The techniques developed in this study can be rec-
ognized by programs or humans, and we also pro-
vide defences. Our intention is not to harm, but to
publish such attacks publicly so that better scores
can be developed in the future and to better guide
the development of summaries. This is similar to
how hackers publicly expose bugs/vulnerabilities
in software. This shows that our work has long-
term benefits for the community. Our attacks are
not against real-world machine learning systems.

Limitations

We have only attacked the three most widely
adopted scoring schemes that have already in sum-
marization literature. However, there are emerg-
ing scoring schemes like BLEURT (Sellam et al.,
2020), which will be studied in our future work.
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A Packages

For evaluation metrics, we used the following pack-
ages:

• For ROUGE metrics (Lin and Hovy, 2003),
we used the public rouge-score package from
Google Research:
https://github.com/
google-research/
google-research/tree/master/
rouge

• For METEOR (Lavie and Agarwal, 2007),
we used the public Natural Language Toolkit:
https://www.nltk.org/_modules/
nltk/translate/meteor_score.
html

• For BERTScore (Zhang et al., 2019b), we
used the public datasets package from
Huggingface:
https://huggingface.co/
metrics/bertscore

B Additional Comparison with More
Summarization Systems

We present the same results in Table 2 with addi-
tional systems in Table 4. Table 4 also shows that
about half of the listed works employ human evalu-
ation to support the effectiveness of summarization
systems.
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System ROUGE-1 ROUGE-2 ROUGE-L Average
R-
Rank

ROUGE-
A.M.

ROUGE-
G.M.

METEOR BERTScore Average
Rank

Human
Eval

Pointer-generator + coverage See et al., 2017 39.53 (34) 17.28 (33) 36.38 (33) 33.33 31.06 29.18 33.1 (16) 86.44 (15) 26.20
SummaRuNNer Nallapati et al., 2017 39.6 (33) 16.2 (34) 35.3 (34) 33.67 30.37 28.29 33.67
Pointer + EntailmentGen Guo et al., 2018 39.81 (32) 17.64 (31) 36.54 (31) 31.33 31.33 29.50 31.33 yes
REFRESH Narayan et al., 2018 40.00 (31) 18.20 (25) 36.60 (30) 28.67 31.60 29.87 43.2 (1) 87.15 (14) 20.20 yes
ML+RL ROUGE Kryściński et al., 2018 40.19 (30) 17.38 (32) 37.52 (25) 29.00 31.70 29.70 29.00 yes
Li et al., 2018b 40.30 (29) 18.02 (27) 37.36 (26) 27.33 31.89 30.05 27.33 yes
ROUGESal+Ent RL Pasunuru and Bansal, 2018 40.43 (28) 18.00 (28) 37.10 (28) 28.00 31.84 30.00 28.00
RL + pg + cbdec Jiang and Bansal, 2018 40.66 (27) 17.87 (30) 37.06 (29) 28.67 31.86 29.97 28.67 yes
end2end w/ inconsistency loss Hsu et al., 2018 40.68 (26) 17.97 (29) 37.13 (27) 27.33 31.93 30.05 27.33 yes
Latent Zhang et al., 2018 41.05 (25) 18.77 (21) 37.54 (24) 23.33 32.45 30.70 23.33
Bottom-Up Summarization Gehrmann et al., 2018 41.22 (24) 18.68 (24) 38.34 (19) 22.33 32.75 30.91 34.2 (15) 87.71 (11) 18.60
EditNet Moroshko et al., 2019 41.42 (23) 19.03 (19) 38.36 (18) 20.00 32.94 31.15 20.00
rnn-ext + RL Chen and Bansal, 2018 41.47 (22) 18.72 (22) 37.76 (22) 22.00 32.65 30.83 36.7 (13) 87.37 (13) 18.40 yes
BanditSum Dong et al., 2018 41.50 (21) 18.70 (23) 37.60 (23) 22.33 32.60 30.79 39.2 (9) 87.41 (12) 17.60 yes
Li et al., 2018a 41.54 (20) 18.18 (26) 36.47 (32) 26.00 32.06 30.20 26.00 yes
NeuSUM Zhou et al., 2018 41.59 (19) 19.01 (20) 37.98 (20) 19.67 32.86 31.08 39.9 (7) 88.18 (5) 14.20 yes
DCA Celikyilmaz et al., 2018 41.69 (18) 19.47 (18) 37.92 (21) 19.00 33.03 31.34 19.00 yes
Two-Stage + RL Zhang et al., 2019a 41.71 (17) 19.49 (17) 38.79 (17) 17.00 33.33 31.59 35.3 (14) 87.97 (6) 14.20
HIBERT Zhang et al., 2019c 42.37 (16) 19.95 (12) 38.83 (16) 14.67 33.72 32.02 14.67 yes
PNBERT Zhong et al., 2019 42.69 (15) 19.60 (16) 38.85 (15) 15.33 33.71 31.91 40.3 (6) 87.73 (9) 12.20
BERT-ext + RL Bae et al., 2019 42.76 (14) 19.87 (13) 39.11 (14) 13.67 33.91 32.15 13.67 yes
UniLM Dong et al., 2019 43.33 (12) 20.21 (11) 40.51 (11) 11.33 34.68 32.86 38.6 (10) 88.51 (4) 9.60
T5 Raffel et al., 2019 43.52 (11) 21.55 (3) 40.69 (8) 7.33 35.25 33.67 38.6 (10) 88.66 (2) 6.80
DiscoBERT Xu et al., 2020 43.77 (10) 20.85 (8) 40.67 (9) 9.00 35.10 33.36 9.00 yes
BertSum Liu and Lapata, 2019 43.85 (9) 20.34 (10) 39.90 (12) 10.33 34.70 32.89 10.33
BART Lewis et al., 2020 44.16 (8) 21.28 (5) 40.90 (7) 6.67 35.45 33.75 40.5 (4) 88.62 (3) 5.40 yes
PEGASUS Zhang et al., 2020 44.17 (7) 21.47 (4) 41.11 (6) 5.67 35.58 33.91 5.67
HeterGraph Wang et al., 2020 42.95 (13) 19.76 (15) 39.23 (13) 13.67 33.98 32.17 39.7 (8) 12.25
ProphetNet Qi et al., 2020 44.20 (6) 21.17 (6) 41.30 (5) 5.67 35.56 33.81 5.67
MatchSum Zhong et al., 2020 44.41 (5) 20.86 (7) 40.55 (10) 7.33 35.27 33.49 41.4 (2) 87.72 (10) 6.80
Gsum Dou et al., 2021 45.94 (4) 22.32 (1) 42.48 (4) 3.00 36.91 35.18 3.00 yes
SimCLS Liu and Liu, 2021 46.67 (3) 22.15 (2) 43.54 (3) 2.67 37.45 35.57 40.5 (4) 88.85 (1) 2.60
Scrambled code + broken 46.71 (2) 20.39 (9) 43.56 (2) 4.33 36.89 34.62 37.5 (12) 87.8 (7) 6.40
Scrambled code + broken (alter) 48.18 (1) 19.84 (14) 45.35 (1) 5.33 37.79 35.13 40.6 (3) 87.8 (7) 5.20

Table 4: ROUGE, METEOR, and BERTScore of various summarizers on the CNNDM test set. Ranking of each
number in each column is indicated in parentheses. We calculate the average of the ranking, and the smaller the
number, the better the ranking. The arithmetic mean (A.M.) and geometric mean (G.M.) of ROUGE-1/2/L obtained
by each system (each row) are computed. The best score in each column is in bold, the runner-up is underlined, and
the second runner-up is underlined with two lines. Our attack system is compared with well-known summarizers
from the past five years. The alternative version (last row) of our system changes C in Algorithm 1 from 3 to 2.
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Abstract

Although attention weights have been com-
monly used as a means to provide explana-
tions for deep learning models, the approach
has been widely criticized due to its lack of
faithfulness. In this work, we present a sim-
ple approach to compute the newly proposed
metric AtteFa, which can quantitatively repre-
sent the degree of faithfulness of the attention
weights. Using this metric, we further validate
the effect of the frequency of informative input
elements and the use of contextual vs. non-
contextual encoders on the faithfulness of the
attention mechanism. Finally, we apply the ap-
proach on several real-life binary classification
datasets to measure the faithfulness of attention
weights in real-life settings.

1 Introduction

Attention mechanism (Bahdanau et al., 2015) has
become an indispensable part of many state-of-the-
art NLP models, and its application is becoming
more and more prevalent in non-NLP use cases.
In simple words and from a functionality perspec-
tive, attention can be described as a module which
generates outputs from the representations of input
elements by performing the following two steps:

1. Automatically compute weights correspond-
ing to each input element

2. Use the computed weights to run a weighted
average over the input representations

Due to attention’s explicit mechanism to assign
weights to input elements, attention weights have
been frequently used as explanations for model pre-
dictions. A common approach has been to provide
attention heat maps to which input elements the at-
tention component has attended to (e.g. Wang et al.,
2016; Lee et al., 2017; Lin et al., 2017; Ghaeini
et al., 2018).

However, the use of attention weights as expla-
nations has been widely challenged, with regards

to the observation that they are not faithful, mean-
ing that different attention weights can result in
similar model predictions (Jain and Wallace, 2019;
Serrano and Smith, 2019; Wiegreffe and Pinter,
2019). Therefore, the explanations provided by
the attention weights are neither unique nor closely
related.

In this work, we extend the work of Wiegreffe
and Pinter (2019) to a one-shot adversarial setup
that can be used to compute a quantitative metric
for the faithfulness of attention weights. We call
the metric AtteFa which simply stands for Attention
Faithfulness. We consider the adversarial training
setup one-shot in the sense that it can provide us
with the AtteFa metric by running the adversarial
training only once.

To perform a sanity check on AtteFa, we run
experiments in a controlled setting using syn-
thetic datasets and two types of encoders (a non-
contextual MLP and a contextual LSTM) that could
help us validate if the values of this metric reflect
what we expect it to. We later compute this metric
on some real-life binary text classification datasets
to validate how faithful the attention weights are in
those settings.

2 Related Work

Since the rise of deep learning models, researchers
have focused on devising techniques that could
provide an explanation for the functioning of these
so-called "black-box" models. Among different
classes of explainability techniques, the following
can be mentioned:

Gradient-based methods attribute model deci-
sions to input features using gradient signals (Sun-
dararajan et al., 2017; Selvaraju et al., 2017;
Aubakirova and Bansal, 2016; Karlekar et al.,
2018). Perturbation-based methods try to provide
an explanation for the model behavior by evalu-
ating its reactions to perturbations in input fea-
tures (Ribeiro et al., 2016; Zintgraf et al., 2017).
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Attention-based methods act as an intuitive way
of interpreting the model’s decision. They use the
probability distribution or weights provided by an
attention mechanism as a feature importance mea-
sure to find the features that the model is attending
to (Luong et al., 2015; Xie et al., 2017; Mullenbach
et al., 2018).

Despite the popularity of the attention-based
explainability approaches, the reliability of these
methods has been called into question, with the
special focus on the faithfulness of the explana-
tions provided by the attention mechanism. Jain
and Wallace (2019) perform different experiments
to evaluate the meaningfulness of explanations pro-
vided by attention weights. Their results show that
attention weights are not correlated with gradient-
based feature importance scores. Furthermore, they
show that it is often possible to have different atten-
tion probability distributions that result in a similar
output, arguing that a specific distribution cannot
be treated as the definitive cause behind a model
decision.

Serrano and Smith (2019) investigate the ability
of attention weights to act as importance measures
through a different lens. They state that it is not
sufficient for the weights to make sense to humans.
The weights should also provide a faithful explana-
tion for the model output in order to be considered
reliable. Through performing multi-weight tests,
they show that although there is a certain level of
correlation between attention weights and the im-
portance of features in the final prediction of the
model, these weights in many cases cannot suc-
cessfully identify the features that heavily impact a
model’s decision.

Wiegreffe and Pinter (2019) propose additional
tests for evaluating the ability of the attention mech-
anism to provide explainability. They challenged
the findings reported by Jain and Wallace (2019)
as they treated the attention as a stand-alone com-
ponent within a network that is independent from
the rest of the components. Through an end-to-end
adversarial setup to train models to similar outputs
while coming up with different attention distribu-
tions in binary classification tasks, they show that
the explanations provided by attention are not as
unfaithful as Jain and Wallace (2019) found them
to be.

In this paper, we extend the adversarial setup
by Wiegreffe and Pinter (2019) so that it can be
used in a one-shot pass, i.e. training the adversar-

ial models only once. This approach results in a
metric, which we call AtteFa, that can provide us
with a quantitative insight on how faithful the ex-
planations by the attention component are, given a
specific model and a specific dataset. To the best
of our knowledge, this is the first work that pro-
vides such a quantitative measure to evaluate the
faithfulness of attention.

3 Method

3.1 Base Model Training
First, we train a base model on the data. The base
model is comprised of an embedding layer, fol-
lowed by an encoder (LSTM or MLP), which is in
turn followed by an attention component, and fi-
nally a classification head. To train the base model,
cross-entropy loss is used, and training is done for
8 epochs. The final base model is the trained model
at the end of the epoch where the ROC-AUC score
on the test dataset is minimum.

3.2 Adversarial Model Training
With the base model at hand, we train an adversarial
model with the same architecture as the base model,
but with the following two characteristics:

1. Having predictions as similar as possible to
the base model, and

2. Having attention weight distributions as dif-
ferent as possible from the base model

In order to measure the difference between the
two models’ predictions, namely ŷa and ŷb, we use
Total Variation Distance (TVD), which is computed
using Equation 1:

TVD(ŷja, ŷ
j
b) =

1

2

|Y|∑

j=1

|ŷja − ŷjb | (1)

where |Y| represents the number of output heads
(which is equal to 1 in our binary classification
setting).

To compute the difference between attention dis-
tributions αa and αb, Jensen-Shannon Divergence
(JSD) is used, which is computed using Equation
2:

JSD(αa, αb) =
1

2
KL(αa||ᾱ) +

1

2
KL(αb||ᾱ) (2)

where ᾱ = αa+αb
2 and the Kullback–Leibler

(KL) divergence is computed using Equation 3:

KL(αa||αb) =
∑|α|

k=1 α
k
a ×

(
log(αk

a + ϵ)− log(αk
b + ϵ)

)

(3)
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where |α| corresponds to the size of the attention
weight vector. The inclusion of ϵ in the KL equa-
tion is to prevent the logs from becoming infinite in
cases where the values of α become equal to zero
due to mathematical underflow. In our experiments,
we set the value of ϵ equal to 1e-10.

Having the TVD of the predictions and the JSD
of the attention weight distributions, we design the
loss function so that it tries to minimize TVD and
maximize JSD. The final loss formula is given in
Equation 4:

L(Ma,Mb)
(i) = sTVD(ŷ(i)a , ŷ

(i)
b )−sJSD(α(i)

a , α
(i)
b )

(4)
In Equation 4, we use sTVD and sJSD to denote

the scaled values of TVD and JSD, respectively.
We apply the scaling in order to make sure that the
value ranges for the TVD and JSD components of
the loss are equal, and therefore the final value of
the loss is affected equally by the two components.
Knowing that the value of TVD is always between
0 and 0.5, sTVD is computed using Equation 5:

sTVD(ŷa, ŷb) = TVD(ŷa, ŷb)/0.5 (5)

To compute sJSD Equation 6 is used:

sJSD(αa, αb) = JSD(αa, αb)/JSDmax (6)

where JSDmax is the calculated upper-bound
for JSD when Equations 2 and 3 are used. JSDmax

is approximately equal to 0.6931, and is reached
when α1 and α2 in Equation 2 are two one-hot vec-
tors with the element 1 located in different indices.

The value of the loss is computed per sample.
In order to compute the backpropagated loss value
for each batch, we compute the average over the
per-sample losses in the batch.

The training process is continued until the loss
value on the test data does not improve for 10
consecutive epochs, or a maximum number of 80
epochs is reached. To calculate the total loss on
the test data, instead of computing the per-sample
losses and averaging them over the dataset, for sim-
plicity and to leverage the metric implementations
by Wiegreffe and Pinter (2019), we first average
over the per-sample TVD and JSD in this dataset,
and then compute the total loss using these aver-
ages. As the final adversarial model, we pick the
one from the training epoch with the lowest value
of loss on test data.

The key difference between our adversarial train-
ing setup with the one from Wiegreffe and Pinter

(2019) is in the way the adversarial loss is com-
puted. In Wiegreffe and Pinter (2019), KL diver-
gence is used instead of JSD to compute the distri-
bution divergence between the base model’s atten-
tions and the adversarial one. Since the value of KL
is un-bounded, it is mandatory to use an additional
hyperparameter λ to avoid the final value of the loss
getting dragged fully towards the attention diver-
gence. Knowing that JSD has a specific lower and
upper bound, including that in the adversarial loss
formula allows us to do away with the additional
hyperparameter λ, and to be able to do the adver-
sarial training in one shot, which in turn provides
us with an easy and systematic way to compute a
metric value for the attention faithfulness.

3.3 Computing AtteFa

Having the TVD of the predictions and the JSD of
the attention distributions on the test data between
the base modelMb and adversarial version of the
modelMa, we compute the faithfulness score At-
teFa of the attention module AM using Equation
7:

AtteFa(AM) = min

(
sTVD(ŷa, ŷb)

sJSD(αa, αb)
, 1

)
(7)

The formula is motivated by the assumption that,
the degree of attention faithfulness has a direct rela-
tion with the value of the TVD of predictions, and
an inverse relation with the value of the JSD of the
attention weights. In other words, if the attention
is faithful, meaning that the attention can find a
limited set of informative sources, the adversarial
setup will either converge to a point where both
the TVD of predictions and the JSD of attention
weights are low, or both of them are high. We be-
lieve that the second scenario is more probable, as
the adversarial model has a much higher degree of
freedom in order to converge to a different attention
distribution from the base model than to achieve a
similar output prediction. This will later be shown
in Section 6 that, with the current adversarial setup,
the adversarial model usually achieves a JSD close
to its maximum value.

With this assumption, we believe that in most
cases, the final value for sTVD(ŷa, ŷb) should be
lower than sJSD(αa, αb), but we still do not rule
out the opposite scenario, which is why we force
the value of AtteFa to be bounded between 0 and 1
through the use of the min function in Equation 7.
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4 Datasets

4.1 Synthetic Datasets

In principle, we hypothesize that the faithfulness of
the attention has a direct relation with the rareness
of the informative elements in the input. In the
task of text classification, considering the input el-
ements being textual tokens and with an attention
that assigns weight to each token, if there are very
few informative tokens that could help with the
task, our assumption is that the attention should
probably focus on those and not the other tokens,
and finding alternative attention weight distribu-
tions that would lead to a similar outcome would
be difficult. Whereas in cases when many input
tokens are informative and helpful to the task, the
attention can simply shift its focus from one set of
tokens to another, therefore the faithfulness will be
low.

In order to verify this scenario, we designed a set
of synthetic sentiment analysis datasets that include
different proportions of informative texts. To that
end, we synthetically created samples in a way that
a specific portion of their tokens are words with sen-
timent weights that align with the sentiment label of
the sample1, while filling the rest of the token slots
with the uninformative token "something". This re-
sults in a simple-to-classify sentiment dataset that
allows us to investigate the effect of the frequency
of informative input elements on the faithfulness
of attention, without the need to take into account
the effectiveness of attention for the task at hand.

Our Mock datasets are comprised of 8000 train-
ing and 1000 testing samples. The distribution of
the positive/negative labels is 50/50 in the datasets,
and each sample has a random length between 50
and 100 tokens. These synthetic datasets are com-
prised of Mock-1, Mock-2, Mock-5, and Mock-10
datasets with 1, 2, 5, and 10 informative tokens in
each sample, respectively, and Mock-1q, Mock-
2q, Mock-3q, and Mock-4q, in which 25%, 50%,
75%, and 100% of the tokens in each sample are
informative.

4.2 Real-life Datasets

The datasets used are the ones utilized in the work
of Jain and Wallace (2019) and Wiegreffe and Pin-

1We picked words with positive and negative sen-
timent from the following gazetteers, respectively:
https://ptrckprry.com/course/ssd/data/
positive-words.txt, https://ptrckprry.
com/course/ssd/data/negative-words.txt

ter (2019). The description of the datasets are pro-
vided in section 3 of Jain and Wallace (2019).

4.3 Dataset Statistics
Table 1 shows the average number of tokens across
samples, along with the distribution of the posi-
tive/negative samples for each dataset. Since all
the synthetic datasets include the same number of
samples, class distributions, and average number
of tokens across samples, we have included the
statistics for them under Mock-*.

Dataset Train Test
Size (neg/pos) Avg Len (Tokens) Size (neg/pos) Avg Len (Tokens)

Mock-* 4000/4000 75 500/500 75
Diabetes 6650/1416 1985 1389/340 2385
Anemia 1742/2912 2368 512/857 2396
IMDB 8673/8539 180 2189/2174 176
SST 3310/3610 17 912/909 17
AgNews 25508/25492 36 1900/1900 36
20News 612/624 159 192/195 206

Table 1: Summary statistics of the datasets.

5 Experimental Setup

The LSTM models are comprised of the following
components:

1. A 300d word embedding layer
2. A bidirectional LSTM layer (Hochreiter and

Schmidhuber, 1997) with 128 units
3. The attention module
4. A fully-connected layer

The MLP models include embedding, attention,
and fully-connected modules similar to the LSTM
models, but utilize a feed-forward projection layer
with 128 nodes followed by a tanh activation, in-
stead of the bi-LSTM layer.

The attention has a two layer fully-connected
network that first projects the input to half its size
in its first layer, applies a tanh activation, and then
maps it to a single logit in the second layer. A
softmax function is then used to convert the logit to
a probability distribution, which is used to compute
a weighted average over the inputs and form the
output of the attention.

Similar to Jain and Wallace (2019) and Wiegr-
effe and Pinter (2019), for the Diabetes and Anemia
datasets, 300d Word2Vec embeddings (Mikolov
et al., 2013) are pre-trained on the combined text
from the two datasets. The training is done using
CBOW with a window size of 10. For the rest
of the datasets, 300d publicly-pretrained FastText
embeddings (Bojanowski et al., 2017) are used.

Adam (Kingma and Ba, 2015) is used as the op-
timizer during training, and the learning rate and
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weight decay rates are set to 1e-3 and 1e-5, respec-
tively. Weight decay is applied to every component
in the network except the attention module.

6 Results and Discussion

First, we have included the F1 scores achieved
by the base models in Table 2. In order to ver-
ify the correctness of our experiments, we have
also included in the table the F1 scores reported by
Wiegreffe and Pinter (2019).

Dataset LSTM MLP
Reported Reproduced Reported Reproduced

Mock-1 - 0.974 - 0.975
Mock-2 - 0.988 - 0.989
Mock-5 - 0.999 - 1.000
Mock-10 - 1.000 - 0.999
Mock-1q - 1.000 - 1.000
Mock-2q - 1.000 - 1.000
Mock-3q - 1.000 - 1.000
Mock-4q - 1.000 - 1.000
Diabetes 0.775 0.733 0.699 0.665
Anemia 0.938 0.935 0.920 0.915
IMDB 0.902 0.908 0.888 0.882
SST 0.831 0.830 0.817 0.816
AgNews 0.964 0.959 - 0.956
20News 0.942 0.935 - 0.878

Table 2: F1 scores by the base model achieved on the
test datasets. The F1 scores reported by Wiegreffe and
Pinter (2019) have been included under the Reported
columns. The MLP setup is equivalent to the Trained
MLP setup from Wiegreffe and Pinter (2019).

Table 3 contains the results achieved by the ad-
versarial setup. It includes the F1 scores of the
adversarial models, the TVD of their predictions
from the base models, the JSD of their attention
distributions from the base models, the number of
epochs that resulted in the best loss on test, and
their attention faithfulness score AtteFa. The num-
bers are reported in terms of average and standard
deviation runs with 9 different random seeds. Indi-
vidual results for each seed is available in Tables 4
and 5 in Appendix A.

6.1 Effect of Contextualization
Comparing the AtteFa columns for the LSTM and
MLP models in Table 3, we can observe that the
attentions incorporated in models with LSTM as
their encoder are significantly less faithful than
their counterparts in the models with MLP as their
encoder. This observation was not surprising, as
a lower degree of contextualization in token repre-
sentations should inherently result in higher faith-
fulness in the attention that is applied on top of
those representations.

To better understand this, imagine the task of de-
tecting whether a text is about sports or fruits. Now
imagine that you want to classify the following
sample: football is life. We can simply
agree that the only informative word in the sample
is football, as it clearly indicates a sport. In
an ideal scenario, a faithful attention should have
a distribution highly centered on this word. Us-
ing an MLP encoder, the input tokens will retain
their information, therefore the representation of
token football retains its informativeness. This
is, however, not necessarily the case if a contex-
tual encoder such as LSTM is used to compute the
token representations, as it can simply manipulate
the tokens in a way that another word, such as is,
has the informative representation.

Going back to our adversarial setting, when
LSTM is used, the encoder has the capacity to ma-
nipulate the token representations so that a different
set of tokens bear the useful information to achieve
the task. In this setting, the attention can simply
focus on the new set and obtain similar information.
On the other hand, a non-contextual MLP encoder
does not have the capacity that LSTM holds, and
will retain the informativeness of the representa-
tion for each token. Therefore, it becomes more
challenging for the attention to find a new set of
tokens to attend to. That is why the prediction TVD
in the MLP models is significantly lower than the
LSTM ones, resulting in the MLP models having a
noticeably higher AtteFa.

Simply put, our results show that attention com-
ponents applied on top of contextual encoders are
generally less faithful than the ones on top of non-
contextual encoders.

6.2 Effect of the Frequency of Informative
Sources

Looking at the rows corresponding to the results on
the Mock-* datasets and the MLP model in Table
3, we can observe the general trend towards the
reduction of AtteFa as the number of informative
tokens increase. For the case of the MLP model, a
relatively high AtteFa of 0.82 is achieved on the
Mock-1 dataset, which only includes one informa-
tive token in each sample text, and the value drops
to close to 0 for the case of Mock-3q and Mock-4q
datasets. This shows that the faithfulness of the at-
tention mechanism has an inverse correlation with
the number of informative sources in the input.

The trend is still observable in the case of the
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dataset LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Mock-1 12±5 0.947±0.020 0.015±0.009 0.693±0.000 0.0304±0.0176 20±24 0.221±0.312 0.231±0.012 0.393±0.000 0.8153±0.0425

Mock-2 9±7 0.977±0.010 0.016±0.005 0.693±0.000 0.0329±0.0096 1±0 0.221±0.312 0.246±0.003 0.670±0.000 0.5086±0.0064

Mock-5 7±5 1.000±0.001 0.002±0.000 0.693±0.000 0.0037±0.0008 9±11 0.147±0.275 0.247±0.001 0.686±0.000 0.4987±0.0027

Mock-10 14±8 1.000±0.000 0.001±0.000 0.693±0.000 0.0012±0.0000 23±31 0.147±0.275 0.249±0.001 0.686±0.000 0.5028±0.0027

Mock-1q 23±12 1.000±0.000 0.000±0.000 0.693±0.000 0.0006±0.0000 37±31 0.465±0.480 0.135±0.120 0.689±0.001 0.2721±0.2407

Mock-2q 35±32 1.000±0.001 0.000±0.000 0.678±0.004 0.0008±0.0010 42±35 0.751±0.324 0.099±0.109 0.691±0.000 0.1983±0.2188

Mock-3q 21±21 1.000±0.000 0.000±0.000 0.681±0.008 0.0003±0.0001 13±13 0.999±0.001 0.001±0.001 0.691±0.000 0.0013±0.0011

Mock-4q 8±4 1.000±0.000 0.000±0.000 0.680±0.004 0.0002±0.0003 3±0 1.000±0.000 0.000±0.000 0.690±0.000 0.0002±0.0000

Diabetes 22±5 0.729±0.003 0.018±0.001 0.693±0.000 0.0367±0.0020 42±27 0.134±0.076 0.147±0.004 0.691±0.000 0.2945±0.0072

Anemia 20±6 0.901±0.018 0.058±0.011 0.693±0.000 0.1164±0.0211 23±10 0.832±0.007 0.093±0.004 0.692±0.000 0.1861±0.0083

SST 21±6 0.823±0.002 0.034±0.002 0.626±0.006 0.0760±0.0034 23±15 0.605±0.028 0.173±0.001 0.656±0.002 0.3645±0.0024

IMDB 49±12 0.889±0.006 0.038±0.004 0.691±0.001 0.0769±0.0090 21±14 0.158±0.056 0.190±0.001 0.689±0.000 0.3826±0.0019

AgNews 49±18 0.958±0.001 0.007±0.001 0.683±0.002 0.0136±0.0015 24±12 0.610±0.032 0.172±0.005 0.671±0.001 0.3558±0.0097

20News 18±5 0.865±0.013 0.046±0.007 0.689±0.001 0.0931±0.0149 24±18 0.340±0.149 0.208±0.004 0.650±0.008 0.4444±0.0133

Table 3: Average and standard deviation of the results from our adversarial setup. The results for every row are
reported from 9 different runs with different random seed initializations. The column epoch includes the the number
of training epoch for each selected model.

Figure 1: Distribution of AtteFa across different models and real-life datasets.

LSTM models, but with a magnitude that is con-
siderably lower than what we have for the MLP
models, as the AtteFa on the Mock-1 dataset is
only 0.03. As discussed in Section 6.1, the con-
textualized LSTM encoder has the flexibility to
re-distribute the task-relative information across
different input tokens. Regardless of that, we can
still observe the general trend towards the drop of
AtteFa as we move from Mock-1 to Mock-4, which
shows that, even with the case of contextualization,
the frequency of informative elements in the source
input can still affect the faithfulness of the attention
mechanism.

We can observe anomalies in the trend men-
tioned before. For example, we can observe bumps
in the AtteFa in Mock-1 to Mock-2 and Mock-1q
to Mock-2q for the case of the LSTM model, and
from Mock-5 to Mock-10 in the case of the MLP
model. This can be partially justified by the behav-
ior of the base model in terms of how successful
it is in detecting informative tokens. An example
of this can be found in Table 2, where the MLP
model has achieved a lower F1 score on Mock-5
in comparison to Mock-10, meaning that the atten-

tion used in the MLP model was more successful
in identifying informative tokens in the Mock-5
dataset than in Mock-10.

We can also observe a 19% gap between the
AtteFa of the MLP model trained on the Mock-1
dataset and the maximum value of AtteFa (i.e. 1).
We argue that this is also related (at least partially)
to how the base model performs. We can see in
Table 2 that the base model trained on the Mock-1
dataset does not have an F1 score of 1 on the test
dataset. This could partially be due to the failure
of attention to detect the informative tokens and
highly focus on them.

Overall, we conclude that there is generally an
inverse relation between the frequency of informa-
tive sources in the input data and the faithfulness
of the attention module trained on it. But there
is still some noise in the AtteFa metric which is
attributed to how well the base model performs.
Although we do not think that this rules out AtteFa
as a suitable metric to compute the faithfulness of
attention, we believe there is room for exploring
alternative metrics that, for example, also incorpo-
rate the performance of the base models in their
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computation.

6.3 AtteFa on Real-life Datasets

Looking at Table 3, we can see that, for the case
of the MLP models, the values of AtteFa on all
the real-life datasets are significantly lower than
the ones on Mock-1 to Mock-10. As discussed in
Section 6.2, this could show that there is quite a
large number of informative tokens in the samples
belonging to these datasets, which allows the atten-
tion to shift its focus among them. This shows that,
the attention mechanism in MLP models trained on
all these datasets is not very faithful.

For the case of the LSTM model, however,
we can observe that the AtteFa on these real-life
datasets is comparable and sometimes higher than
their counterparts on the Mock-* datasets. How-
ever, focusing only on the real-life datasets, the
AtteFa of the LSTM models are still lower than the
MLP ones. This can also be visually observed in
Figure 1, which includes the violin plots of the dis-
tribution of AtteFa across the different datasets and
models. We hypothesize that, in real-life datasets,
we have a significantly lower number of completely
uninformative tokens as we had in the Mock-*
datasets. Although the LSTM encoder still retains
its flexibility to redistribute information across dif-
ferent tokens, the lower number of completely un-
informative tokens reduces the degree of the infor-
mation redistribution capacity. This is something
that we have not explored in our experiments with
the synthetic datasets, and therefore, leaves room
for more studies on this aspect.

One may argue that the number of input tokens
on its own can affect the distribution of attention
weights and can in turn affect the value of the at-
tention JSD of the adversarial models, hence the
final value of AtteFa. While we do not rule this out,
we believe that it is not merely the input lengths
that would affect the attention JSD, but rather the
frequency of informative input tokens that could
increase as the input lengths become higher. We
also believe that the way information is distributed
among their representations used by the attention
component also plays a big role here.

In Figure 1, we can see that for the case of the
MLP models, the values of AtteFa on datasets with
lengthier samples, namely Diabetes and Anemia,
are generally lower than the ones on the other
datasets. This is, however, not the case for the
LSTM models, as we can observe a relatively high

AtteFa on the Anemia dataset with respect to the
rest of the datasets. Even for the case of the MLP
model, we can see that the AtteFa on the 20News
dataset is higher than SST and AgNews that have
lower average input lengths (see Table 1).

We therefore conclude that the distribution of
task-related information across the input token rep-
resentations used by the attention component plays
a key role in the faithfulness of the attention.

6.4 Comparison of Our Adversial Setup with
Wiegreffe and Pinter’s

In Figure 2, we have plotted the prediction TVD
and attention JSD of our adversarial LSTM models
against the results reported in Wiegreffe and Pinter
(2019). The dotted lines in the plots resemble the
ones in figure 5 from Wiegreffe and Pinter (2019).

Figure 2: Visual comparison of averaged per-instance
test set JSD and TVD from base model for each model
variant between our adversarial setup and the one from
Wiegreffe and Pinter (2019). The • show results from
Wiegreffe and Pinter (2019), and the × show results
from our setup.

We can see that, with our adversarial setup,
we have achieved comparable prediction TVDs to
Wiegreffe and Pinter’s on the Anemia, SST and
IMDB datasets. However, on the Diabetes dataset,
our prediction TVDs are significantly lower than
Wiegreffe and Pinter’s. Given that our adversar-
ial setups are pretty similar, we believe that this is
mainly due to our inability to properly reproduce
their base LSTM model on the Diabetes dataset.
We can observe this from the 0.042 drop in the
F1 score of our model from what was reported in
Wiegreffe and Pinter (2019).

Looking at Figure 2, we can see that the adver-
sarial results that we have achieved are towards
the higher-end of the attention JSDs reported by
Wiegreffe and Pinter (2019). This is very close
to the calculated upper-bound for JSD, which is
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0.6931. Wiegreffe and Pinter used the hyperparam-
eter λ in order to reduce the effect of the attention
JSD in the value of their loss. With the removal
of this hyperparameter in our setup (which is the
equivalent of setting it to 1), the adversarial training
leads the model to primarily maximize the attention
JSD, as it is an easier objective than to minimize
the prediction TVD. Therefore, we usually end up
with an almost maxed-out attention JSD, and it
is mainly the prediction TVD that determines the
value of AtteFa. However, we argue that the JSD
is not always fully maxed-out (see the plot for the
SST dataset in Figure 2), and therefore, we cannot
simply disregard it in the computation of AtteFa.

7 Limitations

There are certain limitations with the current work,
in terms of both the methodology used to compute
AtteFa, and the different factors affecting the atten-
tion faithfulness. In this section, we explore the
ones that we believe are the most important:

The current methodology to compute AtteFa is
scoped solely on binary text classification. In or-
der to have AtteFa as a widely accepted metric in
the NLP community, the methodology needs to be
extended to other NLP tasks, such as multi-class
classification, text retrieval, question answering,
machine translation, etc.

In the current work, we have studied the effect of
the frequency of informative tokens on the faithful-
ness of attention through running experiments on
the Mock-* datasets, which are synthetic datasets
for sentiment classification. The current selection
of sentiment words and their positioning within the
input texts were done in a random fashion. A more
thorough experiment would explore the effect of
the distribution of informative tokens across the
input texts (centered towards the start/end/middle
vs. scattered evenly), along with a more careful
selection of the words to be used as the informative
tokens (e.g. differentiating between words with
strong vs. weak sentiments).

In terms of investigating the effect of encoder
contextualization on the faithfulness of attention,
we have explored using token-level MLP as a
non-contextual encoder and LSTM as a contex-
tual one. This can be extended to exploring other
encoder architectures, such as CNNs (LeCun et al.,
1999), GRUs (Cho et al., 2014), and transformers
(Vaswani et al., 2017).

Another aspect in the current study which has

room for exploration is the evaluation of the effect
of softmax temperature on the faithfulness of at-
tention. We believe that higher faithfulness may
be achieved by using lower temperatures in the
case of datasets with infrequent informative tokens,
and higher temperature in the case of datasets with
frequent informative tokens within their input.

Last, but not least, the experiments in this work
are only focused on a specific type of single-head at-
tention. We believe that the current approach does
not transfer properly to multi-headed attentions,
as we may still consider a multi-headed attention
faithful if the only way for the adversarial model
to come up with the same predictions as the base
model is to change the order of the attention heads
and not the attention weights computed by them.
Due to the frequent use of multi-headed attentions
in state-of-the-art NLP models, the extension of
AtteFa to multi-headed attentions would play a big
role in its widespread adoption by the NLP com-
munity.

8 Conclusion

In this paper, we presented an adversarial training
approach for binary text classification tasks, which
can provide us with the metric AtteFa that quanti-
tatively measures the degree of faithfulness in the
attention weights. We, then, measured the effect
of contextualization, as well as the effect of the
frequency of informative tokens on the attention
faithfulness. Finally, we computed and evaluated
AtteFa for models trained on several real-life binary
text classification datasets.

We hope that the presented approach can act as
a motivation for researchers to further explore au-
tomatic approaches to quantitatively measure the
degree of model explainability or its different as-
pects (e.g. faithfulness, plausibility, sufficiency,
etc.).

As future directions, we plan to address the lim-
itations specified in Section 7 to come up with a
more reliable and more widely applicable metric to
measure the faithfulness of attention. We also plan
to measure attention faithfulness in other settings,
e.g. the use of different types of attention such
as multi-headed and scaled dot-product (Vaswani
et al., 2017), the use of attention components in
different layers of a model, etc.
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dataset seed LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Mock-1

10 7 0.923 0.025 0.693 0.050 47 0.662 0.222 0.393 0.784
50 16 0.971 0.004 0.693 0.008 1 0.000 0.244 0.393 0.860
257 15 0.943 0.017 0.693 0.033 1 0.000 0.219 0.393 0.774

500231 20 0.960 0.011 0.693 0.021 76 0.662 0.223 0.393 0.787
100078 13 0.968 0.006 0.693 0.011 9 0.000 0.247 0.393 0.872
12504 7 0.916 0.029 0.693 0.057 11 0.000 0.249 0.393 0.879

90754789 16 0.963 0.008 0.693 0.015 7 0.000 0.218 0.393 0.767
8988812 3 0.926 0.026 0.693 0.052 30 0.662 0.223 0.393 0.785

2 9 0.952 0.012 0.693 0.025 2 0.000 0.235 0.393 0.828

Mock-2

10 2 0.982 0.015 0.692 0.030 1 0.662 0.243 0.670 0.504
50 4 0.977 0.016 0.693 0.032 1 0.000 0.248 0.670 0.513
257 12 0.978 0.016 0.693 0.032 1 0.000 0.244 0.670 0.506

500231 5 0.964 0.024 0.693 0.047 2 0.662 0.242 0.670 0.502
100078 15 0.975 0.016 0.693 0.033 1 0.000 0.247 0.670 0.510
12504 19 0.960 0.024 0.693 0.048 1 0.000 0.250 0.670 0.519

90754789 3 0.978 0.017 0.693 0.034 1 0.000 0.242 0.670 0.502
8988812 4 0.984 0.012 0.693 0.024 1 0.662 0.243 0.670 0.504

2 19 0.997 0.007 0.693 0.015 1 0.000 0.250 0.670 0.519

Mock-5

10 12 1.000 0.002 0.693 0.003 1 0.662 0.249 0.686 0.504
50 3 1.000 0.002 0.693 0.003 17 0.000 0.246 0.686 0.497
257 2 0.998 0.003 0.693 0.006 4 0.000 0.246 0.686 0.497

500231 20 1.000 0.002 0.693 0.003 2 0.000 0.247 0.686 0.499
100078 5 0.999 0.002 0.693 0.004 16 0.000 0.246 0.686 0.497
12504 7 1.000 0.002 0.693 0.003 2 0.000 0.246 0.686 0.497

90754789 3 1.000 0.002 0.693 0.003 34 0.000 0.246 0.686 0.497
8988812 5 1.000 0.002 0.693 0.003 1 0.662 0.249 0.686 0.504

2 7 1.000 0.002 0.693 0.003 2 0.000 0.246 0.686 0.497

Mock-10

10 21 1.000 0.001 0.693 0.001 1 0.662 0.251 0.686 0.508
50 25 1.000 0.001 0.693 0.001 80 0.000 0.248 0.686 0.501
257 6 1.000 0.001 0.693 0.001 13 0.000 0.248 0.686 0.501

500231 8 1.000 0.001 0.693 0.001 2 0.000 0.249 0.686 0.503
100078 16 1.000 0.001 0.693 0.001 80 0.000 0.248 0.686 0.501
12504 4 1.000 0.001 0.693 0.001 6 0.000 0.248 0.686 0.501

90754789 9 1.000 0.001 0.693 0.001 24 0.000 0.248 0.686 0.501
8988812 28 1.000 0.001 0.693 0.001 1 0.662 0.251 0.686 0.508

2 12 1.000 0.001 0.693 0.001 4 0.000 0.248 0.686 0.501

Mock-1q

10 20 1.000 0.000 0.693 0.001 70 0.000 0.247 0.690 0.497
50 40 1.000 0.000 0.693 0.001 10 1.000 0.001 0.688 0.002
257 39 1.000 0.000 0.693 0.001 79 0.093 0.235 0.690 0.473

500231 13 1.000 0.000 0.693 0.001 80 0.093 0.235 0.690 0.473
100078 17 1.000 0.000 0.693 0.001 6 1.000 0.002 0.688 0.003
12504 14 1.000 0.000 0.693 0.001 6 1.000 0.002 0.689 0.003

90754789 12 1.000 0.000 0.693 0.001 44 0.000 0.247 0.690 0.497
8988812 15 1.000 0.000 0.693 0.001 28 0.000 0.247 0.690 0.497

2 39 1.000 0.000 0.693 0.001 6 1.000 0.002 0.689 0.004

Mock-2q

10 25 1.000 0.000 0.678 0.001 80 0.305 0.203 0.690 0.408
50 80 1.000 0.000 0.681 0.000 79 0.700 0.212 0.690 0.426
257 79 1.000 0.000 0.681 0.000 4 0.997 0.002 0.691 0.003

500231 5 0.998 0.002 0.678 0.003 40 0.995 0.003 0.691 0.005
100078 23 0.999 0.001 0.681 0.001 80 0.089 0.236 0.690 0.474
12504 8 1.000 0.000 0.682 0.000 79 0.683 0.230 0.690 0.461

90754789 12 1.000 0.000 0.681 0.000 4 0.998 0.001 0.691 0.002
8988812 3 1.000 0.000 0.670 0.000 10 0.997 0.002 0.691 0.004

2 79 1.000 0.000 0.670 0.000 6 0.999 0.001 0.690 0.001

Mock-3q

10 5 1.000 0.000 0.674 0.000 5 0.998 0.001 0.691 0.002
50 16 1.000 0.000 0.675 0.000 4 0.997 0.002 0.691 0.003
257 9 1.000 0.000 0.674 0.001 2 1.000 0.000 0.690 0.000

500231 12 1.000 0.000 0.691 0.000 44 1.000 0.000 0.691 0.000
100078 10 1.000 0.000 0.691 0.000 13 1.000 0.000 0.691 0.000
12504 4 1.000 0.000 0.689 0.000 5 0.999 0.001 0.691 0.001

90754789 46 1.000 0.000 0.675 0.000 11 1.000 0.000 0.691 0.000
8988812 71 1.000 0.000 0.686 0.000 25 0.999 0.001 0.691 0.001

2 12 1.000 0.000 0.674 0.000 5 0.998 0.001 0.691 0.002

Mock-4q

10 6 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
50 7 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
257 5 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000

500231 12 1.000 0.000 0.683 0.000 2 1.000 0.000 0.690 0.000
100078 9 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
12504 16 1.000 0.000 0.682 0.000 3 1.000 0.000 0.691 0.000

90754789 7 0.999 0.001 0.670 0.001 3 1.000 0.000 0.690 0.000
8988812 8 1.000 0.000 0.674 0.000 3 1.000 0.000 0.690 0.000

2 4 1.000 0.000 0.683 0.000 4 1.000 0.000 0.690 0.000

Table 4: All results from our adversarial setup on the synthetic datasets.
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dataset seed LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Diabetes

10 21 0.732 0.017 0.693 0.035 58 0.180 0.145 0.691 0.291
50 25 0.730 0.018 0.693 0.037 76 0.203 0.142 0.691 0.286

257 23 0.730 0.018 0.693 0.037 66 0.167 0.146 0.690 0.293
500231 22 0.730 0.018 0.693 0.035 21 0.112 0.147 0.690 0.295
100078 25 0.726 0.020 0.693 0.040 34 0.227 0.143 0.691 0.287
12504 20 0.735 0.019 0.693 0.038 80 0.159 0.146 0.691 0.292

90754789 31 0.728 0.018 0.693 0.035 24 0.151 0.145 0.691 0.291
8988812 10 0.723 0.020 0.693 0.040 15 0.006 0.153 0.690 0.307

2 18 0.729 0.017 0.692 0.034 5 0.000 0.153 0.691 0.308

Anemia

10 32 0.900 0.057 0.693 0.115 30 0.833 0.094 0.692 0.189
50 14 0.877 0.072 0.693 0.144 13 0.842 0.086 0.692 0.173

257 15 0.923 0.047 0.692 0.093 45 0.841 0.095 0.693 0.190
500231 19 0.914 0.049 0.693 0.098 11 0.829 0.091 0.693 0.182
100078 26 0.894 0.061 0.693 0.123 23 0.828 0.093 0.692 0.185
12504 14 0.877 0.077 0.693 0.155 29 0.817 0.103 0.693 0.206

90754789 26 0.912 0.052 0.693 0.104 19 0.835 0.093 0.692 0.186
8988812 19 0.888 0.062 0.693 0.124 23 0.831 0.091 0.692 0.183

2 17 0.927 0.046 0.692 0.092 14 0.834 0.091 0.693 0.182

SST

10 23 0.825 0.038 0.643 0.082 23 0.657 0.172 0.658 0.362
50 16 0.822 0.033 0.624 0.072 10 0.598 0.172 0.656 0.363

257 29 0.821 0.032 0.624 0.071 28 0.577 0.172 0.655 0.364
500231 11 0.823 0.033 0.624 0.073 22 0.580 0.173 0.657 0.365
100078 30 0.822 0.035 0.624 0.078 15 0.576 0.174 0.653 0.370
12504 20 0.828 0.033 0.624 0.074 61 0.590 0.173 0.660 0.365

90754789 18 0.818 0.035 0.624 0.078 21 0.630 0.173 0.657 0.364
8988812 24 0.823 0.035 0.624 0.077 9 0.636 0.173 0.654 0.366

2 18 0.823 0.035 0.624 0.078 14 0.599 0.172 0.656 0.363

IMDB

10 62 0.896 0.034 0.691 0.069 13 0.210 0.191 0.689 0.385
50 42 0.889 0.040 0.689 0.081 18 0.230 0.188 0.689 0.379

257 50 0.891 0.037 0.691 0.074 10 0.101 0.191 0.689 0.384
500231 26 0.893 0.038 0.691 0.077 45 0.073 0.190 0.689 0.382
100078 44 0.889 0.033 0.691 0.066 11 0.180 0.191 0.689 0.384
12504 41 0.892 0.035 0.691 0.070 12 0.195 0.190 0.689 0.382

90754789 60 0.890 0.040 0.691 0.081 29 0.100 0.191 0.690 0.384
8988812 65 0.875 0.049 0.691 0.098 45 0.215 0.189 0.689 0.380

2 54 0.890 0.038 0.691 0.077 10 0.120 0.191 0.689 0.385

AgNews

10 27 0.959 0.006 0.680 0.013 11 0.630 0.164 0.670 0.340
50 28 0.958 0.006 0.681 0.013 17 0.567 0.174 0.671 0.359

257 33 0.957 0.008 0.685 0.016 10 0.653 0.169 0.671 0.349
500231 60 0.958 0.006 0.680 0.012 49 0.639 0.172 0.670 0.356
100078 37 0.958 0.006 0.680 0.013 17 0.610 0.167 0.671 0.345
12504 78 0.957 0.008 0.685 0.016 19 0.597 0.176 0.672 0.362

90754789 68 0.959 0.007 0.685 0.015 27 0.633 0.171 0.671 0.352
8988812 66 0.958 0.007 0.686 0.014 23 0.549 0.179 0.673 0.369

2 47 0.958 0.006 0.680 0.012 39 0.611 0.179 0.671 0.370

20News

10 23 0.849 0.057 0.689 0.115 34 0.246 0.207 0.661 0.433
50 26 0.863 0.038 0.690 0.077 34 0.176 0.200 0.653 0.425

257 21 0.850 0.050 0.688 0.100 23 0.315 0.207 0.656 0.437
500231 17 0.858 0.050 0.687 0.101 57 0.397 0.206 0.659 0.434
100078 16 0.894 0.031 0.689 0.063 3 0.460 0.211 0.639 0.457
12504 13 0.859 0.052 0.689 0.105 4 0.440 0.211 0.641 0.456

90754789 16 0.874 0.049 0.688 0.099 44 0.043 0.205 0.654 0.435
8988812 7 0.863 0.047 0.688 0.094 11 0.495 0.214 0.644 0.461

2 19 0.875 0.042 0.689 0.084 10 0.492 0.213 0.642 0.461

Table 5: All results from our adversarial setup on the real-life datasets.130
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Abstract
Multilingual NLP models provide potential so-
lutions to the digital language divide, i.e., cross-
language performance disparities. Early analy-
ses of such models have indicated good perfor-
mance across training languages and good gen-
eralization to unseen, related languages. This
work examines whether, between related lan-
guages, multilingual models are equally right
for the right reasons, i.e., if interpretability
methods reveal that the models put emphasis
on the same words as humans. To this end,
we provide a new trilingual, parallel corpus of
rationale annotations for English, Danish, and
Italian sentiment analysis models and use it to
benchmark models and interpretability meth-
ods. We propose rank-biased overlap as a better
metric for comparing input token attributions
to human rationale annotations. Our results
show: (i) models generally perform well on the
languages they are trained on, and align best
with human rationales in these languages; (ii)
performance is higher on English, even when
not a source language, but this performance is
not accompanied by higher alignment with hu-
man rationales, which suggests that language
models favor English, but do not facilitate suc-
cessful transfer of rationales.

1 Introduction

NLP models are sometimes right for the wrong
reasons, e.g., when sentiment analysis models cor-
rectly predict a movie review to be positive because
it contains the word Shrek (Sindhwani and Melville,
2008). Human rationale annotations can be used to
evaluate the extent to which models are right for the
right reasons, i.e., whether model rationales align
with human rationales. Datasets with rationale an-
notations exist for sentiment analysis (Zaidan and
Eisner, 2008), fact-checking (Thorne et al., 2018),
natural language inference (Camburu et al., 2018a),
and hate speech detection (Mathew et al., 2020),1

1Several of these datasets can also be found in the
ERASER Benchmark (DeYoung et al., 2020).

EN
A deep and meaningful film

2.34 1.69 2.70 1.92 0.09

DA
En dyb og meningsfuld film

0.20 0.79 0.67 2.32 0.11

IT
Un film profondo e significativo
0.44 0.28 1.72 1.79 1.43

Table 1: Tokens with machine generated importance
scores for direct translations of the same sentence into
English, Danish, and Italian. We see machine rationales
are nevertheless quite different; e.g., consider the impor-
tance scores for the connectives and, og and e.

but so far only for the English language. While
multilingual language models often fail to gener-
alize across distant languages (Singh et al., 2019a;
Pires et al., 2019; Rust et al., 2020), they do bridge
between related languages and have become a stan-
dard solution to data sparsity (Zheng et al., 2021),
as well as a way to reduce the overall energy con-
sumption of training language-specific language
models (Sahlgren et al., 2021). Benchmark perfor-
mance does not tell us whether multilingual models
are more prone to spurious correlations in some lan-
guages rather than others, i.e., whether models are
equally right for the right reasons or to different
degrees, see Table 1.

This paper presents a trilingual parallel corpus
of human rationale annotations in Danish, Italian,
and English, for the task of sentiment analysis. To
this end, we translate an existing sentiment analysis
dataset into different languages following a similar
procedure as Hu et al. (2020), with human post-
correction. We then collect rationales from native
speakers of these languages. We evaluate the qual-
ity of our human rationale annotations in two ways:
using inter-annotator agreement metrics and using
human forward prediction experiments (Nguyen,
2018). We then use the corpus to evaluate the extent
to which multilingual language models are equally
right for the right reasons across languages, and
whether agreement with human rationales aligns
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with downstream performance.

Contributions Our contributions are as follows:
(a) We present a trilingual corpus of human ratio-
nales, based on post-corrected translations of the
Stanford Sentiment Treebank (Socher et al., 2013)
and annotated by native speakers. The corpus is
made publicly available at https://github.
com/RasmusKaer/BlackBox2022. (b) We
propose better metrics for comparing ranked ra-
tionales than has previously been used, as well as
a sequence-wise normalization of LIME’s token
scores to make scores comparable across sequences.
(c) We evaluate MBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2019), in conjunction
with two interpretability methods, LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017),
across three languages, quantifying the extent to
which these models are equally right for the right
reasons.

2 Multilingual Rationale Annotation

Our multilingual corpus of human rationales is
based on post-corrected translations of the Stan-
ford Sentiment Treebank. We obtain Danish and
Italian translations of a sample of validation data,
correct the translations manually, and have native
speakers annotate the original English sentences,
as well as their post-corrected translations. We
then validate the annotations by quantifying human
inter-annotator agreement and by performing hu-
man forward prediction experiments (Doshi-Velez
and Kim, 2017; Nguyen, 2018; Hase and Bansal,
2020; Gonzalez and Søgaard, 2020; González et al.,
2021). We describe each step in detail in this sec-
tion.

Stanford Sentiment Treebank (SST) Our
dataset builds on a sample of the Stanford Senti-
ment Treebank, which originally consists of 11,855
sentences from movie reviews, annotated with sen-
timent labels, and split in training, validation and
evaluation sections of 8,544, 1,101, and 2,210 sen-
tences. The sample selected for annotation of the
rationales consists of 250 sentences from the vali-
dation section.

Translation We translate the English dataset into
the target languages using Google Cloud API2.
We carefully correct the translations of the ratio-
nales set manually and assess the quality of corpus

2Advanced version (v3), September 2021

through a language analysis. The post-correction
process is presented in 6. We are aware that it
would have been beneficial to have a set of lan-
guages that was more representative of linguistic
diversity, but for this work we only had access to
professional annotators in the three languages.

Annotation We ask native speakers of English,
Danish and Italian to annotate the sample with ra-
tionales. Our aim is to identify two types of in-
formation for each sentence: the rationales span,
snippets of text that support the outcome; and the
rank, the most meaningful words to justify the sen-
timent of the sentence. Inspired by previous ex-
plainability work in NLP using human rationale
annotations (Mathew et al., 2020; DeYoung et al.,
2019; Zhang et al., 2016), we follow the annotation
guidelines in Zaidan et al. (2007). For the rank, we
are interested in single words that carry a semantic
meaning for the output (positive or negative sen-
timent). Annotators are asked to rank up to five
words from most (1) to least (5) meaningful. See
Table 2 for an example. The four annotators used
in this study had linguistic training and participated
on a voluntary basis.

S John and Adam are such likeable actors.
R John and Adam are such [2] likeable [1] actors.
S A warm , funny , engaging film.

R A warm [3], funny [1], engaging [2] film.

Table 2: Text annotation showing span (S) annotation
and rank (R) annotation.

Annotator agreement The inter-annotator agree-
ment is measured as Cohen’s κ (Cohen, 1960) and
accuracy; see Table 3. The κ coefficients suggest
that the two annotators for each language have sub-
stantial agreement across all languages.

Lang. κ Acc. Span Rank Tokens

DA 0.705 0.882 1,114 722 4157
EN 0.731 0.890 1,250 770 4232
IT 0.642 0.857 1,067 736 4411

Table 3: Annotator agreement and rationales by token.
The minimum sentence length is 3 tokens for all three
languages. The average length for both EN and DA is 17
and the maximum is 42 tokens per sentence, while in IT
it is, respectively, 18 and 44 tokens per sentence.

Forward prediction Besides calculating the
inter-annotator agreement, we also validate the
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quality of our annotations through human forward
prediction (Doshi-Velez and Kim, 2017; Nguyen,
2018; Hase and Bansal, 2020; Gonzalez and Sø-
gaard, 2020; González et al., 2021). We recruited
9 annotators from our professional network, and
everyone had degrees in computer science or lin-
guistics. In a small-scale side experiment, we show
participants 28 examples in which rationales identi-
fied by the annotators are highlighted. Participants
are then asked to guess the ground truth (positive or
negative sentiment) from these highlighted spans.
We compare this to a baseline setting in which our
participants have to guess the ground truth from
raw text. We explicitly mentioned in the task that
the results will be used for scientific research. If
the rationales help participants predict the ground
truth, they have been shown to be good rationales.
Humans predicted the ground-truth for 82% of the
examples with rationales, compared to 70% of the
examples without rationales. For example, without
rationales provided, 22.2% of annotators struggled
in identifying the correct sentiment of a review
such as "Turns a potentially forgettable formula
into something strangely diverting", while having
less difficulties with equally challenging reviews
when the rationales are provided. The high inter-
annotator agreement and the usefulness of our ra-
tionales together indicate that our annotations are
of high quality.

3 Comparing Ranked Rationale Lists

To evaluate the agreement between human ratio-
nales and rationales identified by interpretability
methods applied to automatic sentiment analyses,
we need a similarity measure for comparing ranked
rationale lists. Common correlation tests are not
sufficient, because the measure must be applica-
ble to non-conjoint, uneven lists and should put a
higher weight on higher-ranked words.

The human annotator selects the most relevant
words in a sentence until exhausted. The ranking is
ordered, but may only contain a few words. On the
other hand, the interpretability methods provide by
design a rank for each word in a sentence. Thus,
the annotator’s ranking is typically incomplete (not
all items are ranked), while the automatically com-
puted ranking is complete. That is, the two rank-
ings are mutually non-conjoint. Furthermore, we
need to deal with indefiniteness (Webber et al.,
2010) in the sense that the annotator may truncate
the complete list at an arbitrary depth. The mea-

sure we propose for evaluating rationale rankings
is the extrapolated version of the rank-biased over-
lap (Webber et al., 2010), RBOEXT, which is a gen-
eralization of average based overlap for indefinite
rankings. It ranges from 0 (disjoint) to 1 (identical).
The RBOEXT measure satisfy the criteria needed
for evaluating the agreement of list rationale rank-
ings of both sentences and documents by being able
to handle tied ranks, rankings of different lengths
and top-weighted rankings.

The degree of top-weightedness is determined
by a parameter p ∈ [0, 1]. Consider a person com-
paring two rankings by sequentially going through
the lists starting with the highest rank. In each
step, one additional rank is considered. That is, in
the beginning only the highest ranked elements
are compared, then additionally the top two el-
ements are compared, and so on. At each step,
the person stops the comparison with a probability
1 − p. Roughly speaking, RBOEXT measures the
expected similarity computed by this randomized
comparison. The parameter p induces a weighting
of the ranks that decreases with decreasing rank
(i.e., decreasing importance). Following Webber
et al. (2010), we choose p such that 86% of the
weight is concentrated on the first d ranks. They
show that the concentration of weights on the first
d ranks given p can be computed as

1− pd−1 +
1− p

p
d

(
ln

1

1− p
−

d−1∑

i=1

pi

i

)
.

Table 3 shows that annotators on average rank 3
words per sentence. Hence, we set p = 0.68, be-
cause this leads to a concentration of roughly 86%
for d = 3. The annotators were asked to rank up
to 5 words. Therefore, we also considered only
the top-5 elements in the rankings produced by the
interpretability methods (still, we apply RBOEXT
as derived for indefinite rankings).

4 Experiments

Our experiments below rely on two pretrained mul-
tilingual language models, which we briefly intro-
duce, three different experimental protocols, and
two different interpretability methods.

Pretrained language models The experimen-
tal protocol is based on two pretrained multilin-
gual transformer language models (Vaswani et al.,
2017), namely MBERT (Devlin et al., 2019)3 and

3https://huggingface.co/bert-base-multilingual-cased
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XLM-R (Conneau et al., 2019)4. We used the base,
cased version from the Hugging Face transformers
library5. Following (Devlin et al., 2019), we added
a classification layer on top of the [CLS] token. We
fine-tuned these models for 3 epochs on a single
Tesla K80 GPU, with a training batch size of 16
and a learning rate of 3 · 10−5. The parameters
were found using manual hyperparameter tuning
based on the authors’ recommendations of batch-
sizes {16, 32}, epochs {2, 3, 4}. The learning rate
was fine-tuned over {2 · 10−5, 3 · 10−5, 5 · 10−5}
with 3 trials each.

Experimental protocols In our experiments, we
fine-tune MBERT and XLM-R on the SST train-
ing data and/or translations thereof (into Danish or
Italian). We rely on three standard protocols, which
we call the BASE-SETTING, the CROSS-SETTING,
and the MULTI-SETTING. In the BASE-SETTING,
we fine-tune MBERT and XLM-R on a single lan-
guage, e.g., English, and evaluate them on the eval-
uation data in the same language. This corresponds
to the situation in which you use a multilingual lan-
guage model to learn a monolingual model in the
presence of training data. This scenario is common
for medium-resourced languages. In the CROSS-
SETTING, we evaluate such models, e.g., trained
on English, on another language. This scenario is
common for low-resourced languages. Finally, in
the MULTI-SETTING, we train and evaluate on all
three languages, inducing a multilingual sentiment
analysis model for three languages. In all three set-
tings, we evaluate the extent to which the fine-tuned
MBERT and XLM-R models align with human
rationales, relying on interpretability methods.

Interpretability methods A variety of methods
for deriving explanations are currently being used
by the NLP community. Examples of such methods
are LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017), LRP (Bach et al., 2015), and
DTD (Montavon et al., 2017). For this study, we
consider SHAP and LIME, since they are two
of the most widely used post-hoc model inter-
pretability methods, also used in similar studies
such as ERASER (DeYoung et al., 2020) and Hat-
eXplain (Mathew et al., 2020). LIME is a model-
agnostic approach that returns an explanation for a
prediction on an input example (a text) by virtue of
a local linear approximation of the model’s behav-

4https://huggingface.co/xlm-roberta-base
5https://huggingface.co/docs/transformers, V4.15.0

ior around that example. The linear approximation
is a sparse linear model induced from hundreds
of perturbations of the example. In the case of
text examples, perturbations are obtained by ran-
domly removing tokens or words. SHAP is also
model-agnostic and based on Shapley values (Shap-
ley, 1953), a concept from cooperative game the-
ory, which refers to the average of the marginal
contributions to all possible coalitions. When ap-
plied to text, the method, like LIME, produces
explanations in terms of tokens or words. We kept
the hyperparameters of the two methods to their
default-setting, except for the size of neighbour-
hood used to learn linear models for LIME, which
we set to 500 for computational reasons.

5 Results

Table 4 presents the results of the experimental
protocol on our trilingual corpus. We compare the
effectiveness of LIME and SHAP on human ra-
tionales. The agreements is evaluated using ROC
AUC for rationale span and RBOEXT for rank simi-
larity based on all 250 samples. The protocol sets
two properties for fine-tuning: a single language,
denoted by DA, EN and IT, or multiple languages,
denoted MULTI. The fine-tuned models are tested
across DA, EN and IT with 3 runs per setting.

Performance of MBERT and XLM-R The ac-
curacy of the multilingual models across languages
and settings is presented in Table 4. The results con-
firm the findings of the original works (Conneau
et al., 2019), that XLM-R is consistently better
than MBERT.

While MBERT-based models consistently ob-
tain their highest accuracy in the BASE-SETTING,
XLM-R-based models always perform best on En-
glish as the target language, independently from
the source language. MBERT-based models ex-
hibit a high variation in the CROSS-SETTING (5.11
p.p. difference between the average accuracy of the
BASE compared to the CROSS settings), e.g., EN-
MBERT achieves 81.48% accuracy when tested on
the English test set, but has only 70.42% accuracy
on Danish. In contrast, XLM-R shows less varia-
tion between BASE and CROSS settings (0.52 p.p.
difference).

But does a higher performance correspond to
higher agreement with human rationales? Table 4
presents the results for agreement, evaluated using
ROC AUC for rationale span and RBOEXT for rank
similarity of the two list rankings. The results sug-
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Protocol settings SHAP LIME
Source Model Target Acc. ROC AUC RBOEXT ROC AUC RBOEXT

English

EN-MBERT
EN 81.48 ± 0.3 68.69 ± 0.7 51.63 ± 0.0 67.08 ± 0.0 53.76 ± 0.0

IT 74.28 ± 0.6 70.11 ± 1.0 49.92 ± 0.0 66.18 ± 0.0 47.77 ± 0.0

DA 70.42 ± 0.9 67.41 ± 1.0 44.38 ± 0.0 62.05 ± 0.0 42.35 ± 0.0

EN-XLM-R
EN 85.37 ± 0.2 69.95 ± 1.4 52.78 ± 0.0 66.83 ± 0.0 56.87 ± 0.0

IT 82.16 ± 0.2 69.80 ± 0.4 48.52 ± 0.0 68.05 ± 0.0 54.48 ± 0.0

DA 82.50 ± 0.3 68.85 ± 0.7 50.68 ± 0.0 66.19 ± 0.0 53.33 ± 0.0

Italian

IT-MBERT
IT 80.66 ± 1.2 69.24 ± 1.1 53.24 ± 0.0 68.23 ± 0.0 55.37 ± 0.0

EN 76.08 ± 1.7 68.79 ± 1.0 50.46 ± 0.0 66.04 ± 0.0 48.62 ± 0.0

DA 68.94 ± 0.5 65.13 ± 0.6 43.11 ± 0.0 62.66 ± 0.0 43.95 ± 0.0

IT-XLM-R
IT 82.56 ± 0.0 71.79 ± 1.2 52.79 ± 0.0 69.94 ± 0.0 56.72 ± 0.0

EN 84.15 ± 0.7 70.62 ± 0.8 55.48 ± 0.0 66.79 ± 0.0 55.22 ± 0.0

DA 81.24 ± 1.0 69.59 ± 0.4 53.03 ± 0.0 66.16 ± 0.0 52.98 ± 0.0

Danish

DA-MBERT
DA 79.17 ± 0.5 67.40 ± 2.0 49.07 ± 0.0 66.37 ± 0.0 51.33 ± 0.0

IT 72.10 ± 0.3 68.36 ± 0.8 45.84 ± 0.0 64.74 ± 0.0 45.39 ± 0.0

EN 75.60 ± 0.7 69.95 ± 0.5 49.50 ± 0.0 66.17 ± 0.0 48.37 ± 0.0

DA-XLM-R
DA 83.41 ± 0.5 69.74 ± 1.6 55.88 ± 0.0 65.99 ± 0.0 53.27 ± 0.0

IT 82.07 ± 0.6 69.16 ± 0.6 49.75 ± 0.0 67.57 ± 0.0 52.12 ± 0.0

EN 84.80 ± 0.2 70.39 ± 1.1 53.63 ± 0.0 66.34 ± 0.0 52.59 ± 0.0

Multi

MULTI-MBERT
EN 81.51 ± 0.1 65.02 ± 2.1 43.49 ± 0.0 65.97 ± 0.0 51.68 ± 0.0

IT 80.62 ± 0.2 66.16 ± 1.6 45.57 ± 0.0 66.21 ± 0.0 49.60 ± 0.0

DA 78.34 ± 0.9 63.99 ± 0.4 42.65 ± 0.0 63.89 ± 0.0 49.71 ± 0.0

MULTI-XLM-R
EN 85.83 ± 0.4 67.79 ± 0.8 50.45 ± 0.0 64.48 ± 0.0 48.66 ± 0.0

IT 83.67 ± 0.3 69.10 ± 0.7 46.41 ± 0.0 66.52 ± 0.0 51.88 ± 0.0

DA 82.88 ± 0.7 66.99 ± 1.3 48.89 ± 0.0 64.61 ± 0.0 49.59 ± 0.0

Table 4: Evaluation results on the multilingual corpus of rationales. All results are averaged over three trials. We
report the results in percentages. We observe that generally models perform well on the languages they are trained
on (source languages), and align best with human rationales in these languages. Generally, MBERT aligns better
with human rationales, but XLM-R performs better. We also observe, however, that performance is high on English,
even when not a source language, but that this performance is not accompanied by higher alignment with human
rationales. This suggests that language models favor English, but do not facilitate successful transfer of rationales.

gest that the accuracy of the models does not gen-
erally seem to influence ROC AUC and RBOEXT
scores, since a much higher accuracy does not im-
ply better span prediction.

Interpretability methods Our evaluation of the
span agreement shows an average across all models
and languages of 68.50% for SHAP and 66.04%
for LIME, indicating that SHAP has a higher
(2.46 p.p.) agreement with human span rationales
than LIME. The average rank agreement across
all models and languages measured using RBOEXT
is 49.46% for SHAP and 51.07% for LIME, the
latter being 1.61 p.p. higher in agreement than
SHAP. These experiments show that we do not
have a single best method across rank and span.
Our results suggest a trend of SHAP being a more
successful method for capturing good weights for
span agreement and LIME being slightly more in
accordance with human ranking.

Languages The best rank agreement is achieved
when English is used as target language, with
the overall highest for both LIME (51.97%) and
SHAP (50.93%), as presented in Table 5.

Metric Method Target-EN Target-IT Target-DA

RBOEXT
SHAP 50.93 49.01 48.46
LIME 51.97 51.67 49.56

ROC
AUC

SHAP 68.90 69.22 67.39
LIME 66.21 67.18 64.74

Overall 59.50 59.27 57.54

Table 5: To investigate whether explanations are in equal
agreement across languages, we group target languages
together across the BASE, CROSS and MULTI settings.

The second best rank agreement is obtained in
Italian, while the worst is in Danish for both LIME
and SHAP. The highest average span score is
achieved on Italian, while English follows close
and Danish again remain the lowest in agreement.
While English is slightly higher in rank agreement,
Italian obtains a better span agreement. The lowest
span and rank agreement is generally seen with
Danish as target language. As we are interested
in how languages compare across models, settings
and metrics, we can derive the total from the target
languages column in Table 5. Altogether, these
results indicate that we have better explanations for
English (59.50%) than we have for Italian (59.27%)
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and Danish (57.54%). The explanations for English
are 1.96 p.p. higher in agreement with human ra-
tionales than the explanations derived from Danish,
while Italian is 1.73 p.p. higher than Danish.

Evaluation metrics An interpretation of the eval-
uation metrics across settings and languages shows
a span agreement that ranges from 62.05% to
71.79%, with an average of 67.27%. What we
can interpret from the score is a satisfactory span
agreement, suggesting that there is a 2

3 chance that
the model is able to distinguish a token inside a
span and a token outside a span. That is, the ma-
chine rationale agrees with a human rationale. Re-
garding the rank agreement across all settings and
languages, we see it ranges from 42.35% to 56.87%
with an overall average of 50.27%. The score can
be interpreted as neither disjoint nor identical, thus
implying a fair agreement.

6 Analysis

In this section, we present our analysis of our re-
sults and findings. First, we address whether mod-
els are equally right for the right reasons and how
performance compares to agreement. Next, we
analyze the translations and the post-corrections.
Lastly, we examine whether token scores predict
human rationales.

Are models equally right for the right reasons
across languages? The idea of being right for
the right reasons refers to learning from reliable
signals in your data, which are causally related to
the ground truth classification. While some models
can be used to illuminate complex causal dynamics,
others adapt Clever Hans strategies of relying on
pervasive, yet spurious correlations in the training
data. In this paper, we ask if multilingual language
models such as MBERT and XLM-R are equally
prone to spurious correlations across languages?
Or could it be that these models adopt Clever Hans
strategies for some languages, but not for others?

Our results show, very consistently, that MBERT
and XLM-R are less right for the right reasons for
Danish: When the training language is English or
Italian, or when multilingual training language is
used, Danish never aligns best with human ratio-
nales. For English and Italian, it comes in worst in
18/20 cases, and in the multilingual setting, Danish
is least right for the right reasons in 6/10 cases. For
English and Italian, things are more or less on par.
While English is slightly higher in rank agreement,

then Italian obtains a better span agreement, but the
lowest span and rank agreement is generally seen
with Danish as the target language. We conclude
that multilingual language models are not equally
right for the right reasons across languages.

How indicative is accuracy for agreement? It
seems intuitive that a good model with high perfor-
mance will also align better with human rationales,
but theoretically, models may adopt radically dif-
ferent strategies, if multiple strategies are possible.
Even if we expect a positive correlation between
performance and alignment, how strong is this cor-
relation in practice? To answer this question, we
compute the correlation between the accuracy of
the language models and the agreement of span and
rank. We use Spearman’s rank-order correlation
test and Pearson’s correlation test, across both ex-
planation methods and all datasets. Both tests show
that performance is only weakly (positively) cor-
related with alignment with human rationales; see
Table 6 for details. That is, we see better alignment
if models are better, but performance explains only
a little of the variance, suggesting multiple possi-
ble strategies for prediction exist. This aligns well
with our results, also, where a larger difference in
accuracy between models does not transfer into a
significant difference in agreement.

Lang. Spearman’s ρ Pearson’s ρ

Acc/AUC 0.059∗∗ 0.092∗∗

Acc/RBO 0.076∗∗ 0.153∗∗

Table 6: Correlation scores for performance (Acc) and
alignment with human rationales (AUC/RBO).

Humans may base their rationales on different
parts than machine-based rationales. While hu-
mans consider and necessary for the snippet of
deep and meaningful (see example in Table 1), a
model may not find it a useful predictor of sen-
timent. Humans and models may agree on the
sentiment, but for slightly different reasons.

Language analysis The translated corpus is post-
corrected to obtain a high overall quality, ensuring
that the corpus can be used to evaluate the inter-
pretability methods in our experiments. To quantify
the translations quality, we report the number or
sentences that needed corrections and the average
number of corrected words in Table 7. The percent-
age of sentences that needed to have corrections in
Italian and Danish are, respectively, 17.20% and
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Lang. % corrected sentences Avg. corrected words

DA 15.60 1.46
IT 17.20 1.74

Table 7: Percentage of corrected sentences and average
number of corrected words per sentence in Italian and
Danish.

15.60%. Among these corrected sentences, 1.74
words were corrected on average in Italian, 1.46 in
Danish. The results indicate that overall the quality
of the translations is high. This is also supported
by the performance of the fine-tuned models in
Table 4. A selection of original translation and
the post-corrected equivalent is presented in Table
8. We can highlight some limitations found dur-
ing post-correction. The original sentences some-
times present an informal register, sprinkled with
colloquial and slang words, which may result in
suboptimal and literal translations. Some of the
original sentences present idiomatic expressions
that might result in a literal translation, as in A-DA,
not corresponding to actual terms in the target lan-
guage. Moreover, some translations may contain

A-IT ORG. ..., sbalorditivo, assurdamente cattivo.
A-IT COR. ..., sbalorditivo, assurdamente brutto

B-IT ORG. Questo film fa impazzire.
B-IT COR. Questo film è esasperante.

A-DA ORG. Der er parcelhuller, der er store nok til, ...
A-DA COR. Der er plothuller, der er store nok til, ...

B-DA ORG. Det er en greb taske med genrer, ...
B-DA COR. Det er en rodekasse med genrer, ...

Table 8: Examples of corrected translations (COR.) and
the original translations (ORG.).

subpar syntactic structure or lexicon, e.g., in A-IT

brutto is more suiting to refer to films, although it
presents the same polarity and magnitude of the
original adjective. In B-IT the sentiment of the
expression could be misinterpreted, since fa im-
pazzire is sometimes used in a positive connotation.
Lastly, sometimes the original English sentences
contain typos and other errors, which the model
is understandably not able to correct or process,
therefore transferred into the translations.

Do token scores predict human rationales
Meaningful token scores produced by an inter-
pretability method should be predictive of human
rationales (Doshi-Velez and Kim, 2017; Nguyen,
2018; DeYoung et al., 2019). To verify this, we

map the token score s(w) of a word w to an es-
timate of the probability that the word is in the
rationales span. We assume a logistic model

P (w in rationales span | s(w)) = σa,b(|s(w)|) ,

where σa,b(x) = (1 + exp(ax+ b))−1 with scalar
parameters a and b. These parameters are deter-
mined by maximum likelihood estimation on a
training set pairing token scores and corresponding
human annotations. We consider the absolute value
of the score because we are interested in the impor-
tance of a word regardless of whether it contributes
to a positive or negative sentiment. This approach
corresponds to calibrating the (absolute) scores to
posterior probabilities as suggested by Platt (Platt,
1999; Niculescu-Mizil and Caruana, 2005). It can
also be viewed as logistic regression from the ab-
solute score to the dependent variable indicating
whether a word is in the rationale span or not.

The logistic model gives us the probability of
a word being a rationale, which allows for an in-
terpretation of token scores and a comparison of
scores across different interpretability methods. In
particular, the model suggests a criterion for decid-
ing whether a word should be considered part of
the rationales span or not by applying the natural
50% threshold on the probabilities (we pay for this
additional information by using training data to fit
the models). To fit the model and to compare the
different interpretability methods, we split our data
into a training and a validation set. We used 25
positive and 25 negative samples for validation and
trained on the remaining 200 data points.

Let s = (s(w1), s(w2), . . . )
T denote the vec-

tor of scores for a word sequence w1, w2, . . . and
min(s) and max(s) the minimum and maximum
element of s, respectively. To compare token
scores across sequences, their scaling should not
differ across the sequences. That is, because we
can assume that each sequence contains at least one
word within and one outside the span, for two se-
quence s and s′ we should have min(s) = min(s′)
and max(s) = max(s′). We found this property
to be violated, in particular for LIME. Thus, we
normalized the scores at the sequence level using

s(w)← s(w)−min(s)

max(s)−min(s)

for each score s(w) in a sequence with scores s.
Table 9 shows the accuracies on the held-out sets

in BASE-SETTING. Both methods performed better
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LIME LIME SHAP SHAP BASE
MBERT XLM-R MBERT XLM-R LINE

(A)
EN 70.03 71.51 71.68 72.76 67.74
DA 69.50 70.23 70.83 72.75 67.49
IT 70.94 72.73 72.73 73.78 67.80

(B)
EN 73.75 73.03 70.97 71.68 67.74
DA 72.34 72.75 71.47 72.70 67.49
IT 73.47 75.44 73.30 73.13 67.80

Table 9: The accuracies on the hold-out sets in BASE-
SETTING. The BASELINE is a majority classifier that
naively predicts all tokens as not a rationale. (A) refers
to the original token scores and (B) to the normalized
token scores.

than simply predicting the majority class. Without
normalization, SHAP outperformed LIME on our
(rather small) validation data set. LIME was only
slightly better than the baseline, but after normaliza-
tion LIME surpassed SHAP, which did not profit
from the normalization. When evaluating explana-
tions on how well the token scores generalize to
human rationales, we see a similar pattern of Italian
and English sharing the highest agreement where
Danish consistently shows the lowest agreement.

Human annotated rationales include connectives,
determiners, and similar, which are irrelevant for
our binary task and are therefore not used by the
logistic models. This suggests that methods for
adding the relevance of these could be a promis-
ing direction for improving our approach and the
evaluation between human and machine rationales.

7 Related work

Transformer-based multilingual models have been
analyzed in many ways: Researchers have, for ex-
ample, looked at performance differences across
languages (Singh et al., 2019b), looked at their or-
ganization of language types (Rama et al., 2020),
used similarity analysis to probe their representa-
tions (Kudugunta et al., 2019), and investigated
how learned self-attention in the Transformer
blocks affects different languages (Ravishankar
et al., 2021). Human rationales have been used
to supervise attention for various text classifica-
tion tasks, such as sentiment analysis (Zhong et al.,
2019) and machine translation (Yin et al., 2021).
Feature attribution methods such as LIME and
SHAP have also been applied to multilingual mod-
els: LIME has been applied to MBERT for analy-
sis of hate speech models (Aluru et al., 2020), and
SHAP has been applied to MBERT in biomedi-
cal NLP (Zaragoza, 2021). LIME has also been
applied to XLM-R in the context of hate speech

(Socha, 2020), as well as in a biomedical context
(Koloski et al., 2021). Shapley values have also
been used to estimate the influence of source lan-
guages on the final predictions of models based on
MBERT (Parvez and Chang, 2021). None of these
applications have been evaluated, however. Fea-
ture attributions have been applied to monolingual
models, especially for English, more often than
multilingual models. For English, we have a set of
datasets with human rationales that we can use to
evaluate feature attribution methods. These include
BeerAdvocate (Bastings et al., 2019) and e-SNLI
(Camburu et al., 2018b), as well as other datasets,
several of which were collected in the ERASER
benchmark (DeYoung et al., 2020). The reason
feature attribution methods have not been prop-
erly evaluated in a multilingual context, is simple:
There was, until now, no gold standard with which
to evaluate the rationales produced by multilingual
models.

8 Conclusions

We introduced a new trilingual, parallel corpus of
human rank and span rationales in three related
languages, English, Danish and Italian. We pro-
posed rank-biased overlap as a better metric for
rank evaluation when common correlation tests are
not sufficient. We found that a sequence-wise nor-
malization of LIME’s token scores is required to
make scores comparable across sequences. Evalua-
tions on the corpus showed that generally, models
perform well on the languages they are trained on,
and align best with human rationales in these lan-
guages. Models can be right for different reasons.
The main results suggest that multilingual models
are not equally right for the right reasons in the
sense that interpretability methods indicate that the
models not necessarily put emphasis on the same
words as humans. We also observed that perfor-
mance is high on English, even when it is not a
source language, but that this superior performance
is not accompanied by higher alignment with hu-
man rationales. In other words, this zero-shot ad-
vantage of English as a target language seems to
come at the cost of being more prone to spurious
correlations. With this work, we hope to inspire
further progress on multilingual interpretation and
collection of rationales in different languages.
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9 Limitations

All the languages chosen for the presented work be-
long to the Indo-European language family, since
we only had access to professional annotators in
the three languages. A clear limitation of this
study is the lack of linguistic diversity in the set
of languages used. It would be beneficial in the
future to build larger rationale datasets for less
related languages, including languages from dif-
ferent language families. Another limitation to be
highlighted is the limited size of the multilingual
parallel corpus of rationales, consisting on 250 an-
notations per language. Finally, although the paral-
lel corpus was post-corrected, the language models
are fine-tuned on the translations.
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Abstract

We investigate the extent to which verb alter-
nation classes, as described by Levin (1993),
are encoded in the embeddings of Large Pre-
trained Language Models (PLMs) such as
BERT, RoBERTa, ELECTRA, and DeBERTa
using selectively constructed diagnostic clas-
sifiers for word and sentence-level prediction
tasks. We follow and expand upon the exper-
iments of Kann et al. (2019), which aim to
probe whether static embeddings encode frame-
selectional properties of verbs. At both the
word and sentence level, we find that contextual
embeddings from PLMs not only outperform
non-contextual embeddings, but achieve aston-
ishingly high accuracies on tasks across most
alternation classes. Additionally, we find evi-
dence that the middle-to-upper layers of PLMs
achieve better performance on average than the
lower layers across all probing tasks.

1 Introduction

We investigate the extent to which verb alternation
classes are represented in word and sentence em-
beddings produced by Pre-trained Language Model
(PLM) embeddings (Qiu et al., 2020). As first com-
prehensively cataloged by Levin (1993), verbs pat-
tern together into classes according to the syntactic
alternations in which they can and cannot partic-
ipate. For example, (1) illustrates the causative-
inchoative alternation. Break can be a transitive
verb in which the subject of the sentence is the
agent and the direct object is the theme, as in ex-
ample (1a). It can also alternate with the form in
(1b), in which the subject of the sentence is the
theme and the agent is unexpressed. However, (2)
demonstrates that cut cannot participate in the same
alternation, despite its semantic similarity.

(1) a. Janet broke the cup.

b. The cup broke.

(2) a. Margaret cut the bread.

b. * The bread cut.

(3) demonstrates an alternation of a different
class – namely, the spray-load class, in which the
theme and locative arguments can be syntactically
realized as either direct objects or objects of the
preposition. Spray can participate in the alternation,
but as shown in (4), pour cannot.

(3) a. Jack sprayed paint on the wall.
b. Jack sprayed the wall with paint.

(4) a. Tamara poured water into the bowl.
b. * Tamara poured the bowl with water.

The alternations in which a verb may partici-
pate is taken to be a lexical property of the verb
(e.g. Pinker, 1989; Levin, 1993; Levin et al., 1995;
Schafer, 2009). Moreover, we hypothesize that the
alternations should be observable within large text
corpora, and are therefore available during the pre-
training procedure for PLMs such as BERT (Devlin
et al., 2018). In contrast, ungrammatical examples
such as (2b) and (4b) should be virtually absent
from the training data. This leads us to hypothesize
that PLM embeddings should encode whether par-
ticular verbs are allowed to participate in syntactic
frames of various alternation classes. Our research
questions are as follows:

1. Do PLM word-level contextual representa-
tions encode information about which syntac-
tic frames an individual verb can participate
in?

2. At the sentence level, do PLM embeddings en-
code the frame-selectional properties of their
main verb?

Through our series of experiments, we find that
PLM embeddings indeed encode information about
verb alternation classes at both the word and sen-
tence level. While performance is relatively con-
sistent on the word-level task for the four PLMs
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we analyze, we find that ELECTRA (Clark et al.,
2020) significantly outperforms the other models
for the sentence-level task. Furthermore, we find
evidence suggesting that middle-to-upper layers
encode more information about verb alternation
classes since they consistently improve upon the
lower layers across all tasks.

The rest of the paper is organized as follows:
after a brief review of related literature in Section 2,
we present datasets and models that are relevant
to our experiment in Sections 3 and 4. We then
present two experiments to answer our research
questions in Sections 5 and 7. Section 6 presents
an additional control task (Hewitt and Liang, 2019)
to test whether our linear probes are selective for
the given tasks. Finally, we offer a discussion in
Section 8 and overall conclusions in Section 9.

2 Related work

Our work follows Kann et al. (2019), who at-
tempt to predict verb class membership and sen-
tence grammaticality judgments on the basis of
GloVe embeddings (Pennington et al., 2014) and
embeddings derived from the 100M-token British
National Corpus with a single-directional LSTM
(Warstadt et al., 2019). For the sentence-level task,
they further process the input embeddings using a
sentence encoder trained on a “real/fake” sentence
classification task. Varying multi-layer perceptron
(MLP) architectures are used for the classification
step. Because their primary research focus has
to do with how neural language models inform
learnability (in the sense of human language ac-
quisition), they intentionally use smaller language
models derived from “an amount of data similar
to what humans are exposed to during language
acquisition” and avoid models trained on “several
orders of magnitude more data than humans see in
a lifetime” (p. 291).

As described in Section 5, we depart and build
upon Kann et al. 2019 by examining the embedding
representations of PLMs instead of static embed-
dings. We then use an intentionally simple and
selective linear diagnostic classifier to probe the
representations, as our research questions focuses
on the PLM embeddings themselves. We note that
Kann et al. (2019) achieves only modest perfor-
mance in prediction accuracy and MCC, and only
for a limited number of verb classes. While this is a
valuable result for their research goals, our hypoth-
esis is that PLMs will achieve better performance

due to a combination of their contextual represen-
tations, complex architectures, and larger training
corpora.

To our knowledge, attempting to predict verb al-
ternation class membership along the lines of Levin
1993 from PLM representations is novel. How-
ever, two very closely related lines of work include
the experiments of Warstadt and Bowman (2019),
which respectively evaluate the performance of var-
ious PLMs on the CoLA (Warstadt et al., 2019) and
BliMP (Warstadt et al., 2020) benchmarks, which
include acceptability judgment examples from a
wide variety of linguistic phenomena (including
verb argument structures). We distinguish our ex-
periments from these papers in two major ways.
First, we attempt to directly probe the linguistic
knowledge of individual PLM embedding layers
with a classification probe instead of specifically
finetuning the models to a specific task. Second,
we limit our focus to verb alternation classes and
present detailed analysis about patterns and trends
across different alternations and their correspond-
ing syntactic frames.

3 Data

In our experiments, we use two dataset created
by Kann et al. (2019). One is the Lexical Verb-
frame Alternations dataset (LaVA), which is based
on the verbs and alternation classes defined in
Levin (1993). It contains a mapping of 516 verbs
to 5 alternation classes, which are further sub-
divided into two syntactic frames for each alter-
nation. The broad categories of the alternation
classes are: Spray-Load, Causative-Inchoative, Da-
tive, There-insertion, and Understood-object. Ta-
ble 11 provides the class distributions for each syn-
tactic frame. Frames and Alternations of Verbs
(FAVA), the other dataset, is a corpus of 9413 semi-
automatically generated sentences formed from the
verbs in LaVA along with human grammaticality
judgments. The sentences in FAVA are categorized
according to the relevant alternation class, and are
separated into train, development, and test sets by
the authors for each category.

1A similar table appears in Kann et al. (2019), but we
present it again here because of discrepancies that we found
in the distribution counts. Notably, it appears that the authors
flipped the positive and negative counts for the there-Insertion
and Understood-Object alternation classes which carries over
to their results.
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LEVIN-CLASS CAUS-INCH DATIVE SPRAY-LOAD there-INSERTION UNDERSTOOD-OBJECT
Inch. Caus. Prep. 2-Obj with loc. no-there there Refl No-Refl

Positive 73 124 65 74 101 86 149 50 84 11
Negative 144 0 377 442 242 257 0 192 419 503

Total 217 124 442 516 343 343 149 242 503 514

Table 1: An updated overview of the LaVA dataset based on verb membership class distributions for each syntactic
frame. “Postitive” refers to the number of verbs that can participate in the specified syntactic frame, while “Negative”
refers to the number of verbs that cannot participate.

4 Models

In addition to BERT, we perform experiments on
several recent Transformer-based PLMs including
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021), and ELECTRA (Clark et al., 2020) which
vary from BERT in a few ways including modi-
fications to BERT’s tokenization and pre-training
procedure and the size of their training corpus. To
make comparisons between each model fair, we
use the base architectures for each model which
have 12 layers, 12 attention heads, and a hidden
layer size of 768.2

4.1 Model differences

For pre-training, BERT uses standard Masked Lan-
guage Modeling (MLM) wherein tokens from a
given input sequence are masked at random and the
model attempts to recover the masked tokens from
the unmasked tokens and Next Sentence Prediction
(NSP), in which the model tries to predict whether
one sentence follows another in a given text se-
quence. The other PLMs drop NSP from their
pre-training procedure but make other significant
changes to the architecture and the MLM approach.
RoBERTa introduces “dynamic” masking, in which
different tokens are masked across different train-
ing epochs (as opposed to the same training mask
being used across epochs). DeBERTa uses a “dis-
entangled attention mechanism” which computes
attention weights using distinctly encoded position
and context vectors, and also moves absolute posi-
tion encodings from the input layer to the second-
to-last layer. Lastly, instead of randomly mask-
ing input tokens, ELECTRA strategically replaces
tokens with plausible alternatives using a trained
generator network, and separately trains a discrimi-
native model which aims to predict whether each
token in an input sequence was replaced by a gen-
erator sample.

2All further references to these models refer to their base
architectures.

4.2 Training Data
In addition to variations in the pre-training methods,
the models are also trained on different datasets.
BERT and ELECTRA are both trained on the En-
glish Wikipedia Dump and BookCorpus (Zhu et al.,
2015). DeBERTa is additionally trained on CC-
Stories (Trinh and Le, 2018) and OpenWebText
(Gokaslan and Cohen, 2019). Finally, RoBERTa
is pretrained on all of the aforementioned datasets
as well as the CC-News corpus (Mackenzie et al.,
2020).

5 Experiment 1: Frame Membership
from Word Embeddings

5.1 Method
In order to answer the first question: “Do PLM
token-level representations encode information
about which syntactic frames an individual verb
can participate in?”, we build a diagnostic classifier
for each syntactic frame which takes a verb’s layer
embedding representation as input. For example,
to probe the Spray-Load alternation, we build two
binary classifiers: one that predicts whether a verb
can participate in the “locative” frame and one that
predicts whether a verb can participate in the “with”
frame.

Furthermore, we build a separate classifier for
each model layer based on the embedding repre-
sentations from that particular layer. For the token-
embedding layer, the verb embedding is formed by
averaging the pretrained token embeddings that cor-
respond to a particular verb. For layers 1–12, the
verb embedding is formed by incorporating con-
textual information from the sentences in FAVA.
Specifically, for each verb, we pass the grammati-
cal sentences from FAVA that contain the verb as
input to the PLM and average over the token em-
beddings corresponding to the verb. We choose
to only include grammatical examples in the con-
struction of the word-level contextual embeddings
since we hypothesize that they represent sentences
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MCC Accuracy

Ref. BERT DeBERTa ELECTRA RoBERTa Ref. BERT DeBERTa ELECTRA RoBERTa

CAUSATIVE-INCHOATIVE
Inchoative 0.555 0.948 [11] 0.969 [11] 0.959 [5] 0.969 [7] 0.855 0.977 0.986 0.982 0.986
Causative * 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000

DATIVE
Preposition 0.320 0.954 [8] 0.937 [12] 0.945 [11] 0.928 [9] 0.850 0.989 0.984 0.986 0.982
Double-Object 0.482 0.976 [10] 0.968 [10] 0.976 [12] 0.936 [9] 0.853 0.994 0.992 0.994 0.984

SPRAY-LOAD
With 0.645 0.972 [10] 0.972 [12] 0.979 [8] 0.930 [10] 0.839 0.988 0.988 0.991 0.971
Locative 0.253 0.969 [10] 0.961 [12] 0.961 [9] 0.953 [11] 0.734 0.989 0.985 0.985 0.983

THERE

No-There * 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
There 0.459 1.000 [9] 0.987 [7] 1.000 [10] 0.962 [10] 0.858 1.000 1.00 1.000 0.988

UNDERSTOOD OBJECT
Refl 0.000 0.868 [6] 0.869[12] 0.860 [5] 0.884 [11] 0.732 0.964 0.964 0.962 0.968
Non-Refl 0.219 0.850 [7] 0.850 [10] 0.855 [11] 0.794 [8] 0.976 0.994 0.994 0.994 0.992

Table 2: Results from Word-Level experiments with static embeddings. Reference MCC is from Kann et al. (2019)’s
CoLA word-level experiments. The * symbol indicates syntactic frames which only have positive examples, which
trivially achieve 100% accuracy and 0 MCC (see Footnote 1). The best performing model for a given frame is
denoted in bold (ties are not bolded), and the best performing layer for each model is denoted in brackets ‘[]’.

in the actual training corpora of the PLMs more
accurately than the ungrammatical examples. 3 We
then average over the verb representations for all
input sentences in each layer to form the “layer-
embedding” for the verb.

We choose a Logistic Regression classifier with-
out regularization as our diagnostic probe as imple-
mented in scikit-learn (Buitinck et al., 2013)
and show that it is sufficiently selective in Section
6. Following Kann et al. (2019), we use strati-
fied k-fold cross-validation to split the verbs into
4 equally-sized folds: 3 of which are chosen to be
the training set and the remaining fold chosen to be
the test set.

Also following Kann et al. (2019), we re-
port Matthews correlation coefficient (MCC)
(Matthews, 1975) in addition to accuracy for model
evaluation. MCC is better suited to data such as
ours, in which there is an extreme majority class
bias for all syntactic frames. 4

3A potential issue with constructing the embeddings in this
manner is that the classifier may simply “memorize” whether
there is a corresponding grammatical example for each verb
in FAVA to trivially determine frame membership. However,
we included ungrammatical examples as well in preliminary
experiments and found negligible differences from our final
results.

4All code and data needed to replicate our analysis can be
found at https://github.com/kvah/analyzing_
verb_alternations_plms

5.2 Results

In Figure 1, we present the layer-by-layer perfor-
mance of each PLM and in Table 2, we report
a comparison between the best-performing layer
for each PLM alongside the performance of the
“CoLA-style” reference embeddings from Kann
et al. (2019). Overall, we find that the contex-
tual PLM embeddings dramatically outperform the
reference embeddings in terms of both MCC and
accuracy.

Surprisingly, the PLMs perform well even for the
more challenging frames; for the “locative” frame,
BERT achieves 0.969 MCC compared to 0.253
when using the reference embeddings, and for the
“non-reflexive” frame, ELECTRA achieves 0.855
MCC compared to 0.219 when using the reference
embeddings. Furthermore, we observe consistent
patterns in performance across different layers of
each PLM. As shown in Figure 2, the lower lay-
ers achieve low-to-moderate correlation on aver-
age while the middle-to-upper layers consistently
achieve strong correlation.

6 Control Task

A control task as described by (Hewitt and Liang,
2019) aims to combat the Probe Confounder Prob-
lem, which highlights the issue of supervised probe
classifiers “learning” a linguistic task by combin-
ing signals in the data that are irrelevant to the
linguistic property of interest. In the context of
our first experiment, a confounding probe would
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Figure 1: MCC for each model layer across all syntactic frames on LAVA.
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Figure 2: Mean MCC for each model layer across all
syntactic frames on LAVA.

be problematic since it suggests that good model
performance may be attributed to arbitrary signals
picked up by the probe, as opposed to the PLM em-
beddings actually containing linguistic information
about the syntactic frames. To mitigate the Probe
Confounder Problem, we implement an example
control task for the Spray-Load “with” syntactic
frame for BERT.

For each verb vi in LaVA with a binary label yi
denoting whether vi can participate in the syntax
frame SL-WITH, we independently sample a con-
trol behavior C(v) by randomly assigning a binary
“membership” value to vi based on the empirical
membership distribution of verbs that participate
in the SL-WITH syntax frame. The control task is
the function that maps each verb, vi, to the label
specified by the control behavior C(Vi):

fcontrol(vi) = C(vi)

Following the experiment design of Hewitt and

Liang (2019), we compare the selectivity of a lin-
ear probe, an Multi-layer Perceptron with 1-hidden
layer (MLP-1), and an MLP with 2-hidden layers
(MLP-2) where the selectivity of a model is de-
fined by the difference between its accuracy on the
real task (i.e. predicting verb membership for the
SL-WITH frame) and the control task. In addition,
we explore several “complexity control” methods
including limitation of feature dimensionality, re-
ducing the number of training examples, and in-
creasing regularization.

6.1 Complexity Hyperparameters

In this section, we describe the complexity control
methods in more detail and enumerate the hyperpa-
rameters that we tried for each method. The control
parameters were chosen based on the three most
effective methods from the experiments of Hewitt
and Liang (2019). To isolate the effect of each con-
trol method, we only change one of the complexity
parameters in each experiment.

6.1.1 Limiting Dimensionality

For the Logistic Regression model, we reduce the
dimensionality of the feature embeddings by per-
forming a Truncated Singular Value Decomposi-
tion and limiting the output matrix to rank k. For
the MLP models, we simply limit the size of the
hidden layer(s) to k.

Considering the input BERT embeddings which
have 768 dimensions, we limit k to the following
values: {20, 100, 300, 500}.
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Figure 3: Linguistic Task selectivities for the three complexity control methods.

Figure 4: Linguistic Task accuracies for the three complexity control methods.

6.1.2 Reducing Proportion of Training Data
Because LaVA is not split into train and test sets,
we use 4-fold cross validation as done in Kann et al.
(2019) with 3 training folds and one test fold for
evaluation on the control task. As an additional
constraint, we reduce the number of training sam-
ples in each training fold by randomly sampling a
proportion p of the samples and discarding the rest.

Although Zhang and Bowman (2018) recom-
mend training on 1%, 10% and, 100% of the train-
ing data, our training data is relatively small and im-
balanced (71% of the train set verbs do not partici-
pate in the SL-WITH frame). Hence, we experiment
with larger values of p: {0.1, 0.3, 0.5, 0.7, 0.9}
6.1.3 L2 Regularization
For both the linear and MLP models, we add L2

regularization with the following strength values:
{0.01, 0.1, 0.2, 0.5, 1}

6.2 Results
Figure 3 shows the high-level trends across experi-
ment configurations for model selectivity. We ob-
serve that the linear model with default parameters
(k = 768, p = 1, L2 = 0) outperforms both the

MLP-1 and MLP-2 model in selectivity (0.420 v.s.
0.397) with no significant decrease in linguistic task
accuracy (0.985 for the linear and MLP-1 models
v.s. 0.988 for the MLP-2 model).

Looking at the effect of complexity control meth-
ods on model accuracy in Figure 4, we find that lim-
iting dimensionality and L2 regularization has little
impact across all configurations, with the worst
model (linear: k = 20) achieving an accuracy
of 0.983 and the best model (MLP-2: k = 100)
achieving only a slightly higher accuracy of 0.991.
On the other hand, reducing the proportion of data
in each training fold appears to have significant im-
pact on model performance. For the linear model,
there is a huge discrepancy in accuracy between
training on 10% of the data (0.869) and the full
training set (0.988). A nearly identical pattern can
be observed for both of the MLP models as well.

Comparing selectivity, the linear models out-
perform both MLPs across all complexity control
methods. For dimensionality control, we see a
lower selectivity in the linear model for lower val-
ues of k (k = 20, 100) but the best linear model
(k = 300) achieved a higher selectivity (0.429)
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than the best MLP model (0.414). Similarly, the
best performing configuration for reduced training
samples and L2 regularization are linear models
with p = 0.9 (0.423) and L2 = 0.1 (0.431) respec-
tively.

We arrive at two major conclusions from the
control task experiments. The first is that a linear
probe is a good choice for our linguistic task since
it achieves higher selectivity than the MLP models
without substantial loss in model accuracy across
a wide range of complexity control methods. The
second is that limiting dimensionality, reducing
training samples, and L2 regularization are all ef-
fective methods for increasing model selectivity for
both the linear and MLP models. However, the best
configurations are not significantly better (> 0.01
improvement in selectivity) than the default linear
model so we did not make any modifications to our
classification probe. As we only performed these
experiments for BERT and the SL-WITH syntactic
frame specifically, a great avenue for future work
is to test whether our results extend to other PLMs
and syntactic frames.

7 Experiment 2: Grammar Judgments
from Sentence-embeddings

7.1 Method

In the second experiment, we investigate the extent
to which PLMs encode frame-selectional properties
of their main verb. For each PLM and embedding
layer, we fit a binary Logistic Regression classifier
on the FAVA training set for a given alternation
class which predicts whether a given sentence is
grammatical. We ignore the held out development
set because the probe hyperparameters do not need
to be tuned and directly evaluate each model on the
test set. The whole process can be described by the
following equation:

csi = f(Wsi + b)

where si refers to the embedding of the whole sen-
tence for layer i (by averaging all i layer’s hidden
states of words in the sentence s), f refers to the lo-
gistic regression classifier, W and b are the parame-
ters of f , and csi is a binary value corresponding to
whether the sentence is grammatical. We then ex-
tract the best performing layer for each model and
compare the results with the reference acceptability
judgment model proposed by Kann et al. (2019).

7.2 Results

The MCC and accuracy scores for each model and
layer are shown in Figure 5. From the figure, we
can see that there is significant variation in layer
performance aside from the Understood-object al-
ternation. Generally, we observe a trend in which
performance increases substantially from the lower
(1-4) layers to the middle layers (5-9), with some
models, most notably ELECTRA, continuing to
improve through the upper layers (10-12). This can
be seen more clearly in Figure 6, which shows the
mean layer performance across each category. Fur-
thermore, ELECTRA achieves the best MCC on 5
of the 6 categories: Combined (0.818), Inchoative
(0.864), Spray_Load (0.830), There (0.828), and
Understood-Object (0.869). The outlier frame is
RoBERTa, which achieves the best MCC (0.802)
on the Dative frame.

Table 3 provides a comparison between the best
performing layer from each PLM and the reference
embeddings from Kann et al. (2019) for each al-
ternation class. As defined by Kann et al. (2019)
an MCC value between 0.5 and 0.7 demonstrates
a moderate correlation between predicted and true
labels while an MCC greater than 0.7 implies
strong correlation. From the table, we see all mod-
els are able to obtain strong correlation for the
Understood-Object alternation, the There frame,
and the Causative-Inchoative frame. In contrast,
BERT and RoBERTa are only able to achieve mod-
erate correlation on the Spray-Load frame, while
all models except RoBERTa only achieve moderate
correlation on the Dative alternation. Consistent
with the CoLA-style embeddings, we find that the
PLMs achieve the best performance on average
for sentences from the Understood-Object alterna-
tion class. This is surprising since frames from the
Understood-Object alternation were the hardest to
predict for the word-level task for both the CoLA-
style embeddings and the PLMs. Nevertheless, all
PLM outperform the reference model across all
alternation categories for the sentence acceptability
judgment task.

8 Discussion

On the word level prediction task, all PLMs achieve
strong correlation (> 0.7 MCC) across all syntactic
frames with the strongest performance in the “there”
frame (1.00, achieved by BERT and ELECTRA)
and the weakest performance on the “non-reflexive”
frame (0.794, achieved by RoBERTa). When look-
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COMBINED CAUSATIVE-INCHOATIVE DATIVE SPRAY-LOAD THERE UNDERSTOOD

MCC
REF. 0.290 0.603 0.413 0.323 0.528 0.753
BERT 0.642 (10) 0.760 (8) 0.678 (6) 0.625 (10) 0.716 (10) 0.842 (9)
DEBERTA 0.653 (9) 0.776 (5) 0.633 (8) 0.704 (12) 0.744 (6) 0.826 (1)
ELECTRA 0.818 (11) 0.864 (11) 0.670 (8) 0.830 (12) 0.828 (12) 0.869 (11)
ROBERTA 0.496 (8) 0.725 (8) 0.802 (2) 0.470 (5) 0.725 (11) 0.793 (1)

ACCURACY
REF. 0.646 0.854 0.760 0.662 0.729 0.874
BERT 0.840 (10) 0.920 (8) 0.880 (6) 0.820 (10) 0.890 (10) 0.921 (9)
DEBERTA 0.847 (9) 0.924 (5) 0.902 (8) 0.858 (12) 0.912 (6) 0.909 (1)
ELECTRA 0.920 (11) 0.954 (11) 0.897 (8) 0.918 (12) 0.937 (12) 0.934 (11)
ROBERTA 0.787 (8) 0.909 (8) 0.944 (2) 0.747 (5) 0.899 (11) 0.893 (1)

Table 3: Results from Sentence-Level experiments. REF refers to the reference probing model in (Kann et al., 2019).
Bolded values show the best result for each alternation class. ‘()’ indicates the best performing layer for each model.
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Figure 5: Layer-by-layer MCC score for each alternation class on FAVA.

ing at accuracies, each model is able to predict
whether a verb belongs to a particular syntactic
frame with excellent accuracy (> 0.95 across all
alternation frames). Morever, looking at Table 2,
we see that the middle (5-9) and upper (10-12) lay-
ers consistently achieve the highest MCC, which is
reinforced by the trend shown in Figure 2.

For the sentence-level experiments, we see a sim-
ilar outcome wherein the upper-middle PLM layers
achieve the best performance on average. How-
ever, we observe that there is much more variation
in performance between each PLM. ELECTRA
and BERT are relatively consistent, since their best
performing layer for all alternation classes either
come from the middle or upper layers. In con-
trast, the lower layers of RoBERTa achieve the best
performance on the Dative alternation, and both
RoBERTa and DeBERTa achieve the best perfor-

mance on the Understood-Object alternation from
the first layer. These anomalies can potentially be
explained by the claim that different alternation
classes require different types of linguistic knowl-
edge (i.e. syntactic v.s. semantic) which are en-
coded in different PLM layers. However, the con-
sistently strong performance of the upper layers for
BERT and ELECTRA across all alternation classes
provides counter evidence against the claim.

ELECTRA is the best performing model overall
on the sentence-level acceptability task, achieving
the best MCC and accuracy on four of the five alter-
nation classes (all except Dative). Unsurprisingly,
ELECTRA also excels on the combined dataset
compared to the other models (0.165 MCC over the
second-best performing model, DeBERTa). While
it is difficult to attribute the model’s success to a
specific property, one hypothesis is that its gener-
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ator/discriminator architecture closely resembles
the FAVA task of identifying acceptable sentences
from linguistic minimal pairs. This idea is rein-
forced by the authors as well, who note that the
model’s relatively strong performance on CoLA po-
tentially stems from the fact that the acceptability
judgment task of CoLA “closely matches ELEC-
TRA’s pre-training task of identifying fake tokens”
(Clark et al., 2020, p.15).

While we are optimistic about our results, there
are several limitations to our experiments. First,
we only analyze five different alternation classes
which is a small subset of the 83 classes presented
in Levin (1993). In addition – although our control
task ensures that our classifier probe is relatively
selective for the first experiment and BERT, it may
not necessarily generalize well to the second ex-
periment, other syntactic frames, and other models.
In the future, we hope to expand our selectivity
experiments to a wider array of syntactic frames
and models.
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Figure 6: Mean layer MCC score across all alternation
classes on FAVA.

9 Conclusion and Future Work

Overall, our results support the hypothesis that
PLM contextual embeddings encode linguistic in-
formation about verb alternation classes at both the
word and sentence level. For the frame-selectional
verb classification task, all PLMs achieve signifi-
cant improvement upon the reference CoLA-style
embeddings from Kann et al. (2019), especially for
frames in which the CoLA-style embeddings obtain
weak correlation (i.e. “locative”, “reflexive”, and
“non-reflexive”). Also, it is clear that model perfor-
mance tends to improve from lower to upper layers,
which can be seen the most easily from the mean
performance across layer figures. For the sentence
acceptability task, we arrive at similar conclusions,

albeit with greater distinction in results between
different models and layers. While there are nu-
merous factors that may be responsible for the im-
proved performance from PLMs, we hypothesize
that the improvement can largely be attributed to
the attention-based encodings of transformer mod-
els since we only saw modest improvements in
performance from the reference embeddings when
using the bottom “static” layers for each PLM.

In terms of future work, there are several interest-
ing avenues that we hope to explore. From the data
perspective, it would certainly be worthwhile to test
whether our insights and conclusions extends to the
dozens of alternations described in Levin (1993)
that are not present in the LAVA and FaVA datasets.
There are also several interesting adaptations that
can be made to our experiment methodology. For
example, instead of just analyzing the base archi-
tecture for each PLM, we could also analyze small
and large variants to directly evaluate the effect
of scaling training data and model size within the
same model. Moreover, while we attempt to con-
trol the Probe Confounder Problem by building a
selective probe, there is no guarantee that the clas-
sifier probes do not pick up on arbitrary signals
in the training data that lead to non-meaningful
improvements in performance. Two promising al-
ternative approaches that mitigate this risk include
unsupervised evaluation of minimal pairs as shown
in Warstadt et al. (2020) and “amnesic probing”,
which tests whether a property that can be extracted
from a probe is actually relevant to task importance
(Elazar et al., 2021).
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A Complexity Control Results

Dimensions (k) Training Prop. (p) L2 Reg. Accuracy Selectivity

DEFAULT PARAMS
Linear 768 1.0 0.0 0.985 0.420
MLP-1 768 1.0 0.0 0.985 0.397
MLP-2 768 1.0 0.0 0.988 0.397

LIMITING DIMENSIONS
Linear 300 1.0 0.0 0.985 0.429
MLP-1 100 1.0 0.0 0.985 0.414
MLP-2 20 1.0 0.0 0.983 0.408

REDUCING TRAINING SAMPLES
Linear 768 0.9 0.0 0.988 0.423
MLP-1 768 0.9 0.0 0.983 0.411
MLP-2 768 0.9 0.0 0.985 0.414

L2 REGULARIZATION
Linear 768 1.0 0.1 0.985 0.431
MLP-1 768 1.0 1.0 0.988 0.420
MLP-2 768 1.0 1.0 0.988 0.420

Table A1: Results from the Complexity Control Experiments. For each experiment, only the best performing
configuration for each model is reported.
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Abstract

Multiple studies have shown that existing
NMT systems demonstrate some kind of gen-
der bias. As a result, MT output appears to
err more often for feminine forms and to am-
plify social gender misrepresentations, which
is potentially harmful to users and practioners
of these technologies.

This paper continues this line of investigations
and reports results obtained with a new test
set in strictly controlled conditions. This set-
ting allows us to better understand the multi-
ple inner mechanisms that are causing these bi-
ases, which include the linguistic expressions
of gender, the unbalanced distribution of mas-
culine and feminine forms in the language, the
modelling of morphological variation and the
training process dynamics. To counterbalance
these effects, we formulate several proposals
and notably show that modifying the training
loss can effectively mitigate such biases.

1 Introduction

State-of-the-art machine translation models
(TMs) have been shown to suffer from gender-
bias (Prates et al., 2020) and works trying to
mitigate this problem constitute a very active line
of research (e.g. Costa-jussà and de Jorge (2020);
Saunders and Byrne (2020); Savoldi et al. (2021)).
We here adopt a different point of view and try
to understand why the TM, often incorrectly,
chooses a masculine rather than a feminine form.
For this, we identify the mechanisms which the
neural network uses to extract gender information
from the source side and transfer it to the target
side. This study of the causes of gender bias il-
lustrates in a more general way the inner working
of neural translation systems and notably reveals

information flows between the encoder and the
decoder involved in a TM.

To study gender transfer, we introduce a new
French-English test set specifically designed to
highlight the difficulties of translating gender in-
formation between these two languages. Using a
controlled test set allows us to precisely pinpoint
where and how gender is expressed in source and
target sentences and to quantify the information
flow in an encoder-decoder architecture. Our ex-
periments rely on both well-known methods such
as probing or new methods tailored to identify gen-
der bias such as comparing the predictions of a
language model and those of a TM to better ana-
lyze the possible causes of gender bias. Consider-
ing a controlled experimental setting also allows
us to assess the impact of training conditions such
as subword segmentation or training data distribu-
tions.

The rest of the paper is organized as follows. In
§2, we describe our test set and use it to highlight
gender bias in state-of-the-art systems. In §3 we
describe several experiments aiming to study how
information flows between the encoder and the de-
coder can explain these biases. To counterbalance
these effects, we formulate several proposals in §4,
and notably show that a simple modification of the
training loss can effectively mitigate gender bias.

2 Observing Gender biases in MT

2.1 A Controlled Set to Study Gender Bias

We first describe the controlled test set used in our
experiments and explain why (and how) we use it
to identify the flow of information in an encoder-
decoder architecture.

This test set, built on an idea introduced in Wis-
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niewski et al. (2021), is made of 3,394 parallel
sentences perfectly balanced between genders. All
sentences use the following template:

• [DET] [N] a terminé son travail.
• The [N] has finished [PRO] work.

where [N] is an occupational noun chosen from
the list of Dister and Moreau (2014) that matches
feminine and masculine professions and occupa-
tions in French. This list was automatically trans-
lated in English with DeepL and manually cor-
rected by two professional translators.1 [DET] is
the French determiner in agreement with the [N]
(the feminine form laF , the masculine form leM or
the epicene form l’ that is used for both grammati-
cal genders when the job noun starts with a vowel);
[PRO] is the English possessive pronoun her F

or his M . For English, in the case of indefinite
reference or generic NPs like "the writer", since
the 1980’s different strategies have been used to
avoid the use of resumption by "his" and style
guides for authors have recommended the use of
"his or her", then "her" for generic references as
well and the same period has seen the rise of the
use of singular "their" (see, among others, (Bod-
ine, 1975; Pauwels, 2000)). For the sake of sim-
plicity and to keep our test set gender-balanced,
we have only considered two forms of the pos-
sessive pronoun and our test set contains a fem-
inine sentence (with her) and a masculine sen-
tence (with his) for each occupational noun, even
if its gender is ambiguous in the source sentence
(see below).

In English, gender is unambiguously expressed
in the possessive pronoun; it may also be ex-
pressed by the occupational noun, when it has dif-
ferent feminine and masculine forms (e.g. actress-
actor). In most sentences, however, the occupa-
tional noun is epicene and its gender can not be
inferred from the surface form. In French, gen-
der can be expressed by the determiner, the oc-
cupational noun, or both; in rarer cases, both the
determiner and the occupational noun are epicene,
and the feminine and masculine versions are iden-
tical. In the latter case, as explained above, the
English translation should use the possessive pro-
noun their to mark that gender is not specified.

1As our sentences have a fixed structure, most transla-
tion issues were related to occupational nouns, and were re-
solved by mining reference dictionaries and corpora such as
the COCA corpus (Davies, 2009). The resulting resource is
more than three times larger than the list used in (Niu et al.,
2021).

The choice we made to associate the same sen-
tence once with the masculine pronoun and once
with the feminine pronoun is a way to identify the
biases of the translation system: an unbiased sys-
tem would be expected to err one out of two times
in the choice of pronoun, a higher error rate indi-
cates that the system prefers one pronoun to the
other. Table 1 illustrates the various ways that gen-
der can be expressed in English and French as well
as their proportion in our test set.

When translating sentences from our controlled
set from French into English, the prediction of the
English possessive pronoun can rely on two kinds
of evidence: i) using cross-attention, the model
can encode information about the French subject
gender into the representation of the possessive
pronoun;2 ii) because of the decoder self-attention,
the possessive pronoun representation can also en-
code information about the target context. This
is notably the case of the English subject that en-
codes gender information either directly, or be-
cause its representation depends on the French sub-
ject (through cross-attention).

2.2 Direct Evidence of a Gender Bias

Before investigating the roots of gender bias in MT
systems, we would first like to describe the exper-
imental setting that will be used throughout this
work and highlight the difficulties of predicting
gender information. Most observations reported
in this section have already been described for
other models, language pairs and datasets (see e.g.
(Stanovsky et al., 2019; Saunders et al., 2020) or
(Stanczak and Augenstein, 2021) for an overview).

NMT System We use JoeyNMT (Kreutzer
et al., 2019), an implementation of a translation
system based on the Transformer model of
Vaswani et al. (2017). Encoder and decoder are
composed of 6 layers, each with 8 attention heads;
hidden representations have dimension d = 512,
while feed-forward layers has dimension 2,048.
Our model comprises a grand total of about 76M
parameters.

We consider the English-French parallel cor-
pus from the WMT’15 ‘News’ task (Bojar et al.,
2015) that contains 4.8M sentences and nearly
141M French running words. All raw corpora

2The French subject can have either a direct impact
through cross-attention or an indirect impact as the represen-
tation of all source tokens depends on it (via encoder self-
attention). We will not try to distinguish these two effects.
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Gender-marked Proportion Example
Determiner Noun

French
yes yes 53.0% • (laF boulangèreF |leM boulangerM ) a fini son travail

• the baker has finished (hisM |herF ) job.
yes no 24.2% • (laF cinéaste|leM cinéaste) a fini son travail

• the film-maker has finished (hisM |herF ) job.
no yes 14.9% • (l’adjointeF |l’adjointM ) a fini son travail

• the assistant has finished (hisM |herF ) job.
no no 7.9% • l’artiste a fini son travail

• the artist has finished (hisM |herF ) job.

English
no yes 5.5% • (the actressF |the actorM ) has finished herF |hisM work

• (l’actriceF |l’acteurM ) a terminé son travail.
no no 94.5% • the user has finished herF |hisM work

• (l’usagèreF x|l’usagerM ) a terminé son travail.

Table 1: Examples of the various ways by which gender is expressed in our test corpus.

are segmented into sub-lexical units using the un-
igram model of SentencePiece (Kudo, 2018);
the vocabularies contain 32,000 units in each lan-
guage. Our model is trained by optimizing the
cross-entropy with ADAM and achieves a BLEU

score of 34.0 on the WMT’14 test set.

Results We report in Table 2 the accuracy with
which our NMT systems are able to predict the En-
glish possessive pronoun gender and therefore to
correctly capture and transfer gender information
between French and English. These numbers are
broken down by context, where we distinguish be-
tween the various cases of Table 1. Note that when
both the determiner and the noun are epicene, both
his and her (as well as their) are equally cor-
rect: we nonetheless report the number of mis-
predictions for this category - as our test set is
perfectly balanced, an unbiased system predicting
only his and her should have an accuracy of
50%. We also report the performance achieved
by mBART,3 the multilingual model of Tang et al.
(2020). Note that mBART is a strong baseline with
610M parameters trained on, at least, a hundred
times more English sentences than our system.

It appears that our system, JoeyNMT, has many
difficulties in predicting the correct form of the
possessive pronoun, with a striking difference be-
tween the accuracy of the prediction of his and
her. For mBART, which is doing much better
overall, the difference in accuracy between the
two genders is about 20 points. For both systems,
the accuracy is slightly better when both the de-
terminer and noun are unambiguous. Also note

3We used the model through the HuggingFace API (Wolf
et al., 2020).

Gender in source Accuracy
Deter-
miner

Epicene
Noun JoeyNMT mBART

Masc. no 76.5 72.8
yes 84.7 84.1

Fem. no 33.1 60.6
yes 31.9 65.4

Epicene no 40.4 66.1
yes 40.4 45.9

Table 2: Accuracy (in %) of possessive pronoun predic-
tion by JoeyNMT and a strong baseline (mBART).

that mispredictions are not only due to error on
gender: the system sometimes generates sentences
that do not contain any possessive pronoun or in
which the possessive pronoun was either their
or its. This may be because in French, occupa-
tional nouns may also refer to technical devices or
machines that are used to perform the occupation,
especially for the feminine form: one such exam-
ple is cafetière that can either mean coffeemaker,
the machine that makes coffee or (female) bar-
keeper, the person that makes coffee (in a bar).

3 Uncovering the Flows of Gender
Information

In this Section, we report experiments aimed to
explain the results reported in Table 2 using ei-
ther well-known probing methods (§3.1) or, as sug-
gested by Fernandes et al. (2021), by comparing
the prediction of a translation and a language mod-
els (§3.2). In Section 3.3 we describe the impact
of our findings on training.
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encoder
layer a terminé son travail . eos

Gender weakening
chaque surveillant a terminé son travail. 1 73.1 73.6 65.7 63.5 53.9 56.7

6 71.0 71.4 70.4 68.2 71.2 69.7
Gender strengthening

le surveillant français a terminé son travail. 1 99.9 98.5 95.0 80.6 62.0 80.4
6 100.0 99.7 99.7 98.9 98.8 96.9

Gender change for the direct object
le surveillant a terminé son travail. 1 79.4 74.6 79.0 75.0 58.8 72.0

6 90.3 88.8 89.2 85.3 86.2 83.3
le surveillant a terminé son activité. 1 80.5 75.5 78.6 62.6 57.6 67.2

6 89.7 88.3 89.6 84.3 86.1 84.1
Syntactical distancing

le surveillant qui a chanté formidablement
hier a terminé son travail. 1 71.1 66.3 68.8 81.1 56.8 65.4

6 91.5 91.0 90.5 86.8 81.2 82.1
Distractor

.without gender weakening
le surveillant que cette femme critiquait

a terminé son travail. 1 65.7 66.6 69.3 79.50 62.8 68.5

6 90.6 89.6 89.1 85.91 81.9 80.2
le surveillant que cet homme critiquait

a terminé son travail. 1 65.4 67.0 68.7 80.0 63.4 68.2

6 90.3 89.3 89.7 86.6 81.0 79.9
.with gender weakening
chaque surveillant que cet homme critiquait

a terminé son travail. 1 63.1 63.5 64.3 62.4 56.2 55.8

6 72.1 71.4 69.7 69.9 71.8 69.2
chaque surveillant que cette femme critiquait

a terminé son travail. 1 63.3 64.6 65.9 63.4 55.4 55.2

6 71.8 71.8 70.0 69.2 70.2 69.5

Table 3: Accuracy (in %) of probes when manipulating the test sentences corpus

3.1 Probing

We use probing (Belinkov, 2022) to analyze which
words in the source sentences convey gender in-
formation: a probe (Alain and Bengio, 2017) is
trained to predict linguistic properties from the rep-
resentations of language (e.g. token embeddings);
achieving high accuracy at this task implies these
properties are encoded in the representations.

Experimental Setup We collected the 512 di-
mensional representations at the output of the first
and last layer of the encoder and the decoder for
all tokens except the French subject and associate
each of them to a label indicating the occupational
noun gender in the French sentence.

For each of these examples, we randomly split
all sentences between a train (75%) and a test
(25%) set. We use scikit-learn (Pedregosa
et al., 2011) to learn a logistic regression to predict
the occupational noun gender from a single token
representation. This experiment is repeated on 10
random train/test splits and 95% confidence inter-
vals are computed. As advocated by Hewitt and
Liang (2019), we use a linear classifier to be sure
that gender information is actually encoded in to-
ken representations and not learned by the probe
and report, as a control score, the performance
achieved after a random permutation of labels.

decoder
layer the other tokens

1 89.5 ±0.2 71.6 ±0.6

2 92.0 ±0.1 76.3 ±0.7

3 91.8 ±0.1 78.1 ±0.6

4 90.9 ±0.2 79.1 ±0.6

5 89.3 ±0.2 82.4 ±0.5

6 87.7 ±0.2 84.7 ±0.3

Table 4: Accuracy (in %) of probing the gender of the
French occupational noun in decoder representations.

Results The probe achieves an average accuracy
of 74.1% (resp. 87.9%) for the first (resp. last)
layer of the encoder and of 80.5% and 86.2% for
the decoder (detailed results are in Table 4 for the
decoder and Table 5 for the encoder), showing that
gender information is encoded in the representa-
tions of all source and target tokens. Note that, for
the decoder, the diversity of the automatically gen-
erated structures makes it impossible to carry out
a position-by-position analysis.

In the spirit of the analyses of Marvin and
Linzen (2018) for monolingual representations,
we have also manipulated source sentences to eval-
uate the robustness of our observations. We con-
sider transformations that consist in:

1. weakening the gender expression in the sub-
ject by replacing [DET] (which can vary in
gender) by chaque (each), which is epicene;
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encoder random labels
layer a terminé son travail . eos son

1 80.4 ±1.1 75.1 ±0.3 80.6 ±0.3 76.4 ±0.6 59.5 ±1.0 73.3 ±1.0 45, 3 ±0.9

2 85.8 ±1.0 80.8 ±0.2 81.6 ±0.3 78.3 ±0.7 87.6 ±0.6 88.3 ±0.7 50, 7 ±0.8

3 89.5 ±0.6 88.2 ±0.2 89.2 ±0.2 82.0 ±1.1 86.5 ±1.0 87.6 ±0.6 48, 8 ±0.9

4 90.8 ±0.4 89.3 ±0.2 90.6 ±0.2 85.9 ±0.9 85.7 ±1.0 85.6 ±0.7 48, 6 ±0.8

5 90.4 ±1.0 89.3 ±0.2 90.4 ±0.2 85.5 ±0.8 86.4 ±0.8 85.2 ±1.2 49, 6 ±0.8

6 91.0 ±0.6 89.3 ±0.2 90.0 ±0.2 86.0 ±1.0 86.4 ±1.1 85.1 ±0.8 49, 2 ±0.8

Table 5: Accuracy (in %) of a probe predicting the gender of the French subject given the encoder representations

2. strengthening the gender expression in the
subject group by introducing an adjec-
tive that is always marked in gender
(françaisM /françaiseF , French);

3. replacing the direct object travailM (work) by
activitéF (activity) to evaluate the impact of
the object noun phrase on the gender informa-
tion encoded in the sentence;

4. increasing the distance between the subject
group in which the gender is expressed and
the possessive pronoun by inserting a relative
clause containing no word marked in gender;

5. inserting a distractor (e.g. a word whose gen-
der is different from the subject gender) be-
tween the subject, likely to introduce noise in
the propagation of gender information.

Results in Table 3 show that the encoder is able
to capture gender information even in convoluted
contexts (e.g. presence of a distractor, insertion of
an extraneous relative clause, etc.). In all these
cases, accuracy remains much higher than chance
for each input token, especially for the last layer of
the encoder. Note, however, the strong effect ob-
tained with weakening, where we observe a drop
in accuracy of about 20 points. This corroborates
the analysis of Table 2, where we see a drop in ac-
curacy with an epicene determiner. A cumulative
effect seems to be at play, whereby the encoding
of gender is stronger with a double marking (on
[DET] and [N]), and even more so when an addi-
tional unambiguous adjective also comes into play
(the strengthening condition).

3.2 Translation Model as Conditional
Language Model

Our probing experiments have confirmed that in-
formation about the gender of the nominal sub-
ject in the source was actually encoded in the
source representations, and also available in the
hidden states of target tokens. We now investigate
whether this information is actually used: a well-
known weakness of probes is that they can detect

the presence of linguistic information in represen-
tations, but cannot measure how much it is used in
the model predictions (Ravichander et al., 2021).

For this, we compare the predictions of a target
language model (LM), that only knows about pre-
vious target tokens t<i = t0, ..., ti−1; with the pre-
dictions of a translation model (TM), which addi-
tionally conditioned the output probabilities on the
entire source sequence s. The TM can be viewed
as a conditional language model which computes
p(ti|t<i, s) where the LM computes p(ti|t<i). By
comparing the predictions of these two models, we
can evaluate the impact of information from the
source. Other attempts at disentangling the influ-
ence of the source vs. the target context in NMT,
using other methods and tools, are in (Ma et al.,
2018; Fernandes et al., 2021; Voita et al., 2021).

Experimental Setting We compare the predic-
tions of our NMT system (described in §2.2) with
our in-house implementation of a TRANSFORMER

language model with the same dimensions as the
MT decoder using the PYTORCH library (Paszke
et al., 2019).4 To mimic the decoder, we use an
autoregressive (causal) LM in which the represen-
tation of the i-th token is computed based on the
(i − 1) previous tokens.5 The model is trained by
optimizing the cross-entropy with ADAM on the
same corpus as for our TM (considering only the
English side of the parallel corpus) and achieves a
perplexity of 43.0 on the WMT’14 test set.

Method We investigate the ability of a TM or
an LM to predict the correct form of the posses-
sive pronoun in English sentences by comparing
p (her|c) and p (his|c), where the context c is
either the target prefix The [occupational noun]
has finished for a LM or the target prefix and the

4Code and models are available at https:
//github.com/neuroviz/neuroviz/tree/
main/blackbox2022

5An alternative to this experiment, more economical in
terms of computational cost, would have been to consider
only the predictions of a translation system in which all the
words of the source sentence would be masked.
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source sentence, for a TM. These probabilities can
be easily computed with a forced decoding, e.g. by
compelling the model to generate the reference En-
glish sentence up to the possessive pronoun. Com-
paring the probabilities rather than the predicted
token allows us to conduct a more precise analysis,
as we can include all sentences (rather than only
the ones in which the sentence contains his or
her) and also evaluate the confidence with which
the model prefers one form to the other. This "con-
trastive" methodology has also been used in (Sen-
nrich, 2017; Müller et al., 2018) to evaluate the
quality of pronoun translation in MT.

Results Table 6 reports the average values for
these probabilities.The LM that has only access
to the prefix (and not to the source sentence) al-
ways generates his with a much higher probabil-
ity than her. This is because the prefix context
rarely contains information about the gender (Ta-
ble 1). In this situation the model can only rely
on associations between the target words and their
frequency, and prefers to generate his, which is
twice as frequent in the train set as her.

The TM probabilities of generating his or her
are much higher than those estimated by the LM,
showing that the TM actually uses source informa-
tion, notably the presence of son in the French
input, to increase these two probabilities. In al-
most all cases, nevertheless, the probability of gen-
erating his is reinforced more strongly than that
of generating her, except when the determiner is
laF . Even in the latter case, where the context
unambiguously marks feminine (cf. Table 6, the
TM fails to give a clear preference for her). This
result shows that the initial preference for a mas-
culine pronoun is hard to be overturned, even in
the presence of strong evidence that the feminine
should be preferred.

Impact of tokenization Several factors may in-
fluence these observations and explain why the
TM is able (or not) to predict the correct gender.
The first factor is the tokenization of the occupa-
tional noun into lexical subword units. Recall that
the number of subword units that a word is tok-
enized into is directly related to its frequency in
the train set.

To assess the impact of tokenization, we report
in Table 7 the probability that a TM generates her
or his as a function of the number of subword
units the occupational noun is broken into. Here

we only consider the source sentences in which
gender is expressed (either by the determiner, the
occupational noun or both of them). These re-
sults show that the TM is more likely to increase
the probability of generating her for a feminine
source context when the occupational noun is suf-
ficiently frequent to be kept as one single token.
In all other cases, the increase in probability is
not large enough to surpass that of the masculine
form. This effect of subword splitting on gender
prediction confirms the hypothesis of Savoldi et al.
(2021) regarding the effect of morphological vari-
ation on gender bias.

Going one step further, we observe (Table 8) the
15 most frequent suffixes in feminine occupational
nouns (e.g. the last token in their segmentation) in
our test set. These suffixes appear to often corre-
spond to feminine endings (-ienne, -ière, -atrice),
with several of them only appearing in feminine
nouns. Yet, except for two cases, his remains
more likely than her showing that TM is not able
to take advantage of the suffixes uncovered by the
subword segmentation. We see here that using sta-
tistical subword segmentation yields morphologi-
cally inconsistent segmentations,6 which has the
effect of weakening gender information that could
be learned from good predictors of the feminine
form.

Replacing SentencePiece with a morpho-
logical segmentation would likely result in more
consistent analyses and may have positive effects
on gender transfer, at least for rare words. How-
ever, for the frequent words, which are not split
into subwords, the effect could be somehow re-
versed. It is safe to say, still, that architectural
decisions related to word segmentations have an
impact on the transfer of gender across languages,
at least for languages where gender is morpholog-
ically expressed like French. The impact of using
a morphological vs. non-morphological segmen-
tation in NMT is also documented in e.g. (Huck
et al., 2017; Ataman et al., 2017; Banerjee and
Bhattacharyya, 2018; Weller-Di Marco and Fraser,
2020).

3.3 Impact on training
The results reported in the previous Sections show
that, for a TM, the target side priors for predict-
ing his are much larger than for predicting her,

6Note, for instance, the competition between the two “suf-
fixes” -use and -euse, the former corresponding to a “wrong”
morphological segmentation of the latter.
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Gender
source sentence TM LM

Determiner Epicene
noun p (his|c) p (her|c) p (his|c) p (her|c)

Feminine no 0.278 0.216 0.158 0.022
yes 0.213 0.248 0.098 0.022

Masculine no 0.589 0.037 0.158 0.022
yes 0.548 0.036 0.104 0.016

Epicene no 0.588 0.055 0.182 0.021
yes 0.485 0.074 0.109 0.016

Table 6: Average probabilities of his and her when conditioning on the source sentence (TM) or not (LM).

gender # tokens # occ. p (his|c) p (her|c)
Feminine 1 155 0.232 0.315

2 601 0.251 0.238
3 526 0.295 0.185
≥ 4 279 0.289 0.176

Masculine 1 386 0.569 0.040
2 529 0.547 0.035
3 460 0.546 0.038
≥ 4 200 0.544 0.039

Table 7: Probability of his or her estimated by a TM
broken down by the number of tokens of the French
occupational noun. Only French sentences in which
the gender is marked are considered.

and that they get an additional boost when taking
the source context into account. In comparison,
the LM probabilities of her are always very small,
and on average very similar to his for a feminine
source context.

This unbalance is likely to have a negative im-
pact during training. To see this, recall that the
gradient of the training loss, the cross-entropy, is
small when the system makes correct predictions
with a high confidence. This is the case for the pre-
dictions of his, which also happens to be much
more frequent in the data than her. As a result,
the cumulated gradient flow that propagates to the
encoder layers through the cross-attention module
is not sufficiently strong for a system to correctly
learn the dependency between the gendered words
in the source and the target pronoun prediction.

To measure the strength of this effect, we per-
form the following experiment: after training the
MT system, we consider all sentences with a fem-
inine source subject in our test set and perform a
single learning step (forward pass, cross-entropy
computation and backward pass) and compute for
each layer of the encoder and of the decoder the
gradients accumulated during the backward pass.
We carry out the same computation with sentences
with a masculine subject. Note that we have ig-
nored the 136 sentences having an epicene subject.

Overall, there are as many words in sentences with
a feminine subject as with a masculine subject.

We report in Table 9 the ratio between the norms
of gradients computed on feminine and mascu-
line examples. As predicted, gradients computed
on feminine examples are on average larger than
those computed on masculine examples, showing
that the system errs more for the former cases.
More interestingly, the difference is more signifi-
cant for the encoder’s parameters than for the de-
coder’s: to correct the mispredictions for feminine
examples, the training process attempts, as it were,
to update the encoder parameters so as to better
extract gender information from the source. When
processing masculine sentences, the errors are less
common and the parameter updates on the encoder
side are comparatively smaller.

One conclusion of this experiment is that femi-
nine and masculine examples do not have the same
impact on the parameter estimation and the learn-
ing procedure fails to faithfully capture the depen-
dency between source and target: only parameter
updates for feminine occurrences that are often
mispredicted, go a long way towards correcting
the prior preference for the masculine pronoun.

4 Towards Mitigating Gender Bias

4.1 Increasing the cost of gender errors
In support of our analyses, we propose to slightly
modify the loss function and to replace the cross-
entropy, which penalizes mispredicted words ac-
cording to the system confidence, by the softmax-
margin loss (Gimpel and Smith, 2010):

− logit[ygold]+

log


∑

y∈V
exp (logit[y] + cost (y, ygold))


 (1)

where logit[y] is the score computed by the trans-
lation model (the logit) for token y, V is the sys-
tem vocabulary and ygold is the gold token that
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-iste -use -euse -ologue -ière -e -atrice -graphe -ienne -ologiste -trice -liste -niste -rice

# occurrences in occupational noun
masculine 168 0 0 76 0 18 0 32 0 27 0 18 17 0
feminine 167 208 199 76 129 110 76 30 54 25 46 18 17 30

p(his|c) 0.51 0.25 0.27 0.61 0.26 0.34 0.28 0.40 0.31 0.55 0.26 0.47 0.56 0.30
p(her|c) 0.12 0.19 0.21 0.08 0.15 0.18 0.34 0.08 0.18 0.11 0.30 0.07 0.07 0.27

Table 8: Most frequent sub-lexical suffixes in feminine occupational nouns and the probability, estimated by the
TM, that the translation hypothesis contains her or his. Suffixes in bold only appear in feminine nouns.

layer ∇parammasc
∇paramfem

decoder 0 0.719
1 0.756
2 0.758
3 0.720
4 0.780
5 0.950

encoder 0 0.652
1 0.649
2 0.713
3 0.661
4 0.729
5 0.770

Table 9: Ratio of the gradients norm for masculine and
feminine sentences, in each of the encoder and decoder
layer. Feminine sentences yield larger gradients, espe-
cially on the encoder side.

should have been predicted. In comparison to the
standard cross-entropy (in black), the loss func-
tion of Equation (1) includes an additional term (in
cyan) that can been implemented using a V × V
cost matrix cost

(
y(i), y

)
where we specify how

much the system should be penalized (in addition
to the usual penalty) when predicting y instead
of y(i). This loss function allows us to associate
an extra penalty for each pair of (predicted word,
gold word). In practice, in our experiments, we
use a cost matrix where all elements except four
are zero: the system receives an additional penalty
when it predicts its instead of her, its instead
of his, his instead of her and her instead of
his. This means that for all other tokens, the sys-
tem is trained as usual, meaning that the overall im-
pact on translation quality remains circumscribed
to these words.This penalty is fixed at 10% of the
average value of the logits on the last layer of the
decoder. Preliminary experiments with other val-
ues of the penalty or other pairs of tokens that are
penalized did not improve these results.

By increasing the penalty incurred by mistakes
in predicting the possessive pronoun, we are actu-
ally instructing the TM to be more careful when
choosing them. This is mathematically expressed
through reinforced gradients for these examples,
which should ultimately result in parameters that

Gender in source Accuracy
Deter-
miner

Epicene
Noun

Masculine no 76.6 +0.1

yes 84.5 -0.2

Feminine no 35.3 +2.2

yes 35.1 +3.2

Epicene no 39.2 -1.2

yes 41.1 +0.7

Table 10: Accuracy (in %) of possessive pronoun
prediction when the TM is trained with the softmax-
margin loss and difference with the accuracy achieved
by system trained with cross-entropy loss.

are better at extracting and transferring gender in-
formation between the source and the target.

Experimental Results Table 10 reports the ac-
curacy of pronoun prediction achieved by system
trained with a softmax-margin loss. This system
appears to be, on average, better at predicting
the correct form of the possessive pronouns, espe-
cially for feminine source subjects. This observa-
tion confirms our conclusions: reinforcing gradi-
ents does result in better possessive pronoun pre-
dictions, illustrating again the fact that the cross-
entropy loss fails to fully transfer gender informa-
tion from the source, mainly because, as explained
above, masculine pronoun can be correctly pre-
dicted without taking any source side information
into account.

5 Conclusions

We have presented a new series of experimental
evidence highlighting the causes of gender biases
in NMT. Our analyses are based on observing pro-
noun translation errors in a controlled setting, us-
ing a new French-English test set of more than
3,000 occupational nouns. They mostly confirm
the findings of previous studies that have amply
documented the fact that errors were more likely
to occur for feminine than for masculine pronouns,
the latter being used as the default option in most
context. Additional analyses based (a) on sys-
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tematic probes, (b) on the comparison of LM vs.
TM probabilities, (c) on subword splitting, (d) on
the gradient flow in the encoder and decoder lay-
ers show that the cause of these biases are multi-
factorial. We have finally proposed a new way to
mitigate these errors via a margin augmented train-
ing loss, specifically aimed at improving the infor-
mation flow between source and target.

In our future work, we intend to continue explor-
ing the potential of margin augmented losses, with
the aim to also train the cost matrix, and to per-
form more systematic experiments with other sys-
tems and language pairs. Another line of investiga-
tion will be considering other linguistic phenom-
ena posing difficult challenges for MT systems,
such as the prediction of tense (Vanmassenhove
et al., 2017) or mood information (Burchardt et al.,
2017).

6 Ethics Statement

This supplemental description tries to follow (Lar-
son, 2017) recommendations for gender as a vari-
able in NLP. We cannot avoid gender as it is nec-
essary to achieve our objectives, that is the study
of gender biases. To make our theory of gender
explicit, we follow Corbett’s analysis of gender as
a grammatical category (Corbett, 1991), defined
for English as a pronominal gender system. For
human referents in our corpus and in our experi-
ments, we operationalize grammatical gender as a
binary feature in French and English, which, on
the one hand, can be felt as excluding, and, on the
other hand, does not take into consideration more
recent uses in these languages. As explained in
lines 116–125, we resort to this simplistic repre-
sentation of gender to highlight the gender bias in
current NMT systems. For a more complete ap-
proach to the variety of gender-inclusive linguistic
strategies currently in use in English, see for in-
stance (Cao and Daumé III, 2020).
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Abstract
Models able to generate free-text rationales that
explain their output have been proposed as an
important step towards interpretable NLP for
“reasoning” tasks such as natural language in-
ference and commonsense question answering.
However, the relative merits of different archi-
tectures and types of rationales are not well un-
derstood and hard to measure. In this paper, we
contribute two insights to this line of research:
First, we find that models trained on gold ex-
planations learn to rely on these but, in the case
of the more challenging question answering
data set we use, fail when given generated ex-
planations at test time. However, additional
fine-tuning on generated explanations teaches
the model to distinguish between reliable and
unreliable information in explanations. Second,
we compare explanations by a generation-only
model to those generated by a self-rationalizing
model and find that, while the former score
higher in terms of validity, factual correctness,
and similarity to gold explanations, they are
not more useful for downstream classification.
We observe that the self-rationalizing model is
prone to hallucination, which is punished by
most metrics but may add useful context for the
classification step.

1 Introduction

Adding free-text explanations to NLP models is ap-
pealing as such explanations are easy to understand
to human users and can include richer reasoning
than methods that assign relevance scores to the in-
put, such as LIME (Ribeiro et al., 2016) or saliency
maps (Simonyan et al., 2014). Therefore, several
commonsense reasoning data sets have been en-
riched with natural language explanations (Cam-
buru et al., 2018; Rajani et al., 2019; Aggarwal
et al., 2021). However, there is also significant
scepticism, as the association between the model’s
predictions and its generated explanations is un-
clear. Bommasani et al. (2021) note that explana-
tions may seem plausible but do not provide true

insight into the model’s reasoning, which fits the
observation that open-ended generation models are
prone to hallucinating unfaithful content (Maynez
et al., 2020). Also, human explanations are not de-
signed to be valid (or even complete) mechanisms
leading to a correct prediction (Tan, 2022).

In this work, we study the effects of different de-
sign choices and properties of automatically gener-
ated explanations on the predictive performance of
rationale-augmented models. To this end, we make
targeted modifications to the model architecture
and compare with gold-standard explanations. A
common architecture for rationale-augmented mod-
els is a pipeline that maps the input to a rationale
and the rationale to the output (I → R; R → O).
Pipeline models are faithful by construction, but
inferior in their performance. Self-rationalizing
models that generate the rationale along with the
output (I → OR) show good performance, but it
is hard to assess the faithfulness of their explana-
tions (Wiegreffe et al., 2021). We focus on a less-
studied usage of free-text explanations, a rationale-
enriched pipeline mapping the input to the ratio-
nale and the input along with the rationale to the
output (I → R; IR → O). This architecture was
originally proposed by Rajani et al. (2019) in their
CAGE (Commonsense Auto-Generated Explana-
tions) model. In the taxonomy of Hase et al. (2020),
we are dealing with serial-task reasoning models.
While not inherently faithful, as a causal path from
input to predicted label remains open, these models
allow us to study interactions between inputs and
explanations more directly than self-rationalizing
models because they allow for interventions at the
explanation level, prior to the classification step.
At the same time, Wiegreffe et al. (2021) show that
the performance is superior to R → O, particu-
larly when annotators are not instructed to provide
self-contained explanations.

We use the framework of rationale-enriched
pipelines to generate insights along two lines:
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1. We compare classification models solely trained
on ground-truth explanations with models ad-
ditionally fine-tuned on generated explanations.
We find that the latter always perform notably
better, while the former fail completely on the
more challenging of our data sets.

2. We ask how explanations generated by a serial-
task model (I→ R) compare to those generated
by a multi-task model (I→ OR). We find that,
while the serial-task explanations are more sim-
ilar to gold explanations and their validity and
factual correctness are ranked higher by human
annotators, there is no clear difference in terms
of utility for the classification step (IR→ O).

2 Background

Annotating free-form explanations for NLP data
sets has gained attention in recent years as language
generation models became stronger. The popular
natural language inference dataset SNLI (Bowman
et al., 2015) has been enriched with crowd-sourced
text explanations, resulting in e-SNLI Camburu
et al. (2018). Two extensions were created for
CommonsenseQA (Talmor et al., 2019), called
CoS-E (Rajani et al., 2019) and ECQA (Aggarwal
et al., 2021). In SemEval-2020 Task 4, a subtask
was to generate a reason why a natural language
statement does not makes sense to humans (Wang
et al., 2020). Ling et al. (2017) solve algebraic
word problems and generate a series of small steps
necessary to derive the answer. Textual explana-
tions have also been proposed for self-driving ve-
hicles (Kim et al., 2018). The need for manual
annotations of natural language explanations cre-
ates challenges, such as annotation costs (Belinkov
and Glass, 2019). Also, human explanations can
take various forms and have different goals (Miller,
2019) and do not necessarily verbalize valid rea-
soning paths (Tan, 2022).

2.1 Automatic Evaluation and Diagnostics
Two main characteristics are commonly included
into the evaluation of explanations: Similarity with
human-generated explanations and faithfulness to-
wards the model’s true decision-making process.
Evaluating extractive explanations is straightfor-
ward at the first glance: If overlap with human
importance assignments is desired, classical met-
rics such as Fn-scores can be used. Distinguish-
ing between faithful and unfaithful explanations is
harder, as there is no ground truth to compare to

(Jacovi and Goldberg, 2020). Faithfulness is often
evaluated by testing the model’s performance af-
ter perturbing the input in relevant parts; see e.g.
DeYoung et al. (2020) and Atanasova et al. (2020).
The results obtained from such metrics are however
not always consistent (Chan et al., 2022).

The evaluation of free-text explanations, which
typically include input-external facts and reasoning,
is a topic of ongoing discussion. Surface-level text
generation metrics that measure the textual simi-
larity of the generated explanation with the gold
explanation have been employed, like BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), which
measure n-gram overlap, or BERTScore (Zhang
et al., 2020), which sums cosine similarities be-
tween the BERT (Devlin et al., 2019) embeddings
of the tokens in two sentences. BERTScore has
been reported to correlate better with human judge-
ment than other metrics in generation tasks (Zhang
et al., 2020). The inconsistency of free-form expla-
nations presents an obvious problem however, as
there can be a large number of valid explanations
that differ not only in surface form but also in rea-
soning paths. Also, humans and models may prefer
different reasoning paths, resulting in a disconnect
of generated explanations and model decisions.

To evaluate the faithfulness of explanations,
Hase et al. (2020) suggest the Leakage-Adjusted
Simulatability (LAS) metric, where the perfor-
mance of a classifier with access to explanations
is compared to its input-only version. In addition,
they control for label leakage in the explanations by
grouping data for which the label can be predicted
solely with the explanation. Wiegreffe et al. (2021)
show that a self-rationalizing T5 model (Raffel
et al., 2020) fulfills two necessary conditions for
faithful explanations: the robustness of output and
explanations to input noise is correlated, and la-
bels and rationales have a high feature importance
agreement. While such approaches to evaluate the
connection between explanations and predictions
are insightful first steps, we are still scratching the
surface. Evaluating faithfulness remains an un-
solved problem.

2.2 Human Evaluation

While human evaluation is costly, it can provide
important insights about properties such as factual
correctness, which are not caught by automated
metrics. A manual evaluation of explanation plau-
sibility conducted by Marasovic et al. (2021) shows
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that the qualitative difference of human and gener-
ated explanations remains substantial even with the
largest available models. Wiegreffe et al. (2022)
show that humans often prefer explanations gen-
erated by GPT-3 (Brown et al., 2020) over crowd-
sourced explanations. While the automatically gen-
erated explanations were rated low on qualitative
criteria such as support of the label and novelty of
information by default, a supervised acceptability
filtering model based on human ratings of explana-
tions improved explanation quality.

Other Domains Abstractive summarization is
an insightful use case to evaluate generation faith-
fulness, as it is straightforward to judge if facts
were in the original text. Maynez et al. (2020)
show that the majority of summaries contain erro-
neous hallucinated content. Monsen and Rennes
(2022) conduct a user study on abstractive versus
extractive summaries. Their results show that ab-
stractive summaries are much worse aligned with
the meaning of the original text, resulting in fac-
tual incorrectness. Kryscinski et al. (2019) also
report factual inconsistencies in a large number of
abstractive summaries with a manual evaluation,
and weak correlation between human ratings and
ROUGE scores.

3 Experimental Setup

We generate and evaluate explanations in reasoning
pipeline models using the following setups:

3.1 Data Sets

We use two English-language commonsense rea-
soning data sets that include human-annotated free-
text explanations: ECQA and e-SNLI.

ECQA The Explanations for CommonsenseQA
(ECQA) dataset (Aggarwal et al., 2021) extends
the multiple-choice commonsense question answer-
ing data set CommonsenseQA (Talmor et al., 2019).
For each question, five answer choices are provided.
While Rajani et al. (2019) proposed the first exten-
sion of CommonsenseQA, their CoS-E data set has
been reported to be of low quality: answers are
ungrammatical (Narang et al., 2020) and rated ex-
ceptionally bad by humans (Wiegreffe et al., 2022).
Explanations in ECQA are more detailed than in
CoS-E. ECQA also includes refuting explanations
for incorrect answer choices.

In our models, we provide one answer option
with the respective explanation at a time, and use

the target label justify if the answer is the correct
one and refute if it is a wrong one. We create
one training example for each annotated positive
property and sample the data to get a ratio of 50/50
for positives/negatives during training.

e-SNLI The second data set we use is the natural
language inference data set e-SNLI (Camburu et al.,
2018). It is based on the popular SNLI (Bowman
et al., 2015) that classifies the logical relation be-
tween a premise and a hypothesis sentence. It has
three labels: entailment, neutral and contradiction.
SNLI has been shown to contain annotation arti-
facts (label-specific lexical choices and the length
of the hypothesis) that allow for correct classifica-
tions without solving the task (Gururangan et al.,
2018), making explanation annotations to guide
the model even more interesting. In fact, Cam-
buru et al. (2018) show that correct explanations
are much less likely to emerge from artifacts than
correct labels. Explanations in e-SNLI are largely
self-contained: Camburu et al. (2018) report that
the classification accuracy conditioned only on the
explanation is 96.83%.

3.2 Models
As previously mentioned, our reasoning models
consist of a generator and a classifier. We imple-
ment all models on top of the PyTorch (Paszke
et al., 2019) and Hugging Face Transformers (Wolf
et al., 2020) libraries and follow standard fine-
tuning strategies.1

3.2.1 Generation Models
We use two models to collect explanations.

• Our single-task model (called GPT-ST in the fol-
lowing sections) is a GPT-2 (Radford et al., 2019)
model that we fine-tune on the task-specific data
using a language modelling head.

• The multi-task model (GPT-MT) is a GPT-2
model with two heads, one for language mod-
eling and one for label classification. We use a
weighted additive loss to combine the LM and
the classification loss.

The prompt for the GPT-2 components is: “State-
ment: + Question or Premise + Statement: + An-
swer Option or Hypothesis + Explanation: + Ex-
planation”. We only account for tokens in the

1All code with dependencies and parameters is avail-
able at https://github.com/martinjirenius/
reasoning-pipeline-models
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Figure 1: Experimental setup for training (upper half)
and testing (lower half) on gold versus generated ex-
planations as a causal graph (Pearl, 1995). Itrain , Idev ,
Etrain , Ltrain and Ldev are the inputs, explanations and
labels from the train and dev set, respectively. Egen are
generated explanations from the GPT-models, M is the
BERT classification model, Lpred are the labels pre-
dicted by M . All variables affected by the intervention
on Etrain are marked with a red border line.

generated explanation when calculating the cross-
entropy loss.

3.2.2 Classification Models
For classification, we use fine-tuned BERT base
models (Devlin et al., 2019) and present the input
in the format “[CLS] + Question or Premise +
[SEP] + Answer Option or Hypothesis + [SEP]
+ Explanation + [SEP]”. We evaluate six different
setups for each data set as specified in Table 1.

BERTnone is a lower-bound baseline that does
not use any explanations. BERTgold is an upper-
bound baseline that uses gold explanations both for
training and at test time. BERTST uses gold expla-
nations for training and the explanations generated

Trained with: Tested with:

BERTnone – –
BERTgold Gold Gold
BERTST Gold GPT-ST
BERTST-ft GPT-ST GPT-ST
BERTMT Gold GPT-MT
BERTMT-ft GPT-MT GPT-MT

Table 1: Overview of our classification setups. The table
indicates the source of the explanations that the model
is trained and tested with.

by GPT-ST at test time. BERTST-ft uses explana-
tions of GPT-ST at test time, but different from
BERTST it is also fine-tuned on GPT-ST explana-
tions. BERTMT uses gold explanations for training
and the explanations from GPT-MT at test time.
BERTMT-ft is fine-tuned and tested on GPT-MT ex-
planations.

Figure 1 illustrates the latter four models with
regard to the intervention of fine-tuning the model
on generated explanations, i.e. going from BERTST
to BERTST-ft and from BERTMT to BERTMT-ft.

3.3 Evaluation
Quantitative Metrics Our primary evaluation
criteria are the similarity between the generated
explanations and the gold explanations, as well as
the predictive performance of the complete pipeline.
To quantify the similarity, we use BERTScore (F1).
To evaluate the classifiers, we compute their macro-
averaged F1 score and accuracy on the test data.

Note that the native labels for our ECQA models
are justify and refute for each possible answer. To
make our evaluation comparable to other work, we
calculate accuracy based on the answer with the
highest score for justify.

Human Evaluation To assess qualitative prop-
erties of the generated explanations, we conduct
a human evaluation over 200 random samples for
each of the data sets. Inspired by the human eval-
uation studies by Monsen and Rennes (2022) and
Wiegreffe et al. (2022), we ask annotators the fol-
lowing questions for each e out of the gold, GPT-ST
and GPT-MT explanations of each sample:

• Is e a well-formed sentence?

• Does e support the label?

• Is the content of e factually correct?

• Does e provide a valid reasoning path for the
label?

• Does e add new information, rather than re-
combining information from the input?

The possible answers for each question are yes or
no. Each sample is rated by three persons familiar
with the tasks (the first three authors). We report
the average score across reviewers as well as Krip-
pendorf’s α (n = 3, interval from −1 to 1) for
inter-rater agreement (Krippendorff, 2011). The
full instructions for the annotators can be found
in Appendix A. The data is available at https:
//github.com/jekunz/bbnlp22_human.
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GPT-ST GPT-MT

ECQA 0.3108 0.2502
e-SNLI 0.3989 0.4009

Table 2: BERTScores (F1) for the single-task (GPT-ST)
and multi-task (GPT-MT) models.

4 Results

We present our main results together with some
additional follow-up experiments.

4.1 BERTScores and Surface Features
First, we test if GPT-ST or GPT-MT generates bet-
ter explanations as evaluated by BERTScores. We
see in Table 2 that GPT-ST explanations are more
similar to the human reference explanations than
GPT-MT solutions, at 0.3108 vs. 0.2502. For e-
SNLI, the BERTScores for both models are very
close, and much higher than those for ECQA, at
0.3989 resp. 0.4009.

We also compare the generated explanations
in terms of simple surface features: explanation
length, vocabulary size and vocabulary overlap
with gold explanations (Table 3), and find that for
e-SNLI, GPT-ST and GPT-MT explanations have
almost identical characteristics. For ECQA, the
difference is more substantial: While GPT-ST ex-
planations are shorter than both GPT-MT and gold
explanations, the former’s vocabulary is larger than
that of GPT-MT. The overlap with gold explana-
tions is slightly higher for GPT-MT.

4.2 Classification
Results for the classification models are reported
in Tables 4 and 5 (macro-averaged F1, accuracy).

GPT-ST GPT-MT Gold

ECQA: Words 9.14 10.28 10.54
ECQA: Chars 48.08 49.74 57.48
ECQA: Vocab 7,946 4,436 11,033
ECQA: Overl. 0.772 0.735 –

e-SNLI: Words 11.79 11.77 13.32
e-SNLI: Chars 60.11 60.01 68.75
e-SNLI: Vocab 9,398 9,346 14,935
e-SNLI: Overl. 0.860 0.860 –

Table 3: Surface features: average word and character
length, vocabulary size and vocabulary overlap with
gold explanations for each set of explanations (dev. set).

Baselines As expected, the baseline BERTgold
performs best across all metrics, models and data
sets. For e-SNLI, BERTnone performs better than
all models that utilize generated explanations. For
ECQA, BERTST and BERTMT get a classification
accuracy below the BERTnone accuracy, with 0.253
and 0.231 compared to a random baseline of 0.2.
However, looking at the F1 scores, we see that the
BERTnone baseline is outperformed by all ECQA
explanation models.

Fine-tuning on generated explanations improves
results When fine-tuning on generated explana-
tions in the BERTST-ft and BERTMT-ft models, the
explanation models outperform the BERTnone base-
line for ECQA consistently, showing that the ad-
ditional supervision with generated explanations
is helpful. While for e-SNLI BERTnone is not out-
performed, the ft models still perform consistently
better than the models trained on gold explanations,
although the gap is smaller than for ECQA.

As an ablation, we also train two ECQA BERT
models (BERTST-abl and BERTMT-abl) on generated
explanations only, and evaluate them on gold expla-
nations. BERTST-abl achieves an accuracy of 0.522
on gold explanations and BERTMT-abl achieves
0.479, improving over comparable models that
utilize generated explanations by at least 0.062
(BERTST-ft: 0.460) and 0.011 (BERTMT-ft: 0.468).
The accuracies of the ablation models on gener-
ated explanations are 0.406 (BERTST-abl) and 0.469
(BERTMT-abl ). Still, the gap to the gold-trained and
gold-evaluated model remains substantial.

Single-task versus multi-task explanations
While the BERTScore differences between GPT-
ST and GPT-MT explanations are large for ECQA,
using these explanations downstream in the classifi-
cation model gives very similar results. For ECQA,
the MT model even appears to have a slight advan-
tage at least for the ft models, while for e-SNLI, it
is the other way round.

4.3 Human Evaluation
The results of the human evaluation are reported
in Table 6. In the case of ECQA, we see that the
annotators have a preference for the GPT-ST ex-
planations, giving them considerably higher scores
for support, correctness and validity. The GPT-MT
model adds more novel information. A closer look
at the novel information shows that in the exam-
ples that were flagged to contain novel information,
the majority (0.637) are factually incorrect. The
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BERTnone BERTgold BERTST BERTST-ft BERTMT BERTMT-ft

ECQA 0.378 0.906 0.514 0.631 0.489 0.634
e-SNLI 0.898 0.980 0.836 0.861 0.836 0.861

Table 4: Results for the classification models, macro-averaged F1 scores.

BERTnone BERTgold BERTST BERTST-ft BERTMT BERTMT-ft

ECQA 0.338 0.945 0.253 0.460 0.231 0.468
e-SNLI 0.898 0.993 0.844 0.866 0.843 0.863

Table 5: Results for the classification models, accuracy.

annotators anecdotally report a large amount of
nonsensical hallucinations in the GPT-MT model;
we include examples in Appendix B.1. The overall
scores are low, with shares of yes answers to the
validity criterion being only 0.285 (GPT-ST) and
0.107 (GPT-MT). However, the gold answers do
not get good scores either, with a yes share of 0.49.
The highest-scoring criterion is well-formedness,
where GPT-MT gets scores comparable to the gold
explanations. With 0.607 vs. 0.603, the share of
well-formed answers is however still low, with the
generation models probably mirroring sloppy ex-
planations in the training set.

For e-SNLI, the scores for all criteria except
novelty are considerably higher. There is a slight
preference for GPT-MT in the criteria support, cor-
rectness and validity, and a slight preference for
GPT-ST in well-formedness, where GPT-ST even
surpasses the gold explanations (0.868 vs. 0.833).
Annotators noted that the ease of creating well-
formed explanation may be due to the explana-
tion often following clear templates; examples are
given in Appendix B.2. e-SNLI explanations al-
most never add new information; the highest share
is in the gold set with only 0.052.

For both data sets we note that the inter-annotator
agreement on gold explanations is much lower than
on both sets of generated explanations.

5 Discussion

We now discuss or results and method.

5.1 Results

The downstream utility of explanations is not re-
flected by BERTScores or human ratings The
rationale-enriched pipeline helps us to better under-
stand interactions between predictions and expla-
nations by comparing the usefulness of different

sets of explanations. Perhaps not surprisingly, we
see that BERTScores do not reflect the usefulness
of the explanations generated by different models.
Large drops in BERTScores go along with at most
very slight drops in the model’s performance on the
respective predictions. This is in line with results
by Hase et al. (2020), who report that BLEU scores
are not correlated with LAS.

Perhaps surprisingly however, the same effect is
observed for the interplay of the human ratings and
the downstream usefulness: Large differences in
the human ratings of the validity and factual cor-
rectness of the explanations are not at all reflected
in the downstream utility of the explanations. We
hypothesize that a key property that leads to this
behavior is the tendency of GPT-MT to halluci-
nate in ECQA (§ 4.3): While novel but factually
incorrect information is punished in human ratings
and BERTScore, the new information can still help
the downstream model by adding possible context.
GPT-ST on the other hand tends to “play safe” by
creating more template-like explanations, with of-
ten sensible results but without novel information,
and thereby without additional features for the clas-
sifier. Consider this example:

Q: The archaeologist was seeing artifacts that he knew
were fake, how did he feel?
A: painful memories
Label: refute
GPT-ST: Painful memories is not a feeling.
GPT-MT: A person who is in fear of being embarrassed
is called a bad person.

The GPT-ST explanation is reasonable but
merely re-combines words from the question and
answer. GPT-MT on the other hand creates an
off-topic explanation that could, however, help the
reasoning of the classifier by giving hints on al-
ternative answers (like embarrassed or fear). We
leave an investigation of this to future work.
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Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) 0.682 (+0.13) 0.593 (−0.03) 0.490 (+0.18) 0.173 (+0.20)
ECQA GPT-ST 0.573 (+0.25) 0.513 (+0.45) 0.443 (+0.19) 0.285 (+0.48) 0.126 (+0.28)
ECQA GPT-MT 0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (+0.43) 0.211 (+0.23)

e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772 (−0.06) 0.052 (−0.02)
e-SNLI GPT-ST 0.868 (+0.10) 0.807 (+0.57) 0.755 (+0.73) 0.670 (+0.65) 0.018 (+0.26)
e-SNLI GPT-MT 0.830 (+0.24) 0.813 (+0.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (−0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s α (n = 3, interval from −1 to +1) for inter-rater agreement.

Fine-tuning on generated explanations is cru-
cial Another important finding is the failure of
BERTST and BERTMT when encountering gener-
ated explanations in ECQA, which shows that our
generator models do not catch the relevant seman-
tic aspects sufficiently well for the classifier to rely
on them. However, after fine-tuning with generated
explanations, the BERT classifier can improve over
the baseline without access to explanations. This
shows that the model can still profit from the im-
perfect explanations if it learns to handle their limi-
tations better. Our ablation with a model trained on
generated and evaluated gold explanations suggests
that it is not surface differences that make the trans-
fer hard: The ablation model can in fact handle
the gold explanations quite well, performing even
better than on generated explanations. The fact
that it still performs much worse than BERTgold on
gold explanations shows that the model is far from
perfect in identifying reliable information in the
explanations; however, it is able to differentiate to
some extent.

In previous work, Rajani et al. (2019) use a simi-
lar model consisting of GPT-2 and BERT, and suc-
ceed with gold-explanation training and generated-
explanation testing for CoS-E. One reason for the
contradictory results could be a more sophisticated
optimization of their model, but we find it worth
discussing that the success does not necessarily
come by default. Another hypothesis is that the
cause is the (reportedly) low-quality annotations
in CoS-E (Narang et al., 2020) having a similar
noise-adding effect as the generated explanations,
and therefore allow the model to transfer.

e-SNLI is easy, ECQA problematic to explain
On e-SNLI, all models get higher scores in all met-
rics than on ECQA. The only exception is novelty
in the human evaluation: Novel information is not
necessary to explain e-SNLI instances; it is suffi-
cient to re-combine parts of premise and hypothesis.

This is commonly done in a template-like manner:

– [Part of premise] is [part of hypothesis] for the
entailment label,

– Not all [part of premise] are [part of hypothesis]
for neutral, and

– [Subject] cannot [part of premise] and [part of
hypothesis] at the same time for contradiction.

For full examples containing these patterns, we
refer to Appendix B.2. The template-like explana-
tions in e-SNLI have also been noted by Camburu
et al. (2018) and Brahman et al. (2021). Such obser-
vations could raise the question if templates could
be a more appropriate form of explanation for this
data set, as they would improve clarity and reliabil-
ity. Wiegreffe and Marasovic (2021) review expla-
nation data sets and question the popular perception
that template-like explanations are generally dis-
missed as uninformative. The authors suggest to
instead embrace naturally occurring structures.

ECQA explanations rarely follow simple pat-
terns and more often include external information.
The low validity scores even for the gold explana-
tions show that the data set is rather hard to explain.
Our annotators noted that “incorrect” answer op-
tions in ECQA are not generally implausible but
often just less likely than the “correct” option. This
makes it hard to write explanations that do not
explicitly consider the correct answer option in a
contrastive manner (arguing why it is more likely
than the current candidate). Examples are given in
Appendix B.3. ECQA contains a notable number
of uninformative explanations for the refute label
both in the gold and the generated explanations, e.g.
[Answer] is not a correct option (see Appendix B.4
for examples). This is possibly a result of annota-
tors not being able to formulate satisfying reasons
why the answer option is incorrect. ECQA also has
a large amount of ungrammatical and low-quality
annotations, which affects the generation models
negatively.
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5.2 Limitations

We conclude this section with a discussion of the
limitations of our study.

Model An obvious limitation of our work is that
our results on SNLI and CommonsenseQA are be-
low the current state of the art, due to the moderate
size of our models. While combining GPT-2 and
BERT is a common setup for free-form explanation
generating models (Wang et al., 2020), Hase et al.
(2020) report much higher results using T5 models,
and Marasovic et al. (2021) clearly document the
effect of scale in a few-shot setup, with e-SNLI
climbing from 79.2% to 87.4% and ECQA from
41.4% to 65.9% in classification accuracy when
going from T5-base to T5-3B. While repeating the
experiments with larger models could lead to differ-
ent conclusions, we believe that investigating the
smaller, more accessible and widely used models
remains valuable.

Evaluation Another limitation in our analysis
is the possibility that the multi-task explanations
are affected by error propagation when the system
makes wrong predictions.2 This issue may affect
both BERTScores and human evaluations. We sug-
gest that a promising fix to this potential problem is
to over-generate explanations and randomly choose
one that accompanies a correct prediction.

Data sets That explanations do not increase the
overall performance of SNLI models is known
in the literature. Camburu et al. (2018) report a
decline in accuracy with explanations: 84.01%
for SNLI, but 83.96% for the best explanation
model. Note that their models were BiLSTM mod-
els trained from scratch, as their work preceded
current pre-trained models. Another work reports
an improvement in accuracy, but with 0.3% it is
extremely slight (Zhao and Vydiswaran, 2021). As
pre-trained models get a superhuman performance
on SNLI, and because of the known presence of
annotation artifacts (Gururangan et al., 2018), re-
cent improvements may however not be meaningful
for solving the actual task. In addition, the high
performance of models is not aligned with human
agreement on natural language understanding tasks.
In a human evaluation of SNLI by (Bowman et al.,
2015), all annotators agree only on 58% of the
labels.

2This limitation was rightfully noted by one of the review-
ers of this paper, which we gratefully acknowledge.

Both data sets we use consist of crowd-sourced
explanations of mixed quality. Doing a manual in-
spection of either of them, it is easy to find incorrect
and logically inconsistent explanations, or explana-
tions that contribute no additional information (§§
B.3, B.4). Our low inter-annotator agreement on
gold explanations is an indicator of these problems.
Related observations have also been raised in pre-
vious evaluations (Wiegreffe et al., 2022). Besides
data quality, the tasks of natural language inference
and multiple-choice question are arguably artifi-
cial. It is unclear how the results would transfer to
explanation generation in general.

The status of free-text explanations We believe
it is appropriate to remain sceptical about the utility
of generated free-text explanations. Large mod-
els produce better explanations by all metrics, but
there is still a huge qualitative difference of hu-
man and generated explanations (Marasovic et al.,
2021). The acceptability filtering system proposed
by Wiegreffe et al. (2022) improves human ratings
of model-generated explanations substantially, but
may, as these authors state themselves, be more
relevant for goals such as creating trust in the sys-
tem than for creating explanations faithful to the
model’s prediction process. In fact, generating
explanations without guarantees of a causal con-
nection between explanation and label is not faith-
ful, and evidence that there is such a connection
is sparse. Still, while we would strongly advise
against using generated explanations as evidence
about how a prediction was made, we argue that
they can generate valuable insights into the “rea-
soning” capabilities of models, and thereby help
improving models, task formulations and data sets.
Unfortunately, the current lack of high-quality an-
notated data sets with explanations for diverse tasks
makes it hard to fully assess their potential.

6 Conclusion

In this paper we compared free-text explanations
in variants of a rationale-enriched pipeline: using
a single-task versus a self-rationalizing generation
model, and training the classifier on gold expla-
nation only versus doing further fine-tuning with
generated explanations. An extensive evaluation
with similarity-based metrics, utility in downstream
classification, and human ratings based on five dif-
ferent criteria shows limitations but also chances of
free-text explanations. We see indications that hal-
lucinations occur more frequently in explanations
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by a self-rationalizing generation model. However,
they do not appear to be generally harmful, and
may even be useful for downstream predictions
in rationale-enriched pipelines if the classification
model has the chance to learn to differentiate be-
tween reliable and unreliable information. Further
investigation of hallucinations in rationale-enriched
pipelines, e.g. with extractive explanation methods,
is an interesting avenue for future research.

That human ratings do not reflect classification
utility indicates that it is crucial to design anno-
tations and models targeted towards a use case:
Explanations that convince human raters are not
ideal for the goal of performance improvements by
providing useful guidance to the model. However,
the latter goal is not explicitly accounted for in pop-
ular data sets, but the former is not sufficiently met
either, as particularly for ECQA, human annotators
rate gold explanations low. Specialized explana-
tions that maximize one goal at a time would help
us understand the differences between human and
model “reasoning”, and thereby allow us to move
towards more faithful free-text explanations.
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If you disagree with the label or find the example
to be non-sense: Flag the example with N/A.

Step 1: Look only at e internally:

• Is e a well-formed sentence? (e is grammat-
ical and structurally sensible.)

• Is the content of e factually correct? (e it-
self is a true statement about the real world.
e is factually and logically correct.)

Step 2: Look at e and the label:

• Does e support the label? (Looking at e
alone, it is reasonable that the label is cor-
rect.)

Step 3: Use all available context:

• Does e provide a valid reasoning path for
the label? (e convincingly explains how to
get from the context to the label.)

• Does e add new information? (Rather than
re-combining information from the context,
e comes up with new information.)

B Anecdotical Examples for Observed
Characteristics

In this appendix section we provide further ex-
amples for four phenomena mentioned in this pa-
per that raters noticed during the human evalua-
tion. These phenomena were not systematically
reviewed at evaluation time but are anecdotal ob-
servations.

B.1 Hallucinations in GPT-MT
The following five examples from GPT-MT
include novel, “hallucinated” information that has
no connection to the question or answer option.

Q: When old conservative people observe a
changing society, what do the experience?
A: acceptance
Label: refute
GPT-MT: The experience of dying is a feeling

Q: Where can I put a coin to stop my car
from being towed?
A: piggy bank
Label: refute
GPT-MT: A person can put a coin in a cowgy
bank to stop his car from being washed from the

water.

Q: After I urinate and flush the toilet and
wash my hands, what should I do next?
A: zip pants
Label: refute
GPT-MT: A person should not put bag under shirt.

Q: The stud bull was brought in to breed
with the prize winning what?
A: female
Label: refute
GPT-MT: Cats are not called horses

Q: Who might wear dark glasses indoors?
A: ray charles
Label: refute
GPT-MT: A person might wear dark glasses in a
ring in the house.

B.2 Template-like explanations in e-SNLI

In the following we provide six examples from
e-SNLI, two for each label, where the explanations
follow a clear template that is consistently followed
by all explanation models.

Premise: A dog biting a man’s rear
Hypothesis: An animal is biting a man.
Label: entailment
GPT-ST: A dog is an animal.
GPT-MT: A dog is an animal.
Gold: A dog is an animal.

Premise: A group of men playing music,
the man holding a guitar is talking to a man with
drums.
Hypothesis: A band is playing music.
Label: entailment
GPT-ST: A group of men playing music is a band.
GPT-MT: A group of men playing music is a
band.
Gold: A group playing music together is know as
a band.

Premise: Man holding torch of fire.
Hypothesis: The fire is large.
Label: neutral
GPT-ST: Not all fires are large.
GPT-MT: The fire is not necessarily large.
Gold: Not all the fires are large.
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Premise: A woman in a bright pink and
green skirt carries a large wicker basket on her
back up a stone-cobbled street.
Hypothesis: The woman is carrying a basket down
the street in Nepal.
Label: neutral
GPT-ST: Not all stone-cobbled streets are in
Nepal.
GPT-MT: Not all stone-cobbled streets are in
Nepal.
Gold: Just because a woman is carrying a basket
does not mean that she is in Nepal.

Premise: A woman in a teal apron pre-
pares a meal at a restaurant.
Hypothesis: A woman is walking in park
Label: contradiction
GPT-ST: The woman cannot be walking and
preparing a meal at the same time.
GPT-MT: The woman cannot prepare a meal at a
restaurant and walk in a park at the same time.
Gold: A restaurant is not a park.

Premise: A man in a blue shirt, blue jeans, and a
red apron standing at a grill.
Hypothesis: A man bakes a cake.
Label: contradiction
GPT-ST: A man cannot bake a cake and stand at a
grill at the same time.
GPT-MT: The man cannot be standing at a grill
and baking a cake at the same time.
Gold: Standing at a grill cannot be done
simultaneously with baking a cake.

B.3 Plausible but “incorrect” answer options

The answer options in the following five examples
are plausible, but not the most likely option.
Reasons include too general or rather far-fetched
but still possible options.

Q: Sean was a native English speaker, a
fact that he found helpful. Ludwig didn’t speak the
language well because he was what?
A: alien
Label: refute
GPT-ST: Alien is not a person.
GPT-MT: A person cannot speak the language
well if he is an island.
Gold: A human being is not an alien.

Q: Billy found that his toilet was overflow-

ing. Water was splashing onto the floor and
making a huge mess. He got a mop and tried to
clean it up. Where might the toilet be located?
A: apartment
Label: refute
GPT-ST: Apartment is a community having 10 to
20 homes or a block of apartments. Apartment is
not where toilet overflowed.
GPT-MT: Apartment is a room or set of rooms
or a building where people live permanently,
especially as a member of a family or household.
Gold: His toilet was not in the apartment.

Q: They really needed the information pris-
oner, so they did the least human thing and began
to what the prisoner?
A: hurt
Label: refute
GPT-ST: Prisoners do not hurt when they are
being hurt
GPT-MT: When a person is hurt, he gets hurt.
Gold: Hurt is not the least human thing they can
do.

Q: When old conservative people observe
a changing society, what do the experience?
A: acceptance
Label: refute
GPT-ST: Acceptance is not related to changing
society
GPT-MT: The experience of dying is a feeling
Gold: Acceptance is not an emotion

Q: How can one’s views change after learning
about science?
A: appreciation of nature
Label: refute
GPT-ST: One can’t change his views after
learning about science.
GPT-MT: A person can change his ideas by
learning about science.
Gold: Appreciation of nature is the act of
recognising or understanding that nature is
valuable, important or as described. Appreci-
ation of nature is the act of recognising that
nature is valuable while learning about science
is all about greater knowledge and not appreciation.
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B.4 Uninformative “refute” answers
These five examples show explanations that do
not contain incorrect facts, but are completely
uninformative and therefore unfit as explanations.

Q: What can happen as a result of a busi-
ness spending money and having to make a
declaration?
A: poverty
Label: refute
Gold: Poverty is not an appropriate option.

Q: What animal has quills all over it?
A: calligraphy
Label: refute
Gold: Calligraphy dont suits in this sentence.

Q: What is unlikely to get bugs on its wind-
shield due to bugs’ inability to reach it when it is
moving?
A: car
Label: refute
GPT-MT: Car is not a correct option.

Q: There was a cloud or two out but overall
it was very what?
A: bringing rain
Label: refute
GPT-MT: Rain is not a correct option.

Q: Sam tried to go to sleep, but he couldn’t. He
suffered from what?
A: bed
Label: refute
GPT-ST: Bed is not a correct option.

Q: The coach decided to make a lineup change,
the team’s effort was suffering from what?
A: paper money
Label: refute
GPT-ST: Paper money is not a correct option.
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Abstract

Acoustic word embeddings (AWEs) are vector
representations such that different acoustic ex-
emplars of the same word are projected nearby
in the embedding space. In addition to their
use in speech technology applications such as
spoken term discovery and keyword spotting,
AWE models have been adopted as models of
spoken-word processing in several cognitively
motivated studies and have been shown to ex-
hibit human-like performance in some auditory
processing tasks. Nevertheless, the represen-
tational geometry of AWEs remains an under-
explored topic that has not been studied in the
literature. In this paper, we take a closer an-
alytical look at AWEs learned from English
speech and study how the choice of the learn-
ing objective and the architecture shapes their
representational profile. To this end, we employ
a set of analytic techniques from machine learn-
ing and neuroscience in three different analy-
ses: embedding space uniformity, word dis-
criminability, and representational consistency.
Our main findings highlight the prominent role
of the learning objective on shaping the repre-
sentation profile compared to the model archi-
tecture.

1 Introduction

Due to their ubiquity, word embeddings are nowa-
days a central component in natural language pro-
cessing (NLP). Inducing word embeddings from
text yields representations such that words occur-
ring in similar contexts are nearby in the vector
space (Mikolov et al., 2013; Pennington et al.,
2014). Therefore, the representational geometry of
text-based word embeddings captures lexical simi-
larity and semantic relatedness at multiple levels of
granularity. Word embeddings, and their underly-
ing distributional semantic models, have also been
adopted as models of human semantic memory in
cognitive science research (Pereira et al., 2016; Ne-
matzadeh et al., 2017; Grand et al., 2022).

Figure 1: UMAP projection (McInnes et al., 2018) of a
sample of acoustic word embeddings (AWEs) produced
by a correspondence autoencoder (CAE) model trained
on English read speech. AWE models project different
exemplars of the same word type closer in the embed-
ding space while abstracting away from speaker and
context variability.

In the speech processing domain, researchers
have independently developed representations of
acoustic segments that correspond to linguistic
units (Levin et al., 2013; Bengio and Heigold, 2014;
Kamper et al., 2016b; Settle and Livescu, 2016a,
inter alia). A notable example of such represen-
tations are acoustic word embeddings (AWEs)—
vector representations that encode the sound struc-
ture of words, not their semantic and syntactic
structure—see Fig. 1. AWEs support voice-based
speech technology applications such as query-by-
example spoken term discovery (Zhang and Glass,
2009; Jansen and Durme, 2012; Metze et al., 2013)
and keyword spotting (Myers et al., 1980; Rohlicek,
1995). In addition, AWEs can be leveraged to fa-
cilitate access to speech recordings of endangered
spoken languages that might lack standardized writ-
ing systems (Bird, 2021; San et al., 2021)

However, there are fundamental differences be-
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tween text-based and speech-based word embed-
dings that have to do with the degree of variability
between the two modalities. Contrary to written
words which have context-invariant orthographic
realizations,1 spoken words are notoriously vari-
able. The underlying sources of variability in
speech include speaker-related factors such as vo-
cal tract shape, gender, age, and dialect. In addition,
two acoustic instances, or exemplars, of the same
word will vary in different phonological and se-
mantic contexts even if they are produced by the
same speaker (Jurafsky, 2003). Therefore, acous-
tic word embeddings are not static, but have to be
computed “on the fly” given a speech segment as
input. Models of AWEs need to abstract away from
speaker and context variability to project different
acoustic exemplars of the same word onto (ideally)
the same point of the embedding space.

Nevertheless, AWEs have not yet been exten-
sively studied in the literature from a neural net-
work interpretability point of view. We are only
aware of a few prior efforts in this direction that
have either analyzed the representational geometry
of AWEs from a cognitively motivated angle (Ma-
tusevych et al., 2020a; Abdullah et al., 2021a) or
from a cross-linguistic perspective (Abdullah et al.,
2021b). In this paper, we make a contribution in
this direction and use analytic techniques from ma-
chine learning and neuroscience in three different
analytic studies: embedding space uniformity (§4),
word discriminability (§5), and representational
consistency (§6).

2 Acoustic Word Embedding Models

Given an acoustic signal that corresponds to a spo-
ken word represented as a temporal sequence of T
acoustic feature vectors, i.e., a = (a1,a2, ...,aT ),
the goal of an AWE model is to transform a into a
fixed-dimensionality vector representation e. Due
to the variability in speech production (i.e., speech
rate, emotional state, etc), the length of the acoustic
segment T varies between different exemplars, or
instances, of the same word type. Therefore, this
task is modeled as a mapping F : A −→ RD, where
A is the (continuous) space of acoustic sequences
and D is the dimensionality of the embedding. For-
mally, transforming a variable-length acoustic in-
put into a D-dimensional AWE is described as

e = F(a;θF ) ∈ RD (1)
1although some orthographic variation exists in informal,

user-generated text such as tweets.

where θF are the parameters of the encoder
function F . In a supervised setting of train-
ing AWE models, one assumes a dataset D =
{(a1, w1), (a2, w2), . . . , (aN , wN )} of N spoken
word instances where wi is the word type, or lexi-
cal category, of the ith acoustic sample. In this pa-
per, we experiment with two architectural choices—
recurrent and convolutional—and employ four dif-
ferent learning objectives for training AWE models
from the literature. Next, we formally describe
each of the objectives.

2.1 Correspondence Autoencoder
In the correspondence autoencoder (CAE) (Kam-
per, 2019), each training acoustic word sample a
is paired with another sample that corresponds to
the same word type a+ = (a1

+,a
2
+, ...,a

S
+). The

acoustic encoder F takes a as input and produces
an embedding e, which is then fed to an acous-
tic decoder H that aims to sequentially recon-
struct the corresponding acoustic sequence a+—
see Fig. 6(a). The objective is to minimize the L2

distance at each timestep in the decoder, which is
equivalent to

J =

S∑

i=1

∥ai
+ −Hi(e)∥2 (2)

where a+
i is the ground-truth acoustic feature vec-

tor at timestep i and Hi(e) is the reconstructed
acoustic vector at timestep i as a function of the
embedding e. Learning the correspondence be-
tween different acoustic realizations of the same
word type seems to encourage the encoder to build
up speaker-invariant word representations while
preserving linguistically-relevant phonetic informa-
tion (Matusevych et al., 2020b). When the target
acoustic sequence to generate is the same as the
input signal a, this corresponds to a conventional
autoencoder (AE) which we consider as one of our
learning objectives in this paper.

2.2 Phonologically Guided Encoder
The phonologically guided encoder (PGE) is
trained as component in a sequence-to-sequence
model to map acoustics into phonology (Abdullah
et al., 2021a). Given the output of the encoder as
an embedding e, a phonological decoder G(.;θG)
is trained to decode the corresponding phonologi-
cal sequence φ = (φ1, . . . , φτ ) of the word-form
—see Fig. 6(b). The objective is to minimize a cate-
gorical cross-entropy loss at each decoder timestep,
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which is equivalent to minimizing the term

J = −
∑

(ai,wi)∈D
log P

(
φ|ei;θG

)

= −
∑

(ai,wi)∈D

τ∑

t=1

log P
(
φt|t, ei;θG

) (3)

where P
(
φt|t, ei;θG

)
is the probability of the

phoneme φt at the tth timestep, conditioned on
the previous phoneme sequence φ<t and the AWE
e, and θG are the parameters of the decoder. The
intuition of this learning objective is the follow-
ing: although their acoustic realizations vary due to
speaker and context variability, different exemplars
of the same word category would have identical
phonological sequences. We thus expect the en-
coder to project exemplars of the same lexical cate-
gory nearby in the embedding space while embed-
ding similarity in the vector space should correlate
with phonological similarity.

2.3 Contrastive Siamese Encoder
The contrastive siamese encoder (CSE) has been ex-
plored in the context of AWEs with both recurrent
and convolutional architectures in several studies
(Settle and Livescu, 2016b; Kamper et al., 2016a;
Jacobs et al., 2021). Contrary to the previously
described objectives, the CSE explicitly minimizes
the distance between exemplar embeddings of the
same word type—see Fig. 6(c). First, each acoustic
word instance is paired with another instance of the
same word type (a,a+). Given their embeddings
(ea, e+), the objective is then to minimize a triplet
margin loss

J = max
[
0,m+ d(ea, e+)− d(ea, e−)

]
(4)

Here, d(., .) is the cosine distance and e− is an
AWE that corresponds to a different word type
sampled from the mini-batch such that the term
d(ea, e−) is minimized. This objective clusters
acoustic instances of the same word type closer in
the embedding space while pushing away instances
of other word types by a distance defined by the
margin hyperparameter m.

3 Data, Setup, and Intrinsic Evaluation

3.1 Experimental Data
The data in our study is drawn from the the Lib-
riSpeech dataset which contains read speech record-
ings of American-English (Panayotov et al., 2015),

which is a public dataset under the CC BY 4.0 li-
cense. We sample 384 speakers from for training
and 128 for evaluation—disjoint sets—and obtain
word-aligned speech samples using the Montreal
Forced Aligner (McAuliffe et al., 2017). To make
our models comparable with prior work, which has
focused on AWEs for low-resource languages, we
sample ∼ 39.4k samples for training and ∼ 9.7k
for evaluation. The phonetic transcription for
each word is produced using the online WebMaus
G2P tool (Strunk et al., 2014). Then, each acous-
tic segment is parametrized as a sequence of 39-
dimensional Mel-frequency spectral coefficients
of 25ms frames with 15ms overlap—the conven-
tional feature representation of speech in automatic
speech recognition (ASR). It is worth pointing out
that in this paper we consider each morphological
variant of a lexeme as a separate lexical category.
For example, different inflections of the lexeme
MAKE such as {MADE, MAKING, MAKER, etc.}
represent different lexical categories, each with its
own exemplars.

3.2 Architectures, Hyperparameters, and
Training Details

CNN Acoustic Encoder. We employ a 3-layer
temporal convolutional network (1D-CNN) with
256, 384, and 512 filters and widths of 4, 8, and 16
for each layer and keep stride step at 1. Following
each convolutional operation, we apply batch nor-
malization, ReLU non-linearity, and dropout. We
apply average pooling to downsample the repre-
sentation at the end of the convolution block, then
apply one non-linear layer with Tanh on the CNN
output, which yields a 512-dimensional AWE.

RNN Acoustic Encoder. We employ a 3-layer
directional Gated Recurrent Unit (GRU) with a
hidden state dimension of 512, then apply one non-
linear layer with Tanh on the GRU output, which
yields a 512-dimensional AWE. We apply layer-
wise dropout with a probability of 0.1.

Phonological Decoder G(.;θG). We employ a
1-layer GRU of 512 units hidden state that takes the
512-dimensional AWE as the initial hidden state
and decodes the corresponding phonological se-
quence without teacher forcing.

Acoustic Decoder H(.;θH). We employ a 1-
layer GRU of 512 units hidden state that takes the
512-dimensional AWE as the initial hidden state
and decodes the corresponding acoustic sequence
with a teacher forcing ratio of 0.2.
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(d) Phonologically-Guided Encoder

(e) Contrastive Siamese Encoder

(a) Randomly Initialized Encoder

(b) Autoencoder

(c) Correspondence Autoencoder

Recurrent Models Convolutional Models

Cross category
Within category

Figure 2: Distribution of cosine similarity scores of the different models for within category samples (i.e., exemplar
pairs of the same word type) and cross-category samples (i.e., sample pairs that correspond to different word types).
Each row in the figure corresponds to one learning objective and each column corresponds to one architecture.

Contrastive Loss. For the CSE, we experiment
with different values of the margin hyperparameter
m = {0.2, 0.3, 0.4, 0.5}, out of which 0.4 yields
the best performance on the validation set.

Training Details. All models in this study are
randomly initialized with each parameter drawn
uniformly from [−0.05, 0.05]. Then, each model
is trained for 100 epochs with a batch size of 256
using the ADAM optimizer (Kingma and Ba, 2015)
and an initial learning rate of 0.001. The learning
rate is reduced by a factor of 0.5 if the mAP on the
validation set does not improve for 10 epochs.
Implementation. We build our models using
PyTorch (Paszke et al., 2019) and use FAISS (John-
son et al., 2017) for efficient similarity search. Our
code is based on our prior work in building and
analyzing AWEs (Abdullah et al., 2021a,b).

3.3 Quantitative Evaluation

We conduct an intrinsic evaluation for the AWEs
to assess the performance of our models using the
same-different acoustic word discrimination task
with the mean average precision (mAP) metric
(Carlin et al., 2011; Kamper et al., 2015; Settle
et al., 2019; Algayres et al., 2020). This task evalu-
ates the ability of the model to determine whether
two given speech segments correspond to the same
word type—that is, whether or not two acoustic
segments are exemplars of the same category. The
results of the evaluation is shown in Fig. 7 in the
appendix. We observe that each recurrent encoder
outperforms its convolutional counterpart within
each objective. Moreover, the performance largely

depends on the strength of the supervision signal
where the contrastive encoders outperform other
objectives that lack explicit loss to group exem-
plars of the same category closer in the embedding
space.

4 Analysis 1: Embedding Space
Uniformity

In our first analysis, we take a closer look at how
uniform are representational spaces of AWE mod-
els by analyzing the distribution of cosine similarity
for each model type and the degree to which the
embeddings are isotropic.

4.1 Distribution of Cosine Similarity

One way of analyzing the geometry of represen-
tation spaces in the acoustic domain is by inspect-
ing the similarity distributions of exemplars of the
same lexical category (or word type) versus ran-
domly sampled, cross-category exemplars. We per-
form this analysis on the training samples and de-
pict the result in Fig. 2. We observe that the dif-
ference between the means of the within-category
and those of cross-category distributions is largely
dependent on the strength of the supervision sig-
nal with the randomly initialized encoders (RIE)
having the smallest mean differences for both archi-
tectures. The contrastive encoders have the largest
mean difference–with mean cross-category scores
centered at the zero—which is intuitive given the
explicit supervision signal they receive in grouping
exemplars of the same category closer in the em-
bedding space. One surprising observation is the
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Figure 3: (a). The degree of isotropy of AWE for each
model. (b) Correlation between the word discrimina-
tion performance measured by mAP and isotropy score
(Pearson r = 0.89, p < 0.001).

behavior of the untrained convolutional encoder
which gives cosine similarity scores very close to
1 for each input pair. In appendix C, we demon-
strate that this behavior is mainly caused by the
unbounded activation function (i.e., ReLU) in the
convolutional layers.

4.2 Degree of Isotropy

Although inspecting the cosine similarity distribu-
tions is an insightful analysis, it does not enable us
to make well-informed judgments about the unifor-
mity of the representation spaces. Here, we ask two
questions: (1) do AWE models utilize all dimen-
sions of the vector space to represent the speech
samples and separate the categories? and (2) how
do architecture and learning objective affect the dis-
tributivity of information in the embedding space?
To answer these questions, we inspect the degree
of isotropy in the representation spaces. An embed-
ding space is said to be maximally isotropic if the
variance is uniformly distributed across all dimen-
sions. Prior work in NLP has found that seman-
tic word embeddings tend to be anisotropic since
they only utilize a few dimensions of the vector
space—an effect that has been observed for word
embeddings that are static (Mimno and Thomp-
son, 2017; Mu and Viswanath, 2018) as well as
contextualized (Ethayarajh, 2019; Cai et al., 2020;
Rudman et al., 2022). The degree of isotropy in
acoustic embeddings, however, remains so far un-
known. To inspect the degree of isotropy of the
AWE vector spaces, we use the IsoScore metric
recently proposed by Rudman et al. (2022), which
is—to the best of our knowledge—the only metric
in the literature that is grounded on the mathemati-
cal definition of isotropy. The IsoScore metric oper-
ates on the covariance matrix of the embedding di-
mensions and returns values between 0 (minimally

isotropic) and 1 (maximally isotropic). We quan-
tify the degree of isotropy using IsoScore for each
model type and show the result in Fig. 3(a). We
observe that IsoScore returns values that are within
the range [0.002, 0.095], which indicates that em-
bedding spaces for all models tend towards being
minimally isotropic. However, the embeddings
of untrained, randomly initialized encoders (RIE)
tend to be extremely anisotropic (i.e., IsoScore val-
ues close to 0). This observation suggests that the
anisotropic space does not “emerge” during the
model training but rather that it is an inherent prop-
erty of the encoder architecture. We are not aware
of prior work in NLP that has studied the degree
of isotropy in untrained NLP models to investigate
whether anisotropic spaces are an emergent or in-
herent feature. In our case, training with a learning
objective that encourages the model to separate
word categories moves the representation space
more towards utilizing more dimensions, therefore
resulting in a higher degree of isotropy. Moreover,
recurrent encoders tend to be more isotropic than
their convolutional counterparts within the same
learning objective.

Despite the tendency of all models to be
anisotropic, we find a strong positive correlation be-
tween the degree of isotropy and the performance
on word discrimination—see Fig. 3(b). That is, the
more dimensions the model utilizes in the represen-
tation space, the better it performs on the intrinsic
evaluation task.

5 Analysis 2: Word Discriminability

Ideally, AWE models should project exemplars of
the same word category onto the same point in the
embedding space. However, there are no strong
constraints during training to encourage maximal
separability between different word categories. In
this analysis, we seek to answer two questions:
(1) how well-separated are the word categories of
the training samples? and (2) to what degree do
lexical properties predict the discriminability of
word categories?

5.1 Category Discriminability Index

In order to investigate the geometric density of
each word category in the representation space,
we need to measure within-category compactness
and cross-category separability. Inspired by the
exemplar discriminability index proposed in the
neuroscience literature (Nili et al., 2020), we define
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Figure 4: Averaged Category Discriminability Index
(CDI) for each AWE model with error bars showing
standard deviation over word categories. (b) Correlation
between the word discrimination performance measured
by mAP and averaged CDI (Pearson r = 0.90, p <
0.001).

category discriminability index (CDI) as a metric
that operates on within-category and cross-category
distances. If we consider each lexical category in
the training set as a set of its exemplar embeddings
C = {e1, . . . , e|C|}, CDI is defined for a single
category C as

CDI(C) = 1

|C|
∑

∀ei∈C( ∑

∀ej∼C|j ̸=i

d(ei, ẽj)− d(ei, ej)
)

(5)

where d(., .) is the cosine distance and ej is a
within-category sample while ẽj is an embedding
sampled from a different category. If we normal-
ize the embeddings, CDI ∈ [−1, 1] with values
closer to 1 indicating higher word discriminability.
We compute CDI for each word category in the
training set and take the average over categories to
estimate how well the categories are separated in
the embedding space of each model type. The re-
sult of this analysis is shown in Fig. 4(a). For each
learning objective, we observe that word discrim-
inability is higher in the recurrent encoders com-
pared to their convolutional counterparts. Besides
that, the contrastive objective yields encoders with
a higher word discriminability index regardless of
the architecture type—recurrent vs. convolutional.
Furthermore, we report a strong positive correla-
tion between average CDI and the performance on
the evaluation task—see Fig. 4(b), indicating that
word discrimination performance on future, held-
out samples can be predicted based on the CDI
computed on the training samples.

5.2 Effect of Frequency and Distinctiveness
The CDI quantifies the separability and compact-
ness for each lexical category in the representation
space. Next, we aim to identify the factors that
could make a lexical category compact and well-
separable.

In this analysis, we study the effect of two lexical
properties that could be quantified in a data-driven
approach: word frequency and acoustic distinctive-
ness. Our initial hypothesis is that a word category
with many training exemplars becomes more dis-
criminable in the embedding space as the repeated
exposure to samples of various degrees of variabil-
ity should enable the model to learn compact and
precise representation for categories with high fre-
quency. Also, words that are acoustically distinct
have fewer competitors in the perceptual space,
thus they should be more separable than words with
many phonological neighbours that sound similar.
Therefore, we expect word acoustic distinctiveness
(WAD) to positively correlate with CDI. In this
analysis, we operationalize WAD using two met-
rics: word length (i.e., the number of phonemes)
and phonological distinctiveness. Word length con-
tributes to WAD since word formation in natural
languages is a combinatorial process. That is, in-
creasing the number of phonemes in a word-form
decreases the likelihood of encountering a simi-
larly sounding word-form which makes it less con-
fusable. However, the word formation process is
governed by language-specific phonotactic rules
which makes some sound combinations more prob-
able than others. To capture the probabilistic nature
of sound sequences, we employ phonological in-
formation content (PIC), an information-theoretic
metric that estimates WAD based on its phoneme-
to-phoneme transition probabilities (Meylan and
Griffiths, 2017). Given a word-form as a sequence
of phonemes φ = (φ1, . . . , φτ ), PIC is defined as

PIC(φ) = −
τ∑

i=1

log pθ(φi|φ<i) (6)

where pθ is a probabilistic phoneme-level language
model (PLM). We estimate pθ using a trigram PLM
with the counts of the phonemes in the training
word categories. Higher values of PIC indicate less
probable phoneme sequences thus more distinct
word-forms. Note that PIC is not length normalized
and therefore shorter words tend to have lower PIC.

Next, we conduct a correlation analysis between
word CDI and the three lexical predictors: fre-
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Objective Arch. Frequency Length PIC

AE
CNN -0.081† 0.315† 0.263†
RNN -0.087† 0.357† 0.306†

CAE
CNN 0.021 0.376† 0.274†
RNN 0.077† 0.447† 0.359†

PGE
CNN 0.035 0.039* -0.011
RNN -0.043* 0.325† 0.263†

CSE
CNN 0.131† 0.075† 0.031
RNN 0.109† 0.100† 0.030

Table 1: Pearson correlation (r) between word category
discriminability index (CDI) and three lexical properties:
frequency, length, and phonological information content
(PIC). Statistical significance is marked with * and † for
p < 0.05 and p < 0.001, respectively.

quency, length, and PIC. The result of this analysis
is shown in Table 1. Surprisingly, our correlation
analysis shows that lexical frequency is a poor pre-
dictor of CDI. Although in five out of eight mod-
els the frequency positively correlates with CDI,
the correlation is rather weak. However, measures
of acoustic distinctiveness have a stronger corre-
lation with CDI compared to frequency, and the
strength of the correlation is more noticeable in all
decoding-based models—except the convolutional
PGE—compared to contrastive models. We also
find it surprising that PIC is not a better predictor of
CDI than word length. However, it has been shown
in a related work that autoencoder-based AWEs en-
code duration as an acoustic feature (Matusevych
et al., 2021). Taken together with our findings, this
suggests that the models exploit and rely on acous-
tic word length as a feature to discriminate between
the lexical categories. Arguably, word length is a
more accessible feature to learn from the acoustic
signal compared to structural phonological regular-
ities in the training data.

6 Analysis 3: Network Representational
Consistency

Suppose we train two instances of the same archi-
tecture and learning objective on the same training
samples, but each with different random initial-
izations. Do these two neural network instances
exhibit differences in their representational geome-
tries? In this section, we shed light on the repre-
sentational discrepancies caused by different ini-
tializations. In other words, we are interested in
quantifying the degree to which variability in the
initial conditions affects the way two models sepa-

rate the same set of speech samples.

6.1 Performance Stability

First, we quantify the effect of the initial weights
on the evaluation task performance. To this end,
we train six model instances—in identical setup but
with different initializations—for each architecture
and each learning objective, which yields 48 model
instances in total (6 × 4 RNN runs and 6 × 4 CNN
runs). We evaluate each model instance on the
acoustic word discrimination task while observing
the result variation per model type. The result of
the performance stability analysis is shown in Ta-
ble 2 in Appendix D. We observe that all instances
have converged and the performance is fairly stable
across different runs.

6.2 Representational Discrepancies

Our previous performance stability analysis has
demonstrated that different DNN instances exhibit
only trivial quantitative differences. However, a
stable performance on the evaluation task does
not entail an identical representational geometry
across different instances. That is, two network
instances could have have an identical performance
on the evaluation task while each having a distinct
representational geometry. To closely investigate
representational discrepancies between network in-
stances, we employ the representational consis-
tency (RC) analysis (Mehrer et al., 2020), which
is a neuroscience-inspired technique based on the
representational similarity analysis (RSA) frame-
work (Kriegeskorte et al., 2008). For our analysis,
we operationalize the RC using linear Centered
Kernal Alignment (CKA) as a representational sim-
ilarity measure of two views of the same input sam-
ples (Kornblith et al., 2019). CKA abstracts away
from the embeddings themselves and operates on
pairwise distances between the sample representa-
tions. Concretely, given K spoken-word samples
aK
1 = {a1, . . . ,aK}, we embed the samples using

two encoder instances to obtain two different views
of the samples X ∈ RK×D and Y ∈ RK×D. Then,
each view matrix is multiplied by a centering ma-
trix H = IK−1K/K to make each column’s mean
equal to zero and obtain centered second moment
matrices as

GX = HXX⊤H⊤/D,

GY = HYY⊤H⊤/D
(7)
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Figure 5: Network representational consistency (RC):
(top) recurrent encoders and (bottom) convolutional en-
coders. Values closer to 1 indicates higher RC.

Then, the representational similarity of the two
views is computed using CKA as

CKA(X,Y) =
⟨vec(GX), vec(GY)⟩
||GX||F ||GY||F

(8)

where vec(.) is the vector-reshaped matrix, ⟨., .⟩ is
the inner product, and ||.||F is the Frobenius norm
to ensure that CKA ∈ [0, 1] where values close to 1
indicate that the two instances are highly consistent,
while values close to 0 indicate low consistency.

Using CKA, we conduct pairwise similarity
analysis across all six instances which yields 15
comparisons for each model type. We report the
mean of the resulting CKA values for each model
type in Fig. 5. First, we observe that randomly
initialized encoders (RIE) are highly consistent
for both architectures (mean CKARIE/RNN ≈
mean CKARIE/CNN = 0.98). However, after
training the encoder instances, convolutional net-
works are more consistent than their recurrent coun-
terparts. Note that this behaviour cannot be at-
tributed to a difference in the number of trainable
parameters between the two architectures since
they are comparable. Moreover, all decoding-based
learning objectives return mean CKA values above
0.87, which indicates that their representational
profiles are similar despite some noticeable differ-
ences especially among the recurrent encoders. The
only exception to this trend are model instances
trained with contrastive loss since they are sig-
nificantly less consistent compared to the other
learning objectives (mean CKACSE/RNN = 0.61
and mean CKACSE/CNN = 0.74). We empha-
size that CKA is a second-order isomorphismic
approach that operates on the similarity of the pair-
wise sample similarity matrices across different
views. Therefore, the anisotropic nature of AWEs
reported in §4 cannot explain their similarity-based
representational profiles, and by implication, their
representational consistency.

7 Discussion

Acoustic word embeddings (AWEs) are vector rep-
resentations that encode the sound structure and
acoustic-phonetic features of spoken words. AWEs
are induced from actual acoustic realizations of
speech, and therefore AWE models have to abstract
away from non-linguistic dimensions of variabil-
ity in speech signals (e.g., speaker characteristics,
speech rate, recording conditions, etc). While an-
alyzing the representational geometry of seman-
tic word embeddings is a topic that has received
a substantial attention in the NLP research com-
munity, the interpretability of AWEs remains an
under-explored topic and we are aware of a few
prior studies in this direction (Matusevych et al.,
2020b; Abdullah et al., 2021a,b). In this article,
we made a number contributions in analyzing the
representational geometry of AWEs and obtained
research findings which we discuss and summarize
in this section.

Learning objective affects the geometry more
than architecture. Our three analyses in this pa-
per have shown that the learning objective shapes
the representational geometry of the AWE encoders
more than their underlying architectures. This find-
ing suggests that recurrent and convolutional en-
coders exhibit similar inductive biases while the
learning process is mainly guided by the loss func-
tion.

AWE models tend to be anisotropic. Our anal-
ysis in §4 has shown that AWEs tend towards be-
ing minimally isotropic. However, this behavior
is not an emergent property of the training pro-
cess, but rather an inherent behavior of the neural
network. Moreover, the degree of isotropy after
training the model positively correlates with the
acoustic word discrimination evaluation task. Since
different models have different degree of isotropy
and the representation space is not always uniform,
we conclude that any comparison between differ-
ent models based on absolute distance metrics such
cosine distance will definitely lead to inaccurate
observations.

Word distinctiveness, but not frequency, pre-
dicts category discriminability. While word
acoustic distinctiveness has been found in §5 to
be a good predictor of the degree to which a word
category is compact and well-separated in the em-
bedding space, word frequency does not correlate
with category discriminability. In retrospective,
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this finding should not be surprising as frequent
words tend to have shorter lengths. Shorter words
have more phonological neighbours that are per-
ceptually similar in form and thus they are more
confusable with other words. Future work could
employ more sophisticated linear mixed effects
models to analyse the interaction between different
lexical properties such as frequency, phonological
neighbourhood density, and word length and their
effect on word category discriminability.

AWE models exhibit individual differences. Al-
though AWE model instances trained with different
random initializations are stable with respect to the
performance of the evaluation task, they exhibit
individual differences in their representational pro-
files as shown in §6. However, the degree of the
network representational consistency across differ-
ent initializations depends on both the architecture
and the learning objective. Contrastive objectives
are less consistent than decoding-based objectives,
while recurrent encoder are less consistent than
their convolutional counterparts.

Contrastive models have distinct representa-
tional profiles. In the analyses we presented
in this paper, we observed that the contrastive
encoders behave differently than other encoders
trained with non-contrastive losses. For example,
word distinctiveness has been found to be a weak
predictor of category discriminability in the em-
bedding spaces of the contrastive encoders. Recall
that our contrastive encoders have a stronger con-
straint in grouping exemplars of the same category
closer in the embedding space guided by the mar-
gin hyperparameter, while decoding-based model
lack this constraint. We hypothesize that this con-
straint forces the models to emphasize the separa-
bility of the lexical categories in the embedding
space. Therefore, a stronger constraint seems to
make contrastive encoders different compared to
other learning objectives and different instances of
the same contrastive encoder are less consistent in
their representational geometry.

8 Conclusion

In this paper, we have taken a closer, analytical
look at the representational geometry of acoustic
word embeddings (AWEs) from three different, but
complementary perspectives: (1) embedding space
uniformity, (2) word discriminability, and (3) net-
work representational consistency. We have shown
that the representational spaces of AWEs tend to-

wards being minimally isotropic, or in other words,
they utilize only a few dimensions of the embed-
ding space. Another finding was that most AWE
models rely on word length as a feature to discrim-
inate between lexical categories since the word dis-
criminability index positively correlates with the
number of phonemes in a word. Furthermore, our
representational consistency analysis have shown
that AWE models exhibit individual differences in
their representational profiles, with the contrastive
encoders being the most inconsistent across differ-
ent random initializations.

Even though we focused on acoustic word em-
beddings in this paper, our analytic methodology
can also be employed for the interpretability of self-
supervised speech representation models such as
contrastive predictive coding (Oord et al., 2018)
and wav2vec (Schneider et al., 2019). Also, the
emergent representations of sublexical units such
phonemes and syllables in speech neural networks
can be analyzed using the our proposed methodol-
ogy in this paper.
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Acoustic Word
Embedding

(a) (b) (c)

Figure 6: A visual illustration of the different learning objectives for training AWE encoders: (a) correspondence
auto-encoder (CAE): a sequence-to-sequence network with an acoustic decoder, (b) phonologically guided encoder
(PGE): a sequence-to-sequence network with a phonological decoder, and (c) contrastive siamese encoder (CSE): a
contrastive network trained via triplet margin loss. After training the model, only the encoder component of the
model F is used to produce AWEs.
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Figure 7: Evaluation on the same-different acoustic word discrimination task quantified by the word discrimination
task and the mAP metric: Learning curves of 100 training epochs for (a) the recurrent encoder and (b) convolutional
encoders. (c) mAP of the best epoch.

Appendices

A AWE Models

See Fig. 6 for a visual illustration of the different
learning objectives in our paper.

B Intrinsic Evaluation

The results of the intrinsic evaluation—same-
different word discrimination task quantified by
the mAP metric—is shown in Fig. 7. Note that the
CAE model is pre-trained as autoencoder for 10
epochs, following prior work (Kamper, 2019).

C Randomly Initialized CNN Encoder

To further investigate the minimally isotropic be-
havior and the near 1 values of cosine similari-
ties of the untrained, randomly initialized convo-
lutional encoder reported in §4, we examine the
potential contribution of two factors to this obser-
vation; batch normalization (BN) and the activation

function of the convolutional layers. The result of
this analysis is depicted in Fig. 8. We observe that
removing the BN layer has no effect on the distri-
butions of cosine similarities as they remain almost
identical to the encoder that has a BN layer—see
Fig. 8(b). However, changing the activation func-
tion from the unbounded ReLU to the bounded
Tanh in the convolutional layers makes the distri-
butions of cosine similarities move towards zero
mean, even though they remain closer to 1 than
0. Therefore, this behavior seems to be related to
the inner dynamics of the convolutional operation
and gets amplified where the activation function
in the convolutional layers are unbounded. Nev-
ertheless, identifying the source of this behavior
requires further investigation with different activa-
tion functions and a controlled ablation study.
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Figure 8: Cosine similarity distributions across three
different variants of convolutional encoders: (a) con-
volutional layers with batch normalization and ReLU
non-linearity, (b) convolutional layers with ReLU non-
linearity but without batch normalization, and (3) con-
volutional layers with batch normalization and Tanh
non-linearity.

D Performance Stability across Different
Runs

For the analysis in §6, we have trained six neu-
ral network instances for each encoder type using
the same training samples to investigate the per-
formance stability and representational consistency
of training runs that differ in their random seeds.
A summary statistics for the performance on the
evaluation task measured by the mAP metric is
shown in Table 2. One can observe only trivial
differences on the evaluation tasks. Therefore, we
conclude that the performance of different train-
ing runs is stable and our findings on the network
representational consistency reported in §6 cannot
be explained by quantitative differences, but rather
by representational discrepancies due to disagree-
ment in the geometric arrangement of the speech
samples in the embedding space.

E Qualitative Analysis

To further inspect the representation space and its
neighborhood structure, we conduct a qualitative
analysis by querying the representation space with
a few word samples. In this analysis, we compute
word category centroids by averaging the word em-
beddings of the training samples, then we use a
word centroid as a query and obtain the top-10
ranked nearest neighbors. The result of this analy-
sis is shown in Fig. 3. For the majority of the ex-
amples in Fig. 3, we observe that there is a strong

Objective Arch. mean max min std

AE
CNN 0.137 0.141 0.133 0.0026
RNN 0.183 0.186 0.179 0.0024

CAE
CNN 0.505 0.510 0.500 0.0040
RNN 0.646 0.650 0.643 0.0029

PGE
CNN 0.595 0.599 0.592 0.0033
RNN 0.704 0.710 0.687 0.1000

CSE
CNN 0.676 0.680 0.674 0.0023
RNN 0.742 0.745 0.739 0.0027

Table 2: mAP statistics across six different runs for each
model type.

word onset bias where the most similar words are
those that begin with a similar sounding prefix as
the query word.
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Query (↓) Convolutional Encoders (CNN) Recurrent Encoders (RNN)

AE CAE PGE CSE AE CAE PGE CSE

mentioned

mention mention mention mention mention mention mention mention
wretched mansion mansion mansion wretched mansion mansion mansion
nation motion legends merchant nation merchant merchant merchant
midst merchant management mission merchant motion legends mission
merchants making merchants mental motion nation mountain pinching
motion wilson magic vincent merchants making merchants massive
merchant nation matrons pinching midst vincent mission mental
message midst mission medicine milking nineteen magician transient
regiment missing merchant crouching winter nature motion motion
winter nature magician midst vessel rachel wretched hudson

intellectual

individual introduction intellect intellect individual individual individual introduction
interesting individual individual adjoining interesting introduction intelligence individual
indifferent interrupted introduction recollection neglected uncomfortable introduction immature
newton indifference intelligent delightful petition intelligent intellect objection
institution attraction encouragement individual magician intelligence uncomfortable implacable
departure intellect interrupted employing hokosa interesting intelligent delightful
imitation immature intelligence impetuous compassion invisible interpretation theatrical
hokosa indifferent indifferently employed departure interrupted industrial thoughtful
encountered encouragingly unconditional natural convention imperfectly incapable industrial
neglected implacable impetuous accumulated consulted incredible insensible election

maker

labor naked naked baker labor nature baker liquor
liquor natured liquor naked nature local nature negro
labored nature natured negro walker naked liquor eaten
labour local nature liquor local labour labour baker
wicker labour baker local naked labor labor nature
leaping major major native labour major major labor
lifted labor negro nature rachel natured negro naked
walker native native major liquor baker neighbors newspaper
local making wicker matrons labored liquor vapor mink
nature navy labor vigor leaping negro labors vigour

profession

position procession procession professor position procession procession professor
proceed professor professor sufficient professors possession proportion procession
positions position position procession possessions position perfection perfection
physician possession petition professors proceeded professor possession sufficient
proceeded professors pushing efficiency physician possessions protection proposition
possessed pushing professors efficient condition permission proportions proportion
prison perfection possession petition procession discussion position production
possessions positions physician prevent presumption positions possessions petition
perfect discussion positions position protested commission professor compassion
discussion preferred precious physician proceed physician petition pushing

seized

ceased ceased ceased thieves ceased ceased ceased thieves
freedom season seizing ceased faded feasts thieves ceased
seated thieves season season cities scenes saves fuse
faded saves thieves feast singing thieves seats jesus
singing seems saves seizing scenes saves seems spheres
scenes scenes ceasing feared feeding seems scenes feels
season ceasing seems ceasing season feast seemed cities
cities saints feast saves sweetest saints feast season
field feast seats species seated faced saved seats
seeming sins seemed speed saying seemed seizing scenes

experiments

experiment experiment experiment experiment experiment experiment experiment experiment
experience experienced experience experienced experienced experienced experienced attendants
experienced experience experienced garments experience experience experience extremities
experiences experiences experiences extermination extinguished experiences experiences islands
extinguished extremities expense expense experiences exposed expressions experienced
exchange established embarrassment experience expected extremities extermination prominence
extremities extraordinary expanse aramis exchange expense extremities edmunds
expressions extinguished extraordinary disturbance expressions expanse extremity instruments
extremely extremity extremities examined extremities extinguished expression attendance
extremity expanse expressions vanished extent exclusion expensive commons

Table 3: Top-10 nearest word embedding centroids for a word sample.
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Abstract

We investigate how different domains are en-
coded in modern neural network architectures.
We analyze the relationship between natural
language domains, model size, and the amount
of training data used. The primary analysis
tool we develop is based on subpopulation
analysis with Singular Vector Canonical Cor-
relation Analysis (SVCCA), which we apply
to Transformer-based language models (LMs).
We compare the latent representations of such
a language model at its different layers from
a pair of models: a model trained on multiple
domains (an experimental model) and a model
trained on a single domain (a control model).
Through our method, we find that increasing
the model capacity impacts how domain infor-
mation is stored in upper and lower layers dif-
ferently. In addition, we show that larger exper-
imental models simultaneously embed domain-
specific information as if they were conjoined
control models. These findings are confirmed
qualitatively, demonstrating the validity of our
method.

1 Introduction

Pre-trained language models (PLMs) have become
an essential modeling component for state-of-the-
art natural language processing (NLP) models.
They process text into latent representations in such
a way that allows an NLP practitioner to seamlessly
use these representations for prediction problems
of various degrees of difficulty (Wang et al., 2018,
2019). The opaqueness in obtaining these repre-
sentations has been an important research topic in
the NLP community. PLMs, and more generally,
neural models, are currently studied to understand
their process and behavior in obtaining their latent
representations. These PLMs are often trained on
large datasets, with inputs originating from differ-
ent sources. In this paper, we further develop our
understanding of how neural networks obtain their
latent representation and study the effect of learn-

(a) Experimental model (b) Control model

Figure 1: An example of a visualization used with our
subpopulation analysis tool. The experimental model,
which includes all domain data, separates in its latent
representations words related to the Books domain (▲)
from general words (■). The control model, on the
other hand, mixes them together.

ing from various domains on the characteristics of
the corresponding latent representations.

Texts come from various domains that differ
in their writing styles, authors and topics (Plank,
2016). In this work, we follow a simple defini-
tion of a domain as a corpus of documents shar-
ing a common topic. We rely on a simple tool of
subpopulation analysis to compare and contrast la-
tent representations obtained with and without a
specific domain. Our analysis relies on construct-
ing two types of models: experimental models,
from multi-domain data, and control models, from
single-domain data. Figure 1 describes an exam-
ple in which this analysis is applied to study the
way embeddings for domain-specific words clus-
ter together in the experimental and control model
representations.

We believe training in an implicit multi-domain
setup is widespread and often overlooked. For
example, SQuAD (Rajpurkar et al., 2016), a
widely used question-answering dataset composed
of Wikipedia articles from multiple domains, is of-
ten referred to as a single-domain dataset in domain
adaptation works for simplicity (Hazen et al., 2019;
Shakeri et al., 2020; Yue et al., 2021). This sce-
nario is also common in text summarization, where
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many datasets consist of a bundle of domains for
news articles (Grusky et al., 2018), academic pa-
pers (Cohan et al., 2018; Fonseca et al., 2022), and
do-it-yourself (DIY) guides (Cohen et al., 2021).
While models that learn from multiple domains
are frequently used, their nature and behavior have
hardly been explored.

Our work sheds light on the way state-of-the-art
multi-domain models encode domain-specific in-
formation. We focus on two main aspects highly
relevant for many training procedures: model ca-
pacity and data size. We discover that model ca-
pacity, indicated by the number of its parameters,
strongly impacts the amount of domain-specific
information multi-domain models store. This prop-
erty might explain the performance gains of larger
models (Devlin et al., 2019; Raffel et al., 2020;
Clark et al., 2020; Srivastava et al., 2022). While
this paper focuses on studying the effect of do-
mains on latent representations, the subpopulation
analysis tool could be used for studying other NLP
setups, such as multitask and multimodal learning.1

2 Methodology

For an integer n, we denote by [n] the set
{1, . . . , n}. Our analysis tool assumes a distri-
bution p(X) from which a set of examples X =
{x(i) | i ∈ [n]} is drawn. It also assumes a fam-
ily of binary indicators π1, . . . , πd such that πi(x)
indicates whether the example x satisfies a cer-
tain subpopulation attribute i. For example, in this
paper we focus on domain analysis, so π5 could
indicate if an example belongs to a Books domain.

We denote byX
∣∣
πi

the set {x(j) | πi(x(j)) = 1},
the subset ofX that satisfies attribute i. Unlike stan-
dard diagnostic classifier methods (Belinkov et al.,
2017a,b; Giulianelli et al., 2018), rather than build-
ing a model to predict the attribute, we perform sub-
population analysis by training a set of models: E,
trained from X (the experimental model), and Ci,
trained from X

∣∣
πi

(the control model). We borrow
the terminology of “experimental” and “control”
from experimental design such as in clinical trials
(Hinkelmann and Kempthorne, 2007). The experi-
mental model corresponds to the experimental (or
“treatment” in the case of medical trials) group in
such trials and the control model corresponds to
the control group. Unlike a standard experimental
design, rather than comparing a function (such as

1Our code is available at: https://github.com/
zsquaredz/subpopulation_analysis

squared difference) between the outcomes of the
two groups to calculate a statistic with an underly-
ing distribution, we instead calculate the similar-
ity values between the representations of the two
models. Our analysis is also related to Representa-
tional Similarity Analysis (Dimsdale-Zucker and
Ranganath, 2018), aimed at studying similarities
(across different experimental settings) between
activation levels in brain neurons.

Through their latent representations, the set of
models Ci represent the information that is cap-
tured about p(X) from the relevant subpopulation
of data. By comparing the different models to each
other, we can learn what information is captured in
the latent representations when a subset of the data
is used and whether this information is different
from the one captured when the whole set of data is
used. With a proper control for model size and sub-
population sizes, we can determine the relationship
between the different attributes πi and the corre-
sponding representations in different model com-
ponents. The remaining question now is how do we
compare these representations? Here, we follow
previous work (Saphra and Lopez, 2019; Bau et al.,
2019; Kudugunta et al., 2019), and apply Singular
Vector Canonical Correlation Analysis (SVCCA;
Raghu et al. 2017) to the latent representations of
the experimental and control models.

We assume that each example x(i) is associated
with a latent representation h

(i)
j given by Cj . For

example, this could be the representation in the
embedding layer for the input example, or the
representation in the final pre-output layer. We
define Hj to be a set of latent representations
Hj = {h(k)

j | k ∈ [n]} for model Cj . We de-

fine Hj

∣∣
πi

= {h(k)
j | πi(x(k)) = 1} – the latent

representations of Cj for which attribute i fires.
Similarly, we defineH0 for the model E. We calcu-
late the SVCCA value between subsets ofH0 and
subsets ofHj for j ≥ 1. The procedure of SVCCA
in this case follows:

• Performing Singular Value Decomposition
(SVD) on the matrix forms ofH0 andHj (match-
ing the representations in each through the index
of the example x(i) from which they originate).
We use the lowest number of principal directions
that preserve 99% of the variance in the data to
project the latent representations.

• Performing Canonical Correlation Analysis
(CCA; Hardoon et al. 2004) between the pro-
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jections of the latent representations from the
SVD step, and calculating the average correla-
tion value, denoted by ρ0j .

The SVD step, which may seem redundant, is
actually crucial, as it had been shown that low vari-
ance directions in neural network representations
are primarily noise (Raghu et al., 2017; Frankle and
Carbin, 2019). The intensity of ρ0j indicates the
level of overlap between the latent representations
of each model (Saphra and Lopez, 2019).

In the rest of this paper, we use the tool of sub-
population analysis with E/Ci as above for the case
of domain learning in neural networks. We note
that each time we use this tool, the following deci-
sions need to be made: (a) what training set we use
for each E and Ci; (b) the subset of Hj for j ≥ 0
for which we perform the similarity analysis; (c)
the component in the model from which we take
the latent representations. For (c), the component
can be, for example, a layer. Indeed, for most of
our experiments, we use the first and last layer to
create the latent representation sets, as they stand
in stark contrast to each other in their behavior (see
§ 4). We provide an illustration of our proposed
pipeline in Figure 2. We are particularly interested
in studying the effect of two aspects of learning:
dataset size and model capacity.

The case of domains In this paper, we define
a domain as a corpus of documents with a com-
mon topic. Since a single massive web-crawled
corpus used to pre-train language models usually
contains many domains, we examine to what ex-
tent domain-specific information is encoded in the
pre-trained model learned on this corpus. Such
domain membership is indicated by our attribute
functions πi. For example, we may use π5(x) to
indicate whether x is an input example from the
domain Books. Given this notion of a domain, we
can readily use subpopulation analysis through ex-
perimental and control models to analyze the effect
on neural representations of learning from multiple
domains or a single domain.

3 Experimental Setup

Data We use the Amazon Reviews dataset (Ni
et al., 2019), a dataset that facilitates research
in tasks like sentiment analysis (Zhang et al.,
2020), aspect-based sentiment analysis, and rec-
ommendation systems (Wang et al., 2020). The
reviews in this dataset are explicitly divided into

Experimental

modelTraining set

Control

modelControl


modelControl

modelControl


modelConstrained
training set

Control

model

Experimental

model

Control

model

Test set SVCCA

value

Figure 2: A diagram explaining the analysis we perform.
At the top, during training, we create two sets of models
from constrained datasets (based on different πi) and a
dataset that is not constrained. The result of this training
is two set of models, the experimental model (E) and
control models (Ci). To perform the similarity analysis,
we compute latent representation from a common test
set for both models, and then run SVCCA (bottom).

different product categories that serve as domains,
which makes it a natural testbed for many multi-
domain studies. A noteworthy example of a re-
search field that heavily relies on this dataset is
domain adaptation (Blitzer et al., 2007; Ziser and
Reichart, 2018; Du et al., 2020; Lekhtman et al.,
2021; Long et al., 2022), which is the task of
learning robust models across different domains,
closely related to our research.2 We sort the do-
mains by their review counts and pick the top five,
which results in: Books, Clothing Shoes
and Jewelry, Electronics, Home and
Kitchen, and Movies and TV domains. To
further validate our data quality, we use the 5-core
subset of the data, ensuring that all reviewed items
have at least five reviews authored by reviewers
who wrote at least five reviews.

A representative dataset sample is presented in
Table 1. We consider the different domains within
the Amazon review dataset as lexical domains, i.e.,
domains that share a similar textual structure and
functionality but differ with respect to their vocab-
ulary. For example, we see the review snippet from
the Books domain contains an aspect (“ending”)
for which a negative sentiment is conveyed (“didn’t
have a proper”). Similarly, we find an aspect (“han-

2We use the latest version of the dataset, consisting reviews
from 1996 up to 2019.
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Books: . . . the book didn’t have a proper ending but rather
a rushed attempt to conclude the story and put everyone
away neatly . . .
Clothing: . . . clearly of awful quality, the design and paint
was totally wrong, the mask was short and stumpy as well
as slightly deformed and bent to the left . . .
Home: . . . there are no handles, and the plastic gets too
hot to hold, so you have to awkwardly pour by the top . . .

Table 1: A representative sample of review snippets.

dle”) with a corresponding conveyed sentiment
(“too hot”) for the Home domain. We can see this
shared pattern across all domains, with different
aspects and sentiment terms. We would not expect
this to be the case for other datasets, which might
have different differentiators for domains. For ex-
ample, Amazon reviews and Wikipedia pages on
Books domain may have a similar vocabulary,
however, a review is more likely to convey sen-
timent toward a particular book, and a Wikipedia
article is more likely to focus on describing the
book. Thus, the Amazon Reviews dataset is an
ideal testbed for our analysis.

In addition to the Amazon Reviews dataset, we
experimented on the WikiSum dataset (Cohen et al.,
2021) to further validate our findings. The Wik-
iSum dataset is a coherent paragraph summariza-
tion dataset based on the WikiHow website.3 Wiki-
How consists of do-it-yourself (DIY) guides for the
general public, thus is written using simple English
and ranges over many domains. Similar to Ama-
zon Reviews, we also pick the top five domains for
our experiments: Education, Food, Health,
Home, and Pets. Since the dataset is designed for
summarization, we concatenate the document and
summary together for our MLM task. We present
the results for this dataset at the end of § 4.

Task We study the language modeling task to un-
derstand the nature of multi-domain learning better.
More precisely, we experiment with the masked
language modeling (MLM) task, which randomly
masks some of the tokens from the input, then pre-
dicts the masked word based on the context as the
training objective. We focus on the MLM task as it
is a prevalent pre-training task for many standard
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) that serve as building
blocks for many downstream tasks. Using exam-
ples from a set of pre-defined domains, we train a
BERT model from scratch to fully control our ex-

3https://www.wikihow.com

periment and isolate the effect of different domains.
This is crucial since a pre-trained BERT model is
already trained on multiple domains, hence hard to
drive correct conclusions through our analysis from
such a model. Moreover, recent studies (Magar and
Schwartz, 2022; Brown et al., 2020) showed the
risk of exposure of large language models to test
data in the pre-training phase, also known as data
contamination.

Model We use the BERTBASE (Devlin et al.,
2019) architecture for all of our experiments. We
train two types of models: the experimental model
E, trained on all five domains with the MLM objec-
tive, and the control model Ci for i ∈ [5] trained
on the ith domain. We are particularly interested
in the effect of two aspects on the model represen-
tation: model capacity and data size. We use the
capacity of 100% for BERTBASE size. BERTBASE
has 768-dimensional vectors for each layer, adding
up to a total of 110M parameters. We also experi-
ment with a reduced model capacity of 75%, 50%,
25%, and 10% by reducing the dimension of the
hidden layers. We follow Devlin et al. (2019) de-
sign choices, e.g., 12 layers with 12 attention heads
per layer. We set the base training data size (100%)
for E to be 50K, composed of 10K reviews per
domain. Each Ci is trained on single domain data
containing 10K reviews. E and Ci share all the
examples of domain i. To study the effect of data
size on model representation, we take subsets from
the data split and create smaller datasets: a 10%
split and a 50% split. We also create a 200% split to
simulate the case with abundant data. We provide
additional details about our training procedure in
Appendix A.

4 Experiments and Results

Our research questions (RQs) examine how
domain-specific information is encoded in E by
calculating its SVCCA score with Ci for a specific
i. For a given domain, we use a held-out test set
for getting the experimental and control model rep-
resentations as an input for the SVCCA method.
Intuitively, a high SVCCA score between E and
Ci indicates E stores domain-specific information
for domain i, as Ci was train solely on data from
domain i. A low SVCCA score between E and
Ci could mean one of two things: a) E can gen-
eralize to data from di without explicitly storing
domain-specific information about it, or b) E can
not store information about Ci, as a result of, for
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Figure 3: The SVCCA scores between E and different Cis for different data sizes and model capacities. We only
display for three domains here, and we provide the rest in Appendix B.2. The top row presents the results for the
embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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Figure 4: Training dynamics for all layers between E
and CBooks. Here both model and data size are 100%.

example, lack of model capacity. The way to distin-
guish between the two is subjective and depends on
whether one finds E performance when applied to
data from di to be satisfactory. This paper analyzes
how information is stored at the model layers. As
we inspect highly complex models consisting of
multiple layers, it is challenging to determine to
what extent a certain layer contributes to a model’s
overall performance. For those reasons, when com-
paring equivalent layers of different models, we
focus on the amount of domain-specific informa-
tion encoded in E for a given layer. With these
preliminaries in mind, we are now ready to ask the

following research questions:

RQ1: How does the similarity between the corre-
sponding layers in E and C evolve over training?
We perform an iterative comparison between the
E and Ci for each i ∈ [5]. After each epoch, we
calculate the SVCCA score between corresponding
layers of the models, i.e., layer j of E is compared
to layer j of Ci. As E is trained on more data points
than Ci, and both use the same batch size, for any
given epoch, E had more weights’ updates than
Ci. More precisely, after the kth epoch, Ci and E
had completed k passes on data points from di, but
E used additional data points from the rest of the
domains. We choose this alignment to examine the
effect of the additional training data drawn from
other domains.

Figure 4 presents the training dynamics analysis
for the Books domain (we denote the Books con-
trol model as CBooks). We include training dynam-
ics analyses of other control models and domains in
Appendix B.1, as they demonstrate similar trends.
Since both CBooks and E are initialized with the
same weights, the initial SVCCA score is 1 for all
layers before training. We observe that as train-
ing progresses, the SVCCA values of higher layers
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(closer to the output) consistently become lower
compared to the first layer. The order of SVCCA
values is almost perfectly preserved with respect to
the order of the layers in the network. The separa-
tion is higher for lower layers, with higher layers
receiving similar SVCCA values. This is evidence
that E stores more domain-specific information in
lower layers than in deeper layers throughout the
training procedure. Singh et al. (2019), who re-
searched the nature of multilingual models, ob-
served a similar pattern of dissimilarity in deeper
layers for multilingual model representations of
parallel sentences in different languages.

The alignment between the similarity of the layer
pairs (E and C) and their depth also exists for mod-
els with random weights. It can be partially at-
tributed to the mathematical artifact of decreasing
correlation values for layers that are deeper be-
cause of the use of nonlinear activation units. To
see to what extent this artifact plays a role in this
alignment, we created ten models with random
weights (no training, so there is no longer an exper-
imental/control distinction) and calculated SVCCA
between all 45 pairs for the first and last layers.
We discovered that the mean difference between
SVCCA scores of the first layer comparison and
the last layer comparison is 0.139 (with a standard
deviation of 0.001 over 45 pairs). In Figure 4, the
difference is much larger when comparing the con-
trol model to the experimental model (0.428), in-
dicating that the difference in layer SVCCA score
cannot be only attributed to the mathematical arti-
fact of increasing depth with more nonlinear activa-
tion. We still note that one should exercise caution
when using linear methods, such as SVCCA, to
analyze nonlinear processes.

The observed training dynamics motivates us to
focus on the embedding layer (ℓ0) and final layer
(ℓ12) for the rest of our analysis, as they serve as
a lower bound (ℓ0) and an upper bound (ℓ12) with
respect to the SVCCA scores of Ci and E through-
out the training process. In addition, those layers
have interesting attributes that we would like to ex-
plore. ℓ0, a non-contextualized word embeddings
layer, is known for encoding mainly lexical infor-
mation (de Vries et al., 2020; Vulić et al., 2020).
The highly contextualized ℓ12 is fed directly to the
masked word classifier, thus playing a significant
role in the MLM task. Our interest in the fully-
trained models leads us to the following question:

RQ2: How do data size and model capacity af-
fect domain encoding in ℓ0 and ℓ12? To answer
this question, we measure the SVCCA score be-
tween variants of E and their corresponding Ci for
different domains. The variants differ with respect
to two parameters, data size and model capacity.

Figure 3 presents our results. We observe train-
ing the model on larger datasets decreases the
SVCCA scores across all model capacities and do-
mains for both ℓ0 and ℓ12. For each data point we
add to the control model, we add d data points to
the general model, where d− 1 out of them belong
to other domains. This means while we keep a
constant ratio between the number of datapoints
for the domains, the absolute gap between a given
domain and the rest of the domains is growing for
larger data sizes. This might explain why adding
more data points increase E and C divergence.

A possible explanation for these trends might
be how we define domains. The Amazon reviews
dataset is divided by product categories which can
be seen as lexical domains (see § 3). More pre-
cisely, all the domains share a similar structure and
writing style of Amazon product reviews. The dif-
ferences lie in the vocabulary of each domain. We
hypothesize that the E uses the increased capac-
ity to keep more domain-specific information in ℓ0,
where the lexical information is kept and diverges
from C in ℓ12, where the highly contextualized rep-
resentations are stored. As we hypothesize that our
domains differ mostly with respect to their vocabu-
laries, we refine the mentioned above experiment
by raising the following research question:

RQ3: To what extent does E encode domain-
specific information for domain-specific words?
To shed light on the domains’ lexical nature, we
inspect the patterns of domain-specific and general
words. Domain-specific words need to appear with
at least 20 reviews in the domain in hand and no
more than 10 reviews in total for the rest of the
other domains. General words must appear in at
least 20 reviews in each domain. Those definitions
are often used in domain adaptation works to de-
scribe domain discrepancy and find adaptable fea-
tures (Blitzer et al., 2007; Ziser and Reichart, 2017).
We provide some examples of domain-specific and
general words in Appendix B.3. It is noteworthy
that the union of the domain-specific and general
words is not the complete vocabulary. To calculate
the SVCCA scores for a subset of words, we first
apply SVD to all inputs. Then we use the corre-

197



10% 50% 100% 200%
Data size

10%

25%

50%

75%

100%

M
od

el
 s

iz
e

0.8 0.75 0.65 0.53

0.85 0.66 0.61 0.61

0.89 0.72 0.67 0.62

0.9 0.82 0.77 0.7

0.92 0.87 0.83 0.77

0.0

0.2

0.4

0.6

0.8

1.0

S
V

C
C

A sim
ilarity

(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 5: The SVCCA score between E and CBooks for different subsets of tokens. The top row presents the results
for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.

sponding representations of the subset tokens to
calculate the CCA similarity.

Figure 5 presents our results for the Books do-
main.4 We present the Books domain analysis
for all the words taken from RQ2 for reference
(on the left-hand side of the figure). We observe
high SVCCA scores for domain-specific words for
ℓ12. For large data sizes (100% and 200%), the
trends of domain-specific words are opposite to the
ones of RQ2, i.e., E uses the additional capacity
to encode more domain-specific information. This
indicates that as model capacity increases, E can
capture similar information to CBooks for domain-
specific words. This justifies the construction of
large language models, mixing multiple subpopu-
lations, as it demonstrates that if the E model has
large enough capacity, it separately creates rep-
resentations for the different subpopulations that
are similar to Ci model, which is a specialized
model for a given domain. Domain-specific words
and their representations are crucial for the success
of many NLP tasks, for example, Named Entity
Recognition (Rocktäschel et al., 2013; Shang et al.,
2018; Gu et al., 2021). We can see that the SVCCA
scores for all the words and general words are al-

4The rest of the domains exhibit similar patterns. We
provide all results in Appendix B.4

most identical. These findings make us suspect that
word frequency and domain specificity are strongly
connected. Indeed, we find out that the average
frequency for Books domain-specific words is 75
with a median of 43. For general words, the average
is 7696, and the median is 1440, making general
words the main factor in the SVCCA scores for all
words.

Finally, we would like to ensure the patterns we
observe throughout this paper affect the behavior
of the model:

RQ4: Do the observed trends manifest in the
models’ behavior? We conducted two qualita-
tive analyses to understand better if the models’ be-
havior expresses our findings. For the first analysis,
we compare MLM predictions of E and C to check
whether higher SVCCA values are associated with
similar word predictions. For ℓ0, we calculate the
k-nearest neighbors of the word embeddings for a
given word as a proxy to make predictions. For ℓ12,
we follow the standard procedure by feeding the
last layer representation to the final MLM classifier
in BERT. Table 2 presents our analyses. We can
see that for ℓ0, as we increase the model capacity,
we get more similar predictions for both domain-
specific and general words. This finding agrees
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m=50% m=100%
E Ci E Ci

blackberry proxy linux mac
linux linux mac linux

biologist peer blackberry computers
viking windows vista windows

samsung servers xp xp

(a) 5-nearest neighbors for the domain-specific word Mac-
intosh with i=Electronics.

m=50% m=100%
E Ci E Ci

functioning riding functioning functioning
work running work repair

worked work worked work
playing walking looking riding

responding cleaning works looking

(b) 5-nearest neighbors for the general word working with
i=Home and Kitchen.

m=50% m=100%
E Ci E Ci

networks connections routers router
phones networks products networks
devices ports systems connections

problems computers mice computers
models cables connections products

(c) Other wired and wireless [MASK] I had never had
this problem. The masked word is a domain-specific word
routers with i=Electronics.

m=50% m=100%
E Ci E Ci

away apart apart aside
apart off flat apart
aside away short down

downhill downhill out back
asleep asleep off along

(d) Sadly, those hopes began to fall [MASK] shortly after I
finished the Prologue. The masked word is a general word
apart with i=Books.

Table 2: (a) and (b) are the 5-nearest neighbors using the embedding layer weights. (c) and (d) are model predictions
using last layer representations. m denotes model capacity. All models here use a data size of 100%.

with the trend in Figure 3 that higher model capac-
ity is associated with higher SVCCA similarity for
ℓ0. For ℓ12, we can see that as model capacity in-
creases, predictions for the general word becomes
inconsistent, whereas, for domain-specific words,
it is the opposite. This finding also agrees with
our findings in RQ2 and RQ3, in which we ob-
serve the ℓ12 SVCCA values are decreasing for
general words as we increase the model capacity
and decrease for domain-specific words. We pro-
vide additional examples in Appendix B.5.

For the second analysis, we employ principal
component analysis (PCA) to reduce the dimension
of general and domain-specific representations for
ℓ0 and ℓ12 for both E and CBooks. We provide visu-
alizations in Figure 6. We can see that as model ca-
pacity increases, ℓ0 representations of both general
and domain-specific words from E and CBooks are
aligned to a similar subspace. Additionally, ℓ12 rep-
resentations of general words and domain-specific
words for both models exhibit opposite behavior:
domain-specific words are more aligned with in-
creasing model capacity while general words start
to detach. All of these agree with our findings in
corresponding SVCCA scores trends in Figure 5.
Even though we did not explicitly examine the re-
lations between general and specific words in our
work, we can observe that general and domain-
specific word representations form different clus-
ters in both models. Those clusters are more sep-
arated in ℓ0 than in ℓ12, suggesting that models
use their increased capacity to keep more domain-

specific information in ℓ0.

WikiSum results Due to the lack of computa-
tional resources required, we only validate our
main findings, namely, RQ2 and RQ3, using Wik-
iSum. We present the results in Appendix B.6.
We choose Health domain as it is the largest do-
main of this dataset. We observe that the trend in
SVCCA scores across different scenarios on Wik-
iSum is generally the same as those on Amazon
Reviews, demonstrating that our findings are con-
sistent.

5 Related Work

Analyzing neural representations Raghu et al.
(2017) proposed SVCCA for comparing representa-
tions for the same data points from different layers
and networks invariant to an affine transform. They
also discovered that lower layers in a multi-layer
neural network converge more quickly to their final
representations in contrast to higher layers. Build-
ing off of SVCCA, Morcos et al. (2018) devel-
oped projection weighted CCA (PWCCA) using
an aggregation technique. Using the SVCCA tool,
Saphra and Lopez (2019) studied the learning dy-
namics of neural language models by probing the
evolution of syntactic, semantic, and topic repre-
sentations across time and models. Kudugunta et al.
(2019) used SVCCA to understand massively mul-
tilingual neural machine translation representations
over 100 languages. Their major findings are that
encoder representations of different languages form
clusters based on their linguistic similarities.
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(a) ℓ0: m=10% (b) ℓ0: m=50% (c) ℓ0: m=100%

(d) ℓ12: m=10% (e) ℓ12: m=50% (f) ℓ12: m=100%

Figure 6: Visualization for ℓ0 and ℓ12 representations for E and CBooks. We use colors (blue/cyan for E and
red/magenta for CBooks) to separate representations for generals and domain-specific words. m denotes model
capacity. All models here use a data size of 100%.

Diagnostic Classifiers Another prominent tool
for analyzing learned representations is diagnos-
tic classifiers (DCs; Belinkov et al., 2017a,b; Giu-
lianelli et al., 2018). DCs measure the amount of
information encoded in representations about a par-
ticular task by using them as input to a classifier,
which is trained on the task in a supervised manner.
DC users assume that the higher their performance
for this task, the more task-specific information
is encoded in the representations. While widely
adopted, DCs have several pitfalls. For example,
Zhang and Bowman (2018) showed that learning
a classifier on top of random embeddings is of-
ten competitive and, in some cases, even better
than doing so with representations taken from a
pre-trained model when trained on enough data.
Saphra and Lopez (2019) demonstrated that, unlike
SVCCA, DCs showed a stable correlation between
language models and target labels throughout train-
ing epochs, in contrast to the language models’
immense improvement over time.

6 Conclusions and Future Work

We present a novel methodology based on subpop-
ulation analysis which helps understand how sub-
domains are represented in a multi-domain model.
Our findings show that neural models encode do-
main information differently in lower and upper
layers and that larger models (in our case, E) tend

to “preserve a copy” of small, more specialized
models (C). Generally, we observe rapid model
improvements in NLP tasks when model capac-
ity and dataset size, the two dimensions we study,
increase. We encourage the research community
to study the cause for these improvements from
a multi-domain angle (i.e., the ability to encode
specific information about many domains at once
using the increased capacity). In future work, we
would like to apply our methodology to examine
the behavior of multilingual, multitask, and multi-
modal models.
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Limitations

Throughout this work, we use the BERTBASE
model. While it is widely adopted in the NLP
community, there are other more advanced mod-
els (such as BERTLARGE, RoBERTa and GPT3)
that we do not experiment with due to a lack of
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resources. Given that the differences between mod-
els of the BERT family are mostly irrelevant to the
way we conduct our experiments, we believe our
results would generalize, at the very least, to this
family of models.

In addition, we do not experiment with a large
amount of training data for two reasons: a) We
want to control for the domains from which we
draw examples, and those have a size limitation,
and b) Training many models on a large dataset
is computationally expensive. Our multi-domain
setup is comprised of five domains. We believe a
higher number of domains should be considered
for real-world scenarios.

To control our experiments, we train all models
from scratch. For real-world scenarios, it would
be harder to divide the training data into homoge-
neous and natural domains. While our proposed
methodology can be easily adapted to different sim-
ilarity measurement methods, we focus on SVCCA,
which restricts us to linear correlations. In future
work, we plan to investigate the nature of domains
using non-linear techniques.

We identify domains through a common topic,
and as a result, the shared lexical choices within
the domain. This is the most common case for
classifying domains, but we acknowledge that there
are additional valuable ways to define domains.
For example, domains could be separated based on
writing style while still having a significant shared
vocabulary (Amazon book reviews and Wikipedia
articles about books).
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A Additional Details for Experiments

Here we provide some additional details for our
experiments.

Training We set the validation data size for E to
be 10K, which is composed of 2K reviews from
each domain. For validation set of each Ci, we use
the same 2K reviews used for E from each domain.
For consistency, we use the same validation set for
all data sizes. We use a test set with 2.5K reviews
for each domain. The same test set is fed to both E
and Ci across all model capacities and data sizes to
obtain representations for subpopulation analysis.
When it is clear from the context which Ci for i ∈
[5] we are referring to (and under which training
regime), we will use the simplification C.

All models use the validation set cross-entropy
loss to perform early stopping, and we train a model
for a maximum of 500 epochs. We provide the
validation loss (cross-entropy) for the E model in
Table 3. From the results, we can see that for fixed
data size, model performance saturates when reach-
ing model capacity of 100%. Thus, unlike data
size, we do not perform further experiments with
model capacity larger than 100%.

10%d 50%d 100%d 200%d
10%m 6.052 5.541 4.788 3.886
25%m 5.764 3.257 2.745 2.354
50%m 4.366 2.758 2.451 2.144
75%m 4.017 2.781 2.435 2.149
100%m 4.012 2.786 2.436 2.16

Table 3: Validation cross-entropy loss on the experimen-
tal model for different model capacities and data sizes
where m refers to model capacity and d refers to data
size used to train the model.
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Figure 7: Training dynamics for all layers between E
and CClothing . Here both model and data size are 100%.
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Figure 8: Training dynamics for all layers between E
and CElectronics. Here both model and data size are
100%.
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Figure 9: Training dynamics for all layers between E
and CHome. Here both model and data size are 100%.

All models are trained on 4 NVIDIA A100 GPUs
with a batch size of 32 per GPU. We use PyTorch
(Paszke et al., 2019) and the HuggingFace library
(Wolf et al., 2020) for all model implementation.

B Additional Details for Results

B.1 Additional Results for RQ1

We provide additional experimental results for
training dynamics on Clothing Shoes and
Jewelry (Figure 7), Electronics (Figure 8),
Home and Kitchen (Figure 9), and Movies
and TV (Figure 10).

B.2 Additional Results for RQ2

In § 4, we provided SVCCA results between E and
different Cis for three domains. Here we present
the results for the rest of the two domains in Fig-
ure 13a, 13d, 14a, and 14d.

B.3 Example of General and Domain-specific
Words

We provide a sample of general words and domain
specific words for each domain in Table 4. Note
that list of general words are domain independent,
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Figure 10: Training dynamics for all layers between E
and CMovies. Here both model and data size are 100%.

i.e., the general word list is the same for all do-
mains.

B.4 Additional Results for RQ3
Here we present additional results for SVCCA
score between E and Ci for different subsets of to-
kens. Figure 11 illustrates for CClothing, Figure 12
illustrates for CElectronics, Figure 13 illustrates for
CHome, and Figure 14 illustrates for CMovies.

B.5 Additional Results for RQ4
Here we provide more example MLM predictions
of E and Ci. Table 5 presents predictions using k-
nearest neighbors of the word embeddings. Table 6
presents predictions using the final layer represen-
tation.

B.6 Additional Results on WikiSum
Here we provide additional results on WikiSum
Health domain in Figure 15, including SVCCA
results between E and CHealth, as well as results
for different subsets of tokens.
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General words: totally, preference, cost, mistake, hello, noticeable, play, factor, common,
friend, previously, upon, explain, future, everyone
Books: gutenberg, appendix, autobiographical, grammatically, bookshelves, democrat,
asides, arabic, stagnant, curriculum, minutiae, gripped, publishers, referencing, socialism
Clothing: marten, docker, florsheim, rockports, skechers, buckles, 38d, fleece, nylons,
insoles, tees, pantyhose, puckered, slippers, footwear
Electronics: printable, wifi, 105mm, aux, energizer, recordable, directories, reinstall, gigabit,
reboots, portability, vga, hitachi, configurations, wirelessly
Home: cupcakes, kitchenaid, undercooked, ikea, chopper, mugs, steamers, juices, fiesta,
kettles, aroma, toasted, rinsed ovens, airtight
Movie: scenic, 16x9, nightclub, cheesiest, filmakers, supernova, serials, weepy, purists,
incarnations, lionsgate, reportedly, suggestive, 1931, choreography

Table 4: A representative sample of general words (top row) and domain specific words (bottom rows) taken from
different categories (domains) of the dataset.

m=50% m=100%
E Ci E Ci

editors volumns editors editors
publisher buyer publisher publisher

heirs listing editor editor
libraries edit writers authors

universities hardcover authors reviewers

(a) 5-nearest neighbors for the domain-specific word pub-
lishers with i=Books.

m=50% m=100%
E Ci E Ci

towards towards towards towards
beside settled against at

surrounding at onto onto
beneath concerning at against
against behind beside near

(b) 5-nearest neighbors for the general word toward with
i=Books.

m=50% m=100%
E Ci E Ci

comics jokes comics comics
jokes joke comedian joke

comedian accolades laughs comedian
directors critics comedies critics

commentators reviewers jokes laughs

(c) 5-nearest neighbors for the domain-specific word co-
medians with i=Movies and TV.

m=50% m=100%
E Ci E Ci

print vinyl plastic plastic
plastic bonded print vinyl
cloth plastic materials cardboard

cardboard junk paperback print
printed cardboard cardboard tissue

(d) 5-nearest neighbors for the general word paper with
i=Clothing Shoes and Jewelry.

Table 5: Example predictions of E and Ci using 5-nearest neighbors from embedding layer weights. m denotes
model capacity. All models here use data size of 100%.
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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Figure 11: The SVCCA score between E and CClothing for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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Figure 12: The SVCCA score between E and CElectronics for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 13: The SVCCA score between E and CHome for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 14: The SVCCA score between E and CMovies for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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m=50% m=100%
E Ci E Ci

food counter bottle counter
counter hands refrigerator bottle

wine oil wine hands
oil food food sink

salad salad fridge stove

(a) I realize the point of my purchase was to reduce the
amount of olive oil I sprayed on my [MASK] but I do
end up having to pump it up and mist twice. The masked
word is a domain-specific word salad with i=Home and
Kitchen.

m=50% m=100%
E Ci E Ci

guy guy girl guy
musician woman guy woman

dude man killer hero
kid kid gal cop

vampire person dude man

(b) There had to be the four friends-a hypochondriac, a
smoothing-talking [MASK] who gets everyone in trouble,
the joker’s friend who’s a bit of a ham but has slightly
more brains, and a girl. The masked word is a domain-
specific word joker with i=Movies and TV.

m=50% m=100%
E Ci E Ci

say have worry worry
think say complain say

complain know wonder know
know care know think
worry understand say complain

(c) Amazon replaced it with no hassle, but I always have to
[MASK] about these drives. The masked word is a general
word worry with i=Electronics.

m=50% m=100%
E Ci E Ci

instructed expected suggested suggested
suggested instructed stated instructed

well stated instructed expected
usual advertised advertised well

indicated normal well stated

(d) I ordered a half size down as [MASK] and the size 11
eclipses my foot. The masked word is a general word sug-
gested with i=Clothing Shoes and Jewelry.

Table 6: Example MLM predictions of E and Ci using last layer representation. m denotes model capacity. All
models here use a data size of 100%.
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(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 15: The SVCCA score between E and CHealth for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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Abstract

Interpretable entity representations (IERs) are
sparse embeddings that are “human-readable”
in that dimensions correspond to fine-grained
entity types and values are predicted probabil-
ities that a given entity is of the correspond-
ing type. These methods perform well in zero-
shot and low supervision settings. Compared
to standard dense neural embeddings, such in-
terpretable representations may permit analysis
and debugging. However, while fine-tuning
sparse, interpretable representations improves
accuracy on downstream tasks, it destroys the
semantics of the dimensions which were en-
forced in pre-training. Can we maintain the
interpretable semantics afforded by IERs while
improving predictive performance on down-
stream tasks? Toward this end, we propose
Intermediate enTity-based Sparse Interpretable
Representation Learning (ItsIRL). ItsIRL re-
alizes improved performance over prior IERs
on biomedical tasks, while maintaining “inter-
pretability” generally and their ability to sup-
port model debugging specifically. The latter is
enabled in part by the ability to perform “coun-
terfactual” fine-grained entity type manipula-
tion, which we explore in this work. Finally, we
propose a method to construct entity type based
class prototypes for revealing global semantic
properties of classes learned by our model.1

1 Introduction

Deep pre-trained models yield SOTA performance
on a range of NLP tasks, but do so by learning and
exploiting dense continuous representations of in-
puts which complicate model interpretation. That
is, the dimensions in learned representations have
no a priori semantics, and consequently are not
directly human readable. Indeed, this has inspired
an entire line of work on “probing” dense repre-
sentations to recover the implicit knowledge stored

∗* Work completed during PhD at UT Austin
1Code for pre-training and experiments available at

https://github.com/diegoolano/itsirl

within them (Petroni et al., 2019; Poerner et al.,
2019).

An alternative is to design architectures that ex-
plicitly imbue embeddings with semantics. To
this end, recent work has proposed learning high-
dimensional sparse interpretable entity representa-
tions (IERs) for general and biomedical domains
(Onoe and Durrett, 2020; Garcia-Olano et al.,
2021). IERs are composed of a Transformer-
based (Vaswani et al., 2017) entity typing model
with a corresponding fine-grained static type sys-
tem that accepts an entity mention and its context,
and outputs individual probabilities that the men-
tion is an instance of the respective types. These
embeddings may then be used as features for down-
stream tasks.

IERs afford a variety of model transparency (di-
mensions have semantics) which may facilitate
model debugging and/or instill confidence in model
outputs. For example, if one defines a linear layer
on top of entity-type representations, learned coef-
ficients are interpretable as weights assigned to spe-
cific entity types. One could learn rules or manually
debug models by reviewing incorrect predictions
and inspecting the corresponding induced represen-
tations to identify potentially systematic erroneous
type assignments. In addition to providing this
type of interpretability, IERs have been shown to
perform comparatively well in zero- and few-shot
settings (Onoe and Durrett, 2020; Garcia-Olano
et al., 2021).

A limitation of IERs is that they do not naturally
permit fine-tuning, because doing so destroys the
semantically meaningful entity typing representa-
tions learned during pre-training. This requirement
is a limitation because fine-tuned models will in
general achieve stronger predictive performance
when supervision is available.

In this work we aim to improve the predictive
performance of IERs without sacrificing their inter-
pretability. Specifically, we propose Intermediate
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enTity-based Sparse Interpretable Representation
Learning (ItsIRL). We show that this model out-
performs prior IERs by a substantial margin on
experiments over biomedical datasets — a domain
where interpretability is often paramount — while
providing natural mechanisms for model debug-
ging by virtue of the representational semantics
inherent to the architecture.

We then propose a counterfactual analysis of
our intermediate interpretable layer to measure the
effect of entity type manipulation on downstream
predictions. This intervention is made possible by
virtue of the model design. Using manually con-
structed, class-specific entity type sets we show
that this intervention can be used to fix errors made
by the proposed ItsIRL model automatically, ul-
timately allowing the model to outperform dense
(uninterpretable) models in terms of test accuracy.
We then propose a method in which we combine
entity types over classes on training data to create
positive and negative class prototypes that can be
used to better understand the “global” semantics
learned by ItsIRL for downstream tasks.

Our specific contributions are as follows:

• We introduce an intermediate interpretable
layer into IERs; this layer output (represen-
tation) is then “decoded” into a dense layer
which can be used for downstream predictions.
The decoding step can be fine-tuned for spe-
cific tasks.

• We show that this approach empirically out-
performs prior IER methods on two diverse
biomedical benchmark tasks, often by a sub-
stantial margin.

• We propose a counterfactual entity type ma-
nipulation analysis made possible by our ar-
chitecture which facilitates model debugging
in an automated fashion with minimal, noisy
supervision. This analysis allows our model
to outperform dense (uninterpretable) models
in terms of test accuracy and shows that the en-
tity typing layer affects output classifications
in an interpretable and intuitive way.

• We show how combining entity types over
classes on the training set to create positive
and negative class prototypes can be used to
reveal task specific global semantics learned
by our model.

2 Background: Interpretable Entity
Representations Model

We first review the IER model architecture. Much
of the material and notation here comes directly
from (Onoe and Durrett, 2020; Garcia-Olano et al.,
2021). Let s = (w1, ..., wN ) denote a sequence of
input context words, m = (wi, ..., wj) denote an
entity mention span in s (over positions i through
j), and t ∈ [0, 1]|T | denote a vector whose val-
ues are predicted probabilities corresponding to
fine-grained entity types T from a predefined type
system.

Given a labeled dataset D =
{(m, s, t∗)(1), ..., (m, s, t∗)(k)} the IERs’ ob-
jective is to estimate parameters θ of a function
fθ that maps the mention m and its context s to a
vector t that captures salient features (fine-grain
types) of the entity mention within its context. The
entity embedding t whose individual dimensions
have explicit semantics can then be used directly
as input for downstream tasks using standard
similarity measures (e.g., dot products). Note that
fine-tuning these representations would destroy
their interpretability because dimensions would no
longer be readable as the probability of the input
representing specific entity types.

The model fθ that produces these embeddings
is depicted as the “encoder" in Figure 1. First, a
BERT-based encoder (Devlin et al., 2019) maps
inputs m and s to an intermediate dense vector
representation. The encoder input is a token se-
quence x = [CLS] m [SEP] s [SEP], where
the mention m and context s are segmented into
WordPiece tokens (Wu et al., 2016). The vector out-
put [CLS] token serves as a d-dimensional dense
mention and context representation: h[CLS] =
BERTENCODER(x) ∈ Rd.

The key ingredient of IERs is a type embedding
layer, which projects this intermediate representa-
tion to a vector whose dimensions correspond to
the entity types in T using a single linear layer
with parameters E ∈ R|T |×d. Finally, each dimen-
sion (individually) is passed through the sigmoid
function, yielding the predicted probabilities that
form the interpretable entity representation t (the
“intermediate layer” in Figure 1). More concisely:
t = σ (E · h[CLS]). To estimate parameters we
optimize the sum of binary cross-entropy losses
entity types T over training examples D.
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Figure 1: ItsIRL uses a LM and type supervision during pre-training to encode entity mention and context inputs for
learning a matrix of entity type embeddings, an intermediate interpretable layer of type scores and a decoder to
reconstruct the initial LM representation. The decoder can be fine-tuned on downstream tasks for better performance
than IERs while keeping the semantics of the type layer.

3 Intermediate Entity-based Sparse
Interpretable Representation Learning

We modify the IER model just described as follows:

• We project down the sparse entity typing layer
and add pass its output through a three layer
feed forward “decoder” network.

• We add an additional reconstruction compo-
nent to our loss which is simply the mean
squared error between the model’s output and
the initial [CLS] representation given by the
Transformer based model.

This proposed model architecture — which we
have called ItsIRL — is depicted in Figure 1. Dur-
ing pre-training, we adopt a loss L that combines
entity typing loss over the sparse intermediate in-
terpretable layer Let and the reconstruction loss of
the output representation Lrecon

L = Lrecon + λLet

where λ is a hyperparameter to be tuned.
The motivation behind the additional reconstruc-

tion loss is to pre-train a sort of auto-encoder with a
sparse, high dimensional, interpretable latent space
and rich dense output representations. Here the
encoder induces a sparse embedding of entity types
as in prior work on IERs, but now for downstream
tasks we can freeze the encoder (which yields in-
terpretable entity representations) and fine-tune the
decoder. That hope is that this allows for both

interpretable entity types and improved task perfor-
mance.

In contrast to prior IER work in which sparse
entity type representations were used directly for
downstream tasks, here we pass the intermediate
interpretable representation into a feed forward de-
coder network that produces a new representation
which is used for prediction. This choice leads to
differences in interpretability between IERs and
our proposed architecture. We explore this in Sec-
tion 5, along with how these intermediate predicted
entity types affect task performance and how user
or automated mechanisms to manipulate (i.e., up
or down weight) these intermediate types affects
performance.

This approach in some ways resembles con-
cept bottleneck models (Koh et al. 2020; Chen
et al. 2020; reviewed further in Section 6). How-
ever, these methods generally use low dimensional,
human-labeled concept supervision to guide learn-
ing for a single task. By contrast, in our approach
we exploit large-scale, possibly noisy entity type
supervision to learn to induce interpretable repre-
sentations which might be useful across tasks, i.e.,
for general pre-training.

We could pre-train such models in a few ways:
(i) Train them end-to-end, or, (ii) Use existing IER
models as points of initialization. In the latter case,
we freeze the IER model originally trained using
only Let and train/update the rest of the model
weights using only Lrecon as the loss on our pre-
training data.

For our experiments we use the publicly avail-
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able biomedical IER model checkpoint, entity type
system, and pre-training data from (Garcia-Olano
et al., 2021). The model checkpoint is based on an
underlying PubMedBERT model (Gu et al., 2020).
The type system contains 68,304 entity types and
the training data consists of 37,357,141 triples
of the form (mention, context, [list of
entity types]) derived from PubMed linked
Wikipedia pages where entity types are Wikipedia
categories.

4 Experimental Setup

We evaluate the proposed ItsIRL architecture on
two biomedical benchmark tasks: Entity label clas-
sification for Cancer Genetics (Pyysalo et al., 2013)
and sentence similarity regression for the BIOSSES
dataset found in the BLURB benchmark (Gu et al.,
2020).

4.1 Cancer Genetics Entity Label
Classification

The Cancer Genetics dataset (Pyysalo et al., 2013)
consists of 10,935 training, 3,634 dev, and 6,955
test examples from 300, 100, and 200 unique
PubMed articles, respectively. Given an article
title/abstract and an entity mention, the objective is
to categorize the entity into one of 16 classes which
cover different subdomains in cancer biology.

For the downstream task we simply add a lin-
ear layer that accepts as its input the output of our
pre-trained ItsIRL model and we then fine-tune the
ItsIRL decoder and linear layer to minimize cross
entropy loss. We stop training when the model ac-
curacy ceases to improve on the dev set. We also
provide numbers for how ItsIRL performs if we
fine-tune on training data in an end-to-end fashion
(ItsIRL E2E; i.e., unfreezing and updating the en-
coder weights and intermediate type layer); this de-
stroys the interpretability of the intermediate layer
enforced in pre-training. Results for using the prior
Biomedical Interpretable Entity Representations
(BIERs) dot product based model and PubMed-
BERT dense model are from (Garcia-Olano et al.,
2021). We provide ablations to explore the effect
of decoder network layer size and pre-training.

Results We report task results in Table 1. Com-
pared to the prior IERs work (87.5%), the ItsIRL
model gives improved performance (91.9%) while
keeping the semantic interpretable entity type layer
intact. ItsIRL E2E realizes performance compa-
rable to fine-tuning PubMedBERT alone (95.7%

and 96.1%, respectively), but in both cases we no
longer have interpretable models which can be di-
agnosed and fixed at run time.

As a point of reference, we also report results
achieved by dense models. However, we emphasize
that these do not provide the transparency afforded
by ItsIRL; we are interested in achieving both accu-
racy and interpretability — models which strictly
optimize the former may be viewed as a reasonable
“upper-bound” with respect to accuracy alone, and
in general we expect that realizing interpretability
(and specifically in our case, “debuggability”) will
entail some trade-off in accuracy.2

We observe this expected trade-off here (ItsIRL
performs better than BIER, but worse than end-to-
end models which lack semantic representations).
We also confirm that the proposed model can be
fine-tuned end-to-end to achieve the same accu-
racy as the dense PubMedBERT model, at the
expense of interpretability. Perhaps more inter-
estingly, in section 5 we show that leveraging en-
tity type manipulation at inference time allows the
ItsIRL model to outperform both uninterpretable
models.

We perform a few ablations to assess which
parts of ItsIRL affect performance. We perform
fine-tuning on the task data using a decoder whose
weights are randomly initialized to test the effect
of pre-training on 37 million triples. The bottom
of Table 1 shows that this degrades performance
(88.9% vs. 91.9%) and suggests that pre-training
the decoder network is important for task perfor-
mance.

We additionally explored varying layer depths
for our decoder (3, 5, 8) and observed similar per-
formance across them; we therefore opted to use
the smaller decoder network of 3 layers. We note
that prior work (Garcia-Olano et al., 2021) explored
adding a single linear layer on top of the entity type
representation (which is identical to ours) and fine-
tuning it for the task. This single layer “decoder”
yields 68.1% test accuracy, indicating that the addi-
tional network capacity and pre-training are both
important.

4.2 BIOSSES sentence similarity regression

The Sentence Similarity Estimation System for
the Biomedical Domain (Soğancıoğlu et al., 2017)

2Related works (e.g., Koh et al. 2020; Alvarez Melis and
Jaakkola 2018 have tended to report results for only other
“interpretable” models as baselines; we include standard dense
models here for completeness.
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Model ü Test Acc

BIER-PMB* ✓ 87.5
ItsIRL ✓ 91.9
ItsIRL E2E* - 95.7
PubMedBERT - 96.1

Ablations Test Acc

ItsIRL - random init 88.9
ItsIRL - 1 layer decoder 68.1

Table 1: Cancer Genetics results
ü= interpretable types

Type Sparsity

Model ü MSE @.01 @.1 @.25

BIER-PMB* ✓ 5.05 33.6 8.1 4.4
ItsIRL ✓ 1.59 33.6 8.1 4.4
ItsIRL E2E* - 1.15 5723 780 330
PubMedBERT - 1.14 - - -

Table 2: BIOSSES sentence similarity results.

PMB* = PubMedBERT
E2E* = End-To-End fine-tuned

(BIOSSES) contains 100 pairs of PubMed sen-
tences, each annotated by five expert annotators
with an estimated similarity score in the range from
0 (no relation) to 4 (equivalent meanings). Pre-
dicting these scores (averaged over annotators) is
a regression task used in the BLURB benchmark
(Gu et al., 2020).

We use the train/dev/test splits from the BLUE
benchmark (Peng et al., 2019). We feed each sen-
tence pair with a SEP between them as input and
use mean squared error as our loss and for eval-
uation purposes amongst our model variants. In
contrast to the Cancer Genetics task which has
>10k training samples, this dataset is small, com-
prising 64, 16, and 20 train, dev, and test instances,
respectively. We also evaluate the sparsity of the
entity type layer induced by ItsIRL using different
thresholds to numerically quantify the interpretabil-
ity of these entity types, where having fewer types
is more easily human interpretable.3 Entity types
whose weights are larger than a threshold are se-
mantically meaningful at that threshold.

Results We show results for the sentence simi-
larity regression task in Table 2. The pattern in
our results is similar to above: ItsIRL outperforms
BIERs due to its being fine-tuned on task specific
data. ItsIRL is competitive with, but slightly un-
derperforms, the end-to-end fine-tuned ItsIRL E2E
variant and the dense PubMedBERT model (nei-
ther of these offer an interpretable entity layer after
fine-tuning).

In Table 2 we also observe that the number of
entity types shown to be semantically meaningful
is much less and hence more interpretable when
comparing ItsIRL with ItsIRL E2E which removes

3As the prior BIER-PubMedBERT and ItsIRL share the
same model checkpoint and hence interpretable entity typing
layer, BIER-PMB will have the same type sparsity as ItsIRL.

the semantic meaning of the entity types space. Fig-
ure 4 in the Appendix shows this sparsity value as
a percentage over many different thresholds, show-
ing the fine-tuned ItsIRL is more sparse and inter-
pretable than both the ItsIRL E2E model and the
dense non-interpretable PubMedBERT model.

5 Entity Type Counterfactual
Manipulation and Global Explainability

We have claimed that (sparse) entity type represen-
tations permit “interpretability”, but this is an ill-
defined term in general. Here we demonstrate that
ItsIRL provides a specific type of “interpretability”
in that it can help facilitate model understanding
and error analysis via “counterfactual” entity type
manipulation, made possible by the intermediate
entity type layer. Specifically, we consider the
Cancer Genetics classification task (Pyysalo et al.,
2013), and focus on revealing learned global struc-
ture of classes. We then show how manipulating
predicted types on erroneous test cases affects the
ItsIRL model’s performance.

5.1 Entity Type Global Explainability

To better understand the representations learned by
ItsIRL for each class, we apply the task, decoder
fine-tuned model over the training data. We gather
all correctly predicted instances for each class, sum
their interpretable entity type representations and
normalize them.4 We refer to each of these as a
positive class prototype.

Results In Table 3 we show the “top" entity types
— those with the highest weights — for 7 of 16 class
prototypes (for space); on inspection, these intu-
itively seem semantically meaningful with respect

4Positive class prototype = v−min(v)
max(v)−min(v) where v is the

sum of entity type representations for correctly predicted train-
ing instances of a given class.
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Figure 2: Positive Class Prototypes in 2D via PaCMAP

to the classes. In Appendix Table 7 we also show
the weights and index of each entity type in the 68k
type system, with lower indices denoting types that
appeared more often in pre-training data. We also
provide the F1 scores and support of these classes
on the test set. Looking at the indices of top en-
tity terms per class prototypes, we note that they
tend to be in the tens or hundreds range, imply-
ing that more frequent entity types in the training
data dominate the positive prototypes. However,
consider two classes for which we observe lower
than average F1 scores: Multi-tissue structure and
Tissue. These prototypes include rare “top” entity
types (e.g., “soft tissue”, “nephron” and “barcode”)
with indices in the 1000s (3067, 1951 & 2351) that
were seen less during pre-training which shows the
model may have learned weaker representations for
entity types that appeared less frequently.

Similarly, we can gather all training predictions
that were incorrect, group them by the true labels,
and then sum and normalize their entity type layers
to generate negative prototypes. In Appendix Table
9 we show the most common error patterns and
their negative prototypes’ most important entity
types. We note the negative prototypes predicted
align with the positive prototypes true classes.

Finally, in Figure 2 we use PaCMAP (Wang
et al., 2021) to visualize our positive prototypes
in two dimensions.5 The distance between classes
aligns well with the most common error patterns
(i.e., Cell, Cancer, Chemical, and Gene cluster near
each other) while “anatomical” and “organism” re-
lated classes also cluster near each other.

5PacMAP is a dimensionality reduction method shown to
preserve the global and local structure of the data in its original
space better than techniques such as TSNE and UMAP.

5.2 Counterfactual Entity Type Manipulation

To explore how intermediate entity types affect
downstream performance, and more specifically
how predictions would have changed had relevant
types been manipulated, we first construct sets of
entity types for each class as approximations of
what a non-expert might come up with by simple
string matching per class against the 68K entity
types in the type system provided in (Garcia-Olano
et al., 2021). These terms for inclusion and exclu-
sion from the sets along with the resulting type set
sizes are provided in Appendix Table 6. We em-
phasize that these were easy to assemble and are
coarse, noisy sets that roughly approximate entity
types we would expect to be associated with each
class.

Some classes such as Organism, Organism sub-
stance, Organism subdivision and Organ have sets
containing the same entity types to show even quite
noisy sets can be useful. Our intent here is not to
obtain the maximum possible accuracy we can get
via entity type manipulation for error cases, but
rather to show the utility of this model even when
paired with noisy term sets.

After constructing coarse sets of entity types, we
identify three strategies of interest for manipulating
entity types during inference time:

• “Fixing” bad entity types (i.e., minimize the
weights of entity types from the incorrectly
predicted class’s coarse type set).

• “Promoting” good types (i.e., maximize the
weights of entity types associated with the true
label’s type set).

• Using both the fix and promote strategies to-
gether.

For our experiment, we take test error cases and
for each, run them through our model and either
lower (“fix”) types associated with the incorrect
class set, increase (“promote”) types associated
with the true class set or do “both” to the corre-
sponding entity type weights in the intermediate
entity types layer. We then observe how the final
class probabilities for the task are affected by the
manipulation. Appendix Figure 3 shows how a
single test example’s class prediction distribution,
derived from its original inferred types and logits,
are changed by these techniques.
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Gene or
gene product

Cell Cancer Simple
chemical

Organism Multi-tissue
structure

Tissue

1 protein cell disease ingredient taxonomy blood tissue
2 ingredient elementary

particle
neoplasm acid mammals

in 1758
angiology cell

3 human human cells oncology rtt humans soft tissue human body
4 gene battery tissue who essential

medicines
tool-using
mammals

nephron connective
tissue

5 coagulation gene abnormality chemical
compound

anatomically
modern humans

blood
vessel

endocrine
system

6 cell protein cancer measurement postmodernism human body epithelium
7 cell growth pancreas syndrome calcium patient lymphatic sys angiology
8 endothelium system malignancy hydroxyl medical term. lymphoid org. blood vessel
9 homology carboxylic

acid
cell
growth

glucose prothrombin
time

mononuclear
phagocyte sys

histology

10 oncogene ester paraneoplastic
syndromes

methyl group bbc gland barcode

Table 3: Top 10 Entity Types by weight for 7 most frequent positive Prototype class embeddings

Model Test Accuracy

ItsIRL 91.48
+ Fix types 93.91
+ Promote types 95.74
+ Both fix & promote 95.68
+ Best of 3 “oracle" 96.78
PubMedBERT* 96.10

Table 4: Entity type manipulation results using class-
specific coarse type sets

Results In Table 4 we report the results for our
three entity manipulation techniques using coarse
term sets including the best accuracy that could
have been achieved amongst them for each error
pattern. The model predicting Gene when the true
class label was Chemical is the most common
test error pattern and in Table 5 we show the most
frequent error patterns observed on the test set. Pro-
moting entity types of the true class improves our
model results from 91.48 to 95.74, while both pro-
moting and fixing leads to a similar 95.68. These
strategies give results on par with using a dense non-
interpretable PubMedBert model while using the
best among them outperforms PubMedBert. For
future work, determining the best method for each
error case could be done by observing performance
of the techniques on a holdout set. Fixing incor-
rect entity types alone under performs the other
techniques possibly since down weighing incorrect
types alone does not necessarily push the embed-
ding towards the correct class. We note these au-
tomated methods require knowledge of if and in
what way initial predictions may be erroneous, and

our intent is to show that manipulating entity types
in ItsIRL affects classification in an intuitive way
which amongst other things allows them to be used
with the rule based diagnostics from prior IERs.

In Table 5 we show how the entity type manipu-
lation techniques perform on each error pattern. Us-
ing the best technique for each error pattern allows
us to correct 361 out of 592 test errors (∼61%).
“Promoting" types is best or tied 11 out of 15 times,
“Both" gives 10 out of 15 while “Fixing" gives 6
out of 15. Given the coarse type sets, all meth-
ods work poorly on the following error patterns
(True Class-Predicted): Pathological Formation-
Cancer, Organism-Cell, Organism-Gene, Organ-
Multi-Tissue, and Multi-Tissue-Cancer. This sug-
gests these sets should be edited in order to bet-
ter discriminate between these classes. Resolving
errors is dependent on the distance between two
classes and for Cell-Cancer, Cell-Gene, Cancer-
Cell and Cancer-Organism subdivision, fixing in-
correct types does poorly (0 errors resolved out of
101) while at the same time, promoting types from
the true class does very well resolving 99 out of 101
error cases. We note that this process was entirely
automated and having experts edit or choose better
terms to form type sets associated with each class
would easily improve its performance in particular
with regard to error patterns where all strategies
performed poorly.

6 Related Work

In this work we introduced an architecture with an
encoder that uses supervision from a pre-defined
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True Predicted Errs T1+2 T1 T2 Best%

Chemical Gene 65 64 48 59 98.4
Cell Cancer 41 31 41 0 100
Cell Gene 34 34 34 0 100
Multi-Tis Tissue* 22 0 0 7 31.8
Gene Chemical 17 3 3 10 58.8
Organ Tissue 16 12 10 12 75
Cancer Cell 16 0 14 0 87
Gene Organism 15 6 0 15 100
Cell Chemical 14 14 14 4 100
Amino Gene 14 14 14 14 100
Pathol Cancer 14 0 0 0 0
Organism Cell 14 0 0 0 0
Organism Gene 12 0 2 0 16.7
Organ Multi-Tissue 10 0 1 0 10
Multi-Tis Cancer 10 0 0 0 0
Chemical Amino 10 10 10 10 100
Cancer Org. Sub. 10 10 10 0 100
Cell Tissue 10 10 10 5 100
Cell Celu Comp* 10 10 10 0 100

Raw Total 592 292 296 169 361
Percent 100 49.3 50 46.8 61

Table 5: Most frequent error patterns and manipulation
results on test data for “Promote" (T1), “Fix" (T2) and
“Both" (T1+2) techniques. * means the term sets are
equal and as “Fix" is first applied followed by “Pro-
mote", the “Both" results for these cases are identical to
the “Promote" ones.

static entity type system to learn an intermediate, in-
terpretable high dimension, sparse entity type layer
which is then used by a decoder network for down-
stream tasks. The most similar area of work to ours
is that of Concept Bottlenecks (CBs) (Chen et al.,
2020; Koh et al., 2020) which use an encoder and
supervision to learn a low dimensional, dense repre-
sentation for a single task. Supervision for CBs are
hand collected by experts, dense (mostly nonzero)
and exist in a low dimensional space (tens to hun-
dreds of dimensions). For the two experiments in
(Koh et al., 2020) 112 binary (CUB) and 10 ordinal
(OAI) concepts were gathered from experts. On
the other hand, IERs and our work use static, noisy
entity systems gathered via weak supervision that
exist in a high dimensional space (68,340 entity
types) and are pre-trained for use in downstream
tasks. Due to its size compared to layers in the rest
of the network, our intermediate entity type layer
is not a “bottleneck" in the usual sense of latent
spaces of autoencoders, such as those from the CB
literature.

Our use of the intermediate interpretable entity
layer to represent classes for global explainability
is reminiscent of work for learning prototypes for
images (Li et al., 2018), timeseries (Garcia-Olano

et al., 2019) or text (Das et al., 2022), however
in our case constructing the prototypes of each
class is done post-hoc and as such the prototypes
are used for analysis rather than classification or
learning. Additionally, our method is interpretable
at the vector component level whereas the latent
representations used for constructing prototypes
are not. Also, our pre-trained representations are
not tied to a classification task like prototypes and
as such can be used for various different tasks.

Our model could be viewed as including an in-
ternal Probing task which tests a models’ ability to
induce type information by measuring the accuracy
of a probe (Peters et al., 2018; Hewitt and Man-
ning, 2019; Hewitt and Liang, 2019). However,
probing is usually a post-hoc means of revealing
the information implicitly stored within internal
dense output representations, whereas our model
was defined and pre-trained in such a way as to
explicitly provide intermediate interpretable entity
type representations.

7 Conclusions

In this work we proposed Intermediate Entity-
based Sparse Interpretable Representation Learn-
ing (ItsIRL), an extension to the IERs architecture
which provides an intermediate interpretable layer
whose decoded dense representation output can
be fine-tuned and leveraged for performance on
downstream tasks. Empirically we show the model
substantially outperforms prior IERs work on two
diverse benchmark biomedical tasks.

To demonstrate the utility of the kind of inter-
pretability afforded by ItsIRL, we proposed a coun-
terfactual entity type manipulation analysis which
allows for modeling debugging. This is a fine-
grained, human interaction inquiry made possi-
ble by the proposed model architecture and pre-
training scheme. Using coarse class type sets, we
show this technique can allow ItsIRL to surpass per-
formance against dense non-interpretable models.
This analysis establishes that entity type manipula-
tion works intuitively as expected in ItsIRL, which
is important for future work on methods for flag-
ging when a predicted answer should be inspected
and possibly manipulated at the entity type level.

We finally show how combining entity types
over classes on the training set to create positive
and negative class prototypes can be used to explain
task specific global structure and semantics learned
by our model.
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Ethical Considerations

NLP models are increasingly used in biomedicine,
where some applications can be quite high-stakes.
Establishing trust in such models is therefore
paramount; unfortunately, deep neural networks
tend to be opaque in their operations, potentially
precluding their use in certain areas of biomedicine
where they might otherwise be beneficial. This
work is a step towards more transparent NLP mod-
els.
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Figure 3: Class shifts using type manipulation techniques for single example
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Class Term Rules Inclusion/Exclusion Terms in Set

Cell [cell] 357
Cellular component [cell] 357
Cancer [cancer, neoplasm] 155

Gene or gene product
[‘ gene’, ‘gene ’, ‘ genes’, ‘genes ’]
not in [‘generation’, ‘general’]

, ’ 434

Simple chemical [ chemical, chemical ] 80

Organism
[‘ organ’, ‘organ ’, ‘organism’]
not in [‘organization’]

172

Organism substance
[‘ organ’, ‘organ ’, ‘organism’]
not in [‘organization’]

172

Organism subdivision
[‘ organ’, ‘organ ’, ‘organism’]
not in [‘organization’]

172

Organ
[‘ organ’, ‘organ ’, ‘organism’]
not in [‘organization’]

172

Tissue [ tissue, tissue ] 15
Multi-tissue structure [ tissue, tissue ] 15
Amino acid [ amino, amino , amino acid] 22
Pathological formation [pathological] 3
Immaterial anatomical entity [anatomical , anatomical, anatomical] 11
Developing anatomical structure [anatomical , anatomical, anatomical] 11
Anatomical system [anatomical , anatomical, anatomical] 11

Table 6: Terms used to create coarse Class specific
Entity Type sets
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Gene or
gene product

Cell Cancer Simple
chemical

Organism Multi-tissue
structure

Tissue

protein
(1.0, 5)

cell
(biology)
(1.0, 3)

disease
(1.0, 2)

ingredient
(1.0, 1)

taxonomy
(biology)
(1.0, 45)

blood
(1.0, 47)

tissue
(biology)
(1.0, 34)

ingredient
(0.742, 1)

elementary
particle
(0.346, 314)

neoplasm
(0.897, 8)

acid
(0.304, 18)

mammals
described
in 1758
(0.943,169)

angiology
(0.843, 857)

cell
(biology)
(0.878, 3)

human
(0.729, 7)

human cells
(0.201, 145)

oncology
(0.684, 28)

rtt
(0.301, 4)

humans
(0.943, 187)

soft tissue
(0.792, 3067)

human
body
(0.814, 30)

gene
(0.679, 6)

battery
(electricity)
(0.192, 485)

tissue
(biology)
(0.646, 34)

world health
organization
essential
medicines
(0.269, 25)

tool-using
mammals
(0.943, 186)

nephron
(0.761, 1951)

connective
tissue
(0.385, 937)

coagulation
(0.361, 37)

gene
(0.184, 6)

abnormality
(behavior)
(0.604, 56)

chemical
compound
(0.206, 14)

anatomically
modern
humans
(0.943,188)

blood
vessel
(0.682, 327)

endocrine
system
(0.345, 482)

cell
(biology)
(0.353, 3)

protein
(0.177, 5)

cancer
(0.582, 9)

measurement
(0.19, 12)

post-
modernism
(0.943, 177)

human
body
(0.538, 30)

epithelium
(0.325, 144)

cell
growth
(0.314, 46)

pancreas
(0.167, 498)

syndrome
(0.492, 48)

calcium
in
biology
(0.175, 40)

patient
(0.863, 13)

lymphatic
system
(0.52, 789)

angiology
(0.322, 857)

endothelium
(0.265, 192)

system
(0.166, 166)

malignancy
(0.467, 20)

hydroxyl
(0.16, 76)

medical
terminology
(0.84, 11)

lymphoid
organ
(0.498, 1640)

blood
vessel
(0.319, 327)

homology
(biology)
(0.241, 111)

carboxylic
acid
(0.164, 577)

cell
growth
(0.466, 46)

glucose
(0.142, 278)

prothrombin
time
(0.836, 22)

mononuclear
phagocyte
system
(0.493, 979)

histology
(0.317, 391)

oncogene
(0.24, 285)

ester
(0.164, 208)

paraneoplastic
syndromes
(0.458,380)

methyl
group
(0.131, 72)

bbc
(0.739, 180)

gland
(0.471, 174)

barcode
(0.311, 2351)

F1score - 96.29 90.71 92.73 90.24 94.10 81.65 74.94
Support - 2520 1054 925 727 543 303 190

Table 7: Top 10 Entity Types for 7 most frequent positive Prototype classes with weights and index of type. F1
score and support for each class over test data is given in final two rows.
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Cellular
component

Organ Pathological
formation

Organism
substance

Amino
acid

Immaterial
anatomical

entity

Organism
subdivision

Anatomical
system

Developing
anatomical
structure

dna
(1.0, 127)

tongue
(1.0, 158)

disease
(1.0, 2)

blood
(1.0, 47)

ingredient
(1.0, 1)

cell anatomy
(1.0, 464)

anatomical
terms of
location

(1.0, 373)

organ
(1.0, 138)

embryology
(1.0, 3496)

ingredient
(0.97, 1)

ecosystem
(0.88, 268)

wound
(0.85, 2492)

tetrahydro-
gestrinone
(0.51, 828)

amino acid
(0.97, 98)

cell biology
(0.99, 84)

human body
(0.93, 30)

system
(0.91, 166)

childbirth
(0.07, 101)

molecule
(0.89, 82)

organs
(0.75, 321)

medical
emer-

gencies
(0.77, 532)

nitrous
oxide

(0.48, 16)

glucogenic
amino acids
(0.96, 757)

cell
(0.77, 3)

leg
(0.91, 2382)

nervous
system

(0.72, 566)

midwifery
(0.07, 1835)

acid
(0.89, 18)

human
body

(0.69, 30)

injury
(0.75, 463)

psychosis
(0.48, 26)

protein-
ogenic

amino acids
(0.96, 657)

intra-
cellular

(0.74, 328)

limb
(0.85, 3675)

central
nervous
system

(0.59, 721)

health issues
in pregnancy
(0.07, 2873)

biotech-
nology

(0.89, 140)

organ
(0.64, 138)

morph-
ology

(0.75, 137)

hematology
(0.39, 236)

acid
(0.93, 18)

molecular
biology

(0.73, 55)

tongue
(0.71, 158)

central
african

republic
(0.58, 4155)

health care
(0.07, 272)

polymer
(0.89, 1204)

articles
containing
video clips
(0.54, 19)

injuries
(0.75, 3237)

ingredient
(0.32, 1)

calcium in
biology

(0.90, 40)

middle east
(0.28, 1229)

lower limb
anatomy

(0.67, 8420)

chemical
structure

(0.57, 1315)

fetus
(0.07, 1172)

helices
(0.87, 2487)

human
anatomy
by organ

(0.44, 1430)

acute pain
(0.75, 923)

articles
containing
video clips
(0.29,19)

measure-
ment

(0.83, 12)

route of
admin-
istration

(0.24, 209)

anatomy
(0.63, 287)

cerebro-
spinal
fluid

(0.56, 2756)

obstetrical
procedures
(0.0, 146)

nucleic acids
(0.89, 1426)

gland
(0.43, 174)

first aid
(0.74, 5588)

cell
anatomy

(0.27, 464)

amine
(0.67, 61)

abdomen
(0.24, 503)

animal
locomotion
(0.62, 672)

musical
quintets

(0.5, 1926)

blood cells
(0.0, 2195)

cell
(0.83, 3)

digestion
(0.39, 607)

physical
therapy

(0.73, 1765)

tissues
(0.27, 791)

isomer
(0.48, 800)

drug
(0.19, 24)

foot
(0.59, 5959)

radiophar
macology

(0.49, 3611)

developmental
biology

(0.0, 352)
cell

membrane
(0.58, 288)

tissue
(0.38, 34)

tongue
(0.37, 158)

body fluids
(0.19, 617)

ketogenic
amino acids
(0.42, 1974)

pharma-
ceutical

drug
(0.18, 17)

animal
(0.59, 273)

earache
records

(0.48, 5219)

transformation
(genetics)
(0.0, 752)

Table 8: Top 10 Entity Types for remaining 9 positive Prototype classes with weights and index of type. F1 score
and support for each class over test data is given in final two rows.

223



Truth Cell Chemical Cell Organism Tissue Gene Cancer
Pred Cancer Gene Gene Gene Multi-tissue Chemical Cell

1 cancer
(1.0, 9)

ingredient
(1.0, 1)

gene
(1.0, 6)

gene
(1.0, 6)

histology
(1.0, 391)

ingredient
(1.0, 1)

cell
(biology)
(1.0, 3)

2 disease
(0.87, 2)

protein
(0.61, 5)

protein
(0.65, 5)

protein
(0.93, 5)

blood
(0.96, 47)

acid
(0.58, 18)

neoplasm
(0.41, 8)

3 neoplasm
(0.73, 8)

receptor
(biochemistry)
(0.53, 52)

human
(0.50, 7)

human
(0.65, 7)

blood
vessel
(0.96, 327)

chemical
compound
(0.53, 14)

disease
(0.38, 2)

4 malignancy
(0.66, 20)

gene
(0.49, 6)

allele
(0.34, 71)

allele
(0.43, 71)

angiology
(0.92, 857)

derivative
(chemistry)
(0.42, 58)

t
cell
(0.36, 429)

5 rtt
(0.55, 4)

human
(0.41, 7)

ingredient
(0.28, 1)

apoptosis
(0.37, 87)

nephron
(0.74, 1951)

protein
(0.34, 5)

lymphocyte
(0.35, 112)

6 oncology
(0.46, 28)

enzyme
(0.34, 29)

receptor
(biochemistry)
(0.25, 52)

wild
type
(0.35, 159)

circulatory
system
(0.64, 664)

purine
(0.32, 781)

cancer
(0.25, 9)

7 squamous-
cell
carcinoma
(0.37, 163)

blood
(0.29, 47)

transcription
factors
(0.25, 219)

ingredient
(0.34, 1)

tongue
(0.58, 158)

deciduous
teeth
(0.28, 3292)

lymphoblast
(0.25, 1200)

8 tissue
(biology)
(0.35, 34)

receptor
antagonist
(0.28, 922)

coagulation
(0.23, 37)

fas
receptor
(0.33, 5278)

heart
(0.54, 353)

cell
(biology)
(0.27, 3)

thymus
(0.23, 506)

9 cell
(biology)
(0.31, 3)

enzyme
inhibitor
(0.28, 41)

cell
growth
(0.23, 46)

tumor
necrosis
factor
alpha
(0.30, 604)

kidney
(0.52, 430)

tooth
(0.27, 2205)

human
(0.22, 7)

10 infectious
causes of
cancer
(0.30, 73)

antigen
(0.27, 64)

dna
(0.21, 127)

antigen
(0.23, 64)

soft tissue
(0.51, 3067)

receptor
(biochemistry)
(0.27, 52)

precursor
cell
(0.17, 2220)

Table 9: Top 10 Entity Types for 7 most frequent negative Prototypes
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Abstract
Previous works on the fairness of toxic lan-
guage classifiers compare the output of models
with different identity terms as input features
but do not consider the impact of other impor-
tant concepts present in the context. Here, be-
sides identity terms, we take into account high-
level latent features learned by the classifier
and investigate the interaction between these
features and identity terms. For a multi-class
toxic language classifier, we leverage a concept-
based explanation framework to calculate the
sensitivity of the model to the concept of senti-
ment, which has been used before as a salient
feature for toxic language detection. Our re-
sults show that although for some classes the
classifier has learned the sentiment information
as expected, this information is outweighed by
the influence of identity terms as input features.
This work is a step towards evaluating proce-
dural fairness, where unfair processes lead to
unfair outcomes. The produced knowledge can
guide debiasing techniques to ensure that im-
portant concepts besides identity terms are well-
represented in training datasets.

1 Introduction

Previous NLP works have studied the fairness of
toxicity detection classifiers by comparing the dis-
tributions of prediction scores across different de-
mographic groups as input features (Dixon et al.,
2018; Borkan et al., 2019). However, other toxicity-
related concepts are often present in the text and
affect the differences in score distribution between
identity groups. Here, we introduce a framework
that uses concept-based global explanations to
uncover unintended biases for different identity
groups, while controlling for a certain toxicity-
related concept. To demonstrate the effectiveness
of concept-based explanations in uncovering biases,
we specifically focus on sentiment, although the
general methodology can be applied to any other
relevant human-defined concept. Negative senti-
ment is a salient toxicity feature, which has been

used in designing feature-based and neural toxic-
ity detection systems (Fortuna and Nunes, 2018;
Zhou et al., 2021; Chiril et al., 2022), and highly
correlates with toxic language when targeted at
demographic groups.

Assessing the differences in score distributions
for various demographics is an example of out-
come fairness. In fact, most fairness criteria used in
machine learning measure outcome fairness, such
as accuracy parity (equal accuracy for protected
and unprotected groups), equality of opportunity
(equal true positive rates), or equalized odds (equal
true positive and false positive rates) (Morse et al.,
2021). While valuable, outcome fairness metrics
are costly to compute as they require large labelled
datasets and do not provide any information about
the model’s decision making processes.

More recently, work has begun to focus on the
complementary notion of process fairness (also
known as procedural fairness), or the idea that the
decision-making process itself must be fair. Grgic-
Hlaca et al. (2016) conducted one of the first studies
on process fairness in machine learning, measuring
the extent to which people believed it was permis-
sible to use various features as input to a criminal
recidivism prediction algorithm. For example, they
found that people generally felt that criminal his-
tory was fair to use as an input feature, but that it
was unfair to use family criminality as input. An-
other aspect of process fairness is that the impor-
tance given to an attribute in the decision-making
process shouldn’t be very different for different
demographic groups. An example of this is the
recent SFFA vs. Harvard court case where it was
argued that academic and extracurricular achieve-
ments of Asian-American applicants are given less
weight in the admissions process compared to their
White-American counterparts (Arcidiacono et al.,
2022). We take a similar view of process fairness
and consider a classifier as unfair if it either ignores
or over-utilizes a feature for some demographic
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groups compared to others.
In the current NLP landscape, one major bar-

rier to assessing process fairness is that predictive
models rarely use human-understandable concepts
as input features, and so it is increasingly difficult
to understand what high-level features1 are actu-
ally being learned and used by the classifier. In
this work, we use an interpretability framework
of concept-based explanations (Yeh et al., 2022),
which enables us to explain a machine learning
model’s decision-making via conceptual units un-
derstandable to humans.

Concept-based explanations have been studied
mostly in the context of computer vision, where it
is fairly straightforward to define concepts of in-
terest with a set of representative examples. How-
ever for textual data, it is much less clear how to
define a concept in an effective and intuitive man-
ner, and global explainability methods that operate
on high-level abstractions remain under-explored
(Danilevsky et al., 2020; Balkır et al., 2022a). Ghor-
bani et al. (2019) define a concept to be a meaning-
ful, human-defined abstraction, which is expected
to be important for the task at hand and which can
be specified by a coherent set of examples. Fol-
lowing this definition, we identify sentiment as a
concept for toxicity classification.2 To the best of
our knowledge, this is one of the first works to ap-
ply concept-based explanations to the domain of
NLP, and the first one to explore its effectiveness
in identifying high-level fairness issues in models
that work with textual data.

In this work, we show how to use concept-based
explanations to determine whether a trained tox-
icity classifier uses the information of sentiment
as an important feature in its predictions. For that
we use a multi-class model, described in Section
2, and compare the importance of the concept of
sentiment in predicting different subtypes of toxic-
ity. Although intuitively, negative sentiment should
be an important signal for toxicity detection, its
presence is neither necessary nor sufficient for an
utterance to be tagged as toxic. For example, “Mus-
lims are grieving” carries a negative sentiment but
is not abusive, whereas “You are so smart for a
woman” is perceived as an insult despite including

1Here, by “feature” we mean the latent representations of
a semantic concept learned by a classifier, as opposed to the
low-level input features.

2We distinguish between the concept of sentiment, as de-
fined by a human through a set of examples, and the feature
of sentiment, which is implicitly learned by the classifier, al-
though our assumption is that they are closely aligned.

a positive sentiment word. Also, sentiment might
not be a distinguishing feature for some variations
or subtypes of toxic language, such as threats or
cyberbullying. For all the classes of our multi-
class model, we ask, “Has the classifier learned the
concept of sentiment as a coherent and important
high-level feature associated with this label?”, and
answer this question with concept-based explana-
tions (Section 5). We then assess how the presence
of identity terms impacts the use of sentiment in-
formation by the classifier. For that, we control the
context for sentiment and ask if the learned senti-
ment information is used similarly and fairly across
identity groups (Section 6). Our code and data is
available at https://github.com/IsarNejad/P
rocedural-Fairness-Sentiment.

Our main contributions are:
• We propose a concept-based explanation

framework to determine whether a trained text
classifier uses a human-defined concept fairly
in its decision making process. To the best of
our knowledge, this is the first work that uses
concept-based explanations to uncover biases
in text classifiers, and the first to formalize
concepts with short textual templates.

• To demonstrate the utility of the proposed
method, we apply it to a multi-class toxicity
classifier and show that when the subject of
the sentiment is not specified (e.g., “They are
<SENTIMENT-WORD>”), the classifier is sensi-
tive to the concept of negative sentiment, for
some of the classes.

• Further, we show that when the subject of
the sentiment is a specific identity term (e.g.,
“<IDENTITY-TERM> are <SENTIMENT-WORD>”),
for some classes, the classifier becomes sensi-
tive to neutral and in some cases even positive
sentiment. This demonstrates that the process
by which the classifier makes its decision is
not the same for all identity groups, and for
some groups may even be unfairly associating
positive sentiment with toxicity.

2 Multi-Class Toxicity Model

For our experiments, we use an open-source,
RoBERTa-based model3 (Hanu, 2020) trained on
the English dataset released as part of a Kaggle
competition on identifying and reducing bias in

3https://huggingface.co/unitary/unbia
sed-toxic-roberta
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toxicity classification of online comments.4. The
dataset includes public comments from the Civil
Comments platform manually annotated for Toxic-
ity as well as six toxicity subtypes: Severe Toxicity,
Obscene, Identity Attack, Insult, Threat, and Sexual
Explicit. The values for each label represent the
fraction of the annotators that assigned the label
to the comment. There are over 1.8M examples in
the training set and around 195K examples in the
test set. We exclude the class Severe Toxicity from
our experiments, since there are only eight train-
ing examples with values higher than 0.5 for this
class. Further, a subset of the data is annotated for
various identity groups mentioned in the text. The
most frequently mentioned identity groups include
male, female, homosexual (gay or lesbian), Chris-
tian, Jewish, Muslim, Black, white, people with
psychiatric or mental illness. The classification
model optimizes the competition’s official evalu-
ation metric that combines the overall AUC with
Bias AUCs for the identity groups (Hanu, 2020).
For this, the model’s loss function combines the
weighted loss functions for two tasks, toxicity pre-
diction and identity prediction. This simple and
straight-forward model has been shown to effec-
tively reduce bias on non-toxic sentences that men-
tion identity terms, and results in a competitive
score of 93.74 on the test set.

We chose this model for two reasons. First, the
model is publicly available and is trained on one of
the largest available toxicity dataset, annotated for
multiple types of toxicity. An alternative choice for
our experiments would be using multiple toxicity
classifiers. However, the definitions of subtypes
of toxicity are usually ambiguous and similar la-
bels might be used for different subtypes of toxic-
ity across datasets. In the case of our multi-class
model, the disparities in using sentiment informa-
tion can be reliably attributed to differences in sub-
type definitions. Second, the model is debiased to
some extent with regards to outcome fairness met-
rics. Uncovering biases in such a model highlights
the issue that optimizing for outcome fairness does
not guarantee the procedural fairness in decision
making.

3 Sentiment Lexicon

To formalize sentiment concepts, we employ the
NRC Valence, Arousal, and Dominance (NRC-

4https://www.kaggle.com/c/jigsaw-unint
ended-bias-in-toxicity-classification/

VAD) lexicon (Mohammad, 2018), which provides
manually annotated real-valued scores of valence,
arousal, and dominance for 20,000 English words.
We use the valence scores and convert them into
the range from -1 (the most negative) to 1 (the most
positive). We automatically select single words
from the lexicon that are predominantly used as ad-
jectives in the British National Corpus (BNC)5 and
sort them in decreasing order by their frequency in
the BNC. The N most frequent adjectives that can
be used to describe humans or groups of humans
are manually selected as the sentiment words to
define the sentiment concepts. The sentiment range
[-1, 1] is divided into five intervals: very negative
[-1, -0.75], negative (-0.75, -0.25), neutral [-0.25,
0.25], positive (0.25, 0.75), and very positive [0.75,
1]. For each interval, N = 100 adjectives are se-
lected.6 These sets of adjectives are then used to
populate the sentence templates to define the senti-
ment concepts as described in Section 5.

4 Concept-Based Explanations

Concept-based explanation is an emerging area in
black-box model explainability, aiming to explain
neural network models at the abstraction level de-
fined by a human user (Yeh et al., 2022). Most
explainability methods provide importance weights
for low-level input features such as pixels in im-
ages or tokens for text (Sundararajan et al., 2017;
Smilkov et al., 2017; Selvaraju et al., 2017; Shriku-
mar et al., 2017). However, a user might want
to evaluate the model’s functionality at the level
of a concept that is expected to be important for
the model’s prediction, which can be achieved
with concept-based explanations (Koh et al., 2020).
Ghorbani et al. (2019) states that a concept needs to
satisfy the properties of meaningfulness, coherency
and importance for the task at hand. Some exam-
ples of concepts in computer vision tasks are the
concept of stripes for the class of zebra (Kim et al.,
2018), the concept of white coat for the class of
doctor (Pandey, 2021), and the concept of nuclei
texture in the detection of tumor tissue in breast
lymph node samples (Graziani et al., 2018). In the
case of text, Nejadgholi et al. (2022) used concept-
based explanations to measure the sensitivity of a

5The British National Corpus, version 3 (BNC XML Edi-
tion), http://www.natcorp.ox.ac.uk/

6The full list of the selected adjectives is available in the
Supplemental Material. We also conducted similar experi-
ments with the full NRC-VAD lexicon and obtained similar
results.
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abusive language classifier to the emerging concept
of COVID-related anti-Asian hate speech, and Yeh
et al. (2020) explained a text classifier with respect
to the concepts identified through topic modeling.

Here, our goal is to explain the prediction of a
toxicity classifier at the level of sentiment informa-
tion learned by the trained model. Since sentiment
is not one of the direct input features of the model,
feature importance metrics such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017)
cannot be used to provide its importance. Instead,
we consider each level of sentiment as a concept
and calculate the importance of these concepts for
the model’s predictions with Testing Concept Acti-
vation Vectors (TCAV) algorithm. In the following
section, we explain the TCAV algorithm in detail.

4.1 Testing Concept Activation Vectors

Testing Concept Activation Vectors (TCAV) is an
algorithm from the family of concept-based ex-
plainability methods, which measures the impor-
tance of a human-defined concept for model’s pre-
dictions (Kim et al., 2018). In TCAV, each concept
is defined with a set of examples and represented as
Concept Activation Vectors (CAVs), in the activa-
tion layer of the trained model. TCAV formalizes
the importance of a concept as the fraction of in-
put examples for which the prediction scores of
the model increase if the input representation is
infinitesimally moved towards the concept repre-
sentation. The prediction increase is measured by
calculating the directional derivatives of the pre-
diction layer to CAVs. To calculate the statistical
significance of a concept, multiple subsets of con-
cept examples are used to form multiple CAVs, and
a TCAV score is calculated for each CAV. A con-
cept is considered to be important for a class if the
distribution of its TCAV scores is significantly dif-
ferent from the TCAV scores of a random concept
defined by random examples.

Here, we explain how the TCAV procedure mea-
sures the importance of a concept for a class of a
RoBERTa-base classifier, in more detail. Similar
to Nejadgholi et al. (2022), we define each con-
cept C with NC concept examples, and map them
to RoBERTa representations of the [CLS] token
rjC , j = 1, ..., NC . Then, P number of Concept
Activation Vectors (CAVs), υpC , are generated by
averaging the RoBERTa representations of Nυ ran-
domly chosen concept examples, to represent C in
the activation space:

υpC =
1

Nυ

Nυ∑

j=1

rjC p = 1, .., P (1)

where Nυ < NC . With femb, which maps an in-
put text x to its RoBERTa representation rx, the
conceptual sensitivity of a class to the υpC , at in-
put x can be computed as the directional derivative
SC,p(x):

SC,p(x) = lim
ϵ→0

h(femb(x)+ϵυp
C)−h(femb(x))
ϵ

= ▽h(femb(x)).υ
p
C (2)

where h is the function that maps the RoBERTa
representation to the logit value of the class of in-
terest. For a set of input examples, X , we calculate
the TCAV score as the fraction of inputs for which
small changes in the direction of C increase the
logit:

TCAVC,p =
|x ∈ X : SC,p(x) > 0|

|X| (3)

When calculated for all CAVs, Equation 3 results
in a distribution of scores for the concept C. The
mean and standard deviation of this distribution
determines the overall sensitivity of the classifier
to the concept C for the class of interest.

Intuitively, the derivatives in Equation 2 indicate
whether a label’s likelihood increases when a small
vector in the direction of the concept’s representa-
tion is added to a random context. For example, the
predicted probability of the class Toxic for sentence

“I saw these people.” is 0.01. The comment “I saw
these people. They are terrible.” is labeled as toxic
with the probability of 0.56, but the statement “I
saw these people. They are wonderful.” receives
the toxicity probability of 0.01. If this observa-
tion holds systematically across many negative and
positive sentiment words, the classifier has learned
negative sentiment as an important feature of the
toxicity class, but the positive sentiment does not
contribute to the toxicity estimation.

In contrast to the previous concept-based expla-
nation works in NLP, which either require anno-
tated data (Nejadgholi et al., 2022), or are limited
to the topics extracted by the topic modeling pro-
cedure (Yeh et al., 2020), we define the sentiment
concepts with a set of minimal templates, that are
easy to generate and minimize extra contextual in-
formation. Using concept examples, described in
Sections 5 and 6, TCAV first encodes the infor-
mation of sentiment in the RoBERTa embedding
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Sentiment level concepts Control concepts
Class label Very negative Negative Neutral Positive Very positive Explicit Non-coherent

Toxicity 0.87 (0.04) 0.47 (0.26) 0 (0) 0 (0) 0 (0) 0.88 (0.02) 0 (0)
Obscene 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.75 (0.1) 0 (0)

Identity Attack 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.03) 0 (0)
Insult 0.92 (0.02) 0.77 (0.14) 0 (0) 0 (0) 0 (0) 0.89 (0.02) 0 (0)
Threat 0.01 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sexual Explicit 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.70 (0.18) 0 (0)

Table 1: Means and standard deviations of TCAV score distributions for the six types of toxicity with respect to five
sentiment categories and two control concepts. Scores statistically significantly different from random are in bold.

space. Then, it populates the directional derivatives
of the prediction layer with respect to these vectors.
If the derivatives are positive for a significant num-
ber of the sentiment concept representations, a high
average TCAV score is obtained, i.e, sentiment is
learned as a coherent and important feature for the
label of interest.

In our implementation, for each concept, 100
CAVs are generated, each of which is the average
representation of 50 randomly selected concept
examples. For 1000 random input texts (random
tweets collected with stop words), the TCAV scores
of each CAV are calculated. Average and standard
deviation of TCAV scores are reported to quantify
the importance of the concept for this class.

5 Classifier Sensitivity to Sentiment

In this section, we analyze the sensitivity of the
classifier described in Section 2 and identify the
classes for which the classifier is sensitive to sen-
timent as a coherent and important feature. For
the concepts of sentiment level, we create concept
examples and use the TCAV technique to test the
importance of the concepts for each class.

To create concept examples for each level of
sentiment described in Section 3, we use the tem-
plate “They are <SENTIMENT-WORD>.”. This
simple template ensures minimal extra semantic
information other than sentiment level and avoids
the problem of encoding unwanted biases in the
concept itself, as described by Tong and Kagal
(2020). It is important to note that such minimal
templates cannot be labeled for toxicity without
more context. Consider a sentence such as “They
are terrible.”. This sentence expresses a negative
sentiment but lacks any other significant informa-
tion. Only with more context can we say whether
this sentence is toxic or not. The statement “These
people are immigrants. They are terrible.” is toxic,
while the comment “I don’t like these computers.
They are terrible.” is non-toxic, and “I don’t like

these singers. They are terrible.” can be toxic de-
pending on the specific definition of toxicity in a
use case. Therefore, the fairness analysis methods
that rely on labels cannot be used to study the im-
pact of these templates on the model’s predictions.

In addition to five levels of sentiment, we use
two control concepts with predictable sensitivities:
1) A non-coherent concept, defined by a set of ran-
dom tweets collected with stop words, for which
we expect low average TCAV scores for all labels;
2) The concept of explicit offence defined by in-
serting a profane word7 in the template “They are
<PROFANE-WORD>”, for which we expect high sen-
sitivity from at least some of the labels. As the
creators of the toxicity model mention, this classi-
fier shows high sensitivity to profanity because of
the over-representation of these words in its train-
ing data.8 Table 1 shows the average and standard
deviation of TCAV scores calculated for the seven
concepts described above.

We observe that the TCAV scores for the control
concepts are as expected—zero sensitivity for a
non-coherent, random concept and high sensitiv-
ity to the concept of explicit offence for the labels
Toxicity, Obscene, Insult and Sexual Explicit. For
the sentiment concepts, we observe that the clas-
sifier is sensitive to Very Negative and Negative
sentiment for the labels Toxicity and Insult. 9 We
also observe that the classifier is not sensitive to
the Neutral, Positive and Very Positive sentiment
concepts for any of the labels, which rules out the
sensitivity of the classifier to the specific sentence
structure of the templates.

Literature suggests that a high TCAV score indi-
cates: 1) the concept is learned by the classifier as

7We use the words from https://github.com/chu
cknorris-io/swear-words/blob/master/en

8https://github.com/unitaryai/detoxify
9Intuitively, the classes Obscene, Identity Attack, Threat

and Sexual Explicit rely on features other than negative senti-
ment, i.e., profanity, identity terms, violence or intention of
harming, and lewdness, respectively.
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Sentiment level concepts Control concepts
Class label Very negative Negative Neutral Positive Very positive Explicit Non-coherent

Toxicity 0.22 0.12 0.01 0 -0.01 0.27 0.03
Obscene 0.01 0 0 0 0 0.10 0

Identity Attack 0.01 0 0 0 0 0.03 0
Insult 0.17 0.10 0.02 0 0 0.16 0
Threat 0 0 0 0 0 0 0

Sexual Explicit 0 0 0 0 0 0.09 0

Table 2: Average increase in probabilities when concept templates are added to random texts. Cells in equivalent
positions to Table 1 are in bold.

Increase in Probability TCAV scores
Class label non-coherent coherent non-coherent coherent

Toxicity 0.11 0.12 0.01 (0.07) 0.47 (0.26)
Insult 0.09 0.10 0.09 (0.19) 0.77 (0.14)

Table 3: Average increase in probability and mean and standard deviation of TCAV scores for the non-coherent
concept (Very negative or Very positive sentiment) and the coherent concept (Negative sentiment).

a coherent feature, and 2) that feature is important
for the classifiers’ predictions (Kim et al., 2018).
We evaluate the TCAV scores shown in Table 1, in
terms of the importance and coherency of a concept.
We first confirm that the importance of a concept
can be interpreted as the increase in the predicted
probability due to the addition of a concept to input
sentences. Then, we show that increase in probabil-
ity is not an equivalent metric to TCAV score, since
increase in probability can be due to the addition
of a non-coherent concept to input sentences.

High average TCAV scores indicate a significant
increase of prediction probabilities when the
concept is added to random contexts. We append
the concept examples to random tweets and mea-
sure the prediction probabilities before and after
the addition of the concept examples. The aver-
age increase of probabilities for all concepts and
labels is shown in Table 2. We observe that in all
cases where the average TCAV scores are high (i.e.,
significantly different from the control random con-
cept) in Table 1, the probability increase is notable
in Table 2. For example, for the Toxic label, the
addition of sentences with Very Negative and Nega-
tive sentiment on average increases the prediction
probability by 0.22 and 0.12, whereas the addition
of Neutral, Positive and Very Positive sentiments
increases the prediction probability by 0.01 or less.
This is in line with our observation from Table 1
that the classifier is sensitive to Negative and Very
Negative sentiments for the label Toxic.

TCAV scores differentiate between coherent and
non-coherent concepts whereas the probability
increase does not. To test this hypothesis, we cre-

ate a non-coherent concept by combining the Very
Negative and the Very Positive sentiment examples,
and compare the average increase in probability
and the TCAV score for this concept with those for
the Negative sentiment concept. The comparison
is demonstrated in Table 3. Although the increase
in probability is similar for the coherent and non-
coherent concepts, the TCAV score indicates that
the classifier has only learned the coherent concept
as an important feature.

6 Sensitivity to Sentiment Towards an
Identity Group

In the previous section, we demonstrated how the
TCAV framework can be used to assess whether
a human-defined concept is learned by a classi-
fier as an important feature. With that we showed
that for some labels our model is sensitive to
the presence of Very Negative and Negative sen-
timents in broader contexts. Here, we turn to
the concept of “associating a sentiment with an
identity group”10 and ask if similar levels of sensi-
tivity to sentiment are observed in the presence
of certain demographic terms as input features.
For creating the concept examples, we use the
template “<SUBJECTS> are <SENTIMENT-WORD>”,
where <SUBJECTS> are the protected identity terms
used in HateCheck (Röttger et al., 2021): Women,
Gay people, Trans people, Muslims, Immigrants,
Black people, and Disabled people. We also add

10Note that this concept is composed of more basic con-
cepts, similar to the concept of white coat used in (Pandey,
2021). Still, it satisfies the three criteria of meaningfulness,
coherency and importance as stated by (Ghorbani et al., 2019)
and can be considered as a relevant concept for toxicity.
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Figure 1: Sensitivity to identity terms in neutral contexts, for which a low sensitivity is expected.

the terms These people and These things, to assess
the sensitivity of the model to the concepts of “as-
sociating a sentiment with people in general” and

“associating a sentiment with objects” as two base-
lines. As expected, we observe that the classifier is
not sensitive to any level of sentiment when asso-
ciated with objects. We discuss some of the most
salient results below. (The full results are presented
in Appendix in Table A.1.)

We first assess the influence of identity terms by
analysing the classifiers’ sensitivities to the neutral
sentiment towards the identity groups. Figure 1
visualizes the column of Table A.1 related to the
Neutral sentiment. From the findings in Table 1, as
well as human intuition, the association of identity
terms with neutral sentiment should not increase
the probability of the classifier predicting a toxic la-
bel. However, we observe high sensitivities for the
labels Toxicity and Insult and all identity groups, ex-
cept for Women and Disabled people. The classifier
is also sensitive to the Neutral sentiment associated
with Women for the label Identity Attack. We con-
clude that in neutral contexts the classifier is more
sensitive to some identity terms than others.

Figure 2 visualizes the results of Table A.1 from
a different perspective. In this figure, we assess
the sensitivity of the classifier to different levels
of sentiment across the identity groups. For the
relevant classes, we expect to see that the classi-
fier is sensitive to negative sentiment but not sensi-
tive to positive sentiment; i.e., the average TCAV
score should be high for negative sentiment and
low for positive sentiment. Consistent with results
in Table 1, we observe this expected pattern for
the subject These people and the two classes Insult
and Toxicity. Taking this as our baseline, we ex-
pect to see similar patterns across all the identity
groups for an unbiased classifier. However, we ob-
serve that the pattern only holds for certain classes,
and certain identity groups. Notably, the classifier

loses its sensitivity to the Negative sentiment for
the classes Insult and Toxicity when the mentioned
identity group is Disabled people. In addition to
classes Insult and Toxicity, in the presence of an
identity term, the classifier becomes sensitive to
Negative and Very Negative sentiment for the class
Identity Attack. This is expected given the class
definition, but again the pattern does not hold for
the identity term Disabled people.

Another anomalous result with respect to the
Negative sentiment is that the classifier is sensitive
to Negative and Very Negative sentiment for the
class Sexual Explicit, but only in the context of the
identity group Gay people. Additionally, for the
label of Threat the classifier shows some sensitivity
to the Very Negative and Negative sentiment, but
only when used with the identity term Muslims.

We then turn to assessing the sensitivities to pos-
itive sentiment. In general, the expected pattern
of sensitivities is only observed for the labels Tox-
icity and Insult and the identity term Women. For
other cases, as the level of sentiment changes from
Very Negative and Negative to Positive and Very
Positive, the sensitivity of the classifier does not
decrease as expected and remains high, specifically
for identity groups Gay people, Black people and
Muslims. This observation indicates that a sentence
such as “Black people are wonderful” in a conversa-
tion will increase the probability of that text being
labeled as Toxic, Identity Attack and Insult. Also,
for Sexual Explicit the classifier is sensitive to the
mention of Gay people for all levels of sentiment.
We conclude that the classifier is oversensitive to
the presence of these identity terms regardless of
the level of sentiment, and even highly positive sen-
timent cannot cancel out the impact of the identity
terms. One exception is the term Disabled peo-
ple, for which the model is under-sensitive, i.e, not
sensitive to even Negative and Very Negative senti-
ments associated with this group.
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Figure 2: Sensitivity to various levels of sentiment for all demographic groups.

7 Discussion

Our results demonstrate that while a multi-class
toxicity classifier generally shows high sensitivities
to negative sentiment for certain classes, and zero
sensitivities to neutral or positive sentiment, the pic-
ture changes when the sentiment is applied to cer-
tain marginalized identity groups. Then, counter-
intuitively, even positive sentiment can increase the
probability of a toxicity label. This suggests an
over-reliance on the identity group term.

Previous work in computer vision has under-
scored the difficulty in finding unbiased examples
with which to define concepts, e.g., when searching
for images of men or women to examine gender
bias, the examples invariably also contain infor-
mation about age, race, and so on. Here, in the
context of NLP, we propose a generalizable solu-
tion to that problem, by generating examples rather
than collecting them, and carefully controlling the
variable of interest (here, sentiment, although the
method could extend to other features). For this we
use existing lexicons, without the need to label the
examples for the various toxicity classes, as would
be required for an analysis of outcome fairness.

This knowledge of how the model uses the senti-
ment information can guide debiasing techniques.
For example, a data augmentation approach can en-
sure important features are present in the training
dataset. In the case of our model, a data balanc-
ing procedure should collect and label positive and
very positive sentiments associated with gay peo-
ple, Black people and Muslims, as well as very
negative sentiments associated with disabled peo-

ple and add them to the training dataset.
It is important to note that evaluating models

for the sensitivity to human-defined concepts is a
tool to reveal flaws of a trained model, where prior
knowledge about expected sensitivities is available.
Similar to previous test suits such as HateCheck
(Röttger et al., 2021), our method should not be
considered as a standalone evaluation of models.
Moreover, observing the expected sensitivities does
not guarantee the fairness of the model. Only where
unexpected sensitivity patterns are observed, the
biases can be detected and mitigated accordingly.

Our method has limitations. We carry our analy-
sis for one grammatical construction that expresses
the concept of associating sentiment to identity
groups. Future work is needed to assess the gen-
eralizability of our results to other expressions of
sentiment. Moreover, TCAV requires access to
at least some model layers and cannot be applied
when the model itself is unavailable.

8 Related work

Identifying and mitigating unintended biases in
NLP systems to ensure fair treatment of various
demographic groups has been focus of intensive
research in the past decade (Blodgett et al., 2020;
Shah et al., 2020). Various metrics to quantify bi-
ases in system outputs have been proposed, includ-
ing group fairness metrics and individual fairness
metrics (Castelnovo et al., 2022; Czarnowska et al.,
2021). However, to apply such metrics, the datasets
need to be annotated with demographic attributes,
which is costly and sometimes infeasible to do (e.g.,
the demographics of the authors of social media
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posts are often unknown). Alternatively, the bias
metrics are applied on synthetic data automatically
generated using simple templates (Kiritchenko and
Mohammad, 2018; Borkan et al., 2019). In both
cases, the test data are limited, and the evaluation
is restricted to a set of pre-defined contexts.

Explainability techniques (XAI) can potentially
help in discovering and quantifying biases. Much
work on XAI has been motivated by the need to
assist in bias detection and mitigation (Doshi-Velez
and Kim, 2017; Das and Rad, 2020). However, only
a handful of NLP studies have actually employed
explainability methods for bias detection and to a
limited extent (Prabhakaran et al., 2019; Kennedy
et al., 2020; Aksenov et al., 2021; Balkır et al.,
2022b). Balkır et al. (2022a) surveyed the works
at the intersection of fairness and XAI in NLP
and discussed conceptual and practical challenges
in applying current explainability approaches for
debiasing NLP models. Multiple outlined issues
stem from the fact that most current XAI meth-
ods employed in NLP provide explanations on a
local level through post-hoc processing, and it is
still an open question how to generalize these lo-
cal explanations to reveal systematic model biases.
The TCAV framework used in this paper produces
global explanations and can therefore uncover un-
fair processes in the model’s decision making.

Probing classifiers are well-known interpretabil-
ity tools used to examine the encoded information
in the representation layers of NLP models (Con-
neau et al., 2018). Probes are trained independently
from the original model to predict an externally
defined property (e.g., linguistic properties such
as part of speech) from the model’s representa-
tions. Despite being widely used, several studies
revealed that probes are not well-controlled, and
caution should be taken when drawing behavioural
conclusions about the original model from the per-
formance of probing classifiers (Belinkov, 2022).
Also, probes can only assess whether the informa-
tion about the property of interest is encoded in the
representations (e.g., (Tenney et al., 2019; Rogers
et al., 2020)) but do not provide evidence about
how the model uses this information. To that end,
extensions of probing classifiers were proposed,
which assess the effect of removing the property’s
information with counterfactual interventions to
provide causal explanations and mitigate biases
in NLP classifiers (Ravfogel et al., 2020; Elazar
et al., 2021). However, several concerns are raised

about the effectiveness and the unintended conse-
quences of removing attributes (Kumar et al., 2022).
While causality-driven probing methods assess the
necessity of the property for the classifier’s deci-
sion, TCAV determines whether the model uses the
encoded information as an important signal for a
particular class. Also, TCAV allows us to quantify
the relative importance of different properties en-
coded in the representation, which is not feasible
with probing classifiers.

The TCAV framework has been developed and
mostly applied in image classification. In the orig-
inal paper, Kim et al. (2018) showed how gender
and racial biases can be discovered with TCAV
in image classifiers. Wei et al. (2021) extended
the method to regression problems, and applied it
to detect gender and first language biases in au-
tomatic spoken language assessment. Tong and
Kagal (2020) studied the effectiveness of TCAV in
discovering gender biases in image classification
and discussed the difficulties in obtaining quality
examples to represent a concept while not introduc-
ing new sources of bias (e.g., introducing a racial
bias when selecting gendered examples). Adhikari
(2021) used TCAV to measure gender bias when
classifying faces as young or old, and discussed the
difficulty of defining ‘disentangled’ concepts that
only encode the concept of interest. To the best of
our knowledge, our work is the first in applying
TCAV to discover biases in text classifiers.

9 Conclusion

Building on previous studies that measured group
fairness in toxic language detection, this work is
a step toward a more systematic and fine-grained
analysis of procedural fairness in neural model’s
predictions. We use a global explainability met-
ric to uncover the disparities in how the classi-
fier learns to associate identity terms with domain-
relevant concepts, e.g. sentiment. Future work will
focus on extending the analysis to other concepts
known to be important to toxic language detection
(profanity, threats of violence, dehumanizing or
othering language, and so on) as well as additional
classifiers, domains, and types of bias.

Ethical Statement

The presented framework aims to identify fairness
issues in text classifiers when identity terms are
mentioned in the text. As stated above, such eval-
uation cannot attest for the absence of any biases,
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but can indicate potential areas of concern. This
framework is a complementary approach to other
methods of bias detection that are based on the no-
tion of outcome fairness (e.g., using fairness met-
rics on held-out test sets annotated for mentions of
demographics or on specifically designed test suits,
such as HateCheck). The proposed method cannot
be applied to assessing fairness on texts written by
different demographic groups.

The method requires the identity groups of inter-
est to be specified in advance. In the current study,
we have included several protected groups, but the
list is by no means exhaustive. More protected
groups should be included in the future. Addition-
ally, it is known that the label used to refer to a
social group can itself communicate bias (consider,
for example, the difference between immigrants
versus migrants versus expats) (Beukeboom and
Burgers, 2019). We have not analyzed the effect
of this form of bias on the explanations here. Fur-
thermore, other, legally non-protected groups (e.g.,
based on physical appearances, education, etc.),
should also be considered as we strive towards in-
clusive and safe online spaces.

As most AI technology, this approach can be
used adversely to exploit the system’s vulnerabil-
ities and produce toxic texts that would be unde-
tectable by the studied classifier. Specifically, for
methods that require access to the model’s inner
layers, care should be taken so that only trusted par-
ties could gain such access. The obtained knowl-
edge should only be used for model transparency
purposes, and the security concerns should be ade-
quately addressed.

Regarding environmental concerns, contempo-
rary NLP systems based on pre-trained large lan-
guage models, such as RoBERTa, require signif-
icant computational resources to train and even
fine-tune. Larger training datasets, such as the one
used in this study with almost 2M training exam-
ples, used for fine-tuning, usually result in a better
classification performance, but also an even higher
computational cost. To lower the cost of this study
and its negative impact on the environment, we
chose to use an existing, publicly available classifi-
cation model.
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A Sensitivities to Sentiment in Presence of
Identity Terms

The full results of the experiments described in
Section 6 are presented in Table A.1.
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Target Class label Very negative Negative Neutral Positive Very positive

Women

Toxicity 0.99(0.00) 0.99(0.00) 0.24(0.22) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 0.99(0.00) 0.98(0.02) 0(0.01) 0(0)
Insult 0.98(0.01) 0.87(0.11) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Trans people

Toxicity 0.97(0.01) 0.93(0.01) 0.78(0.04) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.92(0.01) 0.32(0.20) 0.02(0.05)
Insult 0.97(0.007) 0.94(0.01) 0.77(0.07) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Gay people

Toxicity 1.00(0) 0.99(0.00) 0.99(0.00) 0.97(0.00) 0.93(0.01)
Obscene 0.25(0.12) 0.01(0.02) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.99(0.00) 0.99(0.00) 0.99(0.00)
Insult 0.99(0.001) 0.99(0.003) 0.91(0.04) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0.82(0.02) 0.84(0.01) 0.88(0.01) 0.82(0.02) 0.73(0.02)

Black people

Toxicity 1.00(0) 1.00(0) 0.99(0.00) 0.95(0.00) 0.92(0.01)
Obscene 0.05(0.06) 0.00(0.00) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 1.00(0) 0.99(0.00) 0.99(0.00)
Insult 0.99(0.001) 0.99(0.002) 0.95(0.01) 0.14(0.12) 0(0)
Threat 0.03(0.02) 0.04(0.02) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Disabled people

Toxicity 0.41(0.2) 0.01(0.06) 0(0) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0.70(0.2) 0.13(0.21) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Muslims

Toxicity 1.00(0) 0.99(0.00) 0.96(0.01) 0.75(0.04) 0.57(0.07)
Obscene 0(0.02) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.99(0.00) 0.98(0.00) 0.97(0.00)
Insult 0.99(0.00) 0.98(0.007) 0.69(0.15) 0(0) 0(0)
Threat 0.33(0.07) 0.32(0.07) 0.20(0.06) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Immigrants

Toxicity 0.98(0) 0.95(0.01) 0.86(0.03) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 0.99(0) 0.95(0.01) 0.74(0.11) 0.30(0.23)
Insult 0.98(0.005) 0.96(0.01) 0.86(0.03) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

These people

Toxicity 0.93(0.02) 0.83(0.07) 0(0.03) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0.97(0.01) 0.92(0.02) 0.13(0.21) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

These things

Toxicity 0(0) 0(0) 0(0) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0(0.03) 0(0) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Table A.1: Average and standard deviation of TCAV scores for all the labels and different levels of sentiment
ranging from Very Negative to Very Positive for the template “<SUBJECTS> are <SENTIMENT-WORD>”. All the
sensitivities that are significantly different from random are in bold.
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Abstract

Transformer based language models have been
widely adopted by industrial and research or-
ganisations in developing machine learning ap-
plications in the presence of limited annotated
data. While these models show remarkable re-
sults, their functioning in few-shot settings is
still poorly understood. Hence, we perform an
investigative study to understand the character-
istics of such models fine-tuned in few-shot se-
tups. Specifically, we compare the intermediate
layer representations obtained from a few-shot
model and a pre-trained language model. We
observe that pre-trained and few-shot models
show similar representations over initial layers,
whereas the later layers show a stark deviation.
Based on these observations, we propose to
freeze the initial Transformer layers to fine-tune
the model in a constrained text classification
setup with K annotated data points per class,
where K ranges from 8 to 64. In our experi-
ments across six benchmark sentence classifi-
cation tasks, we discover that freezing initial
50% Transformer layers not only reduces train-
ing time but also surprisingly improves Macro
F1 (upto 8%) when compared to fully trainable
layers in few-shot setup. We also observe that
this idea of layer freezing can very well be gen-
eralized to state-of-the-art few-shot text classi-
fication techniques, like DNNC and LM-BFF,
leading to significant reduction in training time
while maintaining comparable performance.

1 Introduction

The immense success of pre-trained language mod-
els (PLMs), such as BERT (Devlin et al., 2019) has
significantly fueled their adoption to several real
world NLP applications. However, the massive pa-
rameterization of these models inherently assumes
access to large training data to fine-tune them for
specific tasks. Collection of such large high qual-
ity annotated data is not only time-consuming but
also a costly exercise. This gives rise to a re-
search stream specifically focused towards develop-

ing techniques that help adoption of these models
in a highly constrained setting, where only a small
annotated dataset is available, a setup commonly
referred to as low resource setting. Recent years
have witnessed significant advancements in pop-
ular low-resource settings like - Weak Supervised
Learning (Zhang et al., 2022; Wang et al., 2019),
Zero-Shot Learning (Zhong et al., 2021; Ye et al.,
2022) and Few-Shot Learning (Brown et al., 2020;
Gao et al., 2021). Despite the success of these tech-
niques, their functioning still remains a mystery.
There has been a significant amount of work done
on interpretability of representations learnt by these
language models in presence of large task-specific
data (Phang et al., 2021; Fayyaz et al., 2021; Kumar
et al., 2021). However, understanding the represen-
tations learnt in presence of few-shot examples is
relatively less studied. Hence, in this paper, we
attempt to compare and contrast the characteristics
of representations learnt by a BERT-style language
model in presence of large as well as few-shot train-
ing examples with the intention to learn better few-
shot models.

Our work is primarily motivated from the find-
ings of Phang et al. (2021), where the authors per-
form a study to investigate the similarities and
differences between the representations learned
by PLMs and task-tuned models. We replicate a
similar analysis on RoBERTa-base model, where
we compare the representations obtained from the
PLM and those obtained by fine-tuning it on SST-
2 task in an oracle setup. We refer to an oracle
setup, as an ideal setting where the entire PLM is
fine-tuned on a specific task in presence of a large
training dataset. We use centered kernel alignment
(CKA; (Kornblith et al., 2019)) to measure similar-
ity of representations as this is also the metric used
by the authors for comparison. We observe that
the representations obtained from initial layers of
a fine-tuned model show high degree of similarity
with those obtained from a pre-trained RoBERTa-
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base model (Figure 1a). On the other hand, the rep-
resentations from later layers highly deviate from
the pre-trained model. This is also coherent with
the observations reported by Phang et al. (2021) on
ALBERT (Lan et al., 2020) model. Additionally,
we compare the similarity of representations ob-
tained from PLM to those obtained by fine-tuning it
with K-shot examples, where we randomly sample
K = 8 training examples per class for fine-tuning.
We find that a similar nature of observations exists
in case of K-shot model (Figure 1b), implying that
most of the task-specific information is learnt in
later half of the Transformer layers irrespective of
the size of training data used for fine-tuning.

Thus, based on the results from Figure 1, we
observe that the representations from models fine-
tuned in both oracle and few-shot setups capture
linguistic properties similar to that of PLMs at the
initial layers. Hence, we conjecture that the ini-
tial layers can be frozen while training models in
few-shot setup. We hypothesize that the reduced
parameter space post such layer freezing would
help learn better few-shot models.

In this work, we perform a comprehensive study
of the impact of freezing specific layers while fine-
tuning language models on six popular sequence
classification tasks in a constrained setup where
we have access to limited dataset of K annotated
examples per class, where K ∈ {8, 16, 32, 64}.
Specifically, our research contributions include:

• We show that initial 50% of the Transformer
layers can be safely frozen while maintain-
ing performance equivalent to or better than
model fine-tuned with fully trainable layers
in a few-shot setup. Our results indicate that
this observation not only holds true for vanilla
fine-tuning but also can be generalized to state-
of-the-art (SOTA) few-shot techniques.

• We observe significant reductions in training
time across K values for SOTA few-shot mod-
els and specifically lower K values for vanilla
fine-tuning. This further helps justify our hy-
pothesis that the reduction in parameter space
due to freezing Transformer layers helps in
faster convergence of the model in a few-shot
setup. Moreover, the reduced training time
further leads to broader environmental impact
due to reduced carbon footprint (Patterson
et al., 2021).

• While simply fine-tuning the classification

Figure 1: CKA similarity matrix based on <s> repre-
sentations for: a) Pre-Trained (X-axis) vs Fine-Tuned
on full training set (Y-axis), b) Pre-Trained (X-axis) vs
Fine-Tuned with 8-shot examples (Y-axis)

head (100% of the Transformer layers frozen)
might seem to be an intuitive choice for train-
ing few-shot models, given the significantly
low size of training data, our experiments
demonstrate that this strategy never helps and
some proportion of Transformer layers are al-
ways required to be trainable.

• Most notably, while there has been a signifi-
cant work on studying the representations of
PLMs and the impact of freezing specific lay-
ers on a variety of NLU tasks, to the best of
our knowledge, this is the first work that stud-
ies these aspects in a few-shot setup.

2 Problem Setup

2.1 Task Formulation

For the purpose of this study, we assume access to
a pre-trained language model, L. The end goal is
to utilize L to learn a text classifierM for task D
with a label space C = {c1, c2, ..., cn}. We further
assume a training set Dtrain for the task D, with
only K training examples per class such that the to-
tal number of training examples, Ktotal = K × |C|
and Dtrain = {xi, yi}Ktotal

i=1 . For model selection
and hyper-parameter tuning, we assume a valida-
tion set Dval which is of the same size as that
of the training set Dtrain, i.e, |Dval| = |Dtrain|.
This constraint is significantly important as it con-
forms to the goal of learning in a low resource
setting. Finally, we assume an access to an un-
seen test set, Dtest = {xtesti , ytesti } for evaluation
ofM on task D. For all our experiments, unless
stated otherwise, we use L = RoBERTa-base and
K ∈ {8, 16, 32, 64}.
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2.2 Datasets

We conduct a systematic study across three binary
classification tasks - CoLA (Warstadt et al., 2019),
SST-2 (Socher et al., 2013) and Subj (Pang and
Lee, 2004) and three multi-class classification tasks
- AG News (Zhang et al., 2015), SST-5 (Socher
et al., 2013) and SNIPS (Coucke et al., 2018). For
AG News and Subj tasks, we do not have readily
available validation sets, Uval . Hence, we ran-
domly sample 20% of the examples from the train-
ing set to create a validation set for these tasks.
For CoLA, SST-2 and SST-5 tasks, we use their
official validation sets. Similarly, for CoLA, SST-
2 and SST-5 we do not have annotated test sets,
Utest. Hence, we randomly sample 10% of the
examples from the training set to create unseen
test sets, whereas we use the official test sets for
AG News and Subj tasks. The remainder of the
training set is referred to as Utrain. For model de-
velopment, we finally obtain subsamples Dtrain

and Dval from Utrain and Uval respectively for
each K ∈ {8, 16, 32, 64} as described in section
2.1 such that Dtrain ⊂ Utrain and Dval ⊂ Uval.
Note that for each of the tasks, we use a com-
mon test set for reporting model performance, i.e.
Dtest = Utest for each K ∈ {8, 16, 32, 64}.

3 Experimental Setup

Based on the findings of Phang et al. (2021) and
our experimental results in Figure 1, we inves-
tigate the impact of freezing Transformer layers
on training a model in a K-shot setup, where
K ∈ {8, 16, 32, 64}. We hypothesize that freez-
ing particular layers would significantly reduce the
parameter space which would in-turn benefit the
process of fine-tuning a PLM specifically when
we are operating in a constrained setup where we
have access to only a limited number of annotated
training examples. In order to test this hypothe-
sis, we freeze the first N% of Transformer lay-
ers while fine-tuning L on task D. Specifically,
we start with N = 0 which resembles fully train-
able Transformer layers and sequentially vary N in
steps of 25. We continue this until N = 100 where
we freeze the entire RoBERTa architecture allow-
ing only the classification head to train. We study
this setup on both vanilla fine-tuning and state-of-
the-art (SOTA) few-shot techniques for fine-tuning
RoBERTa-base model on each of the benchmark
datasets described in Section 2.2.

3.1 Vanilla Fine-Tuning

Given a pre-trained language model L and text se-
quence x, we first obtain a tokenized sequence x̄.
Each sequence x̄ is prefixed with a start of sentence
token <s> and suffixed with end of sentence to-
ken </s>. The language model L is then used
to map x̄ to a sequence of hidden states hp, such
that hp ∈ Rd, where d = dimensionality of the
hidden vector space. For fine-tuning the model
on task D, we add a task specific classification
head, softmax(Wh<s>) , which returns a prob-
ability distribution over the label space C. Here,
W ∈ R|C|×d represents the randomly initialized
weights at the start of the training, whereas h<s> is
the hidden vector representation of <s> token. We
further freeze N% of layers as per the approach
described in Section 3. Finally, we train the en-
tire network for a maximum of 10 epochs on a T4
GPU to minimize the cross-entropy loss. How-
ever, during training, we use early stopping criteria,
where we utilize validation loss as the metric to
choose the best checkpoint. Specifically, we stop
the training, if validation loss does not improve
for five consecutive evaluation steps. We perform
a hyper-parameter sweep over the range - learn-
ing rate ∈ {1e − 5, 5e − 5, 1e − 4}, batch size
∈ {4, 8, 16, 32} and choose the best setting as eval-
uated on Dval. Additionally, it is well-known that
fine-tuning based on small data suffers from insta-
bility and the results may significantly vary based
on choice of data split (Zhang et al., 2021). Hence,
we report average performance and training times
across 5 different Dtrain and Dval splits.

We specifically use vanilla fine-tuning approach
for our experiments because it coheres with the
standard fine-tuning of language models and is usu-
ally quoted as a baseline in SOTA few-shot tech-
niques. Hence, benchmarking our methodology
on vanilla fine-tuning allows us an opportunity to
test the limits to which the performance of such a
simple yet effective system can be pushed to.

3.2 SOTA Few-Shot Classification

In order to investigate the generalizability of our
observations, we validate our experimental set-
tings with layer freezing on following SOTA few-
shot techniques. We utilize the original code-base
open-sourced by the authors for the following tech-
niques and report the results in terms of Macro F1
and training times as obtained from their training
pipelines.
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Figure 2: Comparison of Macro F1 (Y-axis) using vanilla fine-tuning post freezing of Transformer layers. In about
77% of the settings with upto 50% layers frozen, we observe an improvement in Macro F1 over fully trainable setup.

3.2.1 DNNC

DNNC (Zhang et al., 2020) is a state-of-the-art
model that leverages nearest neighbor classifica-
tion schema to perform few-shot text classification.
Specifically, it uses the training data to create pos-
itive and negative examples that include ordered
pairs of training data points belonging to the same
class and different classes, respectively. It further
uses BERT-style model pre-trained on natural lan-
guage inference (NLI) task to fine-tune a binary
classifier to estimate the best matching training
example for a user input. The matched training
example is then used to infer output class label. We
specifically choose this model for benchmarking
our setup since it is one of the commonly adopted

few-shot techniques that demonstrated comparable
performances in few-shot and oracle setups.

3.2.2 LM-BFF

We utilize LM-BFF (Gao et al., 2021), that uses
a prompt-based approach to fine-tune a PLM in
few-shot setup. A prompt refers to a human or ma-
chine generated natural language instruction that
is indicative of the underlying task that a PLM is
supposed to be fine-tuned on. Specifically, LM-
BFF augments the input with a prompt consisting
of a <mask> token. This re-formulates the text
classification task into a masked language mod-
elling (MLM) task, wherein L can be fine-tuned
using MLM objective to maximize the probability
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Figure 3: Comparison of training time (Y-axis) using vanilla fine-tuning post freezing of Transformer layers. In 79%
of the settings with K = 8 and K = 16, we observe an improvement in training time over fully trainable setup.

of predicting the word that best resembles the task
label corresponding to the input. We choose this
approach for our benchmarking since it resulted in
state-of-the-art performance over standard few-shot
fine-tuning techniques. Moreover, prompt-based
setups are becoming increasingly popular in the
field of few-shot learning and benchmarking on
LM-BFF allows us to validate the generalizability
of our proposed method on recent approaches.

4 Results and Discussions

The results obtained from experiments with vanilla
fine-tuning and few-shot classification methods
have been summarized in Figures 2, 3, 4 and 5.

4.1 Effect of Freezing Layers on Vanilla
Fine-Tuning

4.1.1 On Model Performance

For SST-2 task, we observe that freezing 25% and
50% of Transformer layers outperforms fully train-
able setup by an absolute margin of 6% and 5%
in Macro F1, respectively for K = 8 (refer Fig-
ure 2). A similar trend is also observed for higher
values of K (=16, 32 and 64) where freezing upto
50% of Transformer layers consistently improves
Macro F1 over fully trainable setup by a margin
of upto 6%. This implies that the reduction in pa-
rameter space indeed benefits fine-tuning when we
are operating in a few-shot setup. This further co-
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Figure 4: Comparison of Macro F1 (Y-axis) using few-shot methods post freezing of Transformer layers. In 81% of
the settings experimented above, we observe an improvement in Macro F1 over fully trainable setup.

heres with our observations in Figure 1, where the
representations obtained from initial layers of task-
tuned model show a high degree of similarity with
those obtained from the pre-trained model. Thus,
making these layers trainable does not help learn
any additional properties specific to the SST-2 task,
instead it hurts the performance when trained in a
few-shot setup. Furthermore, we observe a simi-
lar trend for other tasks (AG News, SST-5, CoLA,
Subj and SNIPS) where freezing upto 50% of the
transformer layers generally results in comparable
or better performance. This further strengthens our
claim that the first 50% of the Transformer layers
can be safely frozen while fine-tuning the model in
a few-shot setup.

Interestingly, further freezing of layers (>50%)
starts showing a downward trend in Macro F1 over
SST-2 task for K ∈ {8, 16, 32, 64} implying that
freezing these layers prevents the model from learn-
ing information useful for the task, which it was
able to learn when only 50% of the layers were
frozen. These observations are consistent with our
findings in Figure 1, where the representations from
later half of the Transformer layers show stark dis-
similarity with those from the PLM implying that

these layers are primarily responsible for learning
task-specific information. Specifically, when we
freeze 100% of the Transformer layers, we observe
that the results show strong alignment with the
above findings where it consistently leads to lower
performance compared to other setups. It is a com-
mon practice to freeze the entire encoder while
allowing only the classification head to be trainable
while working with low resource setups. Surpris-
ingly, our results suggest that this approach leads
to sub-optimal results on all our datasets and one
can achieve significantly better results with partial
or no layer freezing.

On the other hand, when we freeze 75% of the
layers, we see some uncertainty in the trend across
tasks and K-values. We hypothesize that this could
either be due to proximity to the inflection point
where the behavior between similarities of rep-
resentations between task-tuned and pre-trained
model changes or due to certain characteristics in
the similarity pattern that are peculiar to specific
tasks. However, we leave this idea for further ex-
ploration as a part of future work.
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Figure 5: Comparison of training time (Y-axis) using few-shot methods post freezing of Transformer layers. In
100% of the settings experimented above, we observe an improvement in training time over fully trainable setup.

4.1.2 On Model Convergence

For SST-2 task, we observe that increasing the num-
ber of frozen layers from 0− 100% leads to a de-
creasing trend in training times for lower values of
K(= 8, 16). Since we are using early stopping cri-
teria, this ensures that we are specifically looking
for convergence of the evaluation loss. Thus, the re-
duction in training time is not only due to reduced
computations due to layer freezing but also an ef-
fect of faster convergence due to the reduced param-
eter space. Moreover, we observe a similar trend
for other datasets which further strengthens our
claim that layer freezing results in reduced training
time for vanilla fine-tuning. We do observe certain
exceptions, for example higher training time on
CoLA for K = 16 with 100% frozen layers which
could be due to the general instability of few-shot
setups (Zhang et al., 2021; Dodge et al., 2020).

Furthermore, for higher values of K, we observe
a mixed trend in training time with increasing num-
ber of frozen layers. This is primarily because
higher K leads to more gradient updates leading to
higher possibility of deviations from local optima
thus affecting the model convergence. We consis-
tently observe this uncertainty in training times for

higher values of K across tasks.

4.2 Effects of Freezing Layers on SOTA
Few-Shot Classification Techniques

We further investigate the generalizability of pro-
posed layer freezing approach on SOTA few-shot
techniques. Based on our experimental results on
vanilla fine-tuning, we observe that freezing be-
yond 50% of the layers generally degrades perfor-
mance across our experiments (Figure 2). Hence,
we only experiment with freezing upto 50% of the
Transformer layers in case of SOTA few-shot mod-
els. We observe a similar trend in Macro F1 where
freezing upto 50% of the layers generally leads to
comparable performance. Moreover, freezing lay-
ers leads to significant drop in training time across
tasks and K values implying that reduced parame-
ter space consistently helps in faster convergence
even in case of SOTA few-shot techniques. Refer
to figures 4 and 5 for detailed results 1.

4.3 Meta Analysis and Key Takeaways
Table 1 consolidates a summary of absolute gains in
Macro F1 and training time with layer freezing for

1We also extend the study to CoLA and Subj tasks and
observe directionally similar results
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25% Layers Frozen 50% Layers Frozen
SST-2

K Vanilla
Fine-Tuning DNNC LM-BFF Vanilla

Fine-Tuning DNNC LM-BFF

∆F1 ∆Time ∆F1 ∆Time ∆F1 ∆Time ∆F1 ∆Time ∆F1 ∆Time ∆F1 ∆Time

8 8.25 56 0.01 12 0.34 39 6.89 66 0.03 21 2.33 49
16 1.60 27 3.69 16 0.11 34 1.92 26 2.18 30 1.82 45
32 2.37 19 1.47 17 2.77 36 2.62 37 1.64 32 2.40 35
64 3.57 30 -0.11 16 0.06 42 7.49 46 0.44 32 0.35 40

AG News
8 -1.15 18 4.00 10 3.26 29 1.93 42 1.34 27 3.57 42

16 2.56 28 3.38 8 0.07 33 4.12 62 3.75 28 0.37 42
32 2.22 41 0.17 7 -0.94 22 2.28 68 2.33 27 -1.63 30
64 1.91 28 -0.64 8 0.49 14 2.32 27 -2.04 27 -0.38 13

Table 1: Comparison of layer freezing strategy across modelling setups averaged across 5 different data splits. How
to read the table?: Let MN be a K-shot model fine-tuned over PLM, L, with N% of the Transformer layers
frozen. (Note that, M0 implies a model with all Transformer layers trainable.) Say, M0 achieves a Macro F1 of
S0% with a training time of T0 seconds and MN achieves a Macro F1 of SN% with a training time of TN seconds,
where N ∈ {25, 50}. We quote the improvement in Macro F1 with N% layer freezing over fully trainable setup as

∆F1 = 100× SN − S0

S0
%. Additionally, we quote the improvement in training time as ∆Time = 100× T0 − TN

T0
%.

Also, a negative value of ∆F1 implies layer freezing degrades the performance as compared to fully trainable setup.

SST-2 and AG News tasks across our experimental
setups. Following are some of the macro-level
insights and takeaways from the analysis:

• In 85% (41 out of 48) of the settings we exper-
imented with, we observe that freezing upto
50% of the layers results in performance bet-
ter than fully trainable setup. Specifically, we
observe that 81% (26 out of 32) of the setups
with DNNC and LM-BFF outperform fully
trainable setup. This further reinforces that
proposed layer freezing can very well be gen-
eralized to SOTA few-shot models.

• We obtain upto 56% and 68% reduction in
training time with vanilla fine-tuning and
SOTA few-shot methods respectively, which
reinforces that freezing transformer layers
leads to faster convergence. Resulting im-
provement in training efficiency leads to a
significant reduction in carbon footprint (Pat-
terson et al., 2021).

• Finally, we note that the reduced parameter
space due to freezing of Transformer layers
prevents the representations from losing out
on the universal linguistic properties learnt by
the pre-trained language model due to over-
fitting on few-shot examples, while allow-
ing more freedom for later layers to learn
task-specific features from few-shot exam-
ples. While, we observe degradation in per-

formance with layer freezing in 6 settings us-
ing DNNC and LM-BFF, we note that 4 of
these settings deviate marginally (less than
1%). We hypothesize that this could be due to
use of default hyperparameters in the training
pipelines released by the authors. We believe,
an exhaustive hyperparameter sweep can help
eliminate these inconsistencies.

5 Prior Work

Recent years have seen significant development in
the field of language modelling using Transformer
(Vaswani et al., 2017) based models like GPT (Rad-
ford and Narasimhan, 2018), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), etc. A number
of studies have been conducted to identify better
techniques to fine-tune these models on NLU tasks
in both oracle and few-shot settings. Dodge et al.
(2020), Lee et al. (2020), Zhang et al. (2021) fo-
cus on regularization techniques that help stabilize
the fine-tuning of BERT-style models. Specifically,
Zhang et al. (2021) demonstrate that standard pro-
cess of fine-tuning for fixed epochs is sub-optimal
for BERT-like models especially in few-shot set-
ting and hence training for large epochs is required.
Further, Dodge et al. (2020) show that fine-tuning
on small datasets often leads to divergence during
training and a simple yet effective approach like
early stopping can lead to a better model selection.

Due to the tedious and time-consuming nature
of data collection process, few-shot learning has
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recently started gaining popularity. Zhang et al.
(2020) propose DNNC, a nearest neighbor classi-
fication approach that uses NLI-style training to
predict if two inputs belong to the same class. Ad-
ditionally, Gao et al. (2021) use a prompting based
approach to fine-tune a pre-trained language model
in few-shot setup leading to state-of-the-art perfor-
mance without introducing any new parameters.

Parallelly, there has been a surge in works on
interpretability of language models and understand-
ing the patterns in representations learnt by them.
Li et al. (2020) probe attention heads to understand
certain linguistic patterns learnt by BERT. Kumar
et al. (2021) design probing tasks to investigate the
ability of BERT-based language models in under-
standing properties in spoken language. Fayyaz
et al. (2021) discover different localizations of lin-
guistic properties learnt by ELECTRA (Clark et al.,
2020) and XLNET (Yang et al., 2019). On the
other hand, Phang et al. (2021) perform a layer
wise comparison of representations learnt by pre-
trained and task-tuned models. While they perform
an extensive analysis to compare the models in a
setup where a large training data is available, the
validation of these findings in the few-shot setup is
largely unexplored.

6 Conclusions

In this work, we compare the representations ob-
tained from intermediate Transformer layers of
RoBERTa-base model and task-tuned models in
few-shot setup and discover that the linguistic prop-
erties learnt by pre-trained and task-tuned models
at the initial layers are very similar and hence can
potentially be frozen for training models in few-
shot settings. We further study the impact of such
freezing of Transformer layers in a few-shot set-
ting. Our experimental results indicate that freezing
upto initial 50% of the Transformer layers surpris-
ingly leads to performance either comparable to
or better than fully trainable layers in both vanilla
fine-tuning as well as SOTA few-shot models. We
also observe that the reduced parameter space due
to layer freezing leads to faster convergence which
in turn leads to reduction in training time for 8-shot
and 16-shot setups on both vanilla fine-tuning and
SOTA few-shot models across tasks. Specifically,
for few-shot models, this observation can even be
extended to 32-shot and 64-shot setups. Moreover,
layer freezing can be viewed as a medium to fos-
ter sustainable NLP research by reducing carbon

footprint due to improvement in training efficiency.
Finally, our results also establish that a commonly
followed practice of completely frozen encoder
(100% Transformer layers frozen) never helps in
a few-shot setup and a proportion of Transformer
layers are always required to be trainable.

7 Future Work

As discussed in Section 4.1.1, we observe an un-
certainty in performance trends with 75% of the
Transformer layers frozen. In future, we would like
to dive deeper into understanding the potential rea-
sons for such an uncertainty. Additionally, in this
paper, we primarily focused on studying a K-shot
setups with K ∈ {8, 16, 32, 64}, however, we be-
lieve that the idea of partially freezing Transformer
layers can very well be extended to other classes
of low-resource settings, like weak supervision and
hence we would like to further our experiments in
this direction.
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Abstract

We investigate to what extent a hundred pub-
licly available, popular neural language mod-
els capture meaning systematically. Sentence
embeddings obtained from pretrained or fine-
tuned language models can be used to perform
particular tasks, such as paraphrase detection,
semantic textual similarity assessment or natu-
ral language inference. Common to all of these
tasks is that paraphrastic sentences, that is, sen-
tences that carry (nearly) the same meaning,
should have (nearly) the same embeddings re-
gardless of surface form.

We demonstrate that performance varies greatly
across different language models when a spe-
cific type of meaning-preserving transforma-
tion is applied: two sentences should be iden-
tified as paraphrastic if one of them contains a
negated antonym in relation to the other one,
such as I am not guilty versus I am innocent.

We introduce and release SemAntoNeg, a new
test suite containing 3152 entries for probing
paraphrasticity in sentences incorporating nega-
tion and antonyms. Among other things, we
show that language models fine-tuned for natu-
ral language inference outperform other types
of models, especially the ones fine-tuned to pro-
duce general-purpose sentence embeddings, on
the test suite. Furthermore, we show that most
models designed explicitly for paraphrasing are
rather mediocre in our task.

1 Introduction

Large pretrained language language models have
pushed NLP forward in many sub-fields, and their
ability to embed essential linguistic properties
makes them applicable across a wide range of tasks.
However, it is still an open question how well they
cope with systematic compositionality and to what
level of abstraction they reflect the actual meaning
behind a given sentence.

This work is in line with other experiments based
on dedicated test suites that study specific linguis-

tic phenomena in connection with neural represen-
tation models. In particular, we publish a novel
benchmark called SemAntoNeg1, that tests the abil-
ity of language models to properly represent ex-
pressions that contain antonymy and negation, em-
bedded into a paraphrase task.

Our test suite consists of contrastive examples
where the task is to select the correct paraphrase
for a given input sentence among three candidate
expressions that include combinations of negated
sentences and antonym substitutions. To provide
a simple example, a semantic opposite to an in-
put sentence I am guilty would be I am not guilty,
where the opposite meaning is invoked by an in-
sertion of a negation marker. Similarly, instead of
inserting the negation marker, substituting the ad-
jective to its antonym inverses the meaning of the
sentence: I am innocent. To maintain paraphrastic-
ity with respect to the original sentence, performing
both of the operations is necessary, resulting in: I
am not innocent. Thus, for a model to succeed
in the SemAntoNeg test suite, the models need to
understand that insertion or deletion of a negation
accompanied with antonym substitution produces a
sentence that is semantically equivalent to the orig-
inal sentence, and the sentence embeddings should
represent this relationship.

Using this benchmark, we study the following
questions:

• How well do sentence embeddings from
general-purpose language models fare in this
task?

• Does fine-tuning on paraphrase tasks help to
improve the performance on our test suite?

• What is the best fine-tuning task that supports
our benchmark?

1The challenge set is available at: https://github.
com/teemuvh/antonym-substitution
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In order to answer those questions, we systemat-
ically evaluate a large number of publicly available
pretrained language models on the novel test suite.
We notice a large amount of variation between dif-
ferent models, mostly depending on the fine-tuning
objective and data, but, in some cases, also between
models fine-tuned for the same task. Selecting an
appropriate model becomes a challenge consider-
ing the sea of releases available on public model
hubs. Simply selecting among the most popular
ones might be a poor strategy, as we can see in
Table 1.

Model Accuracy
all-MiniLM-L6-v2 1.9
paraphrase-MiniLM-L6-v2 43.3
bert-base-nli-mean-tokens 83.3
all-mpnet-base-v2 31.9
distiluse-base-multilingual-cased-v2 1.5
all-MiniLM-L12-v2 8.2
multi-qa-mpnet-base-dot-v1 17.5
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-mpnet-base-v2 76.1
distilbert-multilingual-nli-stsb-quora-ranking 47.1

Table 1: Testing our new benchmark on the ten most
downloaded models from the Hugging Face sentence-
transformers library in a descending order based on
download counts.

Our analysis below provides new insights into
the semantic abstraction abilities with respect to
antonyms and negation and gives additional guid-
ance for the selection of an appropriate model for
tasks that require proper inference with such con-
structions.

2 Description of the Task

The objective of our test suite is to test to what
extent sentence representation models succeed in
distinguishing sentences similar in meaning when
the change in semantics is realised only by a sub-
stitution of a distributionally similar (Grefenstette,
1992) word token (antonym in this case) or by an
insertion or deletion of a negation marker. Perform-
ing either of the operations results in a sentence
that conveys the semantic opposite of the original
sentence while maintaining a high lexical overlap
between both sentences.

We cast the benchmark in terms of a paraphrase
detection task: a model is confronted with three
alternatives of potential reformulations of an input
sentence and only one of them is a proper equiv-
alent on a semantic level. The candidates are de-
signed to include negations and antonyms of adjec-

tives to create the specific challenge of the test suite.
More details about the data sets and its creation are
given in Section 3 below.

The idea is not to fine-tune any model for this
particular task (because any model would quickly
overfit to such regular constructions) but rather
to test independently trained sentence embedding
models that can be used to measure semantic dis-
tance to make the decision. As such, it is in line
with other natural language understanding bench-
marks such as SentEval (Conneau and Kiela, 2018)
and GLUE (Wang et al., 2018) but it represents
a dedicated linguistic probing task rather than a
general-purpose evaluation framework.

The work is motivated by previous research that
identified deficiencies in the popular sentence repre-
sentation benchmarks. For instance, existing para-
phrase detection data sets (e.g., QQP2) lack exam-
ples that are characterised by a high lexical overlap
without paraphrastic meaning (Zhang et al., 2019).
Classification models can simply learn to measure
lexical overlap to make proper decisions and, there-
fore, Zhang et al. (2019) generate a more difficult
test suite of paraphrases and non-paraphrases with
a high bag-of-words overlap by word scrambling.
The same problem has been observed in natural
language inference, where contradicting sentences
typically exhibit low lexical overlap. Word permu-
tations have been proposed (Dasgupta et al., 2018)
to generate difficult cases that require better knowl-
edge of compositionality.

In our test suite, we go beyond the creation of
more challenging distractors (e.g., better negative
examples with high vocabulary overlaps) by intro-
ducing more challenging positive candidates that
are explicitly different from the source by adding
antonyms from a lexical resource. In connection
with negation, the model is now forced to disregard
surface features (such as matching tokens) and to
properly understand negated messages to make the
correct decision. Thus, we test not only for se-
mantic similarity but also evaluate the ability to
understand the relationship between antonyms as
well as the effect of negation on meaning represen-
tations.

Before discussing the experimental setup (Sec-
tion 4) and the results of our practical experiments
(Section 5), we will present details of the data set
and how it was created in the section below.

2https://www.kaggle.com/c/
quora-question-pairs
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Label Input Options
2 No, that’s true. {No, that’s false., No, that’s not true., No, that’s not false.}
2 I’m guilty. {I’m innocent., I’m not guilty., I’m not innocent.}
2 I’m not sure. {I’m not uncertain., I’m sure., I’m uncertain.}
2 That is good. {That is bad., That is not good., That is not bad.}
2 I know you’re not asleep. {I know you’re not awake., I know you’re asleep.,

I know you’re awake.}

Table 2: Examples from the test suite. Based on the input sentence, the model is supposed to select the equivalent
sentence from the alternative hypotheses in the Options column. Values on the Label column indicate the index of
the true paraphrase in the options column.

3 Data Creation

We created the test suite in a semi-automatic way.
First, we downloaded 1.5 million sentence pairs
from the English training set of the Opusparcus
paraphrase corpus (Creutz, 2018). Next, we re-
moved sentence pairs where the length of either
of the sentences was less than four tokens. Fur-
thermore, we retained only sentence pairs, where
either one, but not both, of the sentences contains
a negation (e.g., I’m innocent. – I’m not guilty.)
After this filtering process, our data consisted of
approximately 7500 sentence pairs. At this point
we realised that, even though many of the sentence
pairs were meaningful for our experiments, our fil-
tered set also contained pairs that were paraphrastic
but did not include antonymous relations, such as
Aren’t you cold? – Are you cold? Therefore, we
proceeded with a second round of filtering, where
we POS-tagged the sentences using NLTK (Bird
et al., 2009) and retained sentences containing ex-
plicit negation (not) as an adverb (RB) as well as
adjectives (JJ). Finally, we removed duplicate sen-
tences. This process resulted in 1317 sentences, all
of which included an explicit negation marker and
an adjective.

For each of the 1317 sentences, we generated
three hypotheses from which the model is supposed
to choose the one that conveys the same meaning
as the input sentence. First, we queried an antonym
for the adjective in the input sentence from the
WordNet Electrical Lexical Database (Fellbaum,
1998) to get a an opposing sentence. To obtain
the second contradicting sentence, we deleted the
negator from the input sentence. Finally, we substi-
tuted the adjective from the second contradicting
sentence to its antonym to obtain the paraphrase of
the input sentence. Examples of entries in the test
suite are provided in Table 2.

We reviewed the resulting test suite manually to

ensure its good quality. The antonym substitution
procedure introduced some grammatical errors to
the data, such as wrong agreement of articles (a
evil idea) or a question tag not agreeing with the
main clause (You’re not serious, aren’t you?). We
corrected such phrases manually. The sentences
also included some examples where the automat-
ically retrieved antonyms were not considered to
carry opposite meanings, such as Are you hungry?
– Are you not thirsty? We removed such examples
from the final test suite.

Eventually, we obtained 788 examples, from
which we permuted all possible input sentences to
result in 3152 test examples, containing 209 unique
adjectives, which constitute the SemAntoNeg test
suite.

4 Experimental Setup

To compare sentence representations derived from
different Transformer-based pretrained language
models, we ran 114 of the 120 pretrained Sentence-
BERT (Reimers and Gurevych, 2019) models that
are publicly available in the Hugging Face trans-
formers library (Wolf et al., 2020).3 We provide the
full list of the models we tested accompanied with
the accuracy they acquired on the SemAntoNeg test
suite in Appendix A.

We embed the sentences in our test suite using
the different language models. To create the em-
beddings we apply the same pooling strategy used
in training the original sentence-transformers. We
then evaluate each model by its ability to produce
embeddings such that the input sentence and its
true paraphrase are closest to each other in the vec-
tor space. To compare embeddings we use cosine
similarity.

Basically, we have run a systematic loop over all

3We did not include four image-to-text models, nor did we
include two T5-xxl models that we could not fit into the GPU.
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Figure 1: Results of the different model types. The
accuracy [%] of the models is labeled on the y-axis
and the different model types are labeled on the x-
axis. “Generic” refers to the general-purpose models
fine-tuned for a large range of transfer tasks. “Para-
phrase”, “NLI”, and “STSB” refer to models fine-tuned
for paraphrase detection, natural language inference,
and semantic textual similarity, respectively.

available models but we are especially interested in
specific groups of models, which we will discuss
next. First of all, we want to see the performance
of general-purpose models before looking at dedi-
cated paraphrase models. Finally, we discuss other
task-specific models before we present a detailed
error analysis and conclude with prospects for fu-
ture work.

5 Results

We analyse the results of our experiments by group-
ing the language models into four different cate-
gories, determined by the fine-tuning objective of
the models: general-purpose embeddings, as well
as embeddings specialised for paraphrasing, natural
language inference and semantic textual similarity.
Figure 1 shows average accuracies and variances
for these four types of models. Individual results
of all models are provided in Appendix A.

Since there are three possible choices in our task,
a random selection yields a baseline level of 33.3%
accuracy. We observe models that diverge clearly
from the baseline level, either positively or nega-
tively. This means that many tested models make
good or bad choices systematically. We return to
these findings in the error analysis in Section 6.
The following sections summarise the analyses of
the separate model groups.

Model Accuracy
sentence-t5-xl 81.2
sentence-t5-large 78.4
sentence-t5-base 67.2
all-roberta-large-v1 35.4
all-mpnet-base-v2 31.9
all-mpnet-base-v1 25.1
all-distilroberta-v1 18.5
all-MiniLM-L12-v1 9.7
all-MiniLM-L12-v2 8.2
all-MiniLM-L6-v1 3.1
all-MiniLM-L6-v2 1.9

Table 3: Results of the general-purpose models. The
dashed line represents results from random choice
(33.3%)

5.1 General-Purpose Sentence
Representations

Table 3 provides results on the general-purpose
sentence representation models. These mod-
els are trained to generate representations that
have the capacity to be highly useful for a large
range of natural language understanding tasks.
When extensively evaluated on different bench-
marks related to sentence embeddings and seman-
tic search, the aggregated results reported on the
sentence-transformers website indicate good per-
formance.4 The performance on the SemAntoNeg
test suite probing for understanding of negation
and antonymy, however, suggests that especially
the fine-tuned general-purpose models lack in this
crucial aspect of natural language understanding.

The T5 models (Raffel et al., 2020) are not fine-
tuned for any specific objective. The all-* models,
instead, are fine-tuned for a wide range of natural
language understanding tasks and are thus expected
to produce general-purpose sentence embeddings
that have the capacity to capture a diverse range
of linguistic properties in order to be successful in
different transfer tasks. Analysis of the predicted
sentences from the only fine-tuned general-purpose
model that outperforms the random baseline (all-
roberta-large-v1) suggests that the model is prone
to predicting the sentence with the highest lexi-
cal overlap while ignoring the negation. Thus, the
model often predicts the semantic opposite of the
input sentence by simply connecting lexical simi-
larity with semantic similarity, which explains the

4https://www.sbert.net/docs/
pretrained_models.html
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Model Accuracy
paraphrase-multilingual-mpnet-base-v2 79.9
paraphrase-mpnet-base-v2 76.1
paraphrase-TinyBERT-L6-v2 72.1
paraphrase-distilroberta-base-v2 68.4
quora-distilbert-base 67.2
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-albert-small-v2 60.8
paraphrase-albert-base-v2 58.7
paraphrase-MiniLM-L12-v2 55.9
quora-distilbert-multilingual 47.1
paraphrase-MiniLM-L6-v2 43.3
paraphrase-xlm-r-multilingual-v1 23.9
xlm-r-distilroberta-base-paraphrase-v1 23.9
paraphrase-distilroberta-base-v1 19.4
paraphrase-MiniLM-L3-v2 0.03

Table 4: Results [%] of the models fine-tuned for para-
phrase detection. The dashed line represents results
from random choice (33.3%)

poor performance.

5.2 Paraphrase Models
We report the results of the paraphrase models on
the test suite in Table 4. One would expect the
paraphrase models, whose objective is to recognise
sentences that carry the same meaning but use a
different wording (Bhagat and Hovy, 2013) to be
successful on our test suite. This is, however, not
the case for all of the models, and none of the
models actually outperform the best performing
general-purpose model.

The paraphrase models seem to vary greatly in
their ability to generate representations that cap-
ture meaning regardless of surface form. Some of
the differences between the results can be traced
back to the data used for fine-tuning the models.
For instance, the two distilled implementations of
RoBERTa (Liu et al., 2019) perform very differ-
ently on the test suite (19.4% vs. 68.4%). How-
ever, “version 2” (paraphrase-distilroberta-base-
v2), which obtains the higher accuracy, was fine-
tuned with much more training examples5.

Some of the variation can be traced back to the
methodology, such as with the MiniLM models
(Wang et al., 2020). The difference in performance
between the MiniLM models may be explained by
the layer from which the representations are ex-
tracted. Previous research has demonstrated how
Transformer-based models accumulate different
types of knowledge on different layers, semantics
being predominantly encoded in the last layers of
the network (Jawahar et al., 2019). The results

5https://www.sbert.net/examples/
training/paraphrases/README.html

Model Accuracy
roberta-large-nli-mean-tokens 93.6
roberta-base-nli-mean-tokens 89.5
bert-large-nli-mean-tokens 87.4
nli-bert-large-cls-pooling 86.8
nli-bert-large-max-pooling 86.4
xlm-r-large-en-ko-nli-ststb 85.4
xlm-r-bert-base-nli-mean-tokens 83.9
bert-base-nli-cls-token 83.7
bert-base-nli-mean-tokens 83.3
nli-distilbert-base-max-pooling 83.2
distilbert-base-nli-mean-tokens 81.2
bert-base-nli-max-tokens 80.8
nli-roberta-base-v2 79.6
nli-mpnet-base-v2 74.1
nli-distilroberta-base-v2 66.6

Table 5: Results [%] of the models that are fine-tuned
for natural language inference.

obtained for the MiniLM models are in line with
the previous findings: embeddings from layer 12
outperform embeddings from layer 6, which in
turn outperform embeddings from layer 3. To
a smaller extent, the same effect is seen on the
general-purpose models (Table 3) where the repre-
sentations derived from the MiniLM models per-
form differently based on the layer they are ex-
tracted from.

5.3 Other Fine-Tuning Objectives

In addition to paraphrasing, we hypothesise that
models which have been fine-tuned on other similar
objectives could perform well on the SemAntoNeg
test suite.

Table 5 provides results for all models fine-tuned
for natural language inference (NLI) that are avail-
able in the sentence-transformers library. Natural
language inference probes the model for recognis-
ing whether an input sentence (the premise) entails,
contradicts or is neutral with respect to another
sentence (the hypothesis).

Compared to the general-purpose models (Table
3) and the paraphrase models (Table 4), the NLI
models are, for the most part, considerably more
successful on the test suite. The success of the NLI
models might arise due to a more prominent use of
negation in the training data, giving a model more
knowledge about the proper treatment of such con-
structions. Furthermore, models trained for NLI
have been shown to understand the effect of ex-
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Model Accuracy
stsb-bert-large 83.3
stsb-roberta-large 82.4
stsb-roberta-base 80.3
stsb-xlm-r-multilingual 79.8
stsb-bert-base 77.3
stsb-distilbert-base 76.5
stsb-roberta-base-v2 70.8
stsb-mpnet-base-v2 70.2
stsb-distilroberta-base-v2 58.7

Table 6: Results [%] of the models fine-tuned for the
Semantic textual similarity benchmark.

plicit negation (i.e., not) to the sentence semantics
rather well (Kim et al., 2019). Additionally, en-
tailment examples may get very close to instances
in our test suite and, in this way, provide better
support for the expressions we test. Paraphrase
data sets, on the other hand, tend to emphasise
the use of synonyms and therefore fail to learn a
better treatment of negation and antonyms. Even
though NLI models seem to be successful on our
test suite, they do not necessarily perform well on
other paraphrase tasks. BERT-large fine-tuned for
NLI obtains 87.4% accuracy on the SemAntoNeg
test suite, while only reaching 75.9% on the Mi-
crosoft Research Paraphrase Corpus (Reimers and
Gurevych, 2019), where the best-performing mod-
els fine-tuned explicitly for paraphrasing obtain
results exceeding 90% accuracy (e.g., fine-tuned
RoBERTa achieves 92.3% on that task (Liu et al.,
2019)). In future work, we will investigate the
qualitative difference in training data in more depth
in order to provide a better picture about the in-
fluence of fine-tuning objectives on SemAntoNeg
performance.

In addition to NLI, we believe that fine-tuning
sentence representation models on the Semantic
Textual Similarity Benchmark (STSB) data (Cer
et al., 2017) can produce embeddings that can dis-
tinguish between semantically similar sentences re-
gardless of their surface forms and be successful on
the test suite. The results of the models fine-tuned
for STSB are presented in Table 6. The STSB data
is designed to comprise sentences that share some
level of semantic similarity, and the task probes the
representations for “gradations of meaning overlap”
(Agirre et al., 2016; Cer et al., 2017). Fine-tuning
on the STSB data potentially encourages models to
learn more fine-grained (dis-)similarities from the

Model Accuracy
roberta-large-nli-mean-tokens 93.6
roberta-base-nli-mean-tokens 89.5
bert-large-nli-mean-tokens 87.4
nli-bert-large-cls-pooling 86.8
nli-bert-large-max-pooling 86.4
xlm-r-large-en-ko-nli-ststb 85.4
xlm-r-bert-base-nli-mean-tokens 83.9
bert-base-nli-cls-token 83.7
bert-base-nli-mean-tokens 83.3
stsb-bert-large 83.3
bert-large-nli-stsb-mean-tokens 83.3
distilbert-base-nli-max-tokens 83.2

Table 7: Results [%] of the best performing models.

sentence pairs, which is valuable for succeeding in
the SemAntoNeg test suite.

The sentence-transformers library also includes
models that are not suited to the SemAntoNeg task
by design. Such models include for instance mod-
els trained for machine reading comprehension and
question answering on the MS MARCO data set
(Bajaj et al., 2016). The results of these models are
included in Appendix A, and affirm the hypothesis
that the models are not suitable for this task.

6 Error Analysis

We have analysed misclassified examples from a
set of different models. Naturally, the errors the
best-performing models make differ from the ones
made by the worst-performing models.

We have studied an intersection of the examples
that were misclassified by all of the best models
(listed in Table 7). Antonym pairs that are rare
and highly contextual seem to be difficult for the
models. For instance, the antonym pair possible –
actual (e.g., in the sentence pair No, that’s actual. –
No, that’s not possible.) is very often misclassified.
The antonym pair possible – actual comprises the
majority of the common misclassified examples of
the best performing models: 70 out of 105 exam-
ples. The antonym pair is retrieved from WordNet,
but in the test suite they rarely occur in a natural
context (in which they would refer to a possibil-
ity, as opposed to an actual event). The example
would probably demand some contextual priming
for the models to be able to connect the relationship
between the antonyms.

Another frequently shared incorrectly predicted
antonym pair includes the words same and other
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Figure 2: The best and the four worst performing para-
phrase models. Labels in the test suite are presented on
the x-axis. The number of times the labels are predicted
by the models is presented on the y-axis. Labels 0 and 1
denote errors, 0 meaning sentences where only antonym
substitution is performed, and 1 meaning only polarity
swap (insertion or deletion of negation). Label 2 indi-
cates that both operations are performed, which is the
correct choice.

in the definite form, for instance: It is not the
same. – It is the other. Here, the definite form
the other could be the cause of incorrect predic-
tions, whereas a more suitable opposing relation
could be expressed using for example some as an
indefinite article as in some other. The antonym
pair the same – the other comprises 17 of the re-
maining 35 incorrectly predicted examples shared
by the best performing models.

A bar chart of the best paraphrase model and the
four paraphrase models that obtain accuracy below
random choice is presented in Figure 2. The results
indicate that the poor performance of the worst
paraphrase models is explained by them systemati-
cally preferring the sentence with the highest lexi-
cal overlap disregarding the negation completely,
which is reflected by a high proportion of label 1
in the figure. The trend seems similar for the other
models whose accuracies are below random choice.
Compared to the models that perform well, the
poorly performing models seem more prone to as-
sociating lexical similarity with semantic similarity,
leading them to predict the sentence with the oppo-
site meaning with respect to the input sentence.

7 Limitations

The test suite comes with some limitations that we
find important to discuss. We acknowledge that
the proposed task is not difficult to solve using a

simple rule-based model and that it is rather easy
to overfit a neural network-based model to the data.
Therefore, the kind of data the test suite instantiates
is supposed to be used for evaluating models by
probing sentence representations for the certain
kinds of linguistic phenomena exclusively.

The test suite includes overrepresentation of cer-
tain frequent adjectives. The adjective good occurs
more than 270 times in the input sentence, whereas
some rarer adjectives, such as opaque only occur
twice. Adding more unique adjectives to make the
data even more representative and balancing the
data is left for future work.

Another caveat of the test suite is that for now it
only probes the sentence representations for a set
of negated antonyms that belong to the adjective
class. As some of the other word classes also in-
clude words that have a related opposing concept
(e.g., accept – reject in the verb class), and it would
be equally important to assess how language mod-
els understand the relation of the words in other
word classes. Additionally, the test suite consists
only of one certain negation pattern: not + adjec-
tive. Adding examples with more variable negation
patterns would require an adapted filtering method
to extract the sentences from a paraphrase corpus
or more manual work to ensure high-quality para-
phrases of the sort (e.g., I walked – I didn’t stand
still.) Augmenting the test suite with test examples
of more varied negation patterns, as well as antony-
mous tokens from different word classes is left for
future work.

8 Related Work

Previous work has focused on understanding nega-
tion, on the one hand, and antonymy, on the other.

Kassner and Schütze (2020) show that pretrained
language models (Transformer-XL (Dai et al.,
2019), ELMO (Peters et al., 2018) and BERT (De-
vlin et al., 2019) in this case) are poor at recognis-
ing the difference between a sentence in affirmative
or negative form when they are queried with a neg-
ative cloze test, and are prone to predict the same
token regardless of the polarity of the sentence.
Ettinger (2020) study how BERT understands nega-
tion with similar minimal pairs to our test suite.
However, they probe BERT for predicting one word
token in a sentence pair where one sentence is a
negated version of the other (e.g., Most smokers
find that quitting is very __. – Most smokers find
that quitting isn’t very __.) BERT does not seem to
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be highly robust for the transformation, and it does
not seem that negation alone suffices to prime the
model for systematically predicting the opposite of
the prediction in the affirmative sentence (Ettinger,
2020).

Hossain et al. (2020) show that NLI models are
not robust to negation by analysing models on a
new benchmark designed to assess how models
understand negation. In a similar spirit, assessing a
multilingual language model fine-tuned for NLI on
a test suite of minimal pairs of label-changing and
label-preserving negations, Hartmann et al. (2021)
find that multilingual language models are not fully
aware of the effects that a negation marker can
have on sentence semantics. Furthermore, NLI
models’ difficulty to represent negations reliably
has been traced to training data, suggesting that
models trained on SNLI (Bowman et al., 2015) or
MNLI (Williams et al., 2018) do not properly learn
to reason with expressions that include negation
(Geiger et al., 2020; Richardson et al., 2020).

Kim et al. (2019) analyse different pretraining
objectives for predicting textual entailment on var-
ious function word probing tasks, one of which
assesses models’ understanding of negation in a
similar manner to our test suite. They find that
the natural language inference models outperform
other pretraining objectives in representing nega-
tion, mostly owing to NLI models’ capability to
represent explicit negation. However, analysis of
examples that were difficult for a state-of-the-art
NLI model has suggested that antonymy and nega-
tion are challenging phenomena to represent reli-
ably, as models do not recognise antonymous rela-
tions as semantically opposing and may associate
explicit negation to contradiction in neutral or en-
tailed examples (Naik et al., 2018).

In addition to analysing language models’ under-
standing of natural language in textual entailment,
representation of antonyms has been studied for
instance by comparing the mapping of negated ad-
jectives in vector space (Rimell et al., 2017). BERT
has also been adapted to perform a cloze problem
for predicting antonyms in context (Niwa et al.,
2021).

Additionally, previous research has focused on
learning vector-based representations of word se-
mantics that can model the relationship between
distributionally similar but semantically opposing
words better (e.g., Pham et al., 2015; Ono et al.,
2015). Jumelet and Hupkes (2018) study how lan-

guage models understand semantic compositional-
ity with respect to contrasting meanings but focus
on transformations of (negative) polarity items.

9 Conclusions

We have presented a novel test suite, SemAntoNeg,
designed to probe pretrained language models for
the understanding of the relationship between nega-
tion and antonymy. Contradicting examples in the
test suite are close to the input by design and lead
to a challenging benchmark. In order to succeed
on our test suite, a model needs to recognise the se-
mantic opposites invoked either by antonym substi-
tution or by an insertion or a deletion of a negation
marker. Equally, the model needs understanding of
semantic compositionality to understand how the
operations affect semantics of the sentence when
performed together.

We have evaluated publicly available pretrained
sentence representation models and reported re-
sults that display a large amount of variation when
assessed on the new test suite. Surprisingly, ded-
icated paraphrase models are not among the best
performing models and deliver rather poor results
in many cases, whereas fine-tuning to natural lan-
guage inference seems very beneficial for the task.
General-purpose models are overall not very good
at recognising our examples either, except for re-
cent very large multi-task models such as T5-xl.

Our findings highlight that models that fare
well in established natural language understanding
benchmarks may still have crucial deficiencies in
representing certain, rather typical, linguistic con-
structions and may produce critical mistakes. As a
result, more structured test suites are necessary for
assessing how the pretrained models understand
language. This paper provides another contribution
in that direction.

There are various avenues in future work we
would like to explore. First of all, we need to fur-
ther test the scaling effects when moving to very
large language models such as GPT-3 (Brown et al.,
2020). The T5 results already indicate that size mat-
ters but it is too early to draw general conclusions.
Furthermore, we plan to investigate prompting as
an alternative to vector similarity. However, prompt
engineering is a challenging task in itself and we
will need to explore the influence of prompts on
results we can expect. Finally, we would also like
to move to other languages and potentially cross-
lingual setups.
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A Results of All Models

Results of the 114 Transformer-based models from
the Hugging Face Transformers library on the test
suite.

Model Accuracy
msmarco-distilbert-base-tas-b 0.0
multi-qa-MiniLM-L6-cos-v1 0.3
all-MiniLM-L6-v2 1.9
multi-qa-distilbert-cos-v1 1.4
all-MiniLM-L12-v2 8.2
all-distilroberta-v1 18.5
multi-qa-mpnet-base-dot-v1 17.5
all-mpnet-base-v2 31.9
paraphrase-MiniLM-L3-v2 0.0
paraphrase-albert-small-v2 60.8
sentence-t5-base 67.2
distiluse-base-multilingual-cased 1.5
distilroberta-base-msmarco-v1 1.7
nli-bert-large-cls-pooling 86.8
xlm-r-base-en-ko-nli-ststb 79.5
bert-large-nli-cls-token 86.8
nli-distilbert-base-max-pooling 83.2
nli-bert-large-max-pooling 86.4
xlm-r-bert-base-nli-mean-tokens 83.9
msmarco-roberta-base-v2 4.3
distilbert-base-nli-max-tokens 83.2
xlm-r-100langs-bert-base-nli-mean-tokens 83.9
msmarco-MiniLM-L-12-v3 0.0
msmarco-MiniLM-L12-cos-v5 0.0
nli-distilbert-base 81.2
xlm-r-large-en-ko-nli-ststb 85.4
quora-distilbert-base 67.2
facebook-dpr-question_encoder-single-nq-base 6.8
facebook-dpr-question_encoder-multiset-base 5.9
nli-bert-base 83.3
bert-large-nli-max-tokens 86.4
msmarco-roberta-base-ance-firstp 3.1
bert-base-nli-cls-token 83.7
stsb-bert-large 83.3
facebook-dpr-ctx_encoder-multiset-base 9.4
bert-large-nli-stsb-mean-tokens 83.3
multi-qa-MiniLM-L6-dot-v1 0.5
msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch 0.0
nli-roberta-base-v2 79.6
nli-roberta-base 89.5
stsb-distilroberta-base-v2 58.7
bert-base-wikipedia-sections-mean-tokens 7.1
stsb-bert-base 77.3
paraphrase-albert-base-v2 58.7
msmarco-distilbert-base-dot-prod-v3 0.4
msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned 0.9
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bert-large-nli-mean-tokens 87.4
xlm-r-distilroberta-base-paraphrase-v1 23.9
msmarco-roberta-base-v3 3.1
bert-base-nli-max-tokens 80.8
distilbert-base-nli-stsb-quora-ranking 67.2
msmarco-MiniLM-L6-cos-v5 0.0
msmarco-distilroberta-base-v2 0.4
nli-distilroberta-base-v2 66.6
roberta-base-nli-mean-tokens 89.5
distilroberta-base-paraphrase-v1 19.4
msmarco-MiniLM-L-6-v3 0.0
distilroberta-base-msmarco-v2 0.4
nq-distilbert-base-v1 2.3
msmarco-distilbert-cos-v5 0.0
msmarco-distilbert-base-v2 0.7
msmarco-distilbert-base-v3 0.0
stsb-xlm-r-multilingual 79.8
allenai-specter 0.1
roberta-large-nli-stsb-mean-tokens 82.4
roberta-base-nli-stsb-mean-tokens 80.3
use-cmlm-multilingual 3.6
xlm-r-100langs-bert-base-nli-stsb-mean-tokens 79.8
stsb-roberta-base 80.3
msmarco-bert-base-dot-v5 0.0
quora-distilbert-multilingual 47.1
stsb-roberta-large 82.4
xlm-r-bert-base-nli-stsb-mean-tokens 79.8
paraphrase-MiniLM-L12-v2 55.9
clip-ViT-B-32-multilingual-v1 Image-text model
msmarco-distilbert-dot-v5 0.0
nli-mpnet-base-v2 74.1
paraphrase-TinyBERT-L6-v2 72.1
distiluse-base-multilingual-cased-v1 1.4
distilbert-base-nli-stsb-mean-tokens 76.5
stsb-roberta-base-v2 70.8
paraphrase-distilroberta-base-v1 19.4
bert-base-nli-stsb-mean-tokens 77.3
LaBSE 11.7
stsb-distilbert-base 76.5
paraphrase-distilroberta-base-v2 68.4
paraphrase-multilingual-mpnet-base-v2 79.9
distilbert-base-nli-mean-tokens 81.2
distilbert-multilingual-nli-stsb-quora-ranking 47.1
msmarco-distilbert-base-v4 0.0
paraphrase-xlm-r-multilingual-v1 23.9
distiluse-base-multilingual-cased-v2 1.5
paraphrase-mpnet-base-v2 76.1
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-MiniLM-L6-v2 43.3
bert-base-nli-mean-tokens 83.3
clip-ViT-B-16 Image-text model
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clip-ViT-L-14 Image-text model
clip-ViT-B-32 Image-text model
sentence-t5-xxl –
sentence-t5-xl 81.2
sentence-t5-large 78.4
gtr-t5-large 17.4
gtr-t5-xl 17.4
gtr-t5-base 9.5
gtr-t5-xxl –
msmarco-bert-co-condensor 0.5
all-roberta-large-v1 35.4
all-mpnet-base-v1 25.1
all-MiniLM-L12-v1 9.7
all-MiniLM-L6-v1 3.1
multi-qa-mpnet-base-cos-v1 18.0
multi-qa-distilbert-dot-v1 1.5
stsb-mpnet-base-v2 70.2
roberta-large-nli-mean-tokens 93.6
nli-roberta-large 93.6
nli-bert-large 87.4
nli-bert-base-max-pooling 80.8
nli-bert-base-cls-pooling 83.7
facebook-dpr-ctx_encoder-single-nq-base 10.5
average_word_embeddings_levy_dependency –
average_word_embeddings_komninos –
average_word_embeddings_glove.840B.300d –
average_word_embeddings_glove.6B.300d –

Table 8: Results of the publicly available Transformer-
based models in the Hugging Face sentence-
transformers library.
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Abstract

We propose a methodology and design two
benchmark sets for measuring to what extent
language-and-vision language models use the
visual signal in the presence or absence of
stereotypes. The first benchmark is designed
to test for stereotypical colors of common ob-
jects, while the second benchmark considers
gender stereotypes. The key idea is to compare
predictions when the image conforms to the
stereotype to predictions when it does not.

Our results show that there is significant vari-
ation among multimodal models: the recent
Transformer-based FLAVA seems to be more
sensitive to the choice of image and less af-
fected by stereotypes than older CNN-based
models such as VisualBERT and LXMERT.
This effect is more discernible in this type of
controlled setting than in traditional evaluations
where we do not know whether the model relied
on the stereotype or the visual signal.

1 Introduction

The center of gravity of NLP research has shifted to
the development of language models (LMs) for rep-
resentation and generation of text, and most recent
high-impact research contributions describe new
LMs. For some tasks, a model needs to take into
account not only a text but also some non-textual
information, and a wide range of multimodal LMs
have been developed that allow the representation
of a text jointly with some external modality. Most
of this work focuses on visual tasks where NLP
models need to be integrated with computer vision
models; examples of tasks in this area include vi-
sual question answering and caption generation. A
range of combined language-and-vision LMs have
been developed using different approaches for in-
tegrating representations of text and of images or
videos.

But can we be sure that a multimodal model ac-
tually uses the provided visual information instead

Figure 1: An example of a controlled test of a masked
language model for a color stereotype. We compute the
output from the MLM head when providing an image
of an object with a stereotypical color (a yellow banana)
and compare it to the output when the object has an
unusual color (green). If the MLM is strongly affected
by a stereotype bias, the predictions change little.

of just relying on statistical tendencies in the text
corpus? With the development of multimodal LMs,
some recent work has investigated what informa-
tion is stored in the representations of the multiple
modalities and how the multiple representations
interact. For instance, Frank et al. (2021) carried
out a set of controlled tests to tease apart the effects
of the textual and visual modalities.

It has been widely noted that representations of
language are affected by several kinds of stereo-
types, which we loosely define as any type of phe-
nomenon that has a highly skewed prior probabil-
ity distribution. In these cases, the skewed distri-
bution may cause a model to simply go with the
default choice and ignore contextual information
that would suggest an unusual analysis. Most of
the discussion in the field has been about stereo-
types relating to various demographic attributes
(Bolukbasi et al., 2016), but in this work, we use
the term “stereotype” in the more general sense
mentioned above. This issue is likely to affect mul-
timodal LMs as well, although we are aware of no
previous work that investigates this phenomenon
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systematically; for instance, if some object is often
associated with some visual property (e.g. a color
or shape), this property may be predicted by the
model even in cases where it is not present. This ef-
fect may also have methodological implications in
benchmarks for the evaluation of LMs: if a model
predicted the correct answer, did it do so because
of the stereotype or because it actually used the
available visual information?

In this work, we propose a methodology and de-
velop two benchmark sets for stress-testing multi-
modal LMs to determine to what extent they are af-
fected by problems related to stereotypes. The key
idea is to look at predictions of a language/vision
LM with different visual inputs and compare the
behavior of the LM in the presence or absence of
stereotypes. For cases when a stereotype is present,
we compare model outputs when the image does
correspond to the stereotype to when it does not.

The rest of the paper is organized as follows.
Section 2 discusses the design of the benchmark
sets and how we use them to investigate multimodal
LMs for stereotypes. Details about the multimodal
LMs we have used are covered in Section 3, and
Section 4 describes how they are applied for the
benchmarks, while Section 5 presents the figures
achieved on the benchmarks and discusses their im-
plications. In Section 6, we discuss related research.
Finally, Section 7 summarizes the main points and
discusses limitations and possible extensions.

2 Design of Benchmark Datasets

We have collected two datasets consisting of tex-
tual templates and corresponding images. These
datasets were selected because in these cases it
was relatively easy to collect images exemplifying
some visual property, and where on the one hand
we could find images corresponding to a stereo-
type, but on the other hand also control images not
corresponding to the stereotype.

These datasets also contain subsets we call “neu-
tral” where stereotypes are not present. The pur-
pose of these images is to investigate whether LMs
are more sensitive to the choice of images in the
cases when they cannot rely on stereotypes.

2.1 The Memory Colors Dataset

The first dataset is an extension of the Memory
Colors dataset (Norlund et al., 2021), originally de-
veloped for the purpose of measuring the transfer
of information between visual and textual repre-

sentations. The original dataset lists a set of 109
common physical objects, where each object is
listed with a “memory color”: a stereotypical color
we typically associate with the object. For instance,
the dataset lists tomatoes as stereotypically red al-
though tomatoes frequently have other colors. The
set of objects was annotated by multiple annotators,
and only the objects where there was a perfect or
almost perfect consensus among annotators were
included.

The dataset comes with a set of textual tem-
plates that can be used to generate prompts for LMs.
Since the dataset was originally intended for use
in LMs where no image was available, these text
templates were intentionally formulated to elicit
stereotypical responses, e.g. “The typical color
of a tomato is. . . ”. In our case, we changed the
templates to encourage the model to focus on the
image, e.g. “The color of this tomato is. . . ”.

The Memory Colors dataset also includes a set of
prototypical images exemplifying the stereotypical
color. For each of the object types, we collected
an additional image where the color was not the
stereotypical one, e.g. a green tomato. All images
were collected by carrying out a Google image
search and picking the first result. The majority
of objects with unusual colors includes examples
of natural images (e.g. unripe tomatoes, orange
sky); in a few cases, the color had been artifically
modified.

We also extended the Memory Colors dataset
with 19 neutral object types selected so that they
were not expected to have a stereotypical color.
This set includes common objects such as cars,
houses, etc. We refer to the combined set, including
the images with non-stereotypical colors and the
neutral instances, as the Extended Memory Colors
dataset.

2.2 Gender Stereotypes Dataset

The effect of gender in neural language represen-
tation models has been widely investigated and it
is relevant to consider this in multimodal represen-
tations as well. We compiled a second dataset we
term the Gender Stereotypes dataset. The aim is to
identify how good a multimodal model performs
in the prediction of a person’s gender when it is
fed two different images, which will act as visual
signals for us, one corresponding to a man and
another one corresponding to a woman. For each
pair, there is a sentence that describes the activity.
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As in the color dataset, we include stereotypical
cases (male-coded and female-coded, respectively)
as well as cases where no stereotype is present.

The dataset contains 50 different text sentences
and 100 images with, where half of the images
show male individuals and half show females. In-
ternally in the dataset, 19 and 21 text templates
were created for the male and female stereotypi-
cal activities, respectively.1 Further, we defined a
list of 10 different neutral tasks: eating, walking,
reading, writing, meditating, talking, studying, lis-
tening to music, clapping, crying. For these cases,
we assumed that there is no stereotypical gender
associated with the activities.

As we will discuss in more detail in Section 4,
the property to be predicted will be represented in
the sentence as a [MASK] token to be substituted
by a masked LM. To include an example from
the gender stereotype dataset, the sentence is as

’My therapist is very good, [MASK] helped me get
myself together’; according to the source where
we selected the stereotypical occupations, therapy
professionals are more frequently female.

For each of the 50 text templates, we selected
two images, one for each of the genders. As for
the colors dataset, we used the first result in an
image search judged by an annotator to correspond
to the gender in question. We did not take the
self-identified gender into account.

3 Multimodal Language Models

The Transformer (Vaswani et al., 2017) is a
sequence-based model that is now the standard
architecture in NLP for devising representation
and generation components in neural models. Pre-
trained language models such as BERT (Devlin
et al., 2019) based on the architecture of Trans-
formers, have proven capable of learning powerful
representations applicable to a wide range of tasks.
They have yielded state-of-the-art performance in
many downstream tasks.

Multimodal models fusing the textual and visual
modalities have been devised by researchers after
looking at the huge success of pre-trained language
models. In such models, multiple modalities are
considered, and data for the training of the models
is in multiple modalities. As our research prob-
lem revolves around the aspect of multimodality,
we will focus on two modalities: a textual and
a visual signal. The visual signal is in the form

1Stereotypical activities were selected from this website.

of images, and the natural language is the written
text accompanying the images, such as captions
or descriptions of the images. Examples of such
visual/textual Transformers include VilBERT (Lu
et al., 2019), LXMERT (Tan and Bansal, 2019), Vi-
sualBERT (Li et al., 2020a), OSCAR (Li et al.,
2020b), ImageBERT (Qi et al., 2020), FLAVA
(Singh et al., 2022), and others. Most of the earlier
models use features extracted from a Faster-RCNN
pipeline (Ren et al., 2015), while later models use
visual Transformer architectures (Dosovitskiy et al.,
2021). These types of models are then trained on
datasets that contain text/image pairs such as SBU
Captions (Ordonez et al., 2011), MS COCO (Lin
et al., 2014), Conceptual Captions (Sharma et al.,
2018), and Visual Genome QA (Krishna et al.,
2017), using various pre-training tasks. They are
sometimes trained from scratch on the combined
language/vision data and sometimes warm-started
from a unimodal model such as BERT.

For this study, we selected three different
multimodal models to run our experiments on.
These image-augmented Transformer models are
VisualBERT, LXMERT, and FLAVA. These three
are specifically chosen to give a certain diversity
in the selection of model architecture: one single-
stream CNN-based model, one dual-stream CNN-
based model, and one visual Transformer-based
model.

All the models we selected are BERT-like varia-
tions that use a the technique of Masked Language
Modelling (MLM) during pre-training. This idea
was presented in the original BERT paper (Devlin
et al., 2019). In the task of Masked Language Mod-
elling, we predict a token which has been masked
by us in the sentence, given a set of unmasked
tokens. In our case, unmasked tokens are sup-
plemented by the the visual signals. The random
masking ratio for the MLM is around 15%, and
for investigation of our experiments one special
[MASK] token is taken. As we will discuss in Sec-
tion 4, we rely on the ability of the MLM to predict
missing tokens in our experiments.

VisualBERT This is a single stream multimodal
model, i.e, the language and vision embeddings
are processed via a single Transformer. It is an
extension of BERT, by redefining the process of
how input is processed. The language embeddings
are extracted from BERT’s tokenizer, which acts
as text encoder. For the embeddings of the visual
signals, Faster-RCNN is used. It extracts image
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features in the form of 36 RoI (region of interest)
boxes for each image, and these RoI boxes are used
as features. Each of these 36 ROI boxes are vectors
of size 2048. The boxes with highest probabil-
ity/confidence are chosen. The visual representa-
tions are appended at the end of the sequence of
word embeddings.

LXMERT This model is a dual stream mul-
timodal model, where the inputs are processed
through two Transformers, for natural language and
vision signals respectively. Text is processed in the
same manner as of VisualBERT, based on BERT’s
tokenizer. The image features for the LXMERT are
extracted by the Faster-RCNN, in the same way as
of VisualBERT, but we also feed the normalized
boxes alongside features, which are locations of
these bounding boxes. At last, the Transformers
are fused.

FLAVA FLAVA has a text encoder, an image
encoder, and a multimodal encoder. It is a dual
stream multimodal model. The text encoder, has
an architecture of ViT (visual Transformers) to ex-
tract single-modal text representations. For the
images, an image encoder based on ViT architec-
ture extracts single-modal image representations.
A separate Transformer, multimodal encoder, is
then applied. The unimodal representations are
passed through the fusion encoder which fuses two
modalities, and thus obtaining cross-modal repre-
sentations.

3.1 Model Details

There is a slight difference in how the two CNN-
based models, VisualBERT and LXMERT, are ap-
plied. In the case of VisualBert, we also input lo-
cations of bounding boxes. For the experiments
concerning VisualBERT, we have used the pre-
trained BERT tokenizer,2 and VisualBERT with
COCO pretraining checkpoint3 for the model. In
the case of LXMERT, the LXMERT base tokenizer
and model4 were used. For FLAVA, we used the
pretrained processor and model.5

4 Methodology of Analysis

Our benchmarking method uses a cloze-style fill-
in-the-blank approach (Petroni et al., 2019; Jiang

2bert-base-uncased from the HuggingFace library.
3uclanlp/visualbert-vqa-coco-pre from HuggingFace.
4unc-nlp/lxmert-base-uncased from HuggingFace library.
5facebook/flava-full from HuggingFace library.

et al., 2020), which has previously been applied in
experiments investigating the interaction between
visual and linguistic representation (Norlund et al.,
2021; Hagström and Johansson, 2022a,b). This
approach is easy to apply to BERT-style models
that include a masked language model (MLM) as
part of their pre-training pipeline. When applying
the MLM in our experiment, the model is provided
with an image and a text prompt, where the visual
property to be predicted by the model has been
replaced by the mask dummy token. We then in-
vestigate how well the missing token is predicted
under different circumstances.

Since the nature of the two benchmarks is differ-
ent, we had to apply different methodologies to get
the results. We discuss these details below.

4.1 The Memory Colors Dataset
For the Memory Colors dataset, we compare the
image having a stereotypical color to an image
with an unusual color for the particular object, and
to a dummy image containing no meaningful in-
formation. Following previous work that applied
image-augmented LMs to text-only inputs, we have
considered different types of dummy images. We
have used two types of dummy images: the first
one being a completely black image following Iki
and Aizawa (2021), and the second consisting of
white noise. However, in experiments we did gener-
ally not see major differences between the behavior
of the models when using the black dummy images
and when using the noise images, so we limit the
discussion to black dummy images in the rest of
this paper.

For a given text prompt and image, we mark the
output as correctly or incorrectly predicted depend-
ing on whether the token predicted at the [MASK]
position matches the color of the label we have
provided in the dataset or not.

In these experiments, we did not restrict the
output vocabulary to color terms. In general, af-
ter going through the results, it seems that all the
three models tend to output color at the position of
[MASK] token.

4.2 Gender Stereotypes Dataset
For the Gender Stereotypes dataset, we also con-
sider the output of the MLM head at the masked
position, but in this case we also need to take into
account that several words may be applicable in
the given context. For this reason, we create two
buckets of male and female words: he, male, man,

266



Stereotypes No stereotypes

Model
Original

image
Control
image

Black
image

Original
image

Black
image

VisualBERT 0.23 0.08 (0.50) 0.28 (0.41) 0.0 0.0 (0.84)
LXMERT 0.72 0.11 (0.76) 0.69 (0.87) 0.47 0.05 (0.47)
FLAVA 0.74 0.69 (0.06) 0.08 (0.08) 0.89 0.11 (0.11)

Table 1: Accuracies on the extended Memory Colors datasets. For control images with unexpected colors, the
accuracies are computed with respect to the new color, while for the black images the accuracies are with respect to
the original color. Figures in brackets show the proportion of predictions that are equal to the original prediction.

men, boy, his and she, female, woman, women, girl,
her, respectively. We choose the predicted gender
based on the highest probability the elements in
the buckets get for the masked token. If the ele-
ment with the highest probabilty falls in the bucket
containing male words, we count this instance as
predicted male by the model and vice versa for the
female bucket.

5 Results

We evaluated the three selected models on the two
benchmarks. In both cases, we compare the predic-
tions when a stereotype is present and the image
corresponds to the stereotype to the case where the
image does not correspond to the stereotype. We
also evaluate cases where there is no stereotype
and we carry out similar comparisons in this case.
Additionally, we look at the model’s predictions
when provided with a black dummy image.

5.1 The Extended Memory Colors Dataset

Table 1 shows the results on the extended Mem-
ory Colors stereotypes dataset. When using real
images, the figures outside the brackets should be
interpreted as predictive accuracies; for the black
dummy images, the figures show the proportions of
cases predicted as the stereotypical color. The fig-
ures in brackets show the proportion of predictions
that are identical to the original prediction.

We note that VisualBERT performs poorly on
this dataset, confirming previously published re-
sults that this model is underfitted on visual data
and mostly sticks to the prediction by an equivalent
BERT model. The effect of the image seems min-
imal and its performance is close to the majority-
class baseline accuracy of 0.25.

The LXMERT and FLAVA models achive bet-
ter scores on the original Memory Colors dataset:
both models have accuracies in the 0.70–0.75 range.

However, we see clearly that this similarity of
performance is superficial and that the LXMERT
model mostly relies on stereotypes: when we con-
sider the control images with unexpected colors,
the performance of LXMERT is very poor and
it mostly keeps predicting the stereotypical color.
Its performance is somewhat better for the non-
stereotypical cases, but far from perfect. FLAVA
on the other hand predicts fairly well on the control
set, although somewhat worse than for the images
with stereotypical colors; it also predicts with a
good accuracy for the non-stereotypical cases. It
is clear that FLAVA is much more sensitive to the
choice of images in this task.

For the dummy images that are completely black,
the LXMERT model’s prediction are again to a
large extent identical to the original predictions.
Again, the FLAVA model is more receptive to the
choice of images: it predicts the color black in 92%
of the cases and there is no discernible effect of
stereotypes; it can be discussed whether this is a
desired behavior in this case, since the image does
not include an object of the kind mentioned in the
prompt.

Finally, we note that for the non-stereotypical
instances, LXMERT’s predictions seem to shift
more between the original images and the black
dummy images. This suggests that in cases where
the model cannot rely on a stereotype, the model is
more sensitive to the visual input.

5.2 Gender Stereotypes Dataset
Table 2 shows the results on the gender stereotypes
dataset. Note that for consistency, the figures show
the proportion of instances predicted as male, so
they should not be interpreted as accuracies when
predicting with an image of a female.

Generally speaking, all models tend to predict
the male class when provided with an image show-
ing male individuals. When the input shows a fe-
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Male stereotypes Female stereotypes No stereotypes

Model
Male
image

Female
image

Black
image

Male
image

Female
image

Black
image

Male
image

Female
image

Black
image

VisualBERT 0.89 0.89 0.89 0.71 0.81 0.86 0.60 0.70 0.60
LXMERT 0.84 0.68 0.73 0.95 0.76 0.90 0.90 0.40 0.80
FLAVA 0.84 0.32 0.84 0.81 0.19 0.33 0.90 0.10 0.50

Table 2: Results on the gender stereotypes datasets. The figures show the proportion predicted as male.

male individual, the picture is more varied. As in
the previous experiment, FLAVA reacts much more
strongly to the choice of images than VisualBERT
and LXMERT, and tends to predict the male class
for images with males and vice versa.

Unexpectedly, VisualBERT as well as LXMERT
both seem to generally assign higher probabilities
to male-coded words, even when the prompt is
stereotypically female; this is surprising since we
had expected these models to predict the stereotyp-
ical classes in these cases. It seems that FLAVA is
the only model that shows signs of contextual gen-
der stereotypes in this experiment: when provided
with a black dummy image, this model predicts ac-
cording to what would have been expected stereo-
typically, and at 50% for the non-stereotypical
cases. As we saw in the color experiment, for the
non-stereotypical cases LXMERT seems at least
somewhat affected by the choice of images, al-
though less so than FLAVA.

6 Related Work

This work falls in the broad category of model anal-
ysis (Belinkov and Glass, 2019) of Transformer
models (Rogers et al., 2020). Belinkov and Glass
(2019) divide previous approaches to model anal-
ysis into several methodological categories; in the
current work, we use an approach based on behav-
ioral testing of a specific model behavior. Specif-
ically, our analysis is based on the outputs of the
masked language model head of BERT-like models,
similarly to how Petroni et al. (2019) and Jiang et al.
(2020) tested BERT models for basic encyclopedic
and commonsense knowledge.

The methodology based on targeted behavioral
testing has also been used to investigate a number
of research questions in the analysis of language-
and-vision Transformer models. In particular, a
number of investigations look at what type of gen-
eralizations happen between the visual and textual
modalities. Cao et al. (2020) claimed that when

considering attention scores, the effect of the visual
modality is limited and that the textual modality
dominates. Norlund et al. (2021) investigated the
effect of multimodal training on textual representa-
tions, and concluded that the degree of transfer be-
tween the representations of the respective modal-
ities is limited, at least for CNN-based models;
Hagström and Johansson (2022a,b) drew similar
conclusions based on more extensive experiments
that also include the FLAVA model. Parcalabescu
et al. (2021) considered the task of predicting num-
bers and arrived at a conclusion similar to ours:
frequently occurring numbers are predicted more
often by the model.

The previous work that is most closely related
to our in terms of research questions and methodol-
ogy is that by Frank et al. (2021). They designed
ablation tests where parts of the image or the text
are hidden; as we have discussed, this setup is
comparable to our experiments where black and
white-noise images are used. Parcalabescu et al.
(2022) introduced the idea of “foils”: texts that dif-
fers minimally from the one describing the image.
Our use of adversarially selected images can be
seen as similar to the idea of foils, but focused on
the visual modality.

7 Conclusions

In this work, we have proposed a methodological
framework based on controlled tests designed to
tease out the influence of stereotypes on the pre-
dictions of visually augmented language models.
The key idea is that we expect common evaluation
benchmarks to include many stereotypical cases
that can easily be predicted simply by relying on
language statistics. In order to disentangle the ef-
fect of the stereotype and the contribution of the
visual representations we compare the model’s out-
put in cases where the provided image adheres to
the stereotype to cases where it does not. We also
consider the model’s behavior in cases where there
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are no stereotypes, that is when the prior distribu-
tion of outputs is more evenly distributed.

As an application of this framework, we created
two datasets to facilitate the investigation of stereo-
types for two properties: the color of objects and
the gender of people. Each dataset contains a set of
text prompts and corresponding image pairs, where
one image in the pair corresponds to the stereotype
and the other is a control where the stereotypical
property is not present. This allows comparisons
to be carried out in a controlled fashion.

Using the two benchmark sets, we evaluated
three MLM-based visually augmented Transformer
models: VisualBERT, LXMERT, and FLAVA.
There are clear differences between the models,
and in particular some of these differences emerge
much more clearly in the controlled setting. For in-
stance, the CNN-based LXMERT and Transformer-
based FLAVA achieve similar scores in terms of
raw accuracy scores for predicting the color of ob-
jects in images. However, if we consider the control
images where the objects do not have the stereotyp-
ical color, the FLAVA outperforms LXMERT by
a wide margin, since LXMERT keeps predicting
the stereotypical color. This means that we can see
clear differences among the models with respect to
how sensitive they are to the choice of images.

For the gender stereotypes experiments, the re-
sults were somewhat unexpected since it turned
out that the older CNN-based models almost con-
sistently assigned higher probabilities to male-
related words, where we had expected at least the
LXMERT model to be somewhat affected by stereo-
types suggested by the textual prompt. The newer
FLAVA model on the other hand again predicts
more consistently with the input image in this ex-
periment, and only falls back on stereotypes when
the input images are uninformative.

7.1 Limitations and Possible Extensions

As discussed in §2.2, we have intentionally used a
simplistic operationalization of the notion of gen-
der in this work and selected images returned by
the image search engine when queried for ‘male’ or
‘female’ respectively, and that the annotator then de-
cided were prototypical representatives of the male
or the female genders. The self-identified gender of
the people in the images was not taken into account
in this experiment and since our goal was to inves-
tigate the sensitivity of visually augmented LMs
to the choice of images, it was a priority to carry

out such an evaluation using clear-cut cases. In a
more thorough investigation, it could potentially be
useful to also consider how e.g. the FLAVA model,
which seems to be more affected by the visual in-
put, reacts when presented with images that do not
fall into such clear-cut categories.

The most obvious way that this work could be
improved would be to improve the robustness of
the conclusions by scaling up the investigations
along all dimensions: instead of considering just
the two properties of color and gender, we would
like to investigate a wider selection of properties
that would be meaningful to test in language and
vision models. Shape, size, and orientation are a
few possible examples. For each scenario, it would
also be useful to collect more examples than what
we have included here, in order to improve the
statistical robustness. Furthermore, since LMs are
sensitive to the choice of a prompt (Jiang et al.,
2020), our conclusions would be on firmer ground
if we would evaluate on several text prompts for
each image. Naturally, it would be interesting to
consider a more extensive selection of models as
well.

In this work, we treated the property of being
stereotypical as binary and divided the test cases
into groups based on this property. However, as
discussed in the introduction, in reality the notion
of stereotypicality is related to prior probability
distributions. For this reason, a natural generaliza-
tion of the experiments we have carried out here
would be to consider stereotypicality on a contin-
uous scale, e.g. by computing the entropy of the
prior distribution and then to see how this corre-
lates with the probability of incorrect predictions
when encountering an unusual case.

The experiments in this work have been lim-
ited to evaluations of the model’s behavior for se-
lected visual-linguistic properties. It remains to see
whether the same idea can be extended beyond eval-
uation to devise new training methods as well, in
order to inject a bias into the training process aimed
at reducing the effects of stereotypes and encour-
aging the model to rely on the visual information.
This type of training would typically involve more
work in data collection, unless methods can be de-
vised to adversarially generate images with unusual
properties.

We finally note that the proposed methodology is
not limited to the evaluation of visually augmented
LMs, but could be relevant when considering any
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extra-linguistic extension of LMs. For instance,
similar pitfalls may occur in the evaluation of LMs
augmented with structural knowledge representa-
tions. If a knowledge-augmented LM correctly
predicted some encyclopedic fact (Petroni et al.,
2019; Jiang et al., 2020), was this because of what
the knowledge resource contained or because of
text statistics?
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Abstract
Pretrained large generative language models
have shown great performance on many tasks,
but exhibit low compositional generalization
abilities. Scaling such models has been shown
to improve their performance on various NLP
tasks even just by conditioning them on a few
examples to solve the task without any fine-
tuning (also known as in-context learning). In
this work, we look at the gap between the in-
distribution (ID) and out-of-distribution (OOD)
performance of such models in semantic pars-
ing tasks with in-context learning. In the ID
settings, the demonstrations are from the same
split (test or train) that the model is being eval-
uated on, and in the OOD settings, they are
from the other split. We look at how the rela-
tive generalization gap of in-context learning
evolves as models are scaled up. We evaluate
four model families, OPT, BLOOM, CodeGen
and Codex on three semantic parsing datasets,
CFQ, SCAN and GeoQuery with different num-
ber of exemplars, and observe a trend of de-
creasing relative generalization gap as models
are scaled up.

1 Introduction

Compositional generalization has been a long
sought-after goal in deep learning. Typically, when
a model is trained on a set of combinations of con-
cepts and tested on novel combinations, it exhibits
a lower performance. In contrast, humans excel
at combining previously known concepts to gen-
eralize to unseen settings. In language, if a hu-
man understands the meaning of green plate, black
plate and green vase, then they can understand
the meaning of black vase as well without having
seen the combination before. Big language models
have impressive performance on many language
understanding tasks (Devlin et al., 2019; Raffel
et al., 2020; Chowdhery et al., 2022; Lewis et al.,
2020), but they still fail on tasks that require com-
positional generalization (Shaw et al., 2021; Furrer
et al., 2020).
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Figure 1: GeoQuery-template relative generalization
gap for various models of different sizes across different
number of shots. The relative gap is measured by the
proportion of in-distribution (ID) performance that is
lost when the model receives out-of-distribution (OOD)
inputs, (ID −OOD)/ID, for each model. Results are
averaged over five different seeds.

Prior studies of compositonal generalization use
conventional fine-tuning to adapt large language
models to the downstream task. The largest recent
generative models can be adapted without changing
their parameters using in-context learning, namely
by conditioning them on a prompt with a few ex-
emplars (shots) (Chowdhery et al., 2022; Wang
et al., 2022b; Brown et al., 2020). In-context learn-
ing benefits particularly well from increased model
scale. One can thus wonder whether scaling lan-
guage models and using them with in-context learn-
ing will eventually lead to the disappearance of the
compositional generalization gap.

To answer this question we perform in-context
learning experiments on CFQ (Keysers et al., 2020),
SCAN (Lake and Baroni, 2018), and GeoQuery
(Zelle and Mooney, 1996; Tang and Mooney, 2001)
semantic parsing datasets for compositional gen-
eralization, and study the generalization gap trend
with different number of shots for different models
and sizes. Semantic parsing is the task of translat-
ing a statement to a logical form with certain syntax
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Figure 2: Relative generalization gap on CFQ-MCD1,
SCAN-MCD1 and GeoQuery-template for different
number of exemplars for Codex DaVinci and Cushman.
Results are averaged over five different seeds.

and semantics. To solve this task, we provide the
model with a prompt constructed of a prefix text
and several exemplars from either a split (train or
test). Details of constructing the prompt and choos-
ing the exemplars are discussed in section 2. We
evaluate Codex (Chen et al., 2021), BLOOM (Big-
Science, 2022) and CodeGen (Nijkamp et al., 2022)
which have been pretrained on code as well as nat-
ural language. We also evaluate OPT (Zhang et al.,
2022) which is only pretrained on natural language
data.

We measure how the relative generalization gap
of in-context learning evolves as the models are
scaled up. We observe a general trend of decreasing
relative gap (figure 1 and figure 2) as models are
scaled up within and across model families with
different number of shots.

2 Method

For our experiments, we generate prompts that con-
sist of a prefix string introducing the task, followed
by a number of exemplars containing inputs and
outputs, and finally the test input for which the
model will generate an output. Inputs and outputs
are prefixed with their types, such as “Command: ”
and “Actions: ” for inputs and outputs respectively
in the case of SCAN, and “Question: ” and “Query:
” for inputs and outputs respectively in the case
of CFQ and GeoQuery. Each input-output pair is
separated by an empty line. We refer the reader to
Appendix B for the choices of prefix strings and
input-output prefixes for each dataset.

We sample our exemplars to maximally cover
the primitives in the test input and output. Doing
so ensures that our model can use the in-context vo-
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Figure 3: Relative generalization gap with respect to
the average OOD generalization performance for Codex
DaVinci and Cushman with 10 shots. Ideally, models
should be in the lower right corner of this plot. Results
are averaged over five different seeds.

cabulary introduced for the specific task rather than
using alternative lexicon from its pretrained knowl-
edge. For natural language inputs, we consider
each word as an input primitive. For the formal
language outputs, we perform tokenization specific
to the language, and consider each token as an out-
put primitive. Note that this tokenization is part
of dataset-specific pre-processing and is separate
from the tokenization done by the models.

We start selecting exemplars by first greedily
collecting successive input-output pairs with the
rarest test primitive not already covered by the sam-
pled exemplars. Once the exemplars fully cover the
test primitives (in either ID or OOD settings), we
sample the remaining exemplars uniformly at ran-
dom. Table 1 shows the coverage percentage of the
primitives for different models and datasets. With
10 exemplars, we obtain near-complete primitive
coverage for all models and splits.

3 Experiments

We prompt Codex (Cushman and DaVinci), Cod-
Gen (350M, 2B and and 6B), OPT (350M, 1.3B,
2.7B and 6.7B) and BLOOM (350M, 1.3B, 2.5B
and 6.3B) with queries and exemplars which we
sample based on section 2 to solve the tasks. We
measure and report exact match accuracy for CFQ-
MCD1, SCAN-MCD1 and GeoQuery-template
subset. Due to execution time constraints of Codex
we limited the number of examples to solve to 1045,
and compute 95% confidence interval statistics us-
ing 5000 bootstrap samples. Results are averaged
over five different seeds which control the sampling
of test examples. For CFQ and SCAN, accuracies
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for models other than Codex are almost zero for
all the number of exemplars so we do not include
them in our figures and analysis. The models are
evaluated on settings defined as splitA → splitB ,
which means that the query to be solved is coming
from splitB , and the exemplars added to the prompt
are sampled from splitA. We evaluate on four set-
tings: Test → Test, Train → Train which are
ID, and Test → Train, Train → Test which are
considered OOD. The relative generalization gap
is measured as (ID −OOD)/ID, where ID =
(Acc(Test→ Test)+Acc(Train→ Train))/2, and
OOD = (Acc(Test → Train) + Acc(Train →
Test))/2. The relative gap is determined by the
proportion of ID performance that is lost when the
model receives OOD inputs.

We also plot the relative generalization gap with
respect to OOD for different tasks and models
to get a better understanding of the gap for each
model. Since higher is better for OOD, and lower
is better for the gap, models closer to the lower right
corner of this figure (e.g. figure 4) are preferred.

CFQ (Compositional Freebase Questions) in-
troduced by Keysers et al. (2020) is a realistic se-
mantic parsing benchmark to measure composi-
tional generalization. The task is to parse a natural
language query, for instance, “Who directed Ely-
sium” to a query in SPARQL. We use the MCD-1
(maximum compound divergence) split of CFQ in
our experiments. In MCD splits, the authors have
maximized the divergence of compound structures
and guaranteed low atom divergence between the
train and test splits. This makes CFQ an appealing
benchmark to measure compositional generaliza-
tion. We follow the post-processing in Herzig et al.
(2021), sorting conjuncts alphabetically and dedu-
plicating conjuncts.

SCAN is an instruction following task intro-
duced by Lake and Baroni (2018) where the task
is to map natural language instructions (e.g. “walk
thrice”) to action sequences (e.g. “WALK WALK
WALK”). We evaluate Codex DaVinci and Cush-
man on the MCD-1 split of SCAN.

GeoQuery is a text-to-SQL dataset (Zelle and
Mooney, 1996). We use the template split intro-
duced by Finegan-Dollak et al. (2018) in which
train and test splits do not share SQL templates.

4 Results

We study the compositional generalization gap of
in-context learning in different large language mod-

Model OOD coverage ID coverage
1 shot 5 shot 1 shot 5 shot

Codex GQ 75.34% 99.91% 80.61% 99.91%
CodeGen GQ 75.26% 99.91% 80.59% 99.91%
OPT GQ 74.69% 99.89% 80.04% 99.92%
BLOOM GQ 74.78% 99.91% 80.61% 99.88%

Codex CFQ 54.09% 95.81% 59.03% 98.09%

Codex SCAN 69.45% 100% 69.67% 100%

Table 1: Primitive coverage percentage with oracle sam-
pling for GeoQuery-template, CFQ-MCD1 and SCAN-
MCD1 splits for Codex, CodeGen, OPT and BLOOM
models. The coverage when using 10 shots is 100% for
all models and all splits.

els of different scale. Desirable models should
perform well OOD and have a low relative gener-
alization gap. Figure 1 shows the relative general-
ization gap for models of different sizes from four
model families on the GeoQuery-template dataset
for different number of shots. We can observe
that the relative generalization gap is smaller for
larger models across the four model families. In
addition to scale alone, we also find a significant
difference in the in-context compositional general-
ization behavior between different model families.
Particularly, Codex exhibits a higher OOD perfor-
mance with a low relative generalization gap (see
in figure 4). Interestingly, Codex is also the only
model family out of the ones we considered that
achieves ID or OOD performance greater than 1%
on CFQ or SCAN. We acknowledge that the two
Codex models have the largest amount of param-
eters amongst the models tested. Figure 2 shows
that as we increase the number of exemplars from
1 to 10 for Codex model family, the relative gen-
eralization gap decreases for CFQ and GeoQuery,
but increases for SCAN. In figure 3, we can see
that Codex Cushman generally struggles with both
SCAN and CFQ tasks because of the low aver-
age OOD generalization score. It is interesting to
note that, for SCAN, Codex DaVinci outperforms
Codex Cushman by ∼14 points (0.16 vs 0.02) in
average OOD generalization performance, albeit
their relative generalization gap is similar (as seen
in figure 2). For reference, we report OOD vs. ID
performance in appendix A.

We observe a larger set of models performing
above near-zero on the GeoQuery dataset, allow-
ing us to compare the generalization gap behavior
of other models with increasing scale and number
of exemplars. Figure 4 illustrates relative gener-
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Figure 4: Relative generalization gap with respect
to the average OOD generalization performance for
GeoQuery-template using 10 exemplars. Ideally, mod-
els should be in the lower right corner of this plot. Re-
sults are averaged over five different seeds.

alization gap with respect to average OOD per-
formance for GeoQuery. In general, we see that
models trained on code (Codex and CodeGen) are
able to achieve higher OOD generalization with
lower relative generalization gap on the GeoQuery
dataset, with improvements scaling with model
size. Since the outputs for GeoQuery dataset con-
tain constructs common in programming languages
(appendix B), these models might have better pre-
trained knowledge to compositionally generalize
to similar tasks with few demonstrations.

5 Related Work

Many approaches have tried to improve seman-
tic parsing compositional generalization (Russin
et al., 2019; Li et al., 2019; Gordon et al., 2020).
Herzig et al. (2021) propose intermediate represen-
tations to improve compositional generalization of
pretrained seq2seq models. Many have proposed
specialized architectures for semantic parsing tasks
(Gupta and Lewis, 2018; Lake, 2019). Shin et al.
(2021) study the adaption of large language mod-
els to semantic parsers through few-shot learning.
Herzig and Berant (2021) propose a parser which
infers a span tree over the input sequence. The tree
specifies how spans are composed together in the
input. A line of work studies the use of secondary
objectives to improve compositional generalization
(Yin et al., 2021; Jiang and Bansal, 2021).

Furrer et al. (2020) Study special architectures
compared to pretrained language models for se-
mantic parsing. Tsarkov et al. (2021) investigate

the compositional generalization abilities of Trans-
formers by scaling the training data size with fixed
computational cost.

Large language models are used in different
ways to solve downstream tasks. Aside from fine-
tuning the model, in-context learning, which is the
ability of the model to solve the task by seeing
a few exemplars during inference (no weight up-
dates) has gained attention (Brown et al., 2020;
Wang et al., 2022a). Another popular approach,
called prompt tuning, is to update a small part of
the model’s parameters only (Houlsby et al., 2019;
Schick and Schütze, 2021; Han et al., 2021; Liu
et al., 2021; Chen et al., 2022; Ding et al., 2022).
We focus on in-context learning and do not update
any parameters. Qiu et al. (2022) study whether
scaling improves compositional generalization in
semantic parsing for in-context learning, prompt
tuning, and fine-tuning all parameters of the mod-
els. We consider their work concurrent to ours with
the major difference being that this paper focuses
on measuring the relative generalization gap for
different model families. As described in detail in
section 3, we evaluate on four settings (2 ID and
2 OOD). To the best of our knowledge, Qiu et al.
(2022) only evaluate the Train→ Test setting.

6 Conclusion

We have studied the effect of scaling on the gap be-
tween compositional ID and OOD generalization.
We find that the relative generalization gap follows
a decreasing trend as models are scaled up for dif-
ferent model families and for different number of
support examples. One factor that limited our study
is that in-context learning performance on CFQ and
SCAN benchmarks is still very small for almost
all publicly available models. One thing worth in-
vestigating in future research is why Codex model
family, including the smaller Cushman model, is
the only family in this study that achieves above 1%
ID or OOD performance on CFQ or SCAN datasets.
Another interesting future direction is studying the
effects of pretraining on code and natural language,
rather than natural language alone, on composi-
tional generalization with scaling. Would pretrain-
ing on code provide more benefits with increased
model scale? Such questions can be answered in
the future when the research community has access
to more large generative models that are equal in
size and amount of training but differ only in data
composition.
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A Average OOD generalization with
respect to average ID generalization
performance

0.00 0.25 0.50 0.75 1.00
ID

0.00

0.25

0.50

0.75

1.00

OO
D

OPT 350M

OPT 1.3B
OPT 2.7B

OPT 6.7B

Codex Cushman

Codex DaVinci

CodeGen 350M

CodeGen 2B
CodeGen 6B

BL 350m

BL 1.3B
BL 2.5B

BL 6.3B

Figure 5: Average OOD generalization vs. average
ID generalization performance on GeoQuery-template
using 10 exemplars. Results are averaged over five
different seeds.
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Figure 6: Average OOD generalization vs. average ID
generalization performance on CFQ-MCD1 and SCAN-
MCD1 using 10 exemplars for Codex DaVinci and Cush-
man. Results are averaged over five different seeds.

B Prompt design

Our prompts include a prefix string that introduces
the task, followed by a number of input-output
examples where inputs and outputs have dataset-
specific prefixes. The templates used for producing
the prompts are illustrated in Table 2.

279



Dataset Prompt template

CFQ

As a programmer, I can correctly translate any complicated question to a
SPARQL query.

Question: Was a employer of M1 a film distributor?
Query: SELECT count(*) WHERE { ?x0 a film.film_distributor
. ?x0 employment_tenure.person M1 }

Question: <example 2 input>
Query: <example 2 output>

...

Question: <evaluation input>
Query:

SCAN

Here are some examples of converting complicated commands to correct
navigation actions.

Command: run opposite right thrice and jump around right thrice.
Actions: TURN_RIGHT TURN_RIGHT RUN TURN_RIGHT TURN_RIGHT RUN
TURN_RIGHT TURN_RIGHT RUN TURN_RIGHT JUMP TURN_RIGHT JUMP
TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP
TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT
JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP.

Command: <example 2 input>
Actions: <example 2 output>

...

Command: <evaluation input>
Actions:

GeoQuery

As a programmer, I can correctly translate any complicated question to a
meaning representation query.

Question: how high is the highest point in m0.
Query: answer ( elevation_1 ( highest ( intersection
( place , loc_2 ( m0 ) ) ) ) ).

Question: <example 2 input>
Query: <example 2 output>

...

Question: <evaluation input>
Query:

Table 2: Templates used for generating the prompts for CFQ, SCAN, and GeoQuery.
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Abstract

Recent work has shown that neural feature- and
representation-learning, e.g. BERT, achieves
superior performance over traditional manual
feature engineering based approaches, with e.g.
SVMs, in translationese classification tasks.
Previous research did not show (i) whether the
difference is because of the features, the classi-
fiers or both, and (ii) what the neural classifiers
actually learn. To address (i), we carefully de-
sign experiments that swap features between
BERT- and SVM-based classifiers. We show
that an SVM fed with BERT representations
performs at the level of the best BERT clas-
sifiers, while BERT learning and using hand-
crafted features performs at the level of an
SVM using handcrafted features. This shows
that the performance differences are due to the
features. To address (ii) we use integrated gra-
dients and find that (a) there is indication that
information captured by hand-crafted features
is only a subset of what BERT learns, and (b)
part of BERT’s top performance results are due
to BERT learning topic differences and spuri-
ous correlations with translationese.

1 Introduction

Translationese is a descriptive (non-negative) cover
term for the systematic differences between trans-
lated and originally authored text in same lan-
guage (Gellerstam, 1986). Some aspects of transla-
tionese such as source interference (Toury, 1980;
Teich, 2003) are language dependent, others are
presumed universal, e.g. simplification, explicita-
tion, overadherence to target language linguistic
norms (Volansky et al., 2015) in the products of
translations. While translationese effects can be
subtle, especially for professional human transla-
tion, corpus-based studies (Baker et al., 1993) and,
in particular, machine-learning and classifier based
studies (Rabinovich and Wintner, 2015; Volansky

*Equal contribution.

et al., 2015; Rubino et al., 2016; Pylypenko et al.,
2021) clearly reveal the differences.

While research on translationese is important
from a theoretical point of view (translation univer-
sals, specific interference), it has a direct impact
on machine translation research: (Kurokawa et al.,
2009; Stymne, 2017; Toral et al., 2018; Zhang and
Toral, 2019; Freitag et al., 2019; Graham et al.,
2020; Riley et al., 2020), amongst others, show
that translation direction in training and test data
impacts on results, that already translated test data
are easier to translate than original data, that ma-
chine translation and post-editing result in transla-
tionese, and that mitigating translationese in MT
output can improve results. Translationese impacts
cross-lingual applications, e.g. question answering
and natural language inference (Singh et al., 2019;
Clark et al., 2020; Artetxe et al., 2020).

In this paper we focus on machine-learning-
classifier-based research on translationese. Here,
typically a classifier is trained to distinguish be-
tween original and translated texts (in the same
language). Until recently, most of this research (Ba-
roni and Bernardini, 2005; Volansky et al., 2015;
Rubino et al., 2016) used manually defined, often
linguistically inspired, feature-engineering based
sets of features, mostly using support vector ma-
chines (SVM). Once a classifier is trained, feature
importance and ranking methods are used to rea-
son back to what aspects of the input is respon-
sible for (i.e. explains) the classification (and
whether this accords with linguistic theorisation).
More recently, a small number of papers explored
feature- and representation-learning neural network
based approaches to translationese classification
(Sominsky and Wintner, 2019). In a systematic
study Pylypenko et al. (2021) show that feature-
and representation-learning deep neural network-
based approaches (in particular BERT-based, but
also other neural approaches) to translationese
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classification substantially outperform handcrafted
feature-engineering based approaches using SVMs.
However, to date, two important questions remain:
(i) it is not clear whether the substantial perfor-
mance differences are due to learned vs. hand-
crafted features, the classifiers (SVM, the BERT
classification head, or full BERT), or the combina-
tion of both, and (ii) what the neural feature and
representation learning approaches actually learn
and how that explains the superior classification.
The contributions of our paper are as follows:

1. we address (i) by carefully crossing fea-
tures and classifiers, feeding BERT-based
learned features to feature-engineering mod-
els (SVMs), feeding the BERT classification
head with hand-crafted features, and by mak-
ing BERT architectures learn handcrafted fea-
tures, as well as feeding embeddings of hand-
crafted features into BERT. Our experiments
show that SVMs using BERT-learned fea-
tures perform on a par with our best BERT-
translationese classifiers, while BERT using
handcrafted features only performs at the level
of feature-engineering-based classifiers. This
shows that it is the features and not the clas-
sifiers, that lead to the substantial (up to 20%
points accuracy absolute) difference in perfor-
mance.

2. we present the first steps to address (ii) us-
ing integrated gradients, an attribution-based
approach, on the BERT models trained in var-
ious settings. Based on striking similarities
in attributions between BERT trained from
scratch and BERT pretrained on handcrafted
features and fine-tuned on text data, as well as
comparable classification accuracies, we find
evidence that the hand-crafted features do not
bring any additional information over the set
learnt by BERT. it is therefore likely that the
hand-crafted features are a (possibly partial)
subset of the features learnt by BERT. Inspect-
ing the most attributed tokens, we present evi-
dence of ’Clever Hans’ behaviour: at least part
of the high classification accuracy of BERT
is due to names of places and countries, sug-
gesting that part of the classification is topic-
and not translationese-based. Moreover, some
top features suggest that there may be some
punctuation-based spurious correlation in the
data.

2 Related Work

Combining learned and hand-crafted features.
(Kaas et al., 2020; Prakash and Tayyar Madabushi,
2020; Lim and Tayyar Madabushi, 2020) combine
BERT-based and manual features in order to im-
prove accuracy. (Kazameini et al., 2020; Ray and
Garain, 2020; Zhang and Yamana, 2020) concate-
nate BERT pooled output embeddings with hand-
crafted feature vectors for classification, often us-
ing an SVM, where the handcrafted feature vector
might be further encoded by a neural network or
used as it is. Our work differs in that we do not
combine features from both models but swap them
in order to decide whether it is the features, the clas-
sifiers or the combination that explains the perfor-
mance difference between neural and feature engi-
neering based models. Additionally, our approach
allows us to examine whether or not representa-
tion learning learns features similar to hand-crafted
features.

Explainability for the feature-engineering ap-
proach to translationese classification. To date,
explainability in translationese research has mainly
focused on quantifying handcrafted feature impor-
tance. Techniques include inspecting SVM feature
weights (Avner et al., 2016; Pylypenko et al., 2021),
correlation (Rubino et al., 2016), information gain
(Ilisei et al., 2010), chi-square (Ilisei et al., 2010),
decision trees or random forests (Rubino et al.,
2016; Ilisei et al., 2010), ablating features and ob-
serving the change in accuracy (Baroni and Bernar-
dini, 2005; Ilisei et al., 2010), training separate
classifiers on each individual feature (or feature set)
and comparing accuracies (Volansky et al., 2015;
Avner et al., 2016). For n-grams, the difference in
frequencies between the original and translationese
classes (Koppel and Ordan, 2011; van Halteren,
2008), and the contribution to the symmetrized
Kullback-Leibler Divergence between the classes
(Kurokawa et al., 2009) have been used.

Explainability for the neural approach to trans-
lationese classification. To date, explainability
methods for neural networks have not been widely
explored. Pylypenko et al. (2021) quantify to which
extent handcrafted features can explain the variance
in the predictions of neural models, such as BERT,
LSTMs, and a simplified Transformer, by training
per-feature linear regression models to output the
predicted probabilities of the neural models and
computing the R2 measure. They find that most of
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the top features are either POS-perplexity-based, or
bag-of-POS features. However, their method treats
the neural network as a black-box, whereas we use
a method that accesses the internals of the model.

Integrated Gradients (IG). In our work we use
the Integrated Gradients method (Sundararajan
et al., 2017) for explainability. This method pro-
vides attribution scores for the input with respect
to a certain class. IG calculates the integral of gra-
dients of the model F with respect to the input x
(token embedding), along the path from a baseline
x′ (in our case, PAD token embedding) to the input
x:

IntegratedGradsi(x) ::= (xi − x′i)×∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα
(1)

The strength of the Integrated Gradients method
is that it satisfies two fundamental axioms (Sensi-
tivity and Implementation Invariance), while many
other popular attribution methods, like Gradients
(Simonyan et al., 2014), DeepLift (Shrikumar et al.,
2017) and LRP (Bach et al., 2015) violate one or
both of them. IG also satisfies the completeness
axiom, that is, IG is comprehensive in accounting
for attributions and does not just to pick the top
label (Sundararajan et al., 2017).

3 Experimental Settings

3.1 Data

For our experiments, we use the monolingual Ger-
man dataset in the Multilingual Parallel Direct Eu-
roparl (MPDE) (Amponsah-Kaakyire et al., 2021)
corpus. The set contains 42k paragraphs with half
of the texts German originals and the other half
translations into German from Spanish (see statis-
tics in Appendix A.1). We perform paragraph-level
classification with an average length of 80 tokens
per training sample.

We additionally use an in-domain Europarl-
based heldout corpus of around 30k paragraphs
for training language models and n-gram quartile
distributions on it. This corpus consists of original
German texts only.

3.2 Base Setup

We compare the traditional SVM-based feature en-
gineering approach, which has demonstrated high
performance in previous translationese research,

to the BERT model known to be very success-
ful for various NLP tasks, including classification.
As base setup, we reproduce the models from Py-
lypenko et al. (2021) for the two architectures and
a new baseline:

1. a linear SVM on 108-dimensional hand-
crafted feature vectors (with surface, lexi-
cal, unigram bag-of-PoS, language modelling
and n-gram frequency distribution features1).
[handcr.-features+SVM]

2. a linear classifier (BERT classification head,
simple linear FFN, except for difference
in input dimension) trained on the 108-
dimensional handcrafted feature vectors.
[handcr.-features+LinearClassifier]

3. off-the-shelf Google’s pretrained BERT-
base model (12 layers, 768 hidden dimensions,
12 attention heads) which we fine-tune on the
MPDE corpus for translationese classification.
[pretrained-BERT-ft]

4. a BERT-base model with the same settings
trained from scratch on MPDE for transla-
tionese classification. [fromScratch-BERT]

For 1, we estimate n-gram language models with
SRILM (Stolcke, 2002) and do POS-tagging with
SpaCy.2 For 3, we use multilingual BERT (Devlin
et al., 2019) (BERT-base-multilingual-uncased),
and fine-tune with the simpletransformers3 library.
We use a batch size of 32, learning rate of 4 · 10−5,
and the Adam optimiser with epsilon 1 · 10−8.

To ensure fair and comprehensive treatment,
we carefully explore many experiments and varia-
tions below: we exchange input features between
BERT and SVM architectures by (i) feeding BERT-
learned features into SVMs (Section 3.3), hand-
crafted features into the BERT classification head,
and (ii-a) letting the full BERT architecture learn
handcrafted feature vectors used by SVMs and (ii-
b) feeding handcrafted feature vectors as embed-
dings into the BERT model (Section 3.4).

3.3 SVM Classifier with BERT Features
We train an SVM with linear kernel on the features
learnt by the pretrained BERT model fine-tuned on

1See (Pylypenko et al., 2021) for the detailed list of fea-
tures.

2https://spacy.io/
3github.com/ThilinaRajapakse/

simpletransformers
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the translationese classification task. We use the
output of the BERT pooler, which selects the last
layer [CLS] token vector, with linear projection
and tanh activation as our feature vector. We use:

1. BERT’s 768-dim pooled vector output,
[pretrained-BERT-ft+SVM]

2. a 108-dim PCA projection of this vector.
[pretrained-BERT-ft+PCA108+SVM]

The PCA projection allows us to match the hand-
crafted feature vector dimensionality.

3.4 BERT with Handcrafted Features

Apart from feeding hand-crafted feature vectors
into a suitably adjusted BERT classification head
[handcr.-features+LinearClassifier], we care-
fully design two strategies to force the full BERT
architecture use the handcrafted features.

Pretraining on handcrafted feature prediction.
First, we train a BERT-base model from scratch
on the MPDE dataset to predict the handcrafted
features. This regression model [BERT-reg-full]
takes unmasked text as input and predicts continu-
ous values (the 108 dimension vectors representing
handcrafted features originally used in training the
SVM). The complete feature vector is predicted at
once, and the pretraining is done by minimizing
MSE loss between the predicted and the ground
truth vector. The weights of this model encode the
information of the handcrafted features. With this
pretrained model,

1. we freeze the weights, replace the regression
head (linear layer predicting 108 features)
with a linear classifier (a BERT classification
head predicting the original or translationese
label) and train the classifier on the MPDE
data for translationese classification, [BERT-
r2c-full-frozen]4

2. we do not freeze but fine-tune on MPDE for
the translationese classification task. [BERT-
r2c-full-ft]

The comparison between frozen and unfrozen
weights is designed to provide us insights on the
importance of representation learning in BERT.

We reproduce the same approach as above with a
smaller BERT model with only 6 layers instead of
12 [BERT-reg-half]. Interestingly, according to the

4r2c – regression-to-classification

Figure 1: Mapping handcrafted features to embeddings.

losses when training for predicting the handcrafted
features, the smaller BERT-reg-half performs com-
parably to BERT-reg-full (0.0041136 vs 0.0041148
MSE). We then load the weights of the small 6
layer model into the embedding layer and the first
6 layers of a 12 layer non-pretrained BERT-base
model and, similarly as before:

3. we freeze the loaded weights in the first 6
layers and train the remaining 6 layers and
classifier on the translationese classification
task, [BERT-r2c-half-frozen]

4. we do not freeze but fine-tune on the trans-
lationese classification task with randomly-
initialised weights for the other 6 layers.
[BERT-r2c-half-ft]

Mapping handcrafted features to embeddings.
Even though the very low MSE results indicate that
both versions of BERT-reg are able to learn hand-
crafted features well, using them in terms of frozen
layers in translationese classification leads to low
classification performance (Section 4). This could
be attributed to the fact that, not being an end-to-
end approach, information losses accumulate: first,
even though MSE is low in BERT-reg, we do not
have exactly the same features; and second, the fea-
tures are not used directly for classification, but are
encoded again by the network. This motivates us to
explore an alternative way of encoding handcrafted
features in an end-to-end manner.

We convert the single vector of handcrafted fea-
tures of dimension D (108 in our experiments) into
a sequence of embeddings in BERT’s layer format,
that is, length of feature embedding sequence L
times the dimension of the hidden states H (768),
while preserving the information of the single vec-
tor (Figure 1). To do this, we consider a batch of
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Model Accuracy (%)

handcr.-features+SVM 73.2±0.1
handcr.-features+LinearClassifier 72.0±0.4
pretrained-BERT-ft 92.2±0.2
fromScratch-BERT 89.3±0.3

pretrained-BERT-ft+SVM 92.0±0.0
pretrained-BERT-ft+PCA108+SVM 92.0±0.0

BERT-r2c-full-frozen+SVM 74.9±0.7
BERT-r2c-full-frozen+PCA108+SVM 70.3±0.1
BERT-r2c-full-frozen 59.6±0.1
BERT-r2c-full-ft 89.3±0.4
BERT-r2c-half-frozen 67.5±0.4
BERT-r2c-half-ft 89.0±0.3

BERT-f2c L = 1 57±10
BERT-f2c L = 80 72.8±0.2
BERT-f2c L = 256 72.7±0.2
pretrained-BERT-f2c L = 80 68.0±2.1

Table 1: Translationese classification accuracy for all
settings (average and standard deviation over 5 runs).
All of the models were trained/fine-tuned for the trans-
lationese classification task.

tokens with size B and take in the handcrafted fea-
tures as a (B ×D)-dimensional input to the BERT
model and generate feature embeddings by passing
the features through 2 linear layers as follows. We
first pass the (B × 1×D) input to the first linear
layer. The resulting (B ×L×D)-dimensional out-
put is fed as input to the second linear layer which
outputs a (B × L×H)-dimensional output as the
feature embeddings.

This reshaped handcrafted feature embedding
layer replaces BERT’s embedding layer. Weights
are randomly initialised and the modified BERT
model is trained on the translationese classification
task. We experiment with three different values
for sequence length L: 1, 80 (average length of
our training samples) and 256 (half of maximum
input for BERT). All three variants are trained from
scratch [BERT-f2c5 L=1, BERT-f2c L=80, BERT-
f2c L=256]. For further comparison, we also take
BERT-f2c L=80, load the weights of pretrained
BERT-base layers into the 12 layers of the modified
model and fine-tune on the task [pretrained BERT-
f2c L=80].

Training and hyperparameter settings for these
models are given in Appendix A.2.

4 Translationese Classification

Table 1 summarises results of the different transla-
tionese classification settings. For the base models,
BERT outperforms the SVM by 16% when trained

5f2c – feature-embeddings to classification

from scratch and 19% when finetuned.

Feeding pooled output of BERT into the SVM
model [pretrained-BERT-ft+SVM], accuracy in-
creases by 19% percentage points absolute over us-
ing handcrafted features [handcr.-features+SVM],
even when PCA is used to reduce the BERT vec-
tor dimensionality to match the size of the hand-
crafted feature vector. Feeding handcrafted fea-
tures directly to the linear BERT classification head
[handcr.-features+LinearClassifier] reduces ac-
curacy by about 20% points compared to pretrained
and fine-tuned BERT [pretrained-BERT-ft]. This
shows that features learnt by BERT are superior
to our set of manual features, as used in previ-
ous high performing classical feature engineering-
based approaches to translationese classification.
When BERT is trained from scratch on the MPDE
data [fromScratch-BERT], translationese classifi-
cation accuracy reduces by ∼ 3 percentage points,
compared to pretrained-BERT-ft. This suggests
that pretraining on large data helps to encode ad-
ditional information that turns out to be helpful in
the translationese classification task.

One can assume that BERT pretrained to pre-
dict the handcrafted features and subsequently
frozen [BERT-r2c-full-frozen] has learnt to en-
code the handcrafted features during pretraining
(Section 3.4). Nevertheless, its accuracy, albeit
higher than a random guess, is lower by ∼ 13 per-
centage points than the SVM classifier. We per-
form an additional experiment, in order to check
whether the difference in accuracy is due to BERT
failing to sufficiently encode the handcrafted fea-
tures during pretraining, or due to the SVM clas-
sifier being superior to the linear classification
head of the BERT model. Namely, we train the
SVM classifier on the pooled output of BERT-r2c-
full-frozen model [BERT-r2c-full-frozen+SVM]
and on the PCA-reduced dimensionality [BERT-
r2c-full-frozen+PCA108+SVM]. The accuracy is
around 75% for both settings which is as high as
using SVM on handcrafted feature vectors. We con-
clude that BERT encodes the handcrafted features
sufficiently well, but the linear classifier performs
worse than an SVM in these conditions.

Further fine-tuning BERT fully pretrained for
handcrafted feature prediction [BERT-r2c-full-ft]
for translationese classification results in accuracy
comparable to BERT that was not pretrained on
this task [fromScratch-BERT]. This could sug-
gest that our handcrafted feature set is either a sub-
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Figure 2: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). Comparison of different models.

set of features learned by fromScratch-BERT, or
that the handcrafted features are discarded during
fine-tuning. The model where only the first 6 lay-
ers were pretrained [BERT-r2c-half-ft], achieves
similar accuracy, likely due to the same reasons.
By contrast, freezing the 6 handcrafted feature pre-
diction pretrained layers [BERT-r2c-half-frozen]
largely reduces the accuracy with respect to BERT-
r2c-half-ft, because the model only has access to
the 6th layer embeddings that supposedly encode
the information about the handcrafted features, and
does not have ability to extract its own features.
The remaining (higher) 6 layers are responsible for
the increment in accuracy with respect to BERT-
r2c-full-frozen.

The results of BERT-f2c models show that BERT,
when fed the handcrafted features in the form of
embeddings, can reach at most the same accuracy
as the hancdr.-features+SVM approach, which sug-
gests that the BERT architecture has no advantage

over the SVM classifier in utilizing the handcrafted
features for classification. This is again evidence
that the features, and not the classifier, cause the
better performance of the feature and representa-
tion learning method.6

5 Layer Integrated Gradients Saliency

We compare input attributions of the ground truth
classification label amongst pretrained-BERT-ft,
fromScratch-BERT and four different settings
of the translationese classification models pre-
trained on the handcrafted feature prediction task:
BERT-r2c-full-ft, BERT-r2c-full-frozen, BERT-
r2c-half-ft and BERT-r2c-half-frozen. We use
Layer Integrated Gradients from the Captum li-
brary (Kokhlikyan et al., 2020), which computes
the attribution for all the individual neurons in the

6As a sanity check, we ran an experiment using a gradient
boosting classifier instead of an SVM, with the exact same
108 hand-crafted features and obtain accuracy of 72.3%.
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Translationese Original
BERT-r2c-full-ft pretrained-BERT-ft BERT-r2c-full-ft pretrained-BERT-ft

Rank Token AAS Token AAS Token AAS Token AAS
1 sagte 0.60 entstand 0.70 ##wegen 0.61 situations 0.37
2 gebiet 0.46 virus 0.63 • 0.55 • 0.36
3 ##dies 0.44 inti 0.60 eu 0.49 ria 0.34
4 ansicht 0.43 sagte 0.58 daraufhin 0.49 ##lk 0.33
5 bezug 0.42 entdeckte 0.57 finde 0.45 ##iet 0.32
6 neige 0.40 gras 0.57 ##vo 0.45 golden 0.32
7 amt 0.40 nuts 0.56 gerne 0.43 sak 0.30
8 pre 0.40 nicaragua 0.55 ##abb 0.42 turm 0.30
9 spanien 0.39 rekord 0.53 ##hrte 0.42 ##emen 0.27
10 sprechen 0.38 bilbao 0.53 ausbau 0.42 orange 0.27
11 nuts 0.36 verfugte 0.53 ! 0.42 hang 0.26
12 barcelona 0.34 bol 0.51 bekommen 0.42 ##wald 0.25
13 ; 0.33 colombia 0.51 trips 0.41 1732 0.25
14 ##bien 0.32 nis 0.51 ez 0.41 dobe 0.24
15 spanischen 0.32 och 0.49 ##gemeinde 0.40 ##pas 0.23
16 wiederholt 0.31 vorkommen 0.49 vot 0.36 profits 0.22
17 einige 0.30 oecd 0.49 won 0.36 stuttgart 0.22
18 ##sprache 0.29 ; 0.46 geplant 0.35 soja 0.21
19 weder 0.29 erklarte 0.45 demnach 0.35 r 0.21
20 territorium 0.28 clinton 0.45 ja 0.35 ruth 0.21

Table 2: Top-20 tokens with highest average attribution score (AAS) towards original and translationese classes in
the test set. BERT-r2c-full-ft and pretrained-BERT-ft.

embedding layer, and calculate the salience score
for each token by averaging the attributions over
the embedding dimension.

Comparing Models. Figure 2 displays Inte-
grated Gradients attributions for a translated para-
graph across different BERT models. The trends
for the original paragraph are similar to those that
we observe for the translated paragraph, therefore
attributions for the original paragraph are given in
Appendix A.3.

Comparing the attributions of classification la-
bels to sample inputs amongst the various settings
of BERT, we observe that attributions are similar
for fromScratch-BERT and the fine-tuned models:
BERT-r2c-full-ft and BERT-r2c-half-ft. This sug-
gests that fine-tuning "dissolves" the pre-learned
information about the hand-crafted features in the
r2c models, no matter how much of the model was
pre-trained. By contrast, freezing the weights in
BERT-r2c-full-frozen and BERT-r2c-half-frozen
resulted in very different attributions compared to
the fromScratch-BERT. Since these frozen mod-
els only utilize the information they have learnt
about the handcrafted features, this shows that this
information is not identical to the information that
fromScratch-BERT learns for the translationese
classification task. For BERT-r2c-half-frozen the
attributions are more peaked than for other models,

with only a few tokens receiving large scores, and
most tokens having scores close to zero. Notably,
pretrained-BERT-ft displays a pattern that is over-
all similar to BERT trained from scratch, but some
attributions are reversed, and the peaks are on dif-
ferent tokens. This supports the observation that
off-the-shelf BERT pretrained on a large amount of
data encodes some useful additional information.

For BERT-r2c-full-frozen, a substantial number
of tokens with negative attributions have positive
attributions in the model trained from scratch and
also the fine-tuned models. However some attribu-
tions overlap, which suggests that fromScratch-
BERT may be using something like the hand-
crafted features. We investigate this further by
examining the fine-tuning checkpoints.

Comparing Checkpoints. We aim to study
how fromScratch-BERT learns information about
translationese classification over the epochs, and
how this compares to the fine-tuning of BERT-
r2c-full-ft, when the information about the hand-
crafted features is gradually modified over the
epochs turn into the final feature set used for trans-
lationese classification. In Appendix A.3 we pro-
vide additional results on examining training check-
points for fromScratch-BERT and BERT-r2c-
full-ft for an original and a translated paragraph.

Results indicate that for fromScratch-BERT
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some attributions change into their opposite during
training, whereas for BERT-r2c-full-ft the pattern
appears to be already settled from the early check-
points onwards, and does not change much over the
course of fine-tuning. This supports the hypothesis
that the handcrafted features are a subset of features
learnt by fromScratch-BERT, and thus provide a
useful initialization of weights for fine-tuning for
translationese classification.

Highest Average Attribution. In order to make
the interpretation less local, and to generalize the
observations, we compute the top tokens with high-
est attribution on average across the test set. The
results for each class for best-performing models
(pretrained-BERT-ft and BERT-r2c-full-ft) are
given in Table 2.

For German translationese data translated from
Spanish, some top tokens correspond to the ge-
ographical areas, where Spanish is spoken, e.g.
"spanien", "barcelona", "spanischen" for BERT-
r2c-full-ft; "nicaragua", "colombia", "bilbao" for
pretrained-BERT-ft. (Moreover, in this example it
appears that off-the-shelf pretrained-BERT-ft, pre-
trained on the Wikipedia data, better utilizes the
non-European toponyms, unlike the BERT-r2c-full-
ft that was only trained on the European-focused
Europarl data.) Likewise for original German data,
some of the top tokens are German geographical
names, e.g. "stuttgart" for pretrained-BERT-ft. The
subword "##wald" also appears to be a common
German toponymic suffix. This suggests that topic
is one of the spurious clues that is used by BERT
to determine the correct translationese class. This
is also supported by the fact that some nouns that
likely correspond to certain recurring discussion
topics for only one class within our data sample,
receive high attribution, e.g. "virus", "soja", "clin-
ton", "orange" etc. The "ez" token, salient for the
original class, appears to be a starting subword
unit of the EZB abbreviation (Europäische Zentral-
bank).

The "•" token (bullet point) having a high attribu-
tion for the class originals for both models might
suggest a spurious correlation within the dataset,
that is apparently utilized by BERT. The ";" token
is deemed important for the translationese class by
both models, which might also be a spurious corre-
lation. Conversely, this could be an indication that
clauses in Spanish are more often joint with the
semi-colon, than in German, which was preserved
in the translation. This corroborates findings from

other works that deep networks exploit spurious
statistical cues for better performance (Mudrakarta
et al., 2018; Niven and Kao, 2019).

For both models the Präteritum forms "sagte",
"erklärte" etc. are also among the top tokens impor-
tant for recognizing translationese. One possible
explanation could be that the Perfekt form ("hat
gesagt") is more common in German spoken lan-
guage, and Präteritum is more common in writing.
Therefore the translators, while translating Spanish
speeches into German, may have preferred to use
the Präteritum form more common for writing.

6 Summary and Conclusions

We address two open questions in classification-
based translationese research: (1) are the substan-
tial performance differences between feature- and
representation-learning and classical handcrafted
feature based approaches is due to (i) the differ-
ence in the features, (ii) the classifiers, or (iii)
both, and (2) what do feature- and representation-
learning based approaches actually learn?

We address (1) by exchanging features from
both models, examining a broad variety of set-
tings, to ensure that this is done in a fair an un-
biased way. We show that SVMs perform as good
as BERT when fed with features learnt by BERT.
Likewise, the BERT classification head and the full
BERT architecture perform at the level of tradi-
tional SVM-based classification with handcrafted
features, when fed with handcrafted features only.
This shows that it is the feature and representation
learning and not the classifiers that are responsible
for the translationese classification performance
difference.

To address question (2), we examine BERT’s in-
put attributions using Integrated Gradients Saliency
for various settings and observe that attributions are
indeed similar for the model trained from scratch
(fromScratch-BERT) on just the text data and the
fine-tuned models that were pretrained on hand-
crafted feature prediction (BERT-r2c-full-ft and
BERT-r2c-half-ft). This suggests that pretraining
on the handcrafted features does not make a visible
difference in attributions, and, together with the
accuracy result that also does not change, suggests
that no extra information is learnt during pretrain-
ing on handcrafted features. Based on these find-
ings, and the fact that some attributions appear to
overlap for BERT pretrained on handcrafted fea-
tures and where the pretrained layers were subse-
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quently frozen (BERT-r2c-full-frozen), and BERT
trained from scratch (fromScratch-BERT), it is con-
sistent to assume that handcrafted features are a
(possibly partial) subset of the features automati-
cally learnt by BERT.

Finally, analysis of top activated tokens suggests
that at least part of BERT’s strong translationese
classification accuracy is based on topic differences
between the classes as well as on some spurious cor-
relations, rather than "proper" translationese phe-
nomena. We are currently working on quantifying
the ’Clever Hans’ behaviour using named entity
masking and cleaning/normalizing the data.
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A Appendix

A.1 Extra Information on the MPDE Dataset
We use version 2.0.0 of the MPDE dataset li-
censed under CC-BY 4.0. Specifically we use the
mono_de_es train/dev/test splits of the German-
Spanish language pair. Table 3 contains summary
statistics of the data.

Split Number of Examples
Train set 29580
Validation set 6366
Test 6344

Table 3: Dataset statistics.

A.2 Extra Information on BERT Models
With the exception of pretrained-BERT-ft, we use
the transformers library.7 Training is done across
4 NVIDIA GeForce GTX TITAN X GPUs with a
batch size of 8 per GPU. We use a learning rate of
3 · 10−5 and train or fine-tune for 5 epochs. Table
4 shows the number of parameters of the differ-
ent BERT variants. Parameter counts include the
embedding and respective prediction (classifier or
regression) layers.

Model Num. Params (M)
fromScratch-BERT 177.85
BERT-reg-full 177.94
BERT-reg-half 135.41
BERT-r2c-* 177.85
BERT-f2c L = 1 177.46
BERT-f2c L = 80 177.52
BERT-f2c L = 256 177.66
pretrained-BERT-f2c L = 80 177.52

Table 4: Number of parameters of the various BERT
models.

7https://huggingface.co/transformers/
model_doc/bert.html
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A.3 Additional Layer Integrated Gradients saliency maps

Figure 3: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). Comparison of different models.
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Figure 4: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 5: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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Figure 6: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 7: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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Abstract

GPT-3 has attracted much attention from both
academia and industry. However, it is still un-
clear what GPT-3 has understood or learned
especially in linguistic knowledge. Some stud-
ies have shown linguistic phenomena including
negation and tense are hard to be recognized by
language models such as BERT. In this study,
we conduct probing tasks focusing on semantic
information. Specifically, we investigate GPT-
3’s linguistic knowledge on semantic tasks to
identify tense, the number of subjects, and the
number of objects for a given sentence. We
also experiment with different prompt designs
and temperatures of the decoding method. Our
experiment results suggest that GPT-3 has ac-
quired linguistic knowledge to identify certain
semantic information in most cases, but still
fails when there are some types of disturbance
happening in the sentence. We also perform er-
ror analysis to summarize some common types
of mistakes that GPT-3 has made when dealing
with certain semantic information.

1 Introduction

GPT-3 (Brown et al., 2020) is a large neural lan-
guage model (NLM) released in 2020, and it has re-
alized state-of-the-art performance on various lan-
guage tasks. Disregarding its achievement in recent
years, however, few pieces of literature interpret
well what would happen inside GPT-3, as well as
the knowledge it has acquired or represented. This
is also true for understanding linguistic phenom-
ena, which represent all features and grammar that
a linguist should study (Bhatt et al., 2011). Based
on recent studies, like the task-agnostic methodol-
ogy named CheckList (Ribeiro et al., 2020), it is
revealed that NLP models have a high failure rate
in testing linguistic phenomena, though they may
perform well in many other language tasks. This
paper contributes to the existing literature by mak-
ing an effort on understanding GPT-3’s knowledge
of the linguistic phenomenon, especially with a fo-

cus on semantic information including tense and
singularity or plurality of the number of subject
and object of a given sentence.

The SentEval probing tasks (Conneau et al.,
2018) introduce 10 probing tasks covering the as-
pects of surface information, syntactic information,
and semantic information. In our study, we want to
evaluate GPT-3’s knowledge and understanding of
linguistic phenomena, thus we focus on the aspect
of semantic information. Specifically, we apply the
semantic tasks (Tense, SubjNum, and ObjNum) to
test GPT-3’s linguistic knowledge to understand
tense and singularity or plurality of the number
of subject and object, which do not involve any
replacement or inversion of source corpus. (See
section 3.1 for details of these semantic tasks.)

For our experiment, we design zero-shot and
few-shot prompts separately, which means differ-
ent numbers of examples from the dataset appear in
the prompt. We also set the binary choice question
like “Is the number of the subject of the sentence
singular or plural?” as the default prompt style,
while designing another general prompt that allows
GPT-3 to give its own answer to the general ques-
tion. More details about prompt design can be
found in Table 1. For the decoding method, we
set temperature as 0, 0.5, 0.7, and 0.9 accordingly,
where lower temperature means GPT-3 will take
fewer risks when making the prediction. We test
the semantic tasks from SentEval on GPT-3 with
combinations of the above prompt and temperature,
and calculate accuracy for each type of linguistic
phenomena in the probing task.

Based on our experiment result, we find that
GPT-3 has acquired some linguistic knowledge to
understand semantic information like tense and sin-
gularity or plurality of subject and object, though it
may be disturbed in some cases. Besides, we notice
that designing the prompt with the general question
might lead to model performance degradation. The
model tends to provide irrelevant answers, since
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Table 1: Examples of Different Prompt Design.

Prompt Design Example
zero-shot prompt
with default style

Is the sentence “It senses
your movement.” present or
past?

zero-shot prompt
with general style

What is the tense of the sen-
tence “It senses your move-
ment.”?

few-shot prompt
with default style

Is the sentence “He messed
with you.” present or past?
⇒ past
Is the sentence “It senses
your movement.” present or
past? ⇒?

no expected choice is provided as in the default
prompt style. We also find that variation in temper-
ature has a minor impact on GPT-3’s performance.
Further, it is unexpected that more examples in the
few-short prompts confuse and hurt the model in
some tasks, rather than providing more hints.

Our work contributes to the stream of the work
on probing the large language models, which helps
us better understand what linguistic properties the
model has acquired or represented. Specifically,
we provide better insights on GPT-3’s linguistic
knowledge of certain semantic information.

2 Related Work

In recent years, although pre-trained language mod-
els like BERT (Devlin et al., 2019) have achieved
state-of-the-art performance in many NLP tasks, it
is still difficult to figure out what linguistic infor-
mation is learned by the language representations.

Probing tasks are designed to test whether lan-
guage models have encoded linguistic phenomena
in learned representations by training a probing
classifier on these representations. In an early study
of machine translation, Shi et al. (2016) convert
source sentences into encoded representations by
the neural machine translation model, and train a
logistic regression model on these representations
to predict syntactic labels. In another study, Adi
et al. (2017) design tasks to measure what extent
the sentence representation from CBOW (Mikolov
et al., 2013) and LSTM auto-encoder encodes its
length, the identities of words within it, and word
order. Their results indicate that the probing task is
an effective way to evaluate the language model’s
ability to learn linguistic information.

Thus, many recent works have made some ef-
forts to profile neural language models (NLMs)
(Marvin and Linzen, 2018; Warstadt et al., 2019;
Miaschi et al., 2020). For example, Marvin and
Linzen (2018) test whether the language model
assigns a higher probability to the grammatical sen-
tence than the ungrammatical ones, showing that
the performance of the language model lags behind
the human performance in recognizing the gram-
maticality of the sentence. Warstadt et al. (2019)
also assess the NLM’s ability on learning gram-
matical knowledge and show that the BERT has
significant knowledge of some grammatical fea-
tures in sentences. Miaschi et al. (2020) test the
model’s ability to understand linguistic features,
such as sentence length and part-of-speech tagging
(POS tagging). It reveals that “the more NLM
stores readable linguistic information of a sentence,
the stronger its predictive power”. Many other
works also focus on understanding the attention
mechanism of NLMs (Tang et al., 2018; Jain and
Wallace, 2019; Clark et al., 2019). For example,
Clark et al. (2019) conduct an analysis on BERT’s
attention and show that “certain attention heads
correspond well to linguistic notions of syntax and
coreference”.

Previous work has provided evidence of NLM’s
ability to learn linguistic knowledge from the data.
Some work tries to understand whether the learned
linguistic knowledge has a particular structure (e.g.
hierarchical structure) (Belinkov et al., 2018; Lin
et al., 2019). These works have developed impor-
tant probing tasks that profile the different aspects
of the linguistic knowledge of NLMs. We follow
the approach to conduct our own experiments of
probing tasks on exploring GPT-3’s ability to un-
derstand linguistic phenomena.

3 Experiment

We test the semantic tasks (Tense, SubjNum, and
ObjNum) from SentEval (Conneau et al., 2018) on
GPT-3 with combinations of different prompt de-
signs and temperatures, and calculate accuracy for
each type of linguistic phenomena in the probing
task.

3.1 Dataset

We use the SentEval dataset with a focus on prob-
ing tasks of semantic information. Specifically,
we apply the semantic tasks of Tense, SubjNum,
and ObjNum to test GPT-3’s linguistic knowledge.
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The Tense task is a binary classification task that
predicts whether the tense of the main verb of a
sentence is present (PRES) or past (PAST). The
SubjNum task is also a binary classification task
that predicts whether the number of the subject of
a sentence is singular (NN) or plural (NNS). The
ObjNum task is almost the same as the SubjNum
task, but it predicts the number of the object of a
sentence instead.

The original SentEval dataset has over 100 thou-
sand of records for each probing task. Given
the computational efficiency, we randomly sam-
ple a subset of 500 records for each semantic task
of Tense, SubjNum, and ObjNum to run our ex-
periments. The datasets and codes are available
at https://github.com/lining-zhang/GPT-3_

Linguistic.

3.2 Experimental Design

Baseline Experiment For our baseline exper-
iment, we use the prompt from the OpenAI API
(“QA prompt”)1, with some modifications on the
instruction part of the prompt. This makes our de-
fault prompt zero-shot, which means no examples
from the SentEval probing dataset appear in the
prompt. We also design the question in the default
prompt to directly specify the labels that GPT-3
should choose from. For the decoding method, we
set the temperature to 0, which means GPT-3 will
take fewer risks when making the prediction. For
the engine, we use “text-davinci-002”2 for all ex-
periments, which is the most capable GPT-3 model
for all kinds of tasks.

Default Prompt vs General Prompt For the
default prompt style, we set the binary choice ques-
tion like “Is the number of the subject of the sen-
tence singular or plural?” to appear in the prompt.
This default style specifies the exact answers that
GPT-3 is expected to choose from. To investigate
the effect of the prompt design, we also design
another general prompt that allows GPT-3 to di-
rectly give its own answer to the general question
like “What is the number of the subject of the sen-
tence?”. This general prompt style gives GPT-3
more freedom to generate its own answer without
restriction to certain choices, but still with the risk
that it may not be able to find the expected answer.
The experiments of the default prompt and general

1https://openai.com/api/
2https://beta.openai.com/docs/models/

gpt-3

prompt are all zero-shot. Examples of different
prompt designs can be found in Table 1.

Temperature Variations To test the influence
of temperature on model performance, we measure
GPT-3’s linguistic knowledge on the semantic tasks
with the temperature variation of 0, 0.5, 0.7, and
0.9 accordingly. Both default and general prompts
are tested.

Few-shot Experiment To test whether the
model benefits from more examples, we provide
randomly selected examples of the linguistic phe-
nomena to create the few-shot prompt. Based on
the assumption that the number of examples in the
few-shot prompt might also have an effect on the
model’s performance, we vary the number of exam-
ples provided, while keeping all few-shot prompts
in the default style and setting the temperature to
0. We experiment with two examples and five ex-
amples in the few-shot prompt separately. See ap-
pendix A for more few-shot learning examples.

Evaluation To evaluate GPT-3’s performance
on each semantic task, we compare the response
returned by GPT-3 with the true label. If GPT-3
predicts the true label correctly, we will assign a
new label of response type with a value of 1. If
GPT-3 predicts the true label adversely, we will as-
sign the label of response type with a value of 2. If
the response GPT-3 returned doesn’t hit any of the
true labels, or even doesn’t make sense given the
context, we will assign the label of response type
with a value of 3. Then we calculate the ratio cor-
responding to each label of response type to show
GPT-3’s performance on each type of linguistic
phenomena in the semantic probing task.

3.3 Results

Based on the answers returned from GPT-3, we
categorize the responses into three response types
which indicate their prediction as correct, adverse,
or irrelevant. Detailed proportions for each case
can be found in Table 2 and the corresponding vi-
sualization can be found in Figure 1. Considering
the case that GPT-3 cannot detect linguistics phe-
nomena at all and tends to give responses simply
by random guess, then the ratio of each label of
response type would all be approximately 0.33.

In terms of the default prompt style, which pro-
vides options like “Is the tense of the sentence past
or present?”, we find that GPT-3 has acquired some
linguistic knowledge to understand semantic infor-
mation like tense and singularity or plurality of sub-
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Table 2: Experiment Results for Combinations of Different Prompt Design and Temperature.

Experimental Setting Task Name
Correct Answer

(Label 1)
Adverse Answer

(Label 2)
Irrelevant Answer

(Label 3)

Default Prompt
Temperature=0

Tense 0.712 0.288 0
SubjNum 0.74 0.254 0.006
ObjNum 0.608 0.392 0

Default Prompt
Temperature=0.5

Tense 0.718 0.28 0.002
SubjNum 0.698 0.276 0.026
ObjNum 0.596 0.404 0

Default Prompt
Temperature=0.7

Tense 0.698 0.3 0.002
SubjNum 0.684 0.3 0.016
ObjNum 0.6 0.398 0.002

Default Prompt
Temperature=0.9

Tense 0.698 0.294 0.008
SubjNum 0.662 0.3 0.038
ObjNum 0.584 0.408 0.008

General Prompt
Temperature=0

Tense 0.668 0.308 0.024
SubjNum 0.044 0.03 0.926
ObjNum 0.26 0.19 0.55

General Prompt
Temperature=0.5

Tense 0.67 0.306 0.024
SubjNum 0.062 0.04 0.898
ObjNum 0.212 0.174 0.614

General Prompt
Temperature=0.7

Tense 0.678 0.29 0.032
SubjNum 0.048 0.042 0.91
ObjNum 0.208 0.144 0.648

General Prompt
Temperature=0.9

Tense 0.662 0.288 0.05
SubjNum 0.06 0.058 0.882
ObjNum 0.208 0.134 0.658

Five-shot examples
Temperature=0

Tense 0.67 0.33 0
SubjNum 0.718 0.282 0
ObjNum 0.674 0.326 0

Two-shot examples
Temperature=0

Tense 0.7 0.3 0
SubjNum 0.72 0.28 0
ObjNum 0.702 0.298 0

ject and object. However, when general prompts
are provided, we notice that it degrades GPT-3’s
performance slightly regarding the tense query, and
heavily regarding the singularity or plurality query.
This issue results from the fact that GPT-3 some-
times cannot distinguish “What is the number of
subject/object of the sentences” from “What is the
subject/object of the sentences”. Thus, GPT-3 tends
to choose irrelevant answers in this situation.

For the variation of temperature, we find that
it has a minor impact on GPT-3’s performance re-
gardless of which type of prompt is given. For the
Tense task, the highest ratio reached by the correct
answer (Label 1) happens when the temperature
is 0.5 with the default prompt style and 0.7 with
the general prompt style. For SubjNum and Ob-
jNum tasks in whatever prompt style, the ratio of
Label 1 tends to decrease slightly or fluctuate as
the temperature increases.

Besides, GPT-3 performs better in identifying

the singularity or plurality of the subject than that
of the object given the default prompt style. This
circumstance may result from the fact that GPT-3
can infer the subject’s singularity or plurality not
only based on the subject itself, but also on the
predicate of the sentence. On the other hand, the
structure of the object of sentences can be more
confusing than the subject’s most of the time, in-
troducing more challenges to GPT-3 in syntactic
parsing.

We first conduct the experiment with five ex-
amples in a few-shot prompt for each semantic
task. The experiment is also in default prompt style
with the temperature = 0. We notice that GPT-3’s
performance degrades for the Tense and SubjNum
tasks but increases for the ObjNum task. This phe-
nomenon matches the observation that identifying
the singularity or plurality of the object is more
difficult compared to the subject given a zero-shot
prompt in the default style. Thus, in the few-shot
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Figure 1: The Proportion of Different Answers Returned by GPT-3 for Each Combination of Prompt and Temperature

prompt, more examples are provided to support the
ObjNum task which results in the increase. Be-
sides, GPT-3 tends to be more confident in getting
relevant answers, as the only percentage of the irrel-
evant answer which is not zero from the SubjNum
task also goes to zero after several examples are
provided in the few-shot prompt. After observing
the degradation of model performance for the Tense
and SubjNum tasks, we suspect that more exam-
ples obfuscate the model and reduce the number of
examples to two in the few-shot prompt. We then
observe an increase in model performance for all
tasks, compared to results in the experiment with
five examples. However, GPT-3’s performance in
the few-shot prompt still cannot rival the one from
the baseline experiment for the Tense and SubjNum
tasks, but improves for the ObjNum task.

4 Error Analysis

We perform the error analysis on records that GPT-
3 does not answer correctly, which indicates the
response is either adverse or irrelevant with La-
bel 2 and Label 3 separately. We manually go
through some records that get incorrect responses
from GPT-3 to mark them with potential reasons
and categorize them into several types of mistakes.
However, this process requires a large amount of
human annotations for each scenario to identify
mistake types precisely, which may not be feasible
in our case. Thus, this analysis may not exhaust
all possibilities that GPT-3 might make mistakes
when identifying certain linguistic phenomena and
is not able to quantify the corresponding propor-
tions, but it still provides some insights into how
GPT-3 understands linguistic knowledge to some
extent. Below is a brief summary of some common

types of mistakes that GPT-3 has made when re-
turning the response. Examples of each mistake
type can be found in Table 3.

Disturbance of Quotation Mark For sen-
tences that have partial content inside quotation
marks as part of the dialogue, if the tense of the
main verb is in past but the tense of the content
inside quotation marks is in present, then GPT-3
will predict the tense as “present” incorrectly.

Disturbance of Concomitant Adverbial If
the sentence has the present participle as the con-
comitant adverbial, but the tense of the main verb is
in past, then GPT-3 will be disturbed by the adver-
bial and predict the tense as “present” incorrectly.

Identification of Negation If the sentence
contains negation and the main verb followed by
negation like “didn’t” is in the present form, GPT-
3 will ignore the context and return an incorrect
“present” label for the whole sentence, focusing
only on the form of the verb partially.

Disturbance of Clause If the sentence has
a clause with a singular object, then GPT-3 will
have difficulty identifying the object of the main
sentence and its number.

Subject or Object Found, Not Its Number
In some cases, GPT-3 finds the subject/object of the
sentence, instead the number of the subject/object
(singular or plural) as asked in the prompt.

5 Conclusion and Future Work

Based on our experiments and analysis, we find
GPT-3 has acquired some linguistic knowledge to
understand semantic information like tense and sin-
gularity or plurality of subject and object. More-
over, the variation in temperature does not have a
big impact on GPT-3’s performance, but design-
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Table 3: Examples of Certain Error Types

Error Type Task Example
True
Label

Predicted
Label

Disturbance of
Quotation Mark

Tense “Beauty fades, but dumb is forever”
Scarlet countered.

PAST PRES

Disturbance of
Concomitant

Adverbial

Tense Fake Mira commanded, pointing at
Jace.

PAST PRES

Identification of
Negation

Tense As if she truly didn’t care whether or
not someone loved her, as long as he at
least pretended to.

PAST PRES

Disturbance of Clause ObjNum Since the kiss that morning, Neal hadn’t
renewed his attentions.

NNS NN

Subject or Object
Found,

Not Its Number

SubjNum The rope around your waist will protect
you if you fall.

NN
-

(subject returned)

ing the prompt with the general question might
lead the model to provide irrelevant answers. We
also notice that the performance of identifying the
number of the subject is commonly better than the
performance in identifying objects, which explains
why the ObjNum task benefits from the few-shot
prompt. However, the few-shot learning experi-
ment has a relatively degraded result for the Tense
and SubjNum tasks, since more examples may ob-
fuscate the model but the answer tends to be more
relevant.

There are still some further works we could do
based on the previous analysis. First, besides the
baseline prompt and general prompt, there are still
more combinations of different prompt designs and
temperatures that we could test, suggesting that
there might be more explorations when we analyze
GPT-3’s linguistic knowledge. Besides, our study
mainly focuses on the semantic information of lin-
guistic phenomena, which is restricted to a limited
amount of probing tasks to test the model. A more
exhaustive list of probing tasks or a carefully de-
signed benchmark based on the error analysis could
be created to better test the language model’s lin-
guistic knowledge in the future. Moreover, further
human annotations could be applied in identifying
mistake types for each scenario, which provides the
quantitative measurement for each phenomenon
where GPT-3 makes a mistake.
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A Appendix

We use the below examples to create the few-shot prompt. The binary value for the column of “Include in
two-shot” indicates whether this example will be included in the few-shot prompt with two examples. By
default, all the examples are included in the few-shot prompt with five examples.

Task Name Include in two-shot Example

Tense

1

Q: Is the tense of the sentence
“He grunted And climbed to his feet, still holding me” present or past?

A: Past

1

Q: Is the tense of the sentence
“It senses your movement” present or past?

A: Present

0

Q: Is the tense of the sentence
“With a beer in his door hand and the window open to yell endlessly at everyone,

he steered and shifted with the other hand” present or past?
A:Past

0
Q: Is the tense of the sentence, “His nostrils flare in reaction” present or past?

A: Present

0

Q: Is the tense of the sentence
“Jack rolled and took me with him, capturing me on top of him,

my head fitting perfectly into the hollow of his shoulder” present or past?
A: Past

SubjNum

1

Q: Is the number of the subject of the sentence
“Romulus was unreadable As ever” singular or plural?

A: Singular

1

Q: Is the number of the subject of the sentence
“The wolves circled restlessly,

their glowing yellow eyes fixed on the driver’s door” singular or plural?
A: Plural

0

Q: Is the number of the subject of the sentence
“There were several drips of whatever it was” singular or plural?

A: Plural

0

Q: Is the number of the subject of the sentence
“An ape like Amy was not a cheap and stupid version

of a human worker” singular or plural?
A: Singular

0

Q: Is the number of the subject of the sentence
“Things were going even better than he had planned
and it was all because of Misty” singular or plural?

A: Plural

ObjNum

1

Q: Is the number of the object of the sentence
“Practically purring with contentment,

she rubbed her slightly bulging belly” singular or plural?
A: Singular

1

Q: Is the number of the object of the sentence
“He flexed his biceps, and I groaned” singular or plural?

A: Plural

0

Q: Is the number of the object of the sentence
“I served beers on autopilot” singular or plural?

A: Plural

0

Q: Is the number of the object of the sentence
“The big man made a vague gesture” singular or plural?

A: Singular

0

Q: Is the number of the object of the sentence
“The old woman could see my indecision” singular or plural?

A: Singular

Table 4: Examples for Few-shot Prompt.
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Abstract

In recent years, large-scale transformer de-
coders such as the GPT-x family of models
have become increasingly popular. Studies
examining the behavior of these models tend
to focus only on the output of the language
modeling head and avoid analysis of the inter-
nal states of the transformer decoder. In this
study, we present a collection of methods to
analyze the hidden states of GPT-2 and use the
model’s navigation of garden path sentences
as a case study. To enable this, we compile
the largest currently available dataset of garden
path sentences. We show that Manhattan dis-
tances and cosine similarities provide more reli-
able insights compared to established surprisal
methods that analyze next-token probabilities
computed by a language modeling head. Us-
ing these methods, we find that negating tokens
have minimal impacts on the model’s repre-
sentations for unambiguous forms of sentences
with ambiguity solely over what the object of
a verb is, but have a more substantial impact
of representations for unambiguous sentences
whose ambiguity would stem from the voice
of a verb. Further, we find that analyzing the
decoder model’s hidden states reveals periods
of ambiguity that might conclude in a garden
path effect but happen not to, whereas surprisal
analyses routinely miss this detail.

1 Introduction

OpenAI’s release of GPT-3 marked a major step in
the field of massive language models, whose ability
to generate news articles indistinguishable from
those written by humans provides a salient exam-
ple of the many social and political implications of
these models (Brown et al., 2020; Wallace et al.,
2019; Heidenreich and Williams, 2021). Within
2 years of BERT’s release, over 150 studies have
investigated BERT’s structure, exploring how its
internal representations enable powerful and flexi-
ble language comprehension (Coenen et al., 2019;

Figure 1: Hidden state relations (Top: cosine similarity,
Middle: Manhattan distance, Bottom: surprisal differ-
ence) between negated and non-negated forms of garden
path and unambiguous sentences. The ambiguous verb
“walked” primes the effect later in the sentence, while
the unambiguous “taken” avoids it. The verb “lit” intro-
duces a similar ambiguity, which hidden state metrics
show but surprisal misses because the next word “by”
does not trigger a garden path effect.

Kovaleva et al., 2019; Tenney et al., 2019a; Rogers
et al., 2020). A few such studies include a decoder
model in the set of models examined, but do not
specifically design their analyses around this type
of architecture (Tenney et al., 2019b; Liu et al.,
2019). Meanwhile, studies exploring GPT models
alone tend to focus on properties of text generated
from its language modeling head, and do not an-
alyze the internal representations of the model in
depth (Heidenreich and Williams, 2021; Brown
et al., 2020).
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Figure 2: Left: Average Manhattan distances between sentence types and their negated forms. Center: Average
Cosine similarities between sentence types and their negated forms. Right: Average surprisal differences between
sentence types and their negated forms. Manhattan distances exhibit less variability than either cosine similarities or
surprisal differences

The few studies that explore the hidden states of
GPT-2 suggest an under-utilization of its massive
latent space as representations are dominated by the
presence of rogue dimensions (Ethayarajh, 2019;
Cai et al., 2021; Rudman et al., 2021; Timkey and
van Schijndel, 2021). As massive decoder mod-
els become more ubiquitous and powerful, it will
become ever more important to understand the in-
ternal processes by which they generate content so
they can be streamlined and improved upon.

In this paper, we use garden path traversal as
a case study to demonstrate the value of directly
analyzing properties of the embedding space in
transformer decoder models. A garden path sen-
tence is one where the parse that a reader expects at
some point within the sentence is proven incorrect
by the end of the sentence. We choose to explore
this syntactic effect specifically because we believe
the intuitive reaction a human has when reading
such sentences provides a helpful frame for ana-
lyzing the behavior of a neural language model
experiencing the same effect.

We expect that by looking at the hidden states
from which next word likelihoods are computed,
we can observe the same patterns that surprisal
analysis reveals, while uncovering more nuanced
trends that surprisal misses because it depends on
the joint distribution of the hidden state and the
next word. Moreover, we expect that Manhattan
distances will exhibit less variance in the effect of
negating a given sentence type than either surprisals
or cosine similarities after a zero-mean transforma-
tion, because Manhattan distances are resilient to
extreme values in a single dimension (Aggarwal
et al., 2001). On the other hand, the next word like-
lihoods used to compute surprisal tend to depend
heavily on these dimensions, while the zero-mean
translation required to create meaningful angular

differences around the origin mean that a few ex-
treme dimensions expose cosine similarities to sim-
ilarly high variances (Timkey and van Schijndel,
2021).

By analyzing how GPT-2 sequentially embeds
tokens in space, we are able to identify how GPT-
2 internally handles different garden path effects.
Specifically, we show that GPT-2 recognizes poten-
tial but unrealized garden path effects using metrics
that examine the model’s hidden states, whereas
surprisal analysis fails to reveal this finding. We
argue that analysis of a decoder model’s hidden
states enables more robust analysis than can be
done using the next word likelihoods alone, which
themselves are distilled from these hidden states.
The contributions of this study are as follows:

• to introduce the largest and most diverse
dataset of garden path sentences currently
available, along with construction functions
to negate or extend the effect within each sen-
tence,

• to demonstrate the advantage of analyzing syn-
tactic properties such as garden path effects by
examining geometric relationships between
vectors in GPT-2’s hidden states using Man-
hattan distance and cosine similarity,

• to motivate further study of the hidden states
of transformer decoders as a more thorough
alternative to the surprisal-based methods that
are typically used to analyze language mod-
els.1

1.1 Related Work
Many studies into GPT or BERT involve fine-
grained analyses of how the model handles spe-
cific syntactic phenomena, such as the garden path

1Code available at https://github.com/wjurayj/garden-path-
gpt2
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Sentence Type Sentence Form Sentence

NP/Z

Garden Path When the dog scratched the vet took off the muzzle.
Negated When the dog scratched, the vet took off the muzzle.
Blocked When the dog scratched his owner the vet took off the muzzle.

Unambiguous When the dog struggled the vet took off the muzzle.

NP/S

Garden Path The coach discovered the player tried to show off all the time.
Negated The coach discovered that the player tried to show off all the time.

Unambiguous The coach thought the player tried to show off all the time.

MV/RR

Garden Path The horses raced past the barn fell into a ditch.
Negated The horses that were raced past the barn fell into a ditch.

Unambiguous The horses ridden past the barn fell into a ditch.

Table 1: Forms of NP/Z, NP/S, and MV/RR sentences included in our dataset, with the verb that triggers or would
trigger the garden path effect underlined in red. Note that all of the perturbations can be combined to avoid the
garden path effect, except for the blocked and unambiguous forms of the NP/Z sentence.

effect. Consider the sentence:
“Even though the girl phoned[,] the instructor was

very upset with her for missing a lesson.”
Without the comma, most readers will assume “the
instructor” is the direct object of the verb “phoned”,
rather than the subject of the main clause’s verb
phrase, “was very upset” (van Schijndel and Linzen,
2019). Adding the comma immediately disquali-
fies the incorrect parse, nullifying the garden path
effect. This method of preventing the effect is re-
ferred to as “negation” throughout this paper.

Analysis of garden path traversal is typically
done by comparing the surprisal, or negative log
likelihood, of the token that would trigger the gar-
den path effect between garden path and negated
sentences. The surprisal that a token induces from
a language model can intuitively be understood to
measure the amount of information that token adds
to that model’s representation of the sentence, as
measured by the inverse of the degree to which the
model anticipated that token. This is calculated
using a language modeling head on top of GPT-2,
and does not directly analyze the internal represen-
tations of the model from which these likelihoods
are computed.

Previous studies into the navigation of these sen-
tences find that sufficiently large models’ relative
surprisals at the disambiguating token between gar-
den path and negated sentences show recognition
of the garden path effect. However, these models
systematically underestimate the magnitude of the
effect observed in humans, suggesting that human
recovery from an incorrect parse involves more
than just the triggering token’s lack of predictabil-
ity (van Schijndel and Linzen, 2021, 2018). Fur-
ther, using surprisal comparisons, Hu et al. (2020)

show that GPT-2 recognizes garden path effects
less successfully or consistently than smaller recur-
rent language models.

OpenAI has not released GPT-3’s source code
and parameters, so we instead analyze its predeces-
sor GPT-2, which uses an almost identical archi-
tecture at a much smaller scale (1.5b parameters).
Nonetheless, the methods we use to explore GPT-
2’s traversal of garden path effects can be easily
generalized to study any decoder-based model.

2 Methods

2.1 Garden path sentence generation

The dataset used for these experiments builds on
the combination of the NP/Z and NP/S sentences
from Grodner et al. (2003) and the NP/Z and
MV/RR sentences from Futrell et al. (2019), orig-
inally taken from Staub (2007) and Tabor and
Hutchins (2004), and consists of 43 NP/Z sen-
tences, 20 NP/S sentence, and 20 MV/RR sen-
tences. Instead of building out side-by-side datasets
of each type of sentence, however, we store the
components of these sentences in tabular files, and
include scripts to construct these sentences in var-
ious forms similar to those used by Futrell et al.
(2019). Each sentence has a garden path and an
unambiguous form, depending on whether the first
verb allows for an ambiguous parse. Each of these
forms can be negated with the addition of one or
two tokens, which nullifies the garden path effect
in an ambiguous sentence but makes no semantic
difference in an unambiguous sentence. We pro-
vide this as a template to be extended indefinitely
to meet the needs of future research. Examples of
each sentence type’s possible forms can be found
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along with a detailed description of these effects in
Table 1.

Figure 3: Hidden state relations (Top: cosine similarity,
Middle: Manhattan distance, Bottom: surprisal differ-
ence) between negated and non-negated forms of garden
path and unambiguous sentences. The ambiguous verb
“raced” primes the effect later in the sentence, while the
unambiguous “ridden” avoids it. Like in Figure 1, all
metrics catch the garden path effect at the verb “fell”,
but only cosine similarity and Manhattan distance antic-
ipate the possible effect at “filled”

2.1.1 NP/Z sentences
NP/Z is short for Noun Phrase/Zero complement.
These are sentences where the first verb appears
to take on a Noun Phrase as its direct object, but
subsequently is revealed to have no (Zero) direct
object at all (Futrell et al., 2019). The garden path
effect in these sentences is caused by ambiguity
about whether the verb of the leading subordinate
clause has a direct object. These sentences have
an additional blocked form, which nullifies its gar-
den path effect by adding an explicit direct object
to the leading verb. This is considered one of the
stronger types of garden path effects, with an av-
erage increase in human reading time of 152 ms
(Sturt et al., 1999).

The first NP/Z sentence in Table 1 evokes a gar-
den path effect because the reader initially expects
that “the vet” is the direct object of “scratched”;
The negated form avoids the effect by using a

comma to indicate the separation between the two
clauses. The blocked form avoids the effect by
adding the direct object “his owner” to block the
ambiguity that triggers the effect, while the unam-
biguous form avoids the effect by replacing the tran-
sitive verb “scratched” with the intransitive verb
“struggled” to avoid ambiguity around the verb’s
direct object.

Our dataset includes 43 distinct NP/Z sentences,
and includes scripts allowing a user to easily trans-
form these into unambiguous or blocked sentences.
Moreover, each sentence has the option to include
a negation, and an extension so as to increase the
duration of the ambiguity.

2.1.2 NP/S sentences
NP/S is short for Noun Phrase/Sentential comple-
ment. These are sentences where the first verb
appears to take the Noun Phrase as its direct object,
but subsequently is revealed to have a sentence-like
object as its complement (van Schijndel and Linzen,
2018). The garden path effect in these sentences is
caused by ambiguity about whether the noun fol-
lowing the main clause’s verb is that verb’s direct
object. This is considered one of the weaker types
of garden path effects, with an average increase in
human reading times of 50 ms (Sturt et al., 1999).

The first NP/S sentence in Table 1 evokes a gar-
den path effect because the reader expects that “the
player” is the direct object of the verb ’discovered’
until the word “tried” reveals that it is her propen-
sity to show off that the coach is discovering. The
negated form avoids the effect by adding “that” be-
fore “the player” to eliminate the possibility that
’the player’ is the verb’s direct object. The unam-
biguous form avoids the effect altogether by using
the verb “thought”, which could not allow a per-
son to be its direct object. Our dataset includes
20 distinct NP/S sentences, each of which can be
negated, unambiguous, extended, or any combina-
tion thereof.

2.1.3 MV/RR sentences
MV/RR is short for Main Verb/Reduced Relative.
These are sentences where prior to a disambigua-
tor, the ambiguous verb could either be the main
verb of the sentence or a verb that introduces a
reduced relative clause (Futrell et al., 2019). The
garden path effect in these sentences is caused by
ambiguity about whether the past-tense verb of the
leading subordinate clause is a past participle or the
main verb of the sentence. This effect is considered
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Figure 4: Method for comparing latent space metrics (cosine similarity, Manhattan distance) against surprisal
difference.

stronger than that of an NP/S sentence, but read-
ing time data to compare it with the other sentence
types is not available.

The first MV/RR sentence in Table 1 evokes
the garden path effect because the reader assumes
“raced” is the main verb of the sentence, while the
negated form negates this ambiguity by clarifying
that “raced past the barn” is a descriptor for the
horses rather than the main clause itself. Note that
in some examples, the negating tokens are “who
were” instead of “that were”, but in both cases
these tokens serve to un-reduce the relative partici-
ple. The unambiguous form avoids ambiguity alto-
gether by replacing the ambiguous “raced” with the
unambiguously passive “ridden”. Our dataset in-
cludes 20 distinct MV/RR sentences, each of which
can be negated, rendered unambiguous, extended,
or any combination thereof.

2.2 Experimental design

The general structure of the tests we run is inspired
by Futrell et al. (2019) and Hu et al. (2020). The
key difference is that, where previous studies com-
pare the model’s surprisal at the disambiguating
word, we examine the model’s hidden state prior
to this word. Figure 4 shows a visualization of this
approach.

We compare each sentence to its negated form,
computing the vector differences and cosine sim-
ilarities between each token and its counterpart
in the negated form (omitting the token[s] that
were added to negate the garden path effect in
that sentence type from the pairing process) af-
ter re-centering embeddings around the origin. We
use Manhattan distance over Euclidean distance
to compute scalars from the vector differences be-
tween sentences as is generally preferred in high
dimensional spaces, where Euclidean distances are
sensitive to the dimensions with the largest values
(Aggarwal et al., 2001). Cosine similarities are
computed after re-centering all vectors so that the
distribution has a mean of zero, which prevents
the metric from defaulting to near-maximum val-

ues and allows it to measure the true directional
changes between vectors (Rudman et al., 2021).
These side-by-side metrics are generated for all
sentences’ garden path and unambiguous forms, as
well as for the blocked form of the NP/Z sentences.

We expect to see larger distances and lower sim-
ilarities upon negation in garden path sentences
than in unambiguous or blocked sentences. In the
garden path sentences the negating tokens help to
resolve some ambiguity, whereas in an already un-
ambiguous sentence they will contribute minimally
to the sentence’s meaning prior to the triggering
token.

3 Results & Discussion

Our analysis reveals several properties of GPT-2’s
experience of the garden path effect. Across all
sentence types, Manhattan distances and cosine
similarities show that the model reacts more heavily
to negation of garden path sentences than it does
to these sentences’ unambiguous counterparts, as
is reflected by surprisal analyses done here and in
previous studies (Sarti, 2020).

Although our surprisal baselines mirror the
trends seen in Manhattan distance, using Manhat-
tan distances provides more consistent results com-
pared to surprisal analysis. Our results demonstrat-
ing exceedingly high variance in the surprisal anal-
ysis is in line with the findings of Hu et al. (2020),
who use surprisal to show that GPT-2 performs es-
pecially poorly and inconsistently on garden path
effects. On the other hand, the high-level trends we
expected to see are present across all metrics, with
negation causing a less pronounced difference in
unambiguous and blocked sentences than it does
in garden path sentences. Whereas Figure 2 shows
Manhattan distances to have relatively low variance
compared to the other metrics we examine, cosine
similarity and surprisal suffer from very high vari-
ances within each sentence form. We believe that
this is due to Manhattan distance’s resistance to
GPT-2’s rogue dimensions, which dominate cosine
similarities after the zero-mean transformation be-
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cause even relatively minor differences in a few of
these dimensions will have a much more substan-
tial effect on the angular difference than more ma-
jor differences in many smaller dimensions would
(Timkey and van Schijndel, 2021; Aggarwal et al.,
2001).

Figure 1 illustrates how these high level trends
appear within a given sentence. Here, the verb
“tried” triggers the garden path effect, which is di-
rectly preceded by a spike in Manhattan distance
and a dip in cosine similarity between the garden
path and negated sentence forms as the model an-
ticipates different continuations: in the garden path
sentence the model is likely to predict some sort
of punctuation or conjunction to end the clause,
while in the negated form the model expects a verb
to complete the clause that the ambiguous verb is
subordinate to.

An interesting property of the specific example
in Figure 1, “The captive walked into the dark cave
lit by torches tried to escape but failed.” is that
the verb “lit” also triggers a momentary garden
path effect; the sentence could, for instance, simply
continue, “The captive walked into the dark cave
lit the torches.” In the first case, the verb “lit” is a
reduced relative of “that was lit”, which refers to
the cave, whereas in the second case the captive
is the subject of “lit”, which is the main verb of
the sentence and thus would trigger a garden path
effect. Of course, the immediate next word “by”
eliminates this possibility, which a human reader
notices quickly enough that they do not experience
the effect, but the decoder’s causal attention mask
allows it no such foresight.

This possibility is thus worth considering be-
cause it helps explain why there is a spike in Man-
hattan distance and a dip in cosine similarity at the
preceding word, “cave”. We believe the relative
shallowness of the dip in cosine similarity before
“lit” is due to the possible MV/RR ambiguity of
the word, since even in the garden path case where
punctuation can be expected, a verb such as “lit”
can preempt an adjectival clause as it does here (“lit
by torches”). This puts it in a curious superposition
between introducing and triggering a garden path
effect, at least until the next word “by” resolves this
ambiguity. Notably, in the garden path form nei-
ther hidden state metric returns to its baseline value
until after the verb “lit”, because the model expects
this verb leads a subordinate clause whereas in the
negated form it considers both possibilities.

Figure 5: Hidden state relations (Top: cosine similarity,
Middle: Manhattan distance, Bottom: surprisal differ-
ence) between negated and non-negated forms of garden
path and unambiguous sentences. The ambiguous verb
“handed” primes the effect later in the sentence, while
the unambiguous “given” avoids it. Like in Figure 1, all
metrics catch the garden path effect at the verb “grum-
bled”, but only cosine similarity and Manhattan distance
anticipate the possible effect at “littered”

On the other hand, the verb “tried” is not am-
biguous in this way. The clause it might preempt,
such as “tried for murder”, would be improperly
placed and awkward. Thus, the model’s hidden
states prior to the verb “tried” in the garden path
and negated sentences are nearly orthogonal to each
other, whereas they bear more similarity right be-
fore the verb “lit”. Although surprisal spikes at the
verb “tried” as well, the surprisal trajectory does
not reflect the possible effect at “lit”, illustrating
the inadequacy of using this metric alone. This
ambiguity, however, is only reflected in Manhattan
distance and cosine similarity, and demonstrates
how internal metrics can help us understand rela-
tionships between the model’s syntactic states that
surprisal analysis alone would miss. We argue that
surprisal misses this effect because it depends en-
tirely on the word that triggers a garden path effect
rather than the state of the decoder prior to the trig-
ger, which more holistically encodes the ambiguity
that creates the environment where a garden path

310



effect can occur. In this case, it seems that the
prior likelihood of various constructions after ‘lit’
leads GPT-2 to suspect it leads a reduced relative
clause (i.e. ‘that was lit’) and is not the sentence’s
main verb, but our distance metrics between the
model’s hidden states prior to this potential trigger
show that GTP-2 nonetheless registers the possibil-
ity of a garden path effect. However, more work is
needed to explore how exactly each of these metrics
measures this abstract concept, and how sensitive
they are to other syntactic and semantic effects.

We highlight two other examples of this phe-
nomenon. In Figure 3, the preceding clause “The
horse raced past the barn filled [...]” could be com-
pleted either with the actual continuation “with
tractors [...]”, or with a direct object for “filled”,
for instance: “The horse raced past the barn filled
her trainer with admiration”. In Figure 5, the clause
“The lawyer handed the report littered [...]” could
likewise either continue as shown, “with profanity
[...]”, or could instead be the main verb of a shorter
sentence: “The lawyer handed the report littered
as he walked across the street”. Whereas surprisal
overlooks the temporary ambiguities in these exam-
ples because it relies on the next word to trigger the
garden path effect, hidden state metrics reveal them
because they can directly measure the ambiguity
itself.

Our analysis revealed a few unexpected results.
Most prominent among these is the extent to which
the addition of the negating token (“that”) to un-
ambiguous NP/S sentences leaves the hidden rep-
resentation of the sentence unchanged. Across all
metrics, the negated and garden path forms of NP/S
sentences are closest together, showing that except
in cases where it resolves a clear ambiguity, the
negating token in these sentences contributes very
little to the model’s internal representation. The
blocked form of NP/Z sentences shows a similar
indifference to the negating token (in this case, the
addition of a comma), which curiously does not
extend to the unambiguous form.

4 Conclusion

This paper presents a suite of methods to analyze
the internal representations of transformer decoder
language models such as GPT-2, taking advantage
of a richer reflection of the model’s internal pro-
cess than can be ascertained from the output of
the language modeling head alone. We use Man-
hattan distance and cosine similarity between the

hidden states of GPT-2 to show that the model is
affected by garden path effects in ways that are pre-
dictable based on human readers’ difficulty with
these sentences. Although conventional surprisal
analysis mirrors these effects in many cases, it ex-
hibits higher variance than Manhattan distances,
and misses certain nuances. On this basis, we ar-
gue that linguists should look to a decoder model’s
hidden state for a more complete picture of syntac-
tic state than surprisal alone can report.

Our belief is that Manhattan distance should be
the preferred metric for this type of analysis, but
we invite researchers to introduce and explore new
metrics to challenge this hypothesis. We hope that
these early insights will help inspire deeper ex-
ploration of the hidden states of decoder-only lan-
guage models. Possible directions for future work
could more closely examine how information is
transformed across different decoder layers within
GPT-2, and might explore causes for differences
between Manhattan distance and cosine similar-
ity trajectories. The methods introduced in this
study can also be used to explore decoder models’
handling of arbitrary syntactic phenomena beyond
garden path effects, such as verb subordination or
negative polarity item licensing.
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5 Limitations

One weakness of this type of analysis is the ne-
cessity of having side-by-side examples, with a
single perturbation between them, to compare be-
tween. The beam search approach used by Aina
and Linzen (2021) avoids this requirement, but still
relies on the language modeling head, so more
work is needed to integrate these benefits. Another
difficulty is the size of the dataset; although larger
than all previous datasets of garden path sentences,
it only includes 83 distinct sentences, and while
many more variations can be generated with the
scripts we include, there is substantial overlap be-
tween these that makes training a model on these
challenging. Finally, since weights for GPT-3 were
not available at the time we conducted this research,
our analysis is constrained to the smaller GPT-2.
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Abstract

To what extent do pre-trained language models
grasp semantic knowledge regarding the phe-
nomenon of distributivity? In this paper, we
introduce DistNLI, a new diagnostic dataset
for natural language inference that targets the
semantic difference arising from distributiv-
ity, and employ the causal mediation analy-
sis framework to quantify the model behav-
ior and explore the underlying mechanism in
this semantically-related task. We find that the
extent of models’ understanding is associated
with model size and vocabulary size. We also
provide insights into how models encode such
high-level semantic knowledge. Our dataset
and code are available on GitHub.

1 Introduction

The ability to understand and utilize semantic
knowledge (consciously or unconsciously) is es-
sential to human reasoning process. Although
significant progress has been made by large-scale
pre-trained language models on many reasoning-
required tasks, it is still unclear whether these mod-
els have reached a considerable level of compe-
tence in discerning and processing semantic knowl-
edge. To break into the black box, recent studies
employ various analysis methods and bring evi-
dence that semantic knowledge (Bowman et al.,
2015b; Ettinger, 2020; Jumelet et al., 2021) is en-
coded by pre-trained models. However, some is-
sues still remain. First, due to the difficulty in
being analyzed and probed for, many semantic phe-
nomena are not touched on by NLP researchers,
even though they have been studied by linguists for
decades. Second, current analysis methods are not
flawless. For example, Belinkov (2021) reviews
some limitations of the probing classifier paradigm
such as the spurious correlation between the prob-
ing classifier and the original model.

†Equal contribution.

To address these issues, in this paper, we lever-
age causal mediation analysis (CMA), a new anal-
ysis framework introduced by Vig et al. (2020a,b),
to test pre-trained language models’ understanding
of semantic knowledge, with a specific focus on
predicative distributivity. As a complex linguistic
phenomenon, predicative distributivity involves se-
mantics, pragmatics, and psycholinguistics. With
minimal pairs differing in distributivity, we look
into whether pre-trained language models grasp the
semantic difference, and how much a model com-
ponent plays a role in such extent of understanding.
Our contributions are as follows:

• We introduce DistNLI, a diagnostic NLI
dataset which targets testing pre-trained lan-
guage models’ ability of discerning the prop-
erty of predicative distributivity via minimal
pairs of coordinated sentences (Section 3).

• We refine metrics used in the CMA frame-
work, namely total effect (TE), natural in-
direct effect (NIE) and natural direct effect
(NDE) to guarantee the effect decomposition.
We apply the framework to the ternary NLI
task (Sections 5.1 and 6.1).

• We find that pre-trained models with either
more parameters or richer vocabulary show
some understanding of distributivity. We also
find that knowledge of distributivity is con-
centrated in middle layers and the level of
concentration is patterned with the degree of
understanding (Sections 4, 5.2 and 6.2).

2 Related Work

Distributivity A sentence with the verb predica-
tion applying to a group, e.g. Sumon and Frank
built a boat., can be interpreted into at least two
readings: the distributive and the collective ones
(Scha, 1981). In the distributive reading, the predi-
cation applies to each individual in the group (e.g.
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both Sumon and Frank individually/separately built
a boat), whereas in the collective reading, the pred-
ication only applies to the group as a whole (e.g.
Sumon and Frank built a boat jointly).

To theorize this linguistic phenomenon, Scha
(1981) introduces the property of distributivity as
a tool to formalize the collective and distributive
senses of a predication. While Scha analyzes dis-
tributivity as a pure lexical property of different
predicates, Link et al. (2002) propose that dis-
tributivity is a semantic operator comparable to
each, which he defines as the ‘D-operator’. Some
later semanticists settle their analyses on the mid-
dle ground where the D-operator and the direct
predication (based solely on the lexical property)
theory are useful under different circumstances
(Dowty et al., 1987; Roberts, 1987; Hoeksema,
1988; Verkuyl, 1993; Winter, 1997; De Vries, 2017;
Champollion, 2017). Arguing that the predication
of a simple sentence can be directly interpreted
based on its lexical meaning while the analysis of a
complex one will need a D-operator, Winter (1997)
further defines P-distributivity and Q-distributivity,
which correspond to the distributive sense under
the direct predication and the D-operator respec-
tively. For instance, Azul and Marsha hold three
balloons falls in the category of Q-distributivity,
since it is necessary to introduce the D-operator to
analyze the distributivity given the group Azul and
Marsha. The example Yu and Vivian laughed, on
the other hand, is a case of P-distributivity, since
it is apparent that the predicate laughed entails the
distributivity originated from its lexical meaning.

Adopting the terminology proposed by De Vries
(2017), we investigate the predicative distributivity
in this paper by following the approach advocated
by Winter (1997) and Champollion (2017) that col-
lectivity and P-distributivity are categorized under
the direct predication, which is paralleled to the D-
operator that gives the Q-distributivity. We will call
predicates which can be perceived in both distribu-
tive and collective senses ambiguous predicates in
this paper, which corresponds to the mixed pred-
icates in the previous literature. (De Vries, 2017;
Champollion, 2017).

Natural Language Inference Natural Language
Inference (NLI) is the task of determining whether
one sentence (premise) entails, contradicts, or is
neutral to another sentence (hypothesis). Early at-
tempts include Chen et al. (2017) and Ghaeini et al.
(2018) which are LSTM-based. Recent progress

in pre-trained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
DeBERTa (He et al., 2021) and NLI datasets like
SNLI (Bowman et al., 2015a), XNLI (Conneau
et al., 2018), and MNLI (Williams et al., 2018)
provides more opportunities to tackle this task. Pre-
trained models fine-tuned on NLI datasets often
achieve satisfying performance.

However, diagnostic studies show that high
scores achieved by neural models do not mean
they truly understand the relationship between sen-
tences. For example, McCoy et al. (2019) find
BERT trained on MNLI instead leverages shallow
heuristics to make predictions.

Causal Mediation Analysis Recently, several
analysis methods have been proposed to reveal in-
formation that are learned and utilized by language
models. One of them is causal mediation analysis
(Robins and Greenland, 1992; Pearl, 2001), a sta-
tistical framework to identify direct and indirect
effects of an intervention on an outcome of interest.
It is first introduced as an analysis method to the
NLP field by Vig et al. (2020a,b) to scrutinize gen-
der bias in language models. More recent studies
use it to explore linguistic phenomena such as syn-
tactic agreement (Finlayson et al., 2021) and nega-
tion (Dobreva and Keller, 2021). The framework
consists of three metrics: TE, NIE and NDE. TE
is used to quantify how an input intervention (e.g.,
text edits) would affect a response variable (e.g.,
predicted probabilities). NIE and NDE are used to
measure the mediated influence realized through
an intermediate variable, or mediator, which can be
a neuron, a whole layer, or an attention head. TE is
usually decomposed into the sum of NIE and NDE.
As Vig et al. (2020a,b) suggest, the CMA frame-
work has great potential for extensions. Motivated
by their work, in this paper, we apply the frame-
work, which was limited to binary classification, to
the NLI task and propose alternative definitions of
the metrics for a more robust effect decomposition.

3 The DistNLI Dataset

3.1 Capturing distributivity with NLI

Although semanticists differ in the treatment of
lexical distributivity (i.e., P-distributivity) in their
theories, the evaluation of predicative distributiv-
ity generally relies on the validity of the inference
from a predication of a group and the part with
the each operator in the case of conjunction (e.g.
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Premise Hypothesis NLI Label Distributivity

Mia and Lin laughed. Mia laughed./Lin laughed. Entailment Distributive

Mia and Lin pushed a rock.
Mia pushed a rock./Lin pushed
a rock.

Entailment Distributive
non-Entailment Collective

Mia and Lin gathered. ∗Mia gathered./∗Lin gathered. N/A Collective

Table 1: The relationship between distributivity and NLI labels illustrated by examples from DistNLI. The NLI
label is determined by the type of the predicate in the premise, and non-entailment means that both neutral and
contradiction are acceptable as true labels. Here, pushed a rock is an ambiguous predicate, so it can be assigned
with both NLI labels.

Sumon and Frank each built a boat) (Dowty et al.,
1987; Lasersohn, 1995; Winter, 1997; Champol-
lion, 2017; De Vries, 2017).

Rooted in this definition, distributive predicates
sanction the entailment relation between the plural-
ity and its part, whereas collective or ambiguous
predicates do not. Consequently, we use the NLI
task to evaluate models’ understanding of predica-
tive distributivity. In our approach, the model’s
ability to discern distributivity is evaluated by the
divergent prediction of models between predicates
with differing distributivity. Table 1 demonstrates
the relationship between distributivity and NLI la-
bels. For instance, given the premise Mia and Lin
laughed and the hypothesis Lin laughed, the model
should predict the label as entailment based on the
distributive predicate laughed. On the other hand,
given the premise Mia and Lin pushed a rock and
the hypothesis Mia pushed a rock, since pushed a
rock is an ambiguous predicate, the model will ex-
hibit a completely different performance if it grasps
the disparity in semantics the distributivity exerts.

3.2 Data Generation
We generate a synthetic NLI dataset consisting
of premise-hypothesis pairs with [DP1] and
[DP2] [Pred] as premise and[DP1]/[DP2]
[Pred] as hypothesis. [DP1] and [DP2] de-
note determiner phrases and [Pred] denotes a
predicate. For example:

Premise: Mia and Lin wore a mask.
Hypothesis: Mia (Lin) wore a mask.

None of determiner phrase contains quantifiers
in its structure, and both lexical and phrasal pred-
icates are included (Champollion, 2017). Three
kinds of noun phrases have been formulated,
namely person, animal, and object, and it is guar-
anteed that no group nouns like the committee and

conventionalized conjunctions like Simon and Gar-
funkel are included. The template is further in-
stantiated with distributive and ambiguous predi-
cates. We scrape existing categorized predicates
from past publications on distributivity, and aug-
ment the list with predicates of similar pattern and
characteristics regarding the semantic ambiguity
in the information structure (Kroch, 1974; Taub,
1989; De Vries, 2017; Champollion, 2017; Cop-
pock and Champollion, 2019). The augmented list
aligns with the report of Safir and Stowell (1987)
that most predications with indefinite cardinal as
the determiner manifest the distributive feature.

3.3 Annotation

The annotation on predicative distributivity in this
dataset consists of two stages. During the first stage,
we recruit three graduate students, who are native
speakers of American English with both linguis-
tics and NLP background, to annotate grammatical
sentences with predicates for whether they are dis-
tributive, collective or ambiguous. An example
with pictures and explanation is given prior to the
task. Considering the subtle nature of distributivity,
we synthesize their judgements and discard highly
controversial data points (i.e. predicates which re-
ceived three distinct labels). During the second
stage, the dataset is further confirmed by an ex-
pert in both Semantics and NLP to validate the
result and guarantee a trustworthy dataset. The
post-annotated data is split into the control group
and the intervention group, with the former contain-
ing 164 pairs with distributive predicates and the
latter containing 164 pairs with ambiguous predi-
cates. The construction of the groups is explained
in Section 5.1. They together form the final Dis-
tNLI dataset of 328 premise-hypothesis pairs.
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ConjNLI HANS DistNLI
Model Total Acc AND Acc Ent. Acc Non-Ent. Acc Dis. Acc Amb. Acc

DeBERTa-base 65.81 64.84 99.3 53.25 100.00 0.00
DeBERTa-large 66.61 65.99 99.89 54.81 100.00 0.00
DeBERTa-xlarge 65.01 64.84 100 42.33 100.00 0.00
DeBERTa-v2-xlarge 66.29 65.99 99.96 49.87 100.00 0.00
DeBERTa-v2-xxlarge 66.45 65.42 99.92 43.35 100.00 0.00
RoBERTa-large 64.53 64.55 99.65 46.61 100.00 0.61

Table 2: Pre-examination results on ConjNLI, HANS and DistNLI. For ConjNLI, Total Acc is the accuracy on
the full ConjNLI data, and AND Acc is the accuracy on cases with and in the premise, hypothesis, or both. For
HANS, Ent. Acc and Non-Ent. Acc stand for Entailed Acc and Non-Entailed Acc, which are the accuracy on
entailed cases and non-entailed cases respectively. For DistNLI, Dis. Acc and Amb. Acc stand for Distributive
Acc and Ambiguous Acc, which are the accuracy on the control group and intervention group respectively.

4 Models

4.1 Model Selection
We choose recent pre-trained models that are fine-
tuned on MNLI as our target models. We try to
control conditions as much as possible, such as
model size and training setup. We use six mod-
els: DeBERTa (base, large, xlarge), DeBERTa-v2
(xlarge, xxlarge), and RoBERTa-large. RoBERTa-
large shares the same vocabulary of size 50K as
DeBERTa variants while DeBERTa-v2 variants in-
crease their vocabulary size to 128K.

4.2 Pre-examination
Pre-trained language models can leverage various
types of information learned from the training cor-
pus to tackle the downstream tasks. The one we
want to test in this paper is distributivity, but there is
other related information models may use to make
predictions, such as coordination, which is used
to generate our dataset, or lexical overlap between
the hypothesis and premise. To minimize the effect
of these confounders, we run selected models over
existing diagnostic NLI datasets, namely ConjNLI
(Saha et al., 2020) and HANS (McCoy et al., 2019).
In addition, we also report each model’s accuracy
on DistNLI as a preliminary evaluation of models’
ability to recognize distributivity. Results on these
datasets are shown in Table 2.

ConjNLI ConjNLI is an NLI dataset testing both
Boolean and non-Boolean usage of conjuncts in-
cluding and, or, but, and their combination with
quantifiers and negation (Saha et al., 2020). We
report each model’s accuracy on the whole devel-
opment set of ConjNLI as well as the subset where
and exists in the premise, the hypothesis, or both.

We find that all selected models perform reasonably
well on ConjNLI, suggesting that they can handle
diverse Boolean and non-Boolean coordinated sen-
tences to a certain extent.

HANS HANS is an NLI dataset testing whether
models have adopted syntactic heuristics, e.g., the
lexical overlap heuristic, the subsequence heuris-
tic, the constituent heuristic during pre-training
(McCoy et al., 2019). HANS is annotated with
entailment on which the heuristics make correct
predictions, and non-entailment (neutral or con-
tradiction) on which the heuristics make incorrect
predictions. Therefore, if a model can perform
perfectly on the entailed cases but fails on the non-
entailed cases, it may exploit the heuristics. For
selected models, we report their accuracy on both
entailed and non-entailed cases. As expected, we
find that all models achieve nearly perfect perfor-
mance on entailed cases. Nevertheless, they reach
much higher scores on the non-entailed cases com-
pared to the experiment with BERT by McCoy et al.
(2019). This indicates that these models rely less
on syntactic heuristics to solve the NLI task.

DistNLI We report each model’s accuracy on the
control (distributive) group and the intervention
(ambiguous) group. Because the control group is
labeled with entailment and the intervention group
is labeled with non-entailment, unsurprisingly re-
sults on DistNLI match the same pattern as that
on HANS. However, the accuracy gap between the
two groups is much bigger. Although this seems
to suggest selected models heavily rely on syntac-
tic heuristics and hence fail to recognize distribu-
tivity, results on ConjNLI and HANS show that
selected models can handle at lease some of the
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non-Boolean coordinated sentences on which the
heuristics provide no help. It is also worth noting
that even for our recruited annotators, distributiv-
ity is a challenging phenomenon. Their responses
demonstrate more variance in ambiguous predi-
cates labeling. This implies accuracy may not be
a good metric to evaluate models’ understanding
of distributivity since it does not account for the
change of predicted probability when the decision
is not flipped. Thus, we leverage the CMA frame-
work for further investigation.

5 Total Effect

5.1 Experiment Design
Response Variable To quantify the model behav-
ior, we follow the general idea proposed by Fin-
layson et al. (2021). We define the response vari-
able y as the odds that a model (parameterized by θ)
predicts non-entailment for a premise-hypothesis
pair SI , where I is the set of possible readings
of S which may contain a distributive reading, a
collective reading or both:

y(SI) = Odds(non-entailment|SI)

=
Pθ(non-entailment|SI)
Pθ(entailment|SI)

(1)

The larger the y(SI), the more likely the model pre-
dicts non-entailment on the input pair SI . With this
definition, we can transform the original question
into a binary task: whether models have a stronger
preference over non-entailment given a premise-
hypothesis pair with a particular predicate.

We hypothesize that if a model has some un-
derstanding of distributivity, ceteris paribus, an
ambiguous pair should result in a larger predicted
probability of non-entailment than a distributive
pair, even if the model predicts entailment for both.
In other words, y(SI) should be small when I only
contains a distributive reading but relatively large
when I contains both readings, provided that all
other aspects of S are equal.

Input Intervention To isolate distributivity, we
need a class of interventions to change possible
readings of a given premise-hypothesis pair S
while keeping everything else the same. Since it is
intractable to directly modify the possible readings
I , we choose to modify the surface form. For our
data templates, I is determined by the predicate.
Therefore, we define a do-operator swap-pred,
which replaces the predicate in the given pair with a

y y

John and Mary ate an apple.
                             ambiguous

John and Mary screamed.
  distributive

Total Effect

swap
pred

Figure 1: Total effect measures the relative change in y
from the input intervention which alters the distributiv-
ity of the predicate in the sentence.

random sampled predicate of a different type, as il-
lustrated in Figure 1.1 We also define the null op-
erator which preserves the original predicate. The
response variable y(SI) can be redefined as yi(Sp)
where i is a do-operator, S is a premise-hypothesis
pair, and p indicates the type of the predicate in S:

ynull(Sp) = Odds(non-entailment|Sp) (2)

yswap-pred(Sp) = Odds(non-entailment|Sp′)
(3)

Leveraging these interventions, we can split the
input dataset into two groups: the control group
and the intervention group. Pairs in the control
group have distributive predicates with the null
operator applied. Pairs in the intervention group
are the same sentences but with the swap-pred
operator applied. Each pair in the control group can
have one or more matches in the intervention group.
For example, if John and Mark smiled. (premise)
and John smiled. (hypothesis) is in the control
group, John and Mark built a house. (premise)
and John built a house. (hypothesis) could be its
potential match in the intervention group.

Metric TE is used to measure how much a re-
sponse variable y would change if we apply the
swap-pred operator rather than the null oper-
ator. Instead of the odds difference definition used
by previous studies (Vig et al., 2020b; Finlayson
et al., 2021; Dobreva and Keller, 2021; Jeoung and
Diesner, 2022), we adopt the odds ratio definition
proposed by VanderWeele and Vansteelandt (2010).
To make the scale more symmetric, we take the

1The illustration of TE and the following NIE figure are
inspired by Vig et al. (2020a); Finlayson et al. (2021).
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equivalent logarithmic version:

TE(swap-pred,null; y, Sp)

= log

(
yswap-pred(Sp)

ynull(Sp)

)

= log

(
Odds(non-entailment|Sp′)
Odds(non-entailment|Sp)

)
(4)

We calculate the sample average total effect over
DistNLI to estimate the average total effect over
the population of all possible matched pairs:

TE(swap-pred,null; y) =̂ µTE (5)

One benefit of this definition is that the total ef-
fect now inherits the interpretation of odds ratio,
in addition to its own causal interpretation. Odds
ratio is used to measure the strength of association
between a response variable and an intervention.
It compares the relative odds of the occurrence
of an outcome of interest, given whether a partic-
ular intervention is performed (Szumilas, 2010).
Therefore, by analogy with the odds ratio, we can
interpret TE in three cases: (i) If TE > 0, then
the presence of ambiguous predicate in S causes
higher odds of non-entailment; (ii) If TE = 0, then
there is no causal relationship between the type of
the predicate in S and the model prediction; (iii) If
TE < 0, then the presence of ambiguous predicate
in S causes lower odds of non-entailment.

Another benefit is that the lexical overlap heuris-
tic is not a problem to our experiment, because TE
measures the difference between sentences with
swapped and unswapped predicates. If a model
completely depends on the heuristic, TE will be
close to 0 since the overlap between the premise
and hypothesis remains the same when the input is
intervened. In this case, no causal relationship is
concluded between distributivity and the model pre-
diction. If, however, we obtain a non-zero TE, this
should be due to factors other than the heuristic.

Since the size of DistNLI is relatively small, we
perform the one-sample t-test with a significance
level of 0.05 to infer about the average total effect
over the full population. If TE is statistically sig-
nificantly positive, we can conclude that the model
has some understanding of distributivity.

5.2 Result and Discussion

Table 3 presents a one-sample t-test of the average
total effect for each model. Except for DeBERTa-
base, all models have a significantly positive TE

Model Mean SD T P-value

D-b 0.040 1.091 0.468 0.320
D-l 0.314 0.900 4.452 <7e-06
D-xl 0.351 0.507 8.844 <7e-16
D-v2-xl 0.856 0.796 13.724 <2e-29
D-v2-xxl 0.828 1.088 9.724 <3e-18
R-l 0.779 1.279 7.774 <4e-13

Table 3: One Sample t-test of TE for each model.
Here, R stands for RoBERTa, D stands for DeBERTa,
b stands for base, and l stands for large.

Figure 2: Relationship between TE, the number of pa-
rameters and vocabulary size. Each point is a model.

with a significant level of 0.05. Based on the inter-
pretation of TE, these models are able to discern
distributivity to some extent.

Models with more parameters tend to show un-
derstanding of distributivity. We find that TE
is positively correlated with the number of parame-
ters, as shown by Figure 2 (r = 0.649). While there
are confounders such as vocabulary size, number of
layers, pre-training task, etc., the trend holds when
we control for model architecture and only consider
DeBERTa variants. This finding may suggest that
larger models have a stronger ability to capture lin-
guistic phenomena presented in the training corpus.
Vig et al. (2020a) report an analogous result on
gender bias. We also observe that the effect on TE
vanishes when the number of parameters increases:
as shown by Table 3, DeBERTa-large has a TE
eight times greater than DeBERTa-base, but merely
0.04 lesser than DeBERTa-xlarge. This observation
is in line with the finding of K et al. (2020) that
the number of parameters has little effect on model
performance after a certain threshold.

Models with richer vocabulary tend to show un-
derstanding of distributivity. We find that TE
is associated with the size of vocabulary. As il-
lustrated in Figure 2, DeBERTa-v2 variants have
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y y

John and Mary ate an apple.
   ambiguous

Natural Indirect Effect

swap
pred

John and Mary ate an apple.
   ambiguous

m

distributive

Figure 3: Natural indirect effect measures the relative
change in y, given the presence of the input interven-
tion, if every path into the mediator m is blocked by
setting m to the value it would have been without the
input intervention.

a TE of around 0.8, which is considerably larger
than other models. We suspect this significant in-
crease is due to their larger vocabulary size. Since
distributivity is determined by the type of predi-
cates, a richer vocabulary is expected to lead to a
better semantic representation of predicates which
in turn boosts TE, although the effects of other
confounders might not be ruled out.

6 Natural Indirect Effect

6.1 Experiment Design

Neuron Intervention To study the causal contri-
bution of neurons, the hypothesized mediator in
our experiment will be a single neuron or a group
of neurons. Rather than investigating neurons for
each input token independently (Vig et al., 2020a,b;
Finlayson et al., 2021), we intervene on neurons
for all input tokens simultaneously. This approach
is computationally cheaper but still comprehen-
sive enough to give a full picture of the underlying
causal mechanism.2

Metric Natural Indirect Effect is used to measure
how much the response variable y would change
with the swap-pred operator applied, if we set
the hypothesized mediator m to the value it would
have been without rather than with the input inter-
vention (demonstrated in Figure 3). Similar to TE,
we use the log odds ratio and estimate the popula-

2Pilot experiments focusing on the [CLS] token, an ap-
proach used by Dobreva and Keller (2021), yielded mixed
results, which is consistent with the findings of Reimers and
Gurevych (2019) that the [CLS] token is not an ideal repre-
sentation of sentence level meaning.

tion average natural indirect effect:

NIE(swap-pred,null; y,m, Sp)

= log

(
yswap-pred(Sp)

yswap-pred,mnull(Sp)

)
(6)

where m is a hypothesized mediator and mnull

means that m is set to the value it would have been
in the absence of the input intervention. We can
also define NDE in a similar way:

NDE(swap-pred,null; y,m, Sp)

= log

(
yswap-pred,mnull(Sp)

ynull(Sp)

)
(7)

VanderWeele and Vansteelandt (2010) prove that
the log odds ratio definition of causal effects holds
a decomposition property: TE = NIE+NDE even
when there are interactions and nonlinearities.

The NIE and NDE defined above are in princi-
ple an implementation of what Robins and Green-
land (1992) refer to as “total indirect effect” and
“pure direct effect”. The NDE given by Vig et al.
(2020a,b) follows the same idea, but their NIE
instead formulates the "pure indirect effect". A
consequence is that the decomposition property is
only guaranteed for linear models (Pearl, 2001; Vig
et al., 2020a), which is a potential shortcoming as
an analysis method for neural networks.

Given the decomposition property, NIE allows
us to measure the magnitude of causal contribution
a model component makes to the model behav-
ior, which is quantified by TE. In this respect, it
potentially solves the problem of spurious correla-
tion between the probing classifier and the original
model (Belinkov, 2021). In our experiment, we use
it to verify the causal relationship between the se-
mantic information encoded in the original model
and the prediction given by the NLI classifier. We
can interpret the values of NIE similarly to TE.

6.2 Result and Discussion
We experiment on models which pass the signifi-
cance threshold.3 Figure 4 illustrates the neuron-
wise NIE: for all models, most neurons have NIEs
around zero, but a few outliers can also be iden-
tified. In order to determine which neurons are
responsible the most for the model behaviour, we
also select the top 1% of neurons with highest in-
dividual NIEs from each layer and evaluate the
layer-wise NIE. Figure 5 illustrates the layer-wise
NIE obtained from selected neurons.

3Due to limited computational resources, DeBERTa-v2-
xxlarge is excluded.
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(a) DeBERTa-large (b) DeBERTa-xlarge

(c) DeBERTa-v2-xlarge (d) RoBERTa-large

Figure 4: Neuron-wise NIE of the models that pass the TE threshold. The x-axis represents the indices of neurons,
which range from 0 to hidden size. The indices are not unique: neurons from different layers have the same index.

(a) (b) (c) (d)

Figure 5: Layer-wise NIE (top 1% neurons) of the
models that pass the TE threshold. From left to right
are DeBERTa-large, DeBERTa-xlarge, DeBERTa-v2-
xlarge and RoBERTa-large. The y-axis represents lay-
ers and the color represents values of the NIE.

Knowledge of distributivity is mostly concen-
trated in middle layers. We define the depth of
a layer as its number divided by the total number of
layers. Based on this metric, we can divide layers
into three groups: early (0 - 0.33), middle (0.33 -
0.67), and final (0.67 - 1). In Figure 5, a concen-
tration pattern of NIE is clearly shown by the color
opacity of layers for all models. Specifically, mid-
dle layers have higher NIEs than other layers. The
exact layer where NIE peaks occur is more idiosyn-
cratic, but still inside or near middle layers: 0.5
(layer #11) for DeBERTa-large, 0.73 (layer #35) for
DeBERTa-xlarge, 0.54 (layer #13) for DeBERTa-
v2-xlarge, and 0.42 (layer #9) for RoBERTa-large.
This finding differs from the conclusion of Tenney

et al. (2019) that semantic information is hardly
localized in BERT-like models, although Jawahar
et al. (2019) also report that most semantic tasks
archive the best performance around middle layers.

Knowledge of distributivity is more concen-
trated in the models with higher degree of un-
derstanding. We find that the level of concen-
tration of NIE patterns with the magnitude of
TE: NIEs are concentrated in fewer neurons in
DeBERTa-v2-xlarge and RoBERTa-large (both
have a TE of about 0.8) than in DeBERTa-large
and DeBERTa-xlarge (both have a TE of about
0.3). This finding is supported by the following ob-
servations: First, as shown by Figure 5, top 1% of
neurons is sufficient to achieve the full total effect
for the former two models, but not for the latter two
models. Second, we notice that a few neurons have
extremely higher NIE for the former two models.
For example, neuron #1279 at layer #0 (located at
the top right of Figure 4c) in DeBERTa-v2-xlarge
has a NIE of 0.6735, much higher than most other
neurons. According to the interpretation of NIE,
these neurons are causally and positively respon-
sible for the model behaviour. The pattern is not
observed in DeBERTa-large and DeBERTa-xlarge.

7 Conclusion

In this paper, we propose DistNLI, a diagnostic
NLI dataset to examine to what extent pre-trained
language models can discern the phenomenon of
distributivity. By extending the CMA framework,
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we show that models including DeBERTa and
RoBERTa have some understanding of distribu-
tivity, which provides further evidence that models
have ability to encode high-level semantic knowl-
edge, and reveal some interesting patterns related
to the underlying mechanism of these models.

One direction for future improvement would be
increasing the diversity of predicates and subjects
in DistNLI. At present, we only look at subjects
that are two coordinated DPs, but the phenomenon
of distributivity applies to all noun phrases which
denote groups and even without the utilization of
conjuncts. It is possible that pre-trained language
models can also differentiate more complicated
combinations, as they are trained on large-scale text
data. Another direction would be investigating how
robust the CMA framework is to the definition of
metrics, such as an empirical comparison between
alternative definitions.

8 Limitation

Due to the specificity of the linguistic phenomenon
involved and its size, this DistNLI dataset should
only be used as a diagnostic dataset in the investiga-
tion of distributivity of verb predication. Also, oc-
casionally some minimal pairs in the dataset could
contradict with the world knowledge considering
the nature of artificiality. On the one hand, the
creators of this dataset have filtered out pairs that
are tremendously deviant from the world knowl-
edge by majority voting. On the other hand, even if
there is still any deviating pair against the common-
sense (i.e. The lion and the seal found a habitat),
the distributivity manifested in such examples will
not be confounded as long as the grammaticality is
guaranteed, since the extent of deviance is constant
between the premise and the hypothesis.
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Abstract

Probing BERT’s general ability to reason about
syntax is no simple endeavour, primarily be-
cause of the uncertainty surrounding how large
language models represent syntactic structure.
Many prior accounts of BERT’s agility as a
syntactic tool (Clark et al., 2013; Lau et al.,
2014; Marvin and Linzen, 2018; Chowdhury
and Zamparelli, 2018; Warstadt et al., 2019,
2020; Hu et al., 2020) have therefore confined
themselves to studying very specific linguistic
phenomena, and there has still been no defini-
tive answer as to whether BERT “knows” syn-
tax.

The advent of perturbed masking (Wu et al.,
2020) would then seem to be significant, be-
cause this is a parameter-free probing method
that directly samples syntactic trees from
BERT’s embeddings. These sampled trees out-
perform a right-branching baseline, thus pro-
viding preliminary evidence that BERT’s syn-
tactic competence bests a simple baseline. This
baseline is underwhelming, however, and our
reappraisal below suggests that this result, too,
is inconclusive.

We propose RH Probe, an encoder-decoder
probing architecture that operates on two prob-
ing tasks. We find strong empirical evidence
confirming the existence of important syntac-
tic information in BERT, but this information
alone appears not to be enough to reproduce
syntax in its entirety. Our probe makes crucial
use of a conjecture made by Roark and Holling-
shead (2008) that a particular lexical annotation
that we shall call RH distance is a sufficient en-
coding of unlabelled binary syntactic trees, and
we prove this conjecture.

1 Introduction

BERT (Devlin et al., 2019) is a structurally rich
system both because of its neural architecture and
because of the knowledge it captures through pre-
training. Many have studied the similarities be-
tween these architectures and linguistically moti-

vated structures or processing pipelines through
probing (Conneau et al., 2018; Jawahar et al., 2019;
Tenney et al., 2019a; Zhu et al., 2022; Niu et al.,
2022) to argue for an enigmatic “BERT revolution,”
into which large parts of previous research in com-
putational linguistics are now subsumed.

In this paper, we present RH Probe1, a novel
encoder-decoder-based probing architecture that
utilises Roark-Hollingshead (2008) syntactic dis-
tance (RH distance) to examine the overall capacity
of BERT’s comprehension of syntax.

We introduce this probing architecture because
there still has been no definitive answer as to
whether the knowledge that BERT acquires dur-
ing its pre-training process can in fact serve as a
replacement for a phrase-structure-based notion
of syntax. Limited by their probing methodology,
prior performance-based probing attempts only in-
vestigated individual, fine-grained linguistic phe-
nomena, until Wu et al. (2020).

Wu et al. (2020) proposed perturbed masking, a
parameter-free probing method that directly looks
for traces of well-established linguistic structures
such as constituency trees latent in BERT represen-
tations. The baseline used in Wu et al.’s (2020),
a right-branching tree, is overly simplistic. Upon
conducting a thorough reappraisal of their results,
we found that their parameter-free constituency-
tree parser only marginally outperforms a naïve,
right-branching baseline, and their impact matrix
which formed the basis of their analysis only has
weak to no correlation with constituency tree infor-
mation.

We believe Wu et al. (2020) has overly fixated
on parameter-free probing. They want to address
the criticism that, because traditional supervised
probes introduce supervised data, we cannot di-
rectly attribute evidence of “knowledge” to the
pre-trained base language model itself — perhaps

1The implementation and results of RH Probe are available
online: https://github.com/frankniujc/rh_probe.
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everything is learned post hoc by the classifier
through the probe dataset (Hewitt and Liang, 2019).
But this risk can be mitigated. In particular, the
ablation study is still a valid experimental design
for probing (Zhu et al., 2022).

In our view, the only satisfactory evidence of
“knowledge” that there has ever been in artificial
intelligence has been the ability to use the model
in question to perform inference. The present case
should be no different. What we need then is pars-
ing, or some other derivative task, which is easy
to perform given a sufficient grasp of syntactic
structure and much more difficult to perform with-
out it, but in an experimental setting in which sev-
eral sources of information are provided as input.
BERT’s output is one such potential source of in-
formation. Ablation studies then take the form
of removing one or more of those sources during
training. We also need alternative encodings of that
knowledge for the purposes of comparison.

Roark-Hollingshead distance (2008) annotates
word tokens in sequence but has been conjectured
to encode unlabelled syntactic constituency trees. It
is used by PRPN (Shen et al., 2018) as an important
component of its internal model of tree structure
that the network develops in the course of learning
to parse unsupervised. RH distances are an im-
portant bridge between token sequences (language
model) and arboreal structure (traditional syntax).

Therefore, we propose RH Probe, an encoder-
decoder-based probing architecture. With RH
Probe, we conduct two experiments: (1) an ab-
lation probe that observes whether the removal of
a feature source during training (language model
output, RH distance, or part-of-speech (POS) in-
formation for reference) can decrease the probe’s
performance; and (2) an “attack” probe that ob-
serves whether randomization of certain features
during testing can cause the performance to drop.
The results of these experiments suggest that word
embeddings contain important syntactic informa-
tion, but that this information alone is not enough
to reproduce traditional syntactic representations
such as phrase structure in their entirety. In our
experiments, we have also not been able to find
any correlation between the quality of the language
model and the amount of syntactic information.

After surveying previous probing methods, in-
cluding probability probes, performance-based
probes, and Wu et al.’s (2020) parameter-free probe,
we introduce our RH Probe architecture and prob-

ing task design, including the definition of RH dis-
tance. We prove Roark and Hollingshead’s (2008)
conjecture that RH distance encodes unlabelled
binary syntactic trees, and then present two ex-
perimental trials that use RH Probe to study the
syntactic information carried by various sources.
Our analysis of these results broadly confirms the
existence of important syntactic information within
BERT, but militates against the conclusion that this
information alone can reproduce syntax in its en-
tirety.

2 Probing for Syntax in BERT

2.1 Probability Probing

Since language models estimate the probability dis-
tribution over sequences of tokens, it is natural
to compare the probability of a syntactically well-
formed sentence with a syntactically ill-formed sen-
tence; and reason about a language model’s knowl-
edge of syntax based on how often it can correctly
assign a higher probability to the well-formed sen-
tence. This practice of “probing” can trace its roots
to Pereira (2000) on pre-neural language models.
The same method is used in various work (Clark
et al., 2013; Lau et al., 2014; Marvin and Linzen,
2018; Chowdhury and Zamparelli, 2018; Warstadt
et al., 2019, 2020; Hu et al., 2020) to study neural
language models from Mikolov et al. (2013) to con-
temporary large-scale models on different syntactic
features, ranging from long-distance dependencies
to anaphora.

Although simple and intuitive, this method of
probing suffers two primary difficulties. First, prob-
ability is not a particularly good reflection of syn-
tactic well-formedness. Other features of the in-
put sequence, such as sequence length, token fre-
quency, semantics, social bias, and even punctu-
ation, can affect a language model’s score. Sec-
ond, this method of probing does not reflect the
modern usage of language models after BERT in-
troduced the pretrain/finetune paradigm. Although
the probability distribution is still useful for text
generation, language models are often used to en-
code a sequence of tokens into a vector space. But
analysing probability alone does not provide in-
sight into whether linguistic structures are latent in
the language model’s representations.

2.2 Performance-based Probing

To better reflect this new pretrain/finetune
paradigm, performance-based probes (Adi et al.,
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2017; Conneau and Kiela, 2018; Hupkes and
Zuidema, 2018; Jawahar et al., 2019; Hewitt and
Liang, 2019; Tenney et al., 2019a,b; Pimentel et al.,
2020; Zhu et al., 2022) were introduced. These
probes introduce the linguistic feature of interest
as an auxiliary task and train a supervised classifier
(often referred to as a probe classifier or diagnostic
classifier) that takes BERT’s embeddings as input.
If this bolt-on classifier acquires good performance,
people have concluded that the language model
contains the relevant linguistic knowledge.

Overall, these probes use small classifiers with
simple architectures to avoid introducing extra vari-
ables into the probing process — there is no good in
explaining a black box with another black box. As
a consequence, the auxiliary linguistic task design
is also restricted to be simplistic and fine-grained
(see Niu et al. (2022) for a more detailed discus-
sion).

But as Hewitt and Liang (2019) presciently ask:
“When a probe achieves high accuracy on a linguis-
tic task using a representation, can we conclude
that the representation encodes linguistic structure,
or has the probe just learned the task?”

2.3 Perturbed Masking

This question is particularly salient for Wu et al.
(2020), who resort to parameter-free probing based
on the pairwise impact between tokens in a sen-
tence. This impact is computed as the distance
(either Euclidean or an information-theoretic dif-
ference in distributions) between the BERT rep-
resentations of the sentence with the first token
masked (with [MASK]) and the sentence with both
tokens masked. Wu et al. (2020) theorized that
tokens in the same constituent have higher im-
pact scores among each other than with tokens
outside the constituent. Using this pairwise impact
score, they devised a matrix-based top-down pars-
ing algorithm (MART) to induce constituency tree
structures from BERT. Given an input sentence and
its token impact information, the algorithm recur-
sively chooses a splitting position that separates
the sentence into two parts with the highest aver-
age impact between intraconstituent tokens, until
a binary tree emerges. By evaluating those binary
trees as constituency trees, they observed a bet-
ter performance than simple right-branching and
left-branching baselines.

Reappraising Wu et al. (2020) The performance
increases are unfortunately slight. As shown in Ta-

MART RB Tree LB Tree RH Random
WSJ10 58.0 56.7 19.6 67.04 51.6
WSJ23 42.1 39.8 9.0 50.08 29.69

Table 1: Wu et al.’s (2020) MART F1 performance
compared to two naïve baselines: right-branching (RB)
trees and left-branching (LB) trees, and the substitution
of RH distances (RH) or random vectors (Random) for
BERT vectors within MART. MART barely outperforms
the right-branching baseline with a 1.3/2.3% F1 increase
on the two evaluation datasets.

MART vs. Const. Tree MART vs. RB Tree
WSJ10 58.0 78.6
WSJ23 42.1 56.1

Table 2: Parsing F1 comparison. The “Const. Tree”
column shows the parsing F1 of MART evaluated with
the original PTB annotations as gold standard. The “RB
Tree” column shows the same evaluation, but with the
right-branching trees as a baseline. MART generates
trees more closely resembling right-branching trees than
constituency trees.

ble 1, MART only outperforms the right-branching
baseline by a 1.3/2.3% F1 increase, whereas us-
ing RH distances in place of BERT vectors leads
to considerably better F1 scores. Furthermore,
a comparison of MART-generated trees to right-
branching trees (with right-branching trees set as
the reference) shows that MART-generated trees
more closely resemble right-branching trees than
constituency trees (Table 2).

To further investigate Wu et al.’s (2020) hypoth-
esized connection between pairwise token impact
and constituency, we can use it as a proxy for RH
distance (as we will show in further detail in Sec-
tion 3). When a token has a high RH distance from
its predecessor, it means the two tokens’ common
ancestor is higher up in the syntactic tree, and there-
fore they are not both in a same, lower constituent.

Test Split Direction mean r median r macro r
ti−1, ti 0.3 0.365 0.159

WSJ10 ti, ti−1 0.153 0.223 0.261
sum 0.258 0.323 0.25

ti−1, ti 0.246 0.255 0.195
WSJ23 ti, ti−1 0.195 0.218 0.213

sum 0.259 0.273 0.242

Table 3: Correlation between pairwise token impact
and constituent level (RH distance). Following Wu
et al. (2020), we calculated the result on the WSJ10
and WSJ23 splits. The mean correlation (r) and median
correlation between impact score and RH distance are
reported. We can see weak to no correlation for both
test splits.
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So there should be a high anti-correlation between
impact score and RH distance.

We report the Pearson correlation of these in
Table 3. Wu et al.’s (2020) token impact matrix
is asymmetrical. The impact of token ti on ti−1

is different from the impact of ti−1 on ti. There-
fore we showed correlation results in three different
ways: the impact of a token’s predecessor on itself
(ti−1, ti), the impact of a token on its predeces-
sor (ti, ti−1), and the sum of the impacts in both
directions (sum). We also used two methods of cal-
culating Pearson’s correlation. First, we compute
the correlation between the impact scores and RH
distances of every sentence and report the mean and
median. Second, we compute the “macro” correla-
tion between the impact score and RH distance of
every pair of adjacent tokens. We can see there are
weak to no positive correlations on both the WSJ10
and WSJ23 splits in either direction. We did not
observe the expected, high negative correlation.

2.4 Discussion: Parameter-free Probing and
Ablation Study

Parameter-free probing is not the only solu-
tion to Hewitt and Liang’s (2019) criticism of
performance-based probing. Ablation is widely
recognised as a means of mitigating this issue.
When we subtract a source of information or signal
from the input to the probe classifier, decreased per-
formance of the probe can be interpreted as good
evidence that those removed features or signals
contained task-relevant information to the neural
network. While there is still an ongoing debate on
how well the magnitude of this difference corre-
lates to the relevance of the information (Hewitt
and Liang, 2019; Pimentel et al., 2020; Zhu and
Rudzicz, 2020), that does not change the validity
of using performance decreases as evidence for the
mere presence of knowledge.

Although parameter-free probing does not use
supervised data, the clustering algorithm itself en-
codes rigid prior information about trees and what
they should look like structurally (the Random
scores of Table 1 can be construed as indications
of syntactic information latent in the algorithm
itself). Right-branching trees satisfy these con-
straints, and MART-generated trees are similar to
right-branching trees. We propose to reinstate a
supervised finetuning regimen, in which BERT’s
presence in the input can be compared to other lexi-
calized encodings of syntactic structure. Sequences

S (5)

NP (3)

PRP$ (2)

My (1)
d0 = 1

NN (2)

dog (1)
d1 = 1

4

VP (4)

VBZ (2)

is (1)
d2 = 3

4

ADJP (3)

JJ (2)

cute (1)
dL−1 = d3 = 2

4

Figure 1: An RH distance calculation example. The
height of nodes (h) are annotated in brackets.

of RH distances are one such encoding. POS tag
sequences can arguably serve as an imperfect, indi-
rect encoding of the same.

3 RH Probe

3.1 Background: RH Distance

Before introducing our probing architecture, we
need to introduce RH distance. Given a sentence
[t0, t1, . . . , tL−1], RH distance di is a measure of
the syntactic distance between a token ti and its pre-
decessor ti−1. It is calculated based on the height
of the lowest common ancestor2 of ti and ti−1.
The precise calculations of both height and RH dis-
tances used in PRPN are somewhat parochial, but
we adhere to them in equation 1 and figure 1 (r
is the root of the tree) because this application of
RH distance is perhaps the one best known to this
audience.

di =
h(ti−1, ti)− 2

h(r)− 1

h(t−1, t0) = h(tL−1, tL) = h(r) + 1

h(u, v) = h(u ∪ v), everywhere else

(1)

With RH distance information [d0, d1, . . . , dL], it
is sufficient to reconstruct the structure of an entire
binary constituency tree. This was conjectured
by Roark and Hollingshead (2008), but remained
unproven until now. We will prove it in Section 3.5.
Sequences of RH distance can be regarded as the
encoding of an entire unlabelled constituency tree,
and we can use this linear encoding of arboreal
information to form the basis of our RH Probe
architecture.

2The lowest common ancestor of two tree nodes u and v
is denoted as u ∪ v.
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3.2 Probe Architecture
RH distance is a lexicalized measure, a sequence of
which encodes the structure of certain constituency
trees. We can use that information to create a series
of probes into BERT’s “understanding” of syntax.
RH Probe has two modes of operation: an abla-
tive probe observes the classifier’s performance
decrease when an input source is removed from
training; and an “attack” probe observes its perfor-
mance decrease after input features are obscured
through randomization during testing (after a noise-
free training).

3.3 Ablative Probe
The successful generation of a constituency tree is
simple given the necessary structural information
(RH distance), POS tags and internal node labels.
Our ablation probe aims to determine whether lan-
guage models provide crucial syntactic information
in the presence of either RH distance or POS tags,
neither of which directly encodes the labels of in-
ternal nodes.

To avoid providing structural hints to the probe
in the decoder itself, we implemented an encoder-
decoder probing architecture as shown in Figure 2.
The output of the probe is a flattened version of the
PTB parse trees. The terminal tokens are dropped
to simplify the output space. The input is a con-
catenation of all the chosen input feature sources
(word embedding, RH distance, POS tag embed-
ding), as shown in Figure 3. For the choice of word
embeddings, we use two different sizes of BERT,
and also word2vec (Mikolov et al., 2013) as well as
no embedding. word2vec vectors (300 dimensions)
are significantly smaller than bert-base-cased vec-
tors (784 dimensions), and so the 256-dimensional
BERTtiny (Bhargava et al., 2021) was included for
reference. When POS tags are provided, they are
vectorised by the same embedding as the decoder,
as POS tags are a subset of constituent tags.

Evaluation Metrics We want to evaluate
whether the probe classifier can correctly predict
the structure of the tree, as well as the pre-terminal
and phrasal labels. Two of these three aspects corre-
spond to possible input sources. Nevertheless, it is
impossible to evaluate the quality of the labels com-
pletely independently of the structure. Therefore,
we instead measure quality in two ways:
• Tree Integrity the average of a binary variable

that is 1 iff the decoder’s output can be success-
fully evaluated as a tree. This includes bracket

balancing and constituent label location, but not
the labels themselves.

• Unlabelled Exact Match Accuracy the average
of a binary variable that is 1 iff the produced
sequence is exactly correct, ignoring labels.

The overall quality of the trees is measured
through:
• Levenshtein (1965) distance (the average of)

the minimum number of insertions, deletions,
or replacements of output tokens (including left
or right brackets and constituent labels) to edit
the decoder output to the the gold standard, nor-
malised by the gold standard’s sequence length.

• Labelled Tree Exact Match Accuracy the aver-
age of a binary variable that is 1 iff the produced
sequence is exactly correct, including labels.

3.4 Attack Probe

The ablation task is not a probe into the disjointness
of knowledge between two sources of information
nor a probe into the relative weights of each infor-
mation source. Therefore, we also introduce an
Attack Probe. Figure 4 depicts this process. With a
fully trained probe classifier, we evaluate the classi-
fier’s performance on perturbed input. By replacing
one of the information sources (RH distance, word
embeddings, or POS embeddings) with random
noise, we can observe by how much the classifier’s
performance drops. A bigger performance drop can
be interpreted as higher feature importance. The
evaluation method is exactly the same as in the
ablative task.

3.5 Proof of RH Conjecture

It can be proved that RH sequences uniquely
encode unlabelled binary trees with no unary
branches above the pre-terminal connections that
they implicitly assume to be present at every word
token. Roark and Hollingshead (2008) were the
first to speculate about the expressive capacity of
these sequences to encode syntactic trees. The def-
inition of RH sequences itself provides a unique,
constructive recipe for translating any such tree
into an RH sequence. As for the reverse direction,
the proof proceeds by induction on h(r), the height
of the root node. The base case is a single word,
with a single pre-terminal, which is also the root, at
height 2. This is encoded by a single RH distance
of 1, which is the only length-1 RH sequence that
can exist, and its tree is the only tree that can exist
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Figure 2: RH Probe Encoder-Decoder Architecture. The input features are fed into a bidirectional encoder, and the
encoded representation of the sentence is decoded by a unidirectional decoder. The decoder outputs the flattened
tree with all of the pre-terminal POS tags but no terminal tokens. The constituency tree of the example sentence my
dog is cute, displayed in figure 1, will be flattened into (S(NP(PRP$)(NN))(VP(VBZ)(ADJP(JJ)))).

Figure 3: Ablation probe input selection. The input features are concatenated into one vector.

Figure 4: Attack Probe. Attack on different input means
replace that input with random noise. Performance drop
after this attack is then observed.

with a yield of 1, given the constraints on trees that
we have assumed.

Assuming that all constrained trees of height
h(r) = n are uniquely encoded by RH sequences,
we seek to show that any tree of height h(r) = n+1
is also uniquely encoded by reconstructing it from
its RH sequence. Given the smallest number in a
well-formed RH sequence, it is possible to infer the
height of its corresponding tree. This number will
be 1

h(r)−1 , since the witness to the height of the root
h(r) must contain a node of height 3, which, being
of height greater than 2, must be the join of some
adjacent pair of word tokens in our constrained
trees. We posit joins of adjacent pairs in the tree
that we are reconstructing wherever we see the
number 1

h(r)−1 on the second (right-hand) number
of a pair. Note that no two adjacent word tokens can
both have RH numbers of 1

h(r)−1 in a well-formed

RH sequence for our trees.

Let us now contemplate what the RH sequence
of the remainder of the tree would look like. This
remainder is itself a tree that satisfies our con-
straints, if we were to remove these adjacent, joined
words, replacing them with a single, made-up to-
ken, and their join with a new, made-up POS tag,
which would have height 2 rather than 3. Although
it is not possible in general to predict what the new
RH sequence would be if we were to remove one
such pair from a tree, it is actually possible to pre-
dict what the new RH sequence would be if we
removed all such pairs at once from the tree. This
would remove all nodes of height 3. Every longest
path to every node of height higher than 3 passes
through exactly one height-3 node, which means
that the root and the remaining joins in the new tree
all decrement by exactly 1. So, without knowing
the structure of the remainder of the tree yet, we
can recalibrate the RH sequence to it: because we
could infer h(r) in the old tree, we can recover
the unnormalized join heights by multiplying by
h(r)−1, then decrement the unnormalized heights,
and then renormalize using h(r) − 2 rather than
h(r) − 1. This recalibrated sequence now corre-
sponds to a tree of height one less, and so by the
inductive hypothesis, its tree can be recovered.
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Model Tree Integrity Unlabelled EM Levenshtein Labelled EM
BERT 0.124 0.0244 0.352 0.012
BERT + RH 0.177 0.0824 0.284 0.0269
BERT + POS 0.16 0.043 0.283 0.0344
BERT + RH + POS 0.181 0.055 0.268 0.0472
BERTtiny 0.11 0.0356 0.341 0.0161
BERTtiny + RH 0.168 0.065 0.301 0.0157
BERTtiny + POS 0.161 0.0464 0.293 0.0368
BERTtiny + RH + POS 0.168 0.0555 0.274 0.0435
word2vec 0.119 0.048 0.333 0.0178
word2vec + RH 0.179 0.0679 0.302 0.0236
word2vec + POS 0.18 0.0588 0.277 0.048
word2vec + RH + POS 0.209 0.0795 0.258 0.0642
RH 0.147 0.0774 0.322 0.0132
POS 0.162 0.0629 0.295 0.0509
RH + POS 0.165 0.0803 0.27 0.053

Table 4: Ablation probe result. For Levenshtein distance, the lower, the better. For the others, higher is better.

4 Experimental Setup

Constituency trees were obtained from the Penn
Treebank (PTB) (Marcus et al., 1994). The corpus
was processed and split into training/validation/test
sets using Kim et al.’s (2019) scripts, available on-
line3. Trees were binarized, as usual, but unary
branches except for the pre-terminal connections
were removed, in accordance with the limitations
on the expressive capacity of sequences of RH dis-
tances.

A hyperparameter search was conducted using
Optuna (Akiba et al., 2019) for 150 trials with
bert-base-cased embeddings and no RH dis-
tances nor POS tags were provided as hints. The
search result concluded with a 50 PTB-tag embed-
ding size, a 0.0005 Adam (Kingma and Ba, 2015)
learning rate, and a 5-layer GRU encoder-decoder
with a 350 hidden-unit size. Finally, a beam search
algorithm was implemented in the decoder with a
width of 5. This set of hyperparameters was used
for every probe conducted here. This hyperparam-
eter selection process can be generalised to other
large-scale pretrained language models.

5 Experimental Results

5.1 Ablation Probe Results

Table 4 shows our ablation probe results. Each
probe was trained for 200 epochs and for each eval-
uation metric, we reported the test set performance
on the epoch that has the best validation set perfor-
mance. We note the following key findings:

Language models provide useful information for
parsing. Performance is lower when no word em-

3https://github.com/harvardnlp/compound-pcfg

bedding is provided (RH, POS, RH+POS). The re-
moval of word embeddings derived from any type
of language model decreases the probe’s perfor-
mance. This shows that language models can learn
through pre-training information useful and recog-
nizable to downstream syntactic tasks.

POS and RH distance provide performance in-
creases across the board. With the labelled tree
exact match ratio of BERTtiny vs. BERTtiny + RH
being the only exception (0.04% performance in-
crease), all settings when POS and RH distance
information are removed result in a performance
drop. Furthermore, we can observe a lower struc-
tural performance when RH distance is removed,
and a lower overall performance when POS tags
are removed. This is expected as RH distance only
contains structural information. While language
models contain useful syntactic information, the in-
formation they contain is still notably disjoint from
syntax, as the removal of RH sequences and/or POS
tags in the presence of BERT is also deleterious to
performance.

Better language model ̸= more syntactic knowl-
edge. Finally, the quality of the language model
is not directly correlated to the probe’s per-
formance. If the central presupposition of
performance-based probing is in fact true, that
the magnitude of performance increases with the
quantity of knowledge, then a better language
model does not mean better understanding of syn-
tax. BERTtiny and word2vec outperformed BERT(-
base-cased) in several respects, and the hyperpa-
rameters were searched with the BERT model.
While it may be controversial to compare the qual-
ity of BERT and word2vec, as it is not uncommon
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Model Attack Tree Integrity Unlabelled Acc Levenshtein Tree EM Acc
score ∆ score ∆ score ∆ score ∆

original 0.181 - 0.0675 - 0.263 - 0.0571 -
BERT attack RH 0.148 -0.0328 0.0261 -0.0414 0.334 0.0712 0.0219 -0.0352
+ RH + POS attack BERT 0.0803 -0.101 0.00455 -0.0629 0.467 0.205 0.0029 -0.0542

attack POS 0.0629 -0.118 0.000828 -0.0666 0.516 0.253 0.0 -0.0571
original 0.168 - 0.0642 - 0.273 - 0.0517 -

BERTtiny attack RH 0.154 -0.0136 0.0435 -0.0207 0.319 0.0461 0.0373 -0.0145
+ RH + POS attack BERT 0.101 -0.0674 0.00745 -0.0567 0.407 0.134 0.00497 -0.0468

attack POS 0.055 -0.113 0.000828 -0.0633 0.633 0.36 0.0 -0.0517
original 0.209 - 0.0795 - 0.261 - 0.06 -

word2vec attack RH 0.118 -0.0915 0.0207 -0.0588 0.369 0.108 0.0199 -0.0401
+ RH + POS attack w2v 0.115 -0.0935 0.00455 -0.0749 0.423 0.162 0.00207 -0.0579

attack POS 0.0741 -0.135 0.000828 -0.0786 0.502 0.241 0.0 -0.06

Table 5: Attack probe results. The probe’s test set performance after the attack is displayed in the score columns,
and the magnitude of the performance drop is displayed in the ∆ columns. All attacks are conducted on the epoch
with the highest validation set tree integrity.

Metric BERT BERTtiny word2vec
Tree Integrity 79.61% 54.17% 4.76%

Unlabelled EM 85.25% 84.47% 81.25%
Levenshtein 73.38% 28.05% 40.16%
Labelled EM 86.79% 86.67% 89.58%

Table 6: Relative “importance” of word embedding
input, calculated as Sembed−Srh

Spos−Srh
, where Sembed, Spos, Srh

represent the underlying measure after attacks on the
respective information source.

to have simpler language modelling architectures
outperforming more powerful ones (Edwards et al.,
2020), BERT and BERTtiny share the same archi-
tecture.

5.2 Attack Probe Results
Table 5 presents our attack probe results. We
trained each model for 200 epochs, found the epoch
that gives the best tree-integrity performance on the
validation set and then performed attack probing
on that epoch. Some of the results are paradoxical.
As with Section 5.1, language models apparently
do not embody a complete account of syntactic
information, but an attack on BERT brings a notice-
ably more adverse impact on performance than an
attack, for example, on RH distance. This may be
connected to the greater dispersion of BERT inputs
over a larger dimensionality of input.

In other words, although RH + POS and BERT
+ RH + POS exhibit very close performance (Ta-
ble 4) and RH is important for parsing, the model
still weighs BERT more than RH distance. We can
see in the second row of Table 5 that, over all mea-
sures, attacks on BERT always bring a more signifi-
cant performance drop. This indicates that BERT’s
higher dimensionality makes information easier to
extract better, increasing the model’s generalizabil-

ity to different downstream tasks. This advantage
outweighs RH distance’s provable adequacy as a
representation of unlabelled binary syntactic trees.

We also note that the performance drop of attack-
ing the word embeddings always stays between the
performance drop of attacking the RH distance and
that of attacking POS embeddings. However, this
relative performance drop differs from language
model to language model. Therefore, we calcu-
late the relative importance of word embedding
information as Sembed−Srh

Spos−Srh
, where Sembed, Spos, and

Srh represent the measure S after attacks on the
respective information source. As shown in Ta-
ble 6, except for labelled EM, where every model
gives similar scores that are very close to 0 (so the
percentage is almost the same for every model),
BERT has higher relative importance than the other
two simpler language models. This indicates that
although better language models do not necessarily
contain more syntactic information, better language
models will make information easier to pick out
or extract for downstream classifiers, and therefore
give better performance.

6 Conclusion

Does BERT know syntax? Our RH Probe results
demonstrate that BERT contains important syntac-
tic information, although this information alone
cannot reproduce syntax in its entirety. Our empiri-
cal evidence is not subject to the criticism that the
observed syntactic knowledge is not obtained by
the language model through pretraining, but rather
emerges from the probe classifier itself. The evi-
dence is drawn from two carefully designed tasks,
in which the substantial performance changes can
be observed.
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Nevertheless, we strongly agree with the insight
(Wu et al., 2020) that the internal structure of BERT,
although it may not embody a complete syntactic
characterization of its input, can provide useful
information for downstream applications. Recent
probing attempts (Hewitt and Liang, 2019; Jawa-
har et al., 2019; Tenney et al., 2019a) have proved
that the utility of knowledge acquired through pre-
training is not limited to lexical semantics — word
embedding also encodes syntax-adjacent informa-
tion. Our probing results reinforce this argument
through a more general examination of the relation
between BERT and syntax.
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Abstract

We study the way DALLE-2 maps symbols
(words) in the prompt to their references (en-
tities or properties of entities in the generated
image). We show that in stark contrast to the
way human process language, DALLE-2 does
not follow the constraint that each word has
a single role in the interpretation, and some-
times re-uses the same symbol for different
purposes. We collect a set of stimuli that reflect
the phenomenon: we show that DALLE-2 de-
picts both senses of nouns with multiple senses
at once; and that a given word can modify the
properties of two distinct entities in the image,
or can be depicted as one object and also mod-
ify the properties of another object, creating a
semantic leakage of properties between entities.
Taken together, our study highlights the differ-
ences between DALLE-2 and human language
processing and opens an avenue for future study
on the inductive biases of text-to-image mod-
els.

1 Introduction

Large diffusion-based text-to-image models, such
as DALLE-2 (Ramesh et al., 2022), generate vi-
sually compelling images that condition on input
texts. Yet, the extent to which such models capture
properties of human language, such as its compo-
sitional structure, has been doubted (Conwell and
Ullman, 2022).

A very basic property in the interpretation of
natural language utterances is that each word has a
specific role in the interpretation, and there is a one-
to-one mapping between symbols and roles. While
symbols—as well as sentence structures—may be
ambiguous, after an interpretation is constructed
this ambiguity is already resolved. For example,
while the symbol bat in a flying bat can be inter-
preted as either a wooden stick or an animal, our
possible interpretations of the sentence are either of

∗Equal contribution.

Figure 1: The word bat is realized as two entities given
the prompt a bat is flying over a baseball stadium.

a flying wooden stick or a flying animal, but never
both at the same time. Once the word bat has been
used in the interpretation to denote an object (for
example a wooden stick), it cannot be re-used to
denote another object (an animal) in the same inter-
pretation. Similarly, in a fish and a gold ingot, the
word gold is used as a modifier of ingot.1 Once it is
used, it cannot be re-used to modify another object
in the same interpretation, and also cannot be used
as a standalone object.2 Some linguists refer to
this property as resource sensitivity (Salvucci et al.,
2009).

We show evidence that—in stark contrast

1We use the word "modifier" to refer to any word that
influences the way another word is depicted in the output.

2Note that in some cases a single word can be used to
modify several objects, for example, a gold fish and ingot
can be interpreted as a gold fish and a gold ingot. These
cases manifest in very specific syntactic configurations, and
are well documented in linguistics. Indeed, the linguistic
analysis of such cases are either based on mechanisms such
as “duplication” of the word, or allude to a deeper version
of the sentence in which the word appeared twice, and was
dropped before production. While the reality behind these
linguistic theories cannot be proven, the appeal to use such
mechanisms as “duplication” or “deletion" (before realization)
as explanations to the phenomena, highlights the naturalness
of the “single use per symbol” principle.
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to humans—the text-to-image model DALLE-2
(Ramesh et al., 2022) does not respect this con-
straint. Indeed, we show that DALLE-2 exhibits
the following behaviors that are inconsistent with
the single-role principle:

• A word or phrase is interpreted as two
distinct (concurrently-incompatible) enti-
ties and is consequently realized as multi-
ple objects in the same scene. For instance,
the prompt a bat is flying over a stadium is
mapped to an image showing a baseball bat
alongside the flying mammal (fig. 1).

• A word is interpreted as a modifier of two
different entities,3 and is consequently real-
ized as a property of multiple objects in the
scene. For instance, the prompt a fish and a
gold ingot is mapped to an image showing a
gold ingot as well as a goldfish (section 4.2).

• A word is interpreted simultaneously as an
entity and as a modifier of a different entity
and is consequently realized as an object in
the scene as well as as a property of another
object in the same scene. For instance, the
prompt a seal is opening a letter is mapped
to an image showing a seal holding a sealed
letter (fig. 2).

Visually, the cases we highlight map to one of
two failure modes from the perspective of the im-
age designer / user: (a) sense-ambiguous words
are hard to isolate, and the resulting images of-
ten exhibit the unintended sense together with the
intended one (homonym duplication). (b) visual
properties of one object in the image "leak" into
other objects in the image (concept leakage).4

We also observe some second order effects,
where a hypernym of the modifier word, or an im-
plicit description of it, also triggers the duplication
effect.

Taken together, the phenomena we examine pro-
vides evidence for limitations in the linguistic abil-
ity of DALLE-2 and opens avenues for future re-
search that would uncover whether those stem from
issues with the text encoding, the generative model,

3While not under a syntactic configuration that allows such
duplication.

4Importantly, we note that both phenomena rarely occur
when explicit specification is provided, e.g, the prompt a
fruit bat is flying over a stadium generates only the flying
mammal. See Hutchinson et al. (2022) for a discussion on
under-specification in text-to-image generation.

Figure 2: The word seal is realized both as an ob-
ject and as a modifier of another word (letter) in the
prompt a seal is opening a letter, resulting in concept
leakage. The prompt tends to generate sealed letters,
while minimally-different prompts that do not contain
the noun seal do not.

or both. More generally, the proposed approach can
be extended to other scenarios where the decoding
process is used to uncover the inductive bias and
the shortcomings of text-to-image models.

2 Previous Work

Promptly after the introduction of DALLE-2
(Ramesh et al., 2022), analyses of the system began
to surface (Marcus et al., 2022; Conwell and Ull-
man, 2022). Conwell and Ullman (2022) showed
that DALLE-2 does not understand spatial rela-
tions. Marcus et al. (2022) reported that if an object
in the prompt is said to have some property, then the
image will likely show that property somewhere,
however, not necessarily on the correct object. We
take this analysis a step further, showing that the
same property sometimes simultaneously modifies
several unrelated objects. Ramesh et al. (2022) al-
lude to the phenomena we analyze: they mention
the issues with binding separate attributes to sep-
arate objects, and hypothesize that it is because
CLIP (Radford et al., 2021) embeddings do not ex-
plicitly bind attributes to objects. Accordingly, they
observe that that reconstructions from the decoder
often mix up attributes and objects. Concurrent to
this work, Hutchinson et al. (2022) discuss under-
specification in text-to-image generation, a condi-
tion which we find to be associated with some of
the behaviors we identify; and Anonymous (2023)
discuss several cases of “leakage", and propose an
intervention in the decoding process that is aimed
to mitigate them.
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3 Methdos

Stimuli We construct linguistic stimuli (prompts)
which evoke a behavior that is inconsistent with
the single-use-per-symbol axiom. For the first
case (words interpreted as two entities), we use
homonyms, words that have two distinct senses.
DALLE-2 often generates two objects, one corre-
sponding to each of the senses. For the modifica-
tion cases, we construct the following prompts. For
the case of a word that is interpreted as a modi-
fier of two entities, we include prompts with two
entities e1 and e2 and a modifier word m that is
semantically compatible with both of them, but is
only syntactically modifying the second one (For
instance, “A fishe1 and a goldm ingote2"). For the
case of a word that is simultaneously interpreted
as an entity as well as a modifier, we construct
stimuli that contain two entities e1 and e2, such as
that one of them is semantically associated with
the other noun—for instance, “classic buttere1 and
peanutse2/m".

The complete list of stimuli is presented in tables
1, 2 and 3 in appendix A.1, together with samples
of the generated images.

Control Stimuli In order to argue for the ex-
istence of a leakage of property P between two
entities e1 and e2, we need to assess whether
DALLE-2 does not tend to depict e2 with that prop-
erty, regardless of e1. For instance, if the default
groceries for DALLE-2 in different contexts is a
groceries basket, it is hard to argue that it is the
presence of the word basket in “a basketball near
groceries" that elicited DALLE-2 to generate a bas-
ket. With this in mind, we generate a set of control
prompts, which are minimally-different variations
over the challenge prompts, that were built so as
to prevent the possibility of a leakage by changing
either n1 or n2 alone, depending on which change
can prevent the leakage in a given prompt. The full
set of controls are also detailed in tables 2 and 3.

4 Results

We generate 12 images per stimulus, and report the
average over all stimuli and images.

4.1 A single word realized as multiple entities
We have 17 stimuli that elicit DALLE-2 to assign
a single word two roles. Homonym duplication oc-
curred in 80.3% of the 216 images. We found that,
out of context, the vast majority of words are biased

left: A bass lounging in a tropical resort in space,
vaporwave.
right: a fan at a hot sport event.

towards a particular sense, specifically, out of our
17 homonyms, only bass and date reveal homonym
duplication without added context. Using bass as a
prompt will5 return an image of a seabass and a gui-
tar bass or a speaker bass, and for date, DALLE-2
will return a romantic couple, holding together a
date (the fruit). Most of the homonym duplication
prompts were created by including context related
to the non-default role of the homonym. For in-
stance, for the homonym fan, DALLE-2 is biased
towards the cooling device, but if we are to add
context that is related to the other possible role a
fan can have (a sports fan), and that still applies
towards the cooling device, we will get both: A fan
at a hot sports event (top of section 4.1).

4.2 A single word realized as a modifier of
multiple entities

Main (left): a fish and a gold ingot.
Control (right): a fish and an ingot.

Given a pair of entities (e1, e2), we observe
that the underspecified entity, e2 is depicted by
DALLE-2 with properties from e1: in the prompt
A fish and a gold ingot, gold modifies fish, and the
image consistently contains a golden fish.6 This is

5Using just a homonym as a prompt does not consistently
elicit the phenomenon as a prompt that includes context with
the homonym.

6Interestingly, The golden fish also resemble goldfish, sug-
gesting that priming effect also extends to compounds, even
though the word gold in gold ingot is a part of a phrase with a
compositional structure, while “goldfish" is not compositional.
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likely because fish is an underspecified noun and
gold is an amicable property to fish. In the control,
a fish and an ingot, golden fish do not appear at all
in the output.

For the two-properties case, we have 6 stimuli-
control pairs. The output of the stimuli prompts
display the shared property in 97.2% of the cases,
while the control prompts show that property in
only 15.2% of the cases.

4.3 A single word is realized as an entity and
as a modifier of another entity

Main (left): A zebra and a street.
Control (right): A zebra and a gravel street.

For the entity-to-property case, we have 10
stimuli-control pairs. On average, the stimuli
prompts exhibit the shared property in 92.5% of
the cases while the control prompt shows it in only
6.6% of the cases.

In similar fashion to the two-properties case, n2

is depicted by DALLE-2 with properties from n1,
however, this time, n1 is not a property, but an en-
tity. To demonstrate, consider a zebra and a street,
here, zebra is an entity, but it modifies street, and
DALLE-2 constantly generates crosswalks, possi-
bly because of the zebra-stripes’ likeness to a cross-
walk. And in line with our conjecture, the control
a zebra and a gravel street specifies a type of street
that typically does not have crosswalks, and indeed,
all of our control samples for this prompt do not
contain a crosswalk. When n1 is a homonym, the
entity-to-property case is more nuanced, for exam-
ple, in food and a cone hat, zoomed out photo, the
word cone modifies food by generating ice-cream
cones, while its control: food and a birthday hat,
zoomed out photo, a semantically and physically
equivalent replacement of cone, does not lead to
the generation of ice-cream cone.

4.4 Second-order stimuli

Main (left): a tall, long-legged, long-necked bird
and a construction site.
Control (right): a bird and a construction site.

Concept Leakage can be taken a step further, by
masking the affecting noun and receiving similar
results: a tall, long-legged, long-necked bird and a
construction site is describing a crane and a con-
struction site, but nowhere in the prompt a crane is
mentioned. Yet, it will cause DALLE-2 to generate
two types of cranes: a bird crane, and a construc-
tion crane. We also observe that the bird-crane’s
head and legs share physical properties with the
crane. From the same challenge prompt, the border
between a bird-crane and a construction-crane is
especially blurred. This behavior is not repeated
when the description of a bird-crane is removed
from the prompt: a bird and a construction site.
This suggests that the model first maps entities into
a concept space, and only then renders.

4.5 Other text-to-image-models

The empirical focus of this work is DALLE-2.
In preliminary experiments, we found that
DALLE-mini (Dayma et al., 2021)—a much
smaller model—did not replicate the observed
phenomena. Particularly, only the “common"
word sense is depicted for homonyms. As for
Stable-diffusion (Rombach et al., 2021),
the phenomena seem to occur less frequently, par-
ticularly because in many times the model does not
follow the prompt at all. Other models, such as (Sa-
haria et al., 2022; Yu et al., 2022), are not publicly
available. We hypothesize that—paradoxically—
it is the lower capacity of DALLE-mini and
Stable-diffusion and the fact they do not
robustly follow the prompts, that make them appear
“better" with respect to the flaws we examine. A
thorough evaluation of the relation between scale,
model architecture, and concept leakage is left to
future work.

338



5 Conclusions

We demonstrate that across a set of stimuli,
DALLE-2 does not follow basic principles of
symbol-to-entity mapping in language. This flaw is
especially pressing given that DALLE-2 is directed
to the general population, where the majority of the
users are probably not aware of the phenomenon.7

Future work should trace back the issues we diag-
nose to specific components in the model, such as
the text encoding or the generative decoder; and
study its dependence on scale and architecture. Ad-
ditionally, the development of post-hoc mitigation
techniques is especially important, given that most
users lack the resources needed to train the models
from scratch.
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7 Limitations

One limitation of this work is the focus on
DALLE-2 a commercial product, whose source
code is not publicly available. As discussed, ca-
pacity issues prevented a thorough examination
of the phenomena we focus on in other available
models. We hope that additional models of similar
scale will be released to the public in the future, en-
abling a more thorough examination. Additionally,
our analysis is focused on a manually constructed
set of stimuli, that were designed so as to surface
the issues we focus on in the clearest way. Scal-
ing the analysis would rely on automatic or semi-
automatic generation of stimuli of the kind we use,
which is a challenging task. Yet, we believe that
such large-scale analysis is important in order to
robustly quantify the issues we observe.
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A Appendix

A.1 Data
The full image-dataset can be accessed at https://github.com/RoyiRa/
DALLE2-Flaws-in-word-to-concept-mapping.

The following tables contain the stimuli we use to test the reference system of DALLE-2 .

Prompt Duplication Ratio
A person wearing a cone hat is eating, a full body photo 7/12
A bat is flying over a baseball stadium 11/12
A bass lounging in a tropical resort in space, vaporwave 10/12
A fan at a hot sports event 12/12
A crane carrying a heavy material, fish in the background 12/12
A banker collecting dough 9/12
Two men having a loud beef, restaurant in the background 10/12
A model with an hourglass figure 12/12
A gentleman with a bow in the forest 11/12
A woman is pouring water into her glasses 9/12
A man stuck in a jam, eating 7/12
A great ruler 8/12
Apple commercial 12/12
A person with metal nails 6/12
date 7/12
a person with chicken legs, full body image 12/12
a board meeting 9/12

Table 1: List of stimuli for the multiple entities case (Section 4.1). The noun that is mapped to two entities is
denoted with bold

Challenge and Control Challenge Ratio Control Ratio
a person jaywalking and a bird
A person crossing the street unlawfully and a bird

11/12 0/12

food and a cone hat, zoomed out photo
food and a birthday hat, zoomed out photo

12/12 0/12

A fish and a gold ingot
A fish and an ingot

12/12 0/12

A basketball near groceries
A football near groceries

12/12 5/12

A ladybug and a person, full body image
A bug and a person, full body image

11/12 6/12

An animal alongside a piggy bank
An animal alongside a table

12/12 0/12

Table 2: Challenge and Control Prompts in word-to-multiple-modifiers case (section 4.2). The modifier nouns in
the Challenge prompts are denoted with bold, and modified nouns with italic
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Challenge and Control Challenge Ratio Control Ratio
A zebra and a street
A zebra and a gravel street

10/12 0/12

A seal is opening a letter
A large water mammal is opening a letter

10/12 1/12

Two people play squash with food
Two people play squash

12/12 0/12

a pool and a table
a pool and a bar

10/12 0/12

A person is washing hair with Dove shampoo
A person is washing hair with shampoo

12/12 0/12

an armadillo and an elephant
a rhino and an elephant

12/12 0/12

a fish and an elephant
a rhino and an elephant

12/12 0/12

A cross and a sidewalk
A crucifix and a sidewalk

10/12 2/12

classic butter and peanuts
classic butter and cucumbers

12/12 0/12

A leopard and a piece of cloth
a leopard and a black towel

11/12 5/12

Table 3: Challenge and Control Prompts in the word-to-entity-and-modifier case (Section 4.3). The modifier
nouns in the Challenge prompts are denoted with bold, and modified nouns with italic

Challenge and Control Challenge Ratio Control Ratio
An armadillo on a sea shore
A dog on a sea shore

12/12 0/12

A pinniped is opening a letter
A large water mammal is opening a letter

7/12 1/12

a tall, long-legged, long-necked bird and a construction site
a bird and a construction site

12/12 0/12

A person and a bug with red spots, full body image
A bug and a person, full body image

11/12 6/12

Table 4: Challenge and Control Prompts in Second-Order Concept Leakage (Section 4.4). The modifier nouns in
the Challenge prompts are denoted with bold, and modified nouns with italic
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Single word realised as multiple entities

A person wearing a cone hat is
eating, full body photo

A crane carrying a heavy
material, fish in the

background

A fan at a hot sports event

A bat is flying over a baseball
stadium

A banker collecting dough A model with an hourglass
figure

A bass lounging in a tropical
resort in space, vaporwave

Two men having a loud beef,
restaurant in the background

A gentleman with a bow in the
forest

A woman is pouring water into
her glasses

A man stuck in a jam, eating A great ruler

Apple commercial A person with metal nails date
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A board meeting A person with chicken legs,
full body image

A word acting as a modifier of two different entities

Bold items are entities, and bold+underline is the modifier.

Main (left): A person jaywalking and a bird
Control (right): A person crossing the street
unlawfully and a bird

Main (left): food and a cone hat, zoomed out
photo
Control (right): food and a birthday hat,
zoomed out photo

Main (left): A fish and a gold ingot
Control (right): A fish and an ingot

Main (left): A basketball near groceries
Control (right): A football near groceries

Main (left): A ladybug and a person, full body
image
Control (right): A bug and a person, full body
image

Main (left): An animal alongside a piggy
bank
Control (right): An animal alongside a table
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Same word realised as an entity as well as a modifier of another entity

Bold item is the entity, bold+underline is acting as both modifier and entity.

Main (left): A zebra and a street
Control (right): A zebra and a gravel street

Main (left): A seal is opening a letter
Control (right): A large water mammal is
opening a letter

Main (left): Two people play squash with food
Control (right): Two people play squash

Main (left): a pool and a table
Control (right): a pool and a bar

Main (left): A person is washing hair with Dove
shampoo
Control (right): A person is washing hair with
shampoo

Main (left): an armadillo and an elephant
Control (right): a rhino and an elephant

Main (left): a fish and an elephant
Control (right): a rhino and an elephant

Main (left): A cross and a sidewalk
Control (right): a crucifix and a sidewalk
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Main (left): classic butter and peanuts
Control (right): classic butter and cucumbers

Main (left): A leopard and a piece of cloth
Control (right): a leopard and a black towel

Second order concept leakage

Main (left): A tall, long-legged, long-necked bird
and a construction site
Control (right): a bird and a construction site
Explanation: the tall, long-legged, long-necked
bird is identified as a crane and realised as two
kinds of cranes.

Main (left): A pinniped is opening a letter
Control (right): A large water mammal is opening
a letter
Explanation: the pinniped interpreted as a seal,
which is realised both as the actor and as a seal on
the letter.

Main (left): A person and a bug with red spots, full
body image
Control (right): A bug and a person, full body
image
Explanation: The bug with red spots is identified
as a ladybug, and the person is female (lady).

Main (left): An Armadillo on a sea shore
Control (right): A dog on a sea shore
Explanation: the armadillo has a shell, and there
are shells on the beach.
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Abstract

In attempts to develop sample-efficient and
interpretable algorithms, researcher have ex-
plored myriad mechanisms for collecting and
exploiting feature feedback (or rationales) aux-
iliary annotations provided for training (but not
test) instances that highlight salient evidence.
Examples include bounding boxes around ob-
jects and salient spans in text. Despite its
intuitive appeal, feature feedback has not de-
livered significant gains in practical problems
as assessed on iid holdout sets. However, re-
cent works on counterfactually augmented data
suggest an alternative benefit of supplemen-
tal annotations, beyond interpretability: lessen-
ing sensitivity to spurious patterns and conse-
quently delivering gains in out-of-domain eval-
uations. We speculate that while existing meth-
ods for incorporating feature feedback have de-
livered negligible in-sample performance gains,
they may nevertheless provide out-of-domain
benefits. Our experiments addressing sentiment
analysis, show that feature feedback methods
perform significantly better on various natural
out-of-domain datasets despite comparable in-
domain evaluations. By contrast, performance
on natural language inference remains compa-
rable. Finally, we compare those tasks where
feature feedback does (and does not) help.

1 Introduction

Addressing various classification tasks in natural
language processing (NLP), including sentiment
analysis (Zaidan et al., 2007), natural language
inference (NLI) (DeYoung et al., 2020), and pro-
paganda detection (Pruthi et al., 2020), researchers
have introduced resources containing additional
side information by tasking humans with marking
spans in the input text (called rationales or feature
feedback) that provide supporting evidence for the
label. For example, spans like “underwhelming”,
“horrible”, or “worst film since Johnny English”
might indicate negative sentiment in a movie re-
view. Conversely, spans like “exciting”, “amazing”,

or “I never thought Vin Diesel would make me cry”
might indicate positive sentiment.

These works have proposed a variety of strate-
gies for incorporating feature feedback as addi-
tional supervision (Lei et al., 2016; Zhang et al.,
2016; Lehman et al., 2019; Chen et al., 2019; Jain
et al., 2020; DeYoung et al., 2020; Pruthi et al.,
2020). Other researchers have studied the learning-
theoretic properties of feature feedback (Poulis and
Dasgupta, 2017; Dasgupta et al., 2018; Dasgupta
and Sabato, 2020). We focus our study on the re-
sources and practical methods developed for NLP.

Some have used this feedback to perturb in-
stances for data augmentation (Zaidan et al., 2007),
while others have explored multitask objectives
for simultaneously classifying documents and ex-
tracting rationales (Pruthi et al., 2020). A number
of papers exploit feature feedback as intermedi-
ate supervision for building extract-then-classify
pipelines (Chen et al., 2019; Lehman et al., 2019;
Jain et al., 2020). One common assumption is that
resulting models would learn to identify and rely
more on spans relevant to the target labels, which
would in turn lead to more accurate predictions.

However, despite their intuitive appeal, feature
feedback methods have thus far yielded under-
whelming results on independent drawn and iden-
tically distributed (iid) test sets in applications in-
volving deep nets. While Zaidan et al. (2007) found
significant gains when incorporating rationales into
their SVM learning scheme, benefits have been
negligible in the BERT era. For example, although
Pruthi et al. (2020) and Jain et al. (2020) address
a different aim towards boosting interpretability—
to improve extraction accuracy—their experiments
show no improvement in classification accuracy by
incorporating rationales.

On the other hand, Kaushik et al. (2020), in-
troduced counterfactually augmented data (CAD)
with the primary aim of showing how supplemen-
tary annotations can be incorporated to make mod-

346



els less sensitive to spurious patterns, and addi-
tionally demonstrated that models trained on CAD
degraded less in a collection of out-of-domain
tests than their vanilla counterparts. In followup
work, they showed that for both CAD and fea-
ture feedback, although corruptions to evidence
spans via random word flips result in performance
degradation both in- and out-of-domain, when non-
evidence spans are corrupted, out-of-domain perfor-
mance often improves (Kaushik et al., 2021). These
findings echo earlier results in computer vision
(Ross et al., 2017a; Ross and Doshi-Velez, 2018)
where regularizing input gradients (so-called local
explanations) to accord with expert attributions led
to an improved out-of-domain performance.

In this paper, we conduct an empirical study of
the out-of-domain benefits of incorporating feature
feedback in selected domains in NLP (sentiment
analysis and NLI). We seek to address two pri-
mary research questions: (i) do models that rely
on feature feedback generalize better out of do-
main compared to classify-only models (i.e., mod-
els trained without feature feedback)? and (ii) do
we need to solicit feature feedback for an entire
dataset or can significant benefits be realized with a
modest fraction of examples annotated? Our exper-
iments on sentiment analysis (Zaidan et al., 2007)
and NLI (DeYoung et al., 2020) use both linear,
BERT (Devlin et al., 2019), and ELECTRA (Clark
et al., 2020) models, using two feature feedback
techniques (Pruthi et al., 2020; Jain et al., 2020).

We limit our experiments to sentiment analysis
and NLI only, although other tasks such as hate
speech and propaganda detection might appear to
be natural candidates to include in our study as
well. Hate Speech detection is an inherently sub-
jective task. For example, (Waseem, 2016) docu-
mented the disagreement between labels collected
from the crowd and those annotated by experts.
Similarly, (Ross et al., 2017b) documented that an-
notating hate speech itself is a hard task leading
to low inter-rater agreement within the crowd as
well. Thus, even though several hate speech clas-
sification datasets exist, in our view, they are not
suitable for the research questions we ask in the
paper—what might be labeled as hate by one an-
notator may not be labeled hate in another dataset
by another annotator, making it difficult to attribute
the impact on performance to generalization ability
or some other factors (such as noisy labeling, or
choice of labeling instructions, etc.). As for propa-

ganda detection, while a dataset with high-quality
labels and feature feedback annotations exists, the
lack of additional datasets restricts our ability to
train and evaluate the resulting models on a battery
of out-of-domain datasets.

We find that sentiment analysis models fine-
tuned with feature feedback on IMDb data see
no improvement in in-domain accuracy. However,
out-of-domain, sentiment analysis models bene-
fit significantly from feature feedback. For exam-
ple, ELECTRA and BERT models both see gains
of ≈ 6% on both Amazon (Ni et al., 2019) and
Yelp reviews (Kaushik et al., 2021) even when fea-
ture feedback is available for just 25% of instances.
However, on NLI, we find that both iid and out-of-
domain performance are comparable with or with-
out feature feedback. We further find that while
for sentiment analysis, rationales constitute only
≈ 21% of all unique tokens in the training set, for
NLI they constitute ≈ 80%, potentially helping to
explain why feature feedback is less useful there.

2 Methods and Datasets

We focus on two techniques (classify-and-
extract (Pruthi et al., 2020) and extract-then-
classify (Jain et al., 2020)), two pretrained mod-
els, and one (in-domain) dataset each for sentiment
analysis and NLI that contain feature feedback. For
both techniques, feature feedback annotations pro-
vide supervision to the extractive component. The
classify-and-extract model jointly predicts the (cat-
egorical) label and performs sequence tagging pre-
dict rationales. The classification head and a linear
chain CRF (Lafferty et al., 2001) share an encoder,
initialized with pretrained weights.

The extract-then-classify method (Jain et al.,
2020) first trains a classifier (support) on complete
examples to predict the label, using its outputs
to extract continuous feature importance scores.
These scores are then binarized using a second
classifier (extractor) which is trained on the fea-
ture importance scores from support and makes
token-level binary predictions to identify rationale
tokens in the input. A binary cross-entropy term in
the objective of the extractor is used to maximise
agreement of the extracted tokens with human ra-
tionales. Finally, a third classifier (predictor) is
trained to predict the target (sentiment or entail-
ment) label based only on these extracted tokens.

For both approaches, we experiment with two
pretrained models (BERT and ELECTRA). We
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Test set Classify-only Pruthi et al. Jain et al.

BERT

In-domain 85.90.7 89.92.3 90.40.3

CRD 89.30.7 91.60.7 87.50.8
SST2 77.64.1 79.33.6 75.61.2
Amazon 78.14.9 83.53.1 92.31.2

Semeval 70.65.7 73.22.6 68.62.2
Yelp 86.81.7 85.71.6 91.60.1

ELECTRA

In-domain 93.20.3 91.81.4 93.10.3
CRD 91.60.4 93.70.9 91.50.7
SST2 73.21.3 74.01.2 77.21.4

Amazon 72.82.0 75.52.1 84.21.6

Semeval 67.54.5 72.51.8 66.73.0
Yelp 79.03.6 84.61.8 94.70.2

Table 1: Mean and standard deviation (in subscript) of
accuracy scores of classify-only models, and models
proposed by Pruthi et al. (2020) and Jain et al. (2020),
fined-tuned for sentiment analysis. Significant results
(p < 0.05) compared to the classify-only models are
highlighted in bold.

limit the maximum sequence length to 512 tokens
and train all models for 10 epochs using AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 2e − 5 and a batch size of 8 and
early stopping based on mean of classification and
extraction F1 scores on the validation set. We repli-
cate all experiments on 5 seeds and report mean
performance along with standard deviation.

To see whether results are consistent across ar-
chitectures, we also use a linear SVM (Zaidan et al.,
2007) with a modified objective function on top of
the ordinary soft-margin SVM, i.e.,

1

2
||w||2 + C(

∑

i

δi) + Ccontrast(
∑

i,j

ξij)

subject to the constraints w⃗ · x⃗ij · yi ≥ 1− ξij ∀i, j
where x⃗ij :=

x⃗i−v⃗ij
µ are psuedoexamples, created

by subtracting contrast-examples (v⃗ij), input sen-
tence void of randomly chosen rationales, from the
original input (x⃗i). We use term-frequency em-
beddings with unigrams appearing in at least 10
reviews and set C = Ccontrast = µ = 1. For each
training example, we generate 5 psuedoexamples.

Datasets For sentiment analysis, we use an
IMDb movie reviews dataset (Zaidan et al., 2007).
Reviews in this dataset are labeled as having either
positive or negative sentiment. Zaidan et al. (2007)
also tasked annotators to mark spans in each re-
view that were indicative of the overall sentiment.
We use these spans as feature feedback. Overall,

Test set Classify-only Pruthi et al. Jain et al.

BERT

In-domain 88.72.0 89.80.8 77.70.1
RP 62.93.9 66.60.6 57.90.1
RH 76.93.5 80.51.9 70.70.2
MNLI-M 69.72.6 68.11.9 69.80.1
MNLI-MM 71.52.7 69.22.3 66.20.1

ELECTRA

In-domain 96.00.2 95.00.3 85.40.04
RP 80.81.0 78.00.6 72.20.1
RH 88.91.0 88.70.9 79.70.1
MNLI-M 86.50.9 81.92.1 77.10.1
MNLI-MM 86.60.8 82.12.0 75.70.1

Table 2: Mean and standard deviation (in subscript) of
F1 scores of models fine-tuned for NLI with an increas-
ing number of examples with feature feedback. Signif-
icant results (p < 0.05) compared to the classify-only
models are highlighted in bold.

the dataset has 1800 reviews in the training set
(with feature feedback) and 200 in test (without
feature feedback). Since the test set does not in-
clude ground truth labels for evidence extraction,
we construct a test set out of the 1800 examples
in the original training set. This leaves 1200 re-
views for a new training set, 300 for validation,
and 300 for test. For NLI, we use a subsample of
the E-SNLI dataset (DeYoung et al., 2020) used in
Kaushik et al. (2021). In this dataset, there are 6318
premise-hypothesis pairs, equally divided across
entailment and contradiction categories.

We evaluate on CRD (Kaushik et al., 2020),
SST-2 (Socher et al., 2013), Amazon reviews
(Ni et al., 2019), Tweets (Rosenthal et al., 2017)
and Yelp reviews (Kaushik et al., 2021) for senti-
ment analysis, and Revised Premise (RP), Revised
Hypothesis (RH) (Kaushik et al., 2020), MNLI
matched (MNLI-M) and mismatched (MNLI-MM)
(Williams et al., 2018) for NLI.

3 Experiments

We first fine-tune BERT and ELECTRA on the
annotated IMDb dataset (Zaidan et al., 2007) fol-
lowing both classify-and-extract and extract-then-
classify approaches. We evaluate resulting models
on both iid test set as well as various naturally
occurring out-of-domain datasets for sentiment
analysis and compare resulting performance with
classify-only models (Table 1). We find that both
approaches lead to significant gains (when tested
with t-test with p < 0.05) in out-of-domain perfor-
mance compared to the classify-only method. For
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Fraction of Training Data with Rationales
Evaluation set No rationales 25% 50% 75% 100%

BERT

In-domain 85.90.7 87.71.1 88.12.4 90.21.5 89.92.3
CRD 89.30.7 91.70.6 92.30.9 92.30.3 91.60.7
SST2 77.64.1 81.20.6 81.30.7 81.80.6 79.33.6
Amazon 78.14.9 85.31.2 84.61.7 84.00.5 83.53.1
Semeval 70.65.7 77.81.0 75.50.8 74.90.8 73.22.6
Yelp 86.81.7 86.91.1 85.81.5 85.40.7 85.71.6

ELECTRA

In-domain 93.20.3 92.40.9 92.81.2 93.71.9 91.81.4
CRD 91.60.4 92.10.8 93.00.6 93.10.3 93.70.9
SST2 73.21.3 73.11.8 72.31.6 72.31.1 74.01.2
Amazon 72.82.0 79.01.8 75.71.2 76.61.8 75.52.1
Semeval 67.54.5 70.51.5 66.21.5 67.12.2 72.51.8
Yelp 79.03.6 84.51.1 84.21.7 84.31.2 84.61.8

Table 3: Mean and standard deviation (in subscript) of accuracy scores of models fine-tuned for sentiment analysis
using the method proposed by Pruthi et al. (2020) with different base models (BERT and ELECTRA) and increasing
proportion of examples with feature feedback. Results highlighted in bold are significant difference with p < 0.05.

Fraction of Training Data with Rationales
Evaluation set No rationales 25% 50% 75% 100%

BERT

In-domain 88.72.0 89.60.4 89.90.4 89.70.4 89.80.8
RP 62.93.9 67.62.0 67.41.2 68.60.6 66.60.6
RH 76.93.5 80.41.1 81.71.6 81.40.7 80.51.9
MNLI-M 69.72.6 67.63.4 68.14.6 68.82.0 68.11.9
MNLI-MM 71.52.7 68.84.5 69.25.9 69.82.7 69.22.3

ELECTRA

In-domain 96.00.2 95.10.3 95.00.3 95.00.3 95.00.3
RP 80.81.0 78.21.3 79.21.1 77.21.3 78.00.6
RH 88.91.0 88.01.2 88.40.3 87.90.4 88.70.9
MNLI-M 86.50.9 82.02.8 82.41.6 82.30.9 81.92.1
MNLI-MM 86.60.8 82.62.8 83.51.4 82.60.8 82.12.0

Table 4: Mean and standard deviation (in subscript) of F-1 scores of models fine-tuned for NLI using the method
proposed by Pruthi et al. (2020) with different base models (BERT and ELECTRA) and increasing proportion of
examples with feature feedback. Results highlighted in bold are significant difference with p < 0.05.

instance, ELECTRA fine-tuned using the extract-
then-classify framework leads to ≈ 15.7% gain in
accuracy when evaluated on Yelp. For NLI, how-
ever, training with rationales doesn’t lead to any
visible performance gain (Table 2).

As Pruthi et al. (2020) demonstrate better perfor-
mance on evidence extraction for sentiment anal-
ysis compared to Jain et al. (2020), we use their

method for additional analysis. For both sentiment
analysis and NLI, we fine-tune models with varying
proportion of samples with rationales and report
iid and out-of-domain performance (Tables 3 and
4). Training with no feature feedback recovers the
classify-only baseline.

On sentiment analysis, we find feature feedback
to improve BERT’s iid performance but find ELEC-
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Test set Classify-only Zaidan et al.

In-domain 75.23.5 79.13.4
CRD 48.32.0 58.22.4
SST-2 49.70.3 65.61.5
Amazon 50.90.3 68.73.1
Semeval 49.80.1 58.01.5
Yelp 55.72.8 74.82.7

Table 5: Mean and standard deviation (in subscript)
of accuracy scores of classify-only SVM model versus
SVM trained with feature feedback for sentiment anal-
ysis using Zaidan et al. (2007)’s method. Significant
results (p < 0.05) compared to the classify-only models
are highlighted in bold.

Task Unigram Bigram

Sentiment Analysis 21.37 11.20
NLI 79.54 35.49

Table 6: Percentage of unigram and bigram vocabularies
that are marked as feature feedback at least once.

Entailment Contradiction

Dall 0.25 0.16
Drationale 0.30 0.09

Table 7: Mean Jaccard index of premise-hypothesis
word overlap (Dall) and rationale overlap (Drationale) in
the training set.

TRA’s performance comparable with and without
feature feedback. Feature feedback leads to an
increase in performance out-of-domain on both
BERT and ELECTRA. For instance, with feature
feedback, ELECTRA’s classification accuracy in-
creases from 91.6% to 93.7% on CRD and 79% to
84.6% on Yelp. Similar trends are also observed
when we fine-tune BERT with feature feedback. In-
terestingly, when evaluated on the SemEval dataset
(Tweets), we observe that BERT fine-tuned with
feature feedback on all training examples achieves
comparable performance to fine-tuning without
feature feedback. However, fine-tuning with fea-
ture feedback on just 25% of training examples
leads to a significant improvement in classifica-
tion accuracy. We speculate that this might be
a result of implicit hyperparameter tuning when
combining prediction and extraction losses, and a
more extensive hyperparameter search could pro-
vide comparable (if not better) gains with 100%

Dataset % Overlap Label Agreement

Unigram

CRD 60.3 51.3
SST2 64.6 66.5
Amazon 45.6 47.6
Semeval 30.9 60.3
Yelp 78.3 65.1

Bigram

CRD 28.2 51.9
SST2 28.5 64.5
Amazon 19.6 49.9
Semeval 10.2 58.5
Yelp 46.8 65.3

Table 8: Rationale vocabulary overlap and label agree-
ment between in-sample and OOD datasets.

data. Similarly, SVM trained with feature feedback
(Zaidan et al., 2007) consistently outperformed
SVM trained without feature feedback, when eval-
uated out-of-domain despite obtaining similar ac-
curacy in-domain (Table 5 and Appendix Table
11). For instance, SVM trained on just label infor-
mation achieved 75.2% ± 3.5% accuracy on the
in-domain test set, which was comparable to the ac-
curacy of 79.1%± 3.4% achieved by SVM trained
with feature feedback. But the classifier trained
with feature feedback led to ≈ 19% and ≈ 18%
improvement in classification accuracy on Yelp re-
views and Amazon reviews, respectively, compared
to the classifier trained without feature feedback.

For NLI, it appears that feature feedback pro-
vides no added benefit compared to a classify-only
BERT model, whereas, ELECTRA’s iid perfor-
mance decreases with feature feedback. Further-
more, models fine-tuned with feature feedback gen-
erally perform no better than classify-only models
when trained with varying proportions of rationales
(Table 4) while classify-only models perform sig-
nificantly better than the models trained with ra-
tionales when trained with varying dataset size.
(Appendix Table 2). These results are in line with
observations in prior work on counterfactually aug-
mented data (Huang et al., 2020).

4 Discussion and Analysis

To further study the different trends on sentiment
analysis versus NLI, we analyze feature feedback
in both datasets. We find that 21.37% of tokens in
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the vocabulary of Zaidan et al. (2007) are marked
as rationales in at least one movie review. Inter-
estingly, this fraction is 79.54% for NLI (Table 6).
While for movie reviews, certain words or phrases
might generally denote positive or negative senti-
ment (e.g., “amazing movie”), for NLI tasks, it is
not clear that any individual phrase should suggest
entailment or contradiction generally. A word or a
phrase might be marked as indicating entailment in
one NLI example but as a contradiction in another.
This may explain why training with rationales lead
to no improvement in the NLI task.

We further construct vocabulary of unigrams and
bigrams from phrases marked as feature feedback
in examples from the sentiment analysis training
set (V rationale). We compute the fraction of uni-
grams (and bigrams) that occur in this vocabulary
and also occur in each out-of-domain dataset. We
find that a large fraction of unigrams from V rationale
also exist in CRD (≈ 60%), SST2 (≈ 64%), and
Yelp (≈ 78%) data. (movie and restaurant reviews).
However, this overlap is much smaller for SemEval
(≈ 30%) and Amazon (≈ 45%) , which consist
of tweets and product reviews, respectively. For
these overlapping unigrams, we observe a relatively
large percentage (50–65%) preserve their associ-
ated majority training set label in the out-of-domain
datasets. Similar trends hold for bigrams, though
fewer V rationale bigrams are present out-of-domain
(Table 8). A model that pays more attention to
these spans might perform better out of domain.

For each pair in the NLI training set, we com-
pute Jaccard similarity between the premise and
hypothesis sentence (Table 7). We compute the
mean of these example-level similarities over the
entire dataset, finding that it is common for exam-
ples in our training set to have overlap between
premise and hypothesis sentences, regardless of the
label. However, when we compute mean Jaccard
similarity between premise and hypothesis ratio-
nales, we find higher overlap for entailment exam-
ples versus contradiction. Thus, models trained
with feature feedback might learn to identify word
overlap as predictive of entailment even when the
true label is contradiction. While this may not im-
prove an NLI model’s performance, it could be
useful in tasks like Question Answering, where an-
swers often lie in sentences that have high word
overlap with the question (Lamm et al., 2020; Ma-
jumder et al., 2021). Interestingly, our results on
NLI are in conflict with recent findings where mod-

els trained with rationales showed significant im-
provement over classify-only models in both iid
and out-of-domain (MNLI-M and MNLI-MM) set-
tings (Stacey et al., 2021). This could be due to
the different modeling strategy employed in their
work, as they use rationales to guide the training of
the classifier’s attention module. Investigating this
difference is left for future work.

5 Conclusion

In this paper, we investigate the practical benefits
of using feature feedback in two well-known tasks
in NLP: sentiment analysis and natural language in-
ference. Using two techniques that were primarily
introduced for boosting interpretability as the basis
of our experiments, we find they also have an un-
expected advantage in boosting model robustness.
Our experiments and analyses offer insight into
how these interpretability methods may encourage
generalization in out of domain settings.

To answer our first research question, we show
that models trained with feature feedback can lead
to performance improvement in the sentiment anal-
ysis task but not in NLI. To answer our second
question, we find that as little as 25% of the dataset
can achieve the best performance in the out-of-
domain setting in sentiment analysis, whereas no
clear trends are visible in NLI. Our analysis reveals
that a smaller percentage of vocabulary is selected
as rationales in sentiment analysis compared to
NLI, indicating rationale tokens in the sentiment
analysis task contain more distinctive information
than NLI. Rationale tokens are more likely to ex-
ist among entailment samples than contradiction,
which may lead the model to correlate the existence
of rationales with entailment.
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Task Examples

Sentiment Analysis (Positive) . . . characters are portrayed with such saddening realism that you can’t help but love them
, as pathetic as they really are . although levy stands out , guest , willard , o’hara , and
posey are all wonderful and definitely should be commended for their performances ! if
there was an oscar for an ensemble performance , this is the group that should sweep it . . .

Sentiment Analysis (Negative) . . . then , as it’s been threatening all along , the film explodes into violence . and just when
you think it’s finally over , schumacher tags on a ridiculous self-righteous finale that drags
the whole unpleasant experience down even further . trust me . there are better ways to
waste two hours of your life . . .

NLI (Entailment) P: a white dog drinks water on a mountainside.
H: there is a dog drinking water right now.

NLI (Contradiction) P: a dog leaping off a boat
H: dogs drinking water from pond

Table 9: Examples of documents (and true label) with feature feedback (highlighted in yellow).

Task Examples

Sentiment Analysis (Positive, Correct) everyone should adapt a tom robbins book for screen . while the movie is fine
and the performances are good , the dialogue , which works well reading it , is
beautiful when spoken .

Sentiment Analysis (Positive, Wrong) ... very uncaptivating yet one gets the feeling that their is some serious exploitation
going on here ...

Sentiment Analysis (Negative, Correct) ... using quicken is a frustrating experience each time i fire it up ...

Sentiment Analysis (Negative, Wrong) ... with many cringe-worthy ‘surprises’, which happen around 10 minutes after
you see exactly what’s going to happen ...

NLI (Entailment, Correct) P: a woman cook in an apron is smiling at the camera with two other cooks in the
background .
H: a woman looking at the camera .

NLI (Entailment, Wrong) P: a woman in a brown dress looking at papers in front of a class .
H: a woman looking at papers in front of a class is not wearing a blue dress .

NLI (Contradiction, Correct) P: the woman in the white dress looks very uncomfortable in the busy surroundings
H: the dress is black .

NLI (Contradiction, Wrong) P: a man , wearing a cap , is pushing a cart , on which large display boards are
kept , on a road .
H: the person is pulling large display boards on a cart .

Table 10: Examples (from out-of-domain evaluation sets; with true label and model prediction) of explanations
highlighted by feature feedback models (highlighted in yellow).

354



Dataset size
Evaluation Set 300 600 900 1200

In-domain 77.03.9/77.62.2 78.53.2/82.32.0 80.51.7/84.91.6 75.23.5/79.13.4
CRD 48.02.9/56.41.3 48.32.5/58.02.7 48.42.3/58.71.8 48.32.0/58.22.4
SST-2 52.21.6/62.91.0 50.93.0/64.00.9 51.33.1/64.90.9 49.70.3/65.61.5
Amazon 51.81.5/65.91.9 52.42.0/66.51.2 52.02.9/69.90.4 50.90.3/68.73.1
Semeval 50.31.4/56.71.1 50.31.2/56.40.8 50.10.5/58.81.3 49.80.1/58.01.5
Yelp 60.24.0/72.02.4 57.37.1/74.51.5 61.24.6/74.82.5 55.72.8/74.82.7

Table 11: Mean and standard deviation (in subscript) of accuracy scores of classify-only SVM models (left)
presented alongside accuracy scores of models trained with feature feedback (right), with increasing number of
training-samples for sentiment analysis using the method proposed by Zaidan et al. (2007). Results highlighted in
bold show statistically significant difference with p < 0.05.

Dataset size
Evaluation Set 1500 3000 4500 6318

BERT

In-domain 85.96.0/84.52.0 87.90.4/87.71.0 89.10.4/89.20.2 88.72.0/89.80.8
RP 61.80.9/62.81.8 63.31.6/64.21.8 63.71.8/66.81.4 62.93.9/66.41.7
RH 74.51.6/71.83.4 77.01.4/77.32.1 78.31.1/80.41.8 76.93.5/80.51.9
MNLI-M 63.73.1/60.83.2 69.21.8/66.32.2 70.20.9/67.53.1 69.72.6/68.11.9
MNLI-MM 64.84.3/61.84.3 71.32.3/67.52.8 72.11.2/68.94.2 73.11.9/71.41.1

ELECTRA

In-domain 94.60.2/92.70.5 95.10.4/94.20.3 95.70.2/94.40.2 96.00.2/95.10.3
RP 78.41.2/75.22.5 78.51.8/77.20.9 81.20.6/76.21.2 80.81.0/78.00.6
RH 87.70.7/85.21.4 88.11.3/87.30.6 89.40.6/87.11.0 88.91.0/88.70.9
MNLI-M 82.82.2/77.01.8 85.41.8/78.91.7 86.01.6/80.42.1 86.50.9/81.92.1
MNLI-MM 83.62.5/77.92.1 86.22.1/79.91.9 86.11.8/80.82.2 86.60.8/82.12.0

Table 12: Mean and standard deviation (in subscript) of F-1 scores of classify-only models/models trained with
feature feedback, with increasing number of training-samples for NLI using the method proposed by Pruthi et al.
(2020). Results highlighted in bold are statistically significant difference with p < 0.05.
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Abstract
Some recent works observed the instability of
post-hoc explanations when input side pertur-
bations are applied to the model. This raises the
interest and concern in the stability of post-hoc
explanations. However, the remaining ques-
tion is: is the instability caused by the neu-
ral network model or the post-hoc explana-
tion method? This work explores the potential
source that leads to unstable post-hoc expla-
nations. To separate the influence from the
model, we propose a simple output probability
perturbation method. Compared to prior input
side perturbation methods, the output proba-
bility perturbation method can circumvent the
neural model’s potential effect on the expla-
nations and allow the analysis on the explana-
tion method. We evaluate the proposed method
with three widely-used post-hoc explanation
methods (LIME (Ribeiro et al., 2016), Kernel
Shapley (Lundberg and Lee, 2017a), and Sam-
ple Shapley (Strumbelj and Kononenko, 2010)).
The results demonstrate that the post-hoc meth-
ods are stable, barely producing discrepant ex-
planations under output probability perturba-
tions. The observation suggests that neural
network models may be the primary source
of fragile explanations.

1 Introduction

Despite the remarkable performance of neural net-
work models in natural language processing (NLP),
the lack of interpretability has raised much con-
cern in terms of their reliability and trustworthiness
(Zhang et al., 2021; Doshi-Velez and Kim, 2017;
Hooker et al., 2019; Jiang et al., 2018). A common
way to improve a model’s interpretability is to gen-
erate explanations for its predictions from the post-
hoc manner. We call these explanations post-hoc
explanations (Doshi-Velez and Kim, 2017; Mol-
nar, 2018). Post-hoc explanations demonstrate the
relationship between the input text and the model
prediction by identifying feature importance scores
(Du et al., 2019). In general, a feature with a higher

importance score is more important in contributing
to the prediction result. Based on feature impor-
tance scores, we can select top important features
as the model explanation.

However, some recent works (Ghorbani et al.,
2019; Subramanya et al., 2019; Zhang et al., 2020;
Ivankay et al., 2022; Sinha et al., 2021) have ob-
served explanation discrepancy when input-side
perturbation is applied to the model. One question
to this observation is what makes the explanation
discrepant? Explanations generated by a post-hoc
method (Ribeiro et al., 2016; Lundberg and Lee,
2017a; Friedman, 2001) depend on a model’s pre-
diction probabilities. If perturbations at the input
side cause model prediction probabilities to change,
post-hoc explanations may change accordingly.

In Figure 1 (a), we demonstrate a simple exam-
ple of the process that generates explanations using
a post-hoc method. The explanation is generated
depending on the probability P . In Figure 1 (b),
we demonstrate an example of the same process
with perturbation at the input side. The explanation
is generated depending on the probability P̄ . The
output probabilities in the two examples are not the
same, i.e. P ̸= P̄ . In Figure 1 (a) and (b), it is
noticeable that the feature importance score of the
same feature has changed. For instance, the fea-
ture “love” has different importance scores in the
two examples. Since feature importance scores are
inconsistent, the explanations in the two examples
are different. We call this explanation discrepancy,
which will be introduced more in subsection 2.2.

However, the prediction label in Figure 1 (a),
ŷ, and the prediction label in Figure 1 (b), ȳ, are
equal, which is ŷ = ȳ = POSITIVE. This indicates
that input side perturbations may not flip the model
prediction label, while can make output probabil-
ities change, hence further leading to explanation
discrepancy. We argue that, under input side pertur-
bations, it is difficult to identify the source causing
the explanation discrepancy. One intuitive justifica-
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Figure 1: The pipeline of a simple example that post-hoc explanation methods generate explanations with (a) no
perturbation applied. (b) perturbation applied at the input side. (c) perturbation applied at the output probabilities.

tion is that the perturbation at the input side has to
pass through both the model and the post-hoc ex-
planation method. Both the model and the post-hoc
explanation method are possible factors that result
in unstable explanations. For example, the model’s
prediction behavior may change under input side
perturbations, that is focusing on different features
to make predictions, hence resulting in the expla-
nation discrepancy (Chen and Ji, 2020, 2022). Or
the explanation method itself may be vulnerable
to input perturbations, producing discrepant expla-
nations. The instability may not be told from the
prediction results, but reflected in the explanations,
i.e., explanation discrepancy

In this paper, we propose a simple strategy to
demonstrate the potential source that causes expla-
nation discrepancy. To circumvent the potential
influence of the model on the explanations, we
design an output probability perturbation method
by slightly modifying the prediction probabilities,
as shown in Figure 1 (c). In this work, we focus
on the model-agnostic post-hoc methods, LIME
(Ribeiro et al., 2016), Kernel Shapley (Lundberg
and Lee, 2017a), and Sample Shapley (Strumbelj
and Kononenko, 2010), that explain the black-box
models. If a similar explanation discrepancy can
be observed when only output probability pertur-
bation is applied, it would suggest that post-hoc
explanation methods may be unstable because the
potential influence from the black-box model has
been blocked. Otherwise, we should not blame
post-hoc explanation methods as the source of vul-

nerability in fragile explanations (Sinha et al., 2021;
Subramanya et al., 2019).

2 Method

2.1 Background

For a text classification task, x denotes the input
text consisting of N words, x = [x(1), · · · ,x(N)],
with each component x(n) ∈ Rd representing the
n-th word embedding. We define a black-box clas-
sifier as f(·) and its output probability of a given
x on the corresponding label k is P (y = k | x) =
fk(x), where k ∈ {1, . . . , C} and C is the total
number of label classes.

To explain a black-box model’s prediction ŷ =
f(x), a class of post-hoc explanation methods ap-
proximate the model locally via additive feature
attributions (Lundberg and Lee, 2017b; Ribeiro
et al., 2016; Shrikumar et al., 2017). Specifically,
these algorithms demonstrate the relationship be-
tween the input text and the prediction result by
evaluating the contribution of each input feature to
the model prediction result. These methods would
assign a feature importance score to each input fea-
ture to represent its contribution to the prediction.
We use LIME (Ribeiro et al., 2016) as an example.

Example: Post-hoc Explanation Method, LIME.
It first sub-samples words from the input, x, to
form a list of pseudo examples {zL

j=1}, and then
the contributions of input features are estimated
by a linear approximation fŷ(r) ≈ gŷ(r

′), where
r ∈ {x, zL

j=1}, gŷ(r) = wT
ŷ r

′, and r′ is a simple
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representation of r, e.g. bag-of-words represen-
tation. The weights {w(n)

ŷ } represent importance
scores of input features {x(n)}. Let I(x, ŷ, P ) de-
note the explanation for the model prediction on
x, where ŷ is the predicted label and P represents
output probabilities.

2.2 Explanation Discrepancy

As mentioned in the previous section, the expla-
nation discrepancy may happen when input pertur-
bations are applied to the model. Let I(x, ŷ, P )
and I(x̄, ȳ, P̄ ) denote the explanation to the model
prediction based on the original input x and the
perturbed input x̄ respectively, where x̄ = x+ ε,
and ε is the perturbation at input. Similarly, we
define I(x, ỹ, P̃ ) as the explanation to the pre-
diction based on the perturbed output probability
P̃ = P + ε′, where ε′ is the perturbation on the
output probability. Note that when ε and ε′ are
small, the model prediction stay the same, which is
ŷ = ȳ = ỹ. The explanation discrepancy between
I(x̄, ȳ, P̄ ) and I(x, ŷ, P ) is denoted as δinput, and
the discrepancy between I(x, ỹ, P̃ ) and I(x, ŷ, P )
is denoted as δoutput.

We use Figure 1 in section 1 as an example to
illustrate explanation discrepancy in details. The
explanation, I(x, ŷ, P ), in Figure 1 (a) is “Love",
“Classical", “I" and “Music", in the descending
order of importance scores. The explanation,
I(x̄, ȳ, P̄ ), in Figure 1 (b) is “Classical", “Music",
“Love", and “I", in the descending order. The expla-
nation, I(x, ŷ, P̃ ), in Figure 1 (c) is “Love", “Clas-
sical", “I" and “Music", in the descending order.
Generally, after perturbation, explanation inconsis-
tency reflects in two aspects. The first aspect is
whether the overall ranking of the features based
on their importance scores in the explanation re-
mains the same. For example, “Love" ranks the
first in the explanation in Figure 1 (a), while drops
to the third in the explanation in Figure 1 (b). The
discrepancy is denoted as δinput. The second as-
pect is whether the top K important features in the
explanation are consistent. For example, if K = 2,
the first two important words in Figure 1 (a) are
“Love" and “Classical", while those in Figure 1 (b)
are “Classical" and “Music". The difference can
also be denoted as δinput mentioned above. Simi-
larly, the same aspect of explanation discrepancy
in Figure 1 (a) and Figure 1 (c) can be denoted as
δoutput.

2.3 Output Probability Perturbation Method
As mentioned in section 1, the limitation of input
perturbation methods is the difficulty in identifying
the primary source that causes explanation discrep-
ancy. Motivated by this, we propose the output
probability perturbation method to circumvent the
influence of black-box models.

Specifically, given an example x, we add a
small perturbation to the model output probabil-
ities {P (y = k | x) + ε′y=k}Ck=1. To guarantee
the modified {P (y = k | x) + ε′y=k}Ck=1 are still
legitimate probabilities, we further normalize them
as

P̃ (y = k | x) =
P (y = k | x) + ε′y=k∑C

i=1{P (y = i | x) + ε′y=i}
(1)

The explanation in the case with output probability
perturbation is computed based on the output prob-
ability P̃ (y = ŷ | x). The proposed method well
suits the motivation of investigating the source that
causes explanation discrepancy. The main reason
is that, unlike perturbation applied at the input side,
the proposed method avoids the potential effects of
the model’s vulnerability on post-hoc explanations.
We use LIME (Ribeiro et al., 2016) as an example
to demonstrate the proposed method.

Example: Output probability perturbation in
LIME algorithm. As denoted in subsection 2.1,
r′ is the bag-of-words representation of the origi-
nal input text, x. A simplified version 1 of LIME
algorithm is equivalent to finding a solution of the
following linear equation:

wT
ŷ r

′ = p̃ŷ (2)

where p̃ŷ = [P̃ (y = ŷ | x), P̃ (y = ŷ |
z1), . . . , P̃ (y = ŷ | zL)]T are the perturbed proba-
bilities on the label ŷ, and wT

ŷ is the weight vector,
where each element measures the contribution of
an input word to the prediction ŷ. A typical ex-
planation from LIME consists of top important
words according to wŷ. Essentially, the proposed
output perturbation is similar to the perturbation
analysis in linear systems (Golub and Van Loan,
2013), which aims to identify the stability of these
systems. Despite the simple formulation in Equa-
tion 2, a similar linear system can also be used
to explain the Shapley-based explanation methods

1Without the example weight computed from a kernel func-
tion and the regularization term of explanation complexity.
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(e.g., Sample Shapley (Strumbelj and Kononenko,
2010)).

3 Experiment

3.1 Experiment Setup

Datasets. We adopt four text classification
datasets: IMDB movie reviews dataset (Maas et al.,
2011, IMDB), AG’s news dataset (Zhang et al.,
2015, AG’s News), Stanford Sentiment Treebank
dataset with binary labels (Socher et al., 2013,
SST-2), and 6-class questions classification dataset
TREC (Li and Roth, 2002, TREC). The summary
statistics of datasets are shown in Table 1.

Models. We apply three neural network models,
Convolutional Neural Network (Kim, 2014, CNN),
Long Short Term Memory Network (Hochreiter
and Schmidhuber, 1997, LSTM), and Bidirectional
Encoder Representations from Transformers (De-
vlin et al., 2018, BERT).

The principle of CNN model is based on infor-
mation processing in the visual system of humans.
The core characteristics are that it can efficiently
decrease the dimension of input, and it can effi-
ciently retain important features of the input (Kim,
2014).

LSTM model is one advanced RNN model. Un-
like the architecture of a standard feedforward deep
learning neural network, it has feedback connec-
tions in the architecture, which helps to process se-
quential data (e.g., language and speech) (Hochre-
iter and Schmidhuber, 1997, LSTM).

BERT model is a Language Model (LM). In the
NLP research, the main tasks of the BERT model
are (1) Sentence pairs classification tasks and (2)
Single sentence classification tasks (Devlin et al.,
2018). In this work, we focus on the second task
while we apply the BERT model in the experiment.

The prediction performance of the three models
on the four datasets are recorded in Table 2.

Post-hoc Explanation Methods. We adopt three
post-hoc explanation methods, Local Interpretable
Model-Agnostic Explanations (Ribeiro et al., 2016,
LIME), Kernel Shapley (Lundberg and Lee, 2017a),
and Sample Shapley (Strumbelj and Kononenko,
2010). LIME, Kernel Shapley, and Sample Shapley
are additive feature attribution methods. The addi-
tive feature method provides a feature importance
score on every feature for each text input based on
the model prediction.

LIME and Kernel Shapley are two post-hoc
methods adopting a similar strategy. The first
step is to generate a set of pseudo examples and
their corresponding labels based on the black-box
model’s predictions on them (Ribeiro et al., 2016;
Lundberg and Lee, 2017a). The second step is
to train an explainable machine learning model
(eg: linear regression, LASSO) with the pseudo
examples (Ribeiro et al., 2016; Lundberg and Lee,
2017a). The difference between the LIME algo-
rithm and the Kernel Shapley algorithm is in the
way to calculate the weight of pseudo examples in
the explainable model (Molnar, 2018). LIME al-
gorithm relies on the distance between the original
example and the pseudo example (Ribeiro et al.,
2016). Kernel Shapley algorithm relies on the Shap-
ley value estimation (Lundberg and Lee, 2017a).

Sample Shapley is a post-hoc method based on
Shapley value (Shapley, 1953a), which stems from
coalitional game theory. Shapley value provides
an axiomatic solution to attribute the contribution
of each word in a fair way. However, the expo-
nential complexity of computing Shapley value
is intractable. Sampling Shapley (Strumbelj and
Kononenko, 2010) provides a solvable approxima-
tion to Shapley value via sampling.

Evaluation Metrics. In the experiment, we apply
two evaluation metrics, Kendall’s Tau order rank
correlation score, and the Top-K important words
overlap score (Chen et al., 2019; Kendall, 1938;
Ghorbani et al., 2019) to evaluate the discrepancy
between explanations (i.e., δinput and δoutput).

As illustrated in subsection 2.2, explanation dis-
crepancy can be evaluated in in two aspects. We
use Kendall’s Tau order rank correlation score to
quantify the change of the overall ranking of feature
importance scores in explanations. For example, in
Figure 1 (a) and (b), we can apply Kendall’s Tau
order rank correlation score to identify how close
the overall ranking of features in the two examples.
If the score is close to 1, then the two explanations
are similar. If the score is close to −1, then the two
explanations differ significantly. We use Top-K
important words overlap score to evaluate the dis-
crepancy on the top K features in the explanations.
This metric computes the overlap ratio among the
top K features. In this work, we set K = 5.
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Dataset C L #train #dev #test vocab threshold length
IMDB 2 268 20K 5K 25K 29571 5 250
SST-2 2 19 6920 872 1821 16190 0 50
AG’s News 4 32 114K 6K 7.6K 21838 5 50
TREC 6 10 5000 452 500 8026 0 15

Table 1: Summary statistics for the datasets where C is the number of classes, L is the average sentence length, #
counts the number of examples in train/dev/test sets, vocab is the vocab size, and the threshold is the low-frequency
threshold, and length is mini-batch sentence length.

Dataset CNN LSTM BERT
IMDB 86.30 86.60 90.80
SST-2 82.48 80.83 91.82
AG’s News 89.90 88.90 95.10
TREC 92.41 90.80 97.00

Table 2: Prediction accuracy(%) of the three neural
network models (CNN, LSTM and BERT) on the four
datasets (IMDB, SST-2, AG’s News and TREC).

3.2 Explanation Discrepancy Comparison
Experiment

To explore the primary source causing fragile ex-
planations, we conduct a comparison experiment to
evaluate and compare between explanation discrep-
ancy δinput, and explanation discrepancy δoutput.
The definition of δinput, and δoutput are intro-
duced in subsection 2.2. δinput denotes the dis-
crepancy between the explanation generated by the
black-box model with no perturbation, I(x, ŷ, P ),
and the explanation generated by the black-box
model with perturbation at the input, I(x̄, ŷ, P̄ ).
While δoutput denotes the discrepancy of I(x, ŷ, P )
and the explanation generated by the black-box
model with perturbation at the output probability,
I(x̄, ŷ, P̃ ).

In this experiment, for output probability per-
turbation, we directly add random noise to the
model output probabilities. For comparison, we
add the noise to word embeddings for input pertur-
bations (Liu et al., 2020). Both input side perturba-
tion and output probability perturbation are applied
with noise sampled from a Gaussian distribution,
N (0, σ2). We apply Gaussian noise because it is
easy to control the perturbation level by modifying
the variance of the Gaussian distribution σ2. In
experiments, we applied five different perturbation
levels from “0” to “4”. “0” means the slightest per-
turbation level, zero perturbation, while “4” repre-
sents the strongest perturbation level. The specific
value of each perturbation level is shown in Table 3.

Note that for each level, the input side perturbations
and the output probability perturbations are differ-
ent because we select different perturbations for
the input side and the output probability to reach
a similar accuracy at each level. If the model’s
accuracy is not close at each level, it is difficult to
evaluate the results.

Perturbation Source Level σ2

Input Side (σ2
input) 0 0

1 0.05
2 0.1
3 0.15
4 0.2

Output Probability (σ2
output) 0 0

1 0.25
2 0.5
3 0.75
4 1

Table 3: Perturbation levels applied to the input and
output respectively.

3.3 Results and Discussion
Figure 2 shows the results of the IMDB dataset.
Due to the page limit, full results of other datasets
are shown in Figure 4, Figure 5 and Figure 6 in Ap-
pendix A, which have similar tendencies. Kendall’s
Tau order rank correlation score plots are shown in
Figure 2 (a), (b) and (c). Top-K important words
overlap score plots are shown in Figure 2 (d), (e)
and (f). Figure 2 (a) and (d) show the results of
the LIME method. Figure 2 (b) and (e) show the
results of the Kernel Shapley method. Figure 2
(c) and (f) show the results of the Sample Shapley
method.

Kendall’s Tau order rank correlation score eval-
uation results. Kendall’s Tau order rank correla-
tion score results indirectly illustrate the stability of
post-hoc explanation methods. Furthermore, previ-
ous observation on the explanation difference can
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(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison experiment results on the IMDB dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.

be attributed to the potential influence caused by
the black-box model. In Figure 2 (a), (b) and (c),
the large gap between δinput and δoutput is consis-
tent across all three post-hoc explanation methods,
LIME, Kernel Shapley and Sample Shapley. For
output probability perturbations, it is noticeable
that the values of Kendall’s Tau order rank correla-
tion scores remain the same with the perturbation
level increasing from “0” to “4". This indicates that
the overall ranking of feature importance scores are
stable under output perturbations. Furthermore, the
results suggest that for a given input, if x and pre-
diction results stay unchanged, ŷ = ỹ, the only
perturbation ε′ at output probability is unlikely to
influence explanations generated by the post-hoc
methods. In other words, the explanation discrep-
ancy observed in the previous study (Ivankay et al.,
2022; Sinha et al., 2021) is unlikely caused by the
post-hoc methods. Meanwhile, for the baseline
results (perturbation applied at the input), it is no-
tifiable that the values of Kendall’s Tau order rank
correlation scores decrease obviously with the in-
crease of input perturbation intensity levels. This
indicates that the black-box model is vulnerable to

input perturbations, which causes fragile explana-
tions. Based on the observations, we claim that the
black-box model is more likely to be the primary
source that results in fragile explanations.

Top-K word importance score evaluation re-
sults. Top-K word importance score evaluation
shows the same result: the black-box model is the
primary source causing explanation discrepancy.
In Figure 2 (d), (e) and (f), δinput against δoutput
display an obvious discrepancy across the three
post-hoc explanation methods. For output proba-
bility perturbations, δoutput shows no change in the
overlap among the top K important words. This
indicates that, for the top five important features
in the explanation of each corresponding predic-
tion result, output probability perturbations will not
cause any difference. The results under this met-
ric also illustrate that the black-box model is more
likely to cause fragile explanations than explana-
tion methods themselves.

3.4 Further Analysis on LIME Algorithm

According to the previous results, we have a conclu-
sion that post-hoc explanation methods are stable.
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We further analyze the stability of the explanation
algorithms. We use the LIME algorithm (Ribeiro
et al., 2016) as an example.

L(fŷ(r), gŷ(r
′), π) =

∑

r,r′∈R
π(fŷ(r)− gŷ(r

′))

(3)
Equation 3 is definition of the loss function in

LIME algorithm (Ribeiro et al., 2016). In the loss
function, πgŷ(r′) is denoted the kernel calculation
function of the algorithm. r′ represents the pseudo
example based on the original example, r. gŷ(r′)
represents the linear local explainable model on the
pseudo example, r′. Here, we use a general linear
model representation to represent the explainable
model, gŷ(r) = wT

ŷ r
′. wT

ŷ is the weight function
of the linear model and it is the importance feature
score calculation function as well. Equation 4 is the
kernel calculation function of the LIME algorithm
after expanding.

G = πgŷ(r) = πwT
ŷ r

′ (4)

The form of the kernel calculation function can
be interpreted as a general linear function, Ax = b.
In the linear function, the condition number, (κ), is
applied to evaluate how sensitive the linear function
is due to a small change at the input and reflects
in its output (Belsley et al., 2005). If the condition
number, (κ), which is the largest eigenvalue in the
matrix A divided by the smallest eigenvalue in the
matrix A, is large, the solution x would change
rapidly by a slight difference in b, which would
cause sensitivity of the solution to the slight error
in the input (Goodfellow et al., 2016). In Equa-
tion 4, πr′ can be considered as the matrix A, and
the feature importance score function wT

ŷ can be
considered as the solution x. If πr′ is a stable lin-
ear system, the feature importance score function
wT

ŷ would be unlikely sensitive to a minor change
at the linear system input side, and the correspond-
ing post-hoc explanation method is stable. The
form of the kernel calculation function can be inter-
preted as a general linear function, Ax = b. In the
linear function, the condition number, (κ), is ap-
plied to evaluate how sensitive the linear function
is due to a small change at the input and reflects
in its output (Belsley et al., 2005). If the condition
number, (κ), which is the largest eigenvalue in the
matrix A divided by the smallest eigenvalue in the
matrix A, is large, the solution x would change
rapidly by a slight difference in b, which would

cause sensitivity of the solution to the slight error
in the input (Goodfellow et al., 2016). In Equa-
tion 4, πr′ can be considered as the matrix A, and
the feature importance score function vecwT

ŷ can
be considered as the solution r. If πr′ is a stable
linear system, the feature importance score func-
tion wT

ŷ would be unlikely sensitive to a minor
change at the linear system input side, and the cor-
responding post-hoc explanation method is stable.
Since the kernel function is a pure numerical step
without semantics involved. We conduct a simula-
tion experiment to explore the stability of the LIME
algorithm (Ribeiro et al., 2016).

Simulation Experiment and Results In the sim-
ulation experiment, the pseudo example, r′, is a
matrix with the size of sub-sampling size, m, mul-
tiple with the length of a sentence, l. We select
m = 200, which is the actual sample size value
we applied in the comparison experiment. For the
sentence length, first, we simulate the case when
sentence length is fixed, that is l = 20. Then,
to compare condition number distribution when
sentence length is different, we apply two more
cases, that are l = 30, and l = 40. For each
length, we simulate it for 500 iterations. For π, it is
the distance between the original input to the sub-
sampling based on the original input in the LIME
algorithm (Ribeiro et al., 2016). In the simulation
experiment, we apply cosine distance to represent
the value of π.

Total iteration number κ ∈ [5, 6) κ ∈ [6, 7)

500 392 108

Table 4: Condition number (κ) distribution when l = 20

Figure 3: Simulation Experiment Result.
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In Table 4, the result of the simulation experi-
ment when the sentence length is fixed, l = 20,
demonstrates that the majority of the condition
number κ of the matrix πr′ is lower than 7. In
Goldstein’s work, it suggests that the condition
number of a stable or a well-conditioning matrix
should be lower than 30 (Goldstein, 1993). It
means that the feature importance score function,
W , is less likely influenced by a small perturbation
involved, which is also reflected in the real dataset
results in the comparison experiment in subsec-
tion 3.3. In Figure 3, the result of the simulation ex-
periment when sentence lengths are different shows
that when the length of the sentence increases, the
condition number κ of the matrix πr′ increases
with a tiny amplitude. The majority of the condi-
tion number κ of the matrix is lower than 13 when
the length is from 20 to 40. Although the result
demonstrates that the condition number κ would
increase with sentence length increasing, the in-
creasing amplitude is small and the majority of the
condition number is lower than the threshold num-
ber. The result suggests that the matrix πr′ in the
LIME algorithm can remain a small condition num-
ber, which makes the linear system relatively stable.
In other words, the LIME algorithm (Ribeiro et al.,
2016) is a relatively stable post-hoc explanation
method.

4 Previous Works

Post-hoc Explanation Methods Most works fo-
cus on explaining neural network models in a post-
hoc manner, especially generating a local expla-
nation for each model prediction. The white-box
explanation methods, such as gradient-based expla-
nations (Hechtlinger, 2016), and attention-based
explanations (Ghaeini et al., 2018), either require
additional information (e.g. gradients) from the
model or incur much debates regarding their faith-
fulness to model predictions (Jain and Wallace,
2019).

Another line of work focuses on explaining
black-box models in the model-agnostic way. Li
et al. (2016) proposed a perturbation-based expla-
nation method, Leave-one-out, that attributes fea-
ture importance to model predictions by erasing
input features one by one. Ribeiro et al. (2016)
proposed to estimate feature contributions locally
via linear approximation based on pseudo exam-
ples. Some other works proposed the variants of
the Shapley value (Shapley, 1953b) to measure

feature importance, such as the Sample Shapley
method (Strumbelj and Kononenko, 2010), the Ker-
nel Shapley method (Lundberg and Lee, 2017a),
and the L/C-Shapley method(Chen et al., 2018).

Model robustness Recent works have shown the
vulnerability of model due to adversarial attacks
(Szegedy et al., 2013; Goodfellow et al., 2014;
Zhao et al., 2017). Some adversarial examples are
similar to original examples but can quickly flip
model predictions, which causes concern on model
robustness (Jia et al., 2019). In the text domain, a
common way to generate adversarial examples is
by heuristically manipulating the input text, such
as replacing words with their synonyms (Alzantot
et al., 2018; Ren et al., 2019; Jin et al., 2020), mis-
spelling words (Li et al., 2018; Gao et al., 2018),
inserting/removing words (Liang et al., 2017), or
concatenating triggers (Wallace et al., 2019).

Explanation Robustness Previous work ex-
plored explanation robustness by either perturb-
ing the inputs (Ghorbani et al., 2019; Subramanya
et al., 2019; Zhang et al., 2020; Heo et al., 2019) or
manipulating the model (Wang et al., 2020; Slack
et al., 2020; Zafar et al., 2021). For example,
Slack’s group fooled post-hoc explanation methods
by hiding the bias for black-box models based on
the proposed novel scaffolding technique (Slack
et al., 2020). However, all of these works cannot
disentangle the sources that cause fragile explana-
tion. Differently, the proposed method mitigates
the influence of model to the explanation by per-
turbing model outputs.

5 Conclusion

In this work, our main contribution is to identify
the primary source of fragile explanation, where we
propose an output probability perturbation method.
With the help of this proposed method, observation
results can illustrate a conclusion that the primary
potential source that caused fragile explanations in
the previous studies is the black-box model itself,
which also illustrate that some limitations of prior
methods. Furthermore, in subsection 3.4, we ana-
lyze the kernel calculation inside the LIME algo-
rithm (Ribeiro et al., 2016). We apply the condition
number of the matrix and simulation experiments
to demonstrate that the kernel calculation matrix
inside LIME has a low condition number. This
result further suggests the stability of the LIME
algorithm.
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A Figures of Comparison Experiments
Result on SST-2, AG’s News and TREC
Dataset

In the section, we include comparison experiments
results of the SST-2 dataset in Figure 4, the AG’s
News dataset in Figure 5, and the TREC dataset in
Figure 6.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison experiment results on the SST-2 dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison experiment results on the AG’s News dataset; (a) and (d) demonstrate results using LIME
method; (b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample
Sharply method.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison experiment results on the TREC dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.
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Abstract

Deep learning models are widely used for solv-
ing challenging code processing tasks, such as
code generation or code summarization. Tradi-
tionally, a specific model architecture was care-
fully built to solve a particular code process-
ing task. However, recently general pretrained
models such as CodeBERT or CodeT5 have
been shown to outperform task-specific models
in many applications. While pretrained models
are known to learn complex patterns from data,
they may fail to understand some properties of
source code. To test diverse aspects of code
understanding, we introduce a set of diagnostic
probing tasks. We show that pretrained models
of code indeed contain information about code
syntactic structure, the notions of identifiers,
and namespaces, but they may fail to recognize
more complex code properties such as semantic
equivalence. We also investigate how probing
results are affected by using code-specific pre-
training objectives, varying the model size, or
finetuning.

1 Introduction

Deep learning and especially Natural Language
Processing (NLP) methods have been widely and
successfully adopted to process source code. Exam-
ple tasks include code generation (Allamanis et al.,
2015; Chen et al., 2021) where the task is usually
formulated as to produce a code of a function given
the natural description; code translation (Nguyen
et al., 2013; Roziere et al., 2020a) where the model
needs to translate from one programming language
to another; and code summarization (Haiduc et al.,
2010; Alex et al., 2020) where the task is to pro-
duce natural language (NL) description for a given
code snippet. Deep learning is also widely used in
discriminative tasks, such as automated bug search
and repair (Hellendoorn et al., 2020).

In recent years, the focus has shifted from de-
veloping task-specific models incorporating prior

∗Now at Naver Labs Europe

knowledge about the task, to relying on general pre-
trained models of code such as CodeBERT (Feng
et al., 2020) or CodeT5 (Wang et al., 2021). These
models, once pretrained, can be finetuned on the
downstream tasks with a little additional cost, sur-
passing task-specific models. While the perfor-
mance of the models is high on a wide range of
downstream tasks (Lu et al., 2021), the boundary
between what the models know and where they
fail remains hidden behind the complexity of the
downstream tasks. The lack of interpretability of
pretrained models limits their practical use. At the
same time, a deeper examination of model’s under-
standing of source code may increase developers’
trust and broaden the applicability of pretrained
models.

In NLP, there is an established probing approach
for a more fine-grained examination of the knowl-
edge of various aspects of the language, e.g. mor-
phology, syntax, or discourse understanding (Be-
linkov et al., 2020; Tenney et al., 2019; Koto et al.,
2021). Probing usually means training a linear
model on top of hidden representations of a model
for various simple tasks, e.g. to predict a part-of-
speech tag, to detect whether a sentence was cor-
rupted, or to estimate the number of objects in the
main clause (Conneau et al., 2018a). Probing ex-
periments may suggest ways to improve the quality
of the pretrained model or provide recommenda-
tions on how to tune the model better in applied
tasks (Belinkov, 2022).

Inspired by the insights probing provided in NLP,
we develop probing tasks to understand the extent
to which the current state-of-the-art pretrained mod-
els capture structural and semantic properties of
source code. Our contributions are as follows:

• we introduce a set of syntactic and semantic
probing tasks, suitable for testing diverse as-
pects of code understanding;

• we study an effect of the model choice, pre-
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int x = 0;
if (x == 0) {
    int y = x;
}
System.out.println(y);
// y is outside of its
// declaration scope

for elem in lst:
print(elem) 1. Token path type:

//  elem:[1]  lst:[2]
//   print:[3,1,1]  elem:[3,1,2]

2. AST depth:
//  depth: 4

3. Is variable declared

5. Variable name
var = 0;
for (int i = 0; 
     i <= n; 
     i++) {
    var += vector[i];
}
// Name of var: sum

syntax understanding understanding of data flow conceptnamespace concept understanding

code — natural language linking

For

NameStore

elem
Body

NameLoad

print

NameLoad

lst
Call

NameLoad

elem

1 2 3

1
1 2

int x1 = 5;
int y2 = x3 ** 2;
int z4 = x5 + 10;

x3, x1 // comes from
y2, x3 // computed from
x5, x3 // no edge

4. Edge prediction in 
data flow graph

7. Algorithm

semantic equivalence understanding

8. Readability
kaleoInstanceToken.
setClassPK(GetterUt
il.getLong((String)
workflowContext.get
(WorkflowConstants.
CONTEXT_ENTRY_CLASS
_PK)))
// low readability 

readability assessment

6. Is variable misused

variable usage correctness

for (int i = 0; 
     i <= n; 
     i++) {
    
System.out.println(
vector[n]);
}
// Variable n in misused

Codeforces 
problem

correct solutions wrong solutions

class 1 class 2

Figure 1: Illustration of the proposed probing tasks testing various aspects of code understanding.

training objective choice, and model size on
probing results;

• we use probings to highlight which informa-
tion about code is preserved by finetuned mod-
els in different downstream tasks.

We release our code1.

2 Probing tasks

We probe pretrained models of code using linear
regression or classification trained on top of code
representations extracted from each layer of each
model (layers weights are not finetuned) (Alain and
Bengio, 2016).

We develop auxiliary tasks (with synthetic data
or data borrowed from other works) that test mod-
els’ understanding of various properties of source
code: strict syntactic structure, the notions of data
flow and namespaces, naming, semantic equiva-
lence, and readability. We consider both global
tasks (predicting a property of the whole code
snippet) and local tasks (predicting a property
of a particular token or a group of tokens). For
each task, we introduce a simple but as strong as
possible baseline. Figure 1 illustrates all tasks.
For all classification tasks, we measure test er-
ror (1 − accuracy), and for “AST depth" regres-
sion task, we calculate the mean absolute error
MAE(ytrue, ypred) =

1
N

∑N
i=1 |yitrue − yipred|.

Notation. Pretrained models of code usually fol-
low the standard NLP methodology: representing a

1https://github.com/serjtroshin/probings4code

code snippet as a sequence of subtokens, e. g. byte-
pair encoding subtokens, and pretraining the model
on a large corpora of source code using masked
language modeling. We denote the sequence of
subtokens as s1, . . . , sm. Let us denote t(si) a map-
ping from a subtoken si into a corresponding code
token t(si), e.g. for a subtoken sequence [ (, for,
public, get, Status], t( get) = getStatus.

For each subtoken si, we extract the model’s em-
bedding wℓ

i ∈Rd for a particular layer ℓ, where d
is the size of hidden representations.

2.1 Token Path Type
The first two probing tasks test whether pretrained
models contain information about the syntactic
structure of code. The first task consists of pre-
dicting the position of a token in the Abstract Syn-
tax Tree (AST). Given a subtoken si and the cor-
responding embedding wℓ

i , the task is to predict
the path type from the root to the t(si) token, e.g.
[1, 2, 1], meaning go to the first child, then to the
second one, then to the first one. This task, which
is a local task, is formulated as a classification prob-
lem by selecting target subtokens corresponding
to 15 most frequent path types. As a baseline, we
consider constant prediction w. r. t. a subtoken, i. e.
we select the most frequent class (path type) for
each subtoken in the vocabulary.

2.2 AST depth
The second syntactic task is defined on a code snip-
pet level (global task) and consists of predicting the
depth of the AST built from the snippet (regression
problem). The baseline for this task is defined as a
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linear regression trained on a single feature – the
number of tokens in the code snippet, this baseline
outperforms the median depth baseline computed
over the whole dataset.

2.3 Is Variable Declared

This task tests the model’s understanding of the no-
tion of namespaces. The model is asked, whether
there is an “undeclared variable name" error for
a particular expression with an identifier. For ex-
ample, in the first code snippet the identifier y is
correctly used after a declaration:

int x = 0;
if (x == 0) {

int y = x; // declare
System.out.println(y); // use

}

However, in the second snippet there is an error,
since y is outside of the scope of it’s declaration:

int x = 0;
if (x == 0) { int y = x; }
System.out.println(y); // y is undeclared

We generate positive and negative examples us-
ing the following procedure. For a code snippet,
we find a variable name declaration, e.g. float x
= 0. Next, we find a random place in code after the
variable declaration where we can insert a printing
expression e.g. System.out.println(x);, and
define a label for binary classification analyzing
variable scopes: is variable declared before used?
The task is formulated for the mean subtoken em-
bedding of the inserted variable name (local task).
The baseline in this task is a constant prediction
that the variable is declared.

2.4 Edge Prediction in Data Flow Graph

The next task measures to what extent a model
encodes the information about the data flow. Given
two tokens, the task is to predict a data flow edge
between them. There can be no edge (negative
example), a “comes from" edge, or a “computed
from" edge. The task is formulated as classification
of a pair of tokens (their mean embeddings over
subtokens are concatenated), this is the local task.

In addition to existent data flow edges we select
a roughly equal number of “no edge" examples by
selecting random pairs of nodes from AST with
suitable node types (e.g. pairs of identifiers, con-
stants, etc.). As a baseline, we predict the most
frequent edge type for the corresponding pair of

tokens, which outperforms the most frequent class
baseline.

2.5 Variable Name

The next task targets the ability to link code ele-
ments and their natural language descriptions. A
model should predict a variable name, given a code
snippet with all occurrences of the original name
replaced with a placeholder var. This task requires
semantic understanding of the variable’s role in the
program (local task).

We formulate this task as classification, targeting
only 15 most popular identifier names. The feature
vector is a mean hidden representation for all oc-
currences of the identifier in code. In such way,
the model should be able to predict the identifier
name based on the context in which the variable
was used. The baseline in this task is defined by
the bag-of-words model: we count occurrences of
all subtokens in the code snippet, convert them to
tf-idf values and train a linear classifier on these
features. This baseline substantially outperforms
the constant baseline which always predicts the
most frequent variable name.

2.6 Is Variable Misused

The next local task tests the ability of the model to
detect the variable misuse bug (Hellendoorn et al.,
2020). We introduce variable misuse by randomly
assigning “wrong" identifier name copying from
another identifier from the same code snippet. We
add “correct" code snippet for each “wrong" snip-
pet, formulating the task as a binary classification
problem, where the input is identifier’s subtokens
(mean embedding). The baseline is the bag of
words predictor, which, for this task, is better than
most frequent class predictor.

2.7 Algorithm

The next (global) semantic task also tests the ability
of models to distinguish computationally equiva-
lent codes from other codes. To obtain a dataset
for this task, we select a simple problem from the
CodeForces competition2, which can be reformu-
lated as to check if each character in a string has
a neighbor equal to it. We download “wrong an-
swer" and “accepted" Python submissions from the
contest and filter out too long codes (> 1000 char-
acters) obtaining 550 “accepted" and 384 “wrong
answer" submissions.

2https://codeforces.com/problemset/problem/1671/A
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The task is to distinguish “correct" code from
“wrong" and formulated as a binary classification
problem. The task requires deeper understanding
of the data and control flow since the “accepted"
and “wrong answer" solutions are usually very sim-
ilar visually. It should be hard for a model to make
predictions based only on spurious surface or syn-
tactic features to succeed in this task. As a baseline,
we again use the bag-of-words model described
above.

2.8 Readability

Finally, we consider a readability property of code.
Readability defines how easy code is for the pro-
grammers to understand and maintain. Generally,
readability depends on visual appearance of code
(spaces, new lines etc), the meaningfulness of vari-
able and function names, the quality of comments,
and the particular algorithmic implementation (the
same algorithm could be written in different ways,
some of them more and some of them less read-
able). We use the 200 examples dataset provided
by Scalabrino et al. (2018) and obtained by col-
lecting a set of functions and asking developers to
rate readability on the scale from 1 to 5 (several
ratings per example). The task is then converted
by the authors to binary classification by treating
all snippets with rating ⩽ 3.6 as not readable and
the rest ones as readable, as in Scalabrino et al.
(2018). This is a global task and as the baseline we
use the bag-of-words model which outperforms the
constant most frequent class prediction.

3 Models

In this section, we briefly describe the models to
be compared. We have selected several widely
used pretrained models, which vary in the model
architecture, pretraining objective, model size, and
training datasets.

3.1 CodeBERT

CodeBERT (Feng et al., 2020) is one of the first
attempts to pretrain a Transformer-based encoder
model for source code representation learning and
comprehension. It is a 12 layer encoder model
based on RoBERTa-base (125M) (Liu et al., 2019)
and trained with masked language modeling and
replaced token detection objectives. The model is
trained on 6M CodeSeachNet dataset (Husain et al.,
2020), composed of functions from 6 programming
languages (Java, Python, JavaScript, PHP, Ruby,

Go) and NL comments.

3.2 GraphCodeBERT

GraphCodeBERT (Guo et al., 2021) extends the
work of (Feng et al., 2020), by introducing data
flow-related objectives. They encourage the mod-
els to learn structure-aware representations by pre-
dicting randomly selected “comes from" data-flow
edges.

3.3 PLBART

Ahmad et al. (2021a) introduced a 140M parame-
ter PLBART model with 6 encoder and 6 decoder
layers. The model is based on the BART (Lewis
et al., 2020) architecture. The authors released a
PLBART3 checkpoint pretrained on the data col-
lected by Roziere et al. (2020b), which is 470M
Java, 210M Python functions/methods, and pre-
trained the 47M NL descriptions. They release a
PLBART_large checkpoint as well (400M, 12 layer
encoder, 12 layer decoder).

3.4 CodeT5

CodeT5 (Wang et al., 2021) is an encoder-decoder
model based on the T5 (Raffel et al., 2020) ar-
chitecture and pretrained on 8.35M functions in 8
programming languages (Python, Java, JavaScript,
PHP, Ruby, Go, C, and C#). The model combines
the masked language modeling objective with code-
specific objectives, including identifier tagging and
predicting variable names. We experiment with
two released model checkpoints4: CodeT5-base
(220M) and CodeT5-small (60M).

3.5 CodeGPT2

CodeGPT2 (Lu et al., 2021) is a decoder only
model based on GPT-2 architecture (Radford et al.,
2019). The 117M model consists of 12 layers
and is pretrained on the CodeSearchNet (Husain
et al., 2020) dataset. We used CodeGPT-small-java-
adaptedGPT2 checkpoint5, that is initialized from
GPT-2 model and then trained on code corpus.

3.6 BERT

We also consider the text-based model, BERT, to
understand the effect of code-specific pretraining.
We use a 110M 12-layer BERT model (Devlin et al.,

3https://github.com/wasiahmad/PLBART
4https://github.com/salesforce/CodeT5
5https://huggingface.co/microsoft/

/CodeGPT-small-java-adaptedGPT2
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Figure 2: Results for the best performing layer representations, for all probing tasks. Metrics are the lower the
better.

2019), "bert-base-cased" checkpoint from Hug-
ging Face6, trained on the Book Corpus (Zhu et al.,
2015).

4 Experimental setup

4.1 Data and preprocessing

For our experiments which involve synthetic data
(first 6 tasks), we use the test dataset provided by
Ahmad et al. (2021a) consisting of 10k examples
of Java functions and methods with removed com-
ments and new line symbols, and standardized code
snippets. For the two remaining tasks the datasets
were mentioned in the task descriptions. For each
pretrained model, we apply it’s subtokenization pro-
cedure. All models have a limit of 512 input subto-
kens. We crop subtoken sequences that are longer
than 512 subtokens. We use commonly used open
access datasets intended for research purposes.

4.2 Probing details

For each probing task, we average results over four
runs using 4-fold cross-validation. For each model,
we use a single checkpoint as usually only one
checkpoint is released.

Each pretrained model returns representations
for a sequence of subtokens s1, . . . , sm, e. g. from
byte-pair encoding. When the task is formulated
on a code snippet level, the layer-wise embeddings
of the snippet are obtained by averaging subtoken
embeddings, following (Koto et al., 2021).

For the probing models, we use linear mod-
els from scikit-learn (0.24.2) (Pedregosa et al.,
2011), including SGDClassifier with logistic re-
gression loss for classification tasks (we se-
lect optimal alpha parameter via grid search
over [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] range,

6https://huggingface.co/bert-base-cased

and set tolerance to 0.0001); and RidgeCV for
regression tasks (grid search for alpha over
[0.0001, 0.001, 0.01, 0.1, 1, 10, 100] range). In ad-
dition to linear probings, we also probe pretrained
models with a 3-layer MLP (see Appendix B), how-
ever, the results for MLP are similar.

5 Experiments

Our research questions are as follows:

• To what extent do the models pretrained on
code capture information about source code
properties?

• Does multitask pretraining with code-specific
objectives provide richer representations?

• How does the model size affect probing re-
sults? Which representations are better: pro-
vided by the encoder or by the decoder?
Which layers provide better representations?

• Does finetuning preserve syntactic and seman-
tic information in different downstream tasks?

We used a single Tesla V100 GPU for the for-
ward pass to collect embeddings, and 4 CPU for
training linear models. Our total computational
budget is 864 CPU hours and 20 GPU hours.

5.1 Comparison of different models

In this subsection, we study the performance of
different pretrained models in all probing tasks. In
this experiment, we report the results for the best
performing layer representation for each model: the
layer is chosen using the first fold and the results
are averaged over three remaining folds. Figure 2
presents the results.
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Overall, we observe that the probing perfor-
mance of pretrained models exceeds the perfor-
mance of the simple baseline in all tasks. How-
ever, in the semantic-related “Readability" and
“Algorithm" tasks, the pretrained models are very
close to the simple baseline and thus do not cap-
ture much more information relevant to these tasks.
The BERT model pretrained on textual data per-
forms worse than the models pretrained on code in
all tasks except the semantic-related “Readability"
and “Algorithm" tasks, where all pretrained mod-
els perform similarily. We conclude that models
pretrained on code contain knowledge about basic
source code properties but lack a deeper semantic
understanding of code.

Comparing different models, we find that the
models pretrained with code-specific objectives,
GraphCodeBert and CodeT5, are better or on par
with other models for all tasks. In “Edge Prediction
in DFG", GraphCodeBERT performs best because
it uses the edge prediction objective during pretrain-
ing. Similarly in “Variable is Undeclared", “Is Vari-
able Misused" CodeT5 and GraphCodeBERT per-
form best potentially because they use the variable-
related pretraining objectives. CodeGPT2 performs
worse for “Is Variable Misused" task, because it
only sees the left context which may be not enough
to predict the misused variable. To sum up, models
pretrained with code-specific objectives, CodeT5
and GraphCodeBERT, show consistent gain for the
tasks related to their pretraining objectives, over
other models, pretrained with single objectives, or
perform on par with them.

To better understand how pretrained models per-
form on each task, we perform an ablation study
masking different code components: identifiers,
keywords, and punctuation. This ablation study
is described in Appendix A. The main finding is
that masking punctuation hurts the probing perfor-
mance of the model pretrained on source code in
almost all tasks, while masking language keywords
and renaming identifiers do not have much effect
(except the variable naming task where renaming
identifiers has a significant effect).

5.2 Encoder vs Decoder

This subsection compares the representations of
the encoder and the decoder. We consider represen-
tations of two encoder-decoder models, PLBART-
base and CodeT5-base. Table 1 compares best per-
forming encoder representations and best perform-

ing decoder representations for all probing tasks.
We observe that in almost all probing tasks, the
decoder representations perform worse or on par
with the encoder representations. In some tasks,
e. g. “Is Variable Misused", the decoder shows
much worse results than the encoder. A possible
explanation is that the aim of the encoder is to pro-
vide rich representations for the decoder, hence the
encoder is more suitable for information extraction.

5.3 The effect of the model size

In this subsection, we are interested whether
larger models capture more information about the
source code properties than smaller models. Ta-
ble 1 reports the performance of CodeT5-base and
CodeT5-small models, and of PLBART-large and
PLBART-base models (other models are not avail-
able in variable sizes). We find that in three vari-
able related tasks the larger models expectantly
perform better than smaller models but in the ma-
jority of the tasks the performance is similar.

5.4 Per-layer probing performance

We now analyse probing results for different Trans-
former layers. Figure 3 shows the per-layer per-
formance of all considered pretrained models.
In syntax-related, namespace-related, data flow-
related, algorithm-related and readability-related
tasks, middle layers (4–10) usually provide the
most informative representations. In the “Variable
Name" (and partly in “Is Variable Misused"), the
last layers consistently perform better because the
task is closely related to the masked language mod-
eling objective which is usually solved on top of
last layers.

5.5 The effect of finetuning

In this section, we study the effect of finetuning
on probing results. Specifically, we are interested
1) whether finetuned models preserve information
contained in pretrained models; 2) does pretrain-
ing enrich the representations of finetuned mod-
els, compared with the representations of models
trained from scratch.

In this section, we focus on the PLBART model
and finetune it for 5 downstream tasks: 3 genera-
tive tasks (Code Translation from Python to Java,
Java Code Generation based on natural language
descriptions, Java Code Summarization into textual
description) and 2 discriminative tasks (Clone De-
tection, Defect Prediction). We use the AVATAR
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Figure 3: Per-layer probing performance of four pre-
trained models. Dots highlight the best layers for a
particular model.

dataset (Ahmad et al., 2021b) in the Code Transla-
tion task and CodeXGLEU benchmark (Lu et al.,
2021) in other tasks (MIT license). We use scripts
for PLBART finetuning on these tasks provided in
PLBART7 and AVATAR8 repositories.

Figure 4 compares 3 scenarios: the PLBART
checkpoint after pretraining (leftmost bar), check-
points after PLBART finetuning on each of 5 down-
stream tasks (dark bars), and checkpoints after
training from scratch on each of 5 downstream
tasks (semi-transparent bars). We also include base-
lines for reference.

7https://github.com/wasiahmad/PLBART
8https://github.com/wasiahmad/AVATAR

Models finetuned for discriminative tasks exhibit
the highest information loss between the initial
pretrained stage and the finetuned stage, which
may indicate that models trained on these tasks
rely on some spurious features, rather than on code
syntax or semantics.

Among generative tasks, the Code Translation
model exhibits almost no gap between pretrained
and finetuned stages. This could be attributed to
having code as both input and output of the task.
Code Generation and Code Summarization models
have code only as either the input or the output of
the task, and usually exhibit a slightly larger gap.

As for models, trained from scratch for down-
stream tasks (semi-transparent bars), the overall
trend is similar across the downstream tasks, but
the absolute results are usually much worse, com-
pared to finetuned models, and sometimes are close
to simple baselines. The downstream tasks alone
do not provide high-quality code representations.

6 Related Work

Probing became a universal tool in NLP for test-
ing pretrained models’ understanding or knowl-
edge of various language aspects. A simple linear
probing was used in (Gupta et al., 2015) to test
whether referential knowledge is already encoded
in word embeddings, while Köhn (2015) got in-
sights into the behaviour of word embedding in
terms of morphological and syntactical properties.
Probing tasks were developed to evaluate sentence
embeddings (Ettinger et al., 2016; Conneau et al.,
2018b) whether they incorporate compositional, or
surface (length of the sentence), syntax (tree depth,
top constituent), and text semantics (e.g. tense of a
sentence) knowledge. Hewitt and Manning (2019)
proposed more complex probing tasks, questioning
the possibility to parse the whole dependency trees
from the sentence embeddings using a metric learn-
ing approach. More recent studies for language
models include the study of emerging capabilities
of large language models (Wei et al., 2022). We
refer to Belinkov (2022) for a broad review of ex-
isting probing works in NLP.

In the context of source code, Karmakar and
Robbes (2021) made the first steps towards probing
pretrained models. However, they only consider
four simple tasks and tree code models, CodeBERT,
CodeBERTa and GraphCodeBERT. In contrast to
their work, we propose a wider set of tasks, in-
cluding several token-wise tasks, consider a wider
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PLBART CodeT5 PLBART CodeT5
Task encoder decoder encoder decoder base large small base
Token Path Type 0.011 0.012 0.013 0.036 0.011 0.014 0.012 0.013
AST depth 0.866 0.820 0.867 0.864 0.820 0.850 0.863 0.864
Is Variable Declared 0.042 0.049 0.014 0.061 0.042 0.019 0.025 0.014
Edge Prediction in DFG 0.167 0.191 0.161 0.230 0.167 0.167 0.162 0.161
Variable Name 0.186 0.194 0.162 0.211 0.186 0.165 0.208 0.162
Is Variable Misused 0.080 0.112 0.046 0.176 0.080 0.053 0.064 0.046
Algorithm 0.239 0.251 0.228 0.268 0.246 0.225 0.235 0.228
Readability 0.226 0.237 0.247 0.246 0.216 0.238 0.242 0.221

Table 1: Encoder vs decoder performance for PLBART-base and CodeT5-base; and comparison of small vs large
models: PLBART-base vs PLBART-large, and CodeT5-small vs CodeT5-base. Metrics: MAE for “AST depth",
otherwise test error (1-accuracy).

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
Con

st
0.0

0.1

0.2

1–
AC

C

Token Path Type

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
Con

st
0

1

M
AE

AST depth

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
Con

st
0.00

0.05

0.10

1–
AC

C

Is Variable Declared

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
Con

st
0.0

0.2

0.4

1–
AC

C

Edge Prediction in DFG

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
BOW

0.00

0.25

0.50

1–
AC

C

Variable Name

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
BOW

0.0

0.2

0.4

1–
AC

C

Is Variable Misused

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
BOW

0.0

0.2

1–
AC

C
Algorithm

pre
-tra

in
Cod

Tra

Cod
Gen

Cod
Su

m
DefP

re
CloD

et
BOW

0.0

0.2

0.4

1–
AC

C

Readability

Figure 4: Results on the effect of finetuning. Pre-train (leftmost bar): pretrained-only checkpoint. The following
bars: dark – finetuned models, semi-transparent – models trained from scratch. Results for 5 downstream tasks:
Code Translation, Code Generation, Code Summarization, Defect Prediction, Clone Detection.

range of pretrained models, and investigate various
dimensions, including different pretraining objec-
tives, model sizes, and the effect of finetuning.

A line of work investigate pretrained models for
code in different directions. anonymous authors
(2022) show that CodeBERT relies on the high
token overlap between query and code solving code
search task rather than deeper syntax or semantic
features, and Sharma et al. (2022) shows that BERT
trained on code pays more attention to identifiers
and separators. Our work provides another view
on the analysis of pretrained models of code, from
the probing perspective, and complements these
results.

Recently created BIG-bench benchmark (Srivas-
tava et al., 2022) contains a number of challeng-
ing code-related probing tasks for testing large lan-
guage models capabilites, including programming
synthesis and code summarization tasks, which are
close to complex downstream tasks. In contrast, we
aim at developing simple probing tasks targeting
specific code understanding aspects.

7 Conclusion and discussion

We presented a diagnosis tool, based on probing
tasks, that can be used to estimate to which extent
deep learning models capture the information about
various properties of source code in their hidden
representations. Our results show that pretrained
models of code do contain information about code
syntactic structure, the notion of namespaces, data
flow, code readability and natural language-based
naming. However, pretrained models show limited
understanding of code semantics, which means that
their usefullness in applied tasks requiring semantic
understanding of code may be limited.

Using code-specific pretraining objectives
(CodeT5, GraphCodeBert) enriches the understand-
ing of the code aspects addressed in the correspond-
ing objective. This result may suggest practition-
ers to choose pretrained models which pretraining
objectives are better aligned with the considered
applied task.

We also found that finetuning may deteriorate
the model’s understanding of code properties, espe-
cially in classification downstream tasks. This may
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suggest including code-specific objectives in fine-
tuning, especially if multi-stage finetuning (Pruk-
sachatkun et al., 2020) is used.

Limitations

In this section, we discuss the limitations of our
probing toolkit.

Our probing setup does not cover all possible
aspects of source code. However, we were aiming
at covering diverse properties of code.

Our experiments are limited to the two most
popular high-level languages, which are usually
used to evaluate pretrained model for code: Java (7
tasks) and Python (1 task). It would be interesting
to compare the models on low-level languages like
C/C++.

The linear models used for probings may ap-
pear limited in their capacity, however, they were
successfully used in a lot of NLP probing ap-
proaches (Belinkov, 2022) and are well suitable
for particular research questions considered in the
paper. Moreover, we also experiment with a 3-layer
MLP and find that our main results hold for MLP.

Finally, in this work, we only considered open-
sourced pretrained checkpoints. It would be inter-
esting to compare the performance of pretrained
models across a wide range of model sizes.

Ethics Statement

The main goal of this paper is to provide an empiri-
cal study of the existent models. Since we do not
propose new models, there are no potential social
risks to the best of our knowledge. Our work may
benefit the research community providing more
introspection to the current state-of-the-art models.
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A Ablation study

In this section we perform an ablation study of dif-
ferent code components to understand which com-
ponent of code is important for each of the probing
tasks, i. e. identifier names, language specific key-
words (e.g. “for", “if"), or punctuation (e.g. “(",
“:", “<") . We experiments with two pretrained mod-
els: pretrained on code (PLBART) and text model
(BERT). For ablation of identifiers, we rely on the
methodology of (Chirkova and Troshin, 2021) and
apply syntax-preserving anonymization, replacing
identifiers inside a code snippet with placehold-
ers (“var1", “var2", “var3"). To ablate language-
specific keywords or punctuation, we simply re-
place them with “MASK".

The ablation results are presented in Figure 5.
Overall, for all tasks the most influential compo-
nent is punctuation: masking it hurts the quality the
most, except for the “Variable Name" task, where
anonymizing identifier leads to the worst quality.
With punctuation being masked, PLBART model
is close to the quality of the text BERT model or
performs even worse.

In contrast, masking language-specific keywords
does not hurt the performance significantly.

To conclude, the models pretrained on code rely
heavily on punctuation, for almost all tasks, and
also rely on identifier names for variable related
tasks.

B MLP

Linear probings may appear limited, thus we
also include the results for 3-layer MLP model
for comparison. We implement an MLP in Py-
Torch (Paszke et al., 2019) with ReLU nonlin-
earity and hidden size 128. We train it with
AdamW (Loshchilov and Hutter, 2019) optimizer
with batch size 512 and we use Optuna (Akiba et al.,
2019) with 10 trials to search over learning rate
(high=0.1, low=0.0001, log domain) and weight
decay (high=0.1, low=0.00001, log domain) min-
imizing error on validation set (0.1% of train set)
for regression/classification tasks. We reduce learn-
ing rate by factor 0.1 with patience 5, use early
stopping with patience 10, and maximum number
of update 5000.

The results for MLP (Figures 6,7) are very simi-
lar to the results with linear models, both quantita-
tively and qualitatively. For edge prediction in data
flow graph, MLP outperformes linear model signif-
icantly, but for other tasks the results are roughly

the same.
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Abstract
In this work we analyze the named entity rep-
resentations learned by Transformer-based lan-
guage models. We investigate the role entities
play in two tasks: a language modeling task,
and a sequence classification task. For this
purpose we collect a novel news topic classifi-
cation dataset with 12 topics called RefNews-
12. We perform two complementary methods
of analysis. First, we use diagnostic models
allowing us to quantify to what degree entity
information is present in the hidden represen-
tations. Second, we perform entity mention
substitution to measure how substitute-entities
with different properties impact model perfor-
mance. By controlling for model uncertainty
we are able to show that entities are identified,
and depending on the task, play a measurable
role in the model’s predictions. Additionally,
we show that the entities’ types alone are not
enough to account for this. Finally, we find that
the the frequency with which entities occur are
important for the masked language modeling
task, and that the entities’ distributions over
topics are important for topic classification.

1 Introduction

The probability a language model should assign to
a sequence depends not only on what is being said,
but also on the context, i.e. who is saying it, where,
when, and why? Some types of context such as (cul-
tural) background knowledge may already be repre-
sented to some degree within pre-trained language
models. However, recent work shows that when it
comes to world knowledge language models and
knowledge bases are complementary, and that vari-
ous forms of integration are beneficial (Safavi and
Koutra, 2021). Being able to condition on the con-
text explicitly would be particularly useful when
we consider, for example, more specific cultural
knowledge or interpersonal knowledge, which are
unlikely to be contained in pre-training corpora.

In order to integrate language models and knowl-
edge bases effectively it is important to know pre-

cisely how these two sources of information com-
plement each other. Entities are specifically inter-
esting as they occur within characteristic contexts
learnable by language models and at the same time
provide access to knowledge graphs.

In this work we investigate what information is
present in the entity representations of Transformer-
based (Vaswani et al., 2017) language models. We
also study whether some entities’ representations
contain more information than others and why. Fi-
nally, we show how much these aspects change
after a pre-trained language model is fine-tuned.

For our investigation we choose News articles
as our primary source of data. News articles of-
ten describe events that involve numerous entities.
Which is the primary reason they have been used
in the past for entity-related tasks such as NERC
(Tjong Kim Sang and De Meulder, 2003), NEL
(Hoffart et al., 2011), and coreference resolution
(Pradhan et al., 2012). We fine-tune and evalu-
ate our models for news topic classification and
masked language modeling. For this purpose, we
collect a new dataset of English news articles by
following links cited on Wikipedia pages covering
many newsworthy incidents (Vossen et al., 2018).
Our data collection method allows for this dataset
to easily be expanded with additional topics and
languages in the future. Furthermore, the set of
entities linked to from Wikipedia pages covering
such incidents can also provide us with a ‘short-
list’ of entities likely to be referenced in the news
articles themselves. These entity links will allow
integration with Wikidata, an avenue we wish to
explore in future work.

Our analysis includes two complementary meth-
ods: diagnostic models (Veldhoen et al., 2016; Adi
et al., 2016; Conneau et al., 2018) and a novel
method of analysis we call entity mention substitu-
tion. Diagnostic models are trained on a relevant
task (in our case entity recognition) with hidden
representations of another model as input. The di-
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agnostic model is kept as simple as possible such
that its performance can be attributed to the infor-
mation being available in the hidden representation.
Entity mention substitution measures the impact
of various kinds of substitutions on the prediction
of the model. If the impact is high we interpret
this as evidence that the entity was important for
the prediction. By manipulating which entities we
choose as substitutes and by comparing the results
to those of the diagnostic models, we answer the
following research questions:

RQ1: When entities are mentioned in the in-
put text, are they identified and used by
Transformer-based language models?

RQ2: Does a Transformer-based language model
either partially, or fully represent entities
by their type?

RQ3: Do the answers to RQ1 & RQ2 depend
on: (a) the frequency with which an entity-
mention occurs in the data; and (b) the dis-
tribution of that entity across the news top-
ics?

We make two important contributions. First, we
collect a novel news classification dataset we call
RefNews-12, which consists of 106,167 articles
which cover 9,878 incidents grouped by 12 topics.
Second, we analyze what information is present in
entity representations in two ways. One concerns
training and evaluating diagnostic models on entity
recognition using only the model’s hidden repre-
sentations for entities as input. The other involves
corrupting entity mentions in the data in various
ways, showing how the model relies on the entities
to make predictions.

We find that entities are identified in pre-trained
models both before and after fine-tuning. Entities
are also used to perform the task for which the
model is trained or fine-tuned, even if they cannot
be identified clearly by their representation. We
also find that entities are represented by more than
their type. Finally, our experiments suggest that
the importance of the frequency with which entities
occur and entities’ distribution over topics is task-
specific.

2 Related Work

The use of news articles to study the interaction of
entities and topics is not new. Newman et al. (2006)
mention that “news articles are ideal because they

have the primary purpose of conveying information
about who, what, when and where.” We use them
for the same reason, but focus on studying the entity
representations in recent Language Models.

Previous investigations into the representation
of entities in Language Models have come from
various directions.

Broscheit (2019) investigates entity knowledge
in pre-trained BERT through entity linking. They
frame entity linking as a token classification prob-
lem over the entire vocabulary of 700K entities,
thereby solving mention detection, candidate gen-
eration, and entity disambiguation simultaneously.
When trained with BERT’s weights frozen this
method still obtains decent F1 scores (67.8 ver-
sus SotA of 85.8 by (Zhang et al., 2021)) on the
AIDA benchmark (Hoffart et al., 2011). This in-
dicates that BERT already assigns representations
that are sufficiently distinct for entity linking to a
lot of the entity tokens. We expect that this dis-
tinctness does not necessarily imply that entities
are really treated by the model as individuals. Thus,
we directly investigate the degree to which these
entity representations are interchangeable.

Sorodoc et al. (2020) study whether pre-trained
language models capture information helpful with
the resolution of pronominal anaphora. They hy-
pothesize that the model will learn helpful gram-
matical properties, but not semantic-referential in-
formation. To test this hypothesis they train diag-
nostic models and analyze how their performance
varies as the variables of interest change. Their
evidence suggests that language models do in fact
learn some referential aspects, but that they are still
much better at grammar. We also investigate the
presence of semantic properties in representations
of entities, but do so with different methods and
include models that have been fine-tuned.

Biswas et al. (2021) use entity embeddings ob-
tained from various language models to classify
entities as one of 14 types. Interestingly, BERT em-
beddings obtain the lowest accuracy of the models
tested. Where Biswas et al. (2021) embeds only the
name of the entity, our work studies representations
of entities that appear in context.

A number of other works do not investigate the
representations of entities specifically, but test to
what extent Language Models are able to repro-
duce relational world knowledge, which involves
numerous facts about entities as well (Petroni et al.,
2019; Roberts et al., 2020). For a recent survey of
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this type of research see Safavi and Koutra (2021).

3 Methodology

The following section describes the method by
which we collect our data (3.1), and the two meth-
ods we used to perform our analysis (3.2, 3.3).

3.1 Dataset Collection

We collect a novel news topic classification dataset
based on articles that are linked to from Wikipedia.
For our investigation we prefer data that is catego-
rized across a large number of (hierarchical) topics,
which can be used to construct datasets of varying
difficulties.

For this purpose we use the Multilingual Wiki
Extraction Pipeline (Vossen et al., 2020). This
tool takes as input a set of Wikidata Event Types
and queries Wikidata for each type’s set of inci-
dents. For example, for the Wikidata Item ‘homi-
cide’ (Q149086) the pipeline finds items that are
instances of homicides, i.e. all items that link to it
with the ‘instanceOf’ property. The incidents that
we select are those Wikidata Items for which a time
and place are known. These incidents’ Wikipedia
pages are then scraped for links to news articles.
Besides the articles linked on the Wikipedia pages,
we also include the page itself. The links to other
Wikipedia pages can be used to supervise Named
Entity Recognition and Entity Linking.

To obtain the initial set of Wikidata Event Types,
we make use of IPTC’s Media Topics standard.
This standard consists of a hierarchical taxonomy
of terms intended for use by media to categorize
their productions. Along with the hierarchy of top-
ics, IPTC also distributes a mapping of these topics
to Wikidata. We query the Wikidata Event Types
referenced in the mapping to obtain the number of
incidents available for each topic.

The dataset we collect for the experiments in this
paper are based on a selection of 12 diverse topics,
each with a number of incidents that is manageable
but sufficient. We call this dataset RefNews-12.
See Table 1 for an overview of the selected topics,
their Wikidata ID, the number of incidents, and the
total number of articles we scraped.

RefNews-12 is based on news articles from a
wide variety of publications, none of which we ob-
tained (or attempted to obtain) permission from to
redistribute their work. To circumvent this legal
obstacle, we do not directly distribute the articles
themselves, but rather a set of URLs. To further

increase the reproducibility, each URL is also ac-
companied by the timestamp of a ‘capture’ in the
Internet Archive’s Wayback Machine from which
we obtained our copy. This set can be used by any
interested party to obtain a dataset near-identical
to that used for the experimentation in this work.
This set of URLs for the articles which constitute
RefNews-12 can be found at https://github.
com/sfschouten/refnews, along with in-
structions and code to collect the dataset.

3.2 Diagnostic Models

Diagnostic models1 (Veldhoen et al., 2016; Adi
et al., 2016; Conneau et al., 2018) are used to in-
vestigate if the representations learned by a system
include information about some feature of inter-
est. The diagnostic model is trained to predict this
feature from the representations. Its architecture is
chosen to be as simple as possible, which allows for
the diagnostic model’s performance to be attributed
to the information in the representation.

3.3 Entity Mention Substitution

Substituting the entities mentioned in the data al-
lows us to establish whether entities are important
for news topic classification and masked language
modeling. It also tells us whether entity represen-
tations capture the the entity’s type. Finally, we
use it to investigate if either of these things depend
on the frequency of the entity in the data, or the
entity’s distribution over the classes.

The core of this method involves measuring the
effect of the substitutions on the final prediction. If
a model’s prediction consistently does not change
after substitution then clearly the original entities’
representations are not meaningfully different from
the substitute representations. By identifying a few
key ways in which entities can be (dis)similar, and
substituting such that one particular property is
either changed or kept the same, we can test if that
property is present in the model’s representations.

Specifically, we hypothesize that the effect of
a mention’s replacement depends on at least the
following variables.

Type Equality Whether or not the original and
substitute entities are of the same type. If type is
present in the representations, then substituting by
entities of the same type should give better perfor-
mance than if we substitute for random entities.

1Also known by various other names, including ‘diagnostic
classifiers’, ‘auxiliary prediction tasks’ and ‘probing tasks’.
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IPTC Name Wikidata ID #Incidents #Articles

homicide Q149086 938 25,123
natural disaster Q8065 1,103 10,900

referenda Q43109 722 5,627
transportation accident and incident Q11822042 1,822 16,551

sport event Q167170 518 7,188
coup d’etat Q45382 339 3,416

educational testing and examinations Q27318 1,352 8,168
record and achievement Q1241356 2,352 15,034

armed conflict Q350604 137 4,155
sports transaction Q18515440 196 4,018
primary election Q669262 193 2.612

transport Q7590 206 3,375

Total 9,878 106,167

Table 1: RefNews-12: topics, number of incidents and articles.

Frequency How frequently the original and sub-
stitute entities occur in the training data. We ex-
pect that the embeddings associated with more
frequently occurring entity mentions will have ac-
quired more distinctive representations during train-
ing, and thus have a greater impact on the model’s
predictions.

Topic Shift How much difference there is be-
tween the distribution over topics of the original
and substitute entity mentions. For example, if ‘en-
tity1’ is only mentioned in articles of topics A and
B and we replace it with ‘entity2’ which is only
mentioned in articles of topics C and D; then we
would expect that to have a greater impact than
if we had replaced ‘entity1’ with an entity that is
mentioned in a collection of articles with similar
topics.

4 Experiments

This section details our experimental setup.

4.1 The (fine-tuned) language models

We use DistilBERT as our model of choice for
all experiments. This decision was made because
of resource constraints, specifically because we
train multiple instances for each setting in order
to calculate model uncertainty. DistilBERT is a
40% smaller distilled version of BERT (Devlin
et al., 2019). While much smaller, it retains much
of BERT’s original performance. Choosing this
model allows for a smaller computational budget.

We fine-tune DistilBERT seven times on

RefNews-12 for both news topic classification and
masked language modeling. Each time the classi-
fication head’s parameters are initialized using a
different seed. For topic classification we also train
a model with the same architecture but from initial-
ization (rather than using pre-trained weights).

All models are trained with a batch size of 72.
The base learning rate is set to 0.0005, and subject
to 2000 steps of warmup followed by a linear decay.
They are evaluated on the validation split every
500 batches and training is stopped early if the
performance does not improve 5 times in a row.

4.2 NER diagnostic models

We train diagnostic models on the CoNLL-2003
dataset (Tjong Kim Sang and De Meulder, 2003).
We choose this dataset, because like RefNews-12,
it consists of news articles. This procedure reveals
to what degree the hidden representations can be
used to predict which tokens are part of named en-
tities. We train them for a pre-trained DistilBERT
and the seven instances of DistilBERT fine-tuned
on RefNews-12 for both tasks. A different classi-
fier is trained for each layer of each model instance,
revealing at what layer entities are most clearly
represented. To put the results of the diagnostic
classifiers in perspective, we also train them on an
untrained randomly initialized model. The diag-
nostic classifiers are trained with the same hyper-
parameters as above, but without a learning rate
warmup.
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4.3 Replacing entity mentions

We perform a series of experiments where we re-
place entity mentions that occur in RefNews-12’s
news articles. We do not have gold-standard en-
tity mention labels for all of RefNews-12 (only the
Wikipedia pages have mention annotations through
hyperlinks), so we use an additional DistilBERT
model2 that has been fine-tuned for Named En-
tity Recognition and Classification to obtain silver-
standard labels instead.

Replacing the entity mentions may result in two
kinds of changes in the model’s predictions. First,
our intervention may cause the model to confidently
predict something else, this might mean that a dif-
ferent entity consistently causes a different topic to
be predicted. However, if the manipulated inputs
are sufficiently different from the training distribu-
tion, they may also cause greater model uncertainty,
making predictions more arbitrary. We can use
our independently seeded instances to differentiate
between these two scenarios. The seven indepen-
dently seeded model instances can be thought of
as samples from an approximate posterior over the
model’s weights (Gustafsson et al., 2020). Thus,
we use the variation in the predictions of these
seven instances to approximately measure model
uncertainty. Specifically, we evaluate the uncer-
tainty using the method suggested in (Lakshmi-
narayanan et al., 2017), which is to sum the KL
Divergence between each model instance’s predic-
tion and the average of those predictions.

4.3.1 [MASK] Token Baseline
In this first baseline we replace entity mentions
by the [MASK] token. This prevents the model
from being able to use the information captured
by the entity representations directly. However,
both BERT and DistilBERT’s training objective
included predicting masked-out tokens in English
text. Therefore the model may be able to recon-
struct some of the missing information. Thus, we
expect this to have relatively little effect on the per-
formance and uncertainty of the pre-trained and
fine-tuned models.

4.3.2 Random Token Baseline
The second baseline involves the mentions being
replaced by random tokens. In this case the model
has to identify the tokens that are out of place first,

2https://huggingface.co/elastic/
distilbert-base-cased-finetuned-conll03-
english

before it has the option of ignoring them. Thus we
expect a somewhat larger effect on model perfor-
mance. Contrary to the first baseline we expect this
second baseline to come with significant model un-
certainty, because this intervention should produce
inputs the model did not see during training.

4.3.3 Random Mention
In this variant we substitute entity-mentions by a
different randomly selected mentioned entity. With
this substitution, the model may have a harder
time identifying and ignoring the substitution, be-
cause other entities will not seem particularly out
of place compared to random tokens. Therefore, if
the named entities are important to complete the
task at hand, and their representations are meaning-
fully different, we would expect the model to con-
fidently predict something else. This would look
like a large shift in the prediction where the shift is
similar for each model instance (low uncertainty).
If the model’s performance is comparable to the
baselines, we interpret this as evidence that either
all entities are represented more or less the same
way, or their differences are ignored in practice.

4.3.4 Type Invariant
The next step is to replace mentions only by oth-
ers of the same type. If even entities of the same
type are still represented in meaningfully different
ways, we expect the performance to stay below the
baselines. This would be evidence that entities are
represented distinctly even within their type. How-
ever, if performance is comparable to the baselines,
we interpret this as evidence that entities must be
represented no more distinctly than their type.

4.3.5 Most Frequent
The final substitution we make is based on the fre-
quency with which entity mentions occur in the
data. We select the substitute mentions from the
100 most frequently occurring entities. If substitut-
ing for more frequently occurring entities affects
the performance more than substituting for random
entities, then the most frequent entities’ representa-
tions must have encoded more information relevant
to the task.

4.3.6 Correlation with shift in frequency and
topic distribution

Finally, we calculate the correlation between two
metrics and the loss of each model. For the first
metric we calculate the difference in log-frequency
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between the original and substitute entities, aver-
aged over each substitution per sequence. For the
second metric we calculate how each entity is dis-
tributed across the topics. We then calculate the
KL divergence of the original distribution from
the substitute distribution, also averaged over each
substitutions per sequence.

5 Results

Using the experimental results we can now answer
our research questions. Figure 1 shows the results
of the entity mention substitution experiments. Fig-
ure Figure 2 shows the accuracies obtained by the
diagnostic classifiers. Table 2 shows the correlation
coefficients obtained described in 4.3.6.

In Figure 1a we can see a significant drop in
mean accuracy between both original and random-
tokens (from 84.1% / 85.9% to 74.7% / 78.4% for
From init. / Fine-tuned respectively, both with
p<0.001), and between random-tokens and random-
mention (from 74.7% / 78.37% to 70.4% / 75.99%
with p<0.001 / p=0.008). Replacing a mention
with another mention leaves a sentence that is more
coherent than when it is replaced with random to-
kens. Despite this, we observe lower accuracy for
random-mention. It seems that for topic classifi-
cation the model is capable of ignoring random
tokens, but cannot do the same for the random men-
tions. Instead, the model’s predictions are consid-
erably different with the substitute entity mentions,
decreasing the accuracy as a result. From the model
uncertainty in Figure 1b we can see that the drop in
accuracy is not caused by increased uncertainty (un-
certainty decreases from 0.150 for random-tokens
to 0.107 for random-mention). We interpret this as
evidence that the model uses entity mentions in its
prediction.

Unfortunately, we cannot conclude the same
from the masked language modeling results in
Figure 1c. For this task the performance does
not worsen going from random-tokens to random-
mention (from 5.80 / 4.37 to 4.95 / 2.82). We also
cannot make the same argument when comparing
between mask and random-mention, because al-
though the performance does deteriorate (from 3.73
/ 1.83 to 4.95 / 2.82), this may also be explained
by the uncertainty going up (from 0.098 to 0.147,
no uncertainty for pre-trained). However, results
from the diagnostic classifiers (Figure 2) do indi-
cate that the identification of entities is beneficial
for masked language modeling, since their perfor-

mance increases compared to the Random and Pre-
trained baselines.

Furthermore, the diagnostic classifiers indicate
that entities are identified in pre-trained and fine-
tuned language models to a much greater degree
than in models trained from initialization for topic
classification.

In conclusion, entities are identified and used by
the fine-tuned models for the topic classification
task. However, for models trained from initializa-
tion entities are not easily identifiable from their
representations. Despite that, their presence is still
used by the model to perform the topic classifi-
cation task. For masked language modeling we
only have evidence of them being identified, but
not of them being used. Thus, the answer to RQ1
(“When entities are mentioned in the input text, are
they identified and used by Transformer-based lan-
guage models?”) is that entities are identified by
language models, but whether they are used in prac-
tice depends on the task that the model is fine-tuned
for.

Looking at the type-invariant substitution in Fig-
ure 1a we can see that there is no significant differ-
ence in accuracy compared to the random-mention
substitution. By comparing to random-tokens how-
ever, we can see the same pattern as we saw for
random-mention: accuracy and uncertainty are
both down (accuracy from 74.7% / 78.4% to 70.5%
/ 75.4%, uncertainty from 0.275 / 0.150 to 0.197 /
0.098). So even when substituting for mentions of
the same type the model is still confidently chang-
ing its prediction, indicating that type is at least not
the only aspect being looked at when predicting
topics.

In setting out to answer RQ2 (“Does a
Transformer-based language model either partially,
or fully represent entities by their type?”) we have
not been able to present new evidence indicating
that type is used by Transformer-based language
models, but we have demonstrated that entities are
not generally represented only by their type.

The substitution by the most frequently men-
tioned entities for the topic classification task as
seen in Figure 1, shows a drop in performance
compared to random-mention, but this is paired
with a (modest) increase in uncertainty. Thus, the
results of this particular experimental setting are
inconclusive. However, in Table 2 we can see that
there are dependencies between the performances
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Figure 1: Performance metrics and uncertainty estimates obtained while performing Topic Classification and
Masked Language Modeling for our entity-mention substitution experiments using our RefNews dataset. Error Bars
display 95% confidence intervals indicating sensitivity to random initialization.

Task Training Variable random-mention type-invariant

TopicCLF From init. Frequency 0.00 ± 0.01 -0.01 ± 0.02
Topic 0.10 ± 0.01 0.17 ± 0.01

Fine-tuned Frequency 0.00 ± 0.01 -0.02 ± 0.01
Topic 0.10 ± 0.01 0.19 ± 0.01

MaskedLM Pre-trained Frequency 0.15 0.19
Topic -0.03 0.00

Fine-tuned Frequency 0.07 ± 0.00 0.13 ± 0.00
Topic -0.03 ± 0.01 -0.02 ± 0.01

Table 2: Pearson correlation between difference in frequency/topic and the model’s loss while performing masked
language modeling or topic classification for our entity-mention substitution experiments.
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(a) Randomly initialized (untrained) model compared to topic
classifier trained from initialization.
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(b) Pre-trained and fine-tuned models.

Figure 2: Diagnostic classifier F1 score (x-axis) on NER
for each layer (y-axis) of various models. Error bars
display 95% confidence intervals indicating sensitivity
to random initialization (of the diagnostic model, and in
the case of the fine-tuned models also the model being
probed).

obtained on either task and the average difference
in frequency and topic distribution. For the models
trained on MaskedLM when the difference between
the frequency of the original and substitute entities
increases so does the loss of the model. The same
is true for the difference in topic distribution on the
model fine-tuned for topic classification. Therefore
our answer for RQ3 (“Do the answers to RQ1 &
RQ2 depend on: (a) the frequency with which an
entity-mention occurs in the data; and (b) the dis-
tribution of that entity across the news topics?”) is
that both the identification and use of entities, and
the extent to which they are represented by their
type each depend on frequency and topic distribu-
tion. Specifically, the frequency is depended on
for the masked language modeling, and the topic
distribution for the topic classification task.

6 Conclusion

We have presented RefNews-12, a novel news topic
classification dataset. This dataset was collected
by scraping Wikipedia articles for links. This col-
lection method allows it to be expanded with addi-
tional topics and languages in the future. Because
the Wikipedia pages also link to the pages of en-
tities relevant to the incident, the dataset can be
bridged easily to knowledge from Wikidata.

We have investigated entity representations in
Transformer-based language models. We find that
after having been fine-tuned for news topic classifi-
cation these models do identify and use the entities
to accomplish the task at hand. Although, whether
they are used also depends on the task for which
the model is trained. Our results also show that
on average these language models do not represent
entities only by their type. Entities are used by the
model as distinctly different even within the same
type. Finally, we have shown that the frequency
with which an entity occurs in the data does not
play a significant role in models performing topic
classification. Nor does the topic distribution play
a significant role in masked language modeling.

We obtained our results by altering the inputs of
a model and measuring the change in performance.
Crucially, to allow us to draw conclusions from
these results we also control for model uncertainty.
We believe this general methodology can be used
to probe for many kinds of properties. As such
it provides an additional probing technique which
can be used to strengthen existing experimental
evidence in the future.
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7 Limitations & Future work

Our results are based on DistilBERT, which is a rel-
atively small model. Because of this, the results are
not necessarily representative of all Transformer-
based language models. A further limitation is
that our experiments are only performed with our
RefNews-12 dataset, and the only downstream task
we evaluate on is topic classification. Finally, the
entity types we use are limited to the highest level
of types (locations, organizations, persons and mis-
cellaneous). It is possible that at more fine-grained
levels entity representations do become less and
less distinct.

In future work, we mean to address these lim-
itations by including larger models and other
datasets to show if the same patterns hold on all
Transformer-based models including on other data
and tasks. Also, by including entity linking in fu-
ture experimentation, we will be able to extract
entity-types from knowledge bases such as Wiki-
data, and perform substitutions exclusively within
those much more fine-grained types.
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Abstract
In the interest of interpreting neural NLI mod-
els and their reasoning strategies, we carry out
a systematic probing study which investigates
whether these models capture the crucial se-
mantic features central to natural logic: mono-
tonicity and concept inclusion. Correctly iden-
tifying valid inferences in downward-monotone
contexts is a known stumbling block for NLI
performance, subsuming linguistic phenomena
such as negation scope and generalized quan-
tifiers. To understand this difficulty, we em-
phasize monotonicity as a property of a con-
text and examine the extent to which models
capture relevant monotonicity information in
the vector representations which are interme-
diate to their decision making process. Draw-
ing on the recent advancement of the probing
paradigm, we compare the presence of mono-
tonicity features across various models. We
find that monotonicity information is notably
weak in the representations of popular NLI
models which achieve high scores on bench-
marks, and observe that previous improvements
to these models based on fine-tuning strategies
have introduced stronger monotonicity features
together with their improved performance on
challenge sets.

1 Introduction

Large, black box neural models which achieve high
scores on benchmark datasets designed for testing
natural language understanding are the subject of
much scrutiny and investigation.

It is often investigated whether models are able
to capture specific semantic phenomena which
mimic human reasoning and/or logical formalism,
as there is evidence that they sometimes exploit
simple heuristics and dataset artifacts instead (Mc-
Coy et al., 2019; Herlihy and Rudinger, 2021).

In this work, we consider the rigorous setting
of natural logic (MacCartney and Manning, 2007).
This is a highly systematic reasoning principle rely-
ing on only two abstract features, each of which is

in itself linguistically complex: monotonicity and
concept inclusion word-pair relations. It under-
lies the majority of symbolic/rule-based and hybrid
approaches to NLI and is an important baseline
reasoning phenomenon to look for in a robust and
principled NLI model.

Downward monotone operators such as negation
markers and generalized quantifiers result in the
kinds of natural logic inferences which are often
known to stump neural NLI models that demon-
strate high performance on large benchmark sets
such as MNLI (Williams et al., 2018): this has been
identified in behavioural studies based on targeted
challenge test sets, such as in Yanaka et al. (2019a)
and Geiger et al. (2020).

In this work, however, we present a structural
study: we investigate the extent to which the fea-
tures relevant for identifying natural logic infer-
ences, especially context monotonicty itself, are
captured in the model’s internal representations. To
this end, we carry out a systematic probing study.

Our contributions are may be summarized as
follows:

1. We perform a structural investigation as
to whether the behaviour of natural logic
formalisms are mimicked within popular
transformer-based NLI models.

2. For this purpose, we present a joint NLI and
semantic probing dataset format (and dataset)
which we call NLI-XY : it is a unique probing
dataset in that the probed features relate to the
NLI task output in a very systematic way.

3. We employ thorough probing techniques to de-
termine whether the abstract semantic features
of context monotonicity and concept inclusion
relations are captured in the models’ internal
representations.

4. We observe that some well-known NLI mod-
els demonstrate a systematic failure to model
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context monotonicity, a behaviour we observe
to correspond to poor performance on natu-
ral logic reasoning in downward-monotone
contexts. However, we show that the existing
HELP dataset improves this behaviour.

5. We support the observations in the prob-
ing study with several qualitative analyses,
including decomposed error-breakdowns on
the NLI-XY dataset, representation visualiza-
tions, and evaluations on existing challenge
sets.

2 Related Work

Natural logic dates back to the formalisms of
Sanchez (1991), but has been received more recent
treatments and reformulations in MacCartney and
Manning (2007) and Hu and Moss (2018). Sym-
bolic and hybrid neuro-symbolic implementations
of the natural logic paradigm have been explored
in Chen et al. (2021); Kalouli et al. (2020); Abzian-
idze (2017) and Hu et al. (2020).

The shortcomings of natural logic handling in
various neural NLI models have been shown with
several behavioural studies, where NLI challenge
sets exhibiting examples of downward monotone
reasoning are used to evaluate performance of
models with respect to these reasoning patterns
(Richardson et al., 2019; Yanaka et al., 2019b,a;
Goodwin et al., 2020; Geiger et al., 2020).

In an attempt to better identify linguistic fea-
tures that neural models manage or fail to cap-
ture, researchers have employed probing strategies:
namely, the diagnostic classification (Alain and
Bengio, 2018) of auxiliary feature labels from in-
ternal model representations. Most probing studies
in natural language processing focus on the syntac-
tic features captured in transformer-based language
models (Hewitt and Manning, 2019), but calls have
been made for more sophisticated probing tasks
which rely more on contextual information (Pi-
mentel et al., 2020).

In the realm of semantics, probing studies have
focused more on lexical semantics (Vulić et al.,
2020): word pair relations are central to mono-
tonicity reasoning, and thus form part of our prob-
ing study as well, but the novelty of our work is
the task of classifying context monotonicity from
intermediate contextual embeddings.

3 Problem Formulation: Decomposing
Natural Logic

Natural logic inferences (as formalized in Sanchez
1991; MacCartney and Manning 2007) are usually
described with respect to substitution operations.
Certain word substitutions result in either forward
or reverse entailment, while others result in neither.
This is the basis for a calculus of determining en-
tailment from substitution sequences (MacCartney
and Manning, 2007; Hu et al., 2020; Hu and Moss,
2018).

Broadly speaking, we wish to determine whether
well-known transformer-based NLI models mimic
the reasoning strategies of natural logic. However,
as neural NLI models are black box classifiers that
only see a premise/hypothesis sentence pair as its
input, it is not immediate how to compare its pro-
cess to a rule-based system.

To this end, we consider a formulation of natural
logic which describes its rules in terms of concept
pair relations and context monotonicity (similar to
Rozanova et al. 2021).

3.1 Inferences From Concepts and Contexts
Consider the following example of a single step
natural logic inference, which we will decompose
into semantic components relevant to its entailment
label:

NLI Label

Premise I did not eat any fruit for breakfast.
EntailmentHypothesis I did not eat any raspberries for breakfast.

The hyponym/hypernym pair (raspberries, fruit)
exemplifies a more general relation which we will
refer to as the concept inclusion relation <, (and
dually, reverse concept inclusion =). This mimics
the subset relation of the set-based interpretations
of the predicates raspberry and fruit.

In the above example, they occur in a shared
context, namely the sentence template

“I did not eat any for breakfast".

Such a context may be treated as a term substitution
function f

f : (X ,⊑)→ (S,⇒)

between a set of concepts X (ordered by the con-
cept inclusion relation) and the set S of full sen-
tences ordered by entailment - we demonstrate this
substitution in table 1.
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X f(X)

raspberries I did not eat any raspberries for breakfast
fruit I did not eat any fruit for breakfast

Table 1: In the example, the substitution function f
behaves on the concept inputs as shown.

3.2 Context Monotonicity

We say that f is upward monotone (↑) if it is order
preserving, i.e.

∀X,Y (X ⊑ Y implies f(X)⇒ f(Y ))

and that f is downward monotone (↓) if it is order
reversing, i.e.

∀X,Y (X ⊒ Y implies f(X)⇒ f(Y )).

Given a natural language context f , any pair
of grammatically valid insertions (X,Y ) (e.g.
("raspberries", "fruit")) yields a sentence pair
(f(X), f(Y )). Treating f(X) as a premise sen-
tence and f(Y ) as a hypothesis sentence, a trained
neural NLI model can provide a classification of
whether f(X) entails f(Y ).

In summary, these two abstract linguistic fea-
tures, context montonicity and concept inclusion
relation, jointly determine the final gold entailment
label of this type of NLI example.

Context Monotonicity
mon(f ) ∈ {↑, ↓}

Concept Relation
rel(X,Y) ∈ {=,⊑,⊒}

Entailment Label
for (f(X), f(Y))

4 NLI-XY Dataset

We follow this formalism as the basis for the NLI-
XY dataset. This is the first probing dataset in
NLP where the auxiliary labels for intermediate
semantic features influence the final task label in
a rigid and deterministic (yet simple) way, with
these features being themselves linguistically com-
plex. As such, it is a "decomposed" natural logic
dataset, where the positive entailment labels are
further enriched with labels for the monotonicity
and relational properties which gave rise to them.
This allows for informative qualitative and struc-
tural analyses into natural logic handling strategies
in neural NLI models.

The NLI-XY dataset is comprised of the follow-
ing:

Auxilliary Label

Context f I did not eat any
for breakfast.

↓ (downward mono-
tone)

Insertion Pair (X,Y) (fruit, raspberries) = (reverse concept
inclusion)

NLI Label

Premise f(X) I did not eat any fruit
for breakfast.

Entailment

Hypothesis f(Y ) I did not eat any rasp-
berries for breakfast.

Table 2: A typical NLI-XY example with labels for
context monotonicity, lexical relation and the final en-
tailment label.

1. A set of contexts f with a blank position (indi-
cated with a lower case ‘x’ or an underscore),
annotated with the context monotonicity label.

2. A set of insertion pairs (X,Y ), which are
either nouns or noun phrases, annotated with
the concept inclusion word-pair relation.

3. A derived set of premise and hypothesis pairs
(f(X), f(Y ) made up of permutations of
(X,Y ) insertion pairs through contexts f , con-
trolled for grammaticality as far as possible.

We present examples of the component
parts and their composition in table 2.The
premise/hypothesis pairs may thus be used as input
to any NLI model, while the context monotonicity
and insertion relation information can be used as
the targets of an auxiliary probing task on top of
the model’s representations.

We make the NLI-XY dataset and all the ex-
perimental code used in this work is publically
available 1. We constructed the NLI-XY dataset
used here as follows:

Context Extraction We extract context exam-
ples from two NLI datasets which were designed
for the behavioural analysis of NLI model perfor-
mance on monotonicity reasoning. In particular,
we use the manually curated evaluation set MED
(Yanaka et al., 2019a) and the automatically gen-
erated HELP training set (Yanaka et al., 2019b).
By design, as they are collections of NLI examples
exhibiting monotonicity reasoning, these datasets
mostly follow our required (f(X), f(Y )) struc-
ture, and are labeled as instances of upward or
downward monotonicity reasoning (although the
contexts are not explicitly identified).

1Anonymized github link.
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We extract the common context f from these
examples after manually removing a few which
do not follow this structure (differing, for exam-
ple, in pronoun number agreement or prepositional
phrases). We choose to treat determiners and quan-
tifiers as part of the context, as these are the kinds
of closed-class linguistic operators whose mono-
tonicity profiles we are interested in. To ensure
grammatically valid insertions, we manually iden-
tify whether each context as suitable either for a
singular noun, mass noun or plural noun in the
blank/“x" position.

Insertion Pairs Our (X,Y ) insertion phrase
pairs come from two sources: Firstly, the la-
beled word pairs from the MoNLI dataset (Geiger
et al., 2020), which features only single-word
noun phrases. Secondly, we include an additional
hand-curated dataset which has a small number
of phrase-pair examples, which includes intersec-
tive modifiers (e.g. ("brown sugar", "sugar")) and
prepositional phrases (e.g. ("sentence", "sentence
about oranges")). Several of these examples were
drawn from the MED dataset. Each word in the
pair is labelled as a singular, plural or mass noun,
so that they may be permuted through the contexts
in a reasonably grammatical way.

Premise/Hypothesis Pairs Premise/Hypothesis
pairs are constructed by permuting insertion pairs
through the set of contexts within the grammati-
cal constraints. Such a permutation strategy may
generate examples which are not consistently mean-
ingful, but we see the monotonicity reasoning pat-
tern as sufficiently rigid and syntactic that it is of
interest to observe how models treat less "mean-
ingful" entailment examples that still hold with
respect to the natural logic formalism: for exam-
ple, "I did not swim in a person” entails "I did not
swim in an Irishman" at a systematic level. This
does raise a question of whether we do (or even
should) observe certain systematic behaviours on
out-of-distribution examples: we leave the further
investigation of this matter for future work.

Lastly, we note that the data is split into train, dev
and test partitions before this permutation occurs,
so that there are no shared contexts or insertion
pairs between the different data partitions, in an
attempt to avoid overlap issues such as those dis-
cussed in (Lewis et al., 2021). The full dataset
statistics are reported in table 3.

Context Monotonicity
Partition (X,Y) Relation Up ↑ Down ↓ Total

train ⊑ 671 543 1214
= 671 543 1214
None 244 222 466
Total 1586 1308 2894

dev ⊑ 598 389 987
= 598 389 987
None 220 242 462
Total 1416 1020 2436

test ⊑ 1103 1066 2169
= 1103 1066 2169
None 502 516 1018
Total 2708 2648 5356

Table 3: Dataset statistics for the NLI-XY dataset. We
employ an aggressive 30, 20, 50 train-dev-test split for
a more impactful probing result, as probing is meant
to demonstrate the ease of extraction of features. In
particular, higher test accuracy with a smaller training
set is a more convincing probing result than one with a
large training set and small test set.

5 Experimental Setup

Our experiments are designed to investigate the
following questions: Firstly, how do NLI models
compare in their learned encoding of context mono-
tonicity and lexical relational features? Secondly,
if a model successfully captures these features, to
what extent do they correspond with the model’s
predicted entailment label? We investigate these
questions with a detailed probing study and a sup-
porting qualitative analysis, using decomposed er-
ror break-downs and representation visualization.

5.1 Model Choices

We consider a selection of neural NLI models based
on BERT-like transformer language models (such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and BART (Lewis et al., 2020)) which
are fine-tuned on one of two benchmark training
sets: either SNLI (Bowman et al., 2015) or MNLI
(Williams et al., 2018). Of particular interest, how-
ever, is the case where these models are trained
on an additional dataset (the HELP dataset from
(Yanaka et al., 2019b)) which was designed for
improving the overall balance of upward and down-
ward monotone contexts in NLI training data. We
use our own random 50−30−20 train-dev-test split
of the HELP dataset (ensuring unique contexts in
every split), so that there is no overlap of contexts
between the fine-tuning data and the few HELP-test
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examples we used as part of our NLI-XY dataset2.

5.2 Probing Tasks

The NLI-XY dataset is equipped with two auxil-
iary feature labels which are the targets of the prob-
ing task: context monotonicity and the relation of
the (X,Y ) word pair (referred to as concept inclu-
sion relation or lexical relation). We now describe
the details of the intermediate representations we
choose as inputs to the probing tasks:

Target Representation The standard practice for
word-pair relation classification tasks is to concate-
nate the contextual representation vectors for the
(X,Y ) word pair (taking the mean vector for multi-
token words). We argue that this is a good repre-
sentation choice for probing context monotonicity
as well: as we are considering transformer-based
bidirectional encoder architectures, the context (in-
cluding the order) of each token in the input se-
quence informs the representation of each token
in the final layer. As such, we propose that since
contextual information is implicitly encoded, it is
feasible to expect that a token’s vector representa-
tion may encode contextual features such as context
monotonicity. As both the X and the Y word occur
in the same respective context, we are comfortable
probing the concatenated (X,Y ) representation for
contextual features, and note that it allows for easy
comparison with the word pair relation probing
results.

Probing Methodology For each auxiliary classi-
fication task, we use simple linear models as probes.
We train 20 probes of varying complexities using
the probe-ably framework (Ferreira et al., 2021).

The complexities are represented and controlled
as follows: For linear models, we follow Pimentel
et al. (2020) in using the nuclear norm of the linear
transformation matrix as the approximate measure
of complexity, as it is a continuous approxima-
tion of the transformation matrix rank. Naively,
a strong accuracy on the probing test set may be
understood to indicate strong presence of the tar-
get features within the learned representations, but
there has been much discussion about whether this
evidence is compelling on its own. In fact, certain
probing experiments have found the same accuracy
scores for random representations (Zhang and Bow-
man, 2018), indicating that high accuracy scores

2We use the transformers library (Wolf et al., 2020) and
their available pretrained models for this work.

are meaningless in isolation. Hewitt and Liang
(2019) describe this as a dichotomy between the
representation’s encoding of the target features and
the probe’s capacity for memorization, and propose
the use of the selectivity measure to always place
the probe accuracy in the context of a controlled
probing task with shuffled labels on the same vec-
tor representations. For each fully trained probe,
we report both the test accuracy and the selectivity
measure: tracking the selectivity ensures that we
are not using a probe that is complex enough to be
overly expressive to the point of having the capacity
to overfit the randomised control training set. The
selectivity score is calculated with respect to a con-
trol task. At its core, this is just a balanced random
relabelling of the auxiliary data, but Hewitt and
Liang (2019) advocate for more targeted control
tasks with respect to the features in question and a
hypothesis about the model’s possible capacity for
memorization. For the lexical relation classifica-
tion control task, we assign a shared random label
for all identical insertion pairs, regardless of con-
text. Thus, a probe which is expressive enough to
"memorize" individual labels of word pairs would
attain high accuracy on this control task. Analo-
gously, the context monotonicity classification con-
trol tasks assigns shared random labels to identical
contexts.

5.3 NLI Challenge Set Evaluations
As well as the NLI-XY dataset (which can func-
tion as an ordinary NLI evaluation set), for com-
pleteness we report NLI task evaluation scores on
the full MED dataset (Yanaka et al., 2019a), which
was designed as a thorough stress-test of mono-
tonicity reasoning performance. Furthermore, we
report scores on the HELP-test set (from the dataset
split in Rozanova et al. 2021): this data partition
was not used in the fine-tuning of models on HELP,
but we include the test scores here for insight.

5.4 Decomposed Error Analysis
The compositional structure and auxiliary labels in
the NLI-XY dataset allow for qualitative analysis
which may enrich the observations. To this end,
we construct decomposed error analysis heatmaps
which indicate whether a given premise-hypothesis
data point (f(X), f(Y )) is correctly classified by
an entailment model. These are structured with in-
dividual (X,Y ) insertion pairs on the vertical axis
and contexts on the horizontal axis. For brevity
(and because this is representative of our observa-
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Figure 1: Linear probing results for all examined models.

tions), we include only the error breakdowns for
the two sublasses of the positive entailment label:
where the context monotonicity is upward and lex-
ical relation is forward incusion, and where the
context monotonicity is downward and the lexical
relation is reverse inclusion.

6 Results and Discussion

6.1 Probing Results

The results for the linear probing experiments for
both the context monotonicity classification task
and the lexical relation classification task may be
found in figure 1, with a summary score of accuracy
at maximum selectivity visible in table 4. The
results of the control tasks are taken into account as
part of the selectivity measure, which is represented
on the right hand plot for each experiment.

It is particularly notable that large models trained
only on the MNLI dataset have inferior perfor-
mance on context monotonicity classification. This
corresponds with the further qualitative observa-
tions, suggesting that even in some of the most
successful transformer-based NLI models, there is
a poor “understanding" of the logical regularities

of contexts and how these are altered with down-
ward monotone operators.

6.2 Comparison to Challenge Set
Performance

A summary of the probing results (presented as
accuracy at maximum selectivity) can be compared
with challenge set performance in table 4. Eval-
uation on the challenge test sets is relatively con-
sistent with monotonicity probing performance, in
the sense that there is a correspondence between
poor/successful modeling of monotonicity features
and poor/successful performance on a targeted nat-
ural logic test set. As these challenge sets are fo-
cused on testing monotonicity reasoning, this is a
result which strongly bolsters the suggestion that
explicit representation of the context monotonicity
feature is crucial, especially for examples involving
negation and other downward monotone operators.
Furthermore, we generally confirm previous results
that additional fine-tuning on the HELP data set
has been helpful for these specialized test sets, and
add to this that it similarly improves the explicit ex-
tractability of relevant context montonicity features
from the latent vector representations.
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Feature Probing NLI Monotonicity Challenge Sets

NLI Models Fine-Tuning
Data

Context
Monotonicity

(%*)

XY Insertion
Relation

(%*)

HELP-Test
(%)

MED
(%)

NLI-XY
(%)

roberta-large-mnli - 59.00 84.00 36.69 46.10 59.01
roberta-large-mnli HELP 84.00 76.00 97.63 78.22 80.68

facebook/bart-large-mnli 70.00 64.00 43.61 46.54 60.59
facebook/bart-large-mnli HELP 73.00 70.00 88.99 77.16 79.34

bert-base-uncased-snli 73.00 51.00 63.55 49.38 49.09
bert-base-uncased-snli HELP 73.00 51.00 66.80 46.13 44.79

Table 4: Summary NLI challenge test set and probing results for all considered models. ∗Probing results are
summarized with the accuracy at max selectivity.

(a) (b)

(c) (d)

Figure 2: Decomposed error heat maps for portions of the NLI-XY dataset corresponding to the indicated context
monotonicity and insertion relations (blank positions are present as only grammatical insertions were included in
the dataset.)

6.3 Qualitative Analyses

Error Break-Downs An error heat map accord-
ing to decomposed context monotonicity and word-
pair insertion relation can be seen in figure 2. We
are less concerned with the accuracy score (on NLI
challenge sets) of a given model as with the be-
havioural systematicity visible in the errors, as we
are not interested in noisy errors which may be
due to words or phrases from outside the training

domain. Consistent mis-classification for all exam-
ples derived from a fixed context or insertion pair
are actually also strongly suggestive of a regular-
ity in reasoning. The decomposed error analyses
paint a striking picture: we generally see that mod-
els trained on MNLI routinely fail to distinguish
between the expected behaviour of upward and
downward monotone contexts, despite generally
achieving high accuracies on large benchmark sets.
This is in accordance with observations in Yanaka
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(a) roberta-large-mnli-help (b) roberta-large-mnli-help

(c) roberta-large-mnli (d) roberta-large-mnli

Figure 3: UMAP projections of selected classification token representations comparing roberta-large-mnli
and the improved roberta-large-mnli-help, which shows greater distinction between context monotonicity
features.

et al. (2019b) and Yanaka et al. (2019a), where low
accuracy on the downward-monotone reasoning
sections of challenge sets points to this possibil-
ity. Howver, they show consistently show strong
behavioural regularity with respect to concept in-
clusion. Even when the contexts are downward
monotone, they still treat them systematically as if
they were upward monotone, echoing the concept
insertion pair relation only: they completely fail to
discriminate between upward/downward monotone
contexts and their opposite behaviours.

Visualization In figure 3, each data point cor-
responds to an embedded example (contextual
XY word pair representation) in the NLI-XY
dataset, with the left and right columns colored
with the gold auxiliary labels for context mono-
tonicity and concept inclusion relations respec-
tively. These illustrate the probing observations: in
the well-known roberta-large-mnli model,
concept inclusion relation features are distinguish-
able, whereas context monotonicity is very ran-
domly scattered, with no emergent clustering. How-

ever, the roberta-large-mnli-help model
shows an improvement in this behaviour, demon-
strating a stronger context monotonicity distinc-
tion.

7 Conclusion

In summary, the NLI-XY has enabled us to present
evidence that explicit context monotonicity feature
clustering in neural model representations seems to
correspond to better performance on natural logic
challenge sets which test downward-monotone rea-
soning. In particular, many popular models trained
on MNLI seem to lack this behaviour, accounting
for previous observations that they systematically
fail in downward-monotone contexts.

Furthermore, the probes’ labels also have some
explanatory value: both entailment and non-
entailment labels can each further be broken down
into sub-regions. This qualifies the classification
with the observations that the data point occurs in
a cluster of examples with a) upward (resp. down-
ward) contexts and b) a forward (resp. backward)
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containment relation between the substituted noun
phrases. In this sense, the analyses in this work
can thus be interpreted as an explainable “decom-
position" of the treatment natural logic examples
in neural models.
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Abstract

Improving our understanding of how informa-
tion is encoded in vector space can yield valu-
able interpretability insights. Alongside vector
dimensions, we argue that it is possible for the
vector norm to also carry linguistic information.
We develop a method to test this: an extension
of the probing framework which allows for rel-
ative intrinsic interpretations of probing results.
It relies on introducing noise that ablates infor-
mation encoded in embeddings, grounded in
random baselines and confidence intervals. We
apply the method to well-established probing
tasks and find evidence that confirms the ex-
istence of separate information containers in
English GloVe and BERT embeddings. Our
correlation analysis aligns with the experimen-
tal findings that different encoders use the norm
to encode different kinds of information: GloVe
stores syntactic and sentence length informa-
tion in the vector norm, while BERT uses it to
encode contextual incongruity.

1 Introduction

Probing in NLP, as defined by Conneau et al.
(2018), is a classification problem that predicts lin-
guistic properties using dense embeddings as train-
ing data. The framework rests on the assumption
that the probe’s success at a given task indicates
that the encoder is storing information on the perti-
nent linguistic properties. Probing has quickly be-
come an essential tool for encoder interpretability,
by providing interesting insights into embeddings.

In essence, embeddings are vectors positioned
in a shared multidimensional vector space, and
vectors are geometrically defined by two aspects:
having both a direction and magnitude (Hefferon,
2018, page 36). Direction is the position in the
space that the vector points towards (expressed by
its dimension values), while magnitude is a vec-
tor’s length, defined as its distance from the origin
(expressed by the vector norm) (Anton and Rorres,
2013, page 131). It is understood that information

contained in a vector is encoded in the dimension
values, which are most often studied in NLP re-
search (see §6). However, information can be en-
coded in a representational vector space in more
implicit ways, and relations can be inferred from
more than just vector dimension values.

We hypothesise that it is possible for the vec-
tor magnitude—the norm—to carry information
as well. Though it is a distributed property of a
vector’s dimensions, the norm not only relates the
distance of a vector from the origin, but indirectly
also its distance from other vectors. Two vectors
could be pointing in the exact same direction, but
their distance from the origin might differ dramat-
ically.1 A similar effect has been observed in the
literature: for many word embedding algorithms,
the norm of the word vector correlates with the
word’s frequency (Schakel and Wilson, 2015). E.g.
in fastText embeddings the vectors of stop words
(the most frequent words in English) are positioned
closer to the origin than content words (Balodis
and Deksne, 2018); and Goldberg (2017) notes that
for many embeddings normalising the vectors re-
moves word frequency information. Additionally,
the norm plays an integral part in BERT’s atten-
tion layer, controlling the levels of contribution
from frequent, less informative words by control-
ling the norms of their vectors (Kobayashi et al.,
2020). It stands to reason that the norm could be
leveraged by embedding models to encode other
linguistic information as well. Hence, we argue
that a vector representation has two information
containers: vector dimensions and the vector norm
(the titular warp and weft). In this paper, we test
the assumption that these two components can be
used to encode different types of information.

To this end, we need a probing method that pro-
vides an intrinsic evaluation of any given embed-

1Mathematically, two vectors can only be considered equal
if both their direction and magnitude are equal (Anton and
Rorres, 2013, page 137).
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ding representation, for which the typical probing
pipeline is not suited. We thus extend the existing
probing framework by introducing random noise
into the embeddings. This enables us to do an in-
trinsic evaluation of a single encoder by testing
whether the noise disrupted the information in the
embedding being tested. The right application of
noise enables us to determine which embedding
component the relevant information is encoded in,
by ablating that component’s information. In turn,
this can inform our understanding of how certain
linguistic properties are encoded in vector space.
We call the method probing with noise and demon-
strate its generalisability to both contextual and
static encoders by using it to intrinsically evaluate
English GloVe and BERT embeddings on a number
of established probing tasks.

This paper’s main contributions are: (a) a
methodological extension of the probing frame-
work: probing with noise; (b) an array of exper-
iments demonstrating the method on a range of
probing tasks; and (c) an exploration of the im-
portance of the vector norm in encoding linguistic
phenomena in different embedding models.

2 Method: Probing With Noise

Our method is an extension of the typical probing
pipeline (steps 1-6), incorporated as steps 7 and 8:

1. Choose a probing task
2. Choose or design an appropriate dataset
3. Choose a word/sentence representation
4. Choose a probing classifier (the probe)
5. Train the probe on the embeddings as input
6. Evaluate the probe’s performance on the task
7. Introduce systematic noise in the embedding
8. Repeat training, evaluate and compare

Usually, the evaluation score from step 6 is used
as a basis to make inferences regarding the presence
of the probed information in embeddings. Differ-
ent encoders are compared based on their evalua-
tion score and the probe’s relative performance can
inform which model stores the information more
saliently. Though ours may seem like a minor ad-
dition, it changes the approach conceptually. Now,
rather than providing the final score, the output
of step 6 establishes an intrinsic, vanilla baseline.
Embeddings with noise injections can then be com-
pared against it in steps 7 and 8, offering a relative
intrinsic interpretation of the evaluation. In other

words, using relative information between a vec-
tor representation and targeted ablations of itself
allows for inferences to be made on where informa-
tion is encoded in embeddings.

The method relies on three supporting pillars: (a)
random baselines, which in tandem with the vanilla
baseline provide the basis for a relative evaluation;
(b) statistical significance derived from confidence
intervals, which informs the inferences we make
based on the relative evaluation; and (c) targeted
noise, which enables us to examine where the in-
formation is encoded. We describe them in the
following subsections, starting with the noise.

2.1 Choosing the Noise

The nature of the noise is crucial for our method,
as the goal is to systematically disrupt the content
of the information containers in order to identify
whether a container encodes the information. We
use an ablation method to do this: by introduc-
ing noise into either container we “sabotage” the
representation, in turn identifying whether the in-
formation we are probing for has been removed.
Though we introduce random noise, our choice of
how to apply it is systematic, as it is important that
the noising function applied to one container leaves
the information in the remaining container intact,
otherwise the results will not offer relevant insight.

Ablating the Dimension Container: The noise
function for ablating the dimensions needs to re-
move its information completely, while leaving
the norm intact. It should also not change the di-
mensionality of the vector, given that a change in
the dimensionality of a feature also changes the
chance of the probe finding a random or spurious
hyper-plane that performs well on the data sample.
Maintaining the dimensionality thus ensures that
the probability of the model finding such a lucky
split in the feature space remains unchanged.

Our noise function satisfies these constraints:
for each embedding in a dataset, we generate a
new, random vector of the same dimensionality,
then scale the new dimension values to match the
norm of the original vector. This invalidates any
semantics assigned to a particular dimension as the
values are replaced with meaningless noise, while
retaining the original vector’s norm values.

Ablating the Norm Container: To remove in-
formation potentially carried by a vector’s norm
while retaining dimension information, we apply a
noising function analogous to the previous one: for
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each embedding we generate a random norm value,
and then scale the vector’s original dimension val-
ues to match the new norm. This randomises vector
magnitudes, while the relative sizes of the dimen-
sions remain unchanged. In other words, all vectors
will keep pointing in the same directions, but any
information encoded by differences in magnitude
is removed.2

Ablating Both Containers: The two ap-
proaches are not mutually exclusive: applying both
noising functions should have a compounding ef-
fect and ablate both information containers simul-
taneously, essentially generating a completely ran-
dom vector with none of the original information.

2.2 Random Baselines

Even when no information is encoded in an embed-
ding, the train set may contain class imbalance, and
the probe can learn the distribution of classes. To
account for this, as well as the possibility of a pow-
erful probe detecting an empty signal (Zhang and
Bowman, 2018), we need to establish informative
random baselines against which we can compare
the probe’s performance.

We employ two such baselines: (a) we assert a
random prediction onto the test set, negating any
information that a classifier could have learned,
class distributions included; and (b) we train the
probe on randomly generated vectors, establishing
a baseline with access only to class distributions.

2.3 Confidence Intervals

Finally, we must account for the degrees of ran-
domness, which stem from two sources: (1) the
probe may contain a stochastic component, e.g. a
random weight initialisation; (2) the noise func-
tions are highly stochastic (i.e. sampling random
norm/dimension values). Hence, evaluation scores
will differ each time the probe is trained, making
relative comparisons of scores problematic. To
mitigate this, we retrain and evaluate each model
50 times reporting the average score of all runs,
essentially bootstrapping over the random seeds.

To obtain statistical significance for the aver-
ages, we calculate a 99% confidence interval (CI)
to confirm that observed differences in the averages
of different model scores are significant. We use

2We are conscious that vectors have more than one kind of
norm, so choosing which norm to scale to might not be triv-
ial. We have explored this in supplementary experiments and
found that in our framework there is no significant difference
between scaling to the L1 norm vs. L2 norm.

the CI range when comparing evaluation scores
of probes on any two noise models to determine
whether they come from the same distribution: if
there is overlap in the range of two possible av-
erages they might belong to the same distribution
and there is no statistically significant difference
between them. Using CIs in this way gives us a
clearly defined decision criterion on whether any
model performances are different.

3 Data

In our experiments we use 10 established prob-
ing task datasets for the English language intro-
duced by Conneau et al. (2018). The goal of the
multi-class Sentence Length (SL) probing task is
to predict the length of the sentence as binned in
6 possible categories, while Word Content (WC)
is a task with 1000 words as targets, predicting
which of the target words appears in a given sen-
tence. The Subject and Object Number tasks (SN
and ON) are binary classification tasks that predict
the grammatical number of the subject/object of
the main clause as being singular or plural, while
the Tense (TE) task predicts whether the main verb
of the sentence is in the present or past tense. The
Coordination Inversion (CIN) task distinguishes
between a sentence where the order of two coor-
dinated clausal conjoints has been inverted or not.
Parse Tree Depth (TD) is a multi-class prediction
task where the goal is to predict the maximum
depth of the sentence’s syntactic tree, while Top
Constituents (TC) predicts one of 20-classes of the
most common syntactic top-constituent sequences.
In the Bigram Shift (BS) task, the goal is to pre-
dict whether two consecutive tokens in the sentence
have been inverted, and Semantic Odd Man Out
(SOMO) is a task predicting whether a noun or verb
was replaced with a different noun or verb. We use
these datasets as published in their totality, with
no modifications.3 We also consider these tasks
to represent examples of different language do-
mains: surface information (SL,WC), morphology
(SN,ON,TE), syntax (TD,TC,CIN) and contextual
incongruity (BS,SOMO). This level of abstraction
can lend itself to interpreting the experimental re-
sults, as there may be similarities across tasks in
the same domain (note that Durrani et al. (2020)
follow a similar line of reasoning).

3https://github.com/facebookresearch/
SentEval/tree/master/data/probing
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4 Experiments

4.1 Models and Implementation

Given the current prominence of contextual en-
coders, such as BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018b) and their derivatives, they are
an obvious choice for the application of our method.
However, rather than compare different contextual
encoders, we prefer to draw a contrastive compar-
ison with a static encoder, such as GloVe (Pen-
nington et al., 2014), which is a distributed repre-
sentation based on a word to word co-occurrence
matrix. This provides insight into both models and
demonstrates the method’s generalisability to more
than one type of encoder. In our experiments we
examine BERT and GloVe embeddings.

Note that all the probing datasets we use are
framed as classification tasks at the sentence level
(see §3), so our experiments require sentence rep-
resentations. We use pretrained versions of BERT
and GloVe to generate embeddings for each sen-
tence. The BERT model generates 12 layers of em-
bedding vectors with each layer containing a sepa-
rate 768-dimensional embedding for each word, so
we average the word embeddings in BERT’s final
layer, resulting in a 768-dimensional sentence em-
bedding. We take the same mean pooling approach
with GloVe, which yields a 300-dimensional sen-
tence embedding for each sentence. While BERT
uses sub-word tokens to get around out of vocab-
ulary tokens, in the rare instance of encountering
an OOV with GloVe, we generate a random word
embedding in its stead.

In each set of experiments, the sentence embed-
dings are used as input to a Multi-Layered Percep-
tron (MLP) classifier, which labels them accord-
ing to the probing task. We evaluate the perfor-
mance of all probes using the AUC-ROC score.4

Regarding implementation and parameter details,
we used the bert-base-uncased BERT model from
the pytorch_pretrained_bert library5 (Paszke et al.,
2019), a pre-trained GloVe model6 and for the MLP
probe we used the scikit-learn MLP implementa-
tion (Pedregosa et al., 2011) using the default pa-

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_
auc_score.html

5https://pypi.org/project/
pytorch-pretrained-bert/

6The larger common crawl vectors: https://nlp.
stanford.edu/projects/glove/

rameters.7,8

4.2 Chosen Noise Models

As described in §2, we remove information from
the norm by sampling random norm values and scal-
ing the vector dimensions to the new norm. How-
ever, considering that vectors have more than one
calculable norm, the scaling can be done to match
more than one norm value. We have examined the
effects of scaling to both the L1 and L2 norms,
as they are most widely used in NLP, and found
that applying our norm ablation noise function to
scale to either norm removes information from both
norms (see Table 3).9 In order to streamline the
results presentation, henceforth when discussing
norm ablations we only report results pertaining to
scaling to the L2 norm.

To ablate information encoded in the dimension
container, we randomly sample dimension values
and then scale them to match the original norm of
the vector (see §2).10 We expect this to fully re-
move all interpretable information encoded in the
dimension values, making the norm the only infor-
mation container available to the probe. Applying
both noise functions together on the same vector
should remove any information encoded in it.

Finally, we use the vanilla BERT and GloVe sen-
tence embeddings in their respective evaluations
as vanilla baselines against which the models with
noise are compared. Here the probe has access to
both information containers: dimensions and norm.
However, it is also important to establish the vanilla
baseline’s performance against the random base-
lines: we need to confirm whether the information
is in fact encoded somewhere in the embeddings.

7activation=’relu’, solver=’adam’, max_iter=200,
hidden_layer_sizes=100, learning_rate_init=0.001,
batch_size=min(200,n_samples), early_stopping=False,

weight init. W ∼ N
(
0,
√

6/(fanin + fanout)
)

(scikit

relu default). See: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

8Code available here: https://github.com/
GreenParachute/probing-with-noise

9This contrasts with applying a normalisation function to
the vector, where normalising to one of the norms removes
information encoded in that norm, but retains, or even empha-
sises the information in the remaining norm, making normali-
sation an unsuitable ablation function (see §A for details).

10The random norm and dimension values are sampled
uniformly from a range between the minimum and maxi-
mum norm/dimension values of the respective embeddings
on all 10 datasets. BERT norm range: [7.1896,13.2854],
BERT dimension range: [-5.427,1.9658]; GloVe norm range:
[2.0041,8.0359], GloVe dimension range: [-2.5446,3.1976]
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GloVe Key
Model SL WC SN ON TE Surface Info.

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI SL: Sentence Length
rand. pred. .5006 .0013 .4995 .001 .4996 .002 .4999 .0023 .4981 .0022 WC: Word Content
rand. vec. .4999 .0011 .5006 .0009 .499 .0022 .4998 .0024 .4997 .0024 Morphology
vanilla .9475 .0005 .9974 .0001 .8114 .0014 .7805 .0013 .8632 .0014 SN: Subject Number
abl. N .9384 .0005 .994 .0001 .8058 .0016 .7743 .0018 .8594 .0013 ON: Object Number
abl. D .5481 .0013 .504 .0011 .5003 .0022 .4994 .0024 .5013 .0025 TE: Tense
abl. D+N .5001 .0011 .4999 .0008 .4987 .0024 .4994 .002 .4998 .0021 Syntax
Model CIN TD TC BS SOMO CIN: Coordination

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI Inversion
rand. pred. .5004 .0022 .5005 .0012 .5005 .0009 .4998 .0022 .4999 .0026 TD: Parse Tree Depth
rand. vec. .4993 .0022 .5002 .0014 .5004 .0009 .4989 .0023 .4991 .0023 TC: Top Constituents
vanilla .5493 .0019 .7799 .0012 .9512 .0004 .5017 .0021 .5291 .0021 Incongruity
abl. N .5437 .002 .7689 .001 .9438 .0004 .5034 .0024 .5235 .002 BS: Bigram Shift
abl. D .5003 .0023 .5137 .0012 .5331 .0013 .499 .0026 .5005 .0021 SOMO: Semantic
abl. D+N .5004 .0021 .501 .0013 .4996 .0011 .4996 .0024 .5007 .0019 Odd Man Out

Table 1: Experimental results on GloVe models and baselines. Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs. Cells shaded light grey belong to the same distribution as random
baselines, dark grey cells share the vanilla baseline distribution, while scores significantly different from both the
random and vanilla baselines are unshaded, while the most pertinent scores are marked in bold.

4.3 Results

Detailed experimental evaluation results for GloVe
and BERT on each of the 10 probing tasks are pre-
sented in Tables 1 and 2 respectively. Note that all
cells shaded light grey belong to the same distribu-
tion as random baselines on a given task, as there
is no statistically significant difference between the
different scores11; cells shaded dark grey belong to
the same distribution as the vanilla baseline on a
given task; and all cells that are not shaded contain
a significantly different score than both the random
and vanilla baselines, indicating that they belong to
different distributions. The scores most pertinent
to the result discussion are marked in bold.

GloVe results: The vanilla GloVe vectors out-
perform the random baselines on all tasks except
BS. This is not surprising, as BS is essentially a
local-context task, and GloVe does not encode con-
text in such a localised manner. In all other tasks,
at least some task-relevant information is encoded
in the embeddings. Having established the vanilla
results as a baseline for the ablations, we examine
which information container encodes the relevant
information: dimension or norm.

Generally, the results show that the answers are
task-dependent. In the SN, ON, TE, CIN and

11We highlight that the rand. vec. baseline is equivalent to
the scenario where both dimensions and norm are ablated (abl.
D+N). While the two scenarios are arguably the exact same
condition, we include both of them in the results presentation
to demonstrate a consistent application of our methodology,
where we consider rand. vec. to be a baseline, and the abl.
D+N a sense-check of our ablation functions.

SOMO tasks, there is a substantial drop in the
probe’s performance after ablating the dimension
container and it is immediately comparable to ran-
dom baselines. Furthermore, performance does not
significantly change after also ablating the norm,
indicating that for these tasks no pertinent informa-
tion is stored in the norm, and that all the informa-
tion the probe uses is stored in the dimensions.

However, the results for the SL, WC, TD and
TC probes tell a different story. Once the dimen-
sion container is ablated from these vectors, al-
though the performance drops markedly compared
to vanilla, it does not quite reach the random base-
line performance as observed in the above tasks.12

These results indicate that for these tasks the rele-
vant information is not contained only in the dimen-
sion container. Furthermore, when the dimension
and norm ablation functions are applied together,
this induces a further performance drop, and the
resulting performance scores become comparable
to the random baselines. This indicates that the
vectors with ablated dimension information still
contain residual information relevant to the task,
which is removed when also ablating the norm,
pointing to the fact that the norm contains some
of the relevant information regardless of what is
encoded in the vector dimensions.

We should note here that, while it is true that in

12This is true even in the case of WC, where the difference
is really quite small, yet still statistically significant. Note that
the WC task is a particularly unusual classification task, as
there are 1000 possible classes to predict, which could explain
the statistical significance of such a small difference.
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BERT Key
Model SL WC SN ON TE Surface Info.

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI SL: Sentence Length
rand. pred. .5002 .0006 .4996 .0012 .4995 .0021 .4988 .0022 .5007 .0021 WC: Word Content
rand. vec. .5003 .0004 .4997 .0009 .5006 .002 .4996 .0024 .4993 .0021 Morphology
vanilla .9733 .0011 .982 .0003 .9074 .0008 .8674 .0019 .9135 .0008 SN: Subject Number
abl. N .973 .0008 .9783 .0003 .9078 .0008 .8658 .0017 .9118 .0012 ON: Object Number
abl. D .5047 .0008 .5013 .0011 .4992 .0021 .5004 .0023 .5007 .0019 TE: Tense
abl. D+N .4997 .0008 .5 .0013 .5006 .0024 .4994 .0024 .4983 .0021 Syntax
Model CIN TD TC BS SOMO CIN: Coordination

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI Inversion
rand. pred. .5007 .0022 .4999 .0012 .5001 .0013 .5011 .0020 .499 .0018 TD: Parse Tree Depth
rand. vec. .5014 .0019 .4999 .0012 .5001 .0013 .5005 .0024 .5001 .0021 TC: Top Constituents
vanilla .7472 .0016 .7751 .0016 .9562 .0002 .9382 .0006 .6401 .0013 Incongruity
abl. N .7492 .0018 .7709 .0016 .9547 .0004 .9371 .001 .6396 .0017 BS: Bigram Shift
abl. D .5049 .0021 .5004 .0013 .5093 .0019 .556 .0025 .5272 .002 SOMO: Semantic
abl. D+N .5015 .0035 .5 .0012 .5001 .001 .4972 .0035 .4997 .002 Odd Man Out

Table 2: Experimental results on BERT models and baselines. Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs. Cells shaded light grey belong to the same distribution as random
baselines, dark grey cells share the vanilla baseline distribution, while scores significantly different from both the
random and vanilla baselines are unshaded, while the most pertinent scores are marked in bold.

all tasks ablating the norm alone causes a statisti-
cally significant drop in performance, this finding
on its own should not be taken as an indicator that
the norm encodes task-relevant information. Given
how consistently small the drop is across all tasks
(<0.1), this is more likely an artefact of an interac-
tion between the noising function and the GloVe
vectors. The more reliable indicator of where the
information is encoded is the experiment on dimen-
sion ablations compared to ablating both dimension
and norm: if for a particular task performance re-
mains above random after ablating dimensions, but
drops to random when ablating both dimensions
and norms, this shows that the norm is encoding at
least part of the relevant information.

BERT results: The vanilla BERT vectors out-
perform random baselines across all tasks, includ-
ing the BS task. When ablating the dimensions
on most tasks, the probe’s performance drops dra-
matically and is comparable to random baselines.
It does not change after also ablating the norm,
indicating that no pertinent information is stored
in BERT’s norm container for these tasks. How-
ever, the BS and SOMO tasks show that some of
the task information is stored in BERT’s norm, as
the performance drop when ablating dimensions
is not comparable to random baselines, and only
reaches that once the norm is also ablated. The
same is true for the syntactic TC task, which is also
the only BERT result that shows a similar trend as
GloVe, though it seems that BERT stores far less
TC information in the norm than GloVe does.

Ultimately, our experimental results allow us to
make a number of general inferences: (a) the norm
is indeed a separate information container, (b) on
most tasks the vast majority of the relevant infor-
mation is encoded in the dimension values, but can
be supplemented with information from the norm,
(c) though the information contained in the norm is
not always very impactful, it is not negligible, (d)
different encoders use the norm to carry different
types of information, (e) specifically BERT stores
information pertinent to the BS, SOMO and TC
tasks in the norm, (f) while GloVe uses it to store
SL, WC, TC and TD information.

4.4 Norm Correlation Analysis

While we have demonstrated that information can
be encoded in the norm, we wish to also understand
the relationship between the norms and the probed
information. We explore this with a Pearson cor-
relation analysis: we test the correlation between
each vector norm and the sentence labels on each
probing task dataset.13 The correlation results are
presented in Table 3, and largely support our result
interpretations from §4.3,14 including that applying

13The Pearson test only works on continuous variables, but
it is still possible to calculate with categorical variables if they
are binary, by simply converting the categories to 0 and 1.

14In cases such as WC and TC where there are more than
two categorical variables we can perform a Kruskal-Wallis
test to determine a statistically significant difference between
the categories. This does not quantify the difference in the
same way as a Pearson test, and does not allow us to determine
whether the correlation is positive or not, nor how strong it is.
Instead we can only say that we performed the test and found
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Task Vectors GloVe BERT
L1 L2 L1 L2

Vanilla -0.7278 -0.3758 -0.1564 -0.1039
SL Abl. norm -0.1893 -0.0025 -0.0417 -0.0013

Vanilla 0.0360 0.0268 0.0071 0.0146
SN Abl. norm 0.0036 -0.0033 -0.0035 -0.0021

Vanilla 0.0013 0.0008 -0.0736 -0.0583
ON Abl. norm 0.0009 0.0013 -0.0181 -0.0010

Vanilla 0.1152 0.0571 0.0542 0.0413
TE Abl. norm 0.0277 -0.0031 0.0097 -0.0030

Vanilla -0.0817 0.1908 -0.0415 -0.0251
TD Abl. norm -0.0665 0.0016 -0.0163 -0.0045

Vanilla -0.0019 -0.0094 -0.0755 -0.0638
CIN Abl. norm 0.0029 0.0018 -0.0152 -0.0015

Vanilla 0.0040 0.0002 -0.3866 -0.3238
BS Abl. norm 0.0022 0.0006 -0.0978 -0.0005
SO Vanilla -0.0464 -0.0222 -0.2414 -0.2305
MO Abl. norm -0.0105 0.0000 -0.0420 0.0021

Table 3: Pearson correlation coefficients between the
class labels and vector norms for vanilla vectors and
vectors with ablated norms.

our noise function to ablate the norm fully removes
the information from the norms: the correlation
between either norm and the class labels drops to
≈0,15 indicating that information encoded by the
norm and any distinguishing properties it may have
had have been removed.

The data shows that most task labels do not ex-
hibit a correlation with the vanilla GloVe norm.
There is a moderate positive correlation between
TD and the L2 norm, but not the L1 norm, and
a weak positive correlation between TE and the
L1 norm, but not the L2 norm. There is a high
correlation between the SL labels and both norms,
showing that GloVe uses the norm to encode sen-
tence length, as reflected in our experiments in §4.

When it comes to vanilla BERT, most task labels
do not exhibit a correlation with the norms. How-
ever, both norms have a weak negative correlation
with SL, and a moderate negative correlation with
BS and SOMO. The latter two are most highly cor-
related with BERT’s norm, which also aligns with
our experimental findings in §4.

5 Discussion

The correlation coefficients in Table 3 can be inter-
preted in terms of how these linguistic phenomena
are encoded in vector space. A negative correla-
tion coefficient means that larger norms indicate a

the results to be significant, indicating some correlation.
15Except in GloVe-SL-L1 where the coefficient ’only’ drops

from strongly correlated to weakly correlated.

negative class, while a positive coefficient means
that larger norms indicate a positive class. For ex-
ample, the negative correlation in SL-GloVe and
SL-BERT indicates that longer sentences are posi-
tioned closer to the origin. The same interpretation
holds for BERT embeddings on the BS and SOMO
tasks; e.g. in SOMO a sentence containing an out
of context word is positioned closer to the origin.

It is interesting that BERT’s norm stores informa-
tion on the BS and SOMO tasks specifically. Their
common thread is a violation of the local context
of the affected words: though the overall context
and structure of the sentence is unaffected, there
is a small, localised disruption in co-occurrences.
Hence, these tasks capture contextual incongruity.
Given that we know that BERT is a contextual en-
coder, and that its self-attention uses the vector
norm to control the levels of contribution from less
informative words (Kobayashi et al., 2020), we
suspect that this gives it the capabilities to accu-
rately model these short-distance dependencies and
word co-occurence probabilities, concepts which
strongly correspond to local contextual incongruity.
BERT is evidently capable of encoding this signal
well, and seems to be using its norm to supplement
the encoding of the phenomenon in such a way that
it positions sentences exhibiting local contextual in-
congruity closer to the origin, relative to sentences
that do not contain it. Furthermore, BERT’s ability
to model incongruity via the norm could essentially
be frequency-based, similar to how some word em-
beddings encode word frequency in the norm. In
contrast, GloVe is a static encoder and exhibits
no indication that it stores this information in the
norm, or indeed any ability to accurately model
this phenomenon at all, but uses the norm to store
surface-level and syntactic information.

We emphasise the importance of the norm as
it expands our understanding of the way informa-
tion is encoded in vector space, but it could also
have important implications for downstream tasks
involving operations on vectors: e.g. the calcula-
tion of a cosine similarity measure normalises the
vectors being compared. This nullifies the informa-
tion in the norm, reducing the comparison to one
of directions (i.e. dimensions), and any linguistic
information encoded in the norm will be lost and
unaccounted for when making the comparison.
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6 Related Work

Probing has been proposed seemingly indepen-
dently by different groups of NLP researchers
(Ettinger et al., 2016; Shi et al., 2016; Veldhoen
et al., 2016; Adi et al., 2017) and has gained sig-
nificant momentum in the community, helping to
explore different aspects of text encodings (e.g.
Hupkes et al. (2018); Giulianelli et al. (2018);
Krasnowska-Kieraś and Wróblewska (2019); Ten-
ney et al. (2019a); Lin et al. (2019); Şahin et al.
(2020); Liu et al. (2021); Arps et al. (2022)). Probes
trained on various representations successfully pre-
dict surface properties of sentences (Adi et al.,
2017; Conneau et al., 2018), POS and morpho-
logical information (Belinkov et al., 2017a; Liu
et al., 2019), as well as syntactic (Zhang and Bow-
man, 2018; Peters et al., 2018a; Tenney et al.,
2019b), semantic (Belinkov et al., 2017b; Ahmad
et al., 2018; Conia and Navigli, 2022), and even
number (Wallace et al., 2019), emotions (Qian
et al., 2016), idiomaticity (Salton et al., 2016; Ne-
dumpozhimana and Kelleher, 2021; Garcia et al.,
2021; Nedumpozhimana et al., 2022) and world
knowledge information (Ettinger, 2020), among
others (Belinkov and Glass, 2019; Rogers et al.,
2020; Koto et al., 2021; Ousidhoum et al., 2021;
Aghazadeh et al., 2022).

Furthermore, some dichotomies have emerged in
the literature, due to nuanced differences in the pre-
suppositions behind probing approaches. Ravichan-
der et al. (2020) distinguish varying points of view
on embeddings, highlighting a difference between
instrumentative and agentive probing. Vig et al.
(2020) view probing as a method of analysis and
distinguish two types of methods: structural and
behavioural. Additionally, Pimentel et al. (2020)
and Voita and Titov (2020) take an information-
theoretic perspective on embeddings, highlighting
the tension between probing identifying the mere
presence of information, versus its extractability.
We position our work as being instrumentative,
i.e. we view embeddings as tools that extract and
store knowledge from text; we consider our prob-
ing method to be structural, i.e. it provides insight
into how information is encoded within the rep-
resentation and the vector space; and the goal of
our work is to identify the presence of informa-
tion in embedding components. It is important to
clearly signpost this position in order to avoid con-
fusion and emphasise that our chosen approach is
sufficient to address our research questions.

Meanwhile, recent work calls for greater rigor in
evaluation approaches in NLP (McCoy et al., 2020;
Sadeqi Azer et al., 2020; Card et al., 2020), advocat-
ing for more widespread use of statistical tests on
common benchmarks. Probing has attracted simi-
lar criticism: Hewitt and Liang (2019) have shown
that under certain conditions, above-random prob-
ing accuracy can be achieved even when probing
for linguistically-meaningless noise. Recent work
addresses some of these problems by constructing
counterfactual representations in order to compare
the performance of the probe with and without the
pertinent information (Feder et al., 2020). Simi-
larly, Elazar et al. (2020) remove the relevant in-
formation from the representation, allowing a com-
parison of probe performance with and without the
removed information; not unlike the intrinsic probe
of Torroba Hennigen et al. (2020) who focus on
isolating the dimensions that encode relevant infor-
mation. In essence, these recent efforts address the
issue of relativising probe interpretations by remov-
ing information from the encoding; in that sense,
our work finds its place alongside them. However,
our method is not meant to remove specific infor-
mation, but is more exploratory in nature, with a
focus on understanding where within an embedding
certain information is encoded. Our use of confi-
dence intervals gives us a way to claim statistically
significant differences in our evaluations, offering
a more principled basis for result interpretation.

Our work also contributes to the relatively scarce
study of the role of the norm: Adi et al. (2017) ex-
plain its correlation with SL information due to the
central limit theorem (which we see does not apply
to BERT as its vector values are not centred around
zero). Hewitt and Manning (2019) show that the
squared L2 norm of BERT and ELMo corresponds
to the depth of the word in a parse tree (a finding
we could not confirm as they probe embeddings at
the word level, unlike our work). In contrast, work
on the role of dimensions as carriers of specific
types of information is plentiful (e.g. Karpathy
et al. (2015); Qian et al. (2016); Bau et al. (2019);
Dalvi et al. (2019); Lakretz et al. (2019)). Work
complementary to ours (Torroba Hennigen et al.,
2020) which focuses on the dimension container
also highlights the need for an intrinsic probe of
embedding models, and shows that most linguistic
properties are reliably encoded by only a handful
of dimensions, a finding consistent with Durrani
et al. (2020) and Durrani et al. (2022).
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7 Conclusion

We have developed a method of enquiry that pro-
vides geometric insights into embeddings and show
experimental evidence that both BERT and GloVe
embeddings use two separate information contain-
ers to store different types of linguistic information.
Our findings show that BERT primarily uses the
norm to store contextual incongruity information
and positions incongruous sentences closer to the
origin. Meanwhile, GloVe stores much more syn-
tactic information in its norm than BERT, but does
not store contextual information at all, and mainly
stores surface-level information in the norm.

Probing with noise can shift perspectives and
broaden our understanding of embeddings, demon-
strated by our experiments which provide novel in-
sights into contextual and static encoders. However,
they are by no means exhaustive: deeper and fur-
ther applications of the method, such as exploring
a host of other representations, different pooling
strategies or tracking behavior across embedding
layers, exploring word-level tasks or folding in ad-
ditional datasets, are all fruitful avenues for future
work. Fortunately, the method is robust enough to
be applied to any encoder and any dataset, whether
it is at the word or sentence level, which allows for
systematic further study.

Limitations

While our insights into how linguistic information
can be encoded in embeddings are valuable on their
own merit, our experiments mainly serve the pur-
pose of validating the probing with noise method,
in demonstrating that it can produce relevant in-
sights on different types of embeddings. Hence
we did not have scope to more thoroughly pursue
many of the topics touched upon in the paper.

One example is our choice in generating sen-
tence embeddings needed to probe for sentence-
level information. The encoders we have used
generate word-level embeddings, so we average
the word embeddings in each sentence, as this
is one of the most popular ways to generate sen-
tence representations. However, there are other
known approaches available to choose from, such
as max pooling and min pooling, or, when it comes
to BERT, using the CLS token.16 Indeed, rather
than a pooling strategy, using direct sentence-level

16Presumably, we may have observed a crisper effect in
BERT encoding incongruity using min or max pooling, given
that the BS task mainly affects only a few vectors in a sentence.

representations such as doc2vec (Le and Mikolov,
2014) or SentenceBERT (Reimers and Gurevych,
2019) might also be prudent, as well as applying
the method to word-level representations, for which
this paper did not allow scope.

Similarly, we have consistently used only one
probing classifier, an MLP with default parameters,
and we cannot say whether parameter tuning or dif-
ferent probes would yield different results. These
choices were made consciously, in order to avoid
adding more variables to our line of enquiry and
increasing the complexity of our experiments, yet it
is still a limitation in the sense that we do not know
whether the findings generalise to other probes.

It is also worth noting that the correlation study
in §4 comes with the limitation of only describ-
ing linear relationships, whereas it is possible that
connections between variables can be non-linear.
We argue that this demonstrates the value of our
method, which allows for a non-linear probe to test
for non-linear relationships. While even this lim-
ited correlation test can provide interesting insights,
much more can be done to study both the norm
and the dimension container—we have just barely
scratched the surface. Indeed, we have considered
only the most fundamental geometric properties of
vectors, yet vectors have other (distributed) prop-
erties that could potentially be considered distinct
information containers in their own right, such as
the vector’s minimum and maximum value, their
ratio, the entropy in the vector etc. Thankfully
the principles underpinning our method can be ex-
panded to include other types of noise that help
discriminate other possible geometric properties of
embeddings as information containers.

These points speak to the more general limita-
tions of our research: like any empirical work, we
measure behaviours on a number of data points
and draw conclusions from these measurements.
Thus there is a risk that our findings hold only for
the datasets on which we measured or the models
which were used to measure, be it encoders, probes
or probing tasks, and it is possible that our find-
ings might not generalise to other settings. While
this issue is more epistemological than it is specific
to our work, we must keep it in mind. Now, hav-
ing demonstrated that a signal is detectable in our
particular setting, a more comprehensive host of
studies is needed to draw more general conclusions.

Another source of uncertainty stems from our
use of off-the-shelf GloVe and BERT embeddings:
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they have been trained on completely different
datasets of dramatically varying sizes and content.
To truly test the interaction of their architectures
with our method, the training data used to train
their word embeddings should be identical between
both encoders, however implementing this was not
feasible in practice. Granted, using off-the-shelf va-
rieties does provide insight into the functioning of
well-known and commonly used embeddings, but
it consequently limits the comparability of their re-
sults as we cannot confidently distinguish whether
differences in probe performance are due to differ-
ences in encoder architecture or training data.

While we acknowledge a number of the work’s
limitations, we stress that all our choices have been
made in a sound, informed and methodologically
consistent manner. Here we simply highlight just
how many choices have been made along the way,
and how quickly the number of alternative paths
grows the further back up the decision tree we look.
While we believe that the work is fundamentally
sound, each choice could have made for a drasti-
cally different suite of experiments and could poten-
tially have yielded different results. In fact, we find
this to be a very exciting motivator for future work,
as this long list of “missed opportunities” only goes
to show how young and rich this research area still
is and how many more avenues there are to explore.
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A Appendix A

A.1 Analysis of L1 and L2 Normalised
Embeddings

Table 4 presents an extended Pearson correlation
analysis that includes correlations between class
labels and the norms of L1- and L2-normalised
vectors, in addition to vanilla vectors and vectors
with ablated norm information using our noising
function as described in §2.

As supported by Goldberg (2017, page 117), the
results show that normalising the vectors removes
information encoded in the norm. This also comes
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Task Vectors GloVe BERT
L1 L2 L1 L2

Vanilla -0.7278 -0.3758 -0.1564 -0.1039
SL L1 normal. -0.0013 0.7161 0.0032 0.2195

L2 normal. -0.7027 0.0001 -0.2223 0.0001
Abl. norm -0.1893 -0.0025 -0.0417 -0.0013
Vanilla 0.0360 0.0268 0.0071 0.0146

SN L1 normal. 0.0028 -0.0228 -0.0010 0.0087
L2 normal. 0.0255 -0.0019 -0.0086 -0.0003
Abl. norm 0.0036 -0.0033 -0.0035 -0.0021
Vanilla 0.0013 0.0008 -0.0736 -0.0583

ON L1 normal. -0.0016 0.0048 -0.0015 0.0892
L2 normal. -0.0004 -0.0015 -0.0901 0.0037
Abl. norm 0.0009 0.0013 -0.0181 -0.0010
Vanilla -0.1152 -0.0571 -0.0542 -0.0413

TE L1 normal. -0.0020 0.1040 -0.0023 0.0659
L2 normal. -0.1071 -0.0006 -0.0691 -0.0018
Abl. norm -0.0317 -0.0007 -0.0116 0.0010
Vanilla -0.0817 0.1908 -0.0415 -0.0251

TD L1 normal. 0.0005 0.3133 0.0021 0.0645
L2 normal. -0.3159 -0.0026 -0.0652 0.0000
Abl. norm -0.0665 0.0016 -0.0163 -0.0045
Vanilla -0.0019 -0.0094 -0.0755 -0.0638

CIN L1 normal. 0.0000 -0.0062 -0.0047 0.0846
L2 normal. 0.0065 0.0064 -0.0850 0.0034
Abl. norm 0.0029 0.0018 -0.0152 -0.0015
Vanilla 0.0040 0.0002 -0.3866 -0.3238

BS L1 normal. -0.0015 -0.0048 0.0004 0.4333
L2 normal. 0.0056 -0.0019 -0.4357 0.0024
Abl. norm 0.0022 0.0006 -0.0978 -0.0005
Vanilla -0.0464 -0.0222 -0.2414 -0.2305

SO L1 normal. 0.0031 0.0401 0.0035 0.2213
MO L2 normal. -0.0392 -0.0014 -0.2219 0.0023

Abl. norm -0.0105 0.0000 -0.0420 0.0021

Table 4: Pearson correlation coefficients between the
class labels and vector norms for vanilla vectors, L1 and
L2 normalised vectors, as well as vectors with ablated
L2 norm containers.

with a caveat: normalisation only removes informa-
tion from the same order norm as the normalisation
algorithm. We can observe this in the table: apply-
ing an L1 normalisation algorithm to the vectors
seems to completely remove any information en-
coded in the L1 norm, as the correlation drops to
≈ 0. The same happens to the correlation with the
L2 norm when applying L2 normalisation. How-
ever, surprisingly, it seems that a given normalisa-
tion algorithm impacts the other norm as well. For
example, in the BS task L2 normalisation nullifies
the L2 norm’s correlation with the class labels, but
in turn strengthens that correlation for the L1 norm,
which intensifies from -0.39 to -0.44. On the other
hand, L1 normalisation causes the same strengthen-
ing of correlation in the L2 norm, but also changes
the sign—the L2 norm’s correlation with BS class

labels increases from -0.32 to 0.43.
This shows that on certain tasks, not only is the

other norm unaffected by a normalisation proce-
dure, but its correlation with the task labels in-
creases. We observe this to varying degrees in
SL, ON, TE and BS. Furthermore, while the cor-
relation weakens in SOMO, it still exhibits the lat-
ter behaviour—the sign changes when the vectors
are L1 normalised, but not when they are L2 nor-
malised. This is prevalent across all datasets, even
in cases where the correlation between norm and
class labels is ≈0.

This analysis supports our decision from §2 to
use a different noising function to remove informa-
tion from the norm container, as only the vectors
with fully ablated norms have an ≈0 correlation
with both the L1 and L2 norms.
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Abstract

Extractive question answering (QA) models
tend to exploit spurious correlations to make
predictions when a training set has unintended
biases. This tendency results in models not
being generalizable to examples where the cor-
relations do not hold. Determining the spu-
rious correlations QA models can exploit is
crucial in building generalizable QA models
in real-world applications; moreover, a method
needs to be developed that prevents these mod-
els from learning the spurious correlations even
when a training set is biased. In this study, we
discovered that the relative position of an an-
swer, which is defined as the relative distance
from an answer span to the closest question-
context overlap word, can be exploited by QA
models as superficial cues for making predic-
tions. Specifically, we find that when the rel-
ative positions in a training set are biased, the
performance on examples with relative posi-
tions unseen during training is significantly de-
graded. To mitigate the performance degrada-
tion for unseen relative positions, we propose
an ensemble-based debiasing method that does
not require prior knowledge about the distribu-
tion of relative positions. We demonstrate that
the proposed method mitigates the models’ re-
liance on relative positions using the biased and
full SQuAD dataset. We hope that this study
can help enhance the generalization ability of
QA models in real-world applications.1

1 Introduction

Deep learning-based natural language understand-
ing (NLU) models are prone to use spurious cor-
relations in the training set. This tendency results
in models’ poor generalization ability to out-of-
distribution test sets (McCoy et al., 2019; Geirhos
et al., 2020), which is a significant challenge in the
field. Question answering (QA) models trained on
intentionally biased training sets are more likely

1Our codes are available at https://github.com/
KazutoshiShinoda/RelativePositionBias.

Context ... This changed in 1924 with formal re-
quirements developed for graduate degrees,
including offering Doctorate (PhD) degrees
...

Question The granting of Doctorate degrees first oc-
curred in what year at Notre Dame?

Relative
Position

−1

Context ... The other magazine, The Juggler, is re-
leased twice a year and focuses on student
literature and artwork ...

Question How often is Notre Dame’s the Juggler pub-
lished?

Relative
Position

−2

Table 1: Examples taken from SQuAD. Underlined
words are contained in both the context and question.
Bold spans are the answers to the questions. In both
the examples, answers are found by looking to the right
from the overlapping words. See §2.1 for the definition
of the relative position.

to learn solutions based on spurious correlations
rather than on causal relationships between inputs
and labels. For example, QA models can learn
question-answer type matching heuristics (Lewis
and Fan, 2019), and absolute-positional correla-
tions (Ko et al., 2020), particularly when a training
set is biased toward examples with corresponding
spurious correlations. Collecting a fully unbiased
dataset is challenging. Therefore, it is vital to dis-
cover possible dataset biases that can degrade the
generalization and develop debiasing methods to
learn generalizable solutions even when training
on unintentionally biased datasets.

In extractive QA (e.g., Rajpurkar et al., 2016),
in which answers to questions are spans in textual
contexts, we find that the relative position of an an-
swer, which is defined as the relative distance from
an answer span to the closest word that appears in
both a context and a question, can be exploited as
superficial cues by QA models. See Table 1 for the
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Figure 1: F1 score for each relative position d in the
SQuAD development set. “ALL” in the legend refers to
a QA model trained on all the examples in the SQuAD
training set. The other terms refer to models trained
only on examples for which the respective conditionals
are satisfied. BERT-base was used for the QA models.
The accuracy is comparable to ALL for examples with
seen relative positions, but worse for others. Please refer
to §2.1 for the definition of d.

examples. Specifically, we find that when the rela-
tive positions are intentionally biased in a training
set, a QA model tends to degrade the performance
on examples where answers are located in relative
positions unseen during training, as shown in Fig-
ure 1. For example, when a QA model is trained on
examples with negative relative positions, as shown
in Table 1, the QA performance on examples with
non-negative relative positions is degraded by 10
∼ 20 points, as indicated by the square markers
(■) in Figure 1. Similar phenomena were observed
when the distribution of the relative positions in
the training set was biased differently, as shown in
Figure 1. This observation implies that the model
may preferentially learn to find answers from seen
relative positions.

We aim to develop a method for mitigating the
performance degradation on subsets with unseen
relative positions while maintaining the scores on
subsets with seen relative positions, even when
the training set is biased with respect to relative
positions. To this end, we propose debiasing meth-
ods based on an ensemble (Hinton, 2002) of in-
tentionally biased and main models. The biased
model makes predictions relying on relative posi-
tions, which promotes the main model not depend-
ing solely on relative positions. Our experiments
on SQuAD (Rajpurkar et al., 2016) using BERT-
base (Devlin et al., 2019) as the main model show
that the proposed methods improved the scores
for unseen relative positions by 0∼10 points. We

demonstrate that the proposed method is effective
in four settings where the training set is differently
filtered to be biased with respect to relative posi-
tions. Furthermore, when applied to the full train-
ing set, our method improves the generalization to
examples where questions and contexts have no
lexical overlap.

2 Relative Position Bias

2.1 Definition

In this study, we call a word that is contained in
both the question and the context as an overlap-
ping word. Let d be the relative position of the
nearest overlapping word from the answer span in
extractive QA. If w is a word, c = {wc

i}Ni=0 for
the sentence, q = {wq

i }Mi=0 for the question, and
a = {wc

i}ei=s (0 ≤ s ≤ e ≤ N ) for the answer, the
relative position d is defined as follows:

f(j, s, e) =





j − s, for j < s

0, for s ≤ j ≤ e

j − e, for j > e

(1)

D = {f(j, s, e)|wc
j ∈ q} (2)

d = argmind′∈D|d′| (3)

where 0 ≤ j ≤ N denotes the position of the word
wc
j in the sentence, f(i, s, e) denotes the relative

position of wc
i from a, and D denotes the set of rel-

ative positions of all overlapping words.2 Because
QA models favor spans that are located close to
the overlapping words (Jia and Liang, 2017) and
accuracy deteriorates when the absolute distance
between the answer span and the overlapping word
is considerable (Sugawara et al., 2018), the one
with the lowest absolute value in Equation 3 is
used as the relative position.3

2.2 Distribution of Relative Position d

Figure 2 shows the distribution of relative position
d in the SQuAD (Rajpurkar et al., 2016) training
set. This demonstrates that the d values are bi-
ased around zero. Although the tendency to bias
around zero is consistent for the other QA datasets,
there are differences in the distribution between the
datasets. See Appendix B for more details. This

2Because function words as well as content words are
important clues for reading comprehension, D in Equation 2
can contain function and content words.

3There are a few cases where d in Equation 3 is not fixed
to one value. However, such examples are excluded from the
training and evaluation sets for brevity.
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Figure 2: Histogram of relative position d in the SQuAD
training set.

difference may be caused by how the datasets were
collected or to the contexts’ domains. Therefore,
building a QA model that does not overfit a specific
distribution of relative positions is necessary.

3 Method

3.1 Debiasing Algorithm
For debiasing algorithms, we employ BiasProduct
and LearnedMixin (Clark et al., 2019; He et al.,
2019), which are based on product-of-experts (Hin-
ton, 2002), following Ko et al. (2020). In both
methods, after an intentionally biased model is pre-
pared, the cross-entropy loss is calculated using a
product of the biased and main models. The biased
model is fixed when minimizing the loss to train
the main model. Only the main model is used to
make predictions during testing. Following exist-
ing research (Seo et al., 2017; Devlin et al., 2019),
the model p̂ outputs the probabilities p̂(s) and p̂(e)
of the start position s and the end position e of the
answer span, and the loss function is the sum of the
cross-entropy of the start and end positions. For
simplicity, p̂(s) and p̂(e) will be denoted as p̂.

3.1.1 BiasProduct
In BiasProduct, the sum of the logarithms of the
output probability b of the biased model and the
output probability p of the main model is given to
the softmax function to obtain p̂, as follows.

p̂ = softmax(log p+ log b) (4)

This encourages the the main model to learn ex-
amples where the biased model make incorrect
predictions, rather than examples that contain bi-
ases allowing the biased model to make correct
predictions.

3.1.2 LearnedMixin
BiasProduct strongly depends on the output proba-
bility of the biased model. The main model can be

made more robust by using LearnedMixin, which
predicts whether the main model can trust the pre-
diction of the biased model for each example.

p̂ = softmax(log p+ g(c, q) log b) (5)

where g(≥ 0) is a learnable function that takes q
and c as inputs.

3.2 Biased Model
We describe how to construct the biased model
described in §3.1. The first model, Answer Prior, is
a fully rule-based model with a prior probability of
answer span. The second, the Position-only model,
is a QA model trained with only binarized contexts
from which models can know only which token is
an overlapping word.

3.2.1 Answer Prior (AnsPrior)
We first use a simple heuristic called AnsPrior as
a biased model. AnsPrior empirically defines the
prior probabilities of the start and end positions of
the answer span a according to the distribution of
the relative position d in a training set. The prior
probability bi that a word wc

i in a sentence is a start
or end of the answer is defined as follows for each
of the subsets of the training set that satisfies one of
the four conditions shown in the legend of Figure 1.

bi =



1
[
wc
i+1 ∈ q

]
/Z, for d ≤ −1

1
[
(wc

i+1 ∈ q) ∨ (wc
i−1 ∈ q)

]
/Z, for |d| = 1

1 [wc
i ∈ q] /Z, for d = 0

1
[
wc
i−1 ∈ q

]
/Z, for d ≥ 1

(6)

where 1 denotes an indicator function (e.g.,
1
[
wc
i+1 ∈ q

]
returns 1 if wc

i+1 is contained in q,
otherwise it returns 0) and Z denotes a normalizing
constant. These prior probabilities are based on a
heuristic that assigns equal probabilities to the pos-
sible answers in the training set. Therefore, they
are inflexible as they are prior probabilities specific
to the distribution of relative positions of a training
set.

3.2.2 Position-only model (PosOnly)
We propose PosOnly as a biased model that can be
used without prior knowledge about the distribu-
tions of relative positions in training sets. PosOnly
accepts as input the sequence of binary variables
indicating if a word in a context is overlapped
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Figure 3: Illustration of LearnedMixin with Position-only model (PosOnly) as a biased model. The output p̂ is used
for computing the loss, and the probability p is used for inference.

with a question. The only information available
to PosOnly to predict answer spans is the relative
distances from the overlapping words. Hence, it is
expected to learn solutions using the relative posi-
tions regardless of how biased the relative positions
of the training set are. The illustration of Learned-
Mixin with PosOnly is shown in Figure 3.

4 Experiments

4.1 Generalization to Unseen Relative
Positions

Dataset SQuAD 1.1 (Rajpurkar et al., 2016) was
used as the dataset. The training set is filtered to
be biased in four different ways to assess the ap-
plicability of our methods. The four subsets were
constructed by extracting only examples whose rel-
ative positions d satisfied the conditions d ≤ −1,
|d| = 1, d = 0, and d ≥ 1. The sizes of the subsets
are 33,256, 30,003, 21,266, and 25,191, respec-
tively. The scores of BERT-base trained on the full
training set are also reported for comparison. For
evaluation, we reported the F1 scores on subsets
of the SQuAD development set stratified by the
relative positions.

Method We compare four combinations of two
learning methods for debiasing, BiasProduct and
LearnedMixin, and two biased models, AnsPrior
and PosOnly. BERT-base (Devlin et al., 2019) was
used for both the main model and PosOnly. We
also evaluate the BERT-base with standard training
as the baseline. The training details are given in
Appendix A.

Results Table 2 shows the results. First, when
the full training set is used (ALL), the performance

of the BERT-base baseline exceeds 90 points when
|d| = 1, 2, whereas it drops by about eight points
when |d| ≥ 3. As shown in §2.2, there is a corre-
lation between the accuracy for a specific range of
relative positions and the frequency of examples
whose relative positions are in the corresponding
range in the training set.

The results of the BERT-base baseline trained
on subsets where the distribution of relative posi-
tion d was intentionally biased strengthened the
credibility of this hypothesis. For example, when
the standard training was performed only on exam-
ples with relative positions |d| = 1, the F1 score
decreased by less than two points for |d| = 1 com-
pared to ALL, whereas the F1 score decreased by
10∼15 points for |d| ≠ 1. A similar trend was ob-
served in the BERT-base baseline trained on other
subsets. This suggests that the model exploited
spurious correlations regarding relative positions
in the biased subsets to make predictions.

We compare the four proposed debiasing meth-
ods under the same conditions of relative positions
in the training sets. For the debiasing algorithms,
LearnedMixin produced higher F1 scores than Bi-
asProduct in most cases. This result shows the
effectiveness of learning the degree to which the
predictions of a biased model should be utilized for
training the main model. For the biased models,
PosOnly was superior to AnsPrior for improving
the generalization ability to examples with relative
positions unseen during training, i.e., the scores
in white cells in Table 2. LearnedMixin-PosOnly
outperformed LearnedMixin-AnsPrior by about
5 points when trained on d = 0 and tested on
d ≤ −3, and when trained on d ≤ −1 and tested
on d ≥ 3.
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Evaluated on

Trained on Model
d ≤
−3

d =
−2

d =
−1 d = 0 d = 1 d = 2 d ≥ 3

ALL BERT-base 82.19 90.82 90.25 86.47 92.49 90.14 81.43

d ≤ −1 BERT-base 78.17 88.34 88.38 67.82 71.62 77.22 69.54
d ≤ −1 BiasProduct-AnsPrior 73.00 84.34 85.61 46.32 25.23 64.91 59.06
d ≤ −1 LearnedMixin-AnsPrior 79.07 89.27 89.01 68.52 72.35 80.43 70.31
d ≤ −1 BiasProduct-PosOnly 75.04 83.90 83.22 73.80 81.35 81.79 73.27
d ≤ −1 LearnedMixin-PosOnly 77.00 86.72 86.25 74.26 82.66 82.81 75.94

|d| = 1 BERT-base 65.62 77.69 88.70 69.96 90.88 80.84 66.42
|d| = 1 BiasProduct-AnsPrior 60.44 75.07 56.44 49.32 52.37 72.85 57.98
|d| = 1 LearnedMixin-AnsPrior 73.42 83.39 88.70 74.24 90.47 85.51 73.52
|d| = 1 BiasProduct-PosOnly 72.41 80.59 84.01 73.34 87.61 83.11 72.09
|d| = 1 LearnedMixin-PosOnly 73.76 80.63 86.10 74.50 89.64 82.98 72.04

d = 0 BERT-base 60.75 67.94 73.11 82.85 67.72 64.74 52.88
d = 0 BiasProduct-AnsPrior 56.25 65.15 69.05 81.07 65.10 62.95 49.43
d = 0 LearnedMixin-AnsPrior 59.66 69.62 72.53 83.06 68.04 66.03 53.29
d = 0 BiasProduct-PosOnly 62.97 67.88 70.22 78.66 66.69 69.12 59.88
d = 0 LearnedMixin-PosOnly 65.09 70.47 72.51 81.32 68.29 68.47 59.54

d ≥ 1 BERT-base 68.03 74.63 74.08 63.21 90.28 89.44 75.42
d ≥ 1 BiasProduct-AnsPrior 58.63 63.13 29.08 39.22 88.53 88.34 72.29
d ≥ 1 LearnedMixin-AnsPrior 70.71 77.22 76.82 66.67 90.87 89.75 76.31
d ≥ 1 BiasProduct-PosOnly 68.54 78.13 78.58 70.72 85.17 81.59 72.90
d ≥ 1 LearnedMixin-PosOnly 71.17 80.41 79.97 71.33 87.53 84.33 74.24

Table 2: F1 scores for each subset of the SQuAD development set. The cells with relative position d seen during
training are indicated by gray . For gray cells, the scores tend to remain close to those in the case where the
full training set is used (ALL). Conversely, the scores for the other white cells tend to be lower than ALL.

In contrast, regarding the scores on exam-
ples with relative positions seen during train-
ing (i.e., the scores in the gray cells in Ta-
ble 2), LearnedMixin-AnsPrior was superior to
LearnedMixin-PosOnly. As pointed out in Utama
et al. (2020), the trade-off between accuracies on
in- and out-of-distribution test sets was observed
in our cases. Mitigating the trade-off for relative
positions is future work.

4.2 Effect of Mitigating Relative Position Bias
in Normal Settings

Although we verified the effectiveness of our meth-
ods on intentionally biased datasets in §4.1, the
proposed biased model, PosOnly, can also be ap-
plied to training on standard datasets because it
does not require prior information about the distri-
bution of relative positions, unlike AnsPrior. To
investigate the effect of our method in a normal
setting, we first trained PosOnly on the full train-

ing set. We then trained BERT-base as the main
model on the full training set using BiasProduct or
LearnedMixin with PosOnly as the biased model.

The results are shown in Table 3. LearnedMixin-
PosOnly improved the generalization to a subset
where questions and contexts have no common
words (i.e., c ∩ q = ϕ), with little performance
degradation on the other subset (i.e., c ∩ q ̸= ϕ).
This observation implies that our method might
mitigate the reliance on overlapping words in a
normal setting. However, the size of the subset
c ∩ q = ϕ is only 15, which makes the above
conclusion unreliable. Future work should increase
the size of this subset and verify its effectiveness.

5 Related Work

Recent studies have found that NLU models tend to
learn shortcut solutions specific to the distribution
of the training sets. In natural language inference,
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Evaluated on

Trained on Model c ∩ q ̸= ϕ c ∩ q = ϕ

ALL BERT-base 87.94 67.11
ALL BiasProduct-PosOnly 84.83 59.88
ALL LearnedMixin-PosOnly 87.37 80.44

Table 3: F1 scores for two subsets of the SQuAD development set. Each model is trained on the full SQuAD training
set. c indicates the context, and q indicates the question. ϕ indicates the empty set. The scores for each relative
position are given in Appendix C.

models can use spurious correlations regarding lex-
ical items (Gururangan et al., 2018) and lexical
overlap (McCoy et al., 2019). In extractive QA,
existing studies have shown that models can learn
several kinds of shortcut solutions. Weissenborn
et al. (2017) showed that a substantial number of
questions could be answered only by matching the
types of questions and answers. Sugawara et al.
(2018) demonstrated that only using partial inputs
is sufficient for finding correct answers in most
cases. Ko et al. (2020) indicated that the absolute
position bias of answers could severely degrade
the generalization. Shinoda et al. (2021) showed
that question generation models can amplify lexical
overlap bias when used for data augmentation in
QA.

Sampling training and test sets from different dis-
tributions (Jia and Liang, 2017; Fisch et al., 2019;
Lewis and Fan, 2019; Ko et al., 2020) is one of the
most effective frameworks to assess whether mod-
els can learn generalizable solutions. In this study,
we also employed the framework to analyze the
generalization capability from a new perspective
of relative position bias, and developed effective
debiasing methods for this bias. Specifically, we
used the same loss functions as Ko et al. (2020),
and proposed new biased models in this study.

6 Conclusion

We showed that an extractive QA model tends to ex-
ploit relative position bias in training sets, causing
the performance degradation for relative positions
unseen during training. To mitigate this problem,
we proposed new biased models that perform well
with existing debiasing algorithms on intentionally
filtered training sets. Furthermore, when applied
to the full training set, our method improved the
generalization to examples where questions and
contexts have no common words. Future work in-
cludes refining the definition of relative position

bias that is more learnable for QA models, mitigat-
ing the trade-off between the accuracies for seen
and unseen relative positions, and increasing the
size of the test set with no lexical overlap between
question and context.
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A Training Details

The number of training epochs for each model was
2, the batch size was 32, the learning rate decreased
linearly from 3e-5 to 0, and Adam (Kingma and
Ba, 2014) was used for optimization.

B Distribution of Relative Position d

The frequency distribution of relative positions in
the SQuAD, NewsQA, TriviaQA, and NaturalQues-
tions development sets is shown in Figure 4. Al-
though there are differences among the datasets,
they all show that the relative positions are biased
around 0.

C Results on the Full Training Set

The detailed scores of our methods when trained on
the full training set are shown in Table 4. Compared
to the BERT-base baseline, LearnedMixin-PosOnly
can maintain the score in each column.
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(a) SQuAD (b) NewsQA

(c) TriviaQA (d) NaturalQuestions

Figure 4: Histograms of relative position d in the SQuAD, NewsQA, TriviaQA, and NaturalQuestions development
sets.

Evaluated on

Trained on Model
d ≤
−3

d =
−2

d =
−1 d = 0 d = 1 d = 2 d ≥ 3

ALL BERT-base 82.19 90.82 90.25 86.47 92.49 90.14 81.43
ALL BiasProduct-PosOnly 81.04 85.72 86.89 83.53 88.47 87.16 80.61
ALL LearnedMixin-PosOnly 82.48 90.63 90.15 85.69 91.33 89.14 81.21

Table 4: F1 scores for each subset of the SQuAD development set.
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Abstract
Language models suffer from various degen-
erate behaviors. These differ between tasks:
machine translation (MT) exhibits length bias,
while tasks like story generation exhibit ex-
cessive repetition. Recent work has attributed
the difference to task constrainedness, but evi-
dence for this claim has always involved many
confounding variables. To study this ques-
tion directly, we introduce a new experimen-
tal framework that allows us to smoothly vary
task constrainedness, from MT at one end to
fully open-ended generation at the other, while
keeping all other aspects fixed. We find that:
(1) repetition decreases smoothly with con-
strainedness, explaining the difference in repe-
tition across tasks; (2) length bias surprisingly
also decreases with constrainedness, suggesting
some other cause for the difference in length
bias; (3) across the board, these problems affect
the mode, not the whole distribution; (4) the
differences cannot be attributed to a change in
the entropy of the distribution, since another
method of changing the entropy, label smooth-
ing, does not produce the same effect.

1 Introduction

Neural language models serve as the core of mod-
ern NLP technologies, but they suffer from “in-
adequacy of the mode” (Eikema and Aziz, 2020;
Zhang et al., 2021), in which the sentences with the
very highest probability under the model exhibit
various pathological behaviors. Specifically, ma-
chine translation suffers from length bias, where
the generated translations are too long or (more of-
ten) too short (Murray and Chiang, 2018; Stahlberg
and Byrne, 2019), while story generation suffers
from degenerate repetition, where the generated
text repeats words or phrases unnecessarily (Holtz-
man et al., 2020).

It has frequently been assumed that length bias
and degenerate repetition are both aspects of a
single phenomenon; for instance, it is very com-
mon for papers studying MT to reference issues

observed in story generation. However, MT and
story generation exhibit very different problems,
and have been addressed using very different solu-
tions. So it is worth pausing for a moment to ask
how they relate. Are they truly two symptoms of
the same problem? Why do different tasks exhibit
different degenerate behaviors?

Stahlberg et al. (2022) and Wiher et al. (2022)
attribute the differences to task constrainedness:
given a particular input, how many different possi-
ble correct answers might there be? For example,
grammatical error correction (GEC) and speech
recognition are more constrained; image caption-
ing and MT are in the middle; and story generation,
dialogue, and pure unconditioned generation from
the language model (UCG) are least constrained.
However, constrainedness is only one of many dif-
ferences among these tasks. They also differ in the
length of the inputs and outputs, the size of the mod-
els, and so on. So although these papers provide
compelling circumstantial evidence that the differ-
ences can be explained in terms of constrainedness,
they do not rule out alternative hypotheses.

In this paper, we introduce a new experimen-
tal framework which lets us directly adjust con-
strainedness while keeping everything else (archi-
tecture, number of parameters, type of output data)
fixed. We expect that, if task constrainedness re-
ally is responsible for the differences in degenerate
behaviors seen across tasks, then these behaviors
should vary smoothly as we adjust constrainedness.
We find this to be true for degenerate repetition: we
see basically none for pure MT, and an increasing
amount as we lower the constrainedness down to
UCG. This is consistent with the literature, which
reports repetition as a problem in UCG, but not MT.

On the other hand, for length bias, we discover,
to our knowledge for the first time, that length bias
actually increases for less constrained tasks. This
is inconsistent with the literature, where length bias
is commonly reported for MT but very rarely re-
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ported for UCG. We conclude that the difference,
then, is either due to some other factor besides
constrainedness influencing the model’s probabil-
ity distribution, or that it can be attributed to the
different decoding strategies commonly used for
the different tasks.

In addition, we present results showing that both
length bias and degenerate repetition are problems
exclusive to the mode; they do not in general affect
random samples from the distribution. Lastly, we
explore one possible explanation for why length
bias and repetition differ across constrainedness
levels: that it is because less constrained tasks have
higher entropy. We find that this cannot be the
explanation, as another method of increasing the
entropy, label smoothing, has very little effect on
these phenomena.

2 Related Work

Closely related to our work are two recent papers
by Stahlberg et al. (2022) and Wiher et al. (2022),
which also explore how degenerate phenomena dif-
fer across tasks. Stahlberg et al. (2022) study two
more-constrained tasks, MT and GEC. Using exact
search and beam search, they find that, for GEC,
the distribution is peaked around a few very high-
probability outputs, and that, unlike MT, it does not
suffer from inadequacy of the mode.

Wiher et al. (2022) study tasks in the same con-
strainedness range as we do, from MT to UCG. Al-
though their main focus is on evaluating different
decoding strategies (where they confirm the trend
seen in the literature, that more constrained tasks fa-
vor mode-seeking strategies, while less constrained
tasks favor sampling-based methods), they look, as
we do, at how degenerate repetition and length bias
differ across tasks, finding that these phenomena
vary across tasks and decoding methods.

Our contribution here is to provide a more rig-
orous empirical analysis of why these behaviors
differ across tasks. Both Stahlberg et al. (2022) and
Wiher et al. (2022) attribute the differences they ob-
serve to task constrainedness, and Stahlberg et al.
(2022) quantify task constrainedness by looking
at how much the references differ across a multi-
reference test set, but neither is able to directly
control task constrainedness while keeping all else
fixed. Tor our knowledge, our method is the first to
study the effect of task constrainedness on degen-
eration in a completely controlled way.

3 An Experimental Framework for
Controlling Task Constrainedness

The tasks which have been compared before (GEC,
MT, story generation, and others) all differ along
multiple dimensions besides constrainedness: they
use different architectures, different numbers of
parameters and amounts of training data, and they
produce different length outputs (one sentence for
MT, many sentences for story generation), among
other distinctions. This makes it difficult to study
whether task constrainedness is actually respon-
sible for the differences observed between these
tasks. We therefore seek a way of controlling the
constrainedness directly, via some sort of “knob”
that we could adjust. In this section, we introduce
an experimental framework that allows us to do so.

3.1 Truncation

We begin with an ordinary MT dataset and a desired
constrainedness level 𝑠, which can be 0 (UCG, the
least constrained task) or 100 (MT, the most con-
strained task in our setup) or anything in between.
In our experiments, we choose 𝑠 = 0, 10, . . . , 100.
For each value of 𝑠, we truncate each source sen-
tence in the dataset to 𝑠% of its original length. To
be precise, if 𝑥 = 𝑥1 · · · 𝑥𝑛 · EOS is the original
sentence (after separating punctuation, but before
BPE), we let 𝑛′ = ⌈𝑛 · 𝑠%⌉ and truncate the sen-
tence to 𝑥1 · · · 𝑥𝑛′ ·EOS. See Table 1 for an example
German source sentence and all of its truncations.

We apply this truncation to all of the source sen-
tences in the train, dev, and test data, leaving the
target sentences intact. This way, as 𝑠 decreases,
the model has to predict the target side given less
and less information about what it might contain.
Or, to think of it another way, as 𝑠 decreases, there
become more and more possible “correct” answers,
since the truncated source sentence could be the
prefix of many possible full source sentences, and
a translation of any one of them can be considered
a valid solution to the task.

3.2 Experimental details

We use the German-to-English (de-en) and Chinese-
to-English (zh-en) datasets from IWSLT 2017 (Cet-
tolo et al., 2012), consisting of transcribed TED
talks. We use the standard dataset for training, the
2010 development set for development, and the
2010–2015 test sets for testing, following the split
by Kulikov et al. (2021). Table 2 shows the size of
each of these sets, after removing copy noise (pairs

427



𝑠 (%) length tokens

0 0 EOS
10 3 Sch@@ on heute EOS
20 7 Sch@@ on heute spru@@ d@@ elt in EOS
30 8 Sch@@ on heute spru@@ d@@ elt in einigen EOS
40 13 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en EOS
50 14 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in EOS
60 19 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than EOS
70 21 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst EOS
80 22 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus EOS
90 24 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus dem Wasser EOS

100 25 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus dem Wasser . EOS

Table 1: Prefixes of an example German source sentence, for all values of 𝑠. Lengths do not include EOS.

de-en zh-en

train 205,898 231,259
dev 888 879
test 8,079 8,549

Table 2: Sizes of our training, development, and test
datasets.

where the source and target are identical) from the
data (Ott et al., 2018).

We preprocess the data using BPE tokenization
(Sennrich et al., 2016). To ensure that the experi-
mental setup is as similar as possible for all values
of 𝑠, we learn BPE on the full, untruncated dataset.
Then, once BPE has been learned, we apply it to
the truncated data. Initially, we experimented with
both joint and separate BPE, but found very little
difference between them, so we present results for
joint BPE only.

For our MT system, we use the Transformer
model (Vaswani et al., 2017); specifically, we use
a fork of the Transformers without Tears library
(Nguyen and Salazar, 2019).1. We use identical hy-
perparameter settings for both language pairs and
all values of 𝑠; these are the same as the Transform-
ers without Tears base configuration, except that
we use 6 layers and 4 heads.

We trained our systems both with and without
label smoothing (Szegedy et al., 2016), thinking
that, because label smoothing changes the shape of
the distribution, it might impact the results. We dis-
cuss the effect of label smoothing in §6; in all other
sections we look only at systems trained without it.
All of our results are averaged across three random
restarts.

Fearing that BLEU scores might not provide a
meaningful enough signal for 𝑠 < 100, we tried

1https://github.com/darcey/
transformers_without_tears/tree/
mt-interpolation-paper

using both dev BLEU and dev perplexity to lower
the learning rate and control early stopping; these
gave very similar results, so we only present results
for the systems tuned using dev BLEU.

To better view the natural properties of the dis-
tribution, we do not use any length normalization
during decoding. We decode up to a maximum
length of 300 tokens.

We make our full experimental setup publicly
available on GitHub.2

3.3 Sanity checks

We verify via BLEU score that we have trained
our systems successfully. Although, for the pur-
poses of our experiment, it is not necessary to use a
state-of-the-art MT system, we nonetheless achieve
reasonable BLEU scores of 34.7 and 17.5 for de-en
and zh-en respectively for the 𝑠 = 100 systems,
using the standard beam size of 4 for decoding.
Predictably, lowering 𝑠 also decreases the BLEU
score, as can be seen in Figure 2.

As an additional sanity check, we confirm that
varying 𝑠 does indeed change the spread of the dis-
tribution in the expected way. Using 1000 samples
for each sentence in the test set, we estimate the
entropy (Figure 1a), and find that it decreases as 𝑠
increases. In addition, following Ott et al. (2018),
we look at the portion of the total probability mass
covered by all of the unique samples, and find that,
although the number of unique samples decreases
as 𝑠 increases (Figure 1c), the total probability mass
covered increases (Figure 1b).

4 Degeneracy in the Mode

In this section, we look at how length bias and
repetition vary as we vary the constrainedness pa-
rameter 𝑠.

2https://github.com/darcey/
mt-interpolation
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Figure 1: Increasing constrainedness increases the peakedness of the predictive distribution as expected. Every data
point is based on 1000 random samples for each sentence in the test data.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100

B
L

E
U

Source sentence %

de-en

zh-en

Figure 2: Predictably, BLEU score decreases smoothly
as we decrease 𝑠.

4.1 Length bias
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(b) Chinese–English

Figure 3: Length ratio versus source sentence percent-
age (𝑠), for various beam sizes (𝑘). For high 𝑠, there is a
slight bias towards shorter outputs that increases mildly
with 𝑘 , whereas for low 𝑠, we see extreme bias, towards
longer or shorter outputs depending on 𝑘 .

Length bias is a problem where the length of the
output consistently differs from the length of the
reference; the term typically refers to sentences be-
ing too short. In NMT, length bias is such a major
and well-known problem that nearly all systems
correct for it using some kind of length normaliza-
tion during decoding (Wu et al., 2016; Koehn and
Knowles, 2017; Murray and Chiang, 2018).

In NMT, length bias gets worse the closer one
approaches the mode of the distribution. It has
been repeatedly shown that, as beam size increases,
bringing the output translation closer to the mode,
the length bias becomes more extreme. In fact, the
mode of the distribution is often simply the empty
string itself (Stahlberg and Byrne, 2019).

On the other hand, length bias has been under-
studied in less constrained tasks such as story gen-
eration or UCG. We know of just two reports of
this problem: for story generation, Holtzman et al.
(2020) report worsening length bias as beam size in-
creases, with immediate stopping when using beam
sizes ≥ 64, and Wiher et al. (2022) found length
bias for beam sizes 𝑘 = 5, 10; however, neither of
these is the main result of their respective papers.

This difference in emphasis seen in the literature
would seem to suggest that length bias only affects
MT, and does not affect less constrained tasks like
story generation. Thus, if constrainedness were
fully responsible for the difference seen in the lit-
erature, then we would expect to see length bias
decrease with constrainedness, becoming less of a
problem for less constrained tasks.

To test this, we measure how length bias changes
as we vary 𝑠. To quantify length bias, we compute
the (micro-averaged) length ratio,

ℓ(𝑇) =
∑

(ℎ,𝑟 ) ∈𝑇 |ℎ|∑
(ℎ,𝑟 ) ∈𝑇 |𝑟 |

where𝑇 is a test set consisting of pairs (ℎ, 𝑟), where
ℎ is a hypothesis (output) sentence and 𝑟 is a refer-
ence sentence.
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Figure 3 shows how length ratio changes as we
vary both 𝑠 and the beam size 𝑘 .3 Consistent with
previous findings, we find that standard NMT suf-
fers from considerable length bias, with the prob-
lem worsening as beam size 𝑘 increases. But to
our surprise, as 𝑠 decreases, we find that not only
does length bias worsen, but that the dependence
on beam size grows stronger and stronger. This is
surprising given the lack of concern with length
bias in the literature on less constrained tasks. To
our knowledge, we are the first to report a result
like this, where length bias actually worsens as task
constrainedness decreases.

We can think of two explanations for this result.
The first is that there are other factors besides con-
strainedness affecting the length bias seen across
tasks. We suspect that the length of the reference
outputs might be a major part of this; models like
GPT-2 are trained to produce much larger chunks
of text than our systems, which typically just output
one sentence at a time. The second is that this is
an artifact of the decoding processes used. Most of
the literature on NMT uses mode-seeking decoding
strategies such as beam search, while literature on
less constrained generation favors sampling-based
approaches. So it could in fact be that all uncon-
strained systems also suffer from length bias, but
it simply doesn’t show up because beam search is
not used with those systems.We also note that it
may be more difficult to study length bias in less
constrained tasks, since there is not necessarily a
roughly “correct” length the way there is in MT.

A last interesting result is that, for 𝑘 = 1 (greedy
search), the length ratio actually increases for de-
creasing 𝑠, ending up well above 1. This agrees
with a recent result reported by Wiher et al. (2022),
who found that, for the relatively unconstrained
task of story generation, beam sizes 𝑘 = 5, 10
returned texts that were too short, while greedy
search returned texts which were far too long.

4.2 Repetition

Degenerate repetition is a well-known problem
where the model gets stuck in a loop, repeating the
same 𝑛-grams over and over again. It so strongly

3These graphs (and all of our beam search results) exclude
the 𝑠 = 0 case, which turn out to be nearly meaningless: since
the source sentence is identical (namely, the empty string)
for each sentence pair in the test set, the beam search results
will also be identical, meaning that the decoder will simply
generate |𝑇 | copies of the same sentence. So any properties of
that one sentence will be magnified. The results under beam
search for 𝑠 = 0 are therefore little better than noise.

affects less constrained tasks like story generation
(Holtzman et al., 2020) that these tasks avoid mode-
seeking strategies altogether, preferring sampling-
based approaches. Since pure random sampling
also produces low-quality output, most work on
this topic has focused on finding a balance between
mode-seeking and pure sampling, either by trun-
cating the distribution during sampling (Fan et al.,
2018; Holtzman et al., 2020; Basu et al., 2021;
Zhang et al., 2021; Nadeem et al., 2020; DeLucia
et al., 2021), or by using some combination of sam-
pling and search (Massarelli et al., 2020), though
Welleck et al. (2020) address the issue via train-
ing rather than search, by modifying the objective
function to discourage repetition.

In contrast, to our knowledge, degenerate rep-
etition has not been reported in the literature on
NMT. (Our anecdotal experience is that degener-
ate repetition is a familiar sight in MT, but not a
serious problem in well-trained systems.) If the
difference between story generation and MT can
be explained by their constrainedness, as previous
work has suggested, then we should expect to see
repetition increase smoothly as we decrease 𝑠.

This is, in fact, exactly what we find. Figure 4
shows the amount of repetition for German-to-
English, measured as the percentage of unique 𝑛-
grams which appear in each search result (that is,
for each search result, the number of 𝑛-gram types
divided by tokens), as compared to the reference.
(The Chinese-to-English results are similar, and
can be found in Appendix B.) We find that, as 𝑠
decreases, repetition increases considerably. Con-
sistent with the literature, we see basically no evi-
dence of repetition in pure MT, where the amount
of repetition almost perfectly matches that seen
in the references. But as 𝑠 decreases, so does the
percent of unique 𝑛-grams, until for 𝑠 = 10 there
is very clear evidence of repetition. We therefore
feel confident in concluding that task constrained-
ness adequately explains the difference in the level
of concern paid to repetition in the literature for
different tasks.

One interesting thing to observe is that, as beam
size increases, repetition actually decreases. We
suspect that this might be due to the effect of length
bias: as shown in the previous section, higher beam
sizes tend to return shorter sentences, and these
seem less likely to experience degenerate repeti-
tion (though it is certainly possible to have both
problems at once).
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Figure 4: Amount of repetition versus source sentence percentage (𝑠), for various beam sizes (𝑘). Repetition is
measured as the percentage of unique 𝑛-grams in a sentence; the graphs show this for different values of 𝑛. The
repetition rate of the reference is plotted as a dashed grey line. Across all values of 𝑛, the percent of unique 𝑛-grams
drops as 𝑠 decreases. These graphs show German-to-English results only; see Appendix B for Chinese-to-English.

4.3 Discussion

It is illustrative to examine some strings generated
by our systems. Table 3 shows the translations
for one sentence from the test data; others can be
found in Appendix B. Consistent with our results,
we see length roughly decrease along with 𝑠. We
also see some concrete examples of degenerate
repetition for the lower 𝑠 values. As is typical, the
same phrase is repeated over and over, separated
by commas or “and”.

In addition to length bias and repetition, we can
also observe that, as 𝑠 decreases, the content of the
generated strings diverges further and further from
the reference. But we notice that, qualitatively, as it
does this, the outputs get increasingly boring. This
fits with what others have reported (Holtzman et al.,
2020), that beam search simply produces tedious
and boring output for less constrained tasks.

Another observation is that some of these sen-
tences are simply ungrammatical. While gram-
matical errors are very common among random
samples, it is interesting to see them even at these
high probabilities.

5 No Degeneracy in Samples

In addition to looking at search results, we also
look at samples from the distribution. For each
system and for each sentence in the test set, we
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Figure 5: Length ratio of samples versus source sentence
percentage (𝑠), for both language pairs. The samples
only suffer from very slight length bias, and only for
higher values of 𝑠.

take 1000 samples, and discover that the samples
do not suffer from either degenerate repetition or
length bias (Figs. 5 and 6). This underscores that
these problems are specific to the mode, and are
not properties of the distribution as a whole.

For low values of 𝑠, this should not be par-
ticularly surprising; sampling-based decoding ap-
proaches such as top-𝑘 (Fan et al., 2018) and top-𝑝
(Holtzman et al., 2020) are favored for these tasks
specifically to avoid the degenerate mode.

Yet it may be surprising to see that the pure MT
(𝑠 = 100) outputs do not suffer from degeneracy
either. Since MT papers rarely explore properties
of the full distribution beyond the mode, one might
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𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, “Well, I’m going to show you a little bit.”
10 When Steve Lopez said, “You know, I’m not going to be here.”
20 When Steve Lopez, Columni, who is the first person in the world, he’s the first person in the world, and he’s the first person in the world.
30 When Steve Lopez, Columni, the Los Angeles Times, he said, “You know, I’m going to go to school.”
40 When Steve Lopez, Columnist, the Los Angeles Times, one day, he said, “You know, we’re going to have to do this.”
50 When Steve Lopez, Columnist, the Los Angeles Times, one day through the Pacific Ocean Ocean, I started to think about it.
60 When Steve Lopez, Columnist in Los Angeles Times, one day through the streets in the center of the city, the city of New York.
70 When Steve Lopez, Columnist, the Los Angeles Times, one day through the streets of Los Angeles, the city of London.
80 When Steve Lopez, Columnist, the Los Angeles Times, one day went through the streets at the center of Los Angeles, I heard this story.
90 When Steve Lopez, Columnist, the Los Angeles Times, one day went through the streets at the center of Los Angeles, he heard a wonderful story.

100 When Steve Lopez, Columnist at the Los Angeles Times, walked through the streets at the center of Los Angeles, he heard a wonderful music.

ref One day, Los Angeles Times columnist Steve Lopez was walking along the streets of downtown Los Angeles when he heard beautiful music.

Table 3: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠. Illustrates both
length bias and degenerate repetition.
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Figure 6: Amount of repetition versus source sentence percentage (𝑠), for various values of 𝑛, computed over
1000 random samples for each sentence in the test data. The samples show no evidence of degenerate repetition
whatsoever; the level of repetition matches extremely closely to the reference (shown as a dashed grey line which is
completely hidden behind the sampling results).

get the false impression that length bias is a prob-
lem that affects most sentences in the distribution.
Figure 5 shows that this is definitely not the case.
This supports the argument by Eikema and Aziz
(2020) that it is a mistake to focus too much on the
mode during decoding.

6 Label Smoothing and Degeneration

We now begin to examine exactly what it is about
task constrainedness which affects the amount of
degeneration. One possible explanation is that, as
we vary 𝑠, we vary the distribution’s peakedness:
the distribution becomes much less peaked as 𝑠
decreases (as shown in §3.3). To examine whether
differences in peakedness fully explain the level of
degeneration, we contrast with a different method

of adjusting peakedness: label smoothing. Label
smoothing (Szegedy et al., 2016) is an alternative
to the standard cross-entropy loss function. Instead
of comparing the next-word distribution against a
one-hot vector, it compares against a mixture of
a one-hot vector and the uniform distribution. It
is commonly used in modern NMT systems, and
has generally been found to be helpful, though the
reasons why are still being investigated (Müller
et al., 2019; Lukasik et al., 2020; Gao et al., 2020).

Label smoothing has the effect of smoothing
the distribution over more output tokens at each
timestep. This has a big effect on the peakedness,
as shown in Fig 7. But, as we will show, it has
almost no impact on either length bias or repetition.
(All the graphs in this section show German-to-
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Figure 7: Effect of label smoothing (ls) on the peakedness of the distribution, compared with no label smoothing
(nols), for German-to-English (see Appendix C for Chinese-to-English). Label smoothing consistently increases
entropy and decreases total probability mass across all values of 𝑠.
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Figure 8: Length ratio of translations and percentage of unique 1-grams versus source sentence percentage (𝑠), both
with label smoothing (ls) and without (nols). Results for samples are computed based on 1000 samples for each test
sentence; results for beam search vary across beam sizes (𝑘). For samples, label smoothing increases the length
ratio from slightly below the reference length to slightly above it; otherwise it has no discernible effect. (These
results are for German-to-English; see Appendix C for Chinese-to-English.)
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English only; the Chinese-to-English results are
similar and can be found in Appendix C.)

The biggest effect we see is in Figure 8a, which
shows how adding label smoothing impacts the
length bias when sampling. Here, label smoothing
changes the length bias from just below 1 to just
above 1, giving sentences which are, on average,
very slightly longer than the reference.

However, although label smoothing affects
length bias for the overall distribution, we see es-
sentially no effect on length bias when using beam
search (Figure 8b).4 Similarly, Figures 8c and 8d
show the effect of label smoothing on 1-gram repe-
tition, for both search and sampling; there is essen-
tially no effect. (We found this to be true for other
values of 𝑛 as well.)

From this, we can conclude that it is not merely
the spread of the distribution which causes these
degenerate behaviors to occur. There must be some
other property of task constrainedness which is
influencing them. We leave further investigation of
what that property might be to future work.

7 Conclusion

We introduced a new experimental framework for
directly controlling the level of task constrained-
ness, by truncating sentences on the source side of
an MT system. Using this experimental framework,
we analyzed how task constrainedness affected de-
generate behaviors.

For less constrained tasks, we observe three fail-
ure modes: beam search decoding that is too short,
greedy decoding that is too long and repetitive, and
random samples that are disfluent. We note that the
same three failure modes are also displayed by a
simple unigram language model: since every sen-
tence contains EOS, the highest-probability output
must be empty (just EOS with no real words); since
𝑃(EOS) < 𝑃(the), a greedy search will choose the
over and over; and random samples from a unigram
distribution are of course disfluent. So the simplest
explanation may be that the neural models used
here are still insufficiently sensitive to context.

For more constrained tasks, these effects are
much milder. The presence of the source sentence
seems to be sufficient to all but eliminate repetition
and noticeably improve fluency. Although some
work on RNN models for NMT focused on adding

4We do note, however, that Peters and Martins (2021) did
find that label smoothing affected length bias in the mode of
the distribution.

coverage models to reduce skipping and repeating
of source words (Tu et al., 2016; Mi et al., 2016;
Li et al., 2018), Transformers seem to suffer from
these problems far less. As Transformers were orig-
inally designed for the 𝑠 = 100 case, one direction
for future research may be to investigate modifica-
tions of the Transformer that are better-suited to
less constrained tasks.
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A Additional results on repetition

Here we show some additional outputs from our
systems. Figure 10 graphs the amount of repetition
for the Chinese-to-English systems; we see similar
results to the German-to-English systems, but with
an even more pronounced decrease in repetition for
higher beam sizes 𝑘 .

Figure 9 displays the same results, but graphed
in terms of 𝑛. (We look at beam size 𝑘 = 1 since
repetition is most pronounced in that case.) This
graph shows a surprising consistency across 𝑛; al-
though the effect is most pronounced for 1-gram
repetition, we still see quite a bit of degenerate
repetition even up to 6-grams, suggesting that the
phrases which are being repeated are quite long.

B Additional outputs from our model

As a supplement to Table 3, we present some addi-
tional outputs from our system, which show similar
trends.

C Additional results on label smoothing

Here we present additional results on label smooth-
ing, for the Chinese-to-English language pair.
These results are quite similar to the ones observed
for German-to-English. Again, we see a substan-
tial difference in the peakedness of the distribution.
And again, we notice a slight change in length ratio
for the samples, but otherwise, we observe essen-
tially no effect of label smoothing on degenerate
behavior.

437



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
6-

g
ra

m
s

Source sentence %

n=0

n=1

n=2

n=3

n=4

n=5

(a) German–English

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
6-

g
ra

m
s

Source sentence %

n=0

n=1

n=2

n=3

n=4

n=5

(b) Chinese–English

Figure 9: Amount of repetition, measured as the percentage of 𝑛-grams in the sentence which are unique, versus
source sentence percentage (𝑠). This is mostly the same information shown in Figures 4 and 10, but viewed in a
different way: here, we look at just one beam size (𝑘 = 1, for which the repetition was most pronounced), and
compare multiple 𝑛. All values of 𝑛 show a similar pattern, with considerable repetition observed even for 6-grams
for low 𝑠.
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Figure 10: Amount of repetition versus source sentence percentage (𝑠), for various beam sizes (𝑘). (Graphs show
Chinese-to-English results only.) Repetition is measured as the percentage of unique 𝑛-grams in a sentence; the
graphs show this for different values of 𝑛. The repetition rate of the reference is plotted as a dashed grey line. As
in German-to-English, the percent of unique 𝑛-grams drops as 𝑠 decreases across all values of 𝑛, while repetition
actually becomes less of a problem for higher values of 𝑘 .

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 A few years ago, I was in the hospital, and I was in the hospital.
20 A few years ago, when I was a kid, I was a kid.
30 A few years ago, here at TED, I’m going to tell you a little bit about this.
40 A couple of years ago, at TED, I’m going to tell you a little bit about this.
50 A couple of years ago, at TED, Peter Peter asked me, "What are you doing?"
60 A couple of years ago, here at TED, Peter Skillman introduced a book called "The Sun."
70 A couple of years ago, here at TED, Peter Skillman introduced a design competition called "The House."
80 A few years ago, here at TED, Peter Skillman introduced a design competition called "The Government."
90 A few years ago, here at TED, Peter Skillman made a design competition called "The Marshmallow Child."

100 A few years ago, here at TED, Peter Skillman introduced a design competition called "The Marshmallow Child."

ref Several years ago here at TED, Peter Skillman introduced a design challenge called the marshmallow challenge.

Table 4: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.
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𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 A child, a child, a child, a child, a child, a child, a child, a child.
20 A child who is living in the world today is a child, a child, a child, a child, a child, a child, a child.
30 A child who’s born in New Delhi today will be born in a new world, a new world, a new world, a new world.
40 A child born today in New Delhi can expect to be a child who has been born in the United States.
50 A child who’s born in New Delhi today can expect to be as long as they’re born, and that’s where they are.
60 A kid who can be born in New Delhi today would expect to live as long as they were, and that’s what they were doing.
70 A child born in New Delhi today will expect to live as long as the richest child in the world.
80 A child born in New Delhi today will expect to live as long as the richest man on the planet.
90 A child born today in New Delhi can expect to live as long as the richest man in the world, 100 years ago.

100 A child born today in New Delhi can expect to live as long as the richest man in the world 100 years ago.

ref A kid born in New Delhi today can expect to live as long as the richest man in the world did 100 years ago.

Table 5: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 Today, I’m going to show you a couple of examples of how this works.
20 Today, I don’t know how many of you have heard of this, but I think it’s a very important thing.
30 Today, I don’t know, maybe it’s going to go up today, but I’m going to tell you a little bit about what I’m going to talk about today.
40 Now, I don’t know, maybe someone in this room came to me and said, "You know, I’m going to go to school."
50 Today, I don’t know, maybe someone in Lagos came to a place where I was born, and I didn’t know what to do.
60 Today, I don’t know, maybe somebody in Lagos came into an airplane this morning, and it’s going to be like, "Oh, I’m going to die."
70 Now, I don’t know, maybe someone in Lagos this morning went into an airplane, and it’s going to go to Los Angeles, and it’s going to be a big deal.
80 Today, I don’t know, maybe someone in Lagos came to an airplane this morning, and it’s just going to Los Angeles, in the middle of the Central Sea.
90 Today, I don’t know, maybe someone in Lagos is going to go to an airplane this morning, and he’s going to go to Los Angeles, right now he’s gone.

100 Today, I don’t know, maybe someone in Lagos climbed into an airplane this morning, and it’s just going to Los Angeles right now, it’s over Ohio.

ref Today, I don’t know, maybe a guy got on a plane in Lagos this morning, and he’s flying to LAX, right now he’s over Ohio.

Table 6: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 If you look at it, you can see that it’s a little bit different.
20 If you’re 10 teams, you’re going to have to be able to do that.
30 If you have 10 teams, you have 10 teams, and you have 10 teams, and you have them.
40 If you have 10 teams, typically, you have 10 teams, and you have 10 teams.
50 If you have 10 teams that are typically predicting, you’re not going to be able to do that.
60 If you have 10 teams that are typically predicted, you get 10 teams, and you get 10 teams.
70 If you have 10 teams that typically go, you get about six teams per second.
80 If you have 10 teams that typically go ahead, you get about six, the two teams.
90 If you have 10 teams that are typical, you get about six, the stable structures.

100 If you have 10 teams that go typically, you get about six that have stable structures.

ref If you have 10 teams that typically perform, you’ll get maybe six or so that have standing structures.

Table 7: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

E
nt

ro
py

Source sentence %

ls

nols

(a) Per-sentence entropy (nats), zh-en

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80  90  100

P
ro

ba
b
il

it
y 

m
as

s

Source sentence %

ls

nols

(b) Total probability mass, zh-en

 800

 850

 900

 950

 1000

 0  10  20  30  40  50  60  70  80  90  100

U
ni

qu
e 

sa
m

p
le

s

Source sentence %

ls

nols

(c) Number of unique samples, zh-en

Figure 11: Effect of label smoothing (ls) on the peakedness of the distribution, compared with no label smoothing
(nols), for Chinese-to-English. As with German-to-English, label smoothing consistently increases entropy and
decreases total probability mass across all values of 𝑠.
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Figure 12: Length ratio of translations and percentage of unique 1-grams versus source sentence percentage (𝑠),
both with label smoothing (ls) and without label smoothing (nols). Results for samples are computed based on 1000
samples for each test sentence; results for beam search vary across beam sizes (𝑘). As with the German-to-English
results, we find that, for samples, label smoothing increases the length ratio from slightly below the reference length
to slightly above it; otherwise it has no discernable effect.
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Abstract

Linguistic analysis of language models is one
of the ways to explain and describe their rea-
soning, weaknesses, and limitations. In the
probing part of the model interpretability re-
search, studies concern individual languages
as well as individual linguistic structures. The
question arises: are the detected regularities lin-
guistically coherent, or on the contrary, do they
dissonate at the typological scale? Moreover,
the majority of studies address the inherent set
of languages and linguistic structures, leaving
the actual typological diversity knowledge out
of scope. In this paper, we present and ap-
ply the GUI-assisted framework allowing us to
easily probe a massive number of languages
for all the morphosyntactic features present in
the Universal Dependencies data. We show
that reflecting the anglo-centric trend in NLP
over the past years, most of the regularities re-
vealed in the mBERT model are typical for the
western-European languages. Our framework
can be integrated with the existing probing tool-
boxes, model cards, and leaderboards, allowing
practitioners to use and share their standard
probing methods to interpret multilingual mod-
els. Thus we propose a toolkit to systematize
the multilingual flaws in multilingual models,
providing a reproducible experimental setup for
104 languages and 80 morphosyntactic features.
GitHub

1 Introduction

Probing methods shed light on the black box of the
neural models in unearthing the linguistic features
encoded in them. Probing sets a standard setup with
various internal representations from the model
and uses an auxiliary classifier to predict linguistic
information captured in the representation.

As probing research results have come up with
contradictory results on different languages and
language models, there appears to be a method-
ological need for a meta-study of the accumulated

knowledge and a need to standardize the experi-
mental setup. At the same time, the fixation of the
setup and hyperparameters should allow the repro-
duction of a wide range of experiments, such as
multilingual probing, like X-Probe (Ravishankar
et al., 2019a) and Linspector (Sahin et al., 2020),
layer-wise probing (Fayyaz et al., 2021), chrono-
logical probing (Voloshina et al., 2022).

Often, data for probing experiments is based on
already known competition data, benchmarks, and
gold standards. To obtain consistent results, such
data must be high-quality, manually validated, and
carefully include multiple languages. For this rea-
son, in this work, we use the Universal Dependen-
cies data (de Marneffe et al., 2021) as a source of
multilingual data with a validated and standardized
complete morphological and syntactic annotation,
which will allow us to accumulate the assimila-
tion of specific linguistic phenomena in many lan-
guages at once. Probing these languages on the
respective annotated linguistic categories would re-
veal how models seize the typological proximity of
languages.

Therefore, the general probing methodology
should include (according to Conneau and Kiela
(2018)) 1) a fixed set of evaluations based on what
appears to be community consensus; 2) a fixed eval-
uation pipeline with standard hyperparameters; 3)
a straightforward Python interface.

This paper aims to extrapolate the multilin-
gual linguistic diversity on the proven and tested
SentEval-like methodology.

We state our contribution as follows:
• We develop a framework for exhaustive multi-

lingual probing of the language models, with a
complete enumeration of all grammatical char-
acteristics and all languages available in Uni-
versal Dependencies while maintaining the
standard SentEval format.

• We provide a setup for better and explanatory
aggregation and exploration of the massive
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probing results with thousands of experiments
for each model.

• We illustrate the possibilities of the frame-
work on the example of the mBERT model,
demonstrating new insights and reassuring the
results of previous studies on narrower data.

Performing probing studies on such a large scale
addresses the vision outlined in Nichols (2007) and
contribute to a new dimension to linguistic typol-
ogy research, as the revealed structures are encapsu-
lated in tools and data inseparably tied to nowadays
linguistic nature. Our framework provides users
from different fields, including linguists, with a
new point of view on the typological proximity of
languages and categories.

2 Related Work

Different attempts were made to interpret behavior
and hidden learned representation of language mod-
els. For example, Hoover et al. (2020) investigated
the attention-heads of the BERT model on word
tokens connectivity level. Wallace et al. (2019)
presented an interpretation framework where they
improved a visual component of the model predic-
tion process on several NLP tasks for the end-user.

Flourishing after the ACL debates on semantic
parsing1, the probing methodology has developed
its own model interpretation tools. Thus, SentEval
framework (Conneau and Kiela, 2018) includes
various types of linguistically-motivated tasks: sur-
face tasks probe for sentence length (SentLen) and
for the presence of words in the sentence (WC);
syntactic tasks test for sensitivity to word order
(BShift), the depth of the syntactic tree (TreeDepth)
and the sequence of top-level constituents in the
syntax tree (TopConst); semantic tasks check for
the tense (Tense), the subject (resp. direct object)
number in the main clause (SubjNum, resp. Ob-
jNum), the sensitivity to random replacement of a
noun/verb (SOMO) and the random swapping of
coordinated clausal conjuncts (CoordInv).

Linspector (Şahin et al., 2019) includes 15 prob-
ing tasks for 24 languages by taking morphosyntac-
tic language properties into account, including case,
verb mood, and tense, syntactic correctness, and
the semantic impossibility of an example. While
lacking the simplicity of the SentEval approach, the
framework provides both a linguistically-grounded

1https://aclanthology.org/volumes/W14-24/

and multilingual setup. We are significantly ex-
panding both the list of languages and properties
being examined.

Probe-X (Ravishankar et al., 2019b) has ex-
panded SentEval setup with 5 additional languages,
while NeuroX framework (Dalvi et al., 2019)
also introduced novelty, but proposed to enrich the
methodology to allow for cross-model analysis of
the results, supporting neuron-level inspection.

2.1 Probing Critique

We would state a few problems why some of the
probing practices are methodologically problem-
atic.

First, the probing interpretation result can differ
from paper to paper, creating various conclusions
from different authors. While Jawahar et al. (2019)
achieves from 69.5-96.2% accuracy on the SentLen
SentEval probing task (BERT model), they state
that this info is somehow represented at the bot-
tom layers. The work (Ravishankar et al., 2019b)
achieves 38-51% accuracy on SentLen (RNN en-
coder) and states that "recurrent encoders show
solid performance on certain tasks, such as sen-
tence length." This drastic difference in result in-
terpretation (“somehow” vs. “extremely strong”)
leads to misrepresenting the factual results. Con-
flicting evidence within the field of BERTology can
be found in Rogers et al. (2020), see Sec 3.1 and
4.3.

Secondly, the results on similar tasks can be ob-
tained with unstable success if the hyperparame-
ters are not fixed or exhaustively described: for
example, study (Jawahar et al., 2019) finds that
"BERT’s intermediate layers encode a rich hierar-
chy of linguistic information, with surface features
at the bottom, syntactic features in the middle and
semantic features at the top," while the work by
Tikhonova et al. (2022) on mBERT shows, that
the model does not learn the linguistic informa-
tion. More meta-research is needed to explore the
contradictory results obtained by the community.

2.2 Task Representation

In the survey of post-hoc language model inter-
pretation (Madsen et al., 2021), the linguistic
information-based tasks fall into the groups of the
highest abstraction and the top-informativeness of
properties used. This group of projects includes
tasks based on the various theoretical language lev-
els: from part-of-speech tagging to discourse.
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Languages While the most tasks are English-
based, there appear the non-English monolingual
frameworks: French-based probing (Merlo, 2019),
Russian-based SentEval (Mikhailov et al., 2021),
Chinese word masking probing (Cui et al., 2021).
The multilingual benchmarks have paved the way
for multilingual probing studies by collecting the
necessary data.

Linguistic features Most language-based tasks
tend to be based on morphology or syntax, de-
riving from SentEval methodology. Thus, higher-
level tasks can concentrate both on monolingual
discourse evaluation (Koto et al., 2021) (mostly
English-based by now), as well as the multilin-
gual discursive probing based on the conversion of
the existing multilingual benchmarks (Kurfalı and
Östling, 2021) (XNLI, XQUAD).

3 Framework Design

This section describes the probing framework and
the experimental setup part.

The main goal is to probe how well a model
assimilates language constructions during training.
For the framework, we want to form an end-to-end
solution that can be applied to different models,
work on diverse data, and simplify the process of
getting insights from the results.

Based on that, the challenges we have are the
following:

1. The data we use in the training and evaluation
parts must be in the standard format no matter
what language we deal with.

2. The probing process should be universal for
different models. Based on it, we also need to
collect detailed results for further analysis.

3. Since we aim to work with diverse data, we
should contain instruments to simplify the pro-
cess of getting insights from the results. If
we do not handle this problem, we can have
bunches of results that would be difficult to
interpret and provide findings for.

Thus, we can represent our framework as a tool
with different instruments. The first one is aimed
at pre-processing data for probing, which is com-
monly a classification task. The second one is a
probing engine supporting popular probing tech-
niques such as diagnostic classification. And the
last one is a visualization instrument which should
ease the process of interpreting the findings.

3.1 SentEval Format Converter

We found the SentEval format to be generally good
and universal in the data composition for classifi-
cation tasks. Since we have such a vast resource
as Universal Dependencies for different languages,
we can transform the data into the SentEval format
and compose different classification tasks based on
the language categories we can get.

UD annotation consists of several parts: lem-
mas, parts of speech, morphological features, and
universal dependencies relations. The converter
to SentEval format is focused on morphological
features. As Table 1 illustrates, morphological cat-
egories are written in the sixth column with their
category values separated by the equals sign, for
example, in Number=Sing, Number is a category
and Sing is a category value. It took us 8 hours to
process by the SentEval converter on 96 CPUs for
absolutely all archives.

For each morphological category found in a
given file, the converter generates a new file in
SentEval format according to the following steps:

Data: CONLLU files or a directory to such
files for one language

Result: a file in SentEval format
read files;
find all morphological categories;
foreach categories do

foreach sentences do
if category is in sentence then

get a category value
end
stratified split on three samples;
write to a file

end
Algorithm 1: The conversion process

If split UD data into train, validation, and test
sets, we do not change this split. In other cases,
we split data into three sets, so the distribution of
category values in the original text will be kept in
each set.

If a sentence contains several words with the
same morphological categories, the closest to the
sentence node word is taken, preventing the one
sentence from being repeated several times. Table
1 depicts the example of Tense category, the value
of word stopped will be taken, as it is the root of
the sentence.
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Figure 1: The example of UD annotation

Format Data entry

Conll-U

# s e n t _ i d = weblog − t y p e p a d . com_ripples_20040407125600_ENG_20040407_125
# t e x t = Tha t t o o was s t o p p e d .
1 . That t h a t PRON DT Number= Sing | PronType=Dem 4 n s u b j : p a s s 4 : n s u b j : p a s s _
2 . too t o o ADV RB _ 4 advmod 4 : advmod _
3 . was be AUX VBD Mood= Ind | Number= Sing | P e r son = 3 | Tense= P a s t | VerbForm= Fin 4
aux : p a s s 4 : aux : p a s s _
4 . stopped s t o p VERB VBN Tense= P a s t | VerbForm= P a r t | Voice= Pas s 0 r o o t 0 : r o o t
S p a c e A f t e r =No
5 . . . PUNCT . _ 4 p u n c t 4 : p u n c t _

SentEval t r P a s t Tha t t o o was s t o p p e d .

Table 1: Example of CONLL-U format and its conversion to SentEval: Tense classification, train set.

3.2 Multilingual Data
We take 289 repositories, including the data of
172 languages available at the GitHub of Universal
Dependencies , updated in May 2022.2

While parsing files, we face several problems
inherited from UD. 71 of the repositories do not
contain any CONLLU files. Three Japanese repos-
itories and Korean and Frisian Dutch repositories
contain different annotations from standard UD an-
notations. The data from 16 repositories (Akkadian,
Cantonese, Chinese (2), German, Japanese, Hindi,
Irish, Kangri, Maltese, Neapolitan, South Levan-
tine Arabic, Swedish Sign language, Swiss Ger-
man, Old Turkish, Tagalog) do not contain morpho-
logical annotation. Also, some repositories include
correctly annotated data but are not suitable for
classification problems because all the examples
contain only one value of all the categories, for ex-
ample, only examples with class Plural are left for
the category Number (Cantonese, Chukchi, Frisian
Dutch, Hindi English, Japanese, Kangri, Khunsari,
Makurap, Maltese, Nayini, Neapolitan, Old Turk-
ish, Soi, South Levantine Arabic, Swedish Sign
Language, Swiss German, Telugu, Vietnamese).

After filtering, we have data from 104 languages
from 194 repositories (see Appendix A.1). From
the typological point of view, these languages be-
long to 20 language families, and the Basque lan-
guage is an isolate. Although almost half of the lan-
guages are from the Indo-European family, the data
include several under-studied language families.

2https://github.com/UniversalDependencies

Many of the languages in our data are endangered
or even extinct. The UD data is distributed based
on Creative Commons and GNU-based licenses,
varying from language to language3. Extracting
the tasks for every grammatical category results in
1927 probing datasets.

3.3 Probing Engine

3.3.1 Encoders

In the experiments, we consider the layers of
encoder-based models and their ability to acquire
language data and perform well on probing tasks.
Using the output of the model’s layers, we can get
contextualized token embeddings for elements of
the input text. For that reason, we can consider
several options for embedding aggregation: CLS
where the text is presented as the embedding from
"[CLS] "token, SUM and AVG where the sentence
vector is a sum or average of embeddings of all text
tokens.

3.3.2 Classifiers and metrics

After the embeddings are obtained, we train a sim-
ple classification model based on the encoder lay-
ers’ representation and task data labels. We con-
sider linear (Logistic Regression) and non-linear
(MLP) classifiers. As the metrics for performance
evaluation, we use accuracy score and weighted F1

score in case of unbalanced classes.

3https://lindat.mff.cuni.cz/repository/xmlui/
page/licence-UD-2.1
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Figure 2: An example of δF and r scores calcula-
tion between the two probing experiments

3.4 Aggregation

The engine is meant to produce probes of a particu-
lar category in a particular language. We provide
additional grouping and visualization tools to allow
for meaningful interpretation of such large result
sets. They are meant to highlight similar experi-
ments and visualize them on the world map.

The default configuration follows the classical
probing experiments and uses layers’ numbers as
X axes. Yet the more novel setup can be chosen,
e.g. treating the < language, category > features
pairs as X-axis instead.

The defined atomic experimental axis allows to
characterize larger groups of experiments via their
pooled value (such as mean-pooled by categories
value in Figure 6), or even cluster them (e.g., using
pairwise experiments similarity as in Figure 3).

3.4.1 Similarity Metrics
We support two metrics of scoring the experiments’
pair-wise similarity. Both of them are calculated for
the experiment results curves. 4 Frechet distance
(δF ) provides a natural way to compare curves
taking into account both the similarity of curves’
shapes and their absolute positioning on the chart.
Unlike that, for Pearson correlation (r) absolute
positioning is irrelevant.

While r formalizes the notion of “coherent” or
“similar” behavior of models’ layers, δF comple-
ments it with exact values similarity constraint (see
Figure 2).

Frechet distance Given the simultaneous iter-
ative step-by-step walkthrough from the start to
the end points of both curves, one could freely
vary the step size for every curve at every itera-
tion. By the proper choice of step sizes during

4By probing curve we refer to the typical probing chart.
Layers, or other probed parts of a model, and the respective
results are visualized as a curve on a linear chart.

the walkthrough, one could guarantee that the op-
timal distance between curves’ respective points
will never be exceeded during the iteration pro-
cess. That optimal distance is called Frechet dis-
tance and is formally calculated as follows: δF =
infa,b {maxt {d (Aa(t), Bb(t))}}, where t denotes
iteration steps, a, b combinations correspond to var-
ious step size strategies, and A,B are the functions
respective to the curves.

Pearson correlation coefficient Pearson corre-
lation measures the strength of linear dependence
of two samples: rxy =

∑
xiyi−nx̄ȳ

(n−1)sxsy
, where sα is

the standard deviation of sample α and α is this
sample mean.

3.4.2 Visualization
We provide the GUI (see Figure 3) to allow us to
configure the similarity thresholds and explore the
particular categories’ results on a geospatial chart.

GUI allows setting off the δF and r absolute val-
ues thresholds and specifying particular languages
and categories to be shown.

4 Evaluation Setup

To present the whole procedure of our probing
framework working process, we decided to run the
experiments only for two multilingual transformer
encoder-based models: the 12-layer mBERT model
(Devlin et al., 2018)5 and the 24-layer XLM-
RoBERTa model (Conneau et al., 2019)6. We used
embeddings from “[CLS]“ token for each text sam-
ple as it is widely accepted. As the classifier, while
supporting LogReg and MLP, we choose Logis-
tic Regression due to its higher Selectivity (Hewitt
and Liang, 2019). The classifier was trained on
10 epochs using cross-entropy loss and AdamW
(Loshchilov and Hutter, 2017) optimizer. A sep-
arate classifier was trained for each feature of all
languages and each layer.

To eliminate the problem of different sizes of
the datasets, we run the classifier five times and
then take an average result to avoid the classifier
bias. The results were evaluated by F1 weighted
score because of the unbalanced data for most prob-
ing tasks. From Universal Dependencies, using our
SentEval converter, we obtained 1927 probing tasks
for 104 languages. During the training, we noticed

5https://huggingface.co/
bert-base-multilingual-cased

6https://huggingface.co/xlm-roberta-large
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Figure 3: GUI screenshot: Similarity between languages learned by mBERT based on different probing
tasks.

that some samples contain long sentences with to-
ken numbers of more than 512. We propose two
options for handling it correctly: truncate sentences
to 512 tokens or dispose of all of these sentences.

5 Results and Insights

5.1 General Results

We received a massive multilingual probing task
bundle of 1927 tasks using all the converted data for
104 languages. It took us 10 hours to probe through
all the files on one NVidia Tesla GPU V100.

We thus conducted the probing of the mBERT
and XLM-R models to figure out the capabilities
of the models, as follows:

1. to generalize linguistic information language-
wise: grouping the average results a) by layers
(Figure 5), b) by each feature in each language
(Figure 4).

2. to generalize linguistic information feature-
wise, grouping the average results by each
layer and by each language (Appendix A.2).

3. to explore the results feature-wise: a) by
searching for similarities in layer-wise feature
representations) by exploring individual fea-
ture results grouped by language and layer
(Appendices A.4, A.5), c) by creating the
geospatial visualizations of the similar fea-
tures.

The model evaluation results are presented in Fig-
ure 4: the figure clearly shows the sparseness with
which all features are presented in each language.
Basic features such as Number, PronType, and

Tense are among the most frequent ones. The exam-
ple of the geospatial visualizations of the similarly
learned features is presented in Figure 3

5.2 mBERT and XLM-R Multilingual
Abilities and Insights

Given the mBERT model as an example, as for the
categories Number and PronType, which are the
most common across languages, the best scores
were achieved at the 3rd and 6th layers, respec-
tively. In the case of all categories, mBERT showed
the best result at the 5th layer. In Appendix A.4
and A.5 the heatmaps for all languages with these
categories can be found. As for the average results
by all categories, see Appendices A.2 and A.3. Fig-
ure 5 depicts average language scores for Number
and PronType and among all categories.

As mentioned above, we evaluated two mod-
els, mBERT and XLM-R, on our data. On aver-
age, their performance is similar. However, the
scores of XLM-R are slightly worse than the ones
of mBERT. By the categories, mBERT shows the
best performance in Hungarian, Chinese, Urdu,
Welsh, and Slovak. The worst results were shown
in Tupinambá and Akuntsu. XLM-R’s top lan-
guages include the same language in a different
order (Chinese has the best quality).

On Javanese and Akuntsu, XLM-R shows the
worst quality. The models show the best quality
on high-resource languages and have worse repre-
sentations of under-resourced non-Indo-European
languages.

Among the factors that can impact the models’
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Figure 4: mBERT results grouped by languages and average feature probing score on all layers

Figure 5: Distribution of scores by model’s layers
depending on the categories which are used across
languages.

performance on different languages, the following
might be the most essential: script, language ge-
nealogy, and typological features of languages.

To research the effect of script and language ge-
nealogy on the results, we run an ANOVA test since
we have more than two families or scripts. The test
reveals a strong correlation between a language
family and the models’ performance (p = .0005
for both XLM-R and mBERT).

We also run an ANOVA test to see if another
significant difference in performance on languages
with different scripts exists. The test shows that
script did not impact the final performance (p = .52
for mBERT and p = .39 for XLM-R). The reported
difference in the performance may be caused by the
set of categories or the dataset size. Independently,
other works (Pires et al., 2019; Wu and Dredze,
2019) claim that mBERT shows language neutral-
ity regarding both a language and its script. Our
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results support that level of performance does not
depend on a script, as models show high results
on languages with Arabic-based (Persian, Urdu) or
Ge’ez scripts (Amharic).

Yet, the models might be biased towards Stan-
dard Average European languages (SAE) (Haspel-
math, 2001), as it solves tasks on the categories
found in SAE languages better than on the other
language-specific categories. For example, the top-
10 of the best recognised categories include Per-
son[abs], PunctSide, Person[obj], Agglutination
7, Mutation, Degree, Decl, Mood 8, Evident9, and
Polarity10. Agglutination and Mutation are highly
imbalanced towards one class, and other categories,
except for Evident, are widespread in European
languages.

On the other hand, top-10 worst categories are
following: NumValue, InflClass, NounClass, Heb-
Binyan, Clitic, ExtPos, Derivation, NameType, In-
flClass[nominal], FocusType. These categories are
language-specific and are not found in SAE lan-
guages. Apart from that, if a category typical for
SAE gets a different set of values, the model per-
forms much worse. The model generally shows
good results on Case and significantly worse re-
sults for Hungarian and Amharic with a different
set of values for Case.

Chi et al. (2020) prove that mBERT has a joint
subspace of universal syntactic relations. Since we
cannot fully prove if mBERT has a joint subspace
of morphological features because, as mentioned
before, some morphological features are not univer-
sal. However, we can see if there is any correlation
between categories across all languages based on
how different layers learn these features, according
to Frechet distance. Most categories do not have
a correlating category. However, there are several
compelling cases to mention. mBERT generally
learns Evident and Mood similarly, and in some lan-
guages, such as Bulgarian, Evident is regarded as a
value of Mood. Other than that, Definite and Num-
ber have a little distance, which might be expressed
with one morpheme, as in Scandinavian languages.
The same is valid for Number and Person cate-
gories that are learned similarly by mBERT.

7Only used for Polish past participles
8Mood express modality, such as indicative, imperative,

conditional
9Evidence is the morphological marking of a speaker’s

source of information (Aikhenvald, 2006)
10Polarity shows if words can be used only in negative or

positive contexts

There is not enough evidence to claim that
mBERT has a joint subspace for morphological
features because categories have different sets of
values, and mBERT performs better on SAE cate-
gories. Yet, it shows some generalization abilities
on the similarity of morphology across languages.

6 Future Work

As part of future work, we plan to include syntactic
markup in research and an interface with a CQL-
like11 query language for authors. The ability to
set conditions on a subcorpus of examples will
give the researchers the freedom to create custom
and linguistically motivated probing tasks while
the rest of the experiment parameters will be fixed.
One can imagine, e.g., the probing of the model
on the [tag="NP"] query, exploring the results
specifically on the noun phrases. We believe that,
in this respect, the tasks of probing and interpreting
the results of the model become close to the tasks
of corpus linguistics and searching through corpora
for statistical testing of hypotheses.

7 Conclusion

The typological variety of linguistic features com-
poses the general nature of language. To address
the lower-abstract parts of this nature, we intro-
duced the Universal Probing framework, which
allows the researchers to run and aggregate mas-
sive amounts of probing experiments in a fixed and
reproducible setup.

The current framework version includes an ex-
perimental setup from 104 languages and 80 gram-
matical features. The framework can be used for
language model interpretation with various archi-
tectures, and the results can also be easily incor-
porated into the model cards checklist. It can be
used in more language-wise transfer learning and
typological studies with multilingual models.

We hope that the community will use our
work in order to interpret, evaluate and compare
the language models, leading to better and
more explainable NLP. The framework and
all the data are open-source under Apache 2.0
license https://github.com/AIRI-Institute/
Probing_framework.

11https://www.sketchengine.eu/documentation/
corpus-querying/
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8 Limitations

By now, it is also worth mentioning the UD data de-
pendencies of the framework. The problems in the
UD data, such as annotation errors, formatting er-
rors, and version instability, could potentially affect
the resulting probing framework. As described in
Section 3.2, we have eliminated obviously problem-
atic fragments; however, more deeply incorporated
inaccuracies may drag on, surviving conversion
to the SentEval format. Some inconsistencies in
the accepted annotation format affected the quality
of model embeddings: such categories as Punct-
Side (Catalan, Finnish, Icelandic, Polish, Spanish),
NameType (Armenian, Classical Chinese, Czech,
Erzya, etc.) are rare and have a very different distri-
bution from language to language and are expected
to be at the bottom of the list. The categories ac-
cepted in the UD for one specific language are
also poorly solved: Agglutination (Polish), Mu-
tation (Welsh), HebBinyan (Hebrew), NounClass
(Wolof), NumValue (Arabic, Czech).

We use the latest available UD release (version
2.10)12. As stated on the project’s website, the
next release (v2.11) is scheduled for November 15,
2022, so data curation and updates will be neces-
sary to incorporate the newer and better UD anno-
tation into the framework.

The proposed framework allows for different
probing methods to be used similarly, includ-
ing the widely criticized ones (Belinkov, 2022).
Researchers relying on the presented framework
should carefully pick the proper methods in their
probing studies. For example, we’ve introduced the
control task (Hewitt and Liang, 2019) consisting of
averaging the probing performance across several
probing experiments. This reduced the possibility
of a probing task erroneously receiving a high score
due to the small size of the testing data.

9 Ethical Considerations

9.1 Possible Misuse
The framework’s usage implies working concern-
ing standard practices during model pre-training,
such as controlling that the test data (e.g., UD cor-
pora) are excluded from the training corpus. Us-
ing UD data during pre-training or fine-tuning the
model can lead to indicative and biased results of
model interpretation.

12Version 2.10 treebanks are available at http://hdl.
handle.net/11234/1-4758. 228 treebanks, 130 languages,
released May 15, 2022.

9.2 Data-specific Problems
9.2.1 Dataset Characteristics
The dataset covers the languages described in Sec-
tion A.1. The probing dataset statistics are also
presented in Section A.1.

9.2.2 Generalization
The UD data can be considered mostly validated,
as it involves multiple institutions to develop and
test the annotation standards, as well as the corpus
data itself. However, besides data quality, usage
of the data should address such characteristics as
quantity: that is why we have automatically ex-
cluded the UD categories having only one value
within a category in all available languages. For all
other categories, the data for the classification task
were not limited in any way; the train/val/test data
division was preserved.

Potentially, other data-dependent problems (see
also the resulting data dependencies in Section 8)
could be:

• genre bias in specific languages;
• personal style/resource bias in specific lan-

guages;
• collocation of the specific features: some fea-

tures can possibly occur within the same con-
texts (sentences), which makes the solution of
the classification problem within the probing
setup noisy for the tested language model.

Nevertheless, we consider the UD corpora to be
sufficiently reliable and the most complete of the
available data for a detailed low-level multilingual
probing study of the models.

9.2.3 Data Quality
In addition to the above, we draw attention to the
question of the language representation problems
in the UD. According to the Ethnologue database
13, there are more than 4000 languages with devel-
oped writing systems, while only 172 of them are
presented in the UD in general, and even less (104)
were qualified to be included in the framework for-
mat.

As we understand that the presented language set
is not typologically sampled, we proceeded from
the criterion of completeness, not balance. If nec-
essary, we encourage willing researchers to sample
their subsamples from our data to follow typologi-
cal sampling.

13https://www.ethnologue.com/enterprise-faq/
how-many-languages-world-are-unwritten-0
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A Appendix

A.1 Languages information and statistic
After the processing of Universal Dependencies, 104 languages left. Here is a table with the languages,
their families, and the number of examples that we used in the experiments.

Language Family Examples Language Family Examples
Afrikaans Indo-European 19646 Komi Zyrian Uralic 5682
Akkadian Afro-Asiatic 15037 Korean Koreanic 3314
Akuntsu Tupian 79 Kurmanji Indo-European 9134
Albanian Indo-European 380 Latin Indo-European 1048162
Amharic Afro-Asiatic 7166 Latvian Indo-European 393694
Ancient Greek Indo-European 566076 Ligurian Indo-European 2304
Apurina Arawakan 176 Lithuanian Indo-European 81462
Arabic Afro-Asiatic 484604 Livvi Uralic 835
Armenian Indo-European 37117 Low Saxon Indo-European 623
Assyrian Afro-Asiatic 152 Manx Indo-European 13536
Bambara Mande 4829 Marathi Indo-European 6340
Basque - 191646 Mbya Guarani Tupian 5503
Beja Afro-Asiatic 347 Moksha Uralic 3133
Belarusian Indo-European 445666 Munduruku Tupian 164
Bengali Indo-European 156 Naija Atlantic-Congo 42928
Bhojpuri Indo-European 1525 North Sami Uralic 21639
Breton Indo-European 5206 Norwegian Indo-European 631651
Bulgarian Indo-European 238822 Old Church Slavonic Indo-European 118508
Buryat Mongolic-Khitan 6832 Old East Slavic Indo-European 153393
Catalan Indo-European 305522 Old French Indo-European 45115
Chinese Sino-Tibetan 18865 Persian Indo-European 183678
Classical Chinese Sino-Tibetan 93864 Polish Indo-European 860418
Coptic Afro-Asiatic 22150 Portuguese Indo-European 197481
Croatian Indo-European 193156 Romanian Indo-European 543203
Czech Indo-European 831540 Russian Indo-European 270189
Danish Indo-European 104906 Sanskrit Indo-European 25885
Dutch Indo-European 241808 Scottish Gaelic Indo-European 27907
English Indo-European 414215 Serbian Indo-European 94856
Erzya Uralic 17458 Skolt Sami Uralic 989
Estonian Uralic 557773 Slovak Indo-European 218032
Faroese Indo-European 21133 Slovenian Indo-European 286196
Finnish Uralic 624845 Spanish Indo-European 660046
French Indo-European 686410 Swedish Indo-European 213496
Galician Indo-European 15878 Tagalog Austronesian 380
German Indo-European 311259 Tamil Dravidian 12602
Gothic Indo-European 99064 Tatar Turkic 250
Greek Indo-European 49364 Thai Tai-Kadai 612
Guajajara Tupian 409 Tupinamba Tupian 593
Hebrew Afro-Asiatic 112866 Turkish Turkic 746291
Hindi Indo-European 321197 Turkish German Indo-European 21160
Hungarian Uralic 41102 Ukrainian Indo-European 139882
Icelandic Indo-European 503790 Upper Sorbian Indo-European 5241
Indonesian Austronesian 47426 Urdu Indo-European 96902
Irish Indo-European 93264 Uyghur Turkic 40174
Italian Indo-European 395470 Warlpiri Pama-Nyungan 128
Javanese Austronesian 290 Welsh Indo-European 17026
Kaapor Tupian 99 Western Armenian Indo-European 71303
Karelian Uralic 1475 Wolof Atlantic-Congo 21518
Karo Tupian 1845 Xibe Tungusic 4226
Kazakh Turkic 15082 Yakut Turkic 213
Kiche Indo-European 11534 Yoruba Atlantic-Congo 1151
Komi Permyak Uralic 325 Yupik Eskimo-Aleut 2281
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A.2 mBERT’s layers F1 scores for all languages and categories.

Figure 6: Distribution of average model scores by layers for languages measured on all categories.
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A.3 XLM-R results grouped by languages and average feature probing score on all layers
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Figure 7: XLM-R results grouped by languages and average feature probing score on all layers
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A.4 Model’s layers F1 scores for all languages on category "Number".

Figure 8: Distribution of model scores by layers for languages measured on category Number.
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A.5 Model’s layers F1 scores for all languages on category "PronType".

Figure 9: Distribution of model scores by layers for languages measured on category PronType.
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