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Stronger Biomedical NLP in the Face of COVID-19

Dina Demner-Fushman, Sophia Ananiadou, Kevin Bretonnel Cohen, Junichi Tsujii

This year marks the second virtual BioNLP workshop. BioNLP 2020 workshop was one of the
community’s first experiences in online conferences, BioNLP 2021 finds us as cohort of seasoned
zoomers, webexers and users of other platforms that the conference organizers select in the hopes of
finding an environment that will get us as close as possible to an in-person meeting. There is some
light at the end of the tunnel: in many places the new SARS-CoV-2 infections are going down and the
numbers of fully vaccinated people are going up, which allows us hoping for an in-person meeting in
2022. We believe that some of this success was enabled by our community: In 2020, BioNLP researchers
contributed to development of efficient approaches to retrieval of pandemic-related information and
developed approaches to clinical text processing that supported many tasks focused on containment of
the pandemic and reduction of COVID-19 severity and complications.

Much of the language processing work related to COVID-19 was enabled by and built on the foundation
established by the BioNLP community. This year, the community continued expanding BioNLP research
that resulted in 43 submissions to the workshop and 16 additional submissions of the work describing
innovative approaches to the MADIQA 2021 Shared Task described in the overview paper in this volume.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) that produced three thorough and thoughtful reviews for each paper in a
fairly short review period. The quality of submitted work continues growing and the Organizers are
truly grateful to our amazing Program Committee that helped us determine which work is ready to be
presented and which will benefit from additional experiments and analysis suggested by the reviewers.
Based on the PC recommendations, we selected eight papers for oral presentations and 15 for poster
presentations. These presentations include transformer-based approaches to such fundamental tasks
as relation extraction and named entity recognition and normalization, creation of new datasets and
exploration of knowledge-capturing abilities of deep learning models.

The keynote titled "Information Extraction from Texts Using Heterogeneous Information" will be
presented by Dr. Makoto Miwa, an associate professor of Toyota Technological Institute (TTI). Dr. Miwa
received his Ph.D. from the University of Tokyo in 2008. His research mainly focuses on information
extraction from texts, deep learning, and representation learning. Specifically, the keynote will highlight
the following:

With the development of deep learning, information extraction targeting sentences using only linguistic
information has matured, and interest increases beyond the boundaries of sentences and languages.
Labeled information is limited for such information extraction due to high annotation costs, and a variety
of information must be used to complement them, such as language structure and external knowledge
base information. In the talk, Dr Miwa will mainly introduce his recent efforts to extract information
from texts using various heterogeneous information inside and outside the language and discuss the
direction and prospects of information extraction in the future.

As always, we are looking forward to a productive workshop, and we hope that new collaborations and
research will evolve, continuing contributions of our community to public health and well-being.
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Improving BERT Model Using Contrastive Learning for Biomedical
Relation Extraction

Peng Su’, Yifan Peng®!, K. Vijay-Shanker™!
" Department of Computer and Information Science, University of Delaware
* Department of Population Health Sciences, Weill Cornell Medicine
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Abstract

Contrastive learning has been used to learn
a high-quality representation of the image in
computer vision. However, contrastive learn-
ing is not widely utilized in natural language
processing due to the lack of a general method
of data augmentation for text data. In this
work, we explore the method of employing
contrastive learning to improve the text repre-
sentation from the BERT model for relation
extraction. The key knob of our framework
is a unique contrastive pre-training step tai-
lored for the relation extraction tasks by seam-
lessly integrating linguistic knowledge into the
data augmentation. Furthermore, we inves-
tigate how large-scale data constructed from
the external knowledge bases can enhance the
generality of contrastive pre-training of BERT.
The experimental results on three relation ex-
traction benchmark datasets demonstrate that
our method can improve the BERT model rep-
resentation and achieve state-of-the-art perfor-
mance. In addition, we explore the inter-
pretability of models by showing that BERT
with contrastive pre-training relies more on ra-
tionales for prediction. Our code and data
are publicly available at: https://github.
com/udel-biotm-lab/BERT-CLRE.

1 Introduction

Contrastive learning is a family of methods to learn
a discriminative model by comparing input pairs
(Le-Khac et al., 2020). The comparison is per-
formed between positive pairs of “similar” inputs
and negative pairs of “dissimilar” inputs. The pos-
itive pairs can be generated in an automatic way
by transforming the original data to variants with-
out changing the key information (e.g., rotate an
image). Contrastive learning can encode general
properties (e.g. invariance) in the learned represen-
tation while it is relatively hard for other represen-
tation learning methods to achieve (Bengio et al.,

!These authors contributed equally.
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2013; Le-Khac et al., 2020). Therefore, contrastive
learning provides a powerful approach to learn rep-
resentations in a self-supervised manner and has
shown great promise and achieved the state of the
art results in recent years (He et al., 2020; Chen
et al., 2020).

Despite its advancement, contrastive learning
has not been well studied in biomedical natural
language processing (BioNLP), especially for rela-
tion extraction (RE) tasks. One obstacle lies in the
discrete characteristics of text data. Compared to
computer vision, it is more challenging to design a
general and efficient data augmentation method to
construct positive pairs. Instead, there have been
significant advances in the development of pre-
trained language models to facilitate downstream
BioNLP tasks (Devlin et al., 2019; Radford et al.,
2019; Peng et al., 2019). Therefore, leveraging con-
trastive learning in the large pre-trained language
models to learn more general representation for RE
tasks remains unexplored.

To bridge this gap, this paper presents an innova-
tive method of contrastive pre-training to improve
the language model representation for biomedical
relation extraction. As the main difference from
the existing contrastive learning framework, we
augment the datasets for RE tasks by randomly
changing the words that do not affect the relation
expression. Here, we hypothesize that the short-
est dependency path (SDP) between two entities
(Bunescu and Mooney, 2005) captures the required
knowledge for the relation expression. We hence
keep words on SDP fixed during the data augmen-
tation. In addition, we utilize external knowledge
bases to construct more data to make the learned
representation generalize better, which is a method
that is frequently used in distant supervision (Mintz
et al., 2009; Peng et al., 2016).

To verify the effectiveness of the proposed
method, we use the transformer-based BERT model
as a backbone (Devlin et al., 2019) and evaluate

Proceedings of the BioNLP 2021 workshop, pages 1-10
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our method on three widely studied RE tasks in
the biomedical domain: the chemical-protein inter-
actions (ChemProt) (Krallinger et al., 2017), the
drug-drug interactions (DDI) (Herrero-Zazo et al.,
2013), and the protein-protein interactions (PPI)
(Krallinger et al., 2008). The experimental results
show that our method boosts the BERT model per-
formance and achieves state-of-the-art results on
all three tasks.

Interest has also grown in designing interpretable
BioNLP models that are both plausible (accurate)
and rely on a specific part of the input (faithful
rationales) (DeYoung et al., 2020; Lei et al., 2016).
Here rationale is defined as the supporting evidence
in the inputs for the model to make correct predic-
tions. In this direction, we propose a new metric,
“prediction shift”, to measure the sensitivity degree
to which the small changes (out of the SDP) of
the inputs will make model change its predictions.
We show that the contrastively pre-trained model
is more robust than the original model, suggesting
that our model is more likely to make predictions
based on the rationales of the inputs.

In sum, the contribution of this work is four-
fold. (1) We propose a new method that utilizes
contrastive learning to improve the BERT model
on biomedical relation extraction tasks. (2) We
utilize external knowledge to generate more data
for learning more generalized text representation.
(3) We achieve state-of-the-art performance on
three benchmark datasets of relation extraction
tasks. (4) We propose a new metric that aims to
reveal the rationales that the model uses for pre-
dicting relations. The code and the new rationale

test datasets are available at https://github.

com/udel-biotm—lab/BERT-CLRE.

2 Related Work

The history of contrastive representation learning
can be traced back to (Hadsell et al., 2006), in
which the authors explore the method of repre-
sentation learning that similar inputs are mapped
to nearby points in the representation space. Re-
cently, with the development of data augmentation
techniques, deep neural network architectures, con-
trastive learning regains attention and achieves su-
perior performance on visual representation learn-
ing (He et al., 2020; Chen et al., 2020). In (He et al.,
2020), the Momentum Contrast (MoCo) framework
is designed to learn representation using the mech-
anism of dictionary look-up: an encoded example

2

(the query) should be similar to its matching key
(augmented sample from the same data example)
and dissimilar to others. In (Chen et al., 2020),
the authors propose the SimCLR frame to learn
the representations by maximizing the agreement
between augmented views of the same data point.

The contrastive representation has all the prop-
erties that a good representation should have: 1)
Distributed property; 2) Abstraction and invariant
property; 3) Disentangled representation (Bengio
et al., 2013; Le-Khac et al., 2020). The distributed
property emphasizes the expressive aspect of the
representation (different data points should have
distinguishable representations). The capture of
abstract concepts and the invariance to small and
local changes are concerned in the abstraction and
invariant property. From the disentangled repre-
sentation’s perspective, it should encode as much
information as possible. In this work, we will show
contrastive learning can improve the invariant as-
pect of the representation.

In the natural language processing (NLP) field,
several works have utilized the contrastive learning
technique. Fang et al. (2020) propose a pre-trained
language representation model (CERT) using con-
trastive learning at the sentence level to benefit
the language understanding tasks. Klein and Nabi
(2020) employ contrastive self-supervised learn-
ing to solve the commonsense reasoning problem.
Peng et al. (2020) propose a self-supervised pre-
training framework for relation extraction to ex-
plore the encoded information for the textual con-
text and entity type. Compared with the previous
works, we employ different data augmentation tech-
niques and utilize data from external knowledge
bases in contrastive learning to improve the model
for relation extraction tasks.

Relation extraction is usually seen as a classifi-
cation problem when the entity mentions are given
in the text. Many different methods have been
proposed to solve the relation extraction problem
(Culotta and Sorensen, 2004; Sierra et al., 2008;
Sahu and Anand, 2018; Zhang et al., 2019; Su et al.,
2019). However, the language model methods re-
define this field with their superior performance
(Dai and Le, 2015; Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019; Su and Vijay-
Shanker, 2020). Among all the language models,
BERT (Devlin et al., 2019) —a language represen-
tation model based on bidirectional Transformer
(Vaswani et al., 2017), attracts lots of attention in



Figure 1: The framework of contrastive learning. For
the data augmentation of relation extraction, we ran-
domly replace some words that are not affecting the
relation expression (w; — w; in the left sample, w; —
w; in the right sample).

different fields. Several BERT models have been
adapted for biomedical domain: BioBERT (Lee
et al., 2020), SciBERT (Beltagy et al., 2019), Blue-
BERT (Peng et al., 2019) and PubMedBERT (Gu
et al., 2021). BioBERT, SciBERT and BlueBERT
are pre-trained based on the general-domain BERT
using different pre-training data. In contrast, Pub-
MedBERT (Gu et al., 2021) is pre-trained from
scratch using PubMed abstracts.

In recent years, there is increasing interest in de-
signing more interpretable NLP models that reveal
the logic behind model predictions. In (DeYoung
et al., 2020), multiple datasets of rationales (from
human experts) are collected to facilitate the re-
search on interpretable models in NLP. In (Lei et al.,
2016), the authors propose an encoder-generator
framework to automatically generate candidate ra-
tionales to justify the predictions of neural network
models.

3 Methodology

3.1 The framework of contrastive learning

Our goal is to learn a text representation by max-
imizing agreement between inputs from positive
pairs via a contrastive loss in the latent space and
the learned representation can then be used for
relation extraction. Figure 1 shows our frame-
work of contrastive learning. Given a sentence
s = wi,...wWy, we first produce two augmented
views (a positive pair) v' = wy, ..., w}, ...w, and
V" = wy...,w,..wy (i # j) from s by applying
text augmentation technique (Section 3.1.1).

Our framework then uses one neural network to

encode the two inputs, which consists of a neural
network encoder f (Section 3.1.2) and a projection
head g (Section 3.1.3). From the first augmented
view v/, we output a representation h' = f(v')
and a projection 2/ = g(h/). From the second
augmented view v”, we output 2" £ f(v") and
another projection 2 £ g(h).

The contrastive learning method learns the rep-
resentation by comparing different samples in the
training data (Section 3.1.4). The comparison is
performed between both similar inputs and dissim-
ilar inputs, and the similar inputs are positive pairs
and the dissimilar inputs are negative pairs. Dur-
ing the training, the representations are learned by
leading the positive pairs to have similar represen-
tations and making negative pairs have dissimilar
representations. In applications, the positive pairs
are usually from the augmented data of the same
sample, and the negative pairs are generated by
selecting augmented data from different samples.

At the end of training, we only keep the encoder
f as in (Chen et al., 2020). For any text input z,
h = f(x) will be the representation of = from
contrastive learning.

3.1.1 Data augmentation for relation
extraction

The data augmentation module is a key component
of contrastive learning, which needs to randomly
generate two correlated views for the original data
point. At the same time, the generated data should
be different from each other to make them dis-
tinguishable (from the model’s perspective), but
should not be significantly different to change the
structure and semantics of the original data. It is
especially difficult to augment the text data of re-
lation extraction. In this work, we only focus on
binary relations. Given < s, ey, ea, 7 >, where e;
and ey are two entity mentions in the sentence s
with the relation type r, we keep e; and e3 in the
sentence and retain the relation expression between
e1 and eg in the augmented views.

Specifically, we propose a data augmentation
method utilizing the shortest dependency path
(SDP) between the two entities in the text. We
hypothesize that the shortest dependency path cap-
tures the required information to assert the rela-
tionship of the two entities (Bunescu and Mooney,
2005). Therefore we fix the shortest dependency
path, and randomly change the other tokens in
the text to generate the augmented data. This
idea is inspired by (Wei and Zou, 2019), which



Original

After SR
After RS
After RD

We further show that @ PROTEINS directly interacts with @ PROTEINS and Rpn4.
We further show that @ PROTEINS straight interacts with @ PROTEIN$ and Rpn4.
Further we show that @ PROTEINS directly interacts with @ PROTEINS$ and Rpn4.
We further show that @ PROTEINS interacts with @ PROTEINS and Rpn4.

Table 1: Examples after the three operations for data augmentation. The shortest dependency path between two
proteins is "@PROTEINS interacts @ PROTEINS$", which is marked with underline in the examples. The changed

words are also marked with bold font.

employed easy data augmentation techniques to
improve model performance on text classification
tasks.

As the preliminary study, we experiment with
three techniques to randomly replace the tokens
to generate the augmented data and choose the
best one for our contrastive learning method: 1)
Synonym replacement (SR), 2) Random swap (RS),
and 3) Random deletion (RD).

Table 1 gives some samples after applying the
three operations on a sentence from the PPI task.
For the synonym replacement, we randomly re-
place n words with their synonyms. To acquire
the synonym of a word, we utilize the WordNet
database (Miller, 1995) to extract a list of syn-
onyms and randomly choose one from the list. For
the random swap, we swap the positions of two
words and repeat this operation n times. For the
random deletion, we delete some words with the
probability p. The probability p is set to 0.1 in our
experiments and the parameter n for SR and RS
is calculated by p x [, where [ is the length of the
sentence.

To examine which operation performs better for
relation extraction tasks, we train three BERT mod-
els using the three types of augmented data (com-
bined with the original training data). Table 4
shows that the synonym replacement (SR) opera-
tion achieves the best performance on all three tasks
and we will employ this operation in our data aug-
mentation module in our contrastive learning exper-
iments (We will further discuss it in Section 5.2).

3.1.2 The neural network encoder

In this work, we employ the BERT model (Devlin
et al., 2019) as our encoder for the text data and the
classification token ([CLS]) output in the last layer
will be the representation of the input.

3.1.3 Projection head

As demonstrated in (Chen et al., 2020), adding a
nonlinear projection head on the model output will
improve the representation quality during training.

Following the same idea, a multi-layer perceptron
(MLP) will be applied to the model output A. For-
mally,

z=g(h) = W?¢(W'h)

and ¢ is the ReLU activation function, W' and
W2 are the weights of the perceptron in the hidden
layers.

3.1.4 Contrastive loss

Contrastive learning is designed to make similar
representations be learned for the augmented sam-
ples (positive pairs) from the same data point. We
follow the work of (Chen et al., 2020) to design
the loss function (Algorithm 1). During contrastive
learning, the contrastive loss is calculated based
on the augmented batch derived from the original
batch. Given N sentences in a batch, we first em-
ploy the data augmentation technique to acquire
two views for each sentence in the batch. There-
fore, we have 2N views from the batch. Given one
positive pair (two views from the same sentence),
we treat the other 2(/N — 1) within the batch as
negative examples. Similar to (Chen et al., 2020),
the loss for a positive pair is defined as:

I(.2") = —log exp(sim(2',2")/T)

Ziﬁl L, 221exp(sim(2, 2¢)/T)

where sim(-,-) is the cosine similarity function,
1}, %21 1s the indicator function and 7 is the tem-
perature parameter. The final loss L is computed
across all positive pairs, both (2, 2”) and (2", 2/),
in a batch.

For computation convenience, we arrange the
(2k — 1)-th example and the 2k-th example in the
batch are generated from the same sentence, a.k.a.,
(2k —1, 2k) is a positive pair. Please see Algorithm
1 for calculating the contrastive loss in one batch.
Then we can update the parameters of the BERT
model and projection head g to minimize the loss
L.



Algorithm 1: Contrastive loss in a batch
Input: encoder f (BERT), project head g,
data augmentation module, data batch

{sihile
for k=1,...,N do
V' 0" = data_augment(sy);
zop—1 = g(f(v"));
2ok = g(f(v"));
end
L =
o S Uz, 20k) + U(zok, 228-1)]

[ " Domain Pre-training | Extra Pre-training | | Fine-tuning

Pre-trained BERT Contrastive pre-
; model i training

t 1t 1

Lzt Task-specific data L Che[)n[‘:mt
\\ PubMedBERT i “‘\ PPI (AlMed)

Fine-tuning on
labeled dataset

Figure 2: The pipeline of BERT model training with
contrastive pre-training.

3.2 Training procedure

Figure 2 shows the training procedure of our frame-
work. It consists of three stages. First, we pre-
train the BERT model on a large amount of unla-
beled data from a specific domain(e.g., biomedi-
cal domain). Second, we conduct contrastive pre-
training on task-specific data as a continual pre-
training step after the domain pre-training of BERT
model. In this way, we retain the learned knowl-
edge from general pre-training, and add the new
features from contrastive learning. Finally, we fine-
tune the model on the RE tasks to further gain task-
specific knowledge through supervised training on
the labeled datasets.

The domain pre-training stage follows that of the
BERT using the masked language model and next
sentence prediction technique (Devlin et al., 2019).
In our experiments, we use two pre-trained versions
for the biomedical domain: BioBERT (Lee et al.,
2020) and PubMedBERT (Gu et al., 2021).

3.3 A knowledge-based method to enrich
training dataset for contrastive learning

Contrastive pre-training requires a large-scale
dataset to generalize the representation. Also, our
data augmentation for contrastive learning needs
SDP between two given entities, so we need to
construct the augmented dataset with the entities

Task Train Dev Test EK
ChemProt 18,035 11,268 15,745 35,500
DDI 22.233 5,559 5,716 67,959
PPI* 5,251 - 583 97,853

Table 2: Statistics of datasets used for contrastive pre-
training and fine-tuning. EK: datasets generated by ex-
ternal knowledge bases; *: since there is no standard
split of training and test set for the PPI dataset (AIMed),
we use 10-fold cross-validation and here we show num-
ber of the training and test in each fold.

mentioned in the text. For these purposes, we uti-
lize external databases for the relations to acquire
extra instances for contrastive learning.

Formally, assuming a curated database for re-
lation r contains all the relevant entities and text,
we consider every combination of the entity pairs
in one sentence and use them as examples for
this relation. For instance, there are three pro-
teins in the sentence s: "Thus NIPP1 works as a
molecular sensor for PP1 to recognize phosphory-
lated Sap155." We will generate three examples for
PPI task from this sentence: <s,NIPP1,PP1,PPI>,
<s,NIPP1,Sap155,PPI> and <s,PP1,Sap155,PPI>.

We use the IntAct database (Orchard et al., 2014)
as the interacting protein pairs database for the
PPI task. Similarly, DrugBank (Wishart et al.,
2008) and BioGRID (Stark et al., 2006) are uti-
lized for DDI and ChemProt, respectively. In the
column "EK" of Table 2, we show the statistics of
datasets for each task generated by external knowl-
edge bases. We can see that the datasets from the
external database are much larger than that of the
human-labeled datasets.

4 Experiments

As discussed before, we will utilize the BERT
model as the encoder for the inputs. In particu-
lar, we will employ two BERT models pre-trained
for the biomedical domain in our experiments:
BioBERT (Lee et al., 2020) and PubMedBERT
(Gu et al., 2021).

4.1 Datasets and evaluation metrics

We will evaluate our method on three benchmark
datasets. The statistics of these datasets is shown in
Table 2. For ChemProt and DDI tasks, we employ
the corpora in (Krallinger et al., 2017) and (Herrero-
Zazo et al., 2013) respectively, and we use the same
split of training, development and test sets with the



Model ChemProt DDI PPI
P R F P R F P R F

BioBERT 743 763 753 799 781 79.0 79.0 83.3 81.0
BioBERT+CL 77.0 747 758 826 774 799 79.8 83.1 81.3
BioBERT+CLEK 76.6 760 763 829 784 80.6 81.1 832 82.1
PubMedBERT 78.8 759 773 826 819 823 80.1 843 82.1
PubMedBERT+CL 796 762 778 833 815 824 794 85.6 824
PubMedBERT+CLEK 80.6 76.9 78.7 833 824 829 799 85.7 82.7

Table 3: BERT model performance on ChemProt, DDI and PPI tasks. BioBERT/PubMedBERT: original BERT
model; BioBERT/PubMedBERT+CL: BioBERT/PubMedBERT with contrastive pre-training on the training set of
human-labeled dataset; BioBERT/PubMedBERT+CLEK: BioBERT/PubMedBERT with contrastive pre-training

on the data from the external knowledge base.

PubMedBERT model (Gu et al., 2021) during the
model evaluation. We utilize the AIMed corpus
(Bunescu et al., 2005) for the PPI task, and we will
employ 10-fold cross-validation on it since there is
no standard split of training and test.

PPI is a binary classification problem, and we
will use the standard precision (P), recall (R) and
F1-score (F) to measure the model performance.
However, the ChemProt and DDI tasks are multi-
class classification problems. The ChemProt cor-
pus is labeled with five positive classes and the neg-
ative class: CPR:3, CPR:4, CPR:5, CPR:6, CPR:9
and negative. Similar to the DDI corpus, there are
four positive labels and one negative label: AD-
VICE, EFFECT, INT, MECHANISM and negative.
The models for ChemProt and DDI will be evalu-
ated utilizing micro precision, recall and F1 score
on the non-negative classes.

4.2 Data pre-processing

One instance of relation extraction task contains
two parts: the text and the entity mentions. In
order to make the BERT model identify the posi-
tions of the entities, we replace the relevant entity
names with predefined tags by following the stan-
dard pre-processing step for relation extraction (De-
vlin et al., 2019). Specifically, all the protein names
are replaced with @ PROTEINS, drug names with
@DRUGS$, and chemical names with @ CHEMI-
CALS. In Table 1, we show a pre-processed exam-
ple of the PPI task.

4.3 Training setup

For the fine-tuning of the BioBERT models, we
use the learning rate of 2e-5, batch size of 16, train-
ing epoch of 10, and max sequence length of 128.
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During the fine-tuning of PubMedBERT models,
the learning rate of 2e-5, batch size of 8, training
epoch of 10 and max sequence length of 256 are
utilized.

In the contrastive pre-training step of the BERT
models, we use the same learning rate with the
fine-tuning, and the training epoch is selected from
[2, 4, 6, 8, 10] based on the performance on the
development set. If there is no development set
(e.g., PPI task), we will use 6 as the default training
epoch. Since contrastive learning benefits more
from larger batch (Chen et al., 2020), we utilize the
batch size of 256 and 128 for BioBERT and Pub-
MedBERT respectively. In addition, the tempera-
ture parameter 7 is set to 0.1 during the training.

5 Results and discussion

5.1 BERT model performance with
contrastive pre-training

Table 3 demonstrates the experimental results us-
ing the BERT models with contrastive pre-training
and external datasets. The first row is the BloBERT
model performance without applying contrastive
learning. The following two rows demonstrate the
results after adding the contrastive pre-training step
in BioBERT. The "BioBERT+CL" stands for the
BioBERT model with contrastive pre-training on
the training set of the human-labeled dataset, while
"BioBERT+CLEK" is for the BioBERT model with
contrastive pre-training on the data from the exter-
nal knowledge base. Similarly, we give the Pub-
MedBERT model performance of our method in
the last three rows of Table 3.

We can see that the contrastive per-training im-
proves the model performance in both cases. How-



Training data ChemProt DDI  PPI
Original 753 79.0 81.0
+RS 75.6 784 754
+RD 754 79.8 81.2
+SR 76.0 80.1 81.9

Table 4: BioBERT model performance (F1 score) us-
ing different types of augmented data. RS: random
swap; RD: random deletion; SR: synonym replace-
ment.

ever, contrastive pre-training on human-labeled
dataset only improves the model with a small mar-
gin. We hypothesize that the limited improvement
might be due to the poor generalization on small
training set. Therefore, we include more data (EK
data) in contrastive learning to enhance the model
generalizability. The data generated from the ex-
ternal knowledge base are much more than the
training data of the human-labeled dataset (col-
umn "EK" and "train" in Table 2). As shown in the
third and sixth row in Table 3, contrastive learning
with more external data can further boost the model
performance. Compared with the BERT models
without contrastive pre-training, we observe an av-
eraged F1 score improvement (on the two BERT
models) of 1.2%, 1.2%, and 0.85% on ChemProt,
DDI, and PPI datasets, respectively.

Since PubMedBERT is the state-of-the-art
(SOTA) model on these three tasks, we further im-
prove its performance by adding contrastive pre-
training. Thus, we achieve state-of-the-art perfor-
mance on all three datasets.

5.2 Comparison of data augmentation
techniques

Table 4 shows the BERT model performance af-
ter including three types of augmented data. We
can see that the synonym replacement (SR) op-
eration yields the best results on all three tasks.
Therefore we use it as our default operation to gen-
erate augmented data in all our contrastive learning
experiments. We also notice that the augmented
data from the random swap (RS) operation hurt
the model performance on the DDI and PPI tasks,
which indicates that this operation might change
the relation expression in the sentence. Thus it is
necessary to verify the effectiveness of the opera-
tions before applying them on contrastive learning.
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Input sentence Prediction

(1) Instead, radiolabeled @ CHEMICALS result-  CPR:9
ing from @PROTEINS$ hydrolysis were ob-
served.

(2) Or else, radiolabeled @ CHEMICALS result- False
ing from @PROTEINS$ hydrolysis were ob-
served.

(1) These results indicate that membrane @PRO-  CPR:3
TEINS levels in N-38 neurons are dynamically
autoregulated by @ CHEMICALS.

(2) These results indicate that membrane @PRO- False

TEINS levels in N-38 nerve cell are dynami-
cally autoregulated by @ CHEMICALS.

Table 5: Examples of prediction shift. (1): Original
sentence; (2): Augmented sentence.

Task Model Prediction
Shift

BioBERT 246
BioBERT+CLEK 191 (22% )

ChemProt & e dBERT 248
PubMedBERT+CLEK 189 (24% J.)
BioBERT 111

DDI BioBERT+CLEK 89 20% )
PubMedBERT 90
PubMedBERT+CLEK 75 (17% |)
BioBERT 51

PPI* BioBERT+CLEK 33 (35%.)
PubMedBERT 49
PubMedBERT+CLEK 34 (31%))

Table 6: Count of prediction shift on the "augmented"
test set. *: The sum of counts on the 10 folds.

5.3 Measurement of rationale faithfulness

As discussed previously, we hypothesize the words
on the shortest dependency path (SDP) as the ra-
tionales in the input. Therefore, the model should
make its predictions based on them. If the model
predictions are all made based on a specific part
of the input, we can define this specific part of the
input to be the completely faithful rationales. In
practice, the rationales are more faithful means they
are more influential on the model predictions.

In this work, we define a new metric to mea-
sure the faithfulness of the rationales: "prediction
shift". If the model predicts one test example (non-
negative) with label L;, but changes its prediction
on its neighbor (the augmented data point) with
another label L;, we will say a "prediction shift"
happens (In Table 5, we give two examples of pre-



diction shift on PubMedBERT model). Fewer "pre-
diction shift" indicates the information outside of
SDP influences the prediction less, which means
the rationales are more faithful.

To generate a similar set (with test set) for the
measurement of "prediction shift”, we apply the
same synonym replacement (SR) technique on the
original test data. Since we retain the words that
are on the shortest dependency path between the
two entities, the generated data should express the
same relation with the original ones. The trained
model should predict them with the same labels if
the rationales of input are utilized during inference,
and in that case, we say the rationales are faithful.

We compare the number of "prediction shift"
on two types of BERT model: the original BERT
and the BERT model with contrastive pre-training.
Table 6 illustrates that the BERT models with con-
trastive pre-training dramatically reduce the num-
ber of "prediction shift". Those results indicate that
the BERT models with contrastive pre-training rely
more on the information of shortest dependency
path for prediction, a.k.a., the rationales are more
faithful. From another perspective, the results in
Table 6 also demonstrate that the BERT models
with contrastive pre-training are resilient to small
changes of the inputs, which means the models are
more robust.

6 Conclusion and Future Directions

In this work, we propose a contrastive pre-training
method to improve the text representation of the
BERT model. Our approach differs from previous
studies in the choice of text data augmentation with
linguistic knowledge and the use of the external
knowledge bases to construct large-scale data to
facilitate contrastive learning. The experimental re-
sults demonstrate that our method outperforms the
original BERT model on three relation extraction
benchmarks. Additionally, our method shows ro-
bustness to slightly changed inputs over the BERT
models. In the future, we will investigate differ-
ent settings of data augmentation and contrastive
pre-training to exploit their capability on language
models. We also hope that our work can inspire
researchers to design better metrics and create high-
quality datasets for the exploration of model inter-
pretability.

Acknowledgment

Yifan Peng’s research was supported by National
Library of Medicine - National Institutes of Health
(NIH) under award number ROOLMO013001. Peng
Su’s graduate studies were supported by a supple-
ment of NIH grant UO1GM125267.

References

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: a pretrained language model for scientific text.
arXiv:1903.10676 [cs].

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation learning: a review and new
perspectives. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, pages 1798—1828.

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Ed-
ward M. Marcotte, Raymond J. Mooney, Arun K.
Ramani, and Yuk Wah Wong. 2005. Comparative
experiments on learning information extractors for
proteins and their interactions. Artificial intelligence
in medicine, 33(2):139-155.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In HLT-EMNLP, pages 724-731, Stroudsburg,
PA, USA.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations. In
ICML, pages 1597-1607.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In ACL, pages
1-7, Barcelona, Spain.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NIPS, pages 3079-3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In ACL, pages 4171-4186.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: a benchmark to
evaluate rationalized NLP models. In ACL, pages
4443-4458.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. CERT: Contrastive
Self-supervised Learning for Language Understand-
ing. arXiv:2005.12766 [cs, stat].

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2021. Domain-
specific language model pretraining for biomedical
natural language processing. arXiv:2007.15779.



R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-
sionality reduction by learning an invariant mapping.
In CVPR, volume 2, pages 1735-1742.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. 2020.
Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, pages 9726-9735.

Maria Herrero-Zazo, Isabel Segura-Bedmar, Paloma
Martinez, and Thierry Declerck. 2013. The DDI
corpus: an annotated corpus with pharmacological
substances and drug-drug interactions. Journal of
Biomedical Informatics, 46(5):914-920.

Tassilo Klein and Moin Nabi. 2020. Contrastive self-
supervised learning for commonsense reasoning. In
ACL, pages 7517-7523.

Martin Krallinger, Florian Leitner, Carlos Rodriguez-
Penagos, and Alfonso Valencia. 2008. Overview of
the protein-protein interaction annotation extraction
task of BioCreative II. Genome Biology, 9 Suppl
2:S4.

Martin Krallinger, Obdulia Rabal, Saber A. Akhondi,
Martin Pérez Pérez, Jesis Santamaria, Gael Pérez
Rodriguez, Georgios Tsatsaronis, Ander Intxau-
rrondo, José Antonio Loépezl Umesh Nandal,
Erin Van Buel, Akileshwari Chandrasekhar, Mar-
leen Rodenburg, Astrid Laegreid, Marius Doornen-
bal, Julen Oyarzabal, Analia Lourenco, and Alfonso
Valencia. 2017. Overview of the BioCreative VI
chemical-protein interaction track. In Proceedings
of the BioCreative workshop, pages 141-146.

Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton.
2020. Contrastive representation learning: a frame-
work and review. IEEE Access, 8:193907-193934.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics (Oxford,
England), 36(4):1234-1240.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In EMNLP, pages
107-117.

George A. Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39-41.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL, pages 1003—
1011.

Sandra Orchard, Mais Ammari, Bruno Aranda, Lionel
Breuza, Leonardo Briganti, Fiona Broackes-Carter,
Nancy H. Campbell, Gayatri Chavali, Carol Chen,
Noemi del-Toro, Margaret Duesbury, Marine Du-
mousseau, Eugenia Galeota, Ursula Hinz, Marta Ian-
nuccelli, Sruthi Jagannathan, Rafael Jimenez, Jy-
oti Khadake, Astrid Lagreid, Luana Licata, Ruth C.

9

Lovering, Birgit Meldal, Anna N. Melidoni, Mila
Milagros, Daniele Peluso, Livia Perfetto, Pablo Por-
ras, Arathi Raghunath, Sylvie Ricard-Blum, Bernd
Roechert, Andre Stutz, Michael Tognolli, Kim van
Roey, Gianni Cesareni, and Henning Hermjakob.
2014.  The MlintAct project-IntAct as a com-
mon curation platform for 11 molecular interaction
databases. Nucleic Acids Research, 42(Database
issue):D358-363.

Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng
Li, Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2020.
Learning from context or names? An empirical
study on neural relation extraction. In EMNLP,
pages 3661-3672.

Yifan Peng, Chih-Hsuan Wei, and Zhiyong Lu. 2016.
Improving chemical disease relation extraction with
rich features and weakly labeled data. Journal of
Cheminformatics, 8:53.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: an evaluation of BERT and ELMo on
ten benchmarking datasets. In Proceedings of the
Workshop on Biomedical Natural Language Process-
ing (BioNLP), pages 58-065.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL, pages 2227-2237.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

Sunil Kumar Sahu and Ashish Anand. 2018. Drug-
drug interaction extraction from biomedical texts us-
ing long short-term memory network. Journal of
Biomedical Informatics, 86:15-24.

Gerardo Sierra, Rodrigo Alarcén, César Aguilar, and
Carme Bach. 2008. Definitional verbal patterns for
semantic relation extraction. Terminology. Interna-
tional Journal of Theoretical and Applied Issues in
Specialized Communication, 14(1):74-98.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly,
Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers.
2006. BioGRID: a general repository for interac-
tion datasets. Nucleic Acids Research, 34(Database
issue):D535-539.

Peng Su, Gang Li, Cathy Wu, and K. Vijay-Shanker.
2019. Using distant supervision to augment manu-
ally annotated data for relation extraction. PloS One,
14(7):e0216913.

Peng Su and K Vijay-Shanker. 2020. Investigation
of bert model on biomedical relation extraction
based on revised fine-tuning mechanism. In 2020
IEEE International Conference on Bioinformatics

and Biomedicine (BIBM), pages 2522-2529. IEEE.



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998-6008.

Jason Wei and Kai Zou. 2019. EDA: easy data aug-
mentation techniques for boosting performance on
text classification tasks. In EMNLP-IJCNLP, pages
6381-6387.

David S. Wishart, Craig Knox, An Chi Guo, Dean
Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gau-
tam, and Murtaza Hassanali. 2008. DrugBank: a
knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Research, 36(Database
issue):D901-906.

H. Zhang, R. Guan, F. Zhou, Y. Liang, Z. Zhan,
L. Huang, and X. Feng. 2019. Deep residual con-
volutional neural network for protein-protein inter-
action extraction. IEEE Access, 7:89354-89365.

10



Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical
Concept Normalization

Dongfang Xu and Steven Bethard
School of Information
University of Arizona
Tucson, AZ
{dongfangxu9,bethard}@email.arizona.edu

Abstract

Concept normalization, the task of linking
textual mentions of concepts to concepts in
an ontology, is critical for mining and an-
alyzing biomedical texts. = We propose a
vector-space model for concept normalization,
where mentions and concepts are encoded via
transformer networks that are trained via a
triplet objective with online hard triplet min-
ing. The transformer networks refine exist-
ing pre-trained models, and the online triplet
mining makes training efficient even with hun-
dreds of thousands of concepts by sampling
training triples within each mini-batch. We
introduce a variety of strategies for searching
with the trained vector-space model, including
approaches that incorporate domain-specific
synonyms at search time with no model retrain-
ing. Across five datasets, our models that are
trained only once on their corresponding on-
tologies are within 3 points of state-of-the-art
models that are retrained for each new domain.
Our models can also be trained for each do-
main, achieving new state-of-the-art on multi-
ple datasets.

1 Introduction

Concept normalization (aka. entity linking or entity
normalization) is a fundamental task of information
extraction which aims to map concept mentions in
text to standard concepts in a knowledge base or
ontology. This task is important for mining and an-
alyzing unstructured text in the biomedical domain
as the texts describing biomedical concepts have
many morphological and orthographical variations,
and utilize different word orderings or equivalent
words. For instance, heart attack, coronary attack,
MI, myocardial infarction, cardiac infarction, and
cardiovascular stroke all refer to the same concept.
Linking such terms with their corresponding con-
cepts in an ontology or knowledge base is critical
for data interoperability and the development of
natural language processing (NLP) techniques.
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Research on concept normalization has grown
thanks to shared tasks such as disorder normaliza-
tion in the 2013 ShARe/CLEF (Suominen et al.,
2013), chemical and disease normalization in
BioCreative V Chemical Disease Relation (CDR)
Task (Wei et al., 2015), and medical concept nor-
malization in 2019 n2c2 shared task (Henry et al.,
2020), and to the availability of annotated data
(Dogan et al., 2014; Luo et al., 2019). Existing
approaches can be divided into three categories:
rule-based approaches using string-matching or dic-
tionary look-up (Leal et al., 2015; D’Souza and Ng,
2015; Lee et al., 2016), which rely heavily on hand-
crafted rules and domain knowledge; supervised
multi-class classifiers (Limsopatham and Collier,
2016; Lee et al., 2017; Tutubalina et al., 2018; Niu
et al., 2019; Li et al., 2019), which cannot gener-
alize to concept types not present in their training
data; and two-step frameworks based on a non-
trained candidate generator and a supervised can-
didate ranker (Leaman et al., 2013; Li et al., 2017,
Liu and Xu, 2017; Nguyen et al., 2018; Murty et al.,
2018; Mondal et al., 2019; Ji et al., 2020; Xu et al.,
2020), which require complex pipelines and fail if
the candidate generator does not find the gold truth
concept.

We propose a vector space model for concept
normalization, where mentions and concepts are en-
coded as vectors — via transformer networks trained
via a triplet objective with online hard triplet min-
ing — and mentions are matched to concepts by vec-
tor similarity. The online hard triplet mining strat-
egy selects the hard positive/negative exemplars
from within a mini-batch during training, which
ensures consistently increasing difficulty of triplets
as the network trains for fast convergence. There
are two advantages of applying the vector space
model for concept normalization: 1) it is compu-
tationally cheap compared with other supervised
classification approaches as we only compute the
representations for all concepts in ontology once

Proceedings of the BioNLP 2021 workshop, pages 11-22
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after training the network; 2) it allows concepts
and synonyms to be added or deleted after the net-
work is trained, a flexibility that is important for
the biomedical domain where frequent updates to
ontologies like the Unified Medical Language Sys-
tem (UMLS) Metathesaurus' are common. Unlike
prior work, our simple and efficient model requires
neither negative sampling before the training nor a
candidate generator during inference.
Our work makes the following contributions:

* We propose a triplet network with online
hard triplet mining for training a vector-space
model for concept normalization, a simpler
and more efficient approach than prior work.
We propose and explore a variety of strate-
gies for matching mentions to concepts using
the vector-space model, with the most suc-
cessful being a simple sieve-based approach
that checks domain-specific synonyms before
domain-independent ones.

Our framework produces models trained on
only the ontology — no domain-specific train-
ing — that can incorporate domain-specific
concept synonyms at search time without re-
training, and these models achieve within 3
points of state-of-the-art on five datasets.
Our framework also allows models to be
trained for each domain, achieving state-of-
the-art performance on multiple datasets.

The code for our proposed framework is available
at https://github.com/dongfang9l/
Triplet-Search-ConNorm.

2 Related work

Earlier work on concept normalization focuses on
how to use morphological information to conduct
lexical look-up and string matching (Kang et al.,
2013; D’Souza and Ng, 2015; Leaman et al., 2015;
Leal et al., 2015; Kate, 2016; Lee et al., 2016; Jon-
nagaddala et al., 2016). They rely heavily on hand-
crafted rules and domain knowledge, e.g., D’Souza
and Ng (2015) define 10 types of rules at different
priority levels to measure morphological similarity
between mentions and candidate concepts in the
ontologies. The lack of lexical overlap between
concept mention and concept in domains like so-
cial media, makes rule-based approaches that rely
on lexical matching less applicable.

"https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
index.html
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Supervised approaches for concept normaliza-
tion have improved with the availability of anno-
tated data and deep learning techniques. When
the number of concepts to be predicted is small,
classification-based approaches (Limsopatham and
Collier, 2016; Lee et al., 2017; Tutubalina et al.,
2018; Niu et al., 2019; Li et al., 2019; Miftahut-
dinov and Tutubalina, 2019) are often adopted,
with the size of the classifier’s output space equal
to the number of concepts. Approaches differ in
neural architectures, such as character-level con-
volution neural networks (CNN) with multi-task
learning (Niu et al., 2019) and pre-trained trans-
former networks (Li et al., 2019; Miftahutdinov
and Tutubalina, 2019). However, classification ap-
proaches struggle when the annotated training data
does not contain examples of all concepts — com-
mon when there are many concepts in the ontology
— since the output space of the classifier will not
include concepts absent from the training data.

To alleviate the problems of classification-based
approaches, researchers apply learning to rank in
concept normalization, a two-step framework in-
cluding a non-trained candidate generator and a su-
pervised candidate ranker that takes both mention
and candidate concept as input. Previous candi-
date rankers have used point-wise learning to rank
(Li et al., 2017), pair-wise learning to rank (Lea-
man et al., 2013; Liu and Xu, 2017; Nguyen et al.,
2018; Mondal et al., 2019), and list-wise learning
to rank (Murty et al., 2018; Ji et al., 2020; Xu et al.,
2020). These learning to rank approaches also have
drawbacks. Firstly, if the candidate generator fails
to produce the gold truth concept, the candidate
ranker will also fail. Secondly, the training of candi-
date ranker requires negative sampling beforehand,
and it is unclear if these pre-selected negative sam-
ples are informative for the whole training process
(Hermans et al., 2017; Sung et al., 2020).

Inspired by Schroff et al. (2015), we propose
a triplet network with online hard triplet mining
for concept normalization. Our framework sets up
concept normalization as a one-step process, cal-
culating similarity between vector representations
of the mention and of all concepts in the ontol-
ogy. Online hard triplet mining allows such a vec-
tor space model to generate triplets of (mention,
true concept, false concept) within a mini-batch,
leading to efficient training and fast convergence
(Schroff et al., 2015). In contrast with previous
vector space models where mention and candidate



concepts are mapped to vectors via TF-IDF (Lea-
man et al., 2013), TreeLSTMs (Liu and Xu, 2017),
CNNs (Nguyen et al., 2018; Mondal et al., 2019)
or ELMO (Schumacher et al., 2020), we generate
vector representations with BERT (Devlin et al.,
2019), since it can encode both surface and seman-
tic information (Ma et al., 2019).

There are a few similar works to our vector
space model, CNN-triplet (Mondal et al., 2019),
BIOSYN (Sung et al., 2020), RoBERTa-Node2Vec
(Pattisapu et al., 2020), and TTI (Henry et al.,
2020). CNN-triplet is a two-step approach, requir-
ing a generator to generate candidates for train-
ing the triplet network, and requiring various em-
bedding resources as input to CNN-based encoder.
BIOSYN, RoBERTa-Node2Vec, and TTI are one-
step approaches. BIOSYN requires an iterative can-
didate retrieval over the entire training data during
each training step, requires both BERT-based and
TF-IDF-based representations, and performs a vari-
ety of pre-processing such as acronym expansion.
Both RoBERTa-Node2Vec and TTI use a BERT-
based encoder to encode the mention texts into a
vector space, but they differ in how to generate vec-
tor representations for medical concepts. Specifi-
cally, RoBERTa-Node2Vec uses a Node2Vec graph
embedding approach to generate concept represen-
tations, and fixes such representations during train-
ing, while TTI randomly initializes vector represen-
tations for concepts, and keeps such representations
learnable during training. Note that none of these
works explore search strategies that allow domain-
specific synonyms to be added without retraining
the model, while we do.

3 Proposed methods

We define a concept mention m as a text string in a
corpus D, and a concept c as a unique identifier in
an ontology O. The goal of concept normalization
is to find a mapping function f that maps each tex-
tual mention to its correct concept, i.e., ¢ = f(m).
We define concept text ¢ as a text string denoting
the concept ¢, and ¢ € T'(c¢), where T'(c) is all the
concept texts denoting concept c. Concept text may
come from an ontology, ¢ € O(c), where O(c) is
the synonyms of the concept ¢ from the ontology
O, or from an annotated corpus, ¢t € D(c), where
D(c) is the mentions of the concept ¢ in an an-
notated corpus D. T'(c) will allow the generation
of tuples (¢, c) such as (MI,C0027051) and (My-
ocardial Infarction,C0027051). Note that, for a
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V(tp) V(t:) (tn)
BERT BERT BERT
encoder encoder encoder
tp tL tn
heart myocardial cardiovascular
attack infarction infections

Figure 1: Example of loss calculation for a single in-
stance of triplet-based training. The same BERT model
is used for encoding ?;, t,,, and ¢,,.

concept ¢, it is common to have |O(c)| > |D(c)|,
O(c)ND(c) = 0, oreven D(c) = 0, i.e., it is com-
mon for there to be more concept synonyms in the
ontology than the annotated corpus, it is common
for the ontology and annotated corpus to provide
different concept synonyms, and it is common that
annotated corpus only covers a small subset of all
concepts in an ontology.

We implement f as a vector space model:

f(m) = argmax Sim(V (m), V (t))
50

ey

where V(z) is a vector representation of text
x and Sim is a similarity measure such as co-
sine similarity, inner product, or euclidean distance.
We learn the vector representations V' (z) using
a triplet network architecture (Hoffer and Ailon,
2015), which learns from triplets of (anchor text ¢;,
positive text ¢,, negative text ¢,,) where ¢; and ¢,
are texts for the same concept, and t,, is a text for a
different concept. The triplet network attempts to
learn V' such that for all training triplets:

Slm(v(tz)v V(tzp)) > Slm(v(t2)7 V(tzn)) (2)

The triplet network architecture has been adopted
in learning representations for images (Schroff
et al., 2015; Gordo et al., 2016) and text (Necu-
loiu et al., 2016; Reimers and Gurevych, 2019). It
consists of three instances of the same sub-network
(with shared parameters). When fed a (t;, tip, tin)
triplet of texts, the sub-network outputs vector rep-
resentations for each text, which are then fed into
a triplet loss. We adopt PubMed-BERT (Gu et al.,



2020) as the sub-network, where the representa-
tion for the concept text is an average pooling of
the representations for all sub-word tokens?. This
architecture is shown in Figure 1. The inputs to
our model are only the mentions or synonyms. We
leave the resolution of ambiguous mentions, which
will require exploration of contextual information,
for future work.

3.1 Online hard triplet mining

An essential part of learning using triplet loss is
how to generate triplets. As the number of syn-
onyms gets larger, the number of possible triplets
grows cubically, making training impractical. We
follow the idea of online triplet mining (Schroff
et al., 2015) which considers only triplets within a
mini-batch. We first feed a mini-batch of b concept
texts to the PubMed-BERT encoder to generate a
d-dimensional representation for each concept text,
resulting in a matrix M € R?*¢, We then compute
the pairwise similarity matrix:

S = Sim(M,M7T) (3)

where each entry S;; corresponds to the similarity
score between the 7™ and j™ concept texts in the
mini-batch. As the easy triplets would not con-
tribute to the training and result in slower conver-
gence (Schroff et al., 2015), for each concept text
t;, we only select a hard positive ¢, and a hard
negative ¢,, from the mini-batch such that:

= argmin Sij “4)
JE[Lb]:j#INC (5)=C (2)
n= argmax Sik 5)

kE[1,b]:k£iAC (k) #C (i)

where C'(z) is the ontology concept from which ¢,
was taken, i.e., if ¢, € T'(c) then C'(z) = c.

We train the triplet network using batch hard soft
margin loss (Hermans et al., 2017):

L(i) = In (1 4 ¢l5in=5w)) 6)

where S, n, and p are as in egs. (3) to (5), and the
hinge function, max(+,0), in the traditional triplet
loss is replaced by a softplus function, In(1 + e(')).

3.2 Similarity search

Once our vector space model has been trained, we
consider several options for how to find the most
similar concept c to a text mention m. First, we

>We also experimented with using the output of the CLS-
token, and max-pooling of the output representations for the
sub-word tokens as proposed by (Reimers and Gurevych,
2019), but neither resulted in better performance.

14

Searching Over Representation Type

Ontology Training Data Text Concept
O-T v v
O-C v v
D-T v v
D-C v v
OD-T v v v
OD-C v v v

Table 1: Names for similarity search modules.

must choose a search target: we can search over the
concepts from the ontology, or the training data, or
both. Second we must choose a representation type:
we can compare m directly to each text (ontology
synonym or training data mention) of each concept,
or we can calculate a vector representation of each
concept and then compare m directly to the concept
vector. Table 1 summarizes these options.

We consider the following search targets:

Data We search over the concepts in the anno-
tated data. These mentions will be more domain-
specific (e.g., PT may refer to patient in clinical
notes, but to physical therapy in scientific arti-
cles), but may be more predictive if the evalua-
tion data is from the same domains. We search
over the train subset of the data for dev evalua-
tion, and train + dev subset for test evaluation.

Ontology We search over the concepts in the on-
tology. The synonyms will be more domain-
independent, and the ontology will cover con-
cepts never seen in the annotated training data.

Data and ontology We search over the concepts
in both the training data and the ontology. For
concepts in the annotated training data, their rep-
resentations are averaged over mentions in the
training data and synonyms in the ontology.

We consider the following representation types:

Text We represent each text (ontology synonym
or training data mention) as a vector by running
it through our triplet-fine-tuned PubMed-BERT
encoder. Concept normalization then compares
the mention vector to each text vector:

f(m) = argrréax Sim(V(m),V(t))

ce
teT(c)

(N

When a retrieved text ¢ is present in more than
one concept (e.g., no appetite appears in con-
cepts C0426579, C0003123, C1971624), and
thus we see the same Sim for multiple concepts,
we pick a concept randomly to break ties.



First component  Second component

D-T O-T
D-T 0-C
D-C O-T
D-C 0-C
D-T OD-T
D-T OD-C
D-C OD-T
D-C OD-C

Table 2: Options for components in sieve-based search.

Concept We represent each concept as a vector
by taking an average over the triplet-fine-tuned
PubMed-BERT representations of that concept’s
texts (ontology synonyms and/or training data
mentions). Concept normalization then com-
pares the mention vector to each concept vector:

)

)
The averages here mean that different con-
cepts with some (but not all) overlapping syn-
onyms (e.g., C0426579, C0003123, C1971624

in UMLS all have the synonym no appetite) will
end up with different vector representations.

(V(m), mean V (t

— Si
f(m) = argmax Sim mean

ceO

3.2.1 Sieve-based search

Traditional sieve-based approaches for concept nor-
malization (D’Souza and Ng, 2015; Jonnagaddala
et al., 2016; Luo et al., 2019; Henry et al., 2020)
achieved competitive performance by ordering a
sequence of searches over dictionaries from most
precise to least precise.

Inspired by this work, we consider a sieve-based
similarity search that: 1) searches over the anno-
tated training data, then 2) searches over the ontol-
ogy (possibly combined with the annotated training
data). Table 2 lists all possible combinations of first
and second components in sieve-based search. For
instance, in sieve-based search D-T + O-C, we first
search over the annotated corpus using training-
data-mention vectors (D-T), and then search over
the ontology using concept vectors (O-C).

4 [Experiments

4.1 Datasets

We conduct experiments on three scientific article
datasets — NCBI (Dogan et al., 2014), BC5CDR-D
and BC5CDR-C (Li et al., 2016) — and two clin-
ical note datasets — MCN (Luo et al., 2019) and
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ShARe/CLEF (Suominen et al., 2013). The statis-
tics of each dataset are described in table 3.

NCBI The NCBI disease corpus® contains 17,324
manually annotated disorder mentions from 792
PubMed abstracts. The disorder mentions are
mapped to 750 MEDIC lexicon (Davis et al.,
2012) concepts. We split the released training
set into use 5,134 training mentions and 787 de-
velopment mentions, and keep the 960 mentions
from the original test set as evaluation. We use
the 2012 version of MEDIC ontology which con-
tains 11,915 concepts and 71,923 synonyms.

BCSCDR-D & BCSCDR-C These corpora were
used in the BioCreative V chemical-induced
disease (CID) relation extraction challenge*.
BC5CDR-D and BC5CDR-C contain 12,850 dis-
ease mentions and 15,935 chemical mentions, re-
spectively. The annotated disease mentions are
mapped to 1075 unique concepts out of 11,915
concepts in the 2012 version of MEDIC ontol-
ogy. The chemical mentions are mapped to
1164 unique concepts out of 171,203 concepts
from the 2019 version of Comparative Toxicoge-
nomics Database (CTD) chemical ontology. We
use the configuration in the BioCreative V chal-
lenge to keep the same train/dev/test splits.

ShARe/CLEF The ShARe/CLEF corpus is from
the ShARe/CLEF eHealth 2013 Challenge’,
where 11,167 disorder mentions in 298 clini-
cal notes are annotated with their concepts map-
ping to the 12,6524 disorder concepts from the
SNOMED-CT subset of the 2011AA version of
UMLS. We take the 199 clinical notes consisting
of 5,816 mentions as the train set and 5,351 men-
tions from the 99 clinical notes as test. Around
30.4% of the mentions in the corpus could not
be mapped to any concepts in the ontology, and
are assigned the CUI-less label.

MCN The MCN corpus from 2019 n2c2 Shared-
Task track 3% consists of 13,609 concept men-
tions in 100 discharge summaries. The men-
tions are mapped to 3,792 unique concepts out of
434,056 possible concepts in the SNOMED-CT
and RxNorm subset of UMLS version 2017AB.

Shttps://www.ncbi.nlm.nih.gov/
CBBresearch/Dogan/DISEASE/

*https://biocreative.bioinformatics.
udel.edu/tasks/biocreative-v/

5https://sites.google.com/site/
shareclefehealth/data

®https://n2c2.dbmi.hms.harvard.edu/
track3



Scientific Articles

Clinical Notes

Dataset NCBI BC5CDR-D BC5CDR-C  ShARe/CLEF MCN
Ontology MEDIC MEDIC CTD-Chemical SNOMED-CT SNOMED-CT & RxNorm
# of Concepts (Ontology) 11,915 11,915 171,203 126,524 434,056
# of Synonyms (Ontology) 71,923 71,923 407,247 520,665 1,550,586
# of Documents (Datasets) 792 1,500 1,500 298 100
# of Concepts (Datasets) 750 1,075 1,164 1,313 3,792
# of Mentions (Datasets) 6,881 12,850 15,935 11,167 13,609

Table 3: Statistics of the five datasets in our experiments.

We take 40 clinical notes from the released data
as training, consisting of 5,334 mentions, and the
standard evaluation data with 6,925 mentions as
our test set. Around 2.7% of mentions in MCN
are assigned the CUI-less label.

4.2 Implementation details

Unless specifically noted otherwise, we use the
same training procedure and hyper-parameter set-
tings across all experiments and on all datasets. As
the triplet mining requires at least one positive text
in a batch for each anchor text, we randomly sam-
ple one positive text for each anchor text and group
them into batches. Like previous work (Schroff
et al., 2015; Hermans et al., 2017), we adopt eu-
clidean distance to calculate similarity score during
training, while at inference time, we compute co-
sine similarity as it is simpler to interpret. For the
sieve-based search, if the cosine similarity score
between the mention and the prediction of the first
sieve is above 0.95, we use the prediction of first
sieve, otherwise, we use the prediction of the sec-
ond sieve.

When training the triplet network on the combi-
nation of the ontology and annotated corpus, we
take all the synonyms from the ontology and repeat
the concept texts in the annotated corpus such that
% = % In preliminary experiments we found
that large ontologies overwhelmed small annotated
corpora. We also experimented with three ratios
%, %, and 1 between concept texts and synonyms
of ontology on NCBI and BC5CDR-D datasets,
and found that the ratio of % achieves the best per-
formance for Train:OD models. We then kept the
same ratio setting for all datasets. We did not thor-
oughly explore other ratios and leave that to future
work.

For all experiments, we use PubMed-BERT (Gu
et al., 2020) as the starting point, which pre-trains
a BERT-style model from scratch on PubMed ab-
stracts and full texts. In our preliminary experi-
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ments, we also tried BioBERT (Lee et al., 2019) as
the text encoder, but that resulted in worse perfor-
mance across five datasets. We use the pytorch im-
plementation of sentence-transformers’ to train the
Triplet Network for concept normalization. We use
the following hyper-parameters during the train-
ing of the triplet network: sequence_length = 8,
batch_size = 1500, epoch_size = 100, optimizer =
Adam, learning_rate = 3e-5, warmup_steps = 0.

4.3 Evaluation metrics

The standard evaluation metric for concept nor-
malization is accuracy, because the most similar
concept in prediction is of primary interest. For
composite mentions like breast and ovarian cancer
that are mapped to more than one concept in NCBI,
BC5CDR-D, and BC5CDR-C datasets, we adopt
the evaluation strategy that composite entity is cor-
rect if every prediction for each separate mention
is correct (Sung et al., 2020).

5 Model selection

We use the development data to choose whether to
train the triplet network on just the ontology or also
the training data, and to choose which among the
similarity search strategies described in section 3.2.
Table 4 shows the performance of all such systems
across the five different corpora. The top half of the
table focuses on settings where the triplet network
only needs to be trained once, on the ontology, and
the bottom half focuses on settings where the triplet
network is retrained for each new dataset. For each
half of the table, the last column gives the average
of the ranks of each setting’s performance across
the five corpora. For example, when training the
triplet network only on the ontology, the searching
strategy D-C (search the training data using concept
vectors) is almost always the worst performing,

"https://github.com/UKPLab/
sentence-transformers



Train  Search NCBI BC5CDR-D BCS5CDR-C  ShARe/CLEF  MCN  Avg. Rank
1 O O-T 83.74 82.65 97.00 82.76 69.11 10.2
2 0 0-C 85.01 82.43 92.62 81.12 70.96 12
3 0 D-T 85.39 77.29 74.21 79.76 61.26 12.6
4 O D-C 85.26 75.18 74.11 69.70 59.70 13.6
5 O OD-T 89.58 88.87 97.75 88.12 72.67 4.8
6 O OD-C 88.56 85.85 93.30 82.23 72.59 9.4
7 O D-T + O-T 90.34 89.66 97.62 87.26 81.33 3.6
8 O D-T + O-C 89.96 89.40 96.88 83.73 81.93 5
9 O D-C+O-T 86.28 83.72 97.14 82.98 76.67 7.4
10 O D-C +0O-C 88.56 83.51 95.77 81.58 76.52 9.8
11 O D-T+ OD-T  91.36 90.50 97.64 90.50 81.85 2
12 O D-T+OD-C  90.85 89.90 96.88 84.69 82.15 3.6
13 O D-C+OD-T 91.99 89.47 97.76 86.83 79.19 32
14 O D-C+0OD-C 88.82 86.93 96.32 82.55 77.41 7.6
15 OD O-T 89.58 87.82 96.71 86.62 72.37 9.8
16 OD O-C 91.36 89.85 96.32 88.11 80.52 9.6
17  OD D-T 86.40 79.01 74.23 79.87 63.33 13.2
18 OD D-C 86.40 78.41 74.23 80.19 62.52 13.4
19 OD OD-T 91.11 90.38 97.85 88.87 76.15 8.2
20 OD OD-C 91.61 89.92 96.32 88.33 81.4 7.8
21 OD D-T + O-T 91.25 91.10 97.81 90.15 84.37 4
22 OD D-T + O-C 91.49 90.88 96.22 88.76 84.52 6.4
23 OD D-C+O-T 92.25 90.71 97.87 89.61 83.78 4
24 OD D-C +0O-C 91.49 90.47 96.28 88.65 83.93 7.8
25 OD D-T+OD-T 91.61 91.22 97.81 90.21 84.37 24
26 OD D-T+0OD-C 91.61 90.83 96.22 89.08 84.67 52
27 OD D-C+OD-T  92.25 90.95 97.91 90.15 83.70 34
28 OD D-C+0OD-C 91.61 90.55 96.28 89.40 84.00 5.8

Table 4: Dev performances of the triplet network trained on ontology and ontology + data with different similarity
search strategies. The last column Avg. Rank shows the average rank of each similarity search strategy across
multiple datasets. Models with best average rank are highlighted in grey; models with best accuracy are bolded.

ranking 14th of 14 in four corpora and 12th of 14
in one corpus, for an average rank of 13.6.

Table 4 shows that the best models search over
both the ontology and the training data. Models
that only search over the training data (D-T and
D-C) perform worst, with average ranks of 12.6
or higher regardless of what the triplet network is
trained on, most likely because the training data
covers only a fraction of the concepts in the test
data. Models that only search over the ontology
(O-T and O-C) are only slightly better, with aver-
age ranks between 9.6 and 12, though the models
in the first two rows of the table at least have the
advantage that they require no annotated training
data (they train on and search over only the ontol-
ogy). However, the performance of such models
can be improved by adding domain-specific syn-
onyms to the ontology, i.e., OD-T vs. O-T (rows 5
vs. 1), and OD-C vs. O-C (rows 6 vs. 2), or adding
domain-specific synonyms and then searching in a
sieve-based manner (rows 7-14).

Table 4 also shows that searching based on text
(ontology synonyms or training data mentions) vec-
tors typically outperforms searching based on con-
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cept (average of text) vectors. Each pair of rows
in the table shows such a comparison, and only in
rows 15-16 and 19-20 are the average ranks of the
-C models higher than the -T models.

Table 4 also shows that models using mixed rep-
resentation types (-T and -C) have worse ranks
than the text-only models (-T). For instance, going
from Train:O-Search:O-C to Train:O-Search:O-T
improves the average rank from 12 to 10.2, going
from Train:OD-Search:D-T+OD-C to Train:OD-
Search:D-T+OD-T improves the average rank from
5.2 to 2.4, etc. There are a few exceptions to this
on the MCN dataset. We analyzed the differences
in the predictions of Train:OD-Search:D-T+OD-T
(row 25) and Train:OD-Search:D-T+OD-C (row
26) on this dataset, and found that concept vectors
sometimes helps to solve ambiguous mentions by
averaging their concept texts. For instance, the OD-
T model finds concepts C0013144 and C2830004
for mention somnolent as they have the overlap-
ping synonym somnolent, while the OD-C model
ranks C2830004 higher as the other concept also
has other synonyms such as Drowsy, Sleepiness.

Finally, table 4 shows that sieve-based models



Approach NCBI BC5CDR-D BC5CDR-C  ShARe/CLEF  MCN
Sieve-based (D’Souza and Ng, 2015) 84.65 - - 90.75 -
Sieve-based (Luo et al., 2019) - - - - 76.35
TaggerOne (Leaman and Lu, 2016) 88.80 88.9 94.1 - -
CNN-based ranking (Li et al., 2017) 86.10 - - 90.30 -
BERT-based ranking (Ji et al., 2020) 89.06 - - 91.10 -
BERT-based ranking (Xu et al., 2020) - - - - 83.56
BIOSYN (Sung et al., 2020) 91.1 93.2 96.6 - -
TTI (Henry et al., 2020) - - - - 85.26
PubMed-BERT + Search:O-T 76.56 76.60 91.78 73.64 59.97
PubMed-BERT + Search:D-T+OD-T  82.19 90.53 94.24 85.35 75.81
Train:O + Search:O-T 82.60 84.44 95.79 83.48 69.62
Train:O + Search:D-T+OD-T 89.48 92.30 96.67 89.19 82.19
Train:OD + Search:D-T+OD-T 88.96 92.92 96.81 90.41 83.23
Train:OD + Search:tuned 91.15 92.92 96.91 90.41 83.70

Table 5: Comparisons of our proposed approaches against the current state-of-the-art performances on NCBI,
BC5CDR-D, BC5CDR-C, ShARe/CLEF, and MCN datasets. Approaches with best accuracy are bolded.

outperform their non-sieve-based counterparts. For
example, D-T + O-T has better average ranks than
O-T, D-T, or OD-T (rows 7 vs. 1, 3, and 5; and
rows 21 vs. 15,17, and 19).

From this analysis on the dev set, we select the
following models to evaluate on the test set:

Train:O + Search:O-T This is the best approach
that requires only the ontology; no annotated
training data is used.

Train:O + Search:D-T+OD-T This is the best
approach that only needs to be trained once (on
the ontology), as the training data is only used to
add extra concept text during search time. This
is similar to a real-world scenario where a user
manually adds some extra domain-specific syn-
onyms for concepts they care about.

Train:OD + Search:D-T+OD-T This is the best
approach that can be created from any combina-
tion of ontology and training data. The triplet
network must be retrained for each new domain.

Train:OD + Search:tuned This is the bold mod-
els in the second half of table 4. It requires not
only retraining the triplet network for each new
domain, but also trying out all search strategies
on the new domain and selecting the best one.

6 Results

Table 5 shows the results of our selected mod-
els on the test set, alongside the best models
in the literature. Our Train:OD+Search:tuned
model achieves new state-of-the-art on BC5CDR-
C (p®=0.0291), equivalent performance on NCBI

8We used a one-sample bootstrap resampling test. The one
sample is 10,000 runs of bootstrapping results of our system.
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(p=0.6753) and BCSCDR-D (p=0.1204), <1 point
worse on ShARe (p=0.0375), and <2 points worse
on MCN (p=0). Note that the performance of TTI
is from an ensemble of multiple system runs. Yet
this model is simpler than most prior work: it re-
quires no two-step generate-and-rank framework
(Liet al., 2017; Ji et al., 2020; Xu et al., 2020), no
iterative candidate retrieval over the entire training
data (Sung et al., 2020), no hand-crafted rules or
features (D’Souza and Ng, 2015; Leaman and Lu,
2016; Luo et al., 2019), and no acronym expansion
or TF-IDF transformations (D’Souza and Ng, 2015;
Jiet al., 2020; Sung et al., 2020).

The PubMed-BERT rows in Table 5 demonstrate
that the triplet training is a critical part of the suc-
cess: if we use PubMed-BERT without triplet train-
ing, performance is 2 to 8 points worse than our
best models, depending on the dataset. Yet, we
can see that our proposed search strategies are also
important, as on the BC5CDR datasets, PubMed-
BERT can get within 3 points of the state-of-the-art
using the D-T+OD-T search strategy (though it is
much further away on the other datasets).

Perhaps most interestingly, our triplet network
trained only on the ontology and no annotated train-
ing data, Train:O+Search:D-T+OD-T, achieves
within 3 points of state-of-the-art on all datasets.
We believe this represents a more realistic scenario:
unlike prior work, our triplet network does not
need to be retrained for each new dataset/domain if
their concepts are from the same ontology. Instead,
the model can be adapted to a new dataset/domain
by simply pointing out any extra domain-specific
synonyms for concepts, and the search can inte-
grate these directly. Domain-specific synonyms do



PubMed-BERT + Search:OD-T

Train:O + Search:OD-T

Train:OD + Search:OD-T

Rank Text Concept Score  Text Concept Score Text Concept Score

1 HNSCC C535575 0919  Hyperparathyroidism, D049950 0.767 Hyperparathyroidism, D049950 0.838
Primary Primary

5 NPC2 C536119 0.903  Hyperparathyroidism 1 C564166 0.692 Primary Hyperparathy- D049950 0.830
roidism

10 MPNST D009442 0900 HRPTI1 C564166 0.611 HRPT1 C564166 0.672

15 HPNS DO006610  0.897  Hyperparathyroidism 2 C563273 0.595 Parathyroid Adenoma, C564166 0.644
Familial

20  PBC2 (567817  0.895  Hyperparathyroidism, D006962 0.566 Hyperparathyroidisms, D006962 0.608

Secondary Secondary

Table 6: Top similar texts, their concepts, and similarity scores for mention primary HPT (D049950) predicted
from models PubMed-BERT + Search:OD-T, Train:O + Search:OD-T and Train:OD + Search:OD-T.

seem to be necessary for all datasets; without them
(i.e., Train:O+Search:O-T), performance is about
10 points below state-of-the-art.

As a small qualitative analysis of the models, Ta-
ble 6 shows an example of similarity search results,
where the systems have been asked to normalize
the mention primary HPT. PubMed-BERT fails,
producing unrelated acronyms, while both triplet
network models find the concept and rank it with
the highest similarity score.

7 Limitations and future research

Our ability to normalize polysemous concept men-
tions is limited by their context-independent repre-
sentations. Although our PubMed-BERT encoder
is a pre-trained contextual model, we feed in only
the mention text, not any context, when producing a
representation vector. This is not ideal for mentions
with multiple meanings, e.g., potassium in clinical
notes may refer to the substance (C0032821) or
the measurement (C0202194), and only the context
will reveal which one. A better strategy to generate
the contextualized representation for the concept
mention, e.g., Schumacher et al. (2020), may yield
improvements for such mentions.

We currently train a separate triplet network
for each ontology (one for MEDIC, one for CTD,
one for SNOMED-CT, etc.) but in the future
we would like to train on a comprehensive ontol-
ogy like the UMLS Metathesaurus (Bodenreider,
2004), which includes nearly 200 different vocab-
ularies (SNOMED-CT, MedDRA, RxNorm, etc.),
and more than 3.5 million concepts. We expect
such a general vector space model would be more
broadly useful to the biomedical NLP community.

We explored one type of triplet training network,
but in the future we would like to explore other
variants, such as semi-hard triplet mining (Schroff
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et al., 2015) for generating samples, cosine similar-
ity for measuring the similarity during training and
inference, and multi-similarity loss (Wang et al.,
2019) for calculating the loss.

8 Conclusions

We presented a vector-space framework for concept
normalization, based on pre-trained transformers, a
triplet objective with online hard triplet mining, and
a new approach to vector similarity search. Across
five datasets, our models that require only an on-
tology to train are competitive with state-of-the-art
models that require domain-specific training.
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Abstract

Recent research on robust representations of
biomedical names has focused on modeling
large amounts of fine-grained conceptual dis-
tinctions using complex neural encoders. In
this paper, we explore the opposite paradigm:
training a simple encoder architecture us-
ing only small sets of names sampled from
high-level biomedical concepts. Our encoder
post-processes pretrained representations of
biomedical names, and is effective for various
types of input representations, both domain-
specific or unsupervised. We validate our pro-
posed few-shot learning approach on multi-
ple biomedical relatedness benchmarks, and
show that it allows for continual learning,
where we accumulate information from vari-
ous conceptual hierarchies to consistently im-
prove encoder performance. Given these find-
ings, we propose our approach as a low-
cost alternative for exploring the impact of
conceptual distinctions on robust biomedical
name representations. Our code is open-
source and available at www.github.com/
clips/fewshot-biomedical—-names.

1 Introduction

Recent research in biomedical NLP has focused
on learning robust representations of biomedical
names. To achieve robustness, an encoder should
represent the semantic similarity and relatedness
between different names (e.g. by their closeness in
the embedding space), while its embeddings should
also remain as transferable and generally applicable
as self-supervised pretrained representations.
Prior research into robust representations has
shown three distinct tendencies. Firstly, research
typically focuses on encoders with complex neural
architectures and a large amount of parameters. As
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Chapter V: Mental and behavioural disorders

F34
Persistent mood disorders

F63
Habit and impulse disorders

F34.0 F63.0
Cyclothymia Pathological gambling

F34.1 F63.1
Dysthymia Pyromania

Table 1: Example of how reference names are grouped
together within the ICD-10 hierarchy of disorders.

compensation for this complexity, such models can
be heavily regularized during training, e.g. by tying
the output of a nested LSTM to a pooled embedding
of its input representations (Phan et al., 2019), or
by integrating a finetuned BERT model with sparse
lexical representations (Sung et al., 2020).

Secondly, encoders are typically trained on fine-
grained concepts from biomedical ontologies such
as the UMLS, i.e., concepts with no child nodes in
the ontological directed graph. Small synonym sets
of such fine-grained concepts are readily available
as training data, and often serve as evaluation data
for normalization tasks to which trained encoders
can be applied.

Lastly, as a result of using fine-grained concepts,
vast amounts of biomedical names are needed to
model the large collection of fine-grained distinc-
tions present in ontologies. For instance, Phan
et al. (2019) train their encoder on 156K disorder
names. These three tendencies share an underlying
assumption: complex neural encoder architectures
can learn biomedical semantics by generalizing in
a bottom-up fashion from large amounts of fine-
grained semantic distinctions, if provided with suf-
ficient quantities of training data.

Proceedings of the BioNLP 2021 workshop, pages 23-29
June 11, 2021. ©2021 Association for Computational Linguistics



However, it is not self-evident that such an ap-
proach is the most effective way to achieve general-
purpose biomedical name representations. For in-
stance, it does not directly address what concep-
tual distinctions are actually relevant to improve
representations for downstream NLP applications.
Finding and exploiting relevant distinctions can
be an empirical question, and as such require low-
cost exploration of various conceptual hierarchies.
Such a heuristic search is expensive in the current
paradigm.

In this paper, we explore a scalable few-shot
learning approach for robust biomedical name rep-
resentations which is orthogonal to this paradigm.
We investigate to what extent we can fit a simple
encoder architecture using only a small selection of
data, with a limited amount of concepts containing
only a few samples each (i.e., few-shot learning).
To this end, we don’t use fine-grained concepts for
training, but more general higher-level concepts
which span a large range of fine-grained concepts.
Table 1 gives an example of such a larger grouping
of biomedical names.

This paper offers two main contributions. Firstly,
our proposed approach offers an alternative for
training biomedical name encoders with much
lower computational cost, both for training and
inference at test time. It is applicable to large-
scale hierarchies containing at least ten thousands
of names and is equally effective for different types
of pretrained representations when tested on vari-
ous biomedical relatedness benchmarks. Secondly,
we show that this approach allows for low-cost con-
tinual learning from multiple concept hierarchies,
and as such can help with the accumulation of rele-
vant domain-specific information for downstream
biomedical NLP tasks.

2 Approach

Our approach is similar to supervised post-
processing techniques of word embeddings such as
retrofitting and counterfitting (Faruqui et al., 2015;
Mrksi€ et al., 2016), but instead post-processes pre-
trained representations of biomedical names.

2.1 Encoder architecture

Our encoder architecture is a feedforward neural
network with Rectified Linear Unit (ReLU) as non-
linear activation function. This neural network
transforms a pretrained representation of a biomed-
ical name, after which this transformation is aver-

24

min max mean stdev

ICD-10 247 40,519 3,414 8,693
SNOMED-CT | 397 19,114 3,532 4,094
(+ ambiguous | 1,108 23,915 4,990 5,134)

Table 2: Descriptive statistics about the number of
names per concept for our training data.

aged with the pretrained representation:

£(n) enc(unz) + Uy,
where f(n) is the output representation for a
biomedical name, u,, is its pretrained input rep-
resentation, and enc is the feedforward neural net-
work which transforms the input representation.
The averaging step ensures that the encoder archi-
tecture learns to update the pretrained input rep-
resentation rather than create an entirely new rep-
resentation. This makes our model more robust
against overfitting in few-shot learning settings.

)]

2.2 Training objectives

Our training objectives are based on the state-of-
the-art BNE model by Phan et al. (2019) and the
DAN model by Fivez et al. (2021b), which gener-
alizes the BNE model to any hierarchical level of
biomedical concepts. Our framework requires a set
of concepts C, where each concept ¢ € C' contains
a set of concept names C,,. The set of biomedical
names /N contains the union of all those sets of
concept names. We propose a simple multi-task
training regime which applies two training objec-
tives to each biomedical name n € N. We use
cosine distance as distance function d for both ob-
jectives.

Semantic similarity We enforce embedding sim-
ilarity between names that are from the same con-
cept by using a siamese triplet loss (Chechik et al.,
2010). This loss forces the encoding of a biomed-
ical name f(n) to be closer to the encoding of a
semantically similar name f(n,,s) than that of an
encoded negative sample name f(pcq), Within a
specified (possibly tuned) margin:

pos = d(f(n), f(npos))
neg = d(f(n), f(nneg))

Lsen, = max(pos — neg + margin, 0)

2

To select negative names during training we apply
distance-weighted negative sampling (Wu et al.,



2017) over all training names, since this has been
proven more effective than hard or random negative
sampling.

Conceptually grounded regularization To pre-
vent the model from overfitting on the semantic
similarity objective, we regularize it by grounding
the output representations to a stable and meaning-
ful target. Simple approximations of prototypical
concept representations can already be very effec-
tive as targets (Fivez et al., 2021a). Following the
model by Fivez et al. (2021b), we use a grounding
target which is applicable to any level of catego-
rization, from fine-grained concept distinctions to
higher-level groupings of names. This target is a
compromise between the contextual meaningful-
ness and conceptual meaningfulness objectives of
the BNE model. Rather than constraining a name
encoding either to its pretrained name representa-
tion or to a pretrained representation of its concept,
we minimize the distance to the average of both
pretrained representations:

1
Ue = 7= u
ez
U + Up 3)
Uground = 2

Lground = d(f(n), ugTound)

where the concept representation u. is approxi-
mated by averaging each pretrained embedding
representation u,, from the set of names C), belong-
ing to the concept.

This constraint implies that the dimensionality
of the encoder output should be the same as that
of the input. However, if the input dimensionality
is smaller than the desired output dimensionality,
this could be solved using e.g. random projections,
which work well for increasing the dimensionality
of neural encoder inputs (Wieting and Kiela, 2019).

Multi-task loss Our multi-task loss sums the
losses of the 2 training objectives:

L=qaLsm+ ﬁLground (4)

where o and 3 are possible weights for the indi-
vidual losses. Since both losses directly reflect co-
sine distances, they are similarly scaled and don’t
require weighting to work properly. In our experi-
ments, « = = 1 showed the most robust perfor-
mance along all settings.
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2.3 Training data

We extract sets of high-level concepts and their
constituent names from 2 large-scale hierarchies
of disorder concepts, ICD-10 and SNOMED-CT.
Table 2 gives an overview of our data distributions.

ICD-10 We use the 2018 version of the ICD-10
coding system.! We select the 21 chapters as con-
cept labels, and assign the reference name of each
code in a chapter to its concept label. Table 1 gives
an example of how such a grouping includes di-
verse semantic relations.

SNOMED-CT We use the 2018AB release of
the UMLS ontology? to extract a directed on-
tological graph of SNOMED-CT concepts. We
then select the first-degree child nodes of concept
C0012634, which is the parent concept for all dis-
orders. We then remove those children which are
direct parents to other selected children, since they
are redundant for our purpose.

This leaves us with 87 concepts, to which we
assign the reference terms of all their child concepts
in the ontological graph as biomedical names. To
make this setup directly comparable to our ICD-10
setup, we select the 21 largest concepts. Finally,
we leave out ambiguous names which belong to
multiple concepts. Table 2 shows the impact on the
data distribution.

3 Experiments and discussion

3.1 Pretrained representations

We experiment with 3 pretrained name representa-
tions. As a first baseline, we use 300-dimensional
fastText (Bojanowski et al., 2017) word embed-
dings which we train on 76M sentences of pre-
processed MEDLINE articles released by Hakala
et al. (2016). We use average pooling (Shen et al.,
2018) to extract a 300-dimensional name repre-
sentation. As a second baseline, we average the
728-dimensional context-specific token activations
of a name extracted from the publicly released
BioBERT model (Lee et al., 2019).

As state-of-the-art reference, we extract 200-
dimensional name representations using the pub-
licly released pretrained BNE model with skipgram
word embeddings, BNE + SG,,,> which was trained
on approximately 16K synonym sets of disease

"https://www.cdc.gov/nchs/icd
https://uts.nlm.nih.gov/home.html
*https://github.com/minhcp/BNE
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Figure 1: Few-shot performance for fastText encoders
on MayoSRS, averaged over 5 random samples.

concepts in the UMLS, containing 156K disease
names.

3.2 Training details

We randomly sample a small fixed amount of
names from each concept in our training data as
actual few-shot training names. We then randomly
sample the same amount of names as validation
data to calculate the multi-task loss as stopping cri-
terion. This criterion is also used to finetune the
size of the encoder network. Using only 1 hidden
layer proved best in all settings, which leaves only
the dimensionality of this layer to be tuned.

Our encoder network is implemented in PyTorch
(Paszke et al., 2019). Adam optimization (Kingma
and Ba, 2015) is performed on a batch size of 16,
using a learning rate of 0.001 and a dropout rate
of 0.5. Input strings are first tokenized using the
Pattern tokenizer (Smedt and Daelemans, 2012)
and then lowercased. We use a triplet margin of
0.1 for the siamese triplet loss Lg,, defined in
Equation 2.

3.3 Results

We evaluate our trained encoders on 3 biomedical
benchmarks of semantic relatedness and similar-
ity, which allow to compare similarity scores be-
tween name embeddings with human judgments
of relatedness. MayoSRS (Pakhomov et al., 2011)
contains multi-word name pairs of related but dif-
ferent fine-grained concepts. UMNSRS (Pakho-
mov et al., 2016) contains only single-word pairs,
and makes a distinction between relatedness and
similarity, which is a more narrow form of related-
ness. Finally, EHR-RelB (Schulz et al., 2020) is
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EHR-RelB MayoSRS UMNSRS
(rel) (rel) (rel) (sim)
BioSyn 0.45 0.50 0.40 0.42
Fivez et al. (2021a) 0.67 0.56 0.56
fastText 0.39 0.44 0.47 0.48
BioBERT 0.34 0.23 0.18 0.26
BNE 0.47 0.63 0.54 0.58
SNOMED
fastText 0.43 0.51 0.46 0.51
BioBERT 0.40 0.31 0.32 0.38
BNE 0.53 0.63 0.55 0.60
ICD-10
fastText 0.43 0.55 0.52 0.56
BioBERT 0.35 0.34 0.32 0.38
BNE 0.51 0.65 0.56 0.60
S—1I
fastText 0.44 0.55 0.46 0.52
BioBERT 0.39 0.33 0.35 0.42
BNE 0.54 0.67 0.52 0.58
I—-S
fastText 0.45 0.54 0.46 0.51
BioBERT 0.39 0.33 0.37 0.42
BNE 0.54 0.67 0.53 0.58

Table 3: Spearman’s rank correlation coefficient be-
tween human judgments and similarity scores of name
embeddings, reported on semantic similarity (sim) and
relatedness (rel) benchmarks. The highest score is de-
noted in bold; the second highest is underlined.

much larger than the other benchmarks, and con-
tains multi-word concept pairs which are chosen
based on co-occurrence in electronic health records.
This ensures that the evaluated concept pairs are
actually relevant in function of downstream appli-
cations such as information retrieval.

We average all test results over 5 different ran-
dom training samples. We use cosine similarity as
similarity score for all baseline representations and
trained encoders. Figure 1 shows the impact of the
amount of few-shot training names on performance
when using fastText representations. Our model
already substantially improves over the baseline
with only 5 names per concept (105 in total), and
maintains consistent improvement up to 15 few-
shot names. This confirms that our approach is
well-suited to anticipate expected improvements
from training on large-scale hierarchies.

Table 3 shows the results on all benchmarks
for 15-shot learning. All encoders were tuned to
9,600 hidden dimensions. We include two state-of-
the-art biomedical name encoders in our compari-
son. Firstly, BioSyn (Sung et al., 2020) sums the
weighted inner products of fine-tuned BioBERT
representations and sparse TF-IDF representations
into one similarity score between two names. The
pre-trained model* for which we report results was

*https://github.com/dmis-lab/BioSyn



Parent concept
Parent concept name

Validation mention

15-shot BNE
nebulous urine

double kidney and/or pelvis
Top 10 ranking

renal vein thrombosis
benign tumour of urethra
injury of male urethra

calculus of lower urinary tract ( disorder )
urinary obstruction due to nodular prostate ( disorder )

covered exstrophy of bladder ( disorder )
nephropathy caused by aminoglycoside ( disorder )

postprocedural bulbous urethral stricture

C0042075

disorder of the urinary system

urinary hesitancy

BNE
nebulous urine
calculus of lower urinary tract ( disorder )
urinary obstruction due to nodular prostate ( disorder )
double kidney and/or pelvis
genital oedema
perineal laceration during delivery , nos
abdominal hernia
covered exstrophy of bladder ( disorder )
heart :[ weak ] or [ failure nos ] ( disorder )
hourglass contraction of uterus

Table 4: A comparison between the rankings of 315 SNOMED-CT training names for the validation mention
urinary hesitancy. Non-matching names are underlined. While the pretrained BNE model makes various topical
associations, our 15-shot model using the BNE representations as input has learned to cluster around the semantics

of urinary tract disorders.

trained on the NCBI disease benchmark (Dogan
et al., 2014) for biomedical entity normalization.
Secondly, we include the results of the conceptually
grounded Deep Averaging Network by Fivez et al.
(2021a), which was trained on SNOMED-CT syn-
onym sets mapped into larger ICD-10 categories.

The results show various trends. Firstly, almost
all trained encoders improve over their input base-
lines for all benchmarks, regardless of the type of
input representation. Secondly, the performance in-
crease is consistent for both ICD-10 and SNOMED-
CT, even as their conceptual hierarchies are sub-
stantially different. Lastly, we also look at con-
tinual learning from SNOMED-CT to ICD-10 (S
— I) or vice versa (I — S), where we use the out-
put of the first model as input representations to
train the second model. This approach leads to sys-
tematic improvements for all representation types,
including the state-of-the-art BNE representations.
In other words, we provide tangible empirical evi-
dence that few-shot robust representations can al-
low for continual specialization in biomedical se-
mantics.

To better understand how our few-shot learning
approach can have a visible impact on various re-
latedness benchmarks, Table 4 gives an example
of nearest neighbor names from the training set
of SNOMED-CT names for the validation men-
tion urinary hesitancy. While the pretrained BNE
model makes various topical associations, our 15-
shot model using the BNE representations as input
has learned to cluster around the semantics of uri-
nary tract disorders. As this already generalizes
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to validation mentions, we can expect the model
to transfer this information to downstream applica-
tions wherever urinary tract disorders are relevant.
This applies to all 21 high-level topics which were
simultaneously encoded for both the ICD-10 and
SNOMED-CT ontologies.

4 Conclusion and future work

We have proposed a novel approach for scalable
few-shot learning of robust biomedical name rep-
resentations, which trains a simple encoder ar-
chitecture using only small subsamples of names
from higher-level concepts of large-scale hierar-
chies. Our model works for various pretrained
input embeddings, including already specialized
name representations, and can accumulate infor-
mation over various hierarchies to systematically
improve performance on biomedical relatedness
benchmarks. Future work will investigate whether
such improvements trickle down properly to down-
stream biomedical NLP tasks.
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Abstract

The accelerating growth of big data in the
biomedical domain, with an endless amount
of electronic health records and more than 30
million citations and abstracts in PubMed, in-
troduces the need for automatic structuring of
textual biomedical data. In this paper, we de-
velop a method for detecting relations between
food and disease entities from raw text. Due
to the lack of annotated data on food with re-
spect to health, we explore the feasibility of
transfer learning by training BERT-based mod-
els on existing datasets annotated for the pres-
ence of cause and treat relations among dif-
ferent types of biomedical entities, and using
them to recognize the same relations between
food and disease entities in a dataset created
for the purposes of this study. The best mod-
els achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, re-
spectively.

1 Introduction

The ongoing prevalence of malnutrition, the rising
incidence of chronic diseases affected by diet, and
the fact that even food that is generally considered
to be healthy can be harmful to patients suffering
from certain diseases or when ingested in com-
bination with specific drugs, require a profound
understanding of the role of nutrition in the com-
plex environmental interactions that contribute to
the development or treatment of different ailments.
The effect of food on human health is the subject of
numerous biomedical studies, however, the sheer
volume and the predominantly unstructured form
of newly published articles prevents medical pro-
fessionals from keeping up with recent discover-
ies, and impedes the development of systems for
knowledge-base construction, Decision Support,
and Question-Answering (QA), which brings about
the need for information extraction (IE) methods
for structuring the newly published knowledge.
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Knowledge graphs (KGs) are specialized data
representation structures that store information as
a collection of interlinked descriptions of entities.
The development of Relation Extraction (RE) meth-
ods is necessary for automatic linking of the nodes
in KGs and reducing the amount of work required
by the experts in order to create and extend these
resources.

A lot of research effort has been dedicated to
extracting relations between different biomedical
entities, however, the lack of annotated data im-
pedes the development of food-disease RE meth-
ods, which are necessary for linking food entities to
concepts from the biomedical domain, and under-
standing the impact of nutrition on human health.

Transfer learning (TL) (Weiss et al., 2016;
Zhuang et al., 2019) is a potential solution for this
problem, which involves improving a learner from
one domain by transferring information from a re-
lated domain. The use of TL in this paper is two-
fold. On the one hand, we use models that are
pre-trained on large amounts of data, and fine-tune
them for the RE task. On the other hand, we in-
vestigate the feasibility of re-purposing existing
annotated IE resources in the biomedical domain
as a potential strategy for making up for the deficit
of such resources in the food domain.

We focus on the detection of cause and treat
relations among food and disease entities, and rep-
resent the RE task as a binary classification prob-
lem, meaning that we train separate classifiers that
detect the presence of each relation type. We per-
form fine-tuning of BERT (Devlin et al., 2018),
BioBERT (Lee et al., 2019) and RoBERTa (Liu
et al., 2019) models, which have achieved state of
the art results in several Natural Language Process-
ing (NLP) tasks.

To train the classifiers, we use the
CrowdTruth (Dumitrache et al., 2017, 2015b,a) and
Adverse Drug Events (ADE) (Gurulingappa et al.,
2012) datasets, which contain sentences annotated

Proceedings of the BioNLP 2021 workshop, pages 30—40
June 11, 2021. ©2021 Association for Computational Linguistics



for the existence of relations between different
types of biomedical entities. We then apply TL in
order to use the classifiers trained on the source
datasets to directly predict relations among food
and disease entities. The reasoning behind the
use of TL in this setting is that even though the
sentences contain entities of different types, by
masking the entity occurrences in the sentence,
the models could use the context words around
the entities and pick up on linguistic features such
as keywords or sentence structure to detect the
presence of a particular relation. Even though our
goal is focused on detecting the relations between
food and disease entities, we believe the method to
be general enough to be applicable for entities of
any type, as long as the relation is the same as the
one the model was trained to recognize.

To evaluate the proposed models, we introduce
a dataset of 608 sentences, which are extracted
from abstracts of scientific articles from PubMed
and are manually annotated for the presence of
cause and treat relations between food and disease
entities. To the best of our knowledge, this is the
first English RE dataset in the food domain, and it is
publicly available on GitHub !, as an open-source
resource that can be reused in future studies.

The rest of the paper is organized as follows. In
the next section, we give an overview of the RE
work in the domains of biomedicine, and food and
nutrition. The data sources used for the experi-
ments are described in Section 3. The text repre-
sentation and classification models are presented
in Section 4, while their evaluation is discussed in
Section 5.

2 Related work

In the past decade, numerous methods have been
developed for extracting biomedical relations, such
as drug-drug (Dewi et al., 2017; Liu et al., 2016;
Kim et al., 2015; Sahu and Anand, 2018), protein-
protein (Koyabu et al., 2015; Fan et al., 2018; Zhou
etal., 2018), drug-disease (Wang et al., 2017; Bchir
and Karaa, 2013), chemical-gene (Lim and Kang,
2018) and chemical-protein (Lung et al., 2019) in-
teractions.

In the domain of food and nutrition, the efforts di-
rected at creating RE systems have been quite more
limited in comparison. A gold standard for food RE
has been generated for the German language (Wie-

"https://github.com/gjorgjinac/
food-disease-dataset
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gand et al., 2012b), and different methods such
as distant supervision (DS), pattern-matching, and
the use of co-occurrence measures have been in-
vestigated for the detection of food relations for
customer advice (Wiegand et al., 2012a; Reiplinger
et al., 2014). A Chinese food RE system (Miao
et al., 2012) has also been developed, which treats
RE as a sequence labeling task and adopts Con-
ditional Random Fields (CRFs) models to extract
relations between food and disease entities from
Chinese biomedical data. However, resources in
other languages are not easily re-purposed for the
English language.

A related resource in the English language which
contains extracted relations of food and disease
entities is the NutriChem database (Jensen et al.,
2014; Ni et al., 2017), which links plant-based
foods with their small molecule components, drugs
and disease phenotypes. A critical difference be-
tween NutriChem and the method we aim to de-
velop in this work is the fact that NutriChem limits
its scope to plant-based foods, while we do not pose
a limitation on the type of foods or diseases be-
tween which the relations occur, and aim to extract
relations from a broader range of food categories.

The benefits of TL have previously been investi-
gated for the purposes of biomedical NER (Sun and
Yang, 2019; Francis et al., 2019) and RE (Zhang
et al., 2019; Peng et al., 2019; Hafiane et al., 2020).
Recent work has been aimed at solving the chal-
lenges of imbalanced relation distribution, linguis-
tic variation and partial transfer using relation-
gated adversarial learning (Zhang et al., 2019),
and capturing dependency tree information using
TreeLSTM models (Legrand et al., 2018).

BERT has achieved state-of-the-art results on
natural language processing (NLP) tasks, including
RE between several types of biomedical entities,
which is one of the tasks in the Biomedical Lan-
guage Understanding Evaluation (BLUE) bench-
mark (Peng et al., 2019). A comparison of the
performance of BERT models for detecting rela-
tions between proteins and chemicals, and genomic
factors and drugs or drug responses (Hafiane et al.,
2020), finds that depending on the target corpus,
different variants of BERT may achieve the best re-
sults, and that fine-tuning the models is preferable
over freezing the layers of the original model and
only updating the weights of new layers added on
top of the original ones. Guided by these findings,
we perform fine-tuning of several BERT variants



for the RE task.

The Adverse Drug Events (ADE) corpus (Gu-
rulingappa et al., 2012), which is one of the source
datasets in our experiments, has been extensively
used for training RE models, and more recently,
for the exploitation of inter-task correlations for
joint entity and relation extraction using differ-
ent approaches, such as adversarial training (Bek-
oulis et al., 2018), Cross-Modal Attention Net-
works (Zhao et al., 2020) and BERT models (Eberts
and Ulges, 2019). However, unlike the previous
work done with this corpus, our goal is not to pre-
dict relations between the annotated entities, but to
learn the context words used for expressing causal
relations, so they can be recognized regardless of
the entities between which they occur.

3 Data

TL usually involves the use of two types of
datasets: source datasets and target datasets, where
models are trained on the source datasets, and
adapted to make predictions on the target datasets.
We are specifically interested in extracting rela-
tions between food and disease entities, and we
use the help of two existing source datasets, the
CrowdTruth (Dumitrache et al., 2017) and the ADE
dataset (Gurulingappa et al., 2012), in order to ex-
tract relations in the target FoodDisease dataset,
which was created for the purposes of this study.

3.1 The CrowdTruth dataset

The CrowdTruth dataset (Dumitrache et al., 2017)
for medical RE contains annotated data for cause
and treat relations in sentences from abstracts of
PubMed articles.

The dataset contains 4028 sentences annotated
for the existence of a cause relation and 3983 sen-
tences annotated for the existence of a treat relation.
Every sample of the dataset contains the name of
a relation, and a sentence containing two entities
between which the relation may or may not occur.
Each entity is further described by its UMLS name,
its starting and ending position in the sentence, and
the exact textual form in which it appears in the
sentence. Apart from this, each sample is assigned
several labels which indicate whether the relation
is observed between the two terms.

The initial data (Wang and Fan, 2014) were col-
lected using Distant supervision (DS) (Mintz et al.,
2009), which is a inexpensive and straightforward
way of labeling training data, but is also prone to
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producing noisy, low quality labels (Dumitrache
et al., 2015b; Ji et al., 2017; Chen et al., 2021). Be-
cause of that, the annotations for the cause and treat
relations collected using DS were further refined
using the CrowdFlower platform where a multi-
label annotation task was executed through crowd-
sourcing (Dumitrache et al., 2017, 2015b,a). Ad-
ditionally, experts annotated sentences with binary
labels, based on whether a specified seed relation
discovered by DS is present between two given
biomedical entities that occur in the sentence.

The sentence relation score given for each sam-
ple is computed as the cosine similarity between
the vector containing the sum of the annotations of
the non-expert workers, and the unit vector for the
relation. Here, the unit vector refers to a one-hot
vector where the value corresponding to the relation
is equal to 1, and all other components are equal
to 0. This score is in the range [0, 1]. The crowd
score is calculated using the sentence relation score,
by applying a threshold of 0.5 to separate positive
from negative examples, and rescaling the obtained
positive and negative samples in the ranges [0.5, 1],
and [-1, -0.5], respectively.

The expert label is based on the experts’ annota-
tions and it takes values of either 1 or -1, indicating
the presence or absence of the relation, respectively.
However, due to the cost, limited time and availabil-
ity of experts, the expert annotations were limited
to 975 samples in the cause dataset and 621 sam-
ples in the freat dataset.

3.1.1 Target variable construction in the
CrowdTruth dataset

The target variable is a binary indicator of the exis-
tence of the cause or treat relationship in the respec-
tive dataset. As the CrowdTruth dataset contains
multiple indicators of these relations, we choose
to rely on the labels assigned by experts, but since
these are not available for all samples, we also use
the crowd score, which has been shown to give
reliable results in the original studies (Dumitrache
et al., 2017, 2015b,a). To be more precise, if the
sentence has been labeled by an expert, the target
label is assigned a value of 1, if the score given by
the expert is 1, or 0, if the score given by the expert
is -1. If the sentence has not been labeled by an
expert, the target label is assigned a value of 1, if
the crowd score is positive, or 0, if the crowd score
is negative.



3.2 The Adverse Drug Events (ADE) dataset

The ADE dataset (Gurulingappa et al., 2012) con-
tains 6821 sentences expressing truthful relations
between drugs and adverse effects they have been
shown to cause, and 279 sentences with relations
between drugs and dosages. Each sample consists
of a sentence, the name of a drug, the name of a
condition (if the relation expressed is adverse ef-
fect) or a dosage term (if the relation expressed is
dose), and their starting and ending position in the
sentence. The sentences were extracted from MED-
LINE case reports, and were manually annotated
by three annotators. There are 1319 unique drugs,
3341 unique conditions, and 130 unique dosage
terms. In order to be consistent with the nomencla-
ture in the other datasets, we refer to the adverse
effect relation in the ADE dataset as a cause rela-
tion, and to the condition entities as diseases. The
intuition behind using relations annotated as ad-
verse effect to detect cause relations between food
and disease entities is that one would use similar
sentence structures to describe a disease occurring
as a result of the ingestion of a particular drug or
food.

3.3 The FoodDisease dataset

Since there was no data labeled for the existence of
cause and treat relations between food and disease
entities, for the purposes of this research we con-
structed a dataset containing 608 sentences from
abstracts of PubMed articles. Fig. 1 depicts the
steps taken in order to generate the dataset.

BuTTER (Cenikj et al.,, 2020) and
SABER (Giorgi and Bader, 2019) were used
for finding the food and disease entities in each
abstract. Both are Named Entity Recognition
(NER) methods based on Bidirectional Long
Short-Term Memory and Conditional Random
Fields. BUuTTER extracts food entities from raw
text, and is trained on the golden version of the
FoodBase corpus (Popovski et al., 2019), which
contains 1000 recipes annotated with food entities.
In particular, we used the lexical lemmatized
BuTTER model introduced in (Cenikj et al.,
2020), which achieves a macro averaged F1 score
of 0.946.

SABER is a biomedical NER tool, which pro-
vides several pre-trained NER models, from which
we use the DISO model ? to extract disease entities.

https://baderlab.github.io/saber/
resources
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PubMed abstracts
[

7

Extraction of disease
entities with SABER entities with BUuTTER

R

Extraction of sentences with
food and disease entities

v

False positive entity removal

v

Partial match entity
completion

v

Extraction of food

Relation annotation

Figure 1: Steps taken to generate the FoodDisease
dataset

The abstracts were filtered so that only sentences
which contain at least one food and one disease en-
tity were kept. The entities in each sentence were
then manually checked and corrected in order to re-
move false positives and complete partial matches.
Removing the false positive entities means that the
tokens that were incorrectly extracted as food or dis-
ease entities by the BuTTER and SABER methods
were discarded. Completing partial matches entails
adding the missing words in entities which should
contain multiple words, but some of them were
not captured by the automatic annotators. Each
sample contains a single food and a single disease
entity, even if multiple such entities are mentioned
in the sentence. Finally, each sentence was as-
signed binary labels to indicate if the cause and
treat relations are present.

4 Methodology

In this section, we describe the proposed RE
method, starting with the preprocessing applied to
accomplish the generalization of the models trained
on the source datasets to the target dataset. We then
introduce the pre-trained transformer models used
for text representation, and their fine-tuning for the
RE task.



ORIGINAL SENTENCE

Several epidemiological and preclinical studies supported the
protective effect of coffee on Alzheimer's disease (AD).

ENTITY MASKING

Y

Several epidemiological and preclinical studies supported the
protective effect of XXX on YYY.

CONTEXT EXTRACTION v

supported the protective effect of XXX on YYY.

Figure 2: Application of the preprocessing steps on a
sentence from the FoodDisease dataset

4.1 Data preprocessing

Since the datasets we are using are annotated with
relations between different types of biomedical en-
tities, and we would like the developed models to
generalize, and be able to extract the same relations
between different types of entities, we mask out the
entity mentions in each sentence. The reasoning
behind this is that the model would not learn to
detect relations between the concrete entities, but
instead, use the surrounding words to determine
whether they express the particular relation.

Since there could be several relations present in
one sentence, we use a context window of length 5,
i.e. use the words whose positions in the sentence
are in the range (i-5,j+5), where i is the word index
of the first occurring entity in the sentence, and j
is the word index of the second occurring entity in
the sentence.

Fig. 2 shows an example of the preprocessing
steps being applied on a sentence from the FoodDis-
ease dataset. The bolded words in the original sen-
tence are the food and disease entities, which get
masked out in the Entity Masking step, where they
are replaced by XXX and YYY, respectively. These
masking tokens are chosen arbitrarily, since their
only use is for the model to distinguish between
the subject and object entity. In the Context Ex-
traction step, the final preprocessed version of the
sentence is generated by keeping only the words in
between the entities, and the 5 words that precede
the first entity, coffee. Had there been additional
words after the second entity, Alzheimer’s disease
(AD), the first 5 of them would also be included in
the context.
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4.2 Text representation

In order to represent the textual data in numerical
format, we use 3 pre-trained transformed-based
models: BERT, RoBERTa and BioBERT.

4.2.1 BERT

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a bidi-
rectional, contextual representation model that
achieves state-of-the-art results in several natural
language processing tasks. Following the princi-
ples of transductive TL, BERT is pre-trained on an
unsupervised Mask Language Modeling (MLM)
or Next Sentence Prediction (NSP) task, and then
fine-tuned on another downstream task, such as
NER, Natural Language Inference or Question An-
swering. The pre-trained BERT models can be
finetuned without substantial modifications in their
architecture. In the simplest case, only the out-
put layer needs to be replaced, depending on the
task that the model is intended to perform. We use
the original BERT model, which is pre-trained on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia, and fine tune it for relation classifica-
tion.

4.2.2 RoBERTa

RoBERTa (Robustly Optimized BERT Ap-
proach) (Liu et al., 2019) is a text representation
model based on the original BERT architecture,
with a number of improvements introduced in
the pre-training phase, some of which include
training on a larger amount of data, longer training,
removal of the NSP task, and introduction of
dynamic masking. Apart from the BooksCorpus
and Wikipedia, which are used for the pretraining
of BERT, RoBERTa is trained on data from 3
additional sources: the CommonCrawl News
dataset (Nagel, 2016), the OpenWebText cor-
pus (Gokaslan and Cohen, 2019) and Stories
subset from the Common Crawl dataset (Trinh and
Le, 2018).

4.2.3 BioBERT

BioBERT (Bidirectional Encoder Representations
from Transformers for Biomedical Text Min-
ing) (Lee et al., 2019) is a domain-specific version
of the BERT model. Due to the fact that biomedi-
cal texts contain a considerable amount of domain-
specific proper nouns and terms that do not appear
in more general texts and would hence be unfa-
miliar to the original BERT, the data on which



BioBERT is trained is supplemented by PubMed
abstracts and full-text articles from PubMed Cen-
tral. As a result, BIoBERT has been shown to out-
perform BERT in biomedical NER, RE, and QA
(Lee et al., 2019).

4.3 Models

We perform end-to-end fine-tuning of the pre-
trained BERT, RoBERTa and BioBERT models
for the RE task. In order to adapt the original ar-
chitecture to perform binary classification, the last
layer of the models is replaced with a dropout and
a linear layer which performs binary classification.
During fine-tuning, the model parameters are ini-
tialized with the values from the pre-training step,
and are fine-tuned using the labeled data from the
source datasets. The input of a BERT model can un-
ambiguously represent both a single sequence and
a pair of text sequences (for example, a question
and an answer) in one token sequence, by using
a separator token [SEP] to mark the end of each
sequence. We explore both types of inputs and
construct two different models:

* Single Sequence Classifier (SSC) - The model
takes a single sequence as an input and per-
forms simple binary classification.

Sequence Pair Classifier (SPC) - The model
takes as input two sequences. The first se-
quence is the sequence that we want to clas-
sify (the one that is used on its own in the
SSC), while the second sequence is a con-
catenation of 10 randomly sampled sequences
which have positive labels for the relation we
are aiming to detect. We refer to the first
sequence as the sequence of interest, while
we call the concatenation of 10 sequences a
ground truth for the relation in question. The
sentences used in the ground truth sequences
are not used as sequences of interest.

The intuition behind this approach is that we
can reformulate the task Does sequence X ex-
press relation Y? as Is sequence X similar to
other sequences that contain relation Y?. The
task is still a binary classification, and the la-
bel remains the same as for the SSC.

We construct 10 ground truth sequences for
each relation, and pair each sequence of in-
terest with each ground truth. The same gen-
erated ground truths are used at training and
prediction time. For each sequence of interest
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Table 1: Examples of inputs given to the SSC and SPC
models when identifying the freat relation

Inputs given to the SSC model

Input Label

supported the protective effect of XXX
onYYY

XXX is known to cause YYY

Inputs given to the SPC model

Input Label

Sequence of interest: supported the pro-
tective effect of XXX on YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

Sequence of interest: XXX is known to
cause YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

in the test set, we generate 10 predictions (one
for each ground truth) and assign the average
of the predicted probabilities as the probabil-
ity of the sequence of interest belonging to the
positive class.

Table 1 features examples of the inputs given
to the SSC and SPC models that identify the treat
relation. The first input sample expresses a treat
relation, so the label is one, while the second input
sample expresses a cause relation, so the label is
zero. The inputs of the SSC model are the same
as for the sequences of interest of the SPC model.
For the sake of simplicity, for the SPC model in the
examples, we demonstrate one ground truth, which
is a concatenation of 3 sequences that represent a
treat relation. In our experiments, we use 10 such
ground truths, each being a concatenation of 10
sequences.

During the fine-tuning, the AdamW optimizer is
used with a learning rate of 4% 10~°. An early stop-
ping strategy is applied to prevent overfitting. The
models are trained for a maximum of 10 epochs,
or until the improvement in validation loss of 2
consecutive epochs does not surpass 5 * 1073,

The source codes for fine-tuning the SSC mod-



Table 2: Number of samples from the positive and neg-
ative class in each dataset

Dataset | CrowdTruth | ADE | FoodDisease
Relation | Cause | Treat | Cause | Cause | Treat
Class

Positive | 1429 | 1406 | 6821 | 142 323
Negative | 2555 | 2578 | 1685 | 466 285

els® and the SPC* models are publicly available on
the Colab platform.

5 Evaluation

5.1 Evaluation on the source datasets

When applying TL, a model trained on a source
dataset can experience some degradation in perfor-
mance when evaluated on the target dataset. In
order to get an idea about the upper bound of the
performance expected on the target dataset, the
models’ performance is first evaluated on the same,
source datasets they were trained on using 10-fold
cross validation.

All 3 of the datasets are unbalanced, and the
class distribution of each dataset is given in Table
2. For the ADE dataset, we only train classifiers
for the detection of the cause relation, since that
dataset does not contain annotations for the treat
relations. We consider the sentences annotated
with the dose relation in the ADE dataset to be
negative samples for the cause relation. However,
since there are only 279 such sentences, in order to
avoid extreme class unbalance, we supplement the
negative samples in the train portion of the ADE
dataset by adding the samples that are annotated
as positive for the treat relation in the CrowdTruth
dataset. 10% of the training portion of each fold
is removed and used for validation, preserving the
ratio of the positive and negative samples.

Because of the unbalanced class distribution in
all three datasets, we evaluate the models in terms
of the macro averaged f1 scores, averaged from all
folds, and these are depicted in Table 3. The mod-
els are both trained and evaluated on the datasets
indicated in the table header. The SSC and SPC
models combined with 3 different pretrained BERT
models (BERT, RoBERTa and BioBERT) result in

3https://colab.research.qoogle.com/
drive/1UOFuk6-_6c-za6P54SiThdY9ZH6T5Xpo?
usp=sharing

*nttps://colab.research.google.com/
drive/1HA78g3YGI90UUYTISZPxwbbrE6LgPKC2s?
usp=sharing
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Table 3: Macro averaged F1 scores obtained from the
evaluation on the source datasets when the proposed
preprocessing is applied, averaged from 10 folds

Dataset CrowdTruth | ADE | FoodDisease
Relation | Cause| Treat | Cause| Cause| Treat
Model:

SSC

BERT 0.753 | 0.880 | 0.871 | 0.744 | 0.886
RoBERTa| 0.740 | 0.879 | 0.866 | 0.711 | 0.884
BioBERT | 0.750 | 0.890 | 0.894 | 0.847 | 0.871
Model:

SPC

BERT 0.745 | 0.873 | 0.822 | 0.478 | 0.835
RoBERTa| 0.752 | 0.880 | 0.743 | 0.433 | 0.835
BioBERT | 0.771 | 0.884 | 0.873 | 0.545 | 0.900

6 models, which are evaluated on the 3 datasets.
The first group of three rows of scores refers to the
performance of the SSC model, while the second
group refers to the SPC model. The underlined
values refer to the highest f1 macro score in each
column, and we can note that the BioBERT mod-
els give the best performance. The SSC models
generally outperform the SPC models.

The performance of the SPC models which de-
tect the cause relation in the FoodDisease dataset
is notably lower than the rest of the models. Look-
ing into the models’ raw predictions, it is obvious
that the models predict the negative class too often,
which results in high recall for the negative class,
but very low recall for the positive class. This can
be attributed to the fact that from the 114 positive
samples in the training portion of each fold, 100 are
used for constructing the ground truth sequences
used by the SPC models, leaving only 14 posi-
tive samples for training. Annotating more data,
decreasing the number of ground truth sequences
or the number of sentences in each ground truth
sequence, and balancing the data are possible strate-
gies which are expected to remedy this anomaly.

5.2 Transfer learning evaluation

In this subsection, we report the performance
reached by the models trained on the CrowdTruth
and ADE source datasets, when evaluated on the
target FoodDisease dataset. In this case, the models
are trained on balanced data, since the class distri-
bution in the source datasets does not reflect the
distribution in the target dataset, and are evaluated
on the whole FoodDisease dataset.



Table 4: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
proposed preprocessing is applied

Dataset CrowdTruth ADE
Relation Cause | Treat | Cause
Model: SSC

BERT 0.727 | 0.841 | 0.750
RoBERTa 0.805 | 0.883 | 0.710
BioBERT 0.805 | 0.878 | 0.750
Model: SPC

BERT 0.585 | 0.689 | 0.619
RoBERTa 0.701 | 0.838 | 0.648
BioBERT 0.636 | 0.872 | 0.639

Table 4 features the macro averaged F1 scores
that the models achieve when the preprocessing
introduced in subsection 4.1 is applied on the input.

When comparing the results in Table 3 and 4,
we can observe that the SPC models and the mod-
els trained on the ADE dataset experience perfor-
mance deterioration when they are evaluated on the
target dataset, but the SSC models trained on the
CrowdTruth dataset have a similar performance in
both evaluations. This is expected to some extent,
since the relations in the ADE dataset are originally
annotated as adverse effect, which we loosely in-
terpret as a cause relation, while the sentences in
the CrowdTruth dataset are annotated for precisely
cause and treat relations.

Additionally, we conduct experiments to evalu-
ate the proposed preprocessing technique, which
we compare to the scenario when no preprocessing
is applied (neither the Entity Masking nor the Con-
text Extraction step) and the entire sentences are
given to the model. The macro averaged F1 scores
obtained in such a setting are featured in Table 5.
The best results are achieved by the RoBERTa and
BioBERT models. Most of the models benefit from
the preprocessing, which is especially noticable in
the SSC models that identify the cause relation,
where the proposed preprocessing leads to an im-
provement of the averaged macro f1 scores of at
least 0.100. Looking into the metrics for the posi-
tive and negative class separately reveals that the
lower performance of the models which do not
use the proposed processing is due to their lower
precision in identifying the positive class.

Interestingly, the SPC models that identify the
treat relation seem to perform better without the
preprocessing, even though only one the perfor-
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Table 5: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
entire sentence is being used as input

Dataset CrowdTruth ADE
Relation Cause | Treat | Cause
Model: SSC

BERT 0.595 | 0.828 | 0.568
RoBERTa 0.659 | 0.759 | 0.228
BioBERT 0.610 | 0.900 | 0.633
Model: SPC

BERT 0.557 | 0.837 | 0.608
RoBERTa 0.594 | 0.844 | 0.587
BioBERT 0.657 | 0.881 | 0.625

mance of the BERT model differs by a large mar-
gin, while the performances of the BioBERT and
RoBERTa models differ by less than 0.010.

It is important to note that the evaluation on these
models on the FoodDisease dataset may be some-
what flawed, since it may hide the possible disad-
vantage of using entire sentences as input, because
all of the sentences in the FoodDisease dataset are
unique. This would mean that if a sentence con-
tains both relations, as for example Nuts are known
to reduce the risk of heart disease, but can also
cause allergies, the dataset would either contain
the (food, relation, disease) triple (nuts, treat, heart
disease) or the triple (nuts, cause, allergies), but
not both. The models that do not use the proposed
preprocessing and get the entire sentence as input,
would in this case produce an identical output for
both triples, but when evaluated on the FoodDis-
ease dataset, they would not be penalized for doing
SO.

Overall, the best models trained on the source
datasets achieve a macro F1 scores of 0.805 and
0.900, for the detection of cause and treat rela-
tions, respectively, between food and disease enti-
ties in the target dataset. In comparison, the per-
formance of the best models trained on the target
FoodDisease dataset (the SSC-BioBERT and SPC-
BioBERT in Table 3) is 0.847 and 0.900. This in-
dicates that the application of TL using pretrained
transformer models enables us to train models us-
ing a small amount of annotated data, but we can
also obtain satisfactory results with no annotated
data for the specific RE task, by repurposing an-
notations for the same relations between different
entities.



6 Conclusion

In this paper, we propose Relation Extraction (RE)
models for the detection of cause and treat rela-
tions between food and disease entities from raw
text. To make up for the absence of annotated data
for this task, we explore the feasibility of Trans-
fer Learning (TL) by using the transformer models
BERT, RoBERTa, and BioBERT, which are pre-
trained on large amounts of data, and fine-tuned for
performing RE between various types of biomedi-
cal entities. The models are trained to recognize re-
lations based on the context words used to express
each relation, rather than the entities themselves,
so they can successfully generalize to the task of
recognizing the relations between food and disease
entities, and likely, other types of entities, though
this is not evaluated in the scope of this paper.

In order to evaluate the proposed approach, we
introduce the FoodDisease dataset, which consists
of 608 sentences annotated for the existence of the
cause and treat relations between food and disease
entities in sentences of PubMed abstracts. The
dataset is released as an open-source resource, and
is, to the best of our knowledge, the first annotated
English RE dataset of such kind in the food domain.

The best models that are fine-tuned on this
dataset achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, respec-
tively. The best models which are fine-tuned using
the data where the entities are not food-disease
pairs, but other biomedical entities of various types,
achieve macro averaged F1 score of 0.805 for the
cause relation and 0.900 for the treat relation. This
indicates that in the event where no experts are
available to annotate data, the proposed method
enables the repurposing of existing RE datasets
for the training of models that can recognize the
relation that the dataset is annotated for, between
different types of entities.

The developed models will be used as part of an
information extraction pipeline which will struc-
ture the findings of experts in biomedical scientific
literature, with the aim of alleviating the process
of linking knowledge graphs from the domain of
biomedicine to the domain of food and nutrition.
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Abstract

We explore whether state-of-the-art BERT
models encode sufficient domain knowledge
to correctly perform domain-specific infer-
ence. Although BERT implementations such
as BioBERT are better at domain-based rea-
soning than those trained on general-domain
corpora, there is still a wide margin compared
to human performance on these tasks. To
bridge this gap, we explore whether supple-
menting textual domain knowledge in the med-
ical NLI task: a) by further language model
pretraining on the medical domain corpora, b)
by means of lexical match algorithms such as
the BM25 algorithm, c¢) by supplementing lex-
ical retrieval with dependency relations, or d)
by using a trained retriever module, can push
this performance closer to that of humans. We
do not find any significant difference between
knowledge supplemented classification as op-
posed to the baseline BERT models, however.
This is contrary to the results for evidence re-
trieval on other tasks such as open domain
question answering (QA). By examining the
retrieval output, we show that the methods fail
due to unreliable knowledge retrieval for com-
plex domain-specific reasoning. We conclude
that the task of unsupervised text retrieval to
bridge the gap in existing information to facili-
tate inference is more complex than what the
state-of-the-art methods can solve, and war-
rants extensive research in the future.

1 Introduction

Transformers-based neural architectures (Vaswani
et al., 2017) currently hold the state-of-the-art per-
formance on several NLP tasks and domains. In the
biomedical domain itself, there exist several ver-
sions of transformers-based BERT models (Devlin
et al., 2019) that have been shown to be successful.
However, an analysis of the availability of medical
knowledge to these models is incomplete. To facil-
itate better understanding, in our research, we ana-
lyze a sample of errors made by BioBERT (v1.1)
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model (Lee et al., 2019a) on a clinical language
inference task (Romanov and Shivade, 2018). We
find that the errors related to domain knowledge-
based reasoning, such as the knowledge of treat-
ments administered for certain diseases, are domi-
nant (40%).

To address this limitation, we analyze a broad
range of state-of-the-art methods to integrate medi-
cal knowledge in BERT models from textual medi-
cal corpora. These methods have previously been
shown to excel at evidence retrieval in the generic
domain. The goal of our study is to understand
whether these methods can be successfully applied
for knowledge integration in the more complex
setup of finding missing medical information for
supporting sentence-pair inference.

We explore both implicit and explicit knowledge
integration, where implicit refers to indirect ac-
cess to this knowledge by further language model
pretraining on medical corpora, and explicit knowl-
edge integration refers to the setup where a relevant
sentence from external corpora is appended to the
premise to support inference. For explicit knowl-
edge integration, as the baseline method, we make
use of the traditional best match 25 (BM25) algo-
rithm (Robertson and Zaragoza, 2009) for finding
the most relevant sentence in the medical corpora.
As a modification of this method, we additionally
incorporate syntactic knowledge in the retrieval
step. We do so by restricting the retrieved sentence
to the one that contains at least one dependency
relation between premise and hypothesis medical
entities. In the third setup, instead of using BM25
scores and dependency paths, we train an end-to-
end model to first find the most relevant text block
from Wikipedia for a given instance, and then ap-
pend it to the instance for classification.

In both knowledge integration setups, we do not
see any significant performance difference due to
access to additional knowledge. On inspecting the
sentences retrieved by the BM25 and dependency
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relation-based methods, we find that these meth-
ods successfully shortlist sentences related to the
topic, but it is difficult to then automatically rank
the best candidate among the shortlisted options.
This best candidate should fill the information gap
between the sentence pairs to enable pairwise in-
ference. We expect to overcome the ranking issue
when we instead train an end-to-end model that
learns to dynamically retrieve relevant supporting
knowledge alongwith pairwise classification, as op-
posed to static heuristic-based retrieval. However,
we find that although the blocks of text retrieved in
the end-to-end setup provide medical context, they
are often unrelated to the desired information and
are insufficient for improving inference.

Although knowledge-integration methods are
effective for evidence retrieval in open domain
QA (Lee et al., 2019b), where the task is to re-
trieve a passage that mentions the correct entities,
they are insufficient for the more complex task of
augmenting missing information for pairwise do-
main knowledge-based reasoning in an unsuper-
vised setup. Entity span-based supervision simpli-
fies the problem statement in the first case, hence
resulting in the documented success. However, the
more realistic setup of retrieving the specific con-
text that can fill the information gap between pairs
of sentences without supervision is not yet solved.

2 Related work

Since the BERT models were found to be effective
for a wide range of NLP tasks (Devlin et al., 2019),
several efforts have been extended towards improv-
ing them by more efficient training strategies (Liu
et al., 2019; Yang et al., 2019b; Sanh et al., 2019;
Lan et al., 2019), training them for different do-
mains (Beltagy et al., 2019; Lee et al., 2019a; Lee
and Hsiang, 2019; Chalkidis et al., 2020; Guru-
rangan et al., 2020) and languages (Devlin, 2018;
de Vries et al., 2019; Le et al., 2020; Martin et al.,
2020; Delobelle et al., 2020; Caiete et al., 2020).
Within the clinical domain, different models in-
clude the BioBERT models pretrained on PubMed
abstracts and PMC full-text articles (Lee et al.,
2019a), SciBERT trained on scientific text (Belt-
agy et al., 2019), clinical BERT models trained on
patient notes from the MIMIC-III corpus (John-
son et al., 2016) (sometimes as a continuation of
the BioBERT models) (Alsentzer et al., 2019), and
BlueBERT models that also use Pubmed abstracts
and MIMIC-III patient notes for training (Peng
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et al., 2019). These models hold promising perfor-
mance for clinical language processing (Si et al.,
2019; Lin et al., 2019) and have become a popular
choice for several classification tasks that involve
the medical data, spanning tasks such as litera-
ture search and question answering for assisting
healthcare professionals (Jin et al., 2019; Wang
et al., 2020; Moller et al., 2020), as well as pa-
tient outcome prediction such as diagnosis predic-
tion (Franz et al., 2020; Rasmy et al., 2020). De-
spite being a popular choice, little is known about
the medical knowledge of these models and their
limitations when in-depth domain knowledge is
required for correctly solving a task.

Much prior research has explored augmenta-
tion of background knowledge in neural models
to make them more effective for downstream tasks.
Most common approaches include adapting en-
tity embeddings learned by models such as BERT
by providing additional knowledge from differ-
ent ontologies that define relations between enti-
ties. This can be done either by using templates
to convert the relations to text before finetuning
embeddings (Weissenborn et al., 2017; Lauscher
et al., 2020; Chen et al., 2020), by combining re-
lational information from knowledge graphs with
text embeddings (Mihaylov and Frank, 2018; Chen
et al., 2018; Zhang et al., 2019; Yang et al., 2019a;
Liu et al., 2020), or by jointly learning knowl-
edge graph and textual embeddings (Peters et al.,
2019; Feng et al., 2020). These ontologies are ei-
ther generic like WordNet (Miller, 1995), Concept-
Net (Liu and Singh, 2004), and Wikidata (Vran-
deci¢ and Krotzsch, 2014), or more specific to a
particular domain like the UMLS (Bodenreider,
2004). An advantage of using ontologies is that the
semantics of entities gets encoded in the learned
representations, thereby enhancing their effective-
ness. However, they are expensive to construct and
either are incomplete, or do not exist for special-
ized domains. Methods that make use of textual
corpora for background knowledge integration are
therefore more easily transferable to other domains.
Talmor et al. (2020) have shown earlier that hav-
ing explicit access to external information can of-
ten improve reasoning skills of the state-of-the-art
models, which we investigate further.

Use of TF-IDF (Ullman, 2011) and BM25 scores
has been frequently explored for evidence retrieval
from Wikipedia for open domain QA (Chen et al.,
2017; Wang et al., 2018; Glass et al., 2020). An-



other popular approach includes representation
similarity-based evidence retrieval (Lee et al., 2018;
Das et al., 2019). Recently, joint training of re-
triever for span identification and pretraining lan-
guage models have also been analyzed by Hu et al.
(2019); Lee et al. (2019b); Guu et al. (2020). Al-
though the methods extensively explore QA, this
line of work has not been explored much for lan-
guage inference, especially in specialized domains.

Existing studies for augmenting medical knowl-
edge for clinical language inference are limited
to the use of UMLS knowledge graph embed-
dings (Sharma et al., 2019), interaction weighting
between premise and hypothesis based on distance
in the UMLS (Chopra et al., 2019), augmenting
clinical concept definitions during representation
learning (Lu et al., 2019) and adding domain knowl-
edge by means of pretraining existing models fur-
ther on different in-domain corpora and closely re-
lated tasks (Romanov and Shivade, 2018; Lee et al.,
2019a; Alsentzer et al., 2019; Chopra et al., 2019).
The closest work to ours is the contemporary work
by He et al. (2020) that shows improvements when
knowledge from Wikipedia is implicitly integrated
by training BERT masked language models to pre-
dict disease names and their aspects (such as symp-
toms, treatments) given the corresponding context.
In our work, we instead explore whether we can
augment domain knowledge by dynamically fetch-
ing relevant context in an unsupervised manner to
improve medical language inference.

3 Medical language inference

In medical language inference, given a pair of
sentences, the goal is to describe a logical rela-
tion between them. We make use of the MedNLI
dataset (Romanov and Shivade, 2018), where the
premise is a sentence borrowed from patient notes
in the MIMIC-III dataset (Johnson et al., 2016),
and the hypothesis is written by medical experts
such that the premise either entails or contradicts
the hypothesis, or their relation cannot be estab-
lished (neutral). Entailment refers to whether the
meaning of the second sentence, also known as
the ‘hypothesis’, is already contained in the first
sentence called the ‘premise’. We explore whether
the BioBERT v(1.1) model encodes sufficient med-
ical knowledge for this task. In the same manner
as Peng et al. (2019), we model this task as a sen-
tence pair classification task, where the final pooled
BERT [CLS] representations of the premise and the
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hypothesis are processed through a dense neural
layer to classify the correct class. We then per-
form manual analysis on a subset of 50 incorrectly
classified instances in the development set to un-
derstand the type of errors made by the model. We
eliminate ambiguity in the cause of errors by using
an adversarial evaluation, where we modify an in-
stance according to a potential cause of error, and
monitor whether the output changes accordingly.
In this manner, we obtain the distribution of errors
presented in Table 2 and discussed in Section 5.1.

4 Medical knowledge augmentation

4.1 External medical corpora

Different versions of BERT that exist for biomed-
ical tasks are either trained on journal abstracts
and articles, or on patient notes. These articles
and notes are written by and for an audience with
an advanced level of domain knowledge. Funda-
mental domain-specific information, such as an un-
derstanding of domain terminology, commonly ac-
cepted clinical practices for specific medical condi-
tions, human physiology and anatomy, etc. is often
also required for clinical language understanding.
We hypothesize that access to such fundamental
domain knowledge during model training would
complement training on more advanced informa-
tion. To explore this, we create two corpora — one
containing only the medical subset of Wikipedia
(Wikimed), and one with contents of a popular
medical textbook (Medbook). The Wikimed subset
is parsed from the HTML sources of the medical
Wikipedia dataset used in the Android app by the
Kiwix team!. The medical subset of Wikipedia
contains about 40 million tokens, and the medical
textbook corpus contains nearly 3.6 million tokens.

4.2 Implicit knowledge integration

Starting from an existing BioBERT checkpoint that
is already pretrained on a combination of Google
books, Wikipedia, biomedical abstracts and journal
articles (Lee et al., 2019a), we continue to train
BERT language models on the Medbook and the
Wikimed corpora. Our goal is to explore whether
further training on corpora that contain fundamen-
tal domain knowledge can implicitly improve med-
ical knowledge-based reasoning in the medical
language inference task. Since Wikimed is the

"https://play.google.com/store/apps/
details?id=org.kiwix.kiwixcustomwikimedé&
hl=en_US&gl=US
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Figure 1: Explicit domain knowledge integration for
the MedNLI task.

medical-only subset of Wikipedia, it was also in-
cluded in the first phase of training of BERT mod-
els. We do not expect to see a significant difference
in the classification performance here due to this
reason. However, since the Medbook corpus is
quite different from other corpora used earlier, we
expect bigger differences in classification results.

4.3 Explicit knowledge integration

We explore methods to explicitly augment medical
knowledge to the instances in the MedNLI dataset
by retrieving and appending relevant text blocks
from either the Wikimed corpus or the Medbook
corpus before processing it through our BERT mod-
els for finetuning, as described next. We illustrate
the methods pipeline in Figure 1.

4.3.1 Lexical retrieval

We first explore the use of TF-IDF based techniques
for retrieving evidence from external textual cor-
pora to support inference. Although these methods
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are fairly simple, they have been shown to be effec-
tive for several open domain QA tasks (Lee et al.,
2019b). Our goal is to investigate whether these
simple methods are also effective at more complex
information retrieval in our setup.

To this end, we construct a query from premise
and hypothesis by retaining only the lemmas that
are a part of infrequent medical entities, and then
use the best match 25 (BM25) algorithm (Robert-
son and Zaragoza, 2009) to find the most relevant
sentences. As the first step, we recognize premise
and hypothesis medical entities with the help of
Scispacy (Neumann et al., 2019). We lemmatize
these entities and retain only those lemmas that
occur less than a thousand times in the external
corpus”. These lemmas jointly form the query. We
first rank the documents in the external corpora
according to their BM25 scores to retain the top 10
documents. The query is then used again to find
the best matching sentences from these documents.

Due to the manner in which the MedNLI data
has been annotated, premise is longer and more
varied than the hypothesis. Hence, premise entities
often dominate the BM25 retrieval at the cost of
hypothesis entities. To overcome this, we prune the
retrieved sentences if they do not mention at least
one premise and one hypothesis entity lemma.

The highest ranking sentence retrieved in this
manner is then appended® to the premise before
classification. If none of the sentences satisfy either
the constraint or the threshold score, then the use
of explicit knowledge is skipped.

4.3.2 Lexical and syntactic retrieval

In our previous setup, we add an entity-presence
constraint to ensure that the retrieved sentence is
about both the premise and the hypothesis. In or-
der to ensure that the retrieved knowledge also
establishes an explicit relation between the two, we
modify the previous approach to rank sentences
based on dependency paths between premise and
hypothesis lemmas. In this setup, we find the top
documents in the same manner as earlier. Once the
top documents are found, we restrict to the set of
sentences in these documents that have a depen-
dency relation between a premise and a hypothesis
lemma. Once we have established the set of sen-
tences that hold this relation, we rank them either

The threshold was decided based on preliminary results
on the development set, where retaining less frequent lemmas
provides more specific matches.

3Separated by a space.



using the minimum dependency path length, or
using the BM25 score between the query and a sen-
tence. The sentence with the highest score above
the threshold is then appended to the instance in
the same manner as described earlier.

4.3.3 Joint retrieval and classification model

By using lexical and syntactic approaches that we
have discussed earlier, we ensure that the candi-
date and the retrieved sentences would be related
to both the premise and the hypothesis. However,
when we are confronted with a high number of
relevant candidate sentences, shortlisting one sen-
tences becomes challenging. Adding multiple sen-
tences is also infeasible due to the limited input
sequence length in BERT models. In order to over-
come this challenge, in our third setup, we instead
train an end-to-end model, where the weights of
the retriever are updated along with classification.
Hence, the retriever learns to select the sentence
that provides information that can improve classifi-
cation. This approach has been previously shown
to be quite successful in open domain QA via span
identification (Lee et al., 2019b) and in language
model pretraining (Guu et al., 2020), since it pro-
vides access to a wider evidence space compared
to the limited number of retrieved blocks when us-
ing lexical approaches. However, the use of such
an end-to-end retriever has not been explored for
augmenting knowledge from textual corpora to sup-
port reasoning in NLI tasks. Since we do not have
data annotated specifically for retrieval of support-
ing evidence for NLI tasks, training the retriever
becomes much more complex compared to span
identification. However, given the success of the
end-to-end approaches earlier, we are interested in
investigating its feasibility for our setup and we
build upon existing methods for this.

Retriever pretraining: We reuse the pretrained
retrieval model shared by Lee et al. (2019b), trained
in an inverse cloze task (ICT) setup on complete
Wikipedia, for our experiments. In this setup, a
sentence in Wikipedia is treated as the query, and
the retriever is trained to retrieve its context* in
the original text. This retrieval is performed by
computing a weighted dot product between the
pooled BERT [CLS] embeddings of the query and
the text block. In 10% of the cases, the query is
not removed from the context to ensure that the
model learns to retrieve lexical as well as semantic

“Blocks of at most 288 wordpiece tokens (Wu et al., 2016)
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matches. Although it is trained on entire Wikipedia
instead of only a subset, we reuse it due to resource
constraints for retraining the retriever. Since the
medical portion of Wikipedia is only a subset of
this data, we expect to still be able to retrieve the
sentences relevant for the MedNLI task.

End-to-end-classification: In an end-to-end
setup, the retriever module first returns the &>
most similar blocks of text given a BERT-encoded
premise and hypothesis pair, in the same manner as
described earlier. We add these k retrieved blocks
to the input along with the premise and the hy-
pothesis to obtain £ inputs corresponding to each
instance. We then encode these inputs with BERT
to obtain k different [CLS] representations. All of
these k [CLS] representations are then individually
used for classification by adding a dense layer on
the top in the finetuning phase. In this manner, we
obtain k different outputs for a given instance. We
then aggregate these k& outputs together by retain-
ing the most frequent output among the % options.
We also experimented with average pooling and
selecting the most peaked softmax output distribu-
tion, but majority pooling provided more promising
results on the development set.

Classification loss: We use the categorical cross
entropy loss (Murphy, 2012). The gradients are
backpropagated jointly to both the classifier and
the weights used to compute the similarity between
the query and the blocks of Wikipedia text.

Retriever loss: In the span identification setup
developed by Lee et al. (2019b), mention of the
correct entity in the text provides the retriever with
an explicit feedback. This makes their training
easier compared to our setup where we do not have
this supervised signal. To make the training more
feasible, we experiment with an additional retrieval
loss. This loss quantifies the difference between the
model performance with and without the retrieved
text block, and uses this difference to improve the
retriever. The objective of this loss is to reward the
model when it is better if a retrieved text block is
used as opposed to when only the premise and the
hypothesis are used for inference. We define this
loss in terms of pairwise retrieval loss, i.e.,

R =maz(0,m — (Lpa) — L(p,,R)))s

where R is the retrieval loss, Lp gy is the categor-
ical cross entropy loss without using the retrieved

SWe use k = 5 in our experiments



text block, and L(p y gy is the categorical cross
entropy loss after adding the retrieved text block
to the given instance, and m is the margin value
that we treat as a hyperparameter. We use m = 0.1
based on the results on the development set. To
explain this loss, we consider three different cases:

1. The model performs equivalently with and
without the retrieved text block: In this case,
the model ignores the retriever and optimizes
for classification without it. This is undesir-
able, and we set the retriever loss to the margin
value, which refers to the minimum desired
difference between the two sets of losses.

The model is worse after adding the retrieved
text block: This behavior is again undesirable
since the goal of retrieval is to improve the
model. Hence, along with the margin, we also
add the difference between the two losses to
compute the retrieval loss.

The model improves after adding the retrieved
text block: If the model becomes better due
to retrieval, it could either be better by chance
(when the difference is lower than the mini-
mum margin), or the difference could be sub-
stantial. In the first case, we quantify the re-
trieval loss as the margin value. The latter
behavior is the desired behavior of the model,
and we set the retrieval loss to be zero.

Here, the final loss function is computed as the
sum of the classification loss and the retrieval loss.

5 Results and Discussion

5.1 Availability of domain knowledge

In the top section of Table 1, we present the re-
sults when we finetune BERT models for medi-
cal language inference. Here we can see that the
BERT model which has been trained on in-domain
Pubmed abstracts for the largest number of opti-
mization steps is consistently the best on both devel-
opment and test sets. As expected based on prior
research, all other models trained on in-domain
data are also significantly better than the BERT
models that are not trained on in-domain data.

We investigate the errors made by the best model,
BioBert (v1.1). As discussed in Section 3, in Ta-
ble 2, we present the distribution of the first 50
errors made on the development set of the MedNLI
dataset. Examples of these errors are illustrated in
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Table 3. Although we present the distribution of er-
rors for one specific run here, we also analyzed this
distribution across 3 different runs of the model.
We found that the average pairwise Cohen’s kappa
agreement (McHugh, 2012) between the predic-
tions on the development set across 3 different runs
is 0.9, and the distribution of errors across these
runs is comparable. In Table 2, we can see that 40%
of the errors happen due to insufficient domain in-
formation. Some of these errors happen because
of missing factual domain knowledge, some lack
advance reasoning based on factual domain knowl-
edge, and some are incorrect potentially because
of model biases due to limited size of the training
dataset, such as assumption that a certain treatment
is always administered for a specific condition, al-
though the treatment might be more diverse. This
highlights the potential to improve the BioBERT
model by providing access to additional fundamen-
tal domain information.

Other dominant category of errors are related
to spurious correlations, numeric inference, nega-
tion, and temporal reasoning. These categories are
important for understanding patient condition in
medical notes, since test results are often expressed
in a numeric manner, patient conditions are often
hedged and negated, and patient information is usu-
ally longitudinal in nature. We limit the focus of
this work to the more frequent error category of
integrating domain information.

5.2 Domain knowledge integration

In Table 1, we see marginal improvements on the
test set between the BioBERT (v1.1) models with
and without additional domain knowledge — both
when the integration is done implicitly via addi-
tional language model pretraining, and when rele-
vant sentences are retrieved using lexical and syn-
tactic methods. Knowledge integration from the
Medbook corpus — both implicit and explicit, does
not show any improvement in the results. Despite
marginal improvements using the Wikimed corpus,
a lack of consistent pattern across both develop-
ment and test sets suggests a random effect rather
than significant differences. When we train an end-
to-end retrieval model instead of further language
modeling or pre-selecting the most relevant sen-
tence, we again see a marginal improvement on
the test set. However, this improvement is again
not visible on the development set. Furthermore,
we see that the pairwise loss for more aggressive



Model MedNLI (% Acc.)

Dev Test

BERT-base-uncased 82.1 77.8
BERT-base-cased 79.9 78.8
BERT-base-cased + PMC + PubMed (BioBERT v1.0) 84.3 82.5
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
SciBERT-base-uncased (SciBERT vocab) 81.5 82.2
He et al. (2020): BioBERT v1.1 + disease NA 82.2
Sharma et al. (2019) NA 79.0
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
BioBERT v1.1 + Wikimed MLM 84.2 83.3
BioBERT vl1.1 + Medbook MLM 83.2 80.1
BioBERT v1.1 + Wikimed (lexical) 84.3 83.2
BioBERT v1.1 + Medbook (lexical) 83.8 82.6
BioBERT v1.1 + Wikimed (lexical+syntactic) 83.9 83.1
BioBERT v1.1 + Medbook (lexical+syntactic) 83.8 82.5
BERT-base-uncased (Wikipedia+BooksCorpus) 82.1 77.8
BERT-base-uncased + trained Wiki retriever 79.4 78.5
BERT-base-uncased + trained Wiki retriever + retrieval loss | 79.1 77.9

Table 1: Classification accuracy of BERT models and explicit and implicit domain knowledge integration methods
on MedNLI development and test sets. MLM here refers to masked language modeling.
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Error type

Insufficient domain knowledge
Spurious correlations / dataset bias
Difficult instance

Incorrect numeric inference

Incorrect negation

Incorrect tense resolution

Incorrect temporal sequence inference
Lexical (P,H) overlap trick

Modifier ignored

Incorrect abbreviation understanding
Insufficient commonsense knowledge

[\
()

— NN N WA U

Table 2: Analysis of the first 50 errors of the BioBERT
(v1.1) model on the MedNLI development set.

retriever training along with the classification cross-
entropy loss does not have any significant impact.
Despite this additional signal, the classifier con-
tinues to learn the task by ignoring the retrieved
context, thus indicating that the penalty for incor-
rect retrieval is still not aggressive enough.

Our joint models use the complete Wikipedia as
the source of knowledge, and the improvement pat-
terns here are consistent with using the Wikimed
corpus both implicitly and explicitly, but contrary
to using the Medbook corpus. This suggests that
Wikipedia, both complete and the medical-only
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subset, functions as a better source of information
for the MedNLI task as compared to the medical
textbook that contains more fundamental domain
information. We believe that the difference in re-
sults of the two corpora emerges from a difference
in their sizes, since the medical subset of Wikipedia
is 10 times in size compared to the textbook corpus.
We could not scale the Medbook corpus to larger
sizes due to copyright limitations.

When we analyze the retrieved text blocks for
one example in the development set and compare it
to the gold standard retrieval by humans (presented
in Table 4), we see that none of the retrieval algo-
rithms are capable of finding the desired missing in-
formation to improve semantic inference. Although
the ‘lexical + syntactic’ retriever finds a sentence
related to the topic as well as to the premise and
the hypothesis, it doesn’t bridge the knowledge gap
for correct inference. Moreover, the end-to-end
model with a trained retriever retrieves text block
that is unrelated to the topic, although in the medi-
cal genre.

Hence, we find that none of the explored meth-
ods provide better access to medical information
for domain knowledge-based reasoning, although
the desired factual information is present in these
external corpora. One reason why we do not see fur-
ther improvements on the BioBERT (v1.1) model



Error type

Example

Insufficient domain knowledge

P: ... she was treated with Benadryl ...
H: Patient has had an allergic reaction
Entatlment Neutral

Spurious correlations / dataset bias

P: She spoke with her oncology team ...
H: The patient has cancer.
Neutral Entailment

Incorrect numeric inference

P: ... an ejection fraction of 69 % with normal wall
motion.

H: patient has normal cardiac output

Entatlment Contradiction

Incorrect negation resolution

P: ... no identified sepsis risk factors.
H: ... has multiple risk factors for sepsis
Contradietion Entailment

P:
Incorrect tense resolution

. he had a CT of the chest and CTA of his

coronary arteries ...
H: patient will go for coronary angiography
Neutral Entailment

Incorrect temporal inference

P: ... biopsy ... showed signs of rejection ... subse-
quently did well.

H: The patient had transplant failure
Contradietion Entailment

Lexical (P, H) overlap trick

P: Pt denies any recent chills ...
H: The patient denies recent illness
Neutral Entailment

Modifier ignored

P: Left common femoral dorsalis pedis bypass graft.
H: Patient has CAD
Neutral Entailment

Incorrect abbreviation understanding

P: Her ... PO intake have been normal.
H: She has been NPO since midnigh
Contradiction Neutral

Insufficient commonsense knowledge

P: ... status post high speed motor vehicle crash ...
H: Patient has recent trauma
Entatlment Neutral

Table 3: One example of each category of errors made by the BioBERT (v1.1) model on the MedNLI development
set. & b refers to the fact that class a is the gold class, but the model predicts class b instead.

(that is a very strong baseline), despite the suc-
cess of these methods in other tasks and domains,
could be the complexity of the research question.
Retrieval of relevant information for language infer-
ence demands a delicate balance between selecting
a sentence that provides sufficient supporting in-
formation related to the given topic and instance
to improve inference, and yet that is neither redun-
dant nor superfluous. As we show in our results,
in a limited computation setting as ours, current
state-of-the-art methods are not capable of strik-
ing this balance in unsupervised setups and result
in unreliable knowledge augmentation. He et al.
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(2020) also report similar results on the same task
using the same BioBERT model. These results sug-
gest that we either need more computation power
to train these models for longer time to enable
convergence, or we need to create large annotated
corpora for retrieving missing facts to enable bet-
ter performance of these algorithms with limited
computation power. We need to direct our efforts
towards investigating advanced evidence retrieval
and knowledge integration setups such as this to
improve knowledge-based reasoning of the current
state-of-the-art models.



Method

Text

Example

P: Infusion stopped and she was treated with Benadryl 50 mg x 1, prednisone 40 mg
x 1, ativan 1 mg.
H: Patient has had an allergic reaction

Gold
retrieval

Benadryl is a brand name for a number of different antihistamine medications used
to stop allergies, including diphenhydramine, acrivastine and cetirizine.

Lexical
retrieval

None

Lexical +
syntactic
retrieval

Prednisone is used for many different autoimmune diseases and inflammatory con-
ditions, including asthma, COPD, CIDP, rheumatic disorders, allergic disorders,
ulcerative colitis and Crohn’s disease, granulomatosis with polyangiitis, adreno-
cortical insufficiency, hypercalcemia due to cancer, thyroiditis, laryngitis, severe
tuberculosis, hives, lipid pneumonitis, pericarditis, multiple sclerosis, nephrotic
syndrome, sarcoidosis, to relieve the effects of shingles, lupus, myasthenia gravis,
poison oak exposure, Méniére’s disease, autoimmune hepatitis, giant-cell arteritis,
the Herxheimer reaction that is common during the treatment of syphilis, Duchenne
muscular dystrophy, uveitis, and as part of a drug regimen to prevent rejection after
organ transplant.

Trained
Wiki
retriever +
retrieval
loss

Gemeprost (16, 16-dimethyl-trans-delta2 PGE methyl ester) is an analogue of
prostaglandin E. It is used as a treatment for obstetric bleeding. It is used with
mifepristone to terminate pregnancy up to 24 weeks gestation. Vaginal bleeding,
cramps, nausea, vomiting, loose stools or diarrhea, headache, muscle weakness;
dizziness; flushing; chills; backache; dyspnoea; chest pain; palpitations and mild
pyrexia. Rare: Uterine rupture, severe hypotension, coronary spasms with subsequent

myocardial infarctions. ...

Table 4: Text blocks retrieved by different methods from the (medical) Wikipedia corpus for one example in the
development set that requires further domain knowledge for correct inference. Gold retrieval mentioned here is a
manually retrieved sentence from Wikipedia, in presence of which the model corrects its output.

6 Conclusions and Future Work

On investigating the error categories of BioBERT
(v1.1) models on the clinical language understand-
ing task, we find that despite having a strong per-
formance, the models still make several mistakes
on examples that require medical domain knowl-
edge. To this end, we explored multiple methods
to improve access of these models to medical do-
main knowledge by implicit and explicit knowl-
edge retrieval and augmentation. However, we
see that these extensions do not show significant
improvement on the test sets. We conclude that
state-of-the-art solutions lead to unreliable knowl-
edge augmentation for language inference, as is
shown by a detailed analysis in our work. Future
research should concentrate efforts towards devel-
oping methods to augment fundamental domain
knowledge from textual corpora to solve the prob-
lem of advanced knowledge-based reasoning in
these domains.
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Abstract

Automatic ICD coding is the task of assigning
codes from the International Classification of
Diseases (ICD) to medical notes. These codes
describe the state of the patient and have mul-
tiple applications, e.g., computer-assisted diag-
nosis or epidemiological studies. ICD coding
is a challenging task due to the complexity and
length of medical notes. Unlike the general
trend in language processing, no transformer
model has been reported to reach high perfor-
mance on this task. Here, we investigate in de-
tail ICD coding using PubMedBERT, a state-
of-the-art transformer model for biomedical
language understanding. We find that the dif-
ficulty of fine-tuning the model on long pieces
of text is the main limitation for BERT-based
models on ICD coding. We run extensive ex-
periments and show that despite the gap with
current state-of-the-art, pretrained transform-
ers can reach competitive performance using
relatively small portions of text. We point at
better methods to aggregate information from
long texts as the main need for improving
BERT-based ICD coding.

1 Introduction

During patient stays in medical institutions, clini-
cians generate text notes that record the state of the
patient as well as the diagnoses and the treatments
administered. Typically, a code from the Interna-
tional Classification of Diseases (ICD) is assigned
to these clinical notes, in order to provide stan-
dardized information about the patient condition.
ICD codes are used for different purposes, such
as billing, computer-assisted diagnosis or epidemi-
ological studies (Choi et al., 2016; Denny et al.,
2010; Avati et al., 2018). Assigning ICD codes to
medical notes is usually done manually by clini-
cians. This is an error-prone and time-consuming
procedure and therefore, automatic solutions have
been studied for over two decades (Larkey and
Croft, 1996; de Lima et al., 1998).
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However, automatic ICD code assignment
proves challenging for multiple reasons. First, there
exists a very large number of ICD codes ( 17.000)
and each clinical report may have associated more
than one code. To deal with this large multi-label
classification problem, it is common to reduce the
number of codes to those that appear most fre-
quently (Mullenbach et al., 2018). Second, medi-
cal text usually lacks structure, includes irrelevant
passages, as well as abbreviations, misspellings,
numbers and a very specific vocabulary. On top of
that, medical notes are long, which makes it diffi-
cult for automatic coding models to draw relations
between different sections of the reports.

Current state-of-the-art methods for automatic
ICD coding from medical notes are based on deep
learning (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). These methods use different
configurations of convolutional (CNN) and recur-
rent (RNN) neural networks as well as attention
modules(Bahdanau et al., 2014). This stands in
contrast to most areas of natural language process-
ing (NLP), where models based on the transformer
architecture (Vaswani et al., 2017) dominate the
state-of-the-art (Wang et al., 2019). One of the
main strengths of transformer models is their abil-
ity to deal with long range dependencies. This
is a desirable property in ICD coding, where an
understanding of different parts of the document
may be necessary to assign a code. The lack of
transformer models for ICD coding is surprising,
especially since there already exist BERT-based
models (Devlin et al., 2019) (a type of bidirec-
tional transformer) that are trained on medical text
data (Lee et al., 2020; Alsentzer et al., 2019; Gu
et al., 2020). These models have achieved state-of-
the-art performance on other tasks such as named
entity recognition or question answering on medi-
cal documents (Gu et al., 2020).

On the other hand, the complexity of transform-
ers scales quadratically with the length of their in-
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put, which restricts the maximum number of words
that they can process at once. This limitation may
be critical in ICD coding, since clinical notes usu-
ally exceed this maximum input length. In this
work, we investigate in detail BERT-based ICD
coding, and explore different strategies to over-
come the constraint on the input length by using an
encoder-decoder architecture. We use the MIMIC-
III dataset (Johnson et al., 2016), a big and widely
used dataset for the ICD coding task, in order that
our results are directly comparable to other exist-
ing methods (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). By exposing the limitations
and benefits of BERT-based models on this task
our work sets a solid basis for further research on
automatic ICD coding systems.

2 Related Work

Automatic ICD coding has been an active area of
research for over two decades. Already Larkey
and Croft (1996) and de Lima et al. (1998) pro-
posed different strategies to extract features from
medical documents in order to build classifiers
for automatically assigning ICD codes to medi-
cal notes. More recently, Perotte et al. (2014) pro-
posed a multi-level Support Vector Machine (SVM)
model to predict ICD codes from the MIMIC-II
dataset (Saeed et al., 2011), the precursor of the
MIMICH-III dataset (Johnson et al., 2016) that we
consider in this work. Similarly, Scheurwegs et al.
(2017) presented a method to extract features from
structured and unstructured text and evaluated it on
the MIMIC-III dataset.

In the last years, the state-of-the-art of automatic
ICD coding has been dominated by deep learning
models. Shi et al. (2017) proposed an LSTM model
that operates at the character-level combined with
an attention mechanism (Bahdanau et al., 2014).
Wang et al. (2018b) proposed an embedding model
based on GloVE embeddings (Pennington et al.,
2014) that maps text and labels to the same space,
where predictions are made using the cosine simi-
larity. Mullenbach et al. (2018) proposed a model
that combined convolutions with a per-label atten-
tion mechanism. This model was further improved
by Xie et al. (2019) and Li and Yu (2020). Vu
et al. (2020), proposed a label-attention model that
reached the current best performance for ICD cod-
ing on the MIMIC-III dataset. All of these works
represent only a portion of the research carried out
in this field (Karimi et al., 2017; Baumel et al.,
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2018; Song et al., 2020; Prakash et al., 2017; Cao
et al., 2020).

Since the appearance of the Transformer
model (Vaswani et al., 2017), transformer-based
architectures (Brown et al., 2020; Lewis et al.,
2020; Raffel et al., 2019) have become state-of-
the-art in almost every area of Natural Language
Processing (Wang et al., 2018a, 2019) thanks to
their ability to handle long range dependencies.
BERT (Devlin et al., 2019), a bidirectional trans-
former, is of particular importance since it is the
basis of many other language understanding mod-
els. Nonetheless, given the specific characteris-
tics of medical text, e.g., specialized vocabulary,
models pretrained on generic language, like BERT,
do not reach high performance on biomedical lan-
guage understanding tasks. Therefore, specialized
models, such as BioBERT (Lee et al., 2020) or
Clinical BERT (Alsentzer et al., 2019), pretrained
on medical text have been proposed. In particular,
the recent PubMedBERT model (Gu et al., 2020) is
the state-of-the-art in the BLURB benchmark (Gu
et al., 2020), a benchmark for biomedical language
understanding which includes the following tasks:
named entity recognition, question answering, doc-
ument classification, relation extraction, sentence
similarity and evidence-based medical information
extraction. Despite its prominence in medical lan-
guage understanding, automatic ICD coding es-
capes the set of tasks where BERT-based models
excel. To the best of our knowledge, no BERT-
based model has been proposed yet that reaches
competitive performance on ICD coding on the
MIMIC-III dataset. In this work, we investigate in
detail BERT-based ICD coding and identify exist-
ing limitations and opportunities.

3 Background

In this section we present the BERT model used
in our experiments as well as the evaluation met-
rics.

3.1 PubMedBERT

PubMedBERT (Gu et al., 2020) is a transformer
model with the same architecture as BERT-
base (Devlin et al., 2019), i.e., it has 12 transformer
layers, 100 million parameters and it outputs vector
representations of 768 elements. PubMedBERT is
trained from scratch on PubMed text, on a dataset
of 3.1 billion words (21 GB). Furthermore, Pub-



MedBERT has not been pretrained on the MIMIC
datasets as Clinical BERT (Alsentzer et al., 2019)
or BlueBERT (Peng et al., 2019), and therefore, we
can evaluate it on MIMIC-III without information
leakage from the test set. We choose this model
among the existing ones because it is currently the
state-of-the-art in biomedical understanding tasks
as measured by the BLURB benchmark'. We use
the implementation from HuggingFace (Wolf et al.,
2019).

3.2 Evaluation Metrics

Following previous work (Wang et al., 2018b; Mul-
lenbach et al., 2018; Vu et al., 2020), we report
the results of our experiments using macro- and
micro-averaged AUC (Area Under the ROC Curve).
In a multi-class classification problem, the macro-
average computes the metric (AUC in our case)
for each class independently and then averages it
across classes. This gives the same weight to all
classes regardless of possible imbalances in the
data. Micro-averaging, on the other hand, com-
putes the average score over all samples, giving
the same weight to each sample rather than to each
class.

4 Dataset

In this work, we use the widely-used MIMIC-III
dataset (Johnson et al., 2016). This dataset contains
medical information in various forms, however, as
in previous studies (Wang et al., 2018b; Mullen-
bach et al., 2018; Vu et al., 2020), we consider ex-
clusively the discharge summaries for ICD coding.
Discharge summaries are medical notes created by
doctors at the end of a stay in a medical facility
and contain all the information about the stay. In
the MIMIC-III dataset, the length of the discharge
summaries after tokenization ranges from 78 to
18,429 tokens with a mean length of 2, 740 tokens
and a median of 2, 500. Each of these discharge
summaries has associated to it one or more ICD
codes from the ICD-9 taxonomy, with an average
of 13.15 ICD codes per summary. Therefore, ICD
coding is a multi-label classification task.

The MIMIC-III dataset consists of 52, 722 dis-
charge summaries with a total of 8, 921 unique ICD
codes. However, most of the codes are very infre-
quent, and therefore, existing work (Wang et al.,
2018b; Mullenbach et al., 2018; Vu et al., 2020)

"https://microsoft.github.io/BLURB/
leaderboard.html
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narrows down the task to finding only the 50 most
frequent ICD codes. We follow this strategy and
use the reduced dataset, sometimes referred to as
MIMIC-III-50. This dataset consists of a training
set of 8, 067 samples, a validation set of 1, 574 sam-
ples and a test set of 1, 730 samples. This data split
is aligned with previous work, and thus, our results
are directly comparable to those in the existing
literature.

4.1 Pre-processing

We pre-process the discharge summaries from the
MIMIC-III dataset following the method proposed
by Mullenbach et al. (2018), which is also used by
other recent work (Vu et al., 2020). This way, we
convert all the text to lower case and we remove all
numbers. However, we do not remove infrequent
words as in (Mullenbach et al., 2018) since BERT
uses WordPiece for tokenizing and hence, it does
not suffer from out-of-vocabulary terms.

5 Model

Discharge summaries are longer than the maximum
length accepted by PubMedBERT such that it fits
in the memory of a modern GPU and thus, we
need to split the summaries into pieces of text. In
order to process more than one piece of text per
summary we adopt an encoder-decoder structure,
where the encoder and the decoder are trained sep-
arately. This way, the encoder is the BERT model
that maps the different pieces of text to vector rep-
resentations. These vector representations are then
combined and decoded into ICD codes by the de-
coder, which can be any kind of model.

5.1 Encoder

We use PubMedBERT as the encoder of our model,
as described in Section 3. We run our experiments
on TITAN RTX GPUs with 24 GB of memory,
where we can fit PubMedBERT with a maximum
sequence length of 512 tokens.”? We devise five
different strategies to split the text of the discharge
summaries:

* Front: First 512 tokens of the summary.
* Back: Last 512 tokens of the summary.

* Mixed: First 256 and the last 256 tokens of
the summary.
“Note that even if we could fit sequences of 1024 or 2048

tokens, they would still be shorter than the mean and median
sequence length of the summaries.
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Figure 1: Validation losses for PubMED-BERT trained
on different parts of the text.

» All: Split the whole discharge summary into
consecutive chunks of 512 tokens; since sum-
maries are of different length, each summary
is split in a different number of chunks with
the last chunk being possibly shorter.

Paragraph: Given that the discharge sum-
maries consist of named paragraphs, we select
the 200 most frequent paragraphs, i.e., those
that are present most often in the discharge
summaries, each with a maximum length of
512 tokens.

PubMedBERT has been pretrained on the
masked language modeling task, and therefore, it
can produce generic representations of the input
text. To fine-tune this model for the ICD coding
task without exceeding the memory constraints we
can feed only one chunk of text at a time. This
way, we fine-tune five different instances of the
PubMedBERT model, one per splitting strategy,
using a batch size of 1 (to ensure the model fits
in memory) and a learning rate of 5e~*. In each
case, the model receives as input a piece of text of
a maximum length of 512 tokens and it is trained
to predict the ICD codes of the corresponding dis-
charge summary. Note that while the text of front,
back and mixed corresponds always to the same
part of the discharge summary, when fine-tuning
the model on the paragraph and all splits, each
training example consists of only one paragraph or
chunk, respectively. Therefore, there is no align-
ment across training examples (each training exam-
ple comes from a different section of a discharge
summary), which introduces noise to the training.

Figure 1 depicts the validation losses after 6
epochs of training for each of the trained mod-
els. For front, back and mixed, we see that the
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validation loss decreases quickly during the first
three epochs and then, it slowly stabilizes. How-
ever, for paragraph and all, the validation loss
stays constant, which indicates that the model is
failing to learn; in other words, the lack of align-
ment between training samples makes the task of
ICD coding too challenging for the model to learn
meaningful representations of the input text.

5.2 Decoder

If we consider only one part of the text at a time,
PubMedBERT can directly make a prediction on
the ICD codes for the corresponding summary, as
done during fine-tuning. However, in order to use
the information from different pieces of text, we
need a decoder capable of combining the informa-
tion from several encodings. This way, the decoder
receives as input one or several encoded represen-
tations (from the same discharge summary) gener-
ated by PubMedBERT during the encoding stage
and outputs a vector of probabilities for the 50 ICD
codes. For the decoder architecture, we consider
a linear layer, multi-layer perceptrons (MLPs) and
transformers.

In all cases, the decoders are trained with binary
cross entropy loss with logits. We use a batch size
of 32, a learning rate of le~* with linear decay
for 30 epochs and weight decay with A = 1le~3.
We train for a maximum of 100 epochs with early
stopping on the validation set.

Linear layer Our simplest decoder consists of
a linear layer that takes as input a concatenation
of the encoding vectors (of size 768 each); when
only one chunk is considered, the input is just one
encoding vector. The output of this linear layer is
the probability vector for the ICD codes.

Multi Layer Perceptron We consider two vari-
ants of MLP-architectures, flat and parallel. In the
flat architecture, the input is the concatenation of
the encodings, as for the linear layer. This vector
is passed through two non-linear layers, which pro-
duce intermediate representation of size 768 and
512 respectively, and then to a final linear layer that
outputs the probabilities of the 50 ICD codes. In
the parallel architecture, each of the input encod-
ings is processed by a different dense layer, each
of which produces an output of size 768/n, where
n is the number of input encodings. These interme-
diate representations are concatenated and passed
through two additional non-linear layers, with the
same sizes as in the flat architecture.



Each of the non-linear layers includes layer nor-
malization (Ba et al., 2016), PReLLU activation (He
et al., 2015), and dropout (Srivastava et al., 2014)
with p = 0.1.

Transformer This decoder takes as input the en-
codings and treats each of them as a token of di-
mensionality 768. These tokens are passed through
a transformer layer with 8 attention heads. The out-
put of this transformer layer is of the same size as
the input, i.e., a set of tokens of 768 elements. The
tokens are then concatenated and passed through
an MLP of the same structure as the flar MLP de-
scribed above.

6 Results

We pose six research questions regarding the dif-
ferent strategies to encode and decode discharge
summaries using a BERT-based encoder. In our
experiments, we fix the random seed so that all the
results are comparable.

How much does fine-tuning the encoder help
decoding?

Here, we consider only the PubMedBERT models
fine-tuned on front, back and mixed data, since they
were the only ones to learn during fine-tuning, as
shown in Section 5.1. To investigate the impact of
this fine-tuning step on decoding performance, we
use a simple linear layer which receives as input the
concatenation of the encodings of the front, back
and mixed chunks. Each of these pieces of text
is encoded by the PubMedBERT model trained
on that piece of text, i.e., we use three different
encoders. We study the difference in performance
for three different training points of the encoders:
not fine-tuned, fine-tuned for three epochs and fine-
tuned for six epochs. The results are detailed in
Table 1.

Epochs | Macro AUC Micro AUC
None 55.76 69.55
3 81.47 86.00
6 83.00 86.98
Table 1: Performance for different number of train-

ing epochs when combining the front, back and mixed
chunks with a linear decoder.

These results show that fine-tuning the encoder
significantly improves the decoding performance
and that the best performance is obtained after six
epochs. In fact, the difference between fine-tuning
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Figure 2: Performance of a linear layer (top) and a non-
linear MLP (bottom) on the front, back and mixed en-
codings.

for six epochs and not fine-tuning is as large as
27.24 points for the Macro AUC score and 17.43
points for the Micro AUC score. We observed
the same pattern in all of our experiments, and
therefore, in the following we will only present
results with the encoder fine-tuned for six epochs,
unless stated otherwise.

Which of the three pieces of text, front, back or
mixed, contains the most relevant information
for ICD coding?

We experiment with a linear and a flat MLP decoder
and apply these models to the encodings of each of
the three chunks of text separately, i.e., front, back
and mixed. We report the results in Figure 2.

We see that front, i.e., the first 512 tokens of the
discharge summary yields the best performance,
both when the decoder is a linear layer and an MLP.
Although slightly inferior, the mixed chunk pro-
duces competitive scores while when using an MLP
the AUC scores are more than 3 points lower for
back than for front. Furthermore, using as decoder
an MLP improves the performance significantly
over using a linear layer; with the front non-linear



model performing comparably to the combination
of the three chunks with a linear decoder, as re-
ported in the previous section, Table 1.

This naturally raises the question of whether the
combination of the chunks yields an improvement.
To study this, we use the same non-linear MLP
architecture as in Figure 2 (bottom) on 1) the con-
catenation of the encodings of front and back and
2) the concatenation of the three encodings, front,
back and mixed. We report the results in Table 2.

Model | Mac. AUC  Mic. AUC
Front-Back 83.70 88.11
Front-Back-Mixed 84.42 88.58

Table 2: Performance of combining the front, back and
mixed chunks using a two-layer flat MLP decoder.

These results show that combining front and
back improves performance in comparison to using
only front. As it may be expected, adding the mixed
paragraph, which contains redundant information,
produces only a small improvement. Overall, the
combination of the three chunks produces an im-
provement of 2.07 points for Macro AUC and 1.67
points for Micro AUC over using only front. Given
the larger input, these models have more param-
eters than the ones using only one of the chunks,
which could partly explain the improvement, espe-
cially when adding redundant information, i.e., the
mixed chunk. This result leads us to investigate the
influence of the decoder architecture.

How does the architecture of the decoder
impact performance?

Here, we consider flat MLP, parallel MLP and trans-
former decoders on the combination of front, back
and mixed. For each of these architectures, we eval-
uate three different sizes: Base, Large and X-Large,
where the difference between these sizes is only
the number of layers and the size of the internal
representations. This way, our experiments aim at
discerning whether the structure of the decoder, the
number of parameters, or both, influence the per-
formance of the ICD coding model. Table 3 details
the results of these experiments.

None of the models considered obtains a perfor-
mance significantly higher than the others, with the
largest difference across Macro and Micro AUC
scores being of only 0.28 and 0.57 points, respec-
tively. This result is surprising since, given the com-
plexity of the task, it could be expected that larger

59

Model | AUC Mac. AUC Mic.
Flat (1.5M) 84.42 88.58
Flat L 3M) 84.30 88.45
Flat XL (TM) 84.30 88.47
Parallel (1M) 84.45 88.65
Parallel L (2M) 84.23 88.48
Parallel XL (3M) 84.51 88.49
Transformer (6.5M) 84.30 88.49
Transformer L (14M) 84.27 88.45
Transformer XL (18 M) 84.29 88.08

Table 3: Performance of different decoder architectures
for the combination of front, back and mixed, the num-
ber of parameters of each model is specified in paren-
thesis.

and more sophisticated decoders would perform
better. Notwithstanding, the saturation in perfor-
mance suggests that all the information available
in the input of the decoder is successfully extracted
by every model, regardless of its complexity. This
in turn indicates that the performance of the whole
encoder-decoder model is limited by the reduced
amount of text that is given as input (only the be-
ginning and the end of the discharge summaries).
Therefore, we next consider providing larger por-
tions of text from the discharge summaries as input.

Is dividing the discharge summaries by
paragraphs a good splitting strategy?

By splitting the discharge summaries into para-
graphs we take into account information from a
larger body of text than by using the front and the
back. The main disadvantage of this approach is
that the encoder fails to converge during fine-tuning.
Here, we test the hypothesis of whether the decoder
can compensate the lack of fine-tuning of the en-
coder and, by leveraging the larger amount of infor-
mation available, reach competitive performance.
We encode the 200 most frequent paragraphs using
the PubMedBERT model fine-tuned on paragraph
data, although due to lack of convergence during
fine-tuning, we observed very similar results when
using the not fine-tuned version.

Since not all the discharge summaries contain the
same paragraphs, there is a misalignment between
samples. For this reason, here we consider only
the transformer decoder; the self-attention modules
of the transformer should be able to cope with the
misalignment better than the other architectures.
We consider the transformer decoders (Base, Large
and X-Large) from the previous section. Now, the
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Figure 3: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on paragraph data.

transformer decoder receives 200 encoded repre-
sentations, one per paragraph. Given this large
number of input representations or tokens, we ag-
gregate the output of the transformers by taking the
mean over the representations produced for all the
paragraphs?.

In Figure 3, we compare these paragraph de-
coders to the Parallel MLP model on the front, back
and mixed chunks from the previous section.

We see that dividing the discharge summaries
into paragraphs greatly under-performs in compar-
ison to using the beginning and end of the sum-
maries encoded by fine-tuned PubMedBERT mod-
els. This result partly rejects the hypothesis that
the decoder can benefit from a larger unstructured
input. Next, we continue investigating this hypoth-
esis by feeding the decoder with the complete dis-
charge summaries following the all strategy.

How does splitting the complete summaries in
consecutive chunks perform?

We split the whole text of each discharge summary
into consecutive chunks of 512 tokens (the last
chunk of each summary may be smaller). We en-
code these chunks using the PubMedBERT model
fine-tuned on all data; as before, we observed very
similar results with the not fine-tuned model. The
encodings are then fed into the decoder. Again,
the varying size of the discharge summaries pro-
duces misalignment across examples. Therefore,
we consider only the transformer decoders (Base,
Large and X-Large). We report the results of this
experiment in Figure 4.

The largest transformer model (XL) performs the

3We experimented with other aggregation techniques like
max pooling and large MLPs obtaining very similar results.
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Figure 4: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on all data.

best of the three models on all data. Nevertheless,
its 50.5% Macro and 68.7% Micro AUC scores
are much lower than the results obtained by the
front-back-mixed. In fact, splitting the text into
chunks of the same size performs the worst among
all the methods that we have investigated. These
results confirm that the decoder cannot compensate
the lack of convergence during the fine-tuning of
the encoder and points at the encoder as the main
responsible for the model’s performance.

How do our results compare to the
state-of-the-art?

Finally, in Table 4 we compare one of our best per-
forming BERT-ICD models, the front-back-mixed
Parallel model, with the existing state-of-the art
models for ICD coding on the MIMIC-III dataset.
In particular, we compare against the condensed
memory networks (C-MemNN) by Prakash et al.
(2017), LEAM by Wang et al. (2018b), CAML and
DR-CAML by Mullenbach et al. (2018), MSATT-
KG by Xie et al. (2019) and the Label Attention
model by Vu et al. (2020). We report the perfor-
mance of each model as provided in the correspond-
ing original work.

Model | AUC Mac. AUC Mic.
C-MemNN 83.3 -
LEAM 88.1 91.2
CAML 87.5 90.9
DR-CAML 88.0 90.2
MSATT-KG 914 93.6
Label Attention 92.1 94.6
BERT-ICD 84.45 88.65

Table 4: Comparison of different state-of-the-art mod-
els for ICD coding.



We see that although our BERT-based ICD cod-
ing model is competitive with some of the state-
of-the-art models, there is still a substantial gap
between the best performing model from Vu et al.
(2020), and our BERT-ICD model.

7 Discussion

Automatic ICD coding from discharge summaries
using transformer models has proven to be chal-
lenging. Discharge summaries are very long docu-
ments and thus, they need to be divided into chunks
in order to be entirely processed by BERT-like mod-
els.This way, a decoder is necessary to combine the
representations of each chunk, which are indepen-
dently generated by the BERT encoder. We have
shown that for these representations to be meaning-
ful the encoder needs to be fine-tuned on the ICD
coding task. It is straight-forward to fine-tune a
BERT encoder such as PubMedBERT using spe-
cific parts of the summary, e.g., the beginning or
the end. However, in our experiments, fine-tuning
PubMedBERT on excerpts extracted from different
parts of the text, i.e., paragraph and all, prevented
convergence due to the lack of alignment between
samples, i.e., due to each training sample contain-
ing information from a different section of a dis-
charge summary. Furthermore, our results show
that the decoder, regardless of its architecture, can-
not compensate for lack of convergence during the
fine-tuning of the encoder.

On the other hand, our best BERT-ICD model
reaches competitive performance using only 1,024
tokens (front and back), which represents a signifi-
cantly smaller portion of text than state-of-the-art
models, based on CNNs and RNNs. Unlike BERT,
CNN and RNN models can extract information
from texts of any length without needing to split
them, which allows for end-to-end training over
long pieces of text. Mullenbach et al. (2018) found
that the performance of their convolutional atten-
tion model benefits from longer input texts until
a length of between 2, 500 and 6, 500 words, and
Vu et al. (2020) use up to 4,000 words as input.
Our model combines encodings from the begin-
ning and the end of the discharge summary, and
reaches better performance in that case than when
it processes either of those portions of text alone.
This supports the statement that including more text
improves ICD coding. All of these results suggest
that the difficulty of fine-tuning a BERT encoder
on long pieces of text is the main bottleneck for
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performance and the reason for the existing gap
with state-of-the-art models for ICD coding.

One of the main advantages of transformer mod-
els over CNNs and RNNS is that they can handle
long-range dependencies. Hence, if longer text
could be fed at once into a BERT encoder it would
be possible to find relationships and patterns over
longer spans of text. It is therefore likely that ad-
vances either in terms of hardware, i.e., larger GPU
memories allowing for longer pieces of text to be
processed at once; or in compressing BERT-like
models, e.g., distillation, will progressively close
the gap with the state-of-the-art, following the same
trend of other areas of NLP. On top of that, we con-
sider that the two most promising directions for
future research on BERT-based ICD coding are: 1)
devising strategies to fine-tune the encoder over
longer spans of text, e.g., building an ensemble
of models where each of them is trained on one
section of the text; 2) improving the methods to
aggregate encodings from different parts of the
document.

Finally, to deploy automatic ICD coding sys-
tems in the real world, it is important that their
decisions can be explained. Explaining trans-
former models is currently a field of active re-
search, and although there exist important con-
cerns about the interpretability of attention distribu-
tions in transformers (Brunner et al., 2019; Pruthi
et al., 2020), methods based on gradient attribu-
tion (Pascual et al., 2020) or on attention flow (Ab-
nar and Zuidema, 2020) can provide insights on
their decision-making. A BERT-based ICD cod-
ing system could directly benefit from this field
of research and eventually provide explanations
together with its ICD code predictions.

8 Conclusion

Contrary to what is common in most NLP tasks, the
transformer architecture is not the state-of-the-art
in assigning ICD codes to discharge summaries. In
this work, we have presented a thorough study of
the performance of BERT-based models on this task
and we have identified the length of the discharge
summaries as the main obstacle holding back their
performance. Our work sets a solid foundation for
further research on ICD coding and suggests that
overcoming the exposed limitations of BERT-based
models is likely to lead to a new state-of-the-art.
Furthermore, we believe that the interpretability
of ICD coding models is an interesting avenue for



future work, which can benefit from a large body
of existing research.
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Abstract

We present emrKBQA, a dataset for answer-
ing physician questions from a structured pa-
tient record. It consists of questions, logical
forms and answers. The questions and logical
forms are generated based on real-world physi-
cian questions and are slot-filled and answered
from patients in the MIMIC-III KB (Johnson
et al., 2016) through a semi-automated pro-
cess. This community-shared release consists
of over 940000 question, logical form and an-
swer triplets with 389 types of questions and
/7.5 paraphrases per question type. We per-
form experiments to validate the quality of the
dataset and set benchmarks for question to log-
ical form learning that helps answer questions
on this dataset.

1 Introduction

The last decade has seen widespread adoption of
electronic health records (EHRs) across hospitals
and clinics in the US (Jha et al., 2006; Evans, 2016).
Physicians often seek answers to questions from a
patient’s EHR to support clinical decision-making
(Demner-Fushman et al., 2009). It is not too hard
to imagine a future where a physician interacts with
an EHR system and asks it complex questions and
expects precise answers, with adequate context,
from a patient’s record (Pampari et al., 2018). Cen-
tral to such a world is a medical question answering
system that processes natural language questions
asked by physicians and finds answers to the ques-
tions in structured and unstructured sources in the
patient’s record.

However, the longitudinal, domain specific na-
ture of patient records along with privacy concerns
makes it difficult to develop large-scale annotated
datasets for training machine learning models. This
motivated Pampari et al. (2018) to develop the first
community-shared patient QA dataset, emrQA, us-
ing a semi-automated process and create a large-
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REC result

Question paraphrases Date: 2116-09-26 04:20:00; Value: 7.3 mg/dL

Date: 2116-09-27 04:30:00; Value: 7.8 mg/dL
Date: 2116-09-28 04:15:00; Value: 10.3 mg/dL
Date: 2116-09-29 04:30:00; Value: 11.4 mg/dL
Date: 2116-09-30 05:27:00; Value: 8.1 mg/dL
Date: 2116-10-01 05:00:00; Value: 6.8 mg/dL
Date: 2116-10-02 04:15:00; Value: 5.9 mg/dL
Date: 2116-10-03 05:00:00; Value: 5.3 mg/dL
Date: 2116-10-04 05:20:00; Value: 5.3 mg/dL
Date: 2116-10-05 04:55:00; Value: 5.1 mg/dL
Date: 2116-10-06 05:30:00; Value: 4.4 mg/dL

Have this patient’s bilirubin changed over time?
What are the recent bilirubin results?

Has the patient had bilirubin testing, if so please
give results?

What has this patient's bilirubin been
throughout admission?

Does the patient have scanned records for a
prior bilirubin?

Figure 1: Questions (and paraphrases) with answers
from MIMIC-III

scale dataset with over 1M question-answer and
question-logical form pairs. They templated and
slot-filled physician questions and logical forms on
clinical notes and extracted corresponding answers
from annotations on clinical notes for tasks like
entity extraction and relation learning in the i2b2
challenges (Uzuner et al., 2011).

However, emrQA is restricted to answers within
or across clinical notes. Clinical notes are known
to capture relations between entities (treatments for
problems, side-effects of a drug), signs or symp-
toms (palpitations), temporal and causal events. On
the other hand, structured data in the EHR 1is consid-
ered more reliable for labs results, prescriptions, vi-
tals and other measurements (Hanauer et al., 2015).
Hence, a complete EHR QA system should con-
sider data across both these sources in answering a
question.

Thus, we propose emrKBQA, a dataset for an-
swering natural language questions from the struc-
tured portion of EHR data by mapping questions
to logical forms. We demonstrate an instance of
using this dataset for question answering using the
MIMIC-III KB (a set of question paraphrases and
answers from MIMIC shown in Figure 1). The re-
sultant dataset consists of 940,713 question answer
pairs from 389 question types (unique instances of
questions, i.e., templates) and 52 question/logical
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forms groups (where questions within the group are
paraphrases) from 100 patients. We benchmark se-
mantic parsing and answering results on this dataset
by learning to map natural language questions to
logical forms and retrieving the answer from a KB
of patient records. The main contributions of this
work are as follows: (1) We develop and release
emrKBQA, the first large-scale community-shared
dataset for patient-specific QA on structured patient
records!. (2) emrKBQA will help train models for
semantic parsing and answering questions from the
structured EHR. This will help us progress towards
answering on the EHR as a whole (in conjunction
with emrQA). (3) We benchmark state of the art
semantic parsing models on the dataset for QA on
structured patient records.

2 Related Work

The question answering (QA) problem is usually
defined over unstructured texts or structured knowl-
edge bases (KB QA). In case of KB QA, questions
are usually mapped to logical forms (or a query
language using SQL, SPARQL, etc.) (Zettlemoyer
and Collins, 2005; Berant and Liang, 2014) that
are then used to retrieve the answer. In the medical
domain, there is limited prior work on answering
patient-specific questions over structured clinical
data.

Roberts and Demner-Fushman (2016, 2015) in-
troduce target logical form definitions and present
a rule based method for converting natural lan-
guage questions over structured data in the EHR
into logical forms. They work with a dataset of
446 questions collected during clinician ICU visits
and propose an approach using question decompo-
sition, concept recognition and normalization, and
rule based semantic parsing. However, the ques-
tions and logical forms were not publicly released.
In contrast, we present a large-scale community-
shared dataset of over 900k generated questions
from 52 unique question templates, logical forms
and answers.

More recently, Wang et al. (2020) create a new
large-scale Question-SQL pair dataset (MIMIC-
SQL) on the MIMIC-III dataset, again using the
generation process as in Pampari et al. (2018).
They propose a deep learning based TRanslate-Edit
Model for Question-to-SQL generation that adapts
the widely used sequence-to-sequence model to

'mttps://github.com/emrQA/emrKBQA scripts
to generate emrKBQA from MIMIC data.
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directly generate the SQL query for a given ques-
tion, and also performs edits using an attentive-
copying mechanism. The questions in the dataset
are always asked over a patient-cohort such as “how
many patients had the diagnosis icd9 code 531907”.
However, the questions in emrQA are specific to a
patient. This makes a big difference as the corpus
for answering is smaller (limited to the patient’s
record, which may include several admissions), the
answers may be viewed in conjunction with an-
swers from the unstructured record, the type of
questions asked varies, and redundancy and vari-
ability in answers to the same question may affect
model performance.

Park et al. (2020) construct an EHR QA dataset
from MIMIC-III where the question-answer pairs
are represented in SQL (table-based) and SPARQL
(graph-based). Here again, the questions are de-
fined over patient cohorts; e.g., “What number of
married patients suffered from other convulsions?”,
making it inherently different from the emrKBQA
task. They construct a knowledge graph by relating
tables in the database and explore both table-based
and graph-based QA (using SPARQL). emrKBQA
maps questions to logical forms based on a schema
of entities and relations. The tables and columns
in the KB are mapped to the entities and attributes
in the schema. Logical forms capturing the infor-
mation need expressed in the question are then
instantiated from this schema. Thus, emrKBQA
instantiates logical forms from a relational schema
(representing entities and relations typically found
in the EHR) and facilitates a query language/ re-
source independent way of representing questions
and answering them beyond just individual tables
in the KB.

KB-based QA datasets (question semantic pars-
ing) use annotated question and logical form pairs
for supervision where the logical forms (that can be
then easily be mapped to any query language) are
used to retrieve answers from a database (Bordes
et al., 2014; Zettlemoyer and Collins, 2005; Berant
and Liang, 2014). emrKBQA provides a dataset
that can be used to train models to retrieve answers
to natural language questions (by mapping them to
logical forms) from the structured part of the EHR.
The logical forms are instantiated from a schema
that captures domain entities, attributes and rela-
tions proposed in emrQA (Pampari et al., 2018).
We demonstrate the value of the dataset by answer-
ing natural language questions posed by physicians



as follows. We first train state of the art sequence
models for semantic parsing to map questions to
(query-language agnostic) logical forms. We then
map the learned logical forms to the desired query
language (SQL) using a deterministic process.

3 Dataset Creation

emrKBQA is generated using a process similar to
emrQA. We begin with the same initial question,
logical form and template pool as emrQA. How-
ever, the question template groups, corresponding
logical forms and what constitutes an answer have
all been updated by a medical expert to better re-
flect answering needs.

Questions. emrKBQA contains natural lan-

Answer Categories across Question (template) Types

12
10

5~ o0

Smoking

Condition  Medication

Allergy

Medication,
therapeutic
procedures

Test Condition,

smoking

H YesNo Fact Temporal

Figure 2: Distribution of answer categories against
question template types. Some questions have multiple
categories like medication and therapeutic procedure or
condition and smoking .

guage questions posed by physicians at the Vet-
eran’s Administration (VA), Mayo Clinic and
Cleveland Clinic on patient records (Raghavan
et al., 2018). These questions have been trans-
formed into templates by replacing entities with
entity-type placeholders (same as emrQA). The
dataset consists of 389 such question templates.
The placeholders are then slot-filled with appropri-
ate entities from a KB. For instance, “Is the patient
on lisinopril?’ is transformed to: “Is the patient
on |medication|?” The |medication| placeholder is
then slot-filled with different medication names
from a KB. While the slot-filling is done indiscrim-
inately in emrQA, we constrain the slot-filling by
constraining the entity types, wherever possible,
with the help of a medical expert. E.g., we filter
Prescriptions (table) with drug_type (table column)
base (column value) in slot-filling medication ques-
tions. We also filter out certain icd_codes from the
diagnoses_icd table in questions with conditions.
We process the date field (yyyy-mm-dd, hh:mm:ss)
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to also insert instances of just month and day, or
date without time when slot-filling (along with us-
ing the original format). Doing so ensures that the
questions are more likely to be naturally asked.

As in this example, the questions are patient-
specific and the expected answer is in the structured
part of the patient record. Each question template
is also assigned one or more question types, which
is a new field (not in emrQA) to further categorize
question templates in emrKBQA. Question type
can take one or more of the following values:

* YesNo = yes/no questions, e.g., “Is [test| value
abnormal”, “Is the patient on |medication|”

e Temp = temporal or when questions, e.g.,
“date last |test|”

* Fact = factual or what questions, e.g., “Range
of |test|”

A side-effect of the generation process (slot-
filling) is that all YesNo questions have a Yes an-
swer. We counter this by also generating questions
where the answer will be No. We do this by slot-
filling |problem|, |test|, [medication|, |treatment]|
based on the question and using top 50 most fre-
quently occurring entities in appropriate tables
(based on the entity type). Some of these questions
are now bound to have No as the answer when
applied to our patient set.

The types of questions are a consequence of the
questions provided by the physicians who were
polled for the initial question set. This was inde-
pendent of any underlying data and simply based
on what they would want to know about their own
patients. While several other questions may be an-
swerable on any underlying KB (like MIMIC), we
wanted the question set to reflect what an actual
physician may want to know from a patient record.

Logical Forms. Logical forms are a structured
representation that capture the information need
expressed in the question through entities, relations
and attributes and are generated as a by-product
of the emrQA generation process. They provide
a human-comprehensible symbolic representation,
linking questions to answers, and help build in-
terpretable models critical to the medical domain
(Davis et al., 1977; Vellido et al., 2012). They are
formally defined by Pampari et al. (2018) in em-
rQA. They encapsulate how we are answering a
question (since that can be subjective). They are
instantiated from a schema representing entities
and relations found in the EHR. We use the same
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VitalEvent
ProcedureEvent

LabEvent labevents, d_labitems

Test

LabName ———» d_labitems.label
Date » labevents.charttime
Result » labevents.value & labevents.valueuom
Status » not available
AbnormalResultFlag — > labevents.flag

Problem

MedicationEvent prescriptions

Medication/Treatment
MedicationName

s e e

Status

—» prescriptions.drug
Startdate » prescriptions.startdate
Enddate » prescriptions.enddate
Strength ————» prescriptions.prod_strength
Route » prescriptions.route
Formulation » prescriptions.form_unit_disp .
Dosage » not available .

ProcedureEvent procedureevents_my, d_items

Treatment
ProcedureName —» d_items.label
Date —————» procedureevents_muv.starttime
Status » not available

ConditionEvent

ConditionName —» d_icd_diagnoses.long_title
DiagnosisDate

SmokingUseEvent

Events and attributes from emrQA logical forms used in emrKBQA mapped to MIMIC-IIl schema

diagnoses_icd,
d_icd_diagnoses, admissions

chartevents, admissions
(itemid=225059 or 225811)

chartevents.value
Prior to admissions.admittime
not available

» Prior to admissions.dischtime
» not available

SmokingQuitEvent

chartevents, d_items (itemid=227687 or 225108)

IsTobaccoUser —» d_items.label: chartevents.value
YearsOfUse
PackPerDay

» not available
» not available

(ordercategoryname="“Continuous Procedures”, “Peritoneal Dialysis”, or “Ventilation”)

[l emrQA question template entities
[l emrQA logical form attributes
B MIMIC-1II data tables and fields

Figure 3: Mapping between emrKBQA schema entities, attributes and tables (yellow boxes) and columns in
MIMIC (shown in blue). See MIMIC schema for a description of MIMIC table and column names(Johnson et al.,

2016)

schema as Pampari et al. (2018) and map the tables
and columns in MIMIC to the schema entities and
attributes (see Figure 3).

The schema entities (yellow boxes in Figure 3)
represent entities of interest in patient records. In
emrQA these are derived from the annotated en-
tities in i2b2 (since emrQA was slot-filled from
12b2 annotations). We use the same entities for em-
rKBQA as our question set is a subset of emrQA.
The structured MIMIC KB does not contain any
semantic relations (relates, conducted/reveals, im-
proves, worsens, causes, given/not given (Pampari
et al., 2018)). Thus, Figure 3 does not show any
of the relations defined in the emrQA schema. An
example of the mapping between a schema entity
and MIMIC table is as follows. The Medication-
Event (entity that corresponds to Medication and
Treatment in our logical form templates) from the
schema maps to the Prescriptions table in MIMIC.
The entity attributes (shown in red) correspond to
the columns in the Prescription table (shown in
blue) as illustrated in the figure.

In our example, the logical form for question
template “Is the patient on |medication|?” would
be annotated as “MedicationEvent |medication|”,
where |medication| would be slot-filled with medi-
cation names from the KB. The logical form helps
identify appropriate tables, entities and values re-
quired from the KB.

Structured data typically factually records lab
values, vitals, conditions on admission, and medica-
tions but rarely records relations between these en-
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tities. In case of emrKBQA, none of the questions
that involve resolving relations to answer a ques-
tion in emrQA are answerable from structured data
in MIMIC. However, answering questions about
schema entities and attributes requires querying
and combining information from multiple related
tables in MIMIC.

While logical forms are an outcome of the pro-
cess used to generate emrQA, they are not essential
to answering questions over unstructured data like
clinical notes. The more traditional use of logi-
cal forms is in answering natural language ques-
tions from a structured KB. It is easier to convert
a question to logical form than to SQL (which is
longer and more complex for most questions, of-
ten including multiple nested queries and joins).
They provide a query-language agnostic intermedi-
ate representation that captures information need
expressed in the question using a representation
that is perhaps more annotator friendly. Moreover,
since logical forms are defined over a schema that
captures domain-specific entities and relations, they
are independent of the underlying database type or
query language.

Question Paraphrase Groups. Question para-
phrases are different ways of asking the same thing.
The emrKBQA dataset is paraphrase rich with an
average of 7.5 paraphrases per question. In emrK-
BQA, questions that map to the same logical form
and share the same question type are considered
paraphrases. The dataset has 52 question template
groups where each group maps to the same logical



form. This is because the answer to a question may
vary based on question type even if they map to the
same logical form. E.g., Consider the questions in
Table 1; the first set of questions are paraphrases
since their question type is Fact and they map to
the same logical form. So the expected answer is
the lab values and date. However, in case of the
last question, where the question type is YesNo, the
expected answer is a Yes or a No along with the lab
values and date. The paraphrases were a natural
outcome of the question collection process, where
the physicians who were polled phrased the same
information need in different ways. Paraphrases
may be syntactic variations (word re-ordering) or
substitution based (word/ phrase substitution) or a
combination of the two.

Paraphrases Ques Type
Previous |test| levels? Fact
What is |test| value? Fact
What is the patient’s [test| levels? | Fact
How is his |test| trending? Fact
Show me a trend of his |test|? | Fact

’ Has |test| been measured before ‘ YesNo ‘

Table 1: Example question paraphrases that map to the
same logical form LabEvent (|test|) [date=x, result=x,
sortBy(date)] OR VitalEvent (Jtest|) [date=x, result=x,
sortBy(date)], the first set that also share question type
are considered paraphrases.

Answers. Answers in emrKBQA are cell val-
ues from a table(s) in the KB. Broadly the an-
swer categories in emrKBQA are Test, Medica-
tion, Allergy, Therapeutic Procedures, Conditions
and Smoking. Figure 2 shows the distribution of
questions across different answer categories. Most
questions asking about Test are factual or YesNo
whereas Condition and Medication have more ques-
tions that are Temporal in nature.

As in emrQA, the answers to questions are de-
rived in a semi-automated manner. Each question is
mapped to a logical form that captures the entities
and relations that are required to adequately answer
the question. This mapping is done by a medical
expert. The expert uses an ontology that captures
entities, entity attributes and relations in the patient
record to define the logical form for a question (we
use the same schema as emrQA). The slot-filled log-
ical forms such as, “MedicationEvent|lisinopril|”,
are mapped to an underlying query language us-
ing a deterministic procedure (like SQL) that help
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retrieve the answer from the KB. The answer to
this question would be evidence in the structured
data that records the patient taking lisinopril along
with some contextual details about the medication.
“Yes/No, Start date, End date”.

Dataset Generation Process. We use the ques-
tion/logical form templates from emrQA and filter
out templates that cannot be mapped to MIMIC
structured data. We then map entity placeholders
in the templates to MIMIC columns and populate
the placeholders with MIMIC data corresponding
to the placeholder entity type. The mapping be-
tween entity placeholders and the MIMIC tables
and columns? is shown in Figure 4. Finally, we
extract answers from MIMIC. In the example be-
low, the entity |test| is populated by joining the
labevents table with d_labitems (dictionary map-
ping lab itemids to labels) and retrieving the label
field (Hemoglobin), which is used to slot fill the
question template and the logical form template.
The result for this question is a concatenation of
value and valueuom (unit of measurement) from the
labevents table; these are sorted by the charttime
field. Example questions, logical forms, question
type and answer categories are shown in Table 2.

4 Dataset Creation Results

emrKBQA consists of 940,713 question answer
pairs over 100 patients, generated from 389 ques-
tion templates and 52 question type-specific logical
form templates®. emrKBQA contains an average
of 7.5 paraphrases per question type-specific log-
ical form template (ranging from 1 to 55), where
a paraphrase is defined as question templates shar-
ing the same question type that map to the same
logical form template. Of the generated question
answer pairs, 90.9% are test results, 7.8% relate to
medications, 1.2% to conditions, and the remaining
to other topics (e.g., allergies, tobacco use). The
limited size of the medication data can be attributed
to the use of emrQA questions as the starting point.
emrQA questions are based on an outpatient set-
ting where medication data is available while emr-
KBQA is from an ICU setting where prescription
data is available. Thus several questions about ad-
herence, dosage and frequency of medication were
not part of emrKBQA. Only 1% (3,429 rows) of
the generated dataset were condition related results
since fields such as diagnosis time and relationships

Zhttps://mit-lcp.github.io/mimic-schema-spy/
3the process can be applied to any number of patients
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Figure 4: emrKBQA generation process

between treatments and conditions or between med-
ications and conditions are unavailable in MIMIC.

5 Task Definition and Models

Each instance in emrKBQA consists of the follwing
elements - question, question paraphrase group,
question type, logical form, answer - defined in Sec-
tion 3. Our goal is to build a model that when pre-
sented with a test question on the KB, provides an
answer. We achieve this by first modeling the ques-
tion to logical form learning problem as a semantic
parsing task. Here, given an input natural language
question, we predict its logical form. Next, we
map the predicted logical form to a SQL query in a
deterministic manner to retrieve the answer from
the KB. The answer is the set of cell values from
the underlying KB that answer the question. We
detail these two steps in the following sections.

5.1 Semantic Parsing

The task setup for semantic parsing is as follows:
given a question in emrKBQA, predict the logi-
cal form for that question. As emrKBQA contains
several question paraphrases that map to the same
logical form, the learning task can be set up in
two ways, (1) naive splitting scheme, where input
instances are split at random between train and
test data, and (2) paraphrase-level splitting scheme,
where a question paraphrase seen during train time
is not observed in the test set. Thus, the model
is tested on whether it can infer the meaning of
this question only from its paraphrased forms seen
during training. While the paraphrase-level split
is more challenging than the naive one, the set-
ting is more realistic. Since the test instances are
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paraphrases of some training instance, the model is
expected to generalize to unseen test instance.

In a previous work, Min et al. (2020) have shown
state-of-the-art performance on model generaliza-
tion for sequence to sequence tasks. They handle
unseen sentential paraphrases at test time by in-
corporating paraphrase detection and generation
as auxiliary tasks. In case of paraphrase genera-
tion (ParaGen), they sample a question paraphrase
during training and learn to generate it along with
the main task of logical form prediction. In the
paraphrase detection model (ParaDetect), they sam-
ple a paraphrase and learn to identify if the sample
and the input question are paraphrases by look-
ing at their embeddings in the auxiliiary task. We
use the best performing model reported in Min
et al. (2020) and perform the following experiments
across both splitting schemes: (1) Naive splitting
scheme with a baseline model - seq2seq model
with copy mechanism (Gu et al., 2016), (2) Para-
phrase splitting scheme with a baseline model -
seq2seq model with copy mechanism, and (3) Para-
phrase splitting scheme with the best-performing
ParaGen+ParaDetect model.

5.2 Predicted Logical form to Answer

Finally, the predicted logical form is now mapped
to a SQL query to retrieve an answer from the KB.
Each question template maps to a logical form tem-
plate and for each logical form template, we have
a corresponding SQL query template. While this
mapping is deterministic, the errors in the predicted
logical forms require us to use approximate match-
ing functions to map the predicted logical form
(template) to the correct logical form template. We



Question Logical Form QType | ACat
What were the results LabEvent( test|)
[abnormalResultFlag=Y, date=|date|, result=x]
of abnormal F Test
. OR [{LabEvent(|test|)
|test| in |date|?
[date=|date|, abnormalResultFlag=Y]
What is the patients ConditionEvent(|problem|) [diagnosisdate=x] F Cond
|problem| history? OR SymptomEvent(|problem|) [onsetdate=x]
How long has patient been | MedicationEvent(|medication|)
N T Med
on |medication|? [startdate=x, enddate=x]
Has the patient ever been Condltloanver'lt(|pr0blem|) [diagnosisdate=x]
. OR [{MedicationEvent(x) OR
diagnosed or YN Cond
treated for [problem|? ProcedureEvent(x)}
) given ConditionEvent(|problem|)]

Table 2: Example questions and logical forms across question types Fact(F), Temporal(T), YesNo (YN) and answer

categories Test, Condition, Medication

achieve this by matching the by using string simi-
larity measures like edit distance. We then extract
the slot filled entity from the predicted logical form
and slot fill the SQL query. This query is then run
to derive the answer. This answering accuracy is
captured in the denotation accuracy metric.

5.3 Experimental Settings

We split emrKBQA dataset according to our two
splitting schemes, naive and paraphrase-level, and
create two sets of train (70%), dev (10%) and test
(20%) datasets. We evaluate the performance of
our semantic parsing step using Exact Match (EM)
(Min et al., 2020), and our logical form to answer
step using Denotation Accuracy (Lin et al., 2019)
metrics. EM only considers model outputs that are
identical to the labeled ones as correct, while deno-
tation accuracy considers logical forms that return
the label answer from the database as correct. We
utilize Min et al. (2020)’s public implementation®
for executing the experiments. We used the default
hyperparameters.

5.4 Results

Table 3 presents results of the experiments. The
baseline seq2seq with copy model gives high per-
formance in the naive splitting scheme, however
the performance drops when we evaluate the model
with the paraphrase-level splits. In our experi-
ments, the ParaGen+ParaDetect model provides
similar performance to the baseline seq2seq with
copy model. This may be attributed to a lack of

*https://github.com/jointparalearning/AdvancingSeq2Seq
Results will vary with different initialization seeds
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Splitting Model EM | Denotation
Scheme Accuracy
Naive Seq2seq with | 0.95| 0.96
copy
Paraphrase | Seq2seq with | 0.83| 0.84
copy
Paraphrase | ParaGen + Pa- | 0.82| 0.82
raDetect

Table 3: Semantic parsing results on paraphrase splits.

hyperparameter tuning on out emrKBQA dataset.

For error analysis, we randomly sampled 100
error instances from our best performing seq2seq
with copy model predictions. We present the ma-
jor error categories with examples in Table 4. Al-
most half of the errors were attributed to questions
with multiple entities. In the first example, the
two entities “white blood cells” and date “2139-
04-01 06:23:00” are merged to “white 06:23:00”
in the predicted logical form, leading to an error.
Another big chunk of errors can be attributed to
incorrect recognition of the entity types present in
the question, e.g., whether the entity is of type lab
or procedure, or condition or symptom (example
2). To resolve this error, pretraining the model with
a named entity recognition objective might be use-
ful. A next set of errors are due to identification of
incorrect span of entities (example 3). This error
can be attributed to the fact that the the model has
not seen the question form in train data (due to
paraphrase-level splits). For the remaining error
categories, 7% are caused due to attribute errors
like min, max, and finally 4% of the errors are



Question Predicted LF GT Logical Form Error Per
Form category
what were | labevent (white blood cells) [ab- | labevent (white blood cells) [ab- | multiple | 47%
the results | normalresultflag=y, date=2139- | normalresultflag=y, date=2139- | entities
of the abnor-| 04-01 06:23:00, result=x] or | 04-01  06:23:00, result=x]
mal white | procedureevent(white blood | or procedureevent(white
blood cells in | cells) [abnormalresultflag=y, | blood cells) [abnormalre-
2139-04-01 date=2139-04-01  06:23:00,re- | sultflag=y, date=2139-04-01
06:23:00 sult=x] or vitalevent(white blood | 06:23:00,result=x] or Vi-

cells) [date=white 06:23:00 | talevent(white  blood cells)

(result=x)>vital.rethigh] or...... [date=2139-04-01 06:23:00,

(result=x)>vital.rethigh] or .....
has the patient | labevent (intracerebral hemor- | conditionevent (intracerebral | confusion | 28%
had a previous | rhage) [date=x] or procedureevent | hemorrhage) [diagnosisdate=x] | between
intracerebral | (intracerebral hemorrhage) | or symptomevent (intracerebral | the entity
hemorrhage | [date=x] hemorrhage) [onsetdate=x] type
has this pa-| labevent (documented chest) | labevent (chest x-ray) [date=x] | wrong 12%
tient ever had | [date=x] or procedureevent | or procedureevent (chest x-ray) | entity
a documented | (documented chest) [date=x] or | [ date=x ] or vitalevent (chest x- | span
chest x-ray at | vitalevent (documented chest) | ray) [date=x] (para-
another va [date=x] phrase
split)

date of acute | conditionevent (acute bronchitis) | conditionevent (acute bronchi- | attribute | 7%
bronchitis [min(diagnosisdate=x)] or symp- | tis) [diagnosisdate=x] or symp- | error

tomevent (acute bronchitis) tomevent (acute bronchitis) [on-

setdate=x]

has the patient | conditionevent (unspecified hep- | conditionevent (unspecified hep- | semantic | 4%
had a previous | atitis ¢ without hepatic coma) [di- | atitis ¢ without hepatic coma) [di- | errors
unspecified agnosisdate=x] or symptomevent | agnosisdate=x] or symptomevent | (extra
viral hepati- | (unspecified viral hepatitis ¢ with- | (unspecified viral hepatitis ¢ with- | brackets)
tis ¢ without | out hepatic coma) [onsetdate=x] | out hepatic coma) [onsetdate=x]
hepatic coma | ]

Table 4: Error analysis of randomly chosen 100 error instances in the semantic parsing model.

caused due to a long tail of semantic errors like
extra brackets, etc.

6 Discussion

Advantages of emrKBQA. emrKBQA is the first
large-scale community shared patient-specific QA
dataset for answering physician questions from
structured patient records. It follows a semi-
automated process similar to emrQA (which re-
leases QA pairs on clinical notes), where logical
forms are the only expert-provided input. These
logical forms lend credibility to the dataset as they
capture entities, attributes, and relations required
to answer a question and enable slot filling and
answer generation. Some highlights of emrKBQA
are (1) Question Quality. Unlike emrQA, emrK-
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BQA slot-fills entities with discretion by filtering
out certain entities based on their attributes (like
certain diagnoses based on ICD codes, medications
based on drug type). This results in more realis-
tic realization of question instances. (2) Question
Diversity. The dataset is rich in paraphrases (para-
phrase groups have been updated from emrQA) (3)
Dataset Difficulty. We provide paraphrase-level
splits that helps train models that can generalize
to unseen paraphrases of the train questions at test
time. This is useful in practical settings. As de-
scribed in the error analysis, in learning to map
questions to logical forms, the challenges include
recognizing the correct entity spans and types from
the question, learning to predict long logical forms,
and generating multiple attributes and constraints




in the logical form. (4) Logical forms generated
from the same schema as emrQA, allowing the
schema to be a unifying factor across structured and
unstructured QA. This allows for future updates in
a uniform manner.

Limitations of emrKBQA. (1) Since we
wanted the question set to comprise of actual ques-
tions asked by physicians, the question set is lim-
ited to the initial pool collected from the polled
physicians. (2) The dataset is generated in a semi-
automated manner that leads to some slot-filled
questions that are unlikely to be asked in a real
setting. (3) Redundancy of “question form” due to
slot filling. Several instances of the same template
with different slot-filled entities.

In future versions of the dataset, some of the
planned updates include the following: increas-
ing the range of question types, the granularity of
questions asked, infuse the need for domain knowl-
edge in understanding a question (using word/
phrase synonyms in slot-filling), better classifi-
cation of temporal questions based on TimeML,
(Pustejovsky et al., 2003), generating more ques-
tion paraphrases using automated methods (Soni
and Roberts, 2019; Min et al., 2020; Neuraz et al.,
2018; Dong et al., 2017). While this version of
the dataset is generated on randomly sampled 100
patients, we could apply the dataset generation pro-
cess to any number of patients in MIMIC. It may be
interesting to include patient’s chosen as per some
criteria and contrast answers to similar questions
across the chosen cohort.

Differences between emrQA and emrKBQA.
emrKBQA is best suited for answering factoid
questions such as test results as seen from the re-
sults discussed; 87% of emrKBQA (vs 11% of
emrQA) comprises test results since test value
columns are rarely null. Also, emrKBQA is not
limited by annotated clinical notes, which may be
a problem if there are very few sources to obtain
them. The benefit of emrQA is that it includes ques-
tions and answers about medications for problems,
response to treatments, temporal constraints and
etiology, all of which are unavailable in emrKBQA.

The benefit of a structured dataset such as
MIMIC is that explicit values are captured well
in tables. Unstructured data may have the answer
implicitly stated and may have to be inferred. It
also might be incomplete in terms of certain types
of crucial information like dates. The limitation of
structured data is that it may not capture all types of
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information. Typically, structured data is unlikely
to store symptoms, relations between conditions
and symptoms or relations between conditions and
treatments. These relations are more likely to be
captured by unstructured data.

Question Answering on the entire EHR. em-
rKBQA is a step in the direction of being able to
answer a question anywhere in the EHR, since it
utilizes the same schema as emrQA that is used
to instantiate logical forms that capture informa-
tion needs expressed in natural language questions.
The answer could now be derived from the struc-
tured KB, clinical notes or from both sources in a
complementary manner.

7 Conclusion

We create a new large-scale dataset, emrKBQA,
for answering patient-specific physician questions
from structured patient records. This community-
shared release is created in a semi-automated man-
ner and consists of over 900k question-logical form-
answer triples, 389 question types (templates), with
/7.5 paraphrases per question type. We benchmark
the dataset and quantify its usefulness in answering
questions by training models for semantic parsing
of questions to logical forms.
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Abstract

The MEDIQA 2021 shared tasks at the
BioNLP 2021 workshop addressed three tasks
on summarization for medical text: (i) a
question summarization task aimed at explor-
ing new approaches to understanding com-
plex real-world consumer health queries, (ii) a
multi-answer summarization task that targeted
aggregation of multiple relevant answers to a
biomedical question into one concise and rel-
evant answer, and (iii) a radiology report sum-
marization task addressing the development
of clinically relevant impressions from radiol-
ogy report findings. Thirty-five teams partici-
pated in these shared tasks with sixteen work-
ing notes submitted (fifteen accepted) describ-
ing a wide variety of models developed and
tested on the shared and external datasets. In
this paper, we describe the tasks, the datasets,
the models and techniques developed by vari-
ous teams, the results of the evaluation, and a
study of correlations among various summa-
rization evaluation measures. We hope that
these shared tasks will bring new research and
insights in biomedical text summarization and
evaluation.

1 Introduction

Text summarization aims to create natural lan-
guage summaries that represent the most impor-
tant information in a given text. Extractive sum-
marization approaches tackle the task by selecting
content from the original text without any modifi-
cation (Nallapati et al., 2017; Xiao and Carenini,
2019; Zhong et al., 2020), while abstractive ap-
proaches extend the summaries’ vocabulary to
out-of-text words (Rush et al., 2015; Gehrmann
et al., 2018; Chen and Bansal, 2018).

Several past challenges and shared tasks have
focused on summarization. The Document Un-
derstanding Conference! (DUC) organized seven

lwww-nlpir.nist.gov/projects/duc
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challenges from 2000 to 2007 and the Text Anal-
ysis Conference’ (TAC) ran four shared tasks
(2008-2011) on news summarization. The last
TAC 2014 summarization task tackled biomedi-
cal article summarization with referring sentences
from external citations. Recent efforts in sum-
marization have focused on neural methods (See
et al., 2017; Gehrmann et al., 2018) using bench-
mark datasets compiled from news articles, such
as the CNN-DailyMail dataset (CNN-DM) (Her-
mann et al., 2015). However, despite its impor-
tance, fewer efforts have tackled text summariza-
tion in the biomedical domain for both consumer
and clinical text and its applications in Question
Answering (QA) (Afantenos et al., 2005; Mishra
et al., 2014; Afzal et al., 2020).

While the 2019 BioNLP-MEDIQA? edition fo-
cused on question entailment and textual infer-
ence and their applications in medical Question
Answering (Ben Abacha et al., 2019), MEDIQA
2021* addresses the gap in medical text summa-
rization by promoting research on summarization
for consumer health QA and clinical text. Three
shared tasks are proposed for the summarization
of (i) consumer health questions, (ii) multiple an-
swers extracted from reliable medical sources to
create one answer for each question, and (iii) tex-
tual clinical findings in radiology reports to gener-
ate radiology impression statements.

For the first two tasks, we created new test sets
for the official evaluation using consumer health
questions received by the U.S. National Library of
Medicine (NLM) and answers retrieved from re-
liable sources using the Consumer Health Ques-
tion Answering system CHiQA>. For the third
task, we created a new test set by combining
public radiology reports in the Indiana Univer-

2tac.nist.gov/tracks

3sites. google.com/view/mediga2019
‘sites. google.com/view/mediqa2021
5chiqa .nlm.nih.gov
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sity dataset (Demner-Fushman et al., 2016) and
newly released chest x-ray reports from the Stan-
ford Health Care.

Through these tasks, we focus on studying:

e The best approaches according to the

summarization task objective and the
language/vocabulary  (consumers’  ques-
tions, patient-oriented medical text, and

professional clinical reports);

The impact of medical data scarcity on the
development and performance of summa-
rization methods in comparison with open-
domain summarization;

The effects of different summary evaluation
measures including lexical metrics such as
ROUGE (Lin, 2004), embedding-based met-
rics such as BERTScore (Zhang et al., 2019),
and hybrid ensemble-oriented metrics such
as HOLMS (Mrabet and Demner-Fushman,
2020).

2 MEDIQA 2021 Task Descriptions

2.1 Consumer Health Question
Summarization (QS)

Consumer health questions tend to contain pe-
ripheral information that hinders automatic Ques-
tion Answering (QA). Empirical studies based on
manual expert summarization of these questions
showed a substantial improvement of 58% in QA
performance (Ben Abacha and Demner-Fushman,
2019a). Effective automatic summarization meth-
ods for consumer health questions could therefore
play a key role in enhancing medical question an-
swering. The goal of this task is to promote the de-
velopment of new summarization approaches that
address specifically the challenges of long and po-
tentially complex consumer health questions. Rel-
evant approaches should be able to generate a con-
densed question expressing the minimum informa-
tion required to find correct answers to the origi-
nal question (Ben Abacha and Demner-Fushman,
2019b).

2.2 Multi-Answer Summarization (MAS)

Different answers can bring complementary per-
spectives that are likely to benefit the users of QA
systems. The goal of this task is to promote the
development of multi-answer summarization ap-
proaches that could solve simultaneously the ag-
gregation and summarization problems posed by
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multiple relevant answers to a medical question
(Savery et al., 2020).

2.3 Radiology Report Summarization (RRS)

The task of radiology report summarization aims
to promote the development of clinical summa-
rization models that are able to generate the con-
cise impression section (i.e., summary) of a radi-
ology report conditioned on the free-text findings
and background sections (Zhang et al., 2018). The
resulting systems have significant potential to im-
prove the efficiency of clinical communications
and accelerate the radiology workflow. While
state-of-the-art techniques in language generation
have enabled the generation of fluent summaries,
these models occasionally generate spurious facts
limiting the clinical validity of the generated sum-
maries (Zhang et al., 2020b). It is therefore impor-
tant to develop systems that are able to summarize
the radiology findings in a consistent manner.

3 Data Description
3.1 QS Datasets

The MeQSum dataset of consumer health ques-
tions and their summaries (Ben Abacha and
Demner-Fushman, 2019b) was suggested as a
training dataset. It consists of 1,000 consumer
health questions and their associated summaries.
Participants were encouraged to use available ex-
ternal resources including, but not limited to, med-
ical QA datasets and question focus and type
recognition datasets. For instance, the Consumer
Health Questions dataset (Kilicoglu et al., 2018)
contains annotations of medical entities, focus,
and type of the MeQSum questions and additional
NLM questions®.

The new QS validation and test sets’ cover a
wide range of topics and question types such as
Treatment, Information, Side effects, Cause, Ef-
fect, Person-Organization, Diet-Lifestyle, Compli-
cations, Contraindications, Diagnosis, Usage, In-
teraction, Ingredients, Prognosis, Susceptibility,
Transmission, and Toxicity. They consist of man-
ually de-identified consumer health questions re-
ceived by the U.S. National Library of Medicine
and gold summaries created by medical experts.
The validation set includes 50 NLM questions and

®https://bionlp.nlm.nih.gov/
CHIQAcollections/CHQA-Corpus—1.0.zip

"https://github.com/abachaa/
MEDIQA2021/tree/main/Taskl



Example 1 (QID: 139)

NLM Question: did anyone have this and does it re-
quire surgery? my mri says forminal stenosis from bone
spurs ¢4,5,6. my nerve test shows severe nerve com-
pression ¢7,8. i’m in so much pain, mostly my arm and
shoulder and leg. waiting to see the pain specialist to
see what’s next. would love to know what you guys think
is required.

Question Summary: How can I get rid of pain caused
by foraminal stenosis and nerve compression?
Example 2 (QID: 111)

NLM Question:

covid-19 how long to quarantine after being positive
how long are you contagious if i tested positive for
covid-19. how long before i can safely return to work
after a positive covid 19 test

Question Summary: How long will I remain conta-
gious after testing positive for COVID-19?

Table 1: Test set examples for the QS task.

their summaries with additional annotations of the
question focus and type. The test set contains 80
consumer health questions. Table 1 presents two
examples from the QS test set.

3.2 MAS Datasets

The MEDIQA-AnS dataset (Savery et al., 2020)
was suggested as a training set for the MAS task.
Participants were allowed to use available exter-
nal resources (e.g. existing medical QA datasets)
as well as data creation, selection, and augmenta-
tion methods. To create the MAS validation and
test sets®, we used 130 consumer health questions
received by NLM. In order to retrieve more ac-
curate answers, we created question summaries
that we used to query the medical QA system
CHiQA that searches for answers from only trust-
worthy medical information sources (Ben Abacha
and Demner-Fushman, 2019¢c; Demner-Fushman
et al., 2020).

The answer summaries were manually created
by medical experts. We provided both extractive
and abstractive gold summaries, and encouraged
the use of all types of summarization approaches
(extractive, abstractive, and hybrid). The MAS
validation set contains 192 answers to 50 medi-
cal questions. The test set contains 303 answers to
80 medical questions. Each question has at least
two answers, one extractive multi-answer sum-
mary, and one abstractive multi-answer summary.
Table 2 presents an example from the test set.

$https://github.com/abachaa/
MEDIQA2021/tree/main/Task2
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Original NLM question: [ have dementia like symp-
toms and wanted to know where is the best source to
be tested for diagnosis? I have been prescribed An-
ticholinergic medicine since 2008...since I have been
diagnosed with, Celiac disease and Obstructive Sleep
Apnea. I think I have Frontal Temporal lobe atrophy.
I’'m going to try to get tested...any references on which
process is easiest would be much appreciated. I can’t
take my Nasalcrom allergy spay any more nor, valium
or prozac, benadryl and glutamate additives in meats
because it sends me straight into cognitive emergency
state and irrational thinking

Question summary used in answer retrieval:

What tests are used to diagnose dementia?

CHiQA’s Answer #1: Dementia is not a specific dis-
ease. It is a descriptive term for a collection of symp-
toms that can be caused by a number of disorders that
affect the brain. People with dementia have signifi-
cantly impaired intellectual functioning that interferes
with normal activities and relationships. They also lose
their ability to solve problems and maintain emotional
control, and they may experience personality changes
and behavioral problems, such as agitation, delusions,
and hallucinations (...).

CHiQA’s Answer #2: To diagnose dementia, doctors
first assess whether a person has an underlying treat-
able condition such as depression, abnormal thyroid
function, normal pressure hydrocephalus, or vitamin
B12 deficiency. Early diagnosis is important, as some
causes for symptoms can be treated. In many cases, the
specific type of dementia a person has may not be con-
firmed until after the person has died and the brain is
examined.A medical assessment for dementia generally
includes:- Patient history (...) - Physical exam (...) -
Neurological tests (...).

Reference Extractive Summary: Dementia is not a
specific disease. It is a descriptive term for a collection
of symptoms that can be caused by a number of disor-
ders that affect the brain. Doctors diagnose dementia
only if two or more brain functions - such as memory
and language skills — are significantly impaired without
loss of consciousness. To diagnose dementia, doctors
first assess whether a person has an underlying treat-
able condition such as depression, abnormal thyroid
function, normal pressure hydrocephalus, or vitamin
B12 deficiency. Early diagnosis is important, as some
causes for symptoms can be treated. In many cases, the
specific type of dementia a person has may not be con-
firmed until after the person has died and the brain is
examined.A medical assessment for dementia generally
includes:- Patient history (...) - Physical exam (...) -
Neurological tests (...).

Reference Abstractive Summary: Dementia could be
caused by many different diseases of the brain. it is di-
agnosed if at least two brain functions are effected, for
example, if people experience memory loss and changes
in behavior and personality. Diagnostic tests for de-
mentia include family history, physical examination,
and neurological tests to asses balance, sensory func-
tions, reflexes, vision, eye movements, and cognitive
functions. In many cases, the type of dementia is con-
firmed after the person dies.

Table 2: Test set example for the MAS task (QID:105).



3.3 RRS Datasets

We focus on the summarization of chest radiogra-
phy reports for the RRS task, since chest radiog-
raphy represents the most common study type in
radiology, and public resources for chest studies
are easily accessible. For training, we sampled
a collection of 91,544 reports from the MIMIC-
CXR chest X-ray report dataset’ based on simple
criteria such as the acceptable length of each sec-
tion. For validation, we combined another 2,000
reports from the MIMIC-CXR dataset and 2,000
reports from the Indiana University chest X-ray
dataset'®(Demner-Fushman et al., 2016). We sam-
pled the reports such that there is no overlapping
patients in the validation and training sets.

For the official test set, we used a combination
of 300 reports from the Indiana dataset and 300
newly released chest X-ray reports drawn from the
Stanford Health Care system. We intentionally de-
signed the test set to be partially from a hospi-
tal system different from the training set (out-of-
domain) to test the generalizability of the partici-
pating systems.

4 Evaluation

4.1 Evaluation Measures

Several new metrics for evaluating text genera-
tion systems were studied in recent years (Mao
et al., 2020; Bhandari et al., 2020a,b; Zhang et al.,
2019; Sellam et al., 2020), with a focus on eval-
uating text generation based on deep and contex-
tualized representations. To understand these met-
rics in the context of summarization, Fabbri et al.
(2020) have compared 34 traditional and recent
model-based metrics on a manually annotated sub-
set from the CNN-DM dataset. Although the study
relied only on one correlation factor (Kendall’s
Tau) and one dataset, it highlighted the (contin-
ued) general relevance of ROUGE variants (Lin,
2004) and the challenge of designing or determin-
ing the best measure to use. Specifically, the study
found that a different measure obtained the best
score in each of the four considered evaluation
dimensions: coherence, consistency, fluency, and
relevance, with substantial discrepancies in rank-
ings.

In parallel, HOLMS was recently proposed as
an ensemble measure combining both contextual-

*https://physionet.org/content/
mimic-cxr/2.0.0/
1Oopem'_ .nlm.nih.gov/fag#collection
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ized similarity and a lexical ROUGE component
through a multi-dimensional Gaussian function
(Mrabet and Demner-Fushman, 2020). HOLMS
was evaluated on multiple DUC and TAC datasets,
and three correlation factors (Pearson’s, Spear-
man’s, and Kendall’s), and was shown to ben-
efit from the complementary strengths of lexi-
cal and language model-based similarity measure-
ments for evaluating summarization systems.

In this shared task, we chose ROUGE-2 as our
official ranking metric following its superiority
observed by Owczarzak et al. (2012) on multi-
ple TAC summarization datasets, and by Bhandari
et al. (2020¢) on the CNN-DM dataset.

We chose two additional metrics for the three
tasks: (1) BERTScore for its wider adoption as a
language model-based text generation metric, and
(2) HOLMS for its hybrid and ensemble-oriented
approach. For the RRS task we also considered
an additional evaluation metric based on the ham-
ming similarity on the labels produced by the
CheXbert labeler (Smit et al., 2020) when applied
to both the system and reference summaries, sim-
ilar to the approach by Zhang et al. (2020b).

4.2 Baseline Systems

Our baseline system for the QS task relied on a
distilled PEGASUS model (Zhang et al., 2020a)
trained on the CNN-DM dataset and fine-tuned on
a combination of biomedical answer-to-question
data and question summarization data from MeQ-
Sum, LiveQA-Med data (Ben Abacha et al.,
2017), a collection of clinical questions (Ely et al.,
2000), and Quora question pairs dataset (Lyer
et al., 2017). For the Quora and clinical questions
datasets, we extracted only the question pairs with
a minimum token reduction ratio of 33%.

Our extractive baseline for the MAS task relied
on sentence clustering and selection. We used our
fine-tuned question summarization model to gen-
erate a short question from each sentence, and then
clustered the sentences using a word-based cosine
distance between the generated questions and a
distance threshold set to 0.7. Intersecting clusters
were merged. For each cluster, we selected the
sentence that was the best cumulative TF-IDF an-
swer to all other sentences as a representative.

For the RRS task, we prepared three baselines:
a base pointer-generator model without modeling
the background section of a radiology report, a full
pointer-generator model with background model-



ing (Zhang et al., 2018), and a zero-shot T5-base
summarization model (Raffel et al., 2020).

5 Official Results

We published three Alcrowd projects (one for each
task) to release the datasets and manage team reg-
istration, submission, and leaderboard ranking''.

5.1 Participating Teams

In total, 35 teams participated in the MEDIQA
shared tasks and submitted 310 individual runs
(with a limit of ten runs per team per task). Ta-
ble 3 presents the participating teams with ac-
cepted working notes papers. The results of all
35 teams are available on Alcrowd and on the
MEDIQA 2021 website.

5.2 Summarization Approaches & Results

A vast majority of the approaches submitted to
the QS and RRS tasks were abstractive and relied
on fine-tuning of pre-trained generative language
models and encoders-decoders architectures. For
the MAS task, most submitted approaches were
extractive and used a wide spectrum of sentence
selection techniques.

Question Summarization. Table 4 presents the
official results of the teams with accepted working
notes papers from the 22 teams that participated in
the QS task.

All approaches submitted to the question sum-
marization task were abstractive methods relying
on the fine-tuning of pretrained transformer mod-
els (Vaswani et al., 2017). A wide variety of fine
tuning, knowledge-based, and ensemble methods
was investigated by the participating teams to
achieve higher performance (Mrini et al., 2021; Xu
et al., 2021; Zhu et al., 2021; Sénger et al., 2021;
Lee et al., 2021b; Balumuri et al., 2021; Yadav
et al., 2021; He et al., 2021; Lee et al., 2021a).
A first interesting insight from the overview is
that building ensemble models with deep neural
networks such as discriminators is not a trivial
task, and achieves results that stay on par with
the best single model (Sénger et al., 2021). In
contrast, heuristic, downstream ensembles of the
models outputs led to substantial improvements
when compared to its components/single models
(He et al., 2021). The best performing approach
relied on such an ensemble by ranking the outputs

"yww.aicrowd.com/challenges/

mediga-2021
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of PEGASUS, T35, and BART models according to
hand-picked features based on the contents of the
input question and lengths of the outputs. Spell
checking was also a performance boost factor in
the question summarization task with some teams
using a knowledge base to correct misspelling er-
rors in the original long questions (He et al., 2021),
and others relying on third party tools such as
CSpell (Yadav et al., 2021; Lu et al., 2019). The
datasets used for transfer learning or fine-tuning
also played a major role in the achieved perfor-
mance as demonstrated, for instance, by the com-
bination of datasets from HealthCareMagic, ques-
tion entailment recognition and question summa-
rization in (Mrini et al., 2021). Moving forward,
we think that the overview of the question sum-
marization task revealed two key challenges that
need to be addressed to enhance the relevance and
performance of existing systems:

1. a relevant learning-based ensemble method
that could rely either on the textual outputs
or the logits of single models.

2. a more systemic way to select the most rel-
evant datasets for both pretraining and fine
tuning.

Multi-Answer Summarization. Both extractive
and abstractive approaches were used by the 17
teams that submitted runs to MAS task (Zhu et al.,
2021; Canetal., 2021; Xu et al., 2021; Mrini et al.,
2021; Yadav et al., 2021; Le et al., 2021; Lee et al.,
2021a). Table 5 and Table 6 present official results
of the teams with extractive and abstractive sys-
tems when evaluated, respectively, on extractive
gold summaries and abstractive gold summaries.
The best MAS run (Zhu et al., 2021) relied on
an ensemble method and a recent multi-document
summarization approach (Xu and Lapata, 2020)
using a Roberta model to rank locally the can-
didate sentences and a Markov chain to evaluate
them globally. A similar approach was also used
by the ChicHealth team (Xu et al., 2021) with-
out a downstream ensemble method. Participat-
ing teams used transfer learning (e.g. (Mrini et al.,
2021)) as well as answer sentence selection meth-
ods. Sentence selection was used in building ex-
tractive summaries (e.g. (Can et al., 2021)) and as
an intermediate step in abstractive summarization
to provide more concise inputs to generative mod-
els (e.g. (Le et al., 2021)). Different models, such



Team Institution QS MAS RRS

BDKG (Dai et al., 2021) Baidu, Inc v
ChicHealth (Xu et al., 2021) Chic Health v v
damo_nlp (He et al., 2021) Alibaba Group v v
IBMResearch (Mahajan et al., 2021) IBM Research v
MNLP (Lee et al., 2021a) George Mason University v v
NCUEE-NLP (Lee et al., 2021b) National Central University v
NLM (Yadav et al., 2021) U.S. National Library of Medicine v v
optumize (Kondadadi et al., 2021) Optum v
paht_nlp (Zhu et al., 2021) ECNU & Pingan Health Tech v v v
QIAI (Delbrouck et al., 2021) Stanford University v v
SB_NITK (Balumuri et al., 2021) National Institute of Technology Karnataka v
UCSD-Adobe (Mrini et al., 2021) UC San Diego & Adobe Research v v
UETfishes (Le et al., 2021) VNU University of Engineering and Technology v
UETrice (Can et al., 2021) VNU University of Engineering and Technology v
WBI (Sénger et al., 2021) Humboldt University of Berlin v

Table 3: Participating teams with accepted working notes papers at BloNLP-MEDIQA 2021
Rank Team ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore
1 damo_nlp 0.1608 0.3514 0.3131 0.5677 0.6898
2 WBI 0.1599 0.3340 0.3149 0.5767 0.6996
3 NCUEE-NLP 0.1597 0.3352 0.3090 0.5787 0.6960
4 NLM 0.1514 0.3556 0.3110 0.5649 0.6892
5 UCSD-Adobe 0.1414 0.3463 0.3065 0.5586 0.6942
6 ChicHealth 0.1398 0.3403 0.2962 0.5551 0.6810
7 SB_NITK 0.1393 0.3331 0.3077 0.5663 0.7025
- OS Baseline 0.1373 0.3203 0.2962 0.5672 0.6277
8 MNLP 0.1114 0.2840 0.2587 0.5455 0.6732
9 paht_nlp 0.0935 0.2486 0.2331 0.5428 0.6591
10 QIAI 0.0385 0.1514 0.1356 0.4898 0.5101

Table 4: Official results of the MEDIQA-QS task.

Rank Team ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore

1 paht_nlp 0.5076 0.5848 0.4354 0.7047 0.8038
2 UETrice 0.5040 0.6110 0.4412 0.7383 0.7958
3 ChicHealth 0.4893 0.5776 0.4261 0.7033 0.7916
4 UCSD-Adobe 0.4720 0.6073 0.4289 0.7612 0.7753
5 NLM 0.4677 0.5470 0.3276 0.6575 0.7645

Table 5: Official results of the MEDIQA-MAS task (1): Extractive Approaches.

Team Rank ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore
paht_nlp 1 0.5076 0.5848 0.4354 0.7047 0.8038
(1) 0.1621 0.3215 0.1910 0.4220 0.6528
UETfishes 2 0.4698 0.5720 0.4001 0.6970 0.7821
3) 0.1495 0.3124 0.1885 0.4213 0.6466
UCSD-Adobe 3 0.4595 0.5921 0.4170 0.7502 0.7689
2) 0.1604 0.3843 0.2117 0.4937 0.6326
MNLP 4 0.2594 0.4220 0.2954 0.6568 0.6479
@) 0.1167 0.3490 0.2047 0.5269 0.5763

Table 6: Official results of the MEDIQA-MAS task (2): Abstractive Approaches. Ranks in bold and in parenthe-
sis correspond to evaluation on extractive gold summaries and on abstractive gold summaries, respectively.
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Rank Team R-2 R-1 R-L HOLMS BERTScore CheXbert
1 BDKG 0.4362 0.5572 0.5365 0.7402 0.7184 0.6927
2 IBMResearch 0.4082 0.5328 0.5134 0.7185 0.7115 0.6774
3 optumize 0.3918 0.5185 0.4957 0.7087 0.6975 0.6773
4 QIAI 0.3778 0.4954 04793 0.7132 0.5328 0.5565
5 ChicHealth 0.3236 0.4606 0.4410 0.6822 0.6768 0.6261
6 damo _nlp 0.2763 0.4329 04115 0.6604 0.6576 0.6343
- baseline (PG-full)  0.2734 0.4182 0.4041 0.6647 0.6194 0.6014
- baseline (PG-base) 0.2639 0.4026 0.3885  0.6553 0.6103 0.5537
7 paht_nlp 0.1987 0.3400 0.3053 0.5915 0.5985 0.6705
- baseline (T5) 0.0945 0.2108 0.1831 0.4432 0.4921 0.5245
Table 7: Official results of the MEDIQA-RRS task on the full test set.
Rank Team ROUGE-2 CheXbert
Stanford Indiana Stanford Indiana

1 BDKG 0.2768 0.5955 0.6547 0.7052

2 ChicHealth 0.2690 0.3781 0.6291 0.5873

3 damo_nlp 0.2687 0.2839 0.6645 0.5517

4 optumize 0.2654 0.5182 0.6474 0.6592

5 QIAI 0.2516 0.5039 0.5508 0.4970

6 paht_nlp 0.2491 0.1483 0.6834 0.6148

- baseline (PG-full) 0.2414 0.3054 0.6216 0.5466

- baseline (PG-base) 0.2408 0.2870 0.5892 0.4754

7 IBMResearch 0.2283 0.5880 0.6472 0.6937

- baseline (T5) 0.1280 0.0610 0.5067 0.5609

Table 8: Official results of the MEDIQA-RRS task on the Stanford and Indiana test splits.

as BART and TS5, and datasets (e.g. MEDIQA-
AnS, MSMARCO, MEDIQA-2019) have been
used for single and multiple answer summariza-
tion (Yadav et al., 2021; Mrini et al., 2021; Zhu
etal., 2021; Can et al., 2021).
Radiology Report Summarization. 14 teams
participated in the RRS task. Table 7 presents the
official results of the teams (with accepted papers)
on the full test set, and Table 8 presents the results
on the Stanford and Indiana subsets of the test set.
Similar to the previous tasks, participating
teams for the RRS task have extensively used pre-
trained transformer models: out of the 7 teams that
submitted papers describing their systems, 6 re-
ported the use of pretrained language models such
as BART or PEGASUS in their submissions (Xu
et al., 2021; Zhu et al., 2021; Kondadadi et al.,
2021; Dai et al., 2021; Mahajan et al., 2021; He
et al., 2021). Among them, Xu et al. (2021); Zhu
et al. (2021); Dai et al. (2021) reported that best
results were achieved with pretrained PEGASUS
models, while Kondadadi et al. (2021) reported
better results from BART. Xu et al. (2021) and

Zhu et al. (2021) reported that using PEGASUS
models pretrained on the PubMed corpus yielded
worse results than using the general PEGASUS
models, potentially due to the domain difference
of the RRS task with the PubMed text.

In addition to the use of pretrained models,
the highest-ranked systems from Dai et al. (2021)
made effective use of a dedicated domain adapta-
tion module, an ensemble module, and text nor-
malization heuristics. Zhu et al. (2021) reported
that freezing the embedding layer in the pre-
trained models helps the model generalize at test
time. Kondadadi et al. (2021) reported that adding
the background section as input improves perfor-
mance at validation time, but not test time, sug-
gesting that the model performance is sensitive to
the different text styles of the background sections
from different splits. Mahajan et al. (2021) fo-
cused their study on the factual consistency of gen-
erated summaries, and proposed a specialized fact-
aware re-ranking approach based on the predicted
disease values from the findings section with a
transformer model. As a result, their submissions
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achieved competitive rankings under the CheXbert
metric. Lastly, Delbrouck et al. (2021) studied the
use of image features for the RSS task: they re-
trieved and linked images for each study to the re-
port at training and validation time, and combined
a visual encoder with a text encoder for the sum-
marization task. They found that at validation time
the multi-modal setting is beneficial to the summa-
rization of MIMIC reports, but not to the Indiana
reports, potentially due to the distribution shift in
the images.

6 Correlations among the Evaluation
Measures

In this section, we discuss correlations between
the different evaluation metrics that we used in
the challenge. Table 9 shows Pearson correla-
tions between the F1 scores of the three lexical
measures (ROUGE-1, ROUGE-2, and ROUGE-L)
and the two language model-based and ensemble-
based measures (i.e., HOLMS and BERTScore).

Over all three tasks the HOLMS metric had a
better Pearson correlation with ROUGE, ranging
from 0.734 to 0.755, while also maintaining a high
correlation of 0.736 with BERTScore. This obser-
vation supports the findings from the experiments
in (Mrabet and Demner-Fushman, 2020), which
suggested that lexical measures such as ROUGE
and language model-based measures bring differ-
ent and complementary perspectives to summary-
evaluation.

Table 10 shows Pearson correlations for the
RRS task. HOLMS is substantially closer than
CheXbert and BERTScore in its correlation with
ROUGE for the RRS task, while maintaining high
correlation of respectively 0.645 and 0.702 with
CheXbert and BERTScore.

In contrast, BERTScore is substantially closer
than HOLMS in its correlation with the ROUGE
metrics for both the MAS task (cf. table 11) and
the QS task (see Table 12). Two factors that could
explain these correlations are (i) the predominance
of extractive runs in the MAS task and (ii) the se-
quential n-gram-based modeling in HOLMS that
takes into account the order of the n-grams, while
BERTScore relies on a cosine distance between
two given sets of token embeddings.

Both language model-based measures had pos-
itive correlations with ROUGE for the QS task,
but the level of correlation was substantially lower
when compared to the MAS and RRS tasks, going

81

from a Pearson coefficient range between 0.663
and 0.958 to a range between 0.193 and 0.372. As
all submitted QS runs were described as abstrac-
tive or hybrid approaches, this discrepancy might
be due to a stronger disagreement on summary as-
sessment due to semantically-close but lexically
distant summaries. It is also likely that the lex-
ical distance between paraphrases was more pro-
nounced due to the lengths of the question sum-
maries, which are shorter than the summaries in
the MAS task.

7 Conclusion

We presented an overview of the MEDIQA 2021
shared tasks on summarization in the medical do-
main. We presented the results for the three
tasks on Question Summarization, Multi-Answer
Summarization and Radiology Reports Summa-
rization, and discussed the impact of summariza-
tion approaches and automatic evaluation meth-
ods. We find that pre-trained transformer mod-
els, fine-tuning on the carefully selected domain-
specific text and ensemble methods worked well
for all three summarization tasks. The results en-
courage future research to include in-depth ex-
ploration of ensemble methods, systematic ap-
proaches to selection of datasets for pre-training
and fine-tuning, as well as a thorough assessment
of the quality and relevance of different evaluation
measures for summarization. We hope that the
MEDIQA 2021 shared tasks will encourage fur-
ther research efforts in medical text summarization
and evaluation.
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Abstract

This paper describes our contribution for the
MEDIQA-2021 Task 1 question summariza-
tion competition. We model the task as con-
ditional generation problem. Our concrete
pipeline performs a finetuning of the large
pretrained generative transformers PEGA-
SUS (Zhang et al., 2020a) and BART (Lewis
et al,, 2020). We used the resulting mod-
els as strong baselines and experimented with
(i) integrating structured knowledge via entity
embeddings, (ii) ensembling multiple genera-
tive models with the generator-discriminator
framework and (iii) disentangling summariza-
tion and interrogative prediction to achieve
further improvements. Our best perform-
ing model, a fine-tuned vanilla PEGASUS,
reached the second place in the competition
with an ROUGE-2-F1 score of 15.99. We
observed that all of our additional measures
hurt performance (up to 5.2 pp) on the offi-
cial test set. In course of a post-hoc exper-
imental analysis which uses a larger valida-
tion set results indicate slight performance im-
provements through the proposed extensions.
However, further analysis is need to provide
stronger evidence.

1 Introduction

The internet provides a wealth of information on
health topics through specialised websites, forums,
blogs and social networks. Increasingly, consumers
are using these information sources to answer their
medical and health-related questions. In the course
of this development, also the consumers’ expecta-
tions regarding search engine functionalities have
become much more demanding. Instead of reading
through a list of relevant articles returned by a clas-
sical search engine, short and precise passages are
now expected to answer questions. This transfor-
mation also has an impact on the technologies used

* These authors contributed equally. Author order was
determined by coin flip.
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to fulfill the user’s information needs. In particular,
approaches for automatic questions answering as
well as automatic summarization and simplification
of (long) articles has received a lot of attention by
researchers in recent years (Allahyari et al., 2017;
Kwiatkowski et al., 2019; Narayan et al., 2018b;
See et al., 2017; Weber et al., 2019). This trend
is also addressed by Task 1 of the MEDIQA 2021
shared task (Ben Abacha et al., 2021) through in-
vestigating consumer health-questions asked on the
(experimental) medical question answering system
CHiQA!. As we participated only in this task, we
refer to it as Shared Task (ST) in the following.
The goal of Task 1 was to foster the development
of new summarization approaches, specifically de-
signed for the challenges of long and potentially
complex consumer health questions. One major
challenge of CHiQA is the extraction of the user’s
main concern from the question text. The given
questions are often lengthy and contain a lot of pe-
ripheral information, which makes automatic pro-
cessing and answering (much more) difficult. Re-
cent studies highlight that expert-based summariza-
tions of such questions can lead to significant en-
hancements of the overall QA process (Ben Abacha
and Demner-Fushman, 2019). Effective automatic
summarization methods could therefore play a key
role for improving medical question answering.
We contribute to this task by first building a base-
line using the general conditional generation frame-
work and then investigating three modifications to
summarize the consumer health questions. Our
baseline relies on finetuning the large pretrained
generative transformers PEGASUS (Zhang et al.,
2020a) and BART (Lewis et al., 2020). We ex-
plore three different strategies to improve the per-
formance of these baseline models, i.e. (i) integrat-
ing structured knowledge via entity embeddings,
(i1) ensembling multiple generative models with
the generator-discriminator framework and (iii) dis-

'nttps://chiga.nlm.nih.gov/
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entangling summarization and question word pre-
diction. Our best performing model, a fine-tuned
vanilla PEGASUS, reached the second place in the
competition. We observed that all measures hurt
performance (up to 5.2 pp) on the evaluation set.
However, a post-hoc experimental analysis (see
Section 3), using a larger validation set, indicates
slight improvements through the model extensions.

The remainder of the paper is organized as fol-
lows: the next section introduces our baseline and
the three extension strategies in detail. Section 3
highlights and discusses the experiments and re-
sults we obtained in our own evaluation as well
as in the official assessment. The paper concludes
which a summary of the main findings.

2 Methods

2.1 Data & Baselines

The shared task provides only an official validation
and test set as data. For training data, we follow the
tasks’ organizers suggestion to use the MeQSum
corpus which consists of 1,000 consumer health
questions and their summaries.

We model the summarization task as conditional
generation, in which a model is prompted with
the original question and then generates the sum-
mary in an autoregressive fashion. We base our
implementation? on the huggingface transformers
library (Wolf et al., 2020) and experiment with the
included pretrained generative transformers bart-
base’, bart-large*, pegasus-large® and pegasus-
xsum®. pegasus-xsum is a version of PEGASUS
that was already finetuned for summarization on
the Xsum dataset (Narayan et al., 2018a). For all
models, we use a learning rate of 3e — 5 and train
for 10 epochs. We use beam search for decoding
and tune the search parameters on the validation set.
We independently evaluated {1, 10} as the number
of beams and the {0.7,0.8,0.9, 1.0} for the length
penalty and found 10 and 0.8 to be optimal.

2Qur code is publicly available under https://
github.com/leonweber/bionlp2l_summarize

*https://huggingface.co/facebook/
bart-base

*nttps://huggingface.co/facebook/
bart-large

Shttps://huggingface.co/google/
pegasus—large

®https://huggingface.co/google/
pegasus-—xsum
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2.2 Integration of structured knowledge via
entity embeddings

In initial analyses, we noticed that most question
summaries revolve around a few central entities
such as specific diseases or medications which are
almost always mentioned in the source text. Fur-
thermore, all of the generative transformers that
we used were trained on texts from the general do-
main, in which such entities presumably are rare.
We conjectured that it could be beneficial to explic-
itly provide entity information to the model. We
approach this by first applying a domain-specific
NER model to the source text and then enriching
the input embeddings of the transformer with the
found entities. Formally, we extend the computa-
tion of the 7’th input embedding in the transformer
to:

)]

where w;, p;, s; are the standard subword, position
and sequence type embeddings which are initial-
ized with the weights of the pretrained transformer.
n; 1s a randomly initialized embedding, which rep-
resents the type of the named entity to which the to-
ken ¢ belongs (including None) and has the same di-
mensionality as the other transformer embeddings.
Note, that s; is set to zero for transformers which do
not use sequence type embeddings such as BART.
We experiment with two different NER models:
(1) HunFlair (Weber et al., 2021), a state-of-the-
art BioNER tagger and (ii) a custom Flair (Ak-
bik et al., 2019) model trained on the CHQA cor-
pus (Kilicoglu et al., 2018) consisting of manual
annotations for the central entities of consumer
health questions. Specifically, we use the Dis-
ease and Chemical models of HunFlair and the
PC-harmonization of the CHQA corpus.

€ = w; +pi +si +n,

2.3 Ensembling multiple generative
transformers

In preliminary experiments, we found that ensem-
bling generative transformers by simply averaging
the logits of different models hurt performance.
Thus, we investigate a different strategy for en-
sembling generative models. We first use each
model m of the ensemble to generate n summaries
{Sm1, -, Smn} conditioned on the original ques-
tion ¢ and then use a discriminative model to select
the question-summary pair with the highest prob-
ability. The n different summaries are generated
by simply taking the final generations of the top-n



scoring beams. We implement the discriminator as
a BERT (Devlin et al., 2019) model that receives
both the original question ¢ and a question sum-
mary s produced by one of the ensembled models
and predicts the ROUGE-L-F1 score between both
ROUGE-L-FI(s,q) using a tanh output layer. The
model is trained via an L2-loss. More formally,

h = BERT (15, (s, q) (2)
0=0.5-tanh(W -h +b) 3)
L = ||ROUGE-L-F1(s,q) — ol|z2, “4)

where BERT (c1s; is the BERT-embedding of
the special [CLS] token, W and b are trainable
parameters and L is the loss value.

For training the discriminator, we require gen-
erated summaries that are close to the generated
summaries on the test data. We cannot simply use
the training data of the generators to create the
training data for the discriminator, because we ex-
pect the distributions of the generated summaries
for seen and unseen data to be significantly differ-
ent. Thus, we split MeQSum training data in a
75% I 25% fashion and use the first chunk for train-
ing the generators and the combination of both to
train the discriminators. The full training process
is illustrated in Figure 1a.

2.4 Disentangling summarization and
interrogative prediction

We observed that the consumer questions cover
different categories of health-related issues in the
ST data, e.g. possible side-effects of certain drugs,
suitable treatments for specific diseases or food-
related questions. We conjectured that providing
the putative category of the question to the summa-
rization model could guide the generator towards a
better summary. Moreover, we recognized that the
different categories are aligned to some extent with
the interrogative of the target questions summaries.
Based on these two observations, we designed a
third modification by creating a separate model to
predict the putative interrogative, which acts as a
surrogate for the different question categories.

To this end, we implement a BERT-based classi-
fication model which gets the original user question
as input and predicts the interrogative of the target
question summary. We combine the classification
model with the output of our baseline method us-
ing a three-step approach: (i) we generate m ques-
tion summaries using a generative transformer, (ii)
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we predict the interrogative given the original user
question based on the trained classification model
and (iii) selected the highest ranked candidate ques-
tions which starts with the predicted interrogative
as target summary. The process is illustrated in
Figure 1b. To train the classification models we
use the data from the MeQSum corpus but just take
the first word of the summaries as goldstandard
interrogative. Because in this model there is no
dependency between generative and classification
models (as opposed to our generator-discriminator
framework), the classification model can be trained
on the complete training data.

3 Results

3.1 Evaluation setting

We evaluate our models in two different settings.

Setting 1 For our ten submissions to the shared
task, we typically use some combination of MeQ-
Sum and the validation data for training. For model
selection and evaluation of our modifications, we
use the official validation set of the shared task. Fi-
nally, we report scores of our models on the shared
tasks’ hidden test set.

Setting 2 While preparing our runs, we noticed
that the variance of the results on the validation
and test set is rather high, which probably has to do
with the small amount of validation and test data
(50 and 100 questions respectively). To evaluate
the performance impact of our modifications in a
more stable manner, we devised a second evalua-
tion setting after the ST submissions were closed.
For this, we combine the MeQSum data and the
shared task validation data in a single dataset and
then split it into a train and validation set, reserv-
ing 200 questions for validation, which leaves 850
questions for training. We ensure that for each split
the ratio of original MeQSum and validation data is
equal. For each result, we compute three different
runs with different random seeds and report the
average and standard deviation.

Table 1 highlights the used splits of the two dif-
ferent data settings and provides basic statistics for
them. The results for both settings differ signifi-
cantly and thus, we report results for both settings
in the following sections. In the official evalua-
tion of the shared task, the approaches were ranked
according to the achieved ROUGE-2-F1 score.



b)

Final output

Generated Summaries +
Original Questions +
ROUGE Score

Interrogative
Prediction

Candidates

Generator Discriminator

Train (75%) Train (25%)

Dear Sir or .
Madam, User question
MEQSUM —

Figure 1: (a) Training an ensemble of multiple generators together with a discriminator. Resources are depicted as
yellow rectangles and trained models as green ellipses. (b) Predicting summaries with the interrogative predictor.
Resources are drawn as yellow rectangles and models as green ellipses.

. . . Tokens / Question Tokens / Summary
Setting Split Questions Mean Min Max | Mean Min Max
Setting 1 ~ Training (MeQSum) 1000 | 60.78 5 378 | 10.04 3 26

Validation 50 | 64.16 9 234 9.34 4 19
Setting 2 Training 850 | 59.60 8 348 9.70 3 26
Validation 200 | 66.64 5 378 | 10.18 3 26

Table 1: Overview about the data sets and splits used for training and evaluation in Setting 1 and 2. For Setting 2,
we use all instances from the official training data (MeQSum) and validation data and randomly assign them to the
two splits. We ensure that for each split the ratio of original training and validation data is equal.
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3.2 Final evaluation results

Our best performing model achieved a ROUGE-2-
F1 score of 15.99% on the hidden test set, leading
to a second place in the competition. However, all
top-5 models achieve results that are very close,
and ranks change when different metrics are used.
The top five of the official leaderboard is repro-
duced in Table 2. This best performing model is
one of our baselines based on pegasus-large fine-
tuned on the combination of MeQSum and the ST
validation set. The results of our ten runs on the
official hidden test set together with a description
of each run can be found in Table 5.

3.3 Baseline results

In preliminary experiments on the ST validation set,
we found that pegasus-large works better than bart-
large when the model is fine-tuned on MeQSum
and evaluated on the ST validation set (ROUGE-
L-F1 of 33.32 vs. 32.82). Based on this result, we
opted to select pegasus-large as baseline model for
our submissions (refer to Section 3.7 for a discus-
sion of challenges in model selection). In the offi-
cial evaluation (i.e. Setting 1) the vanilla pegasus-
large model achieves the best performance of all
our submitted runs with an ROUGE-2-F1 score of
15.99 (see Run 1 in Table 5). In a post-hoc anal-
ysis, we noticed that in the consumer questions
spelling errors for crucial pieces of information
such as diseases are common and that the models
tend to copy those spelling errors into the summary
of the question. Thus, our approach probably could
have benefited from incorporating a spell-checking
tool that corrects the spelling errors in the health
questions.

Setting 2 uses the same basic models, but re-
lies on a different training setup. Table 3 shows
the performance scores. The best performance is
achieved by bart-large with ROUGE-1-, ROUGE-
2 and ROUGE-L-F1 scores of 52.91, 34.06 and
49.88. This represents an improvement of 0.55pp
concerning ROUGE-2-F1 to the next best model
(bart-base). In this setting, the BART-based models
achieve better results than the PEGASUS models.

3.4 Entity embedding results

We evaluate the addition of entity embeddings to a
generative transformer using bart-base. For detect-
ing entities, we experiment with the two different
NER models HunFlair and a custom Flair model
trained on the PC-harmonization (Passonneau and
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Carpenter, 2014) of the CHQA corpus. The results
for Setting 2 can be found in Table 3. Adding entity
embeddings to the input representation improves
results consistently, leading to a gain of 0.3pp and
1.01pp in ROUGE-2-F1 over our bart-base base-
line. However, we did not observe any gains in our
preliminary experiments on the ST validation set
and thus did not evaluate the models with entity
embeddings in Setting 1. The submission of new
runs was not possible at the time of writing.

3.5 Ensemble results

All results for the generator-discriminator ensem-
bles in Setting 1 (on the hidden test set) can be
found in Table 5, where each row with Type *GD’
corresponds to one configuration of a generator-
discriminator ensemble. Considering ROUGE-2-
F1, the best generator-discriminator result (run 7)
still performs 1.4 pp worse than our best baseline
model. This run used only one generator based
on pegasus-large to produce ten candidates per
question and a bert-large discriminator to select
the most promising summary. The only setting
in which a generator-discriminator model outper-
forms our strongest baseline on the hidden test set
is run 8 which gains 0.2 pp under the BERTScore
metric (Zhang et al., 2020b), making it the overall
top ranking run of the ST under this metric. This
run uses a single pegasus-large generator proposing
ten candidate summaries per question and an en-
semble of three different bert-large discriminators.

In Setting 2, we observed considerable gains by
using an ensemble of bart-base, bart-large, pegasus-
large and pegasus-xsum, while using a single bert-
base as the discriminator, using only the most prob-
able output sequence per model as candidate. Com-
pared to pegasus-large, this configuration leads to
an improvement of 2.16pp in ROUGE-1-F1, 1.46pp
in ROUGE-2-F1 and 2.27pp in ROUGE-L-FI.

We also investigated the performance ceiling for
our ensembling approach by evaluating the ensem-
ble under a perfect discriminator, which always
selects the summary yielding the highest Rouge-L-
F1 score. Under this setting, our ensemble achieved
a Rouge-2-F1 score of 44.87 which is an improve-
ment of 10.9 pp. This shows the promise of our en-
sembling approach and suggests that a worthwhile
path to obtain better results would be to improve
the discriminator.



Rank Team name ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1 HOLMS BERTScore-F1
1 damo_nlp (summc) 35.14 16.08 31.31 56.77 68.98
2 WBI 33.40 15.99 31.49 57.67 69.96
3 NCUEE-NLP 33.52 15.97 30.90 57.87 69.60
4 yamr 32.80 15.25 30.38 57.86 68.77
5 Saama 33.33 15.18 29.50 57.72 69.38

Table 2: Top five of the official results for subtask one (ranked by ROUGE-2-F1). All scores are given in percent.

In total 23 teams participated in this subtask. Our contribution is displayed in bold. These numbers correspond to
our evaluation Setting 2.

Model type Gen. model(s) Add-on ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1
Baseline bart-large - 5291 (£0.91) 34.06 (+1.01) 49.88 (£ 0.66)
bart-base - 52.17 (£0.14) 33.49 (£ 0.84) 49.36 (£ 0.32)
pegasus-large - 51.06 (£ 0.78) 32.51 (+£0.72) 48.28 (£ 0.68)
pegasus-xsum - 51.47 (£ 0.28) 32.65 (£ 0.58) 48.90 (£ 0.30)
Entity bart-base HunFlair 52.16 (£ 0.45) 33.79 (£ 0.46) 49.24 (£ 0.27)
embeddings bart-base CHQA flair model 53.17 (£ 1.58) 34.5(+ 1.30) 50.22 (£ 1.43)
bart-base
Generator- bart-laree
discriminator £ bert-base 53.22 (£ 1.81) 33.97 (& 1.40) 50.55 (£ 1.75)
pegasus-large
pegasus-xsum
Interrogative  pegasus-large bert-base 52.11 (£ 0.36) 33.71 (£ 0.85) 49.21 (+£ 0.66)
prediction pegasus-large bio-bert 52.22 (£ 0.60) 33.42 (£ 0.70) 49.26 (+ 0.53)
pegasus-large biomed-roberta  52.66 (& 0.67) 33.71 (£ 0.81) 49.58 (& 0.85)
pegasus-large bio-bert 52.28 (4 0.58) 33.47 (& 0.69) 49.40 (£ 0.67)

biomed-roberta

Table 3: Overview of Setting 2 evaluation results. For each experiment, we list the used generative transformer(s)
and (if applicable) utilized complementary models (Add-on). For entity embeddings add-on models are named
entity recognition models. In case of the generator-discriminator framework it’s the discriminator model and
regarding interrogative prediction it defines the applied classification model(s). For each experiment, we compute
three different runs with different random seeds and report the average and standard deviation.
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3.6 Interrogative-predictor results

For evaluating our interrogative prediction ap-
proach we experimented with different transformer-
based models, pre-trained on either general
domain or biomedical data, for classification:
BERT’, BioBERT (Lee et al., 2020)%, BioMed-
RoBERTa (Gururangan et al., 2020)° and multiple
of these models arranged in an ensemble. All mod-
els are learned on the training portion (for each
evaluation setting). For all models we use pegasus-
large as generative model and produce 10 candidate
summaries per user question.

As shown in Table 3 we observe clear perfor-
mance improvements of this approach compared to
the baseline when evaluated in Setting 2. Here,
the best results are achieved with the BioMed-
RoBERTa model. In this configuration, the model
achieves a ROUGE-2-F1 score of 33.71 which rep-
resents an increase of 1.20 pp compared to the
vanilla pegasus-large result. Again, the results
achieved in the official evaluation (Setting 1) show
a different picture. In this setting, the usage of an
ensemble of three interrogative classification mod-
els lowers the performance by 2.6 pp (see Run 3 in
Table 5).

We also investigated the accuracy of the inter-
rogative prediction models. Table 4 highlights the
achieved accuracy and macro F'l-scores of the
three models. All models predict the correct in-
terrogative for only half of the consumer questions.
An analysis of the predictions showed that all mod-
els are biased towards the majority classes, i.e. in-
terrogatives with a high support in the training data.

Like in the generative ensemble setting, we fur-
ther checked the potential performance gains of
the interrogative prediction using a perfect classi-
fier. For this, we took the gold standard interroga-
tive and use the first generated summary candidate
which starts with this interrogative as prediction. If
no generated summary starts with the gold interrog-
ative we use the highest ranked candidate. Using
this selection scheme we reached an ROUGE-2-F1
score of 39.72 in Setting 2 which represents an in-
crease by 7.21 pp over the baseline pegasus-large
model. Again, this accentuates the suitability of
the proposed approach.

"https://huggingface.co/
bert-base-cased

8https://huggingface.co/dmis-lab/
biobert-vl.1

‘https://huggingface.co/allenai/
biomed_roberta_base
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Model Accuracy F1

bert-base 0.530 0.103
bio-bert 0.525 0.095
biomed-roberta 0.555 0.228

Table 4: Overview of the performance of the three in-
terrogative classification models. For each model we
report accuracy and macro F'1 score. Bold figures high-
light the highest value per column.

3.7 Discussion of result differences between
Setting 1 and Setting 2

Tables 2 and 3 reveal enormous performance dif-
ferences between Setting 1 (the official evaluation
results) and Setting 2 (our post-hoc experimental
analysis). In Setting 1, none of our proposed exten-
sions leads to consistent quantitative improvements
of the results and the best performance is achieved
by an vanilla generative transformer. In contrast in
Setting 2, we see (at least) slight benefits from all
three strategies.

Explaining these results and differences is diffi-
cult for several reasons. Concerning Setting 2, the
high variance of the results (see Table 3) prevents
a clear conclusion. Results of the methods vary
with different random initializations and are also
quite sensitive to hyperparameter settings. Often
the differences of the methods lie within the range
of the standard deviation making it unclear whether
the findings would hold up in further analysis or
other contexts.

Regarding Setting 1, the small size of the eval-
uation data (only 100 instances) puts any conclu-
sions about the quality of the proposed methods
into question. In Setting 2, we tried to mitigate the
problem of small test data by increasing the num-
ber of test instances, however the results remain
unstable. Furthermore, weaknesses of the ROUGE
metric, e.g. handling of synonyms, abbreviations
or enumerations, must be taken into account in the
result interpretation (Schluter, 2017; Kané et al.,
2019). The automatic evaluation of generated sum-
maries remains a research field in itself (Zhang
et al., 2020b). In summary, we neither believe that
the results from Setting 1 provide strong evidence
of the extension’s inappropriateness, nor that the
results from Setting 2 allow a convincing statement
about their positive effects. To this end, further in-
vestigation is necessary in order to draw definitive
conclusions about our proposed modifications.



Run Type Description ROUGE-2 HOLMS BERTScore-F1

1 B pegasus-large finetuned on MeQSum and validation  16.0 57.7 70.0
data

2 B pegasus-large first finetuned on MeQSum and thenon  12.4 55.5 69.3
validation data

3 IP pegasus-large finetuned on MeQSum and validation  13.4 56.4 69.0

data with ensemble of interrogative predictors consist-
ing of two biobert and one biomed-roberta model
4 GD Generator ensemble of bart-base, bart-large, pegasus- 11.8 55.5 68.4
large and pegasus-xsum with one candidate summary
per model and bert-base as discriminator

5 B pegasus-xsum finetuned on MeQSum and validation  12.4 55.5 68.7
data

6 GD Same configuration as in run 4 but with an ensemble of  11.4 55.4 68.2
discriminators consisting of bert-base, roberta-base and
biobert

7 GD pegasus-large trained on MeQSum with ten candidate ~ 14.6 57.3 69.8

summaries and a bert-large discriminator trained on
MeQSum to select the best one

8 GD Same configuration as in run 7 but with an ensemble  14.2 57.0 70.2
of three different bert-large discriminators trained on
MeQSum

9 GD Same configuration as in run 7 but the bert-large dis-  12.0 55.4 68.9
criminator is trained on MeQSum and validation data

10 GD Same configuration as in run 8 but the the discriminators ~ 12.0 55.4 69.5

are trained on MeQSum and validation data

Table 5: Official results for our submitted runs for subtask one. In total we submitted 10 runs. The runs can
be categorized according to their type into baseline models (B), models using interrogative prediction (IP) or the
generator-discriminator framework (GD). The highest value per metric is highlighted in bold. This corresponds to
our evaluation Setting 1.
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4 Conclusion

In this work we investigate the large-scale pre-
trained generative transformers PEGASUS and
BART for the task of health-related consumer ques-
tion summarization in the context of the MEDIQA
2021 shared task (Task 1). We propose and evalu-
ate three different strategies, i.e. integrating struc-
tured knowledge via entity embeddings, utilizing
a generator-discriminator framework and apply-
ing interrogative prediction, to extend these strong
baseline models. Our best performing model, a
fine-tuned pegasus-large transformer, reaches an
ROUGE-2-F1 score of 15.99 and is ranked second
place in the competition. Experimental results for
our proposed extensions show a mixed picture and
further analysis is needed to assess the quality of
these extensions.
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Abstract

In this article, we describe our systems for the
MEDIQA 2021 Shared Tasks. First, we will
describe our method for the second task, Multi-
Answer Summarization (MAS). For extractive
summarization, two series of methods are ap-
plied. The first one follows Xu and Lapata
(2020). First a RoBERTa model is first applied
to give a local ranking of the candidate sen-
tences. Then a Markov Chain model is applied
to evaluate the sentences globally. The second
method applies cross-sentence contextualiza-
tion to improve the local ranking and discard
the global ranking step. Our methods achieve
the 1st Place in the MAS task. For the ques-
tion summarization (QS) and radiology report
summarization (RRS) tasks, we explore how
end-to-end pre-trained seq2seq model perform.
A series of tricks for improving the fine-tuning
performances are validated.

1 Introduction

Automatic summarization is an essential task in the
medical domain. It is time consuming for users
to read a lot of medical documents when they use
a search engine like Google, Medline, etc, about
some topic and obtain a list of documents which are
potential answers. First, the contents might be too
specialized for layman to understand. Second, one
document may not answer the query completely,
and the users might have to summarize the conclu-
sions across multiple documents, which may lead
to waste of time or misunderstanding. In order to
improve the users’ experiences when using medical
applications, automatic summarization techniques
are required.

The MEDIQA 2021 shared tasks are held to in-
vestigate the current state of the art summarization
models, especially how they perform in the med-
ical domains. Three tasks are held. The first one
is Question Summarization (QS), which summa-
rizes long and potentially complex consumer health

Contact: 52205901018 @stu.ecnu.edu.cn.

96

questions into simple ones, which are proven to be
beneficial for automatic question answering. Em-
pirical QA studies based on manual expert sum-
marization of these questions showed a substan-
tial improvement of 58% in performance (Abacha
and Demner-Fushman, 2019). The second task
is Multi-Answer Summarization (MAS) (Savery
et al., 2020). Different answers can bring comple-
mentary perspectives that are likely to benefit the
users of QA systems. The goal of this task is to
develop a system that can aggregate and summa-
rize the answers scattered in multiple documents.
The third task is Radiology Reports Summariza-
tion (RRS) (Zhang et al., 2018, 2020b), which is to
generate radiology impression statements by sum-
marizing textual findings written by radiologists.
which have several applications. First, it can speed
up the technicians’ workflow. Second, a system can
extract the information in the reports and summa-
rize into sentences that a layman can understand.

In the MAS task, we improve upon (Xu and La-
pata, 2020) via three methods. First, during the
coarse ranking of a sentence in one of the given
documents, we also add the surrounding sentences
as input and use two special tokens marking the po-
sitions of the sentence. This modification improves
the coarse ranking with a large margin. Second,
during fine-grained re-ranking, instead of incor-
porating a inverse sentence frequency (IFS) score
based similarity matrix between sentences in the
Markov chain model, we find that directly using
semantic similarity scores to form the similarity
matrix performs better. Third, due to the low re-
source settings of this task, we find that applying a
RoBERTza (Liu et al., 2019) model which is already
fine-tuned on the MS-MACRO task (Campos et al.,
2016) can be beneficial.

For the other two tasks, we mainly explore how
the pre-trained seq2seq model like BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020a), etc,
can perform in these tasks. Two take-aways can
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be made. First, for tasks with small dataset size,
freezing a part of the transformer blocks can be
beneficial. Second, for the RRS task, we find that
controlling the maximum output sequence length
can improve the ROUGE score on the test set.

Our team PAHT_NLP participate in all the three
tasks, and won the 1st place in the MAS task. Ex-
periments will show that our modifications are ben-
eficial for both stage of the MAS task. We also
report extensive experiments for task 1 and task 3.

2  Multi-grained Multi-Answer
Summarization

2.1 problem formulation

Let  denote a query, and D = {dy,ds,...,dy} a
set of documents returned by the search engine or
a question answering system (e.g., the ChiQA sys-
tem ((Demner-Fushman et al., 2020))). It is often
assumed (e.g., in our MAS task) that ) consists of
a short question (e.g., Will influenza be the next
pandemic?).

We implement the multi-grained MDS follow-
ing Xu and Lapata (2020). We first decompose
documents into segments, i.e., sentences. Then, a
trained RoBERTa model quantifies the semantic
similarities between a selected sentence and the
query, which give importance estimations of the
sentences based the sentence itself or their local
contexts (Local Estimator). Third, to give a global
estimations of the importance of the segments to
the summary, we apply a Markov Chain (Erkan and
Radev, 2004) based estimator (Global Estimator).

2.2 Local Estimator

We leverage fine-tuned pretrained language mod-
els as our evidence estimator, and use the trained
estimators to rank the answer candidates.

Let @ denote a query sequence and
{51, 52, ..., Sy} the set of candidate answers. Our
training objective is to find the correct answers
within this set. We leverage RoBERTa as our
sequence encoder. We concatenate query () and
candidate sentence S into a sequence < s >, @,
< /s>, < [s>S,< /s> asthe input to the
RoBERTa encoder (we pad each sequence in a
mini-batch of L tokens). The starting < s >
token’s vector representations ¢ serves as input
to a single layer feed forward layer to obtain the
distribution over positive and negative classes:
(tTVV:,k)v

1
Pk = - €xp (D

Z

97

where k£ = 0, 1, 1 denoting that a sentence contains
the answer and O otherwise. Z is the normalizing
factor, and matrix W = [W.o; W. 1] € R%? is a
learn-able parameter. We use a cross entropy loss
as the training objective:

N

L=—=Y (ylogp| +
=1

(1—y)logph). (2

After finetuning, the probability of the positive
class is regarded as the local evidence score and we
will use it to rank all the sentences for each query.

2.3 Global Estimator

Although our local estimator measures the semantic
relevance between the query and the candidate seg-
ments, these estimation is done locally. To obtain
a global estimation of the scores for each segment,
we apply a Global Estimator following (Xu and La-
pata, 2020). The centrality estimator essentially is
an extension of the well-known LexRank algorithm
(Erkan and Radev, 2004).

For each document cluster, i.e., the collections
of documents for each query in our tasks, LexRank
builds a graph G = (V; E) with nodes V' cor-
responding to sentences and undirected edges E
whose weights are computed based on a certain
similarity metric. The original LexRank algorithm
uses TF-IDF (Term Frequency Inverse Document
Frequency). (Xu and Lapata, 2020) proposes to
use TF-ISF (Term Frequency Inverse Sentence Fre-
quency), which is similar to TF-IDF but operates
at the sentence level.

Following ((Xu and Lapata, 2020)), we integrate
our evidence estimator into the similarity matrix £,
that is,

E=wx[§.;q+0-w)xE,  (3)
where w € (0, 1) controls the extent to which the
evidence estimator can influence the final summa-
rization, and q is obtained by normalizing the evi-
dence scores,

~ q
e @

Note the similarity matrix E' can be seen as the
transition probabilities. If the similarity score E; ;
between sentence ¢ and j is higher, it is more likely
that sentence 7 and j are both selected in the finally
summary or are discarded at the same time. We
can see selecting the sentences into summaries as



a Markov chain process, and we will leverage the
final stationary distribution ¢* of this Markov chain
as the final scores of each segment. ¢* is obtained
by solving this equation:
@ =7E 5)
Note that with our evidence estimator and cen-
trality estimator, ¢* can simultaneously expresses
the importance of a sentence in the document and
its semantic relation to the query. Thus, to formu-
late the final summary, we rank the sentences based
on ¢* and select the top k%" ones.

3 Contextualized evidence estimation

The previous section describe a two-step method
for extractive MDS. However, it does not fully
exploit the advantages of pretrained sentence en-
coders, since it only compares the query to single
sentences which suffers from losing the contexts.
In this section, we provide a simple method to con-
duct extractive MDS in one step, and promote the
performances.

Let ( denote a query sequence and
{51, 52, ..., Sy} the set of candidate answers. And
we put each sentence .S; back into its contexts by
concatenating the sentences surrounding it. Denote
the S; with its contexts as C; = [NF;S;; NEJ.
For implementation, we limit the sequence length
of N; by L,az, Which is 512 for RoBERTa. For
formulating the input of ROBERTa, we concatenate
C; following its sequential order, so that its
contexts is not corrupted. Thus the sequence input
should be like < s >, Q, < /s >, < s >, NF,
</$§><8>8,< /s> <s> NE < /s>

The above operation adds the contextual informa-
tion of S;, but the position of .S; is not emphasized,
and the model might focus on N/* or N} instead
of S;. Thus, we add a pair of special tokens before
and after S; to address the position of the sentence
we are concerning. Thus, the input sequence be-
comes < s >, Q, < /s >,<S>,NZL,</S >,
<s>,<tl>, 5, <t2>,< /s>, <s> NI,
< /s >.

The RoBERTa will encode the above sequence
and outputs the semantic relevance score, which we
will use as the final semantic score of the sentence
regarding summarization.

4 End-to-end abstractive summarization

Pre-trained models. In this section, we experi-
ment on applying pretrained Seq2Seq models to
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obtain abstractive summarizations, after finetuning
their on our datasets. We mainly investigate two
types of models, BART ((Lewis et al., 2020)) and
PEGASUS ((Zhang et al., 2020a)).

In terms of architecture, BART adopts a standard
transformer seq2seq architecture ((Vaswani et al.,
2017)) with some small changes. It uses GeLU
(xxx, ) rather than ReLU (xxx, ) as activation func-
tion and initiates paramaters with normal distribu-
tion. For pre-training tasks, BART allows arbitrary
noising transformations of input texts and learns a
model to rebuild original text. BART achieves the
state-of-the-art (SOTA) results on a wide range of
tasks, including summarization and machine trans-
lation.

PEGASUS uses pre-training objectives tailored
for abstractive text summarization. During pre-
training, the text inputs are documents with several
important missing sentences and the output is the
predicted missing sentence sequences. PEGASUS
can perform quite well on summarization tasks
with low resources, e.g., when the training sets
only contains only hundreds of samples.

Finetuning techniques. For finetuning the pre-
trained seq2seq models, we experiment a few meth-
ods/techniques which can improve the downstream
task performances:

* Freezing parameters. For tasks like QS and
MAS, the training dataset is quite small and
the large pre-trained models can be easily
overfitting. We alleviate the overfitting prob-
lem by freezing the lower layers of the mod-
els.

We use the advarsarial training method, i.e.,
Projected Gradient Descent (PGD, (Madry
et al., 2018)) for more robust fine-tuning.

Back translation from English to Chinese, and
Chinese to English is applied for data augmen-
tation.

5 Experiments on MAS

In task 2, We used two methods to deal with the
problem of low resource data. The first method is
to add muti-ext-summary and single-ext-summary
as targets to the training data. Since some sentences
in the summary are not exactly the same as the sen-
tences in the article, the Jaccard similarity is used
to align the sentences in article to the sentences
in the extractive summary. Because the final tar-
get is multi-text-summary, in order to increase its



model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
dev set
roberta-large 56.95 48.11 41.36 56.29
+marco 57.08 48.15 42.10 56.33
+marco-+reverse 57.62 49 .47 41.90 56.99
+marco-+lexrank 57.06 48.31 42.04 56.07
+marco+context 57.57 48.62 42.06 56.75
electra-large+marco 58.53 49.46 42.35 57.84
ensemble-model 59.29 51.09 43.80 58.88
test set
ensemble-model 58.5 50.8 43.5 -

Table 1: Comparison of different models on dev set in Task 2. Marco means using ms-marco data pretrain model,
reverse means inverting Q and S on the input refer to (Su et al., 2020) , lexrank means using lexrank to get the global
score of the sentence described in section 2.3, context means adding Contextual information described in section 3

weight, we repeatedly sampled sentences in multi-
ext-summary and added it to the training set. The
second method, public dataset ms-marco is used to
pre-train the RoBERTa model.

Finally, the top 20 sentences based on the model
score are selected and we restore their relative po-
sitions by recording the position of each sentence
in the article in advance as the target. The result
is shown in Table 1. As roberta-large as a base-
line model, both resampling and pretraining by
ms-marco have slightly improved the result of the
model because of the increasing of training set. Al-
though the lexRank method described in section
2.3 has made a improvement, the weight of model
score must be a large value compared to the TF-
ISE, for example 0.99 in our model. For contextu-
alized evidence estimation described in section 3,
we selected the two sentences before and after as
the context and this method greatly improves the
model. Referring to (Su et al., 2020), we tried to
concat the question and the sentence like <s>, S,
</s>,</s>,Q,</s>, this method has achieved com-
petitive results in validation set, but the result in
test set has slightly decreased. In addition, we
also tried the ELECTRA (Clark et al., 2020) model
and achieved a competitive results in validation set
compared to ROBERTa. Ensemble model uses all
models mentioned above, and weighted sum all
scores of model for one sentence based on the re-
sults normalized ROUGE-2 score in validation set.
The ensemble model achieves the best results on
the validation set.

Our model is optimized with Adam on one Tesla
V100 GPU using the following parameters: learn-
ing rate = le-5 batch size = 16, maximum length =

128. The learning rate is warmed up over the first 1
epoch. Early stopping strategy for 5 epoch is used
to select the optimal model

In the end, we submitted the results of ensemble
model and achieved the first place, as shown in
Table 1

6 Experiments on QS

At first, we compare the end-to-end abstractive
methods on an 8:2 split at the train set, shown in
Table 2. The result shows that the PEGASUS-large
model with 3-freezed-layer encoder and 3-freezed-
layer decoder gains the highest score. Training
on the whole training set and evaluating on the
official validation set, the model performs shown
in Table 3, without the question type nor question
focus given. We try to do data augmentation, like
translating the train data to Chinese and German
and then translating back to English, but have failed
to improve the result. When concatenating the two
kinds of information with the original message, we
find that the result has been improved (Table 3).

Over CHQA datasets, we train a span predic-
tion model based on the pointer networks and a
question type classification model to predict the
question focus and question type, respectively.
The span prediction model obtains the perfor-
mance of 83% exact match F1, and the ques-
tion type classification model achieves 78% F1.
Based on those two models, we process train,
valid and test set to the same pattern as the in-
put: "SUBJECT:{question_focus};{question_type}
MESSAGE:{message}". Table 4 indicates the re-
sults with different parameters.

By checking the generated sentences, we find
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BART-base 52.33 34.93 4991 49.90
BART-large 54.25 36.28 51.56 51.51
PEGASUS-large 51.30 34.28 49.33 49.37
PEGASUS-large(freeze=3) 56.97 38.74 54.03 54.07

Table 2: Comparison of different end-to-end models on 80% train set in Task 1

valid set ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
NO type&focus(baseline) 36.17 16.39 35.23 35.32
data augmentation 34.50 13.73 34.03 33.85
WITH type&focus 38.58 12.47 38.42 38.42

Table 3: Results of PEGASUS-large model on valid set in Task 1

the questions are highly like to be predicted as two
sentence patterns: "what the treatments for ..."
and "where can I find information on ...". We
find these patterns appear more than 300 of 1000
train data, so we do the re-sampling for train data
according to the frequency of the first four word of
target questions. We train model on this re-sampled
train set and get the result on valid set (Table 5).
Although the score on valid set has decreased but
the final score in the test set has increased. We
conclude that the improvement are due to the higher
diversity of the sentence patterns.

7 Experiments on RRS

Table 6 reports the main results on 80% training
set with the most popular end-to-end models for
summarization task currently. When using a 8:2
split at official training set, we find that PEGASUS-
large model outperforms all other models with a 2%
difference of ROUGE-1. We also test PEGASUS-
pubmed but find suprising low performances, indi-
cating that pubmed corpus does not fit to our tasks.

Table 7 analyses how different freezing strate-
gies influence model performances. We consider
freezing two different kinds of layers in structure:
embedding layers and encoder layers. So, there
are four combinations of strategies. As for BART-
base model, we can see that models with frozen
encoder layers fall far behind models freezing none
of encoder layers, indicating that encoder layers
are more important than embedding layers. It is in-
teresting that freezing embeding layers sometimes
helps BART models perform better while other
models worse. As a result, We than use stratgies of
freezing embedding layers or freezing no layers to
our subsequent trainging settings.

According to the results of tablel, we choose
PEGASUS as our best model. PEGASUS mod-
els stand out from other popular models due to
their specially designed pretrain tasks. We test how
different optimizers influence performances. Ta-
ble 8 also reveals that using adafactor will raise the
ROUGE-2 metric by 2%. From the data we have,
private information of patients will be replaced by
token "___", which absolutely will not appear in
the vocabulary of PEGASUS. Considering the fact
that summaries also contain this special token, we
test whether adding this to vocabulary will help
models perform better. The results show that this
operation decreases the performance a little bit,
possibly because of not having a good initial value
for the added token in embedding space.

By analysing data carefully, we find that almost
half of the summaries start with pattern like "No
acute ..." or "No evidence of ...". A simple idea
is that we can separate the data according to the
pattern into two kinds, one with pattern of start-
ing from "No", one with other patterns, and train
models separately. When predicting, we also need
a classifier to classify samples and send samples
into according models. We label samples of which
summaries start with "No ..." as label 1, and label
other samples as label 0. We than train PEGASUS-
large models to generate summaries and BERT-
base model to classify. The results are shown on
Table 9.

Considering our classifier does make mistakes
when predicting, we set a threshold of 0.75. Only
when the classifier give samples probabilities
higher than this, will we use the separately trained
models. Otherwise, we will use the wholly trained
model to predict.
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

PEGASUS-large(freeze=3) 42.83 23.50 41.47 41.33
PEGASUS-large(freeze=0) 42.97 23.93 41.73 41.57

Table 4: Results of PEGASUS-large model on valid set with question type and focus in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

PEGASUS-large(freeze=0) 38.30 19.68 36.68 36.94

Table 5: Results of PEGASUS-large model fine-tuned on re-sampled data in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BERT-abs 49.79 35.51 46.68 46.72
BART-base 61.90 49.39 58.86 60.29
BART-large(freeze) 60.10 47.38 57.01 58.55
PEGASUS-large 63.61 51.86 60.51 62.28
PEGASUS-pubmed 30.61 19.28 26.91 29.12
T5-small 57.08 45.13 54.65 55.47
T5-base 61.77 49.30 58.72 60.34
T5-large 61.85 50.81 59.19 60.56

Table 6: a comparison of different end-to-end models on 80% training set in Task 3.

model freeze — freeze  pOUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
encoder embedding

BART-base yes yes 48.68 33.78 45.88 47.37
BART-base no yes 61.90 49.39 58.86 60.29
BART-base yes no 57.48 45.57 54.75 56.10
BART-base no no 61.30 49.31 58.45 60.01
PEGASUS-large no yes 53.68 42.58 51.57 52.45
PEGASUS-large no no 63.61 51.86 60.51 62.28
PEGASUS-pubmed no yes 26.83 15.83 23.79 24.41
PEGASUS-pubmed  no no 30.61 19.28 26.91 29.12

Table 7: a comparison of same models using different freezing strategies

add ROUGE ROUGE ROUGE ROUGE

model optimizer vocab 1 5 L Lsum
PEGASUS-large adam no 62.29 49.15 59.30 60.62
PEGASUS-large  adafactor no 63.07 51.18 60.06 61.42
PEGASUS-large  adafactor yes 62.99 51.10 59.97 61.34

Table 8: a comparison of PEGASUS using different optimizer and adding special token in Task 3.

pipeline part model acc ROUGE-1 ROUGE-2
classification BERT-base 88.2
label O PEGASUS-large 54.02 37.34
label 1 PEGASUS-large 76.81 69.73
ensemble 61.97 50.02

Table 9: pipeline results on task3
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8 Conclusion

In this work, we elaborate on the methods we em-
ployed for the three tasks in the MEDIQA 2021
shared tasks. For the extractive summarization of
MAS task, we build upon Xu and Lapata (2020),
and achieve improvements by adding contexts and
sentence position markers. For generating ab-
stractive summaries, we leverage the pre-trained
seq2seq models. To improve the fine-tuning per-
formances on the downstream tasks, we implement
a few techniques, like freezing part of the models,
adversarial training and back-translation. Our team
achieves the 1st place for the MAS task.
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Abstract

This paper presents our winning system at the
Radiology Report Summarization track of the
MEDIQA 2021 shared task. Radiology report
summarization automatically summarizes radi-
ology findings into free-text impressions. This
year’s task emphasizes the generalization and
transfer ability of participating systems. Our
system is built upon a pre-trained Transformer
encoder-decoder architecture, i.e., PEGASUS,
deployed with an additional domain adaptation
module to particularly handle the transfer and
generalization issue. Heuristics like ensemble
and text normalization are also used. Our sys-
tem is conceptually simple yet highly effective,
achieving a ROUGE-2 score of 0.436 on test
set and ranked the 1st place among all partici-
pating systems.

1 Introduction

Radiology reports are documents that record and
interpret radiological examinations. A typical radi-
ology report usually consists of three sections: (1)
a background section that describes general infor-
mation about the patient and exam, (2) a findings
section that presents details of the examination, and
(3) an impression section that summarizes the find-
ings against the background (Kahn Jr et al., 2009).
Figure 1 provides an example of such a radiology
report. In a standard radiology reporting process, a
radiologist first dictates detailed findings into the
report, and then summarizes the findings into a con-
cise impression based also on general background
of the patient (Zhang et al., 2018). The impression
section, which provides the most valuable informa-
tion to make clinical decisions, is the most crucial
part of a radiology report for both doctors and pa-
tients. However, manually summarizing radiology
findings into impressions are time-consuming and
error-prone (Gershanik et al., 2011), which necessi-
tates the need to automatically generate radiology
impressions.

Background: Examination: chest (portable
AP) indication: history: ___m with acute coro-
nary syndrome technique: upright AP view of
the chest comparison: chest radiograph ____
Findings: Patient is status post median ster-
notomy and CABG. Heart size remains mildly
enlarged. The aorta is tortuous. Mild pul-
monary edema is new in the interval. Small
bilateral pleural effusions are present. Patchy
bibasilar airspace opacities likely reflect areas
of atelectasis ...

Impression: Mild pulmonary edema and trace
bilateral pleural effusions.

Figure 1: A radiology report sampled from MEDIQA
2021 training set, where the impression is a summariza-
tion of the findings taking the background into account.

The MEDIQA 2021 shared task (Abacha et al.,
2021) at the NAACL-BioNLP workshop sets up a
Radiology Report Summarization subtask, the aim
of which is to build advanced systems to automat-
ically summarize radiology findings (along with
the background) into concise impressions. A key
feature of this task is that radiology reports used for
training and evaluation are collected from different
sources, e.g., training instances are sampled from
the MIMIC-CXR database (Johnson et al., 2019)
and some evaluation instances come from the Indi-
ana chest X-ray collection (Demner-Fushman et al.,
2016). This inevitably results in significant discrep-
ancies between training and evaluation, posing new
challenges to the generalization and transfer ability
of participating systems.

Zhang et al. (2018) presented the first sequence-
to-sequence attempt at automatic summarization
of radiology findings into natural language impres-
sions. After that, several extensions and improve-
ments have been proposed, e.g., to take into account
the factual correctness (Zhang et al., 2019) or the
ontologies (MacAvaney et al., 2019; Gharebagh
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Figure 2: An overview of our system, which consists of (1) a Transformer encoder-decoder tuning module, (2) a
domain adaptation module, (3) an ensemble module, (4) a negative impression normalization module. The domain
adaptation module is activated only for test instances in the Indiana subset, and the final normalization module is

activated only for test instances in the Stanford subset.

et al., 2020). These prior studies, however, are all
based on traditional sequence-to-sequence models
like RNN, BiLSTM, as well as pointer-generator
network (See et al., 2017), and none of them actu-
ally touches the generalization or transfer issue.

In the past few years, pre-training Transformer-
based encoder-decoder architectures from large-
scale text corpora has been proposed and quickly
received massive attention (Radford et al., 2018;
Dong et al., 2019; Xiao et al., 2020). Quite a num-
ber of such pre-trained models, e.g., MASS (Song
et al., 2019), BART (Lewis et al., 2020), and T5
(Raffel et al., 2020), have been devised and proved
extremely effective in various language generation
tasks. Against this background, we choose PEGA-
SUS (Zhang et al., 2020), a pre-trained model that
reports state-of-the-art performance on abstractive
text summarization, as the backbone of our system.
Since radiology report summarization is a special
form of abstractive text summarization, we expect
this choice to yield optimal performance. Besides,
we employ a simple yet effective domain adaptation
strategy, by further fine-tuning on a small amount
of in-domain data to improve generalization and
transfer abilities. We also use model ensemble and
negative impression normalization strategies to fur-
ther enhance the performance. Figure 2 provides
an overview of our system.

With all these strategies, our system achieves an
overall ROUGE-2 score of 0.436 on the whole test

set, ranked at the 1st place among all participating
systems. We will discuss later in the experimental
section the performance of different pre-trained
models and the effect of each individual strategy.

2 Task Description

This section gives a formal definition of the radiol-
ogy report summarization task, and introduces data
and evaluation metrics used for the task.

2.1 Task Definition

The MEDIQA 2021 Radiology Report Summariza-
tion task aims to automatically summarize radiol-
ogy findings into natural language impression state-
ments. Figure 1 provides an example of a standard
radiology report, which consists of a background,
findings, and impression section, detailed as below:

* Background: This section provides general
information about the patient and exam, e.g.,
clinical history of the patient, type of the exam,
and examination techniques. This kind of in-
formation helps diagnose diseases when com-
bined with specific findings.

 Findings: This section records notable details
in each part of the body observed in the exam,
after reading an X-ray image. It describes the
normality and abnormality a radiologist found
in each part of the body. If a specific part was
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examined but not mentioned, there is probably
no obvious abnormality found in that part.

* Impression: This section is a concise summa-
rization of the findings written by a radiologist.
It lists the patient’s symptoms and sometimes
with suggested diagnoses. This section is the
most crucial part of a radiology report, provid-
ing valuable information for doctors to make
clinical decisions.

Radiology Report Summarization is to generate
the impression given the background and findings.
Formally, given a passage of findings represented
as a sequence of tokens x={x1, xg,- - -,z } along
with the background represented as a sequence of
tokens y ={vy1, y2, - - -, yar }, the goal is to generate
another sequence of tokens z = {z1, 29, -+, 2N}
that best summarizes salient and clinically signifi-
cant findings in x. Here, L, M, N are the lengths
of the findings, the background, and the impression,
respectively.

2.2 Official Data

The official data consists of a training split, two
validation splits, and two test splits collected from
different sources, detailed as follows:

 Training split: The training split is composed
of 91,544 chest radiology reports picked from
MIMIC-CXR database (Johnson et al., 2019).
These reports are collected from patients pre-
senting to the Beth Israel Deaconess Medical
Center Emergency Department between 2011
and 2016.

* Validation split I: The first validation split
consists of 2,000 chest radiology reports sam-
pled also from MIMIC-CXR. It therefore has
the same distribution with the training split.

 Validation split II: The second validation
split consists of 2,000 radiology reports sam-
pled from the Indiana chest X-ray collection
(Demner-Fushman et al., 2016). These reports
are collected from the Indiana Network for Pa-
tient Care, thus bearing a risk of inconsistency
with the training split.

* Test split I: The first test split is also extracted
from the Indiana chest X-ray collection, com-
posed of 300 radiology reports in total.

* Test split II: The second test split comprises
another 300 chest radiology reports collected

Split # Reports Source

Training 91,544 MIMIC-CXR database
ValidationI 2,000 MIMIC-CXR database
Validation II 2,000 Indiana collection

Test I 300 Indiana collection

Test 11 300 Stanford collection

Table 1: Statistics and sources of the official data.

from the picture archiving and communication
system at the Stanford Hospital.

The statistics and sources of the data splits are sum-
marized in Table 1. As we can see, both test splits
come from different sources with the training split.
This poses significant challenges to the generaliza-
tion and transfer ability of participating systems.

2.3 Evaluation Metrics

The task uses ROUGE (Lin, 2004) to evaluate the
performance of participating systems. F1 scores for
ROUGE-1, ROUGE-2 and ROUGE-L are reported
on the whole test set, and also on the Indiana and
Stanford splits. The metrics measure the word-level
unigram-overlap, bigram-overlap and the longest
common sequence between reference summaries
and system predicted summaries respectively. The
overall ROUGE-2 on the whole test set is selected
as the primary metric to rank participating systems.

3  Our Approach

We employ a Transformer-based encoder-decoder
architecture for radiology report summarization.
Our system, as illustrated in Figure 2, consists of
four consecutive modules:

* a Transformer encoder-decoder training mod-
ule that fine-tunes a pre-trained language gen-
eration model, e.g., PEGASUS (Zhang et al.,
2020), on the training split;

* a domain adaptation module that further fine-
tunes the model on a small amount of valida-
tion data coming from the same source with
the test split, designed specifically to enhance
generalization and transfer ability to unseen
data;

e an ensemble module that combines diverse
predictions from multiple models to generate
robust summarization;
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¢ a final normalization module that normalizes
system predicted negative impressions into a
specific form.

Our system is simple yet highly effective, ranked
at the 1st place among all participating systems. In
the rest of this section, we detail key modules of
the system.

3.1 Transformer Encoder-Decoder Training

Transformer-based encoder-decoder architectures
pre-trained from large-scale text corpora have re-
cently stood out as the most promising techniques
for natural language generation, outperforming the
traditional RNN- or LSTM-based opponents in a
wide range of language generation tasks (Radford
et al., 2018; Raffel et al., 2020). We thereby choose
a pre-trained Transformer encoder-decoder model
as the backbone of our system, and fine-tunes the
model on the training split.

During the fine-tuning process, for each training
radiology report, we concatenate the findings x and
background y into a single sequence, and pair that
sequence with the impression z, i.e.,

* Source: T1,X2, " TL, [SEPL Y, Y2, Ym

* Target: 21,22, - , 2N

where [SEP] is a special token separating the find-
ings and the background. The source sequence is
fed into the encoder, and the decoder autoregres-
sively decodes the next token conditioned on the
encoder output and previous tokens.

We are free to use any pre-trained Transformer
encoder-decoder models. We investigate three rep-
resentatives: BART, ERNIE-GEN, and PEGASUS,
detailed as below.

* BART (Lewis et al., 2020) is a denoising au-
toencoder for sequence-to-sequence learning.
It is trained by corrupting text with a noising
function, and learning a model to reconstruct
the original text. It achieves promising results
on a range of abstractive dialogue, question
answering, and summarization tasks.

e ERNIE-GEN (Xiao et al., 2020) is a multi-
flow sequence-to-sequence model that miti-
gates exposure bias with an infilling genera-
tion mechanism and a noise-aware generation
method. It achieves comparable results with a
smaller number of parameters on several ab-
stractive summarization, question generation,
and dialogue response generation tasks.

Model # Parameters Corpus Size
BART 400M 160GB
ERNIE-GEN 340M 430GB
PEGASUS 568M 3.8TB + 750GB

Table 2: Number of parameters and size of pre-training
corpus of the three models.

* PEGASUS (Zhang et al., 2020) is a Trans-
former encoder-decoder model specifically de-
signed for abstractive text summarization. It
is trained by masking out important sentences
from an input document and generating the
masked sentences together from the remaining
sentences, similar to an extractive summary.
It achieves state-of-the-art performance on 12
summarization tasks spanning across news,
science, stories, instructions, emails, patents,
and legislative bills.

Table 2 compares number of parameters and size of
pre-training corpus of the three models. PEGASUS
gets the largest number of parameters and is trained
on the largest amount of data.

3.2 Domain Adaptation

As the test splits (Indiana and Stanford) are col-
lected from different sources with the training split
(MIMIC-CXR), participating systems need to ad-
dress the generalization and transfer issue. Inspired
by (Gururangan et al., 2020), we employ a domain
adaptation strategy. Specifically, after fine-tuning a
pre-trained model on the MIMIC-CXR training set,
we further fine-tune the model on a small amount
of data similar to the test splits. In this way, we can
effectively adapt the model trained from MIMIC-
CXR to target test domains.

For the Indiana test split where there is a valida-
tion split sampled from the same source, we simply
use this validation split for further fine-tuning. Af-
ter a few epochs over the Indiana validation split,
we use the resultant model to make predictions for
reports in this test split. As we will show later in
the experiments, this adaptation strategy, though
conceptually simple, is highly effective, leading to
a remarkable boost in ROUGE-2 on this test split.

For the Stanford test split, there is no validation
split sampled from the same source. Therefore we
construct a subset from the training split to conduct
domain adaptation. For each case in this test split
(a radiology report without impression), we exploit
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Negative Impression Indiana Freq.

MIMIC-CXR Freq. Overall Freq.

No acute cardiopulmonary abnormality. 14.2% 4.9% 9.6%
No acute cardiopulmonary process. 3.0% 15.0% 9.0%
No acute cardiopulmonary findings. 6.0% 0.1% 3.1%
No acute cardiopulmonary disease. 0.2% 4.9% 2.6%
No acute cardiopulmonary abnormalities. 4.9% 0.1% 2.5%

Table 3: Top 5 frequent negative impressions and their frequencies on the validation splits.

ElasticSearch! to retrieve the top 10 reports from
the MIMIC-CXR training split that share the most
similar findings. We obtain 2,618 such radiology
reports in total after removing duplicates. Then we
conduct further fine-tuning on these reports, which,
however, downgrades the performance. So we just
use the model trained from training split to predict
for reports in this test split.

3.3 Model Ensemble

We further employ ensemble that combines diverse
predictions from multiple models for robust sum-
marization. Suppose we have T' candidate models,
e.g., multiple runs with different seeds, each pro-
ducing a predicted impression z* (1 <7 <T) for the
given findings along with the background. We first
compute the mutual similarity score Sim(2* 27 ) be-
tween each pair of predictions, and aggregate these
scores to measure the overall similarity of a specific
prediction against all the other predictions:

s(x) =) Sim(#'27), i=1,---,T.
J#i

Then we select the prediction z’ with the highest
overall similarity s(%x*) as our final prediction. Fig-
ure 2 visualizes this ensemble process. We have
tried various similarity scoring functions Sim(-, -),
e.g., ROUGE-1, ROUGE-2, ROUGE-L, and token-
level F1, but observed no significant differences be-
tween their performance. We finally use ROUGE-1
as the similarity scoring function.

3.4 Negative Impression Normalization

The final normalization module normalizes system
predicted negative impressions into a specific form.
Roughly speaking, the impression of a radiology
report can be divided into two categories: positive
or negative. A positive impression typically reveals
symptoms observed during the exam, e.g., “Mild
pulmonary edema and tracebilateral pleural effu-
sions”, whereas a negative impression indicates no

'https://www.elastic.co

symptoms at all, e.g., “No acute cardiopulmonary
abnormality”. Unlike positive impressions which
vary drastically w.r.t. input findings, negative im-
pressions tend to be expressed in specific forms.
Table 3 presents the top 5 frequent negative impres-
sions and their frequencies on the validation splits.
Though expressed in different forms, these nega-
tive impressions are all of the same meaning. The
choice of a particular form is just a matter of writ-
ing style. As the writing style usually varies across
organizations, predicting negative impressions by a
complex model trained from another organization
is prone to over-fitting and may not work well. In
contrast, simple heuristics based on basic statistics
may lead to less over-fitting and perform better.

Based on this observation, we introduce a heuris-
tic strategy, i.e., for any negative prediction starting
with “No acute”, we normalize it into “No acute
cardiopulmonary abnormality”, which is the most
frequent negative impression in the validation sets.
This normalization process is carried out only for
the Stanford test split, for which there is no training
or validation set from same organization.

4 Experiments and Results

This section presents experiments and results of
our system on the official data.

4.1 Experimental Setups

Our system is built upon a pre-trained Transformer
encoder-decoder architecture, PEGASUS (Zhang
et al., 2020). The maximum lengths of source and
target sequences are restricted to 512 and 128 re-
spectively, covering 99% of the cases in the training
and validation splits. Throughout all experiments,
we employ a decoding process with beam size of 5,
length penalty of 0.8, and early stopping.

Fine-tuning Setup We first fine-tune PEGASUS-
large” on the MIMIC-CXR training split. We tune

https://huggingface.co/google/
pegasus—large
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All Test Set Indiana Test Set Stanford Test Set
Rank Team ROUGE-1/-2/-L. ROUGE-1/-2/-L ROUGE-1/-2/-L
1 BDKG (Ours) .5573 .4362 .5366 6834 .5956 .6717 4312 2769 .4014
2 IBMResearch 5328 .4082 5134 6772 5881 .6657 3884 2284 3611
3 optumize 5186 .3918 .4957 .6188 .5182 .6050 4183 .2655 .3864
4 JB 4955 3778 4794 5895 .5039 .5824 4015 2517 .3763
5 low_rank_AlI 4716 3311 4487 5129 3846 .5026 4302 2777 3948
6 med_qga_group  .4642 3265 .4440 5051 3774 4965 4233 2757 .3916
7 ChicHealth 4606 3236 4411 5070 3782 .4984 4143 2690 .3838
8 hEALTHai 4481 3084 4273 4845 3527 4752 4118 2641 .3794
9 DAMO_ali 4330 2763 4116 4371 2839 4278 4289 2687 .3954
10 I_have_no_flash .4303 .2743 .4092 4351 2826 4258 4256 2661 .3926

Table 4: Official results of top 10 systems on the test splits. Systems ranked by ROUGE-2 on the whole test set.

the initial learning rate € {le-5, 3e-5, 65, le—4},
batch size € {8, 16,32}, and number of epochs €
{5,10,15,25}. Other hyper-parameters are fixed
to their default values. The optimal configuration is
determined by ROUGE-2 on the whole validation
set (a combination of the MIMIC-CXR and Indiana
splits), which is learning rate = 6e—>5, batch size
= 8, and number of epochs = 15.

Domain Adaptation Setup We further fine-tune
the model derived above on the Indiana validation
split, so as to adapt the model from MIMIC-CXR
to our target test domain. Specifically, we split the
Indiana validation set into 1700 : 300 subsets. We
tune the model with initial learning rate € {le—
4,2e—4,4e—4}, batch size € {8, 16}, and number
of epochs € {10, 20, 50,100} on the former, and
determine the optimal configuration on the latter
(by ROUGE-2). The optimal configuration is initial
learning rate = 2e —4, batch size = 8, and number
of epochs = 100, with other hyper-parameters set,
again, to their default values. After determining the
optimal configuration, we re-tune the model on the
whole Indiana validation set.

Ensemble Setup We ensemble 16 models fur-
ther fine-tuned with in-domain data for the Indiana
test split. These models are obtained with the same
optimal configuration determined during domain
adaptation, but different random seeds. We ensem-
ble another 15 models trained from MIMIC-CXR
training split for the Stanford test split. These mod-
els are obtained, again, with the same configuration
but different seeds.

4.2 MEDIQA 2021 Official Results

Table 4 shows the official results of top 10 partici-
pating systems on the test splits, where systems are
ranked by ROUGE-2 score on the whole test set.
Our system, though conceptually simple, is highly
effective, ranked the 1st place among participating
systems. Notably, it consistently outperforms the
other systems across all three test splits and almost
in all metrics.

4.3 Further Analyses

This section provides in-depth analyses to show the
effect of each individual module in our system.

Effect of Pre-trained Models We first examine
the effect of different pre-trained models. Specifi-
cally, besides PEGASUS-large, we consider other
pre-trained models including BART?, DistilBART#,
ERNIE-GEN?, and PEGASUS-xsum®, all in the
“large” setting. We tune their hyper-parameters in
the same ranges as in PEGASUS-large, and report
optimal results on the validation splits. The results
are summarized in Table 5, where (S) scores denote
results for single models averaged over five runs.
Among these models, the two PEGASUS variants
(-large and -xsum), which are designed specifically
for abstractive text summarization, consistently per-
form better. And the -large variant performs even
better than the -xsum one. The reason may be that
the -xsum variant has been further tuned on XSum
Shttps://huggingface.co/facebook/
bart-large
*https://huggingface.co/sshleifer/
distilbart-xsum-12-6
Shttps://github.com/PaddlePaddle/
ERNIE/tree/repro/ernie—gen

®https://huggingface.co/google/
pegasus-xsum
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All Valid Set MIMC-CXR Valid Set Indiana Valid Set
Model ROUGE-1/-2/-L. ROUGE-1/-2/-L ROUGE-1/-2/-L
BART (S) 5352 3871 .5103 .6209 4902  .5865 4495 2840 .4340
BART (E) 5535 4057 .5284 6425 5125  .6077 4644 2989 4491
DistilBART (S) 5456 3987 5214 6385 .5109  .6055 4526 2865 4372
DistilBART (E) 5604 .4144  .5360 .6516 .5244 6189 4691 3043 4531
ERNIE-GEN (S) 5385 3951 5167 6237 .4996  .5926 4532 2905 .4409
ERNIE-GEN (E) 5476 4035 .5229 .6313  .5070 .6002 4638 3000 .4515
PEGASUS-xsum (S) .5506 .4107 .5303 6413 5233 6117 4600 2981 .4489
PEGASUS-xsum (E) .5566 4172 .5361 6441 .5266  .6141 4691 3078 4581
PEGASUS-large (S) .5559 .4129 .5330 6511 .5290 .6188 4608 2968 4471
PEGASUS-large (E) .5649 .4224 .5413 6572 5329 .6235 4725 3088 .4591

Table 5: Results of different pre-trained models on validation splits. We run each model five times with different
seeds under its optimal configuration. (S)/(E) respectively denotes the averaged/ensemble results of the five runs.

All Test Set Indiana Test Set Stanford Test Set
Ablation ROUGE-1/-2/-L. ROUGE-1/-2/-L ROUGE-1/-2/-LL
Full Model 5573 4362 .5366 6834 5956 .6717 4312 2769 .4014
— Domain Adaptation .4539 2916 .4333 4766 3062 .4652 4312 .2769 .4014
— Normalization 5487 4221 5281 6834 .5956 .6717 4139 2486 .3844

Table 6: Ablation results of domain adaptation and negative impression normalization on test splits.

(Narayan et al., 2018), which consists of articles
from the British Broadcasting Corporation and ex-
hibits drastic distinctions from radiology reports.
This thereby may result in catastrophic forgetting.

Effect of Ensemble We further investigate the
effect of model ensemble. To this end, for each of
the pre-trained models considered above, we run
the model five times with its optimal configuration
but different seeds. We then compare performance
of the single model (S) and the ensemble (E) on the
validation splits, and report the results in Table 5.
We can see that ensemble is a generally effective
strategy, leading to about 1% to 2% gains across
all data splits and metrics, not matter which pre-
trained model is used.

Effect of Domain Adaptation We then evaluate
the effect of our domain adaptation module, which
is applied solely to the Indiana test split. We con-
sider an ablation that uses the model trained from
MIMIC-CXR to predict on both Indiana and Stan-
ford test splits, without further fine-tuning on the in-
domain Indiana validation split. Table 6 reports the
performance of this ablation on the test splits, and
makes comparisons to the full model. We can see
that the adaptation module, though conceptually
simple, is extremely useful, pushing the ROUGE-2
score drastically from 0.3062 to 0.5956 on Indiana

test split.

Effect of Normalization We finally evaluate the
effect of negative impression normalization, which
is applied solely to the Stanford test split. Table 6
compares performance with and without this final
normalization strategy on the test splits. We can see
that this simple strategy brings meaningful gains,
pushing the ROUGE-2 score from 0.2486 to 0.2769
on Stanford test split.

5 Conclusion

This paper presents our winning system at the Radi-
ology Report Summarization track of the MEDIQA
2021 shared task. Participating systems in this track
are required to summarize radiology findings into
natural language impressions, and be able to gener-
alize or transfer to reports collected from previously
unseen hospitals. We build our system on the basis
of a pre-trained Transformer encoder-decoder ar-
chitecture, namely PEGASUS. We further employ
a domain adaptation module to enhance general-
ization and transfer ability. Heuristics such as en-
semble and negative impression normalization are
also used. Our system finally achieves a ROUGE-2
score of 0.436 on the test set, ranked the 1st place
among all participating systems.
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Abstract

Medical question summarization is an impor-
tant but difficult task, where the input is often
complex and erroneous while annotated data is
expensive to acquire.

We report our participation in the MEDIQA
2021 question summarization task in which we
are required to address these challenges. We
start from pre-trained conditional generative
language models, use knowledge bases to help
correct input errors, and rerank single system
outputs to boost coverage. Experimental re-
sults show significant improvement in string-
based metrics.

1 Introduction

Question summarization for medical forum is im-
portant for medical knowledge discovery and re-
trieval and facilitates downstream tasks such as
biomedical question answering (Jin et al., 2021).
Medical questions are often complex, scattered
with non-medical information, and can sometimes
be erroneous because forum users are not domain
experts (Ben Abacha and Demner-Fushman, 2019).
In addition, annotation in the medical domain is
harder to acquire than in the general domain. These
challenges make medical question summarization
an important and difficult task where annotation is
often scarce.

The MEDIQA 2021 shared task 1 (Ben Abacha
et al., 2021), medical question summarization, re-
quires participants to build summarization systems
for noisy medical forum texts with limited anno-
tation data. The official training set of the task is
the MeQSum dataset (Ben Abacha and Demner-
Fushman, 2019), which is composed of 1,000 med-
ical questions and their corresponding summaries.
The validation and test sets consist of 50 and 100
questions respectively and topic words are some-
times misspelled.

Scarcity of data, noisy input, and complexity and
redundancy of text all pose challenges for ques-

songfang.hsf}@alibaba-inc.com

tion summarization systems. We try to address
these challenges using a combination of knowledge-
based error correction, pre-trained generative lan-
guage models, and output reranking.

Knowledge-based error correction leverages
multiple levels of lexical resources and a high cov-
erage knowledge base to correct errors in input.
Our experiments show that knowledge-based error
correction helps downstream summarization per-
formance according to the Rouge metric.

Pre-trained generative language models are
transformer-based language models trained with
loss functions that facilitate sequence to sequence
generation. Models such as Pegasus (Zhang et al.,
2020a), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2020) achieve state-of-the-art performance
on various text generation tasks and are shown
to perform well on few-shot generation scenar-
ios (Goodwin et al., 2020). We finetune pre-trained
language models to obtain baseline systems with
limited amount of training data.

Output reranking picks the best output among
multiple systems. The availability of different lan-
guage models offers a diverse set of summaries to
choose from. We observe difference in summariza-
tion styles between the training and the validation
set and devise a simple heuristic to pick the best
output based on this observation.

In the rest of the paper, we describe these compo-
nents and report evaluation results on the validation
and the test set.

2 Task and Architecture Overview

The MEDIQA question summarization task re-
quires participants to summarize user generated
medical queries into shorter, more focused ques-
tions. We present an example from the MEDIQA
2021 task 1 validation set in Figure 1 (a). We note
that the name of the disease “folliculitis” is spelled
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Question Hi, Please can you help - I am writing from South Africa. My daughter suffers

with acute folliculitus, and has been since the age of 13. She is now 20 and is in

so much distress as nothing seems to alleviate the itching and soreness... I am
writing to you for any help you could give me to try and assist her. Could you
recommend a specialist and someone who could help us with research? Please
could you point us in the right direction? I am happy to send through her lab
tests - please let me know. Thanks

Summary How can we find a specialist or clinical trial for chronic folliculitis?

(a) Example from MEDIQA 2021 Task 1 Validation Set

Pegasus
Summarizer

BART
Summarizer

Error
Correction

Question
Input

Summary
Output

Reranker H

Al

T5
Summarizer

Generative LMs

(b) Architecture of our submission

Figure 1: Question-summarization example and sys-
tem architecture

incorrectly in the input question and the question
contains a lot of irrelevant information. We attempt
to correct misspellings with a dedicated module in
our system. As useful information is often scat-
tered in different sentences in the input, abstractive
summarization suits this task better than extractive
summarization. We perform abstractive summa-
rization with pre-trained language models.

We illustrate the architecture of our submission
in Figure 1 (b): we first try to correct spell errors
in the input; then summarize each question with
three generative LMs: Pegasus, BART, and T5;
finally, for each question, we pick the best output
with a feature-based reranker and the best output is
chosen as the summarization of the question.

3 Knowledge-based Error Correction

Misspellings are prevalent in medical forums,
where non-expert users discuss highly specialized
medical topics. Uncorrected misspellings can lead
to mismatch between the source text and the sum-
mary during training and cause errors if copied
verbatim during prediction. These errors are penal-
ized heavily by string matching-based metrics like
Rouge as they break n-grams.

In this shared task, we conservatively correct
misspelled words in input by reusing a cascade
of candidate generation modules from an entity
linking system. Entity linking is the task to link
entity mentions in text to entities in a knowledge
base (KB). Candidate generation is an intermediate
step in entity linking to generate candidate KB
entities from potentially abbreviated, misspelled,

or alias text mentions (see e.g. (Charton et al.,
2014)). Our method is also comparable to previous
work on Levenshtein distance-based (Levenshtein,
1966) medical query correction (Soualmia et al.,
2012), but we augment that approach with cascaded
knowledge sources and an alias table.

Error correction can be implemented easier and
with possibly higher quality if search suggestions
from online search engines (Zhou et al., 2015) are
utilized. We use in-house error correction to keep
the submission offline.

3.1 Resources

The error correction module relies on the following
resources:

* Medical word list. We collect tokens from
the English side of ~20K bilingual medical
phrases collected from dictionaries and drug
names.

* Wikipedia dump. We use a 20210101 dump
of the English Wikipedia as the knowledge
base and alias table.

* High frequency word list. We use the top
10,000 words in the Google 1T corpus .

We use Wikipedia instead of a medical KB be-
cause of its broad coverage. Edges (redirects, links
etc.) in the Wikipedia KB can be used as an alias
table to capture common misspellings and aliases.

urethra

t

folliculitis Name
Resolution
Spell Name ) T
Checker Resolution pigmentosum further ureathra
. i t t t
Queries Wiki Med Freq Wiki
folliculitus Matcher Searcher Searcher Searcher

pigmentousim
furhter
ureatha

Index
Construction

Figure 2: Example of error correction

3.2 Error correction steps

During error correction, we handle tokens com-
posed entirely of alphabetical characters and allow
at most 2 edits in similarity searches. We only con-
sider tokens that share 3-prefix or 3-suffix with the

query to limit search space.
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Error correction consists of the following steps:

* Index construction. We build a token index
of Wikipedia. We only index titles with no
more than two tokens and tokens more than
5 characters long. We use the first token to
represent the title. When a token can map to
more than one titles, we map it to the title with
the lowest id.

Spell checking. We pass the text through a
spell checker with medical terms? to detect
potential errors. The flagged tokens are the
query words for the error correction pipeline.

» Wikipedia match. If the query has an exact
match in the Wikipedia token index, we link
the query to the token and its corresponding
Wikipedia title. Note that a title can either be
an entity or an alias, which we resolve later in
the name resolution step.

* Medical word search. We search the medi-
cal word list to find medical terms that spell
similarly to the query. We choose the medical
term if a result is found.

Frequent word search. We search the high
frequency word list to recall common English
words that spell similarly to the query. We
choose the word if a result is found.

* Wikipedia search. We search the Wikipedia
token index for queries longer than 5. To fur-
ther constrain search space, we only consider
tokens that share 5-prefix, 5-suffix, or all con-
sonants with the query. We choose the token
with the highest sequence matching ratio.

* Name resolution. For corrected tokens re-
trieved from the medical word list and the
Wikipedia, we search the Wikipedia dump to
check if it is an alias of another entity and
maps it to its canonical form.

Consider the example in Figure 2. Input queries
of the error correction pipeline are the misspelled
words identified by the spell checker. Wikipedia
match catches the common misspelling *folliculi-
tus and recovers its canonical form folliculitis.
Medical word search recovers pigmentosum from

https://github.com/glutanimate/
hunspell-en-med—-glut

Shttps://docs.python.org/3/library/
difflib.html

the medical dictionary. Frequent word search re-
covers misspellings of popular words, avoid send-
ing them to the noisy Wikipedia search. Finally,
Wikipedia search first map *ureatha to its closest
alias ureathra in Wikipedia and then maps ureathra
to the canonical form urethra.

On the validation set, the process is unable to
recover the word *preagnet (pregnant). We are
able to recover most other errors on the validation
set. Impact of error correction is evaluated in Sec-
tion 6.2.1.

4 Summarization with Pre-trained
Conditional Generative Language
Models

Pre-trained conditional generative language mod-
els have become the dominating paradigm for text
generation and especially summarization, with re-
cent models such as Pegasus (Zhang et al., 2020a),
BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), and PALM (Bi et al., 2020) achieving state-
of-the-art results on standard benchmarks CNN-
Dailymail (See et al., 2017) and XSUM (Narayan
etal., 2018). Recent work has also shown that these
models achieve good performance in few-shot med-
ical summarization settings (Goodwin et al., 2020).

Following (Goodwin et al., 2020), we use Pega-
sus, BART, and T5 single systems as our baselines.

* Pegasus (Zhang et al., 2020a) is a condi-
tional language model designed specifically
for abstractive summarization and is pre-
trained with a self-supervised gap-sentence-
generation objective, where the model is pre-
trained to predict entire masked sentences
from the document.

* BART (Lewis et al., 2020) is a model combin-
ing bi-directional and auto-regressive trans-
formers, trained to both denoise and recon-
struct corrupted texts.

* TS (Raffel et al., 2020) is pre-trained on multi-
ple objectives, including masking, translation,
classification, machine reading comprehen-
sion (MRC) and summarization, all formu-
lated as conditional generation tasks.

We use Pegasus—-large, BART-large,
and T5-base respectively in our experiments.
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5 Output Reranking

Following previous work on reranking generative
LM outputs (Mi et al., 2021), we pick the best
summary for each question using the following
linear model from outputs of three heterogeneous
generative LMs,

T = argmaxzwi(T,T',S)wi (D
T i

where T” is output of a single system, T is the set
of outputs of all single systems, and .S is the input
text. T is the ensemble output, which is picked
from single system outputs by highest score.

The feature function ¢)(T, 7", S) is a function to
estimate the quality of 7" using information from T
and S. w; is a weight of ¢ (T, 7", S). In sequence
generation tasks such as machine translation (Ku-
mar and Byrne, 2004), v is usually a combina-
tion of consensus and linguistic features and w;
can be tuned by optimization algorithms such as
MERT (Och, 2003) towards an automatic evalua-
tion metric.

Our approach. We use a simple and coverage-
oriented approach for reranking, based on the size
and characteristics of the validation data. We no-
tice that the writing style of the validation set is
different from the MeQSum data set which we use
for training: in MeQSum 18.5% sentences start
with “What are the treatments for”, 14.6% start
with “Where can I find”, and 2.5% start with “What
are the causes of”. A model trained on MeQSum
tends to generate these topic-based boilerplates that
are not mentioned in the source text. But in the vali-
dation set, summaries do not have these boilerplate
texts and resemble the content of the source text
more closely, which inspires us to pick the output
with high coverage of the source.

We consider the validation set (50 sentences) too
small for automatic tuning, so we design a minimal
set of features and set the weights w; manually.

Features. We use fidelity, length, consensus and
wellformedness features:

* Fidelity (wy). We calculate the Rouge-2
score between the input and the prediction.
A higher score indicate a high-coverage sum-
mary.

* Length (w;). The length ratio between the
prediction and the input.

Rouge-2 Rouge-L

Pegasus 0.187 0.333
Pegasus EC  0.206 0.344
BART 0.220 0.342
BART EC 0.227 0.342
T5 0.213 0.353

T5 EC 0.208 0.354

Table 1: Single system results on validation set. EC:
Input error correction

Rouge-2 Rouge-L

Best Single 0.220 0.342
Reranked 0.217 0.361
Best Single EC~ 0.227 0.342
Reranked EC 0.230 0.364

Table 2: Reranking results on validation set. EC: Input
error correction

* Consensus (w,.). 1 if 7" shares any bigram
with T — T”, 0 otherwise.

» Wellformedness (w,,). 1 if 7" has less than
three subsentences and starts with one ques-
tion marker, O otherwise.

For our experiments on the validation set and
Rouge-2 experiments on the test set, we setwy = 1,
w; = 0.01, w, = 10, wy, = 10. The idea is to
select the summary that has highest coverage of the
source that is a one sentence question, with at least
one bi-gram in common with other summaries.

The choice to favor high coverage summary is
based on this particular pair of training and valida-
tion data, rather than general ensemble principles
for text generation. We switch the weights for wy
and w; for length reranking experiments on the
test set. Impact of reranking is evaluated in Sec-
tion 6.2.2.

6 Experiments

6.1 Experimental settings

Our systems are based on the Transformers (Wolf
et al., 2020) package. We finetune baseline mod-
els on the MeQSum (Ben Abacha and Demner-
Fushman, 2019) dataset for 50 epochs, with batch
size 8 and learning rate 2e-5 with the AdamW
optimizer on Nvidia P100 GPUs. Finetuning
is indispensable for this task: without finetun-
ing, BART-1large scores 0.06 Rouge-2 and 0.15
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ID R1 R2P R2R R2F1 R-L HOLMS BERTScore

Single Systems

1 TS 0.296 0.122 0.109 0.107 0.267  0.541 0.673

2 BART 0.286 0.120 0.090 0.098 0.258  0.550 0.667

3 Pegasus  0.312 0.130 0.123 0.118 0.281 0.547 0.684
Length rerank

4 3 Sys 0.342 0.149 0.166 0.148 0.299  0.561 0.689

5 3SysEC 0351 0.157 0.175 0.155 0307  0.566 0.688

6 4SysEC 0358 0.160 0.181 0.159 0.310  0.565 0.689

Coverage rerank

7 3 SysEC 0.350 0.177 0.169 0.161 0.313 0.571 0.691

8 4SysEC 0351 0.173 0.173 0.161 0.313  0.568 0.689

- Bestteam 0.351 0.185 0.173 0.161 0.315  0.579 0.703

Table 3: Results on the test set. EC: Input error correction; R1/2/L: Rouge-1/2/L; P: Precision, R: Recall; Best
team: Best score among all teams; Scores in bold when our system achieves the best score.

Rouge-L on the validation set in preliminary exper-
iments.

For experiments on the test set, models for en-
semble are further finetuned for 50 epochs on the
validation set. Models for error-corrected input are
finetuned on an automatically corrected version of
the validation set.

6.2 Validation set experiments

We report single and reranking system performance
in Tables 1 and 2 respectively. Results are evaluated
by Rouge (Lin, 2004), which is based on n-gram
or longest common sequence (LCS) matching of
strings.

6.2.1 Single systems and error correction

Among the pre-trained LMs in Table 1, BART
performs the best on the validation set. Compar-
ing error-corrected (Pegasus/BART/TS EC) and
original (Pegasus/BART/TS5) inputs, we note that
error-corrected input significantly boosts the perfor-
mance of Pegasus. In addition to corrected entity
names, the fixed input also leads Pegasus to gener-
ate 5% longer output and results in a much higher
Rouge-2 score in this small dataset. This trend is
less significant on BART and TS5, but adding error
correction has a positive impact in general.

6.2.2 Reranking

We compare the reranked systems against baselines,
with or without error-corrected input in Table 2.
In both cases, reranking does not have significant
effect on Rouge-2, but helps Rouge-L significantly.
We suspect that reranking does improve word and

style choice, but the room for increasing 2-gram
matches is small on the validation set.

6.3 Test set experiments

We run three sets of experiments on the test set and
report results in Table 3: single systems are the
same systems tested on the validation set and en-
sembles are reranked outputs from systems further
finetuned on the validation set.

In addition to string-based Rouge (Lin, 2004),
test set results are also evaluated by pre-trained
language model-based BERTScore (Zhang et al.,
2020b) and HOLMS (Mrabet and Demner-
Fushman, 2020) metrics:

* BERTScore (Zhang et al., 2020b) leverages
the pre-trained contextual embeddings from
BERT and matches words in candidate and ref-
erence sentences by cosine similarity, where
matching is performed greedily for each word
by choosing the most similar word in the other
sentence.

e HOLMS (Mrabet and Demner-Fushman,
2020) combines soft matching of contextual
embeddings derived from pre-trained LMs
and a string-based metric (Rouge-1 recall in
practice).

String-based and pre-trained language model-
based metrics rank summaries differently. We dis-
cuss the impact of the choice of metrics in Section
6.4.

We run two other experiments validating post-
processing and the UniLM language model (Dong
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et al., 2019), they perform inferior to their respec-
tive baselines and are not reported in Table 3.

We notice in single system experiments that the
characteristics of the test set is still different from
the validation set: all systems suffer from low re-
call, which leads us to perform more aggressive
length-based reranking.

Length reranking. We experiment with a base-
line approach that explicitly picks the longest out-
put sentence by switching the weight of length and
fidelity features in (1). The 3 systems in runs 4 and
5 are Pegasus and T5 finetuned on the validation
set and the Pegasus system in run 3. Run 6 adds
BART finetuned on the validation set.

We observe that this simple heuristic, together
with further finetuning on the validation set, leads
to significantly higher Rouge scores between runs
3 and 4 in Table 3. This change also improves
HOLMS and BERTScore, suggesting that recall /
coverage-based sentence selection does correlate
to summarization quality in this scenario. Rouge is
further improved by adding BART to the combina-
tion between runs 5 and 6.

Correcting input errors between runs 4 and 5
also helps Rouge significantly. BERTScore, which
is based on word matching and utilizes BERT em-
beddings, is much less sensitive to small spelling
errors and changes negatively. HOLMS changes
positively as it has a Rouge component.

The negative change of BERTScore also sug-
gests that we should be more cautious applying in-
put error correction to summarization: mistakes in
error correction might not hurt string-based metrics
(the word is often misspelled already), but they can
change the meaning of the sentence and degrade
summarization quality.

Coverage reranking. In runs 7 and 8, we exper-
iment with the the same setting as in Table 2. 3 sys-
tems are Pegasus, BART, and TS5 finetuned on the
validation set. These runs achieve balanced Rouge
precision and recall, and the highest Rouge-2 score
across all runs. There are small improvement on all
metrics, which is expected, as Rouge-2 is a better
indicator of summarization coverage than length.

According to BERT-based metrics, coverage-
based reranking also leads to more steady improve-
ment than length-based reranking. The overall im-
provement in all metrics suggests that coverage-
based reranking does improve summarization qual-
ity in this task.

6.4 Lessons learned

In this shared task, we experimented with
knowledge-based input error correction and
coverage-oriented system reranking. These meth-
ods are effective in boosting string matching be-
tween the prediction and the reference summaries.
According to Rouge metrics, our submissiong
ranks first according to Rouge-1/2 metrics and
ranks second according to the Rouge-L metric.

According to BERT-based metrics, however,
reranking has a smaller impact on summarization
quality and error correction has little to no effect:
we are about 1 point below the best submission
according to BERTScore and HOLMS, which are
shown to often have higher correlation with hu-
man judgement (Zhang et al., 2020b; Mrabet and
Demner-Fushman, 2020).

The discrepancy between the string-based and
LM-based metrics makes the real improvement of
summarization quality hard to measure. It is ar-
guable that by focusing on misspellings and using
coverage as surrogate for summarization quality,
we might be optimizing more for the writing style
and spelling, rather than the content of the sum-
mary. This shows the need of an efficient, op-
timizable summarization evaluation metric with
high correlation with human judgement that our
field agrees upon. We plan to look more into the
choice of metric and optimization objectives for
summarzation tasks in future work.

7 Conclusion

We reported our experiments in MEDIQA 2021
shared task 1. We used knowledge-based error cor-
rection and coverage-oriented reranking improve
summarization. Our system performed well on
string-based Rouge metrics, but less so on BERT-
based semantic metrics. We plan to investigate
methods that improve summarization according to
human judgement.
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Abstract

The success of pretrained word embeddings
has motivated their use in the biomedical do-
main, with contextualized embeddings yield-
ing remarkable results in several biomedical
NLP tasks. However, there is a lack of re-
search on quantifying their behavior under se-
vere “stress” scenarios. In this work, we
systematically evaluate three language models
with adversarial examples — automatically con-
structed tests that allow us to examine how ro-
bust the models are. We propose two types
of stress scenarios focused on the biomedical
named entity recognition (NER) task, one in-
spired by spelling errors and another based on
the use of synonyms for medical terms. Our
experiments with three benchmarks show that
the performance of the original models de-
creases considerably, in addition to revealing
their weaknesses and strengths. Finally, we
show that adversarial training causes the mod-
els to improve their robustness and even to ex-
ceed the original performance in some cases.

1 Introduction

Biomedical NLP (BioNLP) is the field concerned
with developing NLP tools and methods for the
life sciences domain. Some applications of these
techniques include e.g., discovery of gene-disease
interactions (Pletscher-Frankild et al., 2015), de-
velopment of new drugs (Tari et al., 2010), or au-
tomatic screening of biomedical documents (Car-
vallo et al., 2020). With the exponential growth
of digital biomedical literature, the importance of
BioNLP has become especially relevant as a tool
to extract relevant knowledge for making decisions
in clinical settings as well as in public health. In
order to encourage the development of this area,
public datasets and challenges have been shared
with the community to solve these tasks, such as
BioSSES (Sogancioglu et al., 2017), HOC (Hana-
han and Weinberg, 2000), ChemProt (Kringelum
etal., 2016) and BC5CDR (Li et al., 2016), among

others. At the same time, neural language models
have shown significant progress since the intro-
duction of models such as W2V (Mikolov et al.,
2013), and more recent models like ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019).
These models, trained over large corpora (MED-
LINE and PubMed in the biomedical domain) have
obtained remarkable results in most NLP tasks, in-
cluding BioNLP benchmarks (Peng et al., 2019).
However, they have not been systematically eval-
uated under severe stress conditions to test their
robustness to specific linguistic phenomena. For
this reason, the objective of this paper is to evaluate
three well-known neural language models under
stress conditions. As a case study, we evaluate
NER benchmarks since it a key BioNLP informa-
tion extraction task.

Our stress test evaluation is inspired by the work
of Naik et al. (2018), which proposes the use of ad-
versarial evaluation for natural language inference
by adding distractions in sentences, and evaluating
models on this test set. We propose an adversarial
evaluation black-box methodology, which does not
require access to the inner workings of the models
in order to generate adversarial examples (Zhang
etal., 2019). Specifically, we make perturbations to
the input data, also known as edit adversaries, that
could cause the models to fall into erroneous pre-
dictions. Additionally, we train the models with the
proposed adversarial examples, which is a method-
ology used in previous works (Belinkov and Bisk,
2018; Jia and Liang, 2017) to strengthen the neural
language models during the training process. We
hope that our work will motivate the development
and use of adversarial examples to evaluate models
and obtain more robust biomedical embeddings.

2 Related Work

Adversarial Evaluation of NLP Models One
way to test NLP models is by using adversarial
tests, which consist of applying intentional distur-
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Original (O) | Linoleic acid autoxidation inhibitions on all fractions were higher than that on alpha-tocopherol.
Keyboard (K) | Linoleic avid autoxidatiob inh9bitions on all fractjons were higher than that on zlpha-toclpherol.
Swap (W) Linoleic aicd autoxidtaion inhibtiions on all fractoins were higher than that on aplha-tocohperol.
Synonymy (S) | Linoleic acid autoxidation inhibitions on all fractions were higher than that on vitamin E.

Table 1: Examples of sentences of the stress tests.

bances to a gold standard, to test whether the attack
leads the models into incorrect predictions. Previ-
ous works on adversarial attacks have demonstrated
how dangerous it can be to use machine learning
systems in real-world applications (Szegedy et al.,
2014; Goodfellow et al., 2014). Indeed, it is known
that even small amounts of noise can cause severe
failures in neural computer vision models (Akhtar
and Mian, 2018). However, such failures can be
mitigated through adversarial training (Goodfel-
low et al., 2014). These properties have in turn
motivated novel adversarial strategies designed for
various NLP tasks (Zhang et al., 2019), as well as
work on adversarial attacks focused on recurrent
and transformer networks applied to generic NLP
benchmarks (Aspillaga et al., 2020).

Evaluation of Biomedical Models Models used
in BioNLP tasks elicit particular interest in this con-
text because an erroneous prediction can potentially
be very harmful in practice — e.g., put at risk the
health of patients (Sun et al., 2018). Although ad-
versarial attacks have been widely studied in tasks
related to image analysis (Paschali et al., 2018; Fin-
layson et al., 2019; Ma et al., 2019), to the best of
our knowledge, a gap still exists regarding BioNLP
models and tasks (Araujo et al., 2020).

3 Methodology

We follow a black-box attack methodology (Zhang
et al., 2019), which consists of making alterations
in the input data to cause erroneous predictions in
the models. The following subsections describe
each of the adversarial sets, and their construction’.
We show examples of the stress tests in Table 1.

Noise Adversaries These adversaries test the ro-
bustness of models to spelling errors. Inspired
by (Belinkov and Bisk, 2018), we constructed ad-
versarial examples that try to emulate spelling er-
rors made by human beings. We used SpaCy mod-
els (Neumann et al., 2019) to retrieve the medical
words of each corpus and add noise to them. We
used two types of alterations: i) Keyboard typo
noise (K) involves replacing a random character in

'All stress tests available at https:/github.com/ialab-
puc/BioNLP-StressTest.

each relevant word with an adjacent character on
QWERTY English keyboards. This methodology
could be adapted to keyboards with other designs
or languages. ii) Swap noise (W) consists of se-
lecting a random pair of consecutive characters in
each relevant word and then swapping them.

Synonymy Adversaries (S) These adversaries
test if a model can understand synonymy rela-
tions. Unlike the noise adversaries, this set focuses
on modifying chemical and disease words (enti-
ties). We used PyMedTermino (Jean-Baptiste et al.,
2015), which uses the vocabulary of UMLS (Bo-
denreider, 2004), to find the most similar or related
term (synonym) to a certain word. If a synonym is
retrieved, the original word is replaced; otherwise,
it remains the same. In some cases, this method
changes a simple entity (one word) to a composite
one (multiple words), so the gold labels are also
adjusted to avoid a mismatch in the dataset.

Task and Datasets Biomedical NER is the task
that aims at detecting biomedical entities of interest
such as proteins, cell types, chemicals, or diseases
in biomedical documents. We conducted our evalu-
ation on three biomedical NER benchmarks using
the IOB2 tag format (Ramshaw and Marcus, 1999).
The BC5CDR corpus (Li et al., 2016) is composed
of mentions of chemicals and diseases found in
1,500 PubMed articles. The BC4CHEMD corpus
(Krallinger et al., 2015) contains mentions of chem-
icals and drugs from 10,000 MEDLINE abstracts.
The NCBI-Disease corpus (Dogan et al., 2014)
consists of 793 PubMed abstracts annotated with
disease mentions. Table 2 lists the datasets used in
this work along with their most relevant statistics.

Embeddings and NER Models We evaluated
both word (W2V) and contextualized embeddings.
On the one hand, we assessed BioMedical W2V
(Pyysalo et al., 2013) and ChemPatent W2V (Zhai
et al., 2019). The ChemPatent embeddings were
trained on a 1.1 billion word corpus of chemical
patents from 7 patent offices, whereas all the other
embeddings were trained on the PubMed corpus.
On the other hand, we evaluated BioBERT v1.1
(Lee et al., 2019) and BlueBERT (P) (Peng et al.,
2019), both in their base version for convenience.
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Train / Test Entity # of sentences (annotated) # of tokens % K % W % S
BC5CDR Chemical | 4560 (1609) /4797 (1706) 122730 /129547 | 36.3/36.1 | 33.7/33.2 | 6.8/6.5
BC5CDR Disease 4560 (1902) / 4797 (1955) 122730/129547 | 36.3/36.1 | 33.7/33.2 | 10.6/9.9
BC4CHEMD | Chemical | 30681 (16175) /26363 (13935) | 922609 /792369 | 37.8/37.6 | 33.9/339 | 5.2/5.3
NCBI-Disease | Disease 5423 (2501) /939 (401) 141092 /25397 3747375 | 33.4/333 | 9.2/8.6

Table 2: Details of the datasets used. The last three columns present the percentage of tokens modified for each of
the adversarial datasets. The slash separates the values belonging to the training and the test set.

Model BC5CDR-Chemical BC5CDR-Disease BC4CHEMD NCBI-Disease
[0) K w S [0) K w S [0) K w S o0 K w S
BioBERT 937 | 745 | .635 | .770 | .863 | .407 | 473 | .366 | .919 | .585 | .675 | .678 | .887 | .483 | .628 | .683
+.004 | £.006 | +.008 | £.011 | £.004 | £+.008 | +.010 | £.007 | £.004 | £.005 | +.007 | £.009 | £.004 | +.007 | +.011 | £.006
BIucBERT 901 | .583 | .708 | .739 | .838 | .368 | .441 | .362 | .820 | .472 | .570 | .607 | .773 | .332 | .438 | .615
+.003 | £.005 | .008 | £.010 | £.004 | .007 | +.011 | £.007 | £.003 | 4.004 | +.009 | £.010 | £.003 | 4.006 | +.009 | £.006
BERT .887 | .563 | .684 | .738 | .816 | .356 | .431 | .336 | .808 | .443 | .509 | .598 | .771 | .305 | .433 | .583
+.004 | +.007 | £.010 | +.015 | £.006 | .009 | £.013 | 4.008 | £.004 | 4.006 | £.008 | 4.013 | £.005 | 4+.008 | +.014 | 4.007
BioELMo 923 | 838 | .726 | .757 | .845 | .656 | .482 | 408 | 915 | .770 | .634 | .668 | .869 | .711 | .543 | .677
+.001 | 4.003 | £.010 | .032 | £.002 | +.018 | £.025 | +.013 | £.001 | 4.003 | £.004 | 4.004 | £.005 | +.017 | £.026 | +.012
ChemPatent | 910 | .822 | .745 | .757 | .824 | .637 | .508 | .380 | .898 | .766 | .662 | .642 | .863 | .693 | .586 | .655
ELMo +.001 | 4.004 | £.005 | +.016 | £.001 | +.013 | £.013 | +.017 | £.001 | .003 | £.005 | 4.005 | £.004 | +.018 | £.020 | 4.009
ELMo 879 | 702 | .637 | .720 | .800 | .461 | .373 | .378 | .866 | .612 | .507 | .611 | .848 | .575 | .495 | .643
+.002 | £.010 | £.017 | £.018 | £.003 | £.023 | +.020 | £.014 | £.001 | £.007 | £.011 | £.005 | £.004 | +.034 | +.023 | £.008
BioMedical 873 | 231 | .238 | .719 | .788 | .132 | .133 | .351 | .846 | .233 | .244 | .589 | .827 | .284 | .292 | .596
W2V +.004 | £.012 | +.021 | +.016 | £.008 | £.009 | .011 | £.015 | £.005 | £.008 | +.013 | £.012 | £.005 | +.014 | +.019 | £.021
ChemPatent | .871 | .224 | 221 | .715 | .772 | .127 | .122 | .347 | .828 | .253 | .260 | .584 | .816 | .269 | .252 | .582
w2v +.003 | £.011 | +.012 | £.015 | £.007 | £.005 | +.009 | £.016 | £.007 | .009 | +.010 | £.012 | £.007 | .021 | +.019 | £.013
W2V 818 | 237 | 227 | .641 | 760 | .120 | .120 | .341 | .766 | .264 | .260 | .513 | .785 | .281 | .271 | .526
+.004 | +.013 | £.013 | £.017 | £.003 | .008 | £.009 | +.013 | £.007 | +.011 | £.012 | 4.008 | £.005 | +.022 | £.019 | 4.009

Table 3: Stress test evaluation results in terms of terms F1-score for each model and dataset. We report means and
standard deviations by training and evaluating ten times with different seeds.

BioBERT embeddings were trained on PubMed
abstracts and full-text corpora consisting of 4.3 bil-
lion and 13.5 billion words each. BlueBERT was
trained on 4 billion words from PubMed abstracts.
We used the implementation provided by Peng et al.
(2019) for NER with default hyperparameters.” Fi-
nally, we evaluate BioELMo (Jin et al., 2019) and
ChemPatent ELMo (Zhai et al., 2019). As NER
models we either (a) fine-tuned BERT as proposed
by Peng et al. (2019) or (b) used AllenNLP’s ba-
sic bILSTM-CRF implementation®, with no hyper-
parameter tuning other than changing the initial
embedding layer with one of the ELMo or W2V
embeddings. For comparison purposes, we also
include the “vanilla” version of the models men-
tioned above, which are pretrained with general
corpora. We trained each model 10 times using dif-
ferent random seeds, for 15 epochs every time. We
use CoNLL evaluation (Agirre and Soroa, 2007),
reporting the F1 score for all datasets.

4 Experiments

In this section we report the results of our experi-
ments. Note that all percentage drops or increases

Zhttps://github.com/ncbi-nlp/bluebert
3https://github.com/allenai/allennlp-models

are expressed relative to the original score, not as
percentage points.

Adversarial Evaluation Results Table 3 shows
the evaluation results on the original (O) and adver-
sarial test sets (K, W, and S). In general, the per-
formance of models drops across all adversarial at-
tacks. For BERT-based models, we observe that K
attacks decrease performance by on average 43.1%,
W by 34.3% and S by 30.8%. BioBERT has the
smallest decrease in performance, 34.4%, followed
by BlueBERT, with a 37.9% decrease. We hy-
pothesize that BioBERT is more robust than Blue-
BERT since the former was trained on a larger and
more varied corpus. Furthermore, when comparing
the performance across all datasets, we see that
BCSCDR-Disease is the most affected in all stress
tests, with a 37.7% performance drop, and the least
affected is BCSCDR-Chemical, with 16.1%.

The performance reduction of ELMo-based mod-
els is similar to those of BERT-based models. An
exception is when subject to W and S noise, where
they showed increased robustness with respect to
BERT and W2V models (W: 55.3% better, S: 6.9%
better). In almost all the tests, BioELMo performed
better than ChemPatent ELMo, except under W
noise, where ChemPatent EL.Mo performed con-
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Model Training | BC5CDR-Chemical | BCSCDR-Disease BC4CHEMD NCBI-Disease
O+K |.934(0) | .888(K) | .863 (O) | .755(K) | .920 (O) | .874 (K) | .886 (O) | .820 (K)
BioBERT O+W |[.931(0) | .899 (W) | .865(0) | .781 (W) | .922 (O) | .892 (W) | .872(0) | .848 (W)
O+S 933(0) | 910(S) | .840(0) | .819(S) | .919(0O) | .923(S) | .874(0O) | .875(S)
O+K | .898(0) | .820(K) | .844(0) | .717 (K) | .819(0O) | .750 (K) | .789 (O) | .668 (K)
BlueBERT O+W |.896(0) | .656 (W) | .841(0) | .759 (W) | .818 (O) | .785 (W) | .784 (O) | .729 (W)
O0+S 900 (0) | .890(S) | .818(0O) | .814(S) | .820(0) | .788(S) | .773 (O) | .804 (S)
O+K |.923(0)| .870(K) | .833(0) | .732(K) | .912(0O) | .837 (K) | .864 (O) | .820 (K)
BioELMo O+W |.922(0) | .825(W) | .838(0) | .654 (W) | 913 (O) | .820 (W) | .875(0) | .777 (W)
O0+S 919 (0) | 901 (S) | .826(0) | .799(S) | 912 (0) | 901 (S) | .871(0) | .848(S)
O+K |.910(0) | .859(K) | .823(0) | .713(K) | .898 (O) | .828 (K) | .860 (O) | .793 (K)
ChemPatent ELMo | O+ W | .907 (O) | .835(W) | .813(0) | .682 (W) | .899 (O) | .824 (W) | .863 (O) | .804 (W)
O0+S 904 (O) | .895(S) | .813(0) | .757(S) | .895(0) | .874(S) | .848 (0) | .819(S)
O+K | .888(0) | .467(K) | .773(0) | .303 (K) | .832(0) | .486 (K) | .820 (O) | .543 (K)
BioMedical W2V O+W | .873(0) | .598 (W) | .796 (O) | .482 (W) | .836 (O) | .609 (W) | .819 (O) | .639 (W)
O0+S .867(0) | .883(S) | .781(0) | .787 (S) | .837(0) | .852(S) | .836(0) | .804 (S)
O+K | .867(0) | 454(K) | .768 (O) | .307 (K) | .817 (O) | 482 (K) | .822 (0) | .548 (K)
ChemPatent W2V O+W |[.785(0) | .619 (W) | .765(0) | .477 (W) | .819 (0) | .626 (W) | .792 (O) | .663 (W)
O0+S 868 (0) | .864(S) | .738(0) | .779(S) | .818 (O) | .835(S) | .797 (O) | .801 (S)

Table 4: Adversarial training results in terms of F1-score for each model and dataset. The training column shows
the O set merged with K, W, or S. The test set is shown in parentheses for each scenario.

sistently better, by 5.1% on average. We hypoth-
esize that these results are due to ELMo using a
character-based input representation, which would
allow handling of swap characters inside the words.

W2V-based models were the most brittle but
showed similar patterns to the previous models.
Adversaries examples produced performance drops
ranging from 53.8% on NCBI-Disease to 74.1%
on BC5CDR-Disease. In the case of S adversaries,
W2V-based showed performance drops ranging
from 17.8% on BCSCDR-Chemical to 55.3% on
BCSCDR-Disease.

Regarding the “vanilla” models, we see that they
are all the worst in the original dataset (O) com-
pared to their biomedical counterparts. In the same
way, they are more fragile to adversary attacks in
the biomedical scenario. In average, BERT has a
decrease in performance of 39.6%, ELMo of 34.4%
and W2V of 59.6% across all datasets.

Even though the BCSCDR dataset covers both
chemicals and diseases, the disease task is more
affected by S adversaries. We believe this is due to
the higher number of words affected by the attacks
compared to the other benchmarks (Table 2). An-
other possible cause is the kind of synonyms used
to replace the entities, which tend to be both su-
perficially dissimilar and more extensive than their
originals, e.g., arrhythmia is replaced by heart con-
duction disorder. By contrast, chemical synonyms
often include terms derived from the original, e.g.,
morphine is changed to morphine sulfate.

Training on Adversarial Examples Addition-
ally, we subjected the training sets to adversar-

ial attacks, and evaluated the models both against
the original test sets and their noisy counterparts.
When training with K noise, we observed perfor-
mance decreases by 21.2%, followed by W, 15.8%,
and S with a slight decline of 0.8%, compared to
44.4%, 46.3% and 31.3% respectively in the Ad-
versarial Evaluation setting. Besides, and inter-
estingly, training with S improves performance in
some cases, by up to 5.5% compared to the origi-
nal S test set. We hypothesize that this is because
the introduced adversarial samples work as a data
augmentation mechanism. In terms of datasets, we
see that BCSCDR-Disease is the most affected by
adversaries, with an average 17.5% drop, and the
least affected is NCBI-Disease, with an average
9.7% drop compared to the non-adversarial test set.
When comparing the three architectures we see
that BERT is affected by 6.3%, ELMo by 7.6% and
W2V by 24.0% on average compared to the origi-
nal test set. This result stands in line with findings
on other NLP tasks, where BERT comes up first,
followed by ELMo and W2V (Peng et al., 2019).
This is because BERT uses recent methods and
techniques like Transformer (Vaswani et al., 2017)
and WordPiece tokenizer (Schuster and Nakajima,
2012) that allow it to learn better representations.

BioBERT Error Analysis This section seeks to
understand how the most robust model — BioBERT
— behaves under adversarial evaluation. To this end,
we analyzed NER model confusions with respect
to the original datasets, synonym (S), swap (W),
and keyboard (K) perturbations on the BCSCDR
chemical and disease dataset(s).

In the original dataset (Figure 1(a)), we see that
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Figure 1: Normalized confusion matrices for test re-
sults with (a) original (O), (b) keyboard (K), (c) swap
(S) and (d) synonym (S) BC5CDR-Disease and Chem-
ical datasets on average.

most of the errors come from confusing I and O
labels (32% of the cases). Under adversarial at-
tacks, this type of error spreads to other IOB labels.
For keyboard (K) errors (Figure 1(b)), the most fre-
quent mistake is to confuse B with O, with 16.6%
of these cases. The same goes for swap (W) pertur-
bations (Figure 1(c)), where this error is repeated
15% of the time. When using synonyms (S) (Fig-
ure 1(d)), error rates become by contrast globally
low compared to K and W. We believe that this
happens because entities are converted into simi-
lar ones. For instance, “stomach neoplasm” gets
transformed into “stomach tumor”.

Lastly, regardless of the adversaries, there are
confusions with numbers and special character se-
quences that the model classifies as I (i.e., lie inside
an entity span) but whose ground truth label is O
(i.e., lie outside an entity span).

5 Conclusions

In this work, we have investigated whether large
scale biomedical word (W2V) and contextualized
word embeddings (BERT and ELLMo) are robust
with respect to black-box adversarial attacks in the
biomedical NER task. Our experimental results
show different sensitivities of the models to mis-
spellings and synonyms. Among the main findings,
we show that BERT-based models are generally
better prepared for adversarial attacks, but they
are still fragile, leaving room for future improve-
ment in the field. ELMo-based models show lower
robustness in most cases but consistently outper-
formed BERT in some specific scenarios. W2V
proves to be more brittle but shows similar patterns
in terms of relative performance drops. We also
demonstrate that by training with adversaries, we
can considerably decrease the drop in performance
and even improve the models’ original performance
when trained with synonyms, as they act as a form
of regularization and augmentation of data.
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Abstract

NLP has emerged as an essential tool to extract
knowledge from the exponentially increasing
volumes of biomedical texts. Many NLP tasks,
such as named entity recognition and named
entity normalization, are especially challeng-
ing in the biomedical domain partly because
of the prolific use of acronyms. Long names
for diseases, bacteria, and chemicals are often
replaced by acronyms. We propose Biomedi-
cal Local Acronym Resolver (BLAR), a high-
performing acronym resolver that leverages
state-of-the-art (SOTA) pre-trained language
models to accurately resolve local acronyms
in biomedical texts. We test BLAR on the
ADb3P corpus and achieve state-of-the-art re-
sults compared to the current best-performing
local acronym resolution algorithms and mod-
els.

1 Introduction

In the past decade, natural language processing
(NLP) has greatly advanced in the biomedical do-
main. Given the troves of biomedical texts, NLP
has emerged as a critical tool for knowledge extrac-
tion. NLP has been used to automatically analyze
clinical notes, electronic medical records, biolog-
ical literature, and other biomedical texts in the
hopes of unearthing new knowledge and deeper
insights.

Acronyms are especially common in science and
even more so in biomedical publications, as authors
regularly seek to shorten the long names for dis-
eases, bacteria, and chemicals. Barnett and Double-
day (2020) documented acronym use in more than
24 million scientific article titles and 18 million sci-
entific articles published between 1950 and 2019.
They report that 19% of titles and 73% of abstracts
contain acronyms. Of the more than one million
unique acronyms in their data, 0.2% appeared regu-
larly and most acronyms, 79%, appeared less than
10 times.

Acronym resolution (AR) can be performed by
either leveraging acronym definitions found in the
text (referred to as local AR) or by consulting ex-
ternal resources, such as ontologies (known as dis-
ambiguation or global AR). While a lot of progress
has been recently done on the latter, local AR has
seen surprisingly little recent work. In particu-
lar, the SOTA approaches in local AR are rule-
based or simple machine learning approaches from
more than a decade ago. As a result, this task has
not benefited from recent advances in transform-
ers (Vaswani et al., 2017). To address this issue, in
this work we focus on local AR where we try to an-
swer the question: Can transformers be leveraged
to further improve traditional local AR approaches?

To answer this question, we present Biomedical
Local Acronym Resolver (BLAR); a transformer-
based model designed to resolve local acronyms in
biomedical texts. In particular, this work makes the
following contributions:

1. Design of a novel transformer-based model
for local acronym resolution, which resolves
acronyms through a combination of a two-step
architecture and appropriate leveraging of pre-
trained language models. To the best of our
knowledge, this is the first transformer-based
approach for local AR.

2. Experimental evaluation of BLAR against
SOTA local AR approaches, showing that it
outperforms the latter. In particular, evalu-
ated on the Ab3P corpus (Sohn et al., 2008),
BLAR reaches an F1 score of 0.966 compared
to 0.899 of the best performing existing ap-
proach.

2 Background and Related Work

There are a few challenges inherent in acronym res-
olution that make a simple dictionary-lookup and
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Local AR
Acronym resolution for
acronyms when the
corresponding expansions
are provided in the source text.
Traditionally resolved using a
combination of
hand-crafted filters.

Disambiguation AR
Acronym resolution for
acronyms when no corresponding
expansion is provided in
the source text. Mostly resolved
using deep-learning models,
word-sense disambiguation,
entity normalization,
ete.

Acronym Dictionary
Compilation
Short-form/long-form acronym
dictionaries usually created
from source texts and/or
relevant onotolgies.

Figure 1: Sub-tasks of acronym resolution (AR).
Our approach is applicable to both “Local AR” and
“Acronym Dictionary Compilation.”

other rule-based models less effective. First, short-
form acronym representations are rarely unique.
For instance, “CD” is an acronym for “Crohn’s dis-
ease” and “Cowden Disease.” A simple dictionary
lookup of “CD” using an acronym disease dictio-
nary will produce ambiguous results and requires
additional steps of acronym disambiguation. More-
over, the number of letters in a short-form may not
match the number of words in the corresponding
long-form (e.g. the short-form of “systemic scle-
rosis” is “SSc” ). Lastly, long-form entities can
have complicated short-forms. For example, the
short-form of “heparin-induced thrombocytopenia
type II”” is “HIT type I1,” a short-form that shortens
the first three words of the long-form and leaves
the last two words unmodified.

To address these challenges, approaches to
acronym resolution have been developed and can
be classified into three broad categories: local
acronym resolution (Schwartz and Hearst, 2003;
Sohn et al., 2008), disambiguation acronym res-
olution (also referred to as non-local or global
acronym resolution) (Jin et al., 2019; Jacobs et al.,
2020), and acronym dictionary compilation (Gross-
man et al., 2018). We refer to approaches that
resolve acronyms by leveraging their definitions
found in the containing text as local acronym reso-
lution techniques. In contrast, non-local or global
techniques resolve acronyms by using external re-
sources. These typically target acronyms whose
long-form is not contained within the text, which is
common among more established acronyms, such
as “mRNA” and “DNA.” Finally, acronym dic-

tionary compilation refers to the creation of an
acronym dictionary based on the source text or
external ontologies, or a combination of the two.
These three sub-categories of AR approaches are
depicted in Figure 1.

Our approach specifically targets local acronym
resolution and acronym dictionary compilation. Lo-
cal acronyms appear as a pair of entities featuring
a short-form (SF) entity and a corresponding long-
form (LF) entity. Historically, local acronym reso-
lution has been handled by rule-based algorithms.
From 2003 to 2009, Schwartz et al. (2003) and
Sohn et al. (2008) demonstrated the best perfor-
mance of local acronym resolution. They used a
combination of hand-crafted filters to identify SF-
LF pairs. Kuo et al. (2009) introduced the first
local acronym resolution model that leveraged ma-
chine learning. It produced SOTA results with the
help of four sets of hand-crafted features, includ-
ing rule-based text filters. Yeganova et al. (2011)
further improved upon local acronym resolution
by introducing a hybrid machine learning and rule-
base model that does not rely on labeled data. They
extract potential SF-LF pairs from PubMed articles
using rules similar to the rules developed by Sohn
et al. and train a classifier to identify SF-LF pairs.

Our approach to local acronym resolution is sim-
ple in its architecture yet novel in its application.
Our two-stage model leverages transfer learning
from modern, SOTA pretrained transformers and
is able to learn the features of short-form and long-
form acronym pairs without the help of a prede-
fined dictionary, hand-crafted features, filters, or
rules. Our model processes batches of documents,
such as abstracts from PubMed, and creates an
acronym dictionary specific to each inputted docu-
ment.

3 Method

The intuition behind local acronym resolution is
that authors of scientific publications commonly
define the acronyms that they employ later on in
the document. This is typically done by defin-
ing acronyms within the text in the form of pairs
of short-form (SF) and corresponding long-form
(LF) entities. We can then use the identified SF-
LF acronym pairs to either resolve the acronyms
appearing in the input document or populate an SF-
LF dictionary that can be used to accurately resolve
future uses of the SF versions of the acronyms in
the remainder of the text.
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Figure 2: Sample output of Step 2 showing the vari-
ous tagged entities of a short and long-form acronym
pair. We use a BILOU (Beginning, Inside, Last, Out-
side, Unit) tagging scheme (Ratinov and Roth, 2009)
to identify long-form (LF) entities, short-form (SF) en-
tities, and parenthesis (PR) enclosing a paired SF or LF
entity.

Identifying the definitions of SF-LF pairs poses
two major challenges: First, one has to identify
the location in the text where the definition of an
SE-LF pair is provided. Second, one has to identify
the exact span (i.e., text) of both the short and
long-form within the definition.

Two-step AR: Following the above structure,
BLAR splits the problem into two separate sub-
tasks:

e Step 1: Sentence Classification. Given the
input text, identify sentences containing defi-
nitions of SF-LF pairs. This is modeled as a
binary classification task.

e Step 2: SF-LF Acronym Tagging: Given a
sentence predicted to contain a definition
of an SF-LF pair, identify the exact form
(i.e., text) of the SF and LF entities. This is
modeled as a token classification task, where
each token in the sentence is classified as
being part of an acronym short-form, acronym
long-form, or the parenthesis enclosing a
paired entity. Token classification follows the
BILOU (Beginning, Inside, Last, Outside,
and Unit) encoding scheme (Ratinov and
Roth, 2009), as shown in Figure 2 through a
simple example.

Model architecture: The sentence classifica-
tion model (Step 1) leverages transfer learning by
fine-tuning the pretrained SciBERT model (Beltagy
et al., 2019) for the specific task of sentence clas-
sification. The sentences that have been predicted
as containing SF-LF pairs are given as input to the
SF and LF tagging model (Step 2). The tagging
model also leverages SciBERT by fine-tuning it on
the SF and LF tagging task. To avoid exposure bias
resulting from training on a set of perfect inputs
(e.g. sentences containing acronym pairs as labeled

in the dataset), we use the output from the sentence
classification model from Step I to train the tagging
model in Step 2. The output of the tagging model
is a dictionary that can then be used to replace all
the short-form acronyms with their corresponding
long-forms within a single source text.

Model training: We developed BLAR using the
BioADI corpus (Kuo et al., 2009) and tested it on
the Ab3P corpus (Sohn et al., 2008). BioADI in-
cludes 1,668 true SF-LF pairs from 1,200 annotated
PubMed abstracts and Ab3P includes 1,221 true SF-
LF pairs from 1,250 annotated PubMed abstracts.
Both provide span-level data identifying short and
long-form acronym pairs within PubMed abstracts
and differ only in the articles selected for anno-
tation. During development, we fine-tuned both
our sentence and acronym token classifiers on the
BioADI corpus randomly split into three subsets for
training (80% of the corpus), validation (10% of the
corpus), and testing (10% of the corpus). We use
BioADI as a training dataset and Ab3P as a testing
dataset to best compare our model’s performance
to existing SOTA benchmarks for local acronym
resolution which use the same train/test splits. The
BioADI and Ab3P corpora are described in Sec-
tion 4. Since the models in both steps are fine-tuned
versions of SciBERT, they are able to train fairly
quick on CPUs. Step [ and Step 2 converged within
eight epochs, taking roughly 10 hours and 2 hours
to complete, respectively, on two Intel Xeon CPUs
(E5-2640 v3 @ 2.60GH) with 16GB of RAM.

Ablation study: To determine the importance
of the 2-step architecture, we conduct an ablation
study where we train a model to resolve acronyms
without the help of a sentence classification step.
This model is identical to the tagging model used
in Step 2, only, it is trained on raw sentences that
may or may not contain an acronym pair. This
single-step architecture must simultaneously learn
to detect and resolve an acronym pair. We refer to
this model variation as “BLAR (single step).”

4 Datasets

BioADI: We use the BioADI (Kuo et al., 2009)
corpus to train BLAR. It includes 1,668 true SF-LF
pairs from 1,200 annotated PubMed abstracts.

Ab3P: We use the Ab3P (Sohn et al., 2008) cor-
pus for testing. It includes 1,221 true SF-LF pairs
from 1,250 annotated PubMed abstracts.

At the time of writing, both datasets are available
for download on the BioC (Comeau et al., 2013)
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website.

5 Results and Discussion

To measure BLAR’s performance, we first compare
it against SOTA local AR approaches. As explained
in the Background and Previous Work section, to
the best of our knowledge, local acronym resolution
has not seen significant advances since 2009. More
recent acronym resolution works have focused in-
stead on disambiguation acronym resolution, still
relying on simpler rule-based algorithms for local
acronym resolution (Jin et al., 2019; Jacobs et al.,
2020). As a result, we compare BLAR to Kuo
et al. (2009), Sohn et al. (2008), and Schwartz and
Hearst (2003), which represent the SOTA in local
acronym resolution.

Table 1 depicts the performance of BLAR
against SOTA AR models. In this experiment, all
models were trained on the BioADI dataset and
tested on the Ab3P dataset. For each model, we
evaluate Precision, Recall, and F1 score based on
exact matches of long-form and short-form pairs.
The results show that BLAR significantly outper-
forms all previous approaches, achieving an F1
score of 0.966 compared to 0.899 of the next best
approach. We observe that, without a sentence
classification step, the single-step BLAR model
under-performs compared to the two-step archi-
tecture, highlighting the benefit of the sentence
classification step in the full two-step architecture.

AR Model | P | R | FI
Schwartz et al. (2003) | 0.950 | 0.788 | 0.861
Sohn et al. (2008) 0.970 | 0.836 | 0.898
Kuo et al. (2009) 0.959 | 0.846 | 0.899
Yeganova et al. (2011) | 0.936 | 0.893 | 0.914
BLAR (single step) | 0.950 | 0.957 | 0.953
BLAR (two step) 0.966 | 0.966 | 0.966

Table 1: Evaluation results of BLAR against SOTA
local acronym resolution models. All models, save
Yeganova et al., were trained on BioADI and tested
on Ab3P. Yeganova et al. is trained on 1M automati-
cally extracted potential SF-LF pairs from PubMed ab-
stracts.

Model Output Analysis: Finally, to further un-
derstand the performance of BLAR, we perform an
instance-level analysis of its output.

Analyzing the correct predictions, we see that
the model successfully overcomes some of the com-
plex challenges inherent in acronym resolution. For

example, it correctly resolves the acronyms “SSc”
to “systemic sclerosis” and “TUAG” to “intrauter-
ine growth retardation.” These examples show that
BLAR learns to resolve short-forms that contain a
different number of letters compared to the number
of words in the corresponding long-form. In an-
other example, BLAR correctly resolves “HIT type
II” to “heparin-induced thrombocytopenia type II”
which illustrates that the model was able to learn
more complex acronyms that consist of a mix of
short-form entities and complete words.

Moving to the incorrect predictions, we clas-
sify BLAR’s errors into three categories: missed
acronyms (false negatives), added acronyms (false
positives), and modified acronyms (i.e., acronyms
where the model correctly identifies a short-form
but either truncates or extends the corresponding
long-form).

A majority of the errors come from modified
acronyms. Analyzing the modified acronyms, we
find that 63.7% of cases are long-forms expanded
or truncated by a single word/token. We identify
that many of the erroneously expanded long-forms
add a word or words preceding the ground truth
long-form. For example, in the text “...heat stroke
by reducing iNOS-dependent nitric oxide (NO)...”,
BLAR identified “iNOS-dependent nitric oxide” as
the long-form expansion of the short-form “NO.”,
instead of the correct “nitric oxide.”

Another common error within the modified
acronyms category is a truncated long-form. For
example, BLAR predicts the long-form of “FVC”
to be “forced vital capacity” but the ground truth
is “forced expiratory volume in 1 s vital capacity.”
Here, BLAR predicts a simple long-form when the
ground truth long-form is actually more complex.
We plan to explore these insights in future work to
further improve the model.

6 Conclusion and Future Work

Local acronym resolution has seen limited progress
in recent years and has not benefited from the re-
cent advancements in machine learning approaches.
To address this problem, we develop BLAR; a deep-
learning model that leverages a two-step architec-
ture on top of pre-trained language models to iden-
tify SF-LF pairs in input documents. Our experi-
mental results show that BLAR outperforms other
local acronym resolution approaches and achieves
state-of-the-art performance. We release BLAR
and its source code for public use. As part of our
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future work, we will be exploring two threads: first,
further improving the model based on our error
analysis, and second, exploring how BLAR (which
in this case has been fine-tuned for the scientific
domain) can be extended to cover acronyms found
in other domains. We believe future work could
also focus on a hybrid model that leverages both
deep-learning and rule-based algorithms.
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Abstract

Social media contains unfiltered and unique in-
formation, which is potentially of great value,
but, in the case of misinformation, can also do
great harm. With regards to biomedical top-
ics, false information can be particularly dan-
gerous. Methods of automatic fact-checking
and fake news detection address this problem,
but have not been applied to the biomedical
domain in social media yet. We aim to fill
this research gap and annotate a corpus of
1200 tweets for implicit and explicit biomed-
ical claims (the latter also with span annota-
tions for the claim phrase). With this corpus,
which we sample to be related to COVID-19,
measles, cystic fibrosis, and depression, we
develop baseline models which detect tweets
that contain a claim automatically. Our anal-
yses reveal that biomedical tweets are densely
populated with claims (45 % in a corpus sam-
pled to contain 1200 tweets focused on the do-
mains mentioned above). Baseline classifica-
tion experiments with embedding-based classi-
fiers and BERT-based transfer learning demon-
strate that the detection is challenging, how-
ever, shows acceptable performance for the
identification of explicit expressions of claims.
Implicit claim tweets are more challenging to
detect.

1 Introduction

Social media platforms like Twitter contain vast
amounts of valuable and novel information, and
biomedical aspects are no exception (Correia et al.,
2020). Doctors share insights from their everyday
life, patients report on their experiences with partic-
ular medical conditions and drugs, or they discuss
and hypothesize about the potential value of a treat-
ment for a particular disease. This information can
be of great value — governmental administrations
or pharmaceutical companies can for instance learn
about unknown side effects or potentially beneficial
off-label use of medications.

My child is vaccine injured from the MMR shot.
Happened when he was 13 months old #Wedid
#hegotinjured #believemothers #vaccinesharm

Figure 1: Tweet with a biomedical claim (highlighted).

At the same time, unproven claims or even inten-
tionally spread misinformation might also do great
harm. Therefore, contextualizing a social media
message and investigating if a statement is debated
or can actually be proven with a reference to a re-
liable resource is important. The task of detecting
such claims is essential in argument mining and a
prerequisite in further analysis for tasks like fact-
checking or hypotheses generation. We show an
example of a tweet with a claim in Figure 1.

Claims are widely considered the conclusive and
therefore central part of an argument (Lippi and
Torroni, 2015; Stab and Gurevych, 2017), conse-
quently making it the most valuable information
to extract. Argument mining and claim detection
has been explored for texts like legal documents,
Wikipedia articles, essays (Moens et al., 2007; Levy
et al., 2014; Stab and Gurevych, 2017, i.a.), so-
cial media and web content (Goudas et al., 2014,
Habernal and Gurevych, 2017; Bosc et al., 2016a;
Dusmanu et al., 2017, i.a.). It has also been applied
to scientific biomedical publications (Achakulvisut
et al., 2019; Mayer et al., 2020, i.a.), but biomedi-
cal arguments as they occur on social media, and
particularly Twitter, have not been analyzed yet.

With this paper, we fill this gap and explore
claim detection for tweets discussing biomedical
topics, particularly tweets about COVID-19, the
measles, cystic fibrosis, and depression, to allow
for drawing conclusions across different fields.

Our contributions to a better understanding of
biomedical claims made on Twitter are, (1), to pub-
lish the first biomedical Twitter corpus manually la-
beled with claims (distinguished in explicit and im-
plicit, and with span annotations for explicit claim
phrases), and (2), baseline experiments to detect
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(implicit and explicit) claim tweets in a classifica-
tion setting. Further, (3), we find in a cross-corpus
study that a generalization across domains is chal-
lenging and that biomedical tweets pose a particu-
larly difficult environment for claim detection.

2 Related Work

Detecting biomedical claims on Twitter is a task
rooted in both the argument mining field as well as
the area of biomedical text mining.

2.1 Argumentation Mining

Argumentation mining covers a variety of differ-
ent domains, text, and discourse types. This in-
cludes online content, for instance Wikipedia (Levy
etal., 2014; Roitman et al., 2016; Lippi and Torroni,
2015), but also more interaction-driven platforms,
like fora. As an example, Habernal and Gurevych
(2017) extract argument structures from blogs and
forum posts, including comments. Apart from that,
Twitter is generally a popular text source (Bosc
et al., 2016a; Dusmanu et al., 2017). Argument
mining is also applied to professionally generated
content, for instance news (Goudas et al., 2014;
Sardianos et al., 2015) and legal or political docu-
ments (Moens et al., 2007; Palau and Moens, 2009;
Mochales and Moens, 2011; Florou et al., 2013).
Another domain of interest are persuasive essays,
which we also use in a cross-domain study in this
paper (Lippi and Torroni, 2015; Stab and Gurevych,
2017; Eger et al., 2017).

Existing approaches differ with regards to which
tasks in the broader argument mining pipeline they
address. While some focus on the detection of
arguments (Moens et al., 2007; Florou et al., 2013;
Levy et al., 2014; Bosc et al., 2016a; Dusmanu
et al., 2017; Habernal and Gurevych, 2017), others
analyze the relational aspects between argument
components (Mochales and Moens, 2011; Stab and
Gurevych, 2017; Eger et al., 2017).

While most approaches cater to a specific do-
main or text genre, Stab et al. (2018) argue that
domain-focused, specialized systems do not gen-
eralize to broader applications such as argument
search in texts. In line with that, Daxenberger
et al. (2017) present a comparative study on cross-
domain claim detection. They observe that diverse
training data leads to a more robust model perfor-
mance in unknown domains.

2.2 Claim Detection

Claim detection is a central task in argumenta-
tion mining. It can be framed as a classification
(Does a document/sentence contain a claim?) or
as sequence labeling (Which tokens make up the
claim?). The setting as classification has been ex-
plored, inter alia, as a retrieval task of online com-
ments made by public stakeholders on pending
governmental regulations (Kwon et al., 2007), for
sentence detection in essays, (Lippi and Torroni,
2015), and for Wikipedia (Roitman et al., 2016;
Levy et al., 2017). The setting as a sequence label-
ing task has been tackled on Wikipedia (Levy et al.,
2014), on Twitter, and on news articles (Goudas
et al., 2014; Sardianos et al., 2015).

One common characteristic in most work on au-
tomatic claim detection is the focus on relatively
formal text. Social media, like tweets, can be con-
sidered a more challenging text type, which despite
this aspect, received considerable attention, also
beyond classification or token sequence labeling.
Bosc et al. (2016a) detect relations between ar-
guments, Dusmanu et al. (2017) identify factual
or opinionated tweets, and Addawood and Bashir
(2016) further classify the type of premise which
accompanies the claim. Ouertatani et al. (2020)
combine aspects of sentiment detection, opinion,
and argument mining in a pipeline to analyze argu-
mentative tweets more comprehensively. Ma et al.
(2018) specifically focus on the claim detection task
in tweets, and present an approach to retrieve Twit-
ter posts that contain argumentative claims about
debatable political topics.

To the best of our knowledge, detecting biomed-
ical claims in tweets has not been approached yet.
Biomedical argument mining, also for other text
types, is generally still limited. The work by Shi
and Bei (2019) is one of the few exceptions that
target this challenge and propose a pipeline to ex-
tract health-related claims from headlines of health-
themed news articles. The majority of other argu-
ment mining approaches for the biomedical do-
main focus on research literature (Blake, 2010;
Alamri and Stevenson, 2015; Alamri and Steven-
sony, 2015; Achakulvisut et al., 2019; Mayer et al.,
2020).

2.3 Biomedical Text Mining

Biomedical natural language processing (BioNLP)
is a field in computational linguistics which also
receives substantial attention from the bioinformat-
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Query category

Disease Names Topical Hashtags Combinations Drugs

COVID-19, #COVID-19 #socialdistancing, COVID-19 AND cured, Hydroxychloroquine,
#chinesevirus COVID-19 AND vaccines Kaletra, Remdesivir

measles, #measles #vaccineswork, measles AND vaccine, M-M-R II, Priorix,
#dontvaccinate measles AND therapize ProQuad

cystic fibrosis, #livesavingdrugs4cf, cystic fibrosis AND treated, Orkambi, Trikafta,

#cysticfibrosis #orkambinow cystic fibrosis AND heal Tezacaftor

depression, #depression #depressionisreal, depression AND cure, Alprazolam, Buspirone,
#notjustsad depression AND treatment Xanax

Table 1: Examples of the four categories of search terms used to retrieve tweets about COVID-19, the measles,

cystic fibrosis, and depression via the Twitter API.

ics community. One focus is on the automatic ex-
traction of information from life science articles,
including entity recognition, e.g., of diseases, drug
names, protein and gene names (Habibi et al., 2017;
Giorgi and Bader, 2018; Lee et al., 2019, i.a.) or re-
lations between those (Lamurias et al., 2019; Sousa
et al., 2021; Lin et al., 2019, i.a.).

Biomedical text mining methods have also been
applied to social media texts and web content
(Wegrzyn-Wolska et al., 2011; Yang et al., 2016;
Sullivan et al., 2016, i.a.). One focus is on the
analysis of Twitter with regards to pharmacovig-
ilance. Other topics include the extraction of ad-
verse drug reactions (Nikfarjam et al., 2015; Cocos
et al., 2017), monitoring public health (Paul and
Dredze, 2012; Choudhury et al., 2013; Sarker et al.,
2016), and detecting personal health mentions (Yin
et al., 2015; Karisani and Agichtein, 2018).

A small number of studies looked into the com-
parison of biomedical information in social media
and scientific text: Thorne and Klinger (2018) ana-
lyze quantitatively how disease names are referred
to across these domains. Seiffe et al. (2020) ana-
lyze laypersons’ medical vocabulary.

3 Corpus Creation and Analysis

As the basis for our study, we collect a novel Twit-
ter corpus in which we annotate which tweets con-
tain biomedical claims, and (for all explicit claims)
which tokens correspond to that claim.

3.1 Data Selection & Acquisition

The data for the corpus was collected in June/July
2020 using Twitter’s API' which offers a keyword-
based retrieval for tweets. Table 1 provides a sam-
ple of the search terms we used.” For each of the

"https://developer.twitter.com/en/docs/twitter-api
The full list of search terms (1771 queries in total) is
available in the supplementary material.

medical topics, we sample English tweets from
keywords and phrases from four different query
categories. This includes (1) the name of the dis-
ease as well as the respective hashtag for each
topic, e.g., depression and #depression, (2) topi-
cal hashtags like #vaccineswork, (3) combinations
of the disease name with words like cure, treatment
or therapy as well as their respective verb forms,
and (4) a list of medications, products, and prod-
uct brand names from the pharmaceutical database
DrugBank?.

When querying the tweets, we exclude retweets
by using the API’s ‘-filter:retweets’ option. From
overall 902,524 collected tweets, we filter out those
with URLs since those are likely to be advertise-
ments (Cocos et al., 2017; Ma et al., 2018), and
further remove duplicates based on the tweet IDs.
From the resulting collection of 127,540 messages
we draw a sample of 75 randomly selected tweets
per topic (four biomedical topics) and search term
category (four categories per topic). The final cor-
pus to be annotated consists of 1200 tweets about
four medical issues and their treatments: measles,
depression, cystic fibrosis, and COVID-19.

3.2 Annotation

3.2.1 Conceptual Definition

While there are different schemes and models of
argumentative structure varying in complexity as
well as in their conceptualization of claims, the
claim element is widely considered the core com-
ponent of an argument (Daxenberger et al., 2017).

3https://go.drugbank.com/. At the time of creating the
search term list, COVID-19 was not included in DrugBank.
Instead, medications which were under investigation at the
time of compiling this list as outlined on the WHO website
were included for Sars-CoV-2 in this category: https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/
global-research-on-novel-coronavirus-2019-ncov/
solidarity-clinical-trial-for-covid- 19-treatments.
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Aharoni et al. (2014) suggest a framework in which
an argument consists of two main components: a
claim and premises. We follow Stab and Gurevych
(2017) and define the claim as the argumentative
component in which the speaker or writer expresses
the central, controversial conclusion of their argu-
ment. This claim is presented as if it were true even
though objectively it can be true or false (Mochales
and Ieven, 2009). The premise which is consid-
ered the second part of an argument includes all
elements that are used either to substantiate or dis-
prove the claim. Arguments can contain multiple
premises to justify the claim. (Refer to Section 3.4
for examples and a detailed analysis of argumenta-
tive tweets in the dataset.)

For our corpus, we focus on the claim element
and assign all tweets a binary label that indicates
whether the document contains a claim. Claims
can be either explicitly voiced or the claim property
can be inferred from the text in cases in which they
are expressed implicitly (Habernal and Gurevych,
2017). We therefore annotate explicitness or im-
plicitness if a tweet is labeled as containing a claim.
For explicit cases the claim sequence is addition-
ally marked on the token level. For implicit cases,
the claim which can be inferred from the implicit
utterance is stated alongside the implicitness anno-
tation.

3.2.2 Guideline Development

We define a preliminary set of annotation guide-
lines based on previous work (Mochales and Ieven,
2009; Aharoni et al., 2014; Bosc et al., 2016a; Dax-
enberger et al., 2017; Stab and Gurevych, 2017).
To adapt those to our domain and topic, we go
through four iterations of refinements. In each iter-
ation, 20 tweets receive annotations by two annota-
tors. Both annotators are female and aged 25-30.
Annotator Al has a background in linguistics and
computational linguistics. A2 has a background in
mathematics, computer science, and computational
linguistics. The results are discussed based on the
calculation of Cohen’s k (Cohen, 1960).

After Iteration 1, we did not make any substan-
tial changes, but reinforced a common understand-
ing of the existing guidelines in a joint discussion.
After Iteration 2, we clarified the guidelines by
adding the notion of an argumentative intention as
a prerequisite for a claim: a claim is only to be
annotated if the author actually appears to be inten-
tionally argumentative as opposed to just sharing
an opinion (Snajder, 2016; Habernal and Gurevych,

Cohen’s k
C/N E/I/N Span
Iteration 1 31 43 32
Iteration 2 .34 24 12
Iteration 3 .61 42 42
Iteration 4 .60 .68 41
Final corpus .56 A48 .38

Table 2: Inter-annotator agreement during development
of the annotation guidelines and for the final corpus.
C/N: Claim/non-claim, E/I/N: Explicit/Implicit/Non-
claim, Span: Token-level annotation of the explicit
claim expression.

2017). This is illustrated in the following example,
which is not to be annotated as a claim, given this
additional constraint:

This popped up on my memories from two
years ago, on Instagram, and honestly I'm so
much healthier now it’s quite unbelievable. A
stone heavier, on week 11 of no IVs (back
then it was every 9 weeks), and it’s all thanks
to #Trikafta and determination. | am stronger
than | think.

We further clarified the guidelines with regards
to the claim being the conclusive element in a Twit-
ter document. This change encouraged the annota-
tors to reflect specifically if the conclusive, main
claim is conveyed explicitly or implicitly.

After Iteration 3, we did not introduce any
changes, but went through an additional iteration
to further establish the understanding of the anno-
tation tasks.

Table 2 shows the results of the agreement of
the annotators in each iteration as well as the final
r-score for the corpus. We observe that the agree-
ment substantially increased from Iteration 1 to 4.
However, we also observe that obtaining a substan-
tial agreement for the span annotation remains the
most challenging task.

3.2.3 Annotation Procedure

The corpus annotation was carried out by the same
annotators that conducted the preliminary annota-
tions. A1 labeled 1000 tweets while A2 annotated
300 instances. From these both sets, 100 tweets
were provided to both annotators, to track agree-
ment (which remained stable, see Table 2). Anno-
tating 100 tweets took approx. 3.3 hours. Over-
all, we observe that the agreement is generally
moderate. Separating claim-tweets from non-claim
tweets shows an acceptable k=.56. Including the
decision of explicitness/implicitness leads to xk=.48.
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Class # Instances % Length
non-claim 663 55.25 30.56
claim (I+E) 537 44.75 39.88
expl. claim 370 30.83 39.89

claim phrase 17.59
impl. claim 167 13.92 39.88
total 1200 100 % 34.73

Table 3: Distribution of the annotated classes and aver-
age instance lengths (in tokens).

incompl.  blended  anecdotal

M 8 .16 14 28 9 18 14 28
C 17 34 15 .30 8§ .16 14 28
CF 12 24 10 20 26 52 18 .36
D 16 .32 9 18 23 46 11 22

total 53 27 48 24 66 33 57 .29

impl.

Table 4: Manual analysis of a subsample of 50
tweets/topic. Each column shows raw counts and per-
centage/topic.

The span-based annotation has limited agreement,
with k=.38 (which is why we do not consider this
task further in this paper). These numbers are
roughly in line with previous work. Achakulvisut
et al. (2019) report an average x=0.63 for labeling
claims in biomedical research papers. According
to Habernal and Gurevych (2017), explicit, inten-
tional argumentation is easier to annotate than texts
which are less explicit.

Our corpus is available with detailed annotation
guidelines at http://www.ims.uni-stuttgart.de/data/
bioclaim.

3.3 Corpus Statistics

Table 3 presents corpus statistics. Out of the 1200
documents in the corpus, 537 instances (44.75 %)
contain a claim and 663 (55.25 %) do not. From
all claim instances, 370 tweets are explicit (68 %).
The claims are not equally distributed across topics
(not shown in table): 61 % of measle-related tweets
contain a claim, 49 % of those related to COVID-
19, 40 % of cystic fibrosis tweets, and 29 % for
depression.

The longest tweet in the corpus consists of 110
tokens”, while the two shortest consist only of two

*The tweet includes 50 @-mentions followed by a measles-
related claim: “Oh yay! I can do this too, since you’re going
to ignore the thousands of children who died in outbreaks last
year from measles... Show me a proven death of a child from
vaccines in the last decade. That’s the time reference, now?
So let’s see a death certificate that says it, thx”

id Instance

1 The French have had great success #hydroxycloro-
quine.

2 Death is around 1/1000 in measles normally, same
for encephalopathy, hospitalisation around 1/5. With
all the attendant costs, the vaccine saves money, not
makes it.

3 Latest: Kimberly isn’t worried at all. She takes #Hy-
droxychloroquine and feels awesome the next day.
Just think, it’s more dangerous to drive a car than to
catch corona

4 Lol exactly. It’s not toxic to your body idk where he
pulled this information out of. Acid literally cured my
depression/anxiety I had for 5 years in just 5 months
(3 trips). It literally reconnects parts of your brain
that haven’t had that connection in a long time.

5  Hopefully! The MMR toxin loaded vaccine I received
many years ago seemed to work very well. More
please!

6  Wow! Someone tell people with Cystic fibrosis and
Huntington’s that they can cure their genetics through
Mormonism!

Table 5: Examples of explicit and implicit claim tweets
from the corpus. Explicit claims are in italics.

tokens®. On average, a claim tweet has a length
of ~40 tokens. Both claim tweet types, explicit
and implicit, have similar lengths (39.89 and 39.88
tokens respectively). In contrast to that, the average
non-claim tweet is shorter, consisting of about 30
tokens. Roughly half of an explicit claim corre-
sponds to the claim phrase.

We generally see that there is a connection be-
tween the length of a tweet and its class member-
ship. Out of all tweets with up to 40 tokens, 453
instances are non-claims, while 243 contain a claim.
For the instances that consist of 41 and more tokens,
only 210 are non-claim tweets, whereas 294 are la-
beled as claims. The majority of the shorter tweets
(< 40 tokens) tend to be non-claim instances, while
mid-range to longer tweets (> 40 tokens) tend to
be members of the claim class.

3.4 Qualitative Analysis

To obtain a better understanding of the corpus, we
perform a qualitative analysis on a subsample of 50
claim-instances/topic. We manually analyze four
claim properties: the tweet exhibits an incomplete
argument structure, different argument components
blend into each other, the text shows anecdotal evi-
dence, and it describes the claim implicitly. Refer
to Table 4 for an overview of the results.

In line with Snajder (2016), we find that ar-
gument structures are often incomplete, e.g., in-

“Xanax damage” and “Holy fuck”.
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stances only contain a stand-alone claim without
any premise. This characteristic is most prevalent
in the COVID-19-related tweets In Table 5, Ex. 1
is missing a premising element, Ex. 2 presents
premise and claim.

Argument components (claim, premise) are not
very clear cut and often blend together. Conse-
quently they can be difficult to differentiate, for
instance when authors use claim-like elements as a
premise. This characteristic is again, most preva-
lent for COVID-19. In Ex. 3 in Table 5, the last
sentence reads like a claim, especially when looked
at in isolation, yet it is in fact used by the author to
explain their claim.

Premise elements which substantiate and give
reason for the claim (Bosc et al., 2016b) tradition-
ally include references to studies or mentions of ex-
pert testimony, but occasionally also anecdotal evi-
dence or concrete examples (Aharoni et al., 2014).
We find the latter to be very common for our data
set. This property is most frequent for cystic fibro-
sis and depression. Ex. 4 showcases how a personal
experience is used to build an argument.

Implicitness in the form of irony, sarcasm or
rhetoric questions are common features for these
types of claims on Twitter. We observe claims
related to cystic fibrosis are most often (in our sam-
ple) implicit. Ex. 5 and 6 show instances that use
sarcasm or irony. The fact that implicitness is such
a common feature in our dataset is in line with
the observation that implicitness is a characteristic
device not only in spoken language and everyday,
informal argumentation (Lumer, 1990), but also in
user-generated web content in general (Habernal
and Gurevych, 2017).

4 Methods

In the following sections we describe the concep-
tual design of our experiments and introduce the
models that we use to accomplish the claim detec-
tion task.

4.1 Classification Tasks

We model the task in a set of different model con-
figurations.

Binary. A trained classifier distinguishes between
claim and non-claim.

Multiclass. A trained classifier distinguishes be-
tween exlicit claim, implicit claim, and non-claim.

Multiclass Pipeline. A first classifier learns to dis-
criminate between claims and non-claims (as in
Binary). Each tweet that is classified as claim is
further separated into implicit or explicit with an-
other binary classifier. The secondary classifier is
trained on gold data (not on predictions of the first
model in the pipeline).

4.2 Model Architecture

For each of the classification tasks (bi-
nary/multiclass, steps in the pipeline), we
use a set of standard text classification methods
which we compare. The first three models (NB,
LG, BIiLSTM) use 50-dimensional FastText
(Bojanowski et al., 2017) embeddings trained on
the Common Crawl corpus (600 billion tokens) as
input®.

NB. We use a (Gaussian) naive Bayes with an av-
erage vector of the token embeddings as input.

LG. We use a logistic regression classifier with the
same features as in NB.

BiLSTM. As a classifier which can consider con-
textual information and makes use of pretrained
embeddings, we use a bidirectional long short-term
memory network (Hochreiter and Schmidhuber,
1997) with 75 LSTM units followed by the output
layer (sigmoid for binary classification, softmax
for multiclass).

BERT. We use the pretrained BERT (Devlin et al.,
2019) base model’ and fine-tune it using the claim
tweet corpus.

5 Experiments

5.1 Claim Detection

With the first experiment we explore how reliably
we can detect claim tweets in our corpus and how
well the two different claim types (explicit vs. im-
plicit claim tweets) can be distinguished. We use
each model mentioned in Section 4.2 in each set-
ting described in Section 4.1. We evaluate each
classifier in a binary or (where applicable) in a
multi-class setting, to understand if splitting the
claim category into its subcomponents improves
the claim prediction overall.

®https://fasttext.cc/docs/en/english-vectors.html
"https://huggingface.co/bert-base-uncased
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NB LG LSTM BERT

Eval. Task Class P R F, P R F P R F P R F

binar claim 67 65 66 66 74 70 .68 48 57 .66 .72 .69

g‘ y n-claim .75 77 .76 .79 72 .76 69 84 75 78 72 .15
=

) multiclass claim 66 65 66 73 53 61 75 35 48 81 49 .61

" nclaim 74 76 75 71 8 78 66 91 76 71 91 .80

expl S5 45 50 63 39 48 59 27 37 62 45 .52

2 multiclass  impl 31 4 36 33 35 34 18 09 .12 29 .09 .13

° n-claim .74 76 75 71 8 78 66 91 .76 .71 91 .80

3 expl 56 45 50 52 55 53 50 37 43 54 65 .59

g pipeline impl 31 4 36 28 35 31 .07 .04 .05 26 22 24

n-claim .75 77 .76 79 72 776 69 84 75 78 72 .5

Table 6: Results for the claim detection experiments, separated into binary and multi-class evaluation. The best F;
scores for each evaluation setting and class are printed in bold face.

5.1.1 Experimental Setting

From our corpus of 1200 tweets we use 800 in-
stances for training, 200 as validation data to opti-
mize hyperparameters and 200 as test data. We tok-
enize the documents and substitute all @-mentions
by “@username”. For the LG models, we use
an 12 regularization. For the LSTM models, the
hyper-parameters learning rate, dropout, number
of epochs, and batch size were determined by a
randomized search over a parameter grid and also
use 12 regularization. For training, we use Adam
(Kingma and Ba, 2015). For the BERT models,
we experiment with combinations of the recom-
mended fine-tuning hyper-parameters from Devlin
et al. (2019) (batch size, learning rate, epochs), and
use those with the best performance on the valida-
tion data. An overview of all hyper-parameters is
provided in Table 9 in the Appendix. For the Bi-
LSTM, we use the Keras API (Chollet et al., 2015)
for TensorFlow (Abadi et al., 2015). For the BERT
model, we use Simple Transformers (Rajapakse,
2019) and its wrapper for the Hugging Face trans-
formers library (Wolf et al., 2020). Further, we
oversample the minority class of implicit claims to
achieve a balanced training set (the test set remains
with the original distribution). To ensure compa-
rability, we oversample in both the binary and the
multi-class setting. For parameters that we do not
explicitly mention, we use default values.

5.1.2 Results

Table 6 reports the results for the conducted experi-
ments. The top half lists the results for the binary
claim detection setting. The bottom half of the ta-
ble presents the results for the multi-class claim
classification.

For the binary evaluation setting, we observe that
casting the problem as a ternary prediction task is
not beneficial — the best F; score is obtained with
the binary LG classifier (.70 F; for the class claim
in contrast to .61 F; for the ternary LG). The BERT
and NB approaches are slightly worse (1 pp and
4pp less for binary, respectively), while the LSTM
shows substantially lower performance (13pp less).

In the ternary/multi-class evaluation, the scores
are overall lower. The LSTM shows the lowest
performance. The best result is obtained in the
pipeline setting, in which separate classifiers can
focus on distinguishing claim/non-claim and ex-
plicit/implicit — we see .59 F; for the explicit claim
class. Implicit claim detection is substantially more
challenging across all classification approaches.

We attribute the fact that the more complex mod-
els (LSTM, BERT) do not outperform the linear
models across the board to the comparably small
size of the dataset. This appears especially true
for implicit claims in the multi-class setting. Here,
those models struggle the most to predict implicit
claims, indicating that they were not able to learn
sufficiently from the training instances.

5.1.3 Error Analysis

From a manual introspection of the best performing
model in the binary setting, we conclude that it
is difficult to detect general patterns. We show
two cases of false positives and two cases of false
negatives in Table 7. The false positive instances
show that the model struggles with cases that rely
on judging the argumentative intention. Both Ex. 1
and 2 contain potential claims about depression
and therapy, but they have not been annotated as
such, because the authors’ intention is motivational
rather than argumentative. In addition, it appears
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id G P Text

1 n c #DepressionlsReal #MentalHealthAwareness #men-
talhealth ruins lives. #depression destroys people.
Be there when someone needs you. It could change
a life. It may even save one.

2 n c The reason I stepped away from twitch and gaming
with friends is because iv been slowly healing from
a super abusive relationship. Going to therapy and
hearing you have ptsd isnt easy. But look how far iv
come, lost some depression weight and found some
confidence:)plz stay safe

3 ¢ n Not sure who knows more about #COVID19, my
sister or #DrFauci. My money is on Stephanie.

4 ¢ n How does giving the entire world a #COVID19 #vac-
cine compare to letting everyone actually get #covid?
What would you prefer? I’'m on team @username
#WHO #CDC #math #VaccinesWork #Science

Table 7: Examples of incorrect predictions by the LG
model in the binary setting (G:Gold, P:Predictions; n:
no claim; c: claim).

that the model struggles to detect implicit claims
that are expressed using irony (Ex. 3) or a rhetorical
question (Ex. 4).

5.2 Cross-domain Experiment

We see that the models show acceptable perfor-
mance in a binary classification setting. In the
following, we analyze if this observation holds
across domains or if information from another out-
of-domain corpus can help.

As the binary LG model achieved the best re-
sults during the previous experiment, we use this
classifier for the cross-domain experiments. We
work with paragraphs of persuasive essays (Stab
and Gurevych, 2017) as a comparative corpus. The
motivation to use this resource is that while they
are a distinctly different text type and usually lin-
guistically much more formal than tweets, they are
also opinionated documents.® We use the resulting
essay model for making an in-domain as well as
a cross-domain prediction and vice versa for the
Twitter model. We further experiment with com-
bining the training portions of both datasets and
evaluate its performance for both target domains.

5.2.1 Experimental Setting

The comparative corpus contains persuasive es-
says with annotated argument structure (Stab and
Gurevych, 2017). Eger et al. (2017) used this cor-

8An essay is defined as “a short piece of writing on a
particular subject, often expressing personal views” (https:
//dictionary.cambridge.org/dictionary/english/essay).

Train Test P R F

Twitter Twitter .66 .74 .70
Essay Twitter .51 .69 .59
Twitter+Essay ~ Twitter .58 .75 .66
Essay Essay 96 1.0 .98
Twitter Essay 94 74 83
Twitter+Essay ~ Essay 95 1.0 97

Table 8: Results of cross-domain experiments using the
binary LG model on the Twitter and the essay corpus.
We report precision, recall and F; for the claim tweet
class.

pus subsequently and provide the data in CONLL-
format, split into paragraphs, and predivided into
train, development and test set.” We use their ver-
sion of the corpus. The annotations for the es-
say corpus distinguish between major claims and
claims. However, since there is no such hierar-
chical differentiation in the Twitter annotations,
we consider both types as equivalent. We choose
to use paragraphs instead of whole essays as the
individual input documents for the classification
and assign a claim label to every paragraph that
contains a claim. This leaves us with 1587 essay
paragraphs as training data, and 199 and 449 para-
graphs respectively for validation and testing.

We follow the same setup as for the binary set-
ting in the first experiment.

5.2.2 Results

In Table 8, we summarize the results of the cross-
domain experiments with the persuasive essay cor-
pus. We see that the essay model is successful
for classifying claim documents (.98 F1) in the in-
domain experiment. Compared to the in-domain
setting for tweets all evaluation scores measure
substantially higher.

When we compare the two cross-domain experi-
ments, we observe that the performance measures
decrease in both settings when we use the out-of-
domain model to make predictions (11pp in F;
for tweets, 15pp for essays). Combining the train-
ing portions of both data sets does not lead to an
improvement over in-domain experiments. This
shows the challenge of building domain-generic
models that perform well across different data sets.

6 Discussion and Future Work
In this paper, we presented the first data set for
biomedical claim detection in social media. In our

*https://github.com/UKPLab/acl2017-neural_end2end_
am/tree/master/data/conll/Paragraph_Level
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first experiment, we showed that we can achieve an
acceptable performance to detect claims when the
distinction between explicit or implicit claims is not
considered. In the cross-domain experiment, we
see that text formality, which is one of the main dis-
tinguishing feature between the two corpora, might
be an important factor that influences the level of
difficulty in accomplishing the claim detection task.

Our hypothesis in this work was that biomedi-
cal information on Twitter exhibits a challenging
setting for claim detection. Both our experiments
indicate that this is true. Future work needs to
investigate what might be reasons for that. We
hypothesize that our Twitter dataset contains partic-
ular aspects that are specific to the medical domain,
but it might also be that other latent variables lead
to confounders (e.g., the time span that has been
used for crawling). It is important to better under-
stand these properties.

We suggest future work on claim detection mod-
els optimize those to work well across domains. To
enable such research, this paper contributed a novel
resource. This resource could further be improved.
One way of addressing the moderate agreement be-
tween the annotators could be to include annotators
with medical expertise to see if this ultimately fa-
cilitates claim annotation. Additionally, a detailed
introspection of the topics covered in the tweets for
each disease would be interesting for future work
since this might shed some light on which topi-
cal categories of claims are particularly difficult to
label.

The COVID-19 pandemic has sparked recent
research with regards to detecting misinformation
and fact-checking claims (e.g., Hossain et al. (2020)
or Wadden et al. (2020)). Exploring how a claim-
detection-based fact-checking approach rooted in
argument mining compares to other approaches is
up to future research.
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Abstract

Recent advancements in pretraining strategies
in NLP have shown a significant improvement
in the performance of models on various text
mining tasks. In this paper, we introduce Bio-
ELECTRA, a biomedical domain-specific lan-
guage encoder model that adapts ELECTRA
(Clark et al., 2020) for the Biomedical domain.
BioELECTRA outperforms the previous mod-
els and achieves state of the art (SOTA) on
all the 13 datasets in BLURB benchmark and
on all the 4 Clinical datasets from BLUE
Benchmark across 7 NLP tasks. BioELEC-
TRA pretrained on PubMed and PMC full
text articles performs very well on Clinical
datasets as well. BIoELECTRA achieves new
SOTA 86.34%(1.39% accuracy improvement)
on MedNLI and 64% (2.98% accuracy im-
provement) on PubMedQA dataset.

1 Introduction

Following the success of BERT (Devlin et al., 2018)
(Bidirectional Encoder Representations from Trans-
formers) in the general domain, the pretrain-and-
finetune approach has been used in the Biomedical
domain. With large scale free text available from
PubMed and PubMed central (millions of articles),
biomedical domain has large unlabelled domain-
specific corpus. However, the biomedical domain
has labelled datasets that are very small compared
to the general domain. Thus the transfer learning
approach is well suited for Biomedical domain.

In the biomedical domain, BioBERT (Lee et al.,
2020), BlueBERT (Peng et al., 2019) and Clinical-
BERT (Alsentzer et al., 2019) are the initial mod-
els based on BERT. These models follow contin-
ual pretraining approach where the model weights
are initialised with weights from BERT trained on
Wikipedia and Book Corpus and uses the same vo-
cabulary. Recent models SciBERT (Beltagy et al.,
2019), PubMedBERT (Gu et al., 2020) and Bio-
Im (Lewis et al., 2020) have shown that pretrain-

ing from scratch using domain specific corpora
along with domain specific vocabulary improves
the model performance significantly.

In this work, we adapt ELECTRA (Clark et al.,
2020), a recent and powerful general domain model
for the biomedical domain and we release Bio-
ELECTRA - a biomedical domain specific lan-
guage encoder model. We follow the domain spe-
cific pretraining approach where the ELECTRA
model is pretrained on PubMed and PubMed Cen-
tral (PMC) full text articles. ELECTRA outper-
forms BERT, ALBERT (Lan et al., 2019), XL Net
(Yang et al., 2020) and RoBERTa (Liu et al., 2019)
on the GLUE (Wang et al., 2019) Benchmark and
SQuAD (Rajpurkar et al., 2016a).

In particular, we make the following contribu-
tions.

1. We release BioELECTRA(P), BioELEC-
TRA(P + F), BioELECTRA(P + F) LT(Longer
Training of additional 1M steps) and Bio-
ELECTRA(W + P) pretrained from scratch
using Biomedical domain text. Pretrained
weights for all these models are publicly
released through huggingface transform-
ers(Wolf et al., 2020) model hub.

2. We evaluate our BioELECTRA models on all
the 13 datasets in the BLURB (Gu et al., 2020)
benchmark and on all the 4 clinical datasets
from BLUE (Peng et al., 2019) benchmark
across 7 NLP tasks.

3. BioELECTRA model achieves state-of-the-
art (SOTA) results on all the 13 datasets in
BLURB benchmark and achieves SOTA on all
the Clinical datasets from BLUE Benchmark.

4. We publicly release the code' and parameters
to reproduce our research results.

'"The code and models are available at

https://github.com/kamalkraj/BioELECTRA
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2 Related work

Pretrained word embeddings (Mikolov et al.,
2013), (Pennington et al., 2014) and contextualised
word embeddings (Peters et al., 2018) have helped
the deep learning algorithms to improve their per-
formance in NLP tasks. ULMFiT (Howard and
Ruder, 2018), introduces the transfer learning ap-
proach to Natural language processing and Ope-
nAl GPT (Radford et al., 2018), pretrains a trans-
former (Vaswani et al., 2017) for learning gen-
eral language representations. Similar to ULM-
FiT and OpenAlI GPT, BERT (Devlin et al., 2018)
follows this fine tuning approach and introduces
a powerful bidirectional language representation
model using the transformer based model architec-
ture. BERT achieves SOTA on most NLP tasks
without any heavily-engineered task specific archi-
tectures. Following the success of BERT, XI.Net
(Yang et al., 2020) with generalized autoregres-
sive pretraining and RoBERTa (Liu et al., 2019)
with robust pretraining techniques experiment with
different pretraining objectives. ALBERT (Lan
et al., 2019) uses weight sharing and embedding
factorisation to reduce memory consumption and
increase the training speed. ELECTRA (Clark
et al., 2020) introduces sample-efficient "replaced
token detection’ pretraining technique. ELECTRA-
small, trained with very little compute outperforms
GPT and performs comparably with larger models
like RoBERTa and XLNet.

Recent works adapt BERT to scientific, biomed-
ical and clinical domains. BioBERT (Lee et al.,
2020) pretrains BERT with data from PubMed
and PubMed Central (PMC) articles. BlueBERT
(Peng et al., 2019) pretrains BERT on PubMed,
PMC and MIMIC III (Johnson et al., 2016) data.
ClinicalBERT (Alsentzer et al., 2019) initialises
with BioBERT weights and pretrains on data from
MIMIC III. SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2020) and Bio-Im (Lewis
et al., 2020) pretrain BERT based models from
scratch with domain specific data. SciBERT pre-
trains on 1.14M papers from Semantic Scholar
(Ammar et al., 2018), PubMedBERT on PubMed
and PMC data and Bio-lm (Lewis et al., 2020) on
data from PubMed, PMC and MIMIC III. Bench-
marks in biomedical NLP - BLUE (Biomedical
Language Understanding Evaluation) and BLURB
(Biomedical Language Understanding & Reason-
ing Benchmark) are released by BlueBERT and

PubMedBERT respectively.

3 Methods

3.1 Pretraining from scratch using domain
specific corpora

The pioneers in applying transfer learning to NLP,
pretrain Language Model(LM) on unlabelled large
corpora in the general domain like Wikipedia ar-
ticles, Web Text, Books corpus, Gigaword, web
crawl etc. Biomedical literature has specific con-
cepts and terms that are not part of the general do-
main. To enable the models to learn these features
very specific to the biomedical domain, BioNLP
models, BioBERT (Lee et al., 2020) and BlueBERT
(Peng et al., 2019) use the mixed-domain pretrain-
ing approach (Gu et al., 2020). In mixed-domain
approach, the model initialises with BERT weights
and vocabulary trained on general domain text and
the model is pretrained on the biomedical text.

Biomedical domain with its publicly available
literature which is growing exponentially by the
year makes it well suited for domain specific pre-
training from scratch. Using a general domain
vocabulary for biomedical text results in complex
and specific terms being split into numerous sub-
words, as they do not exist in the general domain
vocabulary. Hence a model trained on these word
pieces might not generalise well for the domain
specific downstream tasks. Recent work PubMed-
BERT (Gu et al., 2020) and Bio-Im (Lewis et al.,
2020) pretrain a language model from scratch on
PubMed abstracts and use the vocabulary that is
generated from PubMed abstracts. These models
outperform the BioBERT and BlueBERT models
on biomedical and clinical NLP tasks .

3.2 Data

We use data very similar to PubMedBERT for fair
comparison.

PubMed Abstracts We use text from 22 million
PubMed abstracts downloaded as of January 2021.
27 GB of cleaned text with approximately 4.2 bil-
lion words are used.

PubMed Central (PMC) We obtained full text
from 3.2 million PubMed Central (PMC) 2 articles
as of January 2021. After cleaning the data, we use
57GB of text with approximately 9.6 billion words.
Preprocessing We used pubmed_parser parser? for

Zhttps://www.ncbi.nlm.nih.gov/pmc/
3https://github.com/titipata/pubmed_parser
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Figure 1: Overview of ELECTRA-Base model Pretraining. Output shapes are mentioned in parenthesis after each
block.( B=Batch Size, MSL=Maximum Sequence Length, H=Hidden size )

extracting the abstracts and full text articles. We
used SciSpacy(Neumann et al., 2019) for sentence
tokenization.

3.3 ELECTRA

Architecture ELECTRA (Clark et al., 2020) pre-
training architecture consists of a Generator and a
Discriminator network. Each of them consists of
Encoder blocks of the transformer (Vaswani et al.,
2017) architecture. The generator size is chosen
smaller than the Discriminator to make ELECTRA
computationally efficient. The size of the Hidden
dimension (H) of the transformer encoder in Gen-
erator is reduced to 1/3 the size of the Discrimi-
nator. The Generator and Discriminator share the
weights of the Embedding layer, which is com-
posed of token embeddings, position embeddings
and type embeddings. An embedding projector is
added to Generator after the Embedding layer to
project the embedding dimension H to H/3. Figure
1 shows pretraining configuration of ELECTRA-
Base model. The Generator is trained with maxi-
mum likelihood as in ELECTRA paper and Gener-
ator is not given a noise input vector as in General
Adversarial Networks (GANs). The Discriminator
is trained very similar to a classifier with cross en-
tropy loss. After pretraining only the Discriminator

is used for all the finetuning.

Input/Output representations ELECTRA fol-
lows the Input/Output representations of BERT
(Devlin et al., 2018). The first token is always
the [CLS] token whose final hidden state is used
for finetuning sentence level tasks. For single sen-
tence tasks, the tokenized input sequence should
follow the [CLS] token and end with [SEP]. For
sentence pair tasks, the tokenized input sentences
should be separated by a [SEP] token. Type and
Position embeddings which indicate the sentence
that it belongs to (sentencel/sentence2) are added
to the input token embeddings. Final input rep-
resentation of a given token is the summation of
its token, position and type embeddings which are
learnt during the training.

Pretraining Task ELECTRA introduces re-
placed token prediction pretraining task where
the model is trained to distinguish real input to-
kens from synthetically generated tokens. Random
words are selected in the input text and replaced
with tokens generated by a small Generator net-
work. The Discriminator network then predicts
whether the input token is original or replaced. This
novel approach ensures that the model learns from
all the input tokens and not just from 15% of the
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Dataset Task Train Dev Test Evaluation Metrics
BC5-chem (Li et al., 2016) NER 5203 5347 5385  Fl entity-level
BC5-disease (Li et al., 2016) NER 4182 4244 4424  F1 entity-level
NCBI-disease (Dogan et al., 2014) NER 5134 787 960 F1 entity-level
BC2GM (Smith et al., 2008) NER 15197 3061 6325  F1 entity-level
JNLPBA (Collier and Kim, 2004) NER 46750 4551 8662  FI entity-level
ShARe/CLEFE* (Suominen et al., 2013) NER 4628 1075 5195  FI1 entity-level
EBM PICO(Nye et al., 2018) PICO 339167 85321 16364 Macro F1 word-level
ChemProt (Krallinger et al., 2017) Relation Extraction 18035 11268 15745 Micro F1

DDI (Herrero-Zazo et al., 2013) Relation Extraction 25296 2496 5716  Micro F1

GAD (Bravo et al., 2015) Relation Extraction 4261 535 534 Micro F1
i2b2-2010* (Uzuner et al., 2011) Relation Extraction 3110 11 6293 Micro F1
BIOSSES (Sogancioglu et al., 2017) Sentence Similarity 64 16 20 Pearson

Clinical STS** (Wang et al., 2020) Sentence Similarity 1312 329 412 Pearson

HoC (Baker et al., 2015) Document Classification 1295 186 371 Micro F1
MedNLI* (Romanov and Shivade, 2018) Inference 11232 1395 1422 Accuracy
PubMedQA (Jin et al., 2019) Question Answering 450 50 500 Accuracy

BioASQ (Nentidis et al., 2019) Question Answering 670 75 140 Accuracy

Table 1: Datasets from BLURB and BLUE benchmark. Number of instances in train, dev, and test set along with
the evaluation metrics used for each of the datasets is listed. * Clinical domain dataset from BLUE. ** Instead of
MedSTS from BLUE we used ClinicalSTS released by (Wang et al., 2020)

tokens in the input text as in BERT. This makes the
pretraining task computationally effective. As re-
cent work (Liu et al., 2019) (Yang et al., 2020) sug-
gests that using ’next sentence prediction” does not
show consistent improvement in the scores, ELEC-
TRA does not use any such ’contrastive learning’
techniques for pretraining. Since ELECTRA does
not have a contrastive learning technique, there is
no pooling projection layer in ELECTRA.

4 Experiments

4.1 BioELECTRA pretraining

We pretrain ELECTRA from scratch with PubMed
abstracts and PMC full text articles mentioned in
Section 3.2. PubMedBERT (Gu et al., 2020) and
BioBERT (Lee et al., 2020) pretrained BERT-Base
models with biomedical domain specific corpus. In
this paper, we experiment only with ELECTRA-
Base architecture to ensure a fair comparison with
these models. Four ELECTRA-Base models are
trained - BIOELECTRA (P) on PubMed abstracts,
BioELECTRA (P+F) on PubMed abstracts and
PMC full text articles, BIOELECTRA (P+F) with
longer training (2M steps) and BioELECTRA
(W+P) on Wikipedia and PubMed abstracts. Bio-
ELECTRA(P) and BioELECTRA(P+F) models are
trained with 1M steps with a batch size of 512.
The number of training steps are chosen to make

our work comparable with BioBERT* and Pub-
MedBERT.> BioELECTRA(P+F) LT is trained like
BioELECTRA(P+F) with an additional 1M steps.
For BioELECTRA(W+F), a continual training ap-
proach is adopted where the model is initialised
with ELECTRA-BASE general domain weights.
It is pretrained further with PubMed abstracts for
100k, 200k and 400k steps. We publish our re-
sults of BIOELECTRA(W+F) pretrained with 200k
steps as these results were comparable with Pub-
MedBERT BLURB (Gu et al., 2020) score.

SciBERT (Beltagy et al., 2019) shows that
models trained on uncased vocabularies perform
slightly better than the cased models in biomed-
ical domain even for NER tasks. Hence we use
the uncased biomedical domain-specific vocabu-
laries from PubMedBERT for all our experiments.
The optimization techniques and parameters from
ELECTRA paper are followed. All our models
are trained on Tensor Processing Unit(TPU) v3-8
instances. Refer Appendix A for complete model
and optimizer details.

4.2 Datasets

We finetune our ELECTRA-Base models on 17
NLP datasets - 13 biomedical datasets from the

“BioBERT was trained with a batch size of 256 with 1M
steps in pretraining and 1M steps in continual pretraining.

SPubMedBERT was trained with a batch size of 8,192 for
62,500 steps.
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BLURB (Gu et al., 2020) benchmark and 4 clinical
datasets from the BLUE (Peng et al., 2019) bench-
mark. We group our datasets based on the NLP
tasks. We do not discuss the datasets in detail due
to space constraints. Details on train, dev, test split,
benchmark they belong to, evaluation metric used
can be found in Table 1. Detailed description of
the datasets are available in the BLURB(Gu et al.,
2020) and BLUE(Peng et al., 2019) paper.

4.2.1 Named Entity Recognition (NER)

NER task aims at recognizing and predicting the
entities e.g (chemicals, diseases, genes, proteins)
in the given text. We use BC5-Chemical, BCS5-
Disease, NCBI-Disease, BC2GM, JNLPBA biomed-
ical datasets from the BLURB benchmark. These
datasets have the same train, dev and test split as
released by (Crichton et al., 2017). In addition
to these, ShARe/CLEFE clinical dataset used by
BLUE benchmark which uses the train, dev and
test split released by (Suominen et al., 2013) is used
for NER task.

4.2.2 PICO extraction (PICO)

PICO task is very similar to NER, where the
model aims to predict the Participants, Interven-
tions, Comparisons and Outcomes entities in the
given text. EBM PICO (Nye et al., 2020) dataset
from the BLURB benchmark which has the same
train, test and dev split as the original dataset is
used for this task.

4.2.3 Relation Extraction (RE)

Relation Extraction task predicts relations and their
types between the two entities mentioned in the
given sentences (e.g, gene—disease relations, pro-
tein—chemical relations). We use DDI, ChemProt
and GAD datasets from the BLURB benchmark
and i2b2-2010 clinical dataset in the BLUE bench-
mark. GAD dataset in BLURB benchmark uses
train, dev and test split created by (Lee et al.,
2020). For DDI, BLURB uses the original dataset
by (Herrero-Zazo et al., 2013) and release their
own train, dev and test datasets. BLURB uses the
train, dev and test split from the original dataset
(Krallinger et al., 2017) for ChemProt. BLUE uses
the train, dev and test split released by (Uzuner
etal., 2011)

4.2.4 Sentence Similarity

Sentence Similarity task predicts the similarity
score based on how similar are the given pair of

sentences. BIOSSES dataset from BLURB bench-
mark and ClinicalSTS dataset instead of the Med-
STS dataset is chosen from BLUE benchmark.
BLURB uses the train, dev and split created by
(Peng et al., 2019). ClinicalSTS dataset is chosen
as that is the latest version provided by n2c2 2019
challenge(Wang et al., 2020). It has added 574
more samples for training and a new test set of 412
samples. As this dataset doesn’t have a public train
and dev split, we have split it into 80% train and
20% dev set and we use the original test set for
evaluation.

4.2.5 Document classification

Document classification task aims to predict the
multiple labels for the given text. Evaluation for
Document classification task is done at the docu-
ment level where we aggregate the labels over all
the sentences in a document. We use HoC dataset
from BLURB benchmark which uses the original
dataset by (Baker et al., 2015) to create their own
train, dev and test split.

4.2.6 Natural Language Inference (NLI)

Natural Language Inference task predicts whether
the relation between two sentences are entailment,
contradiction or neutrality. MedNLI (Romanov and
Shivade, 2018) dataset from the BLUE benchmark
which uses the original train, dev and test split is
used for this task.

4.2.7

Question Answering task aims to predict the an-
swers in the context when a question text is given
as the first sentence. The answers are either two-
way (yes/ no) or three-way (yes/ maybe/ no). Pub-
MedQA and BioASQ datasets from BLURB bench-
mark are used for our experiments. For both Pub-
MedQA (Jin et al., 2019) and BioASQ (Nentidis
et al., 2019), BLURB uses the original train, dev
and test split.

Question Answering (QA)

4.3 Fine tuning

ELECTRA (Clark et al., 2020) applies very min-
imal architectural changes for finetuning down-
stream tasks. We follow the same approach as
ELECTRA for finetuning BioELECTRA on the
various downstream tasks. BIO encoding scheme
is adopted for the NER tasks where B stands for
Beginning, I stands for Inside and O stands for
Outside. All the NER datasets in BLURB bench-
mark and ShARe/CLEFE in BLUE benchmark have
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BioBERT SciBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA

cased uncased cased cased uncased uncased
P (CS+F) (W+P+M) (W+P+M) P) P)
BC5-chem 92.85 92.49 90.80 91.19 93.33 93.60
BC5-disease. 84.70 84.54 83.04 83.69 85.62 85.84
NCBI-disease 89.13 88.10 86.32 88.04 87.82 89.38
BC2GM 83.82 83.36 81.71 81.87 84.52 84.69
JNLPBA 79.35 79.45 78.59 78.68 80.06 80.17
EBM PICO 73.18 73.12 72.06 72.54 73.38 74.26
ChemProt 76.14 75.24 72.04 71.46 77.24 78.20
DDI 80.88 81.06 78.20 77.78 82.36 82.76
GAD 80.94 80.90 78.40 77.24 82.34 83.70
BIOSSES 89.52 86.25 91.23 85.38 92.30 92.49
HoC 81.54 80.66 80.74 80.48 82.32 83.50
PubMedQA 60.24 57.38 49.08 48.44 55.84 64.02
BioASQ 84.14 78.86 68.50 68.71 87.56 88.57
BLURB score 80.29 78.80 77.19 76.19 81.10 82.47

Table 2: Comparison of pretrained BioNLP models on the BLURB (Gu et al., 2020) benchmark. The BLURB
score is the macro average of mean test results for each of the six tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question Answering). Refer Table 1 for the evaluation metric used for each
task. (P - PubMed abstracts, CS - Computer Science, F - PubMed Central full text articles, W - Wikipedia, M -

MIMIC III (Johnson et al., 2016))

a single entity. (e.g. Disease in BC5-disease).
PICO, a sequential tagging task is solved using
the NER task approach and Document classifica-
tion task for HoC dataset is solved as multi label
classification task. The datasets in NER, PICO
and Document classification tasks follow the sin-
gle sentence representation. As mentioned in sec-
tion 3.3, each tokenized input sequence follows the
[CLS] token and ends with the [SEP] token. Sen-
tence Similarity, Question Answering and Natural
Language Inference tasks all have sentence pairs
in their inputs. We process the sentence pairs as
[CLS]sentencel[SEP]sentence2[SEP] very similar
to BERT. In the Question Answering task, ’ques-
tion’ is treated as sentencel and ’context’ is treated
as sentence?2.

ELECTRA (Clark et al., 2020) uses the vector
representation of the [CLS] token to generate the
output for all the given NLP tasks except NER
and PICO. For NER and PICO, representations for
each token is used to classify the entities. A simple
linear layer is added to the output of ELECTRA
for finetuning. ELECTRA does not use LSTM
(Hochreiter and Schmidhuber, 1997), CRF (Laf-
ferty et al., 2001) layers for NER tasks. Figure 2 in
appendix B illustrates the finetuning architecture

for the NLP tasks. Mean-square error is used for
regression tasks and cross entropy loss is used for
classification tasks. Similar to BERT finetuning, all
the layers are fine-tuned together along with task
specific prediction layer. We use ’discriminative
finetuning’ similar to ELECTRA, where only the
final layer is trained with the original learning rate
and all other layers use a learning rate with a de-
cay factor. For finetuning, Adam (Kingma and Ba,
2017) optimizer with a slanted triangular learning
rate scheduler which linearly warms up (10% of
steps) followed by linear decay (90% of steps) is
used. We also use a dropout probability of 10%.
We experiment with the following hyper parame-
ters: learning rate [3e-5, Se-5, le-4, 1.5e-4, 2e-4],
batch size [16, 32], layer-wise learning-rate decay
out of [0.9, 0.8, 0.7] and epochs [3,5]. BIOSSES
(Sogancioglu et al., 2017), PubMedQA (Jin et al.,
2019), BioASQ (Nentidis et al., 2019) and Clini-
calSTS (Wang et al., 2020) are finetuned for longer
epochs. For more details on the hyper parame-
ters, refer Appendix B. We ran 10 fine tuning runs
on BIOSSES, BioASQ and PubMedQA since the
datasets are relatively smaller and 5 runs on all the
other datasets. The average score is reported as the
final score for the evaluation metric.
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BioBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA
cased cased cased cased uncased uncased uncased uncased
P) (W+P+M) P P+M) P) (P+F) P) (P+F)
MedNLI 82.63 82.70 82.2 84 83.82 84.17 86.27 86.34
i2b2-2010 72.81 74.82 74.4 76.4 75.14 73.93 76.50 75.73
ShARe/CLEFE 80.73 82.15 75.4 77.1 74.45 74.77 83.71 83.15
ClinicalSTS 85.91 85.63 86.03 84.57 86.72 86.16 89.07 88.34

Table 3: Comparison of pretrained language models on the BLUE (Peng et al., 2019) benchmark. (P - PubMed
abstracts, F - PubMed Central full text articles, W - Wikipedia, M - MIMIC III (Johnson et al., 2016) )

5 Results

We finetune all of the four BIoOELECTRA models
mentioned in 4.1 for seven biomedical text mining
tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question An-
swering and Natural Language Inference) that are
part of the BLURB (Gu et al., 2020) and BLUE
(Peng et al., 2019) benchmark.

BLURB benchmark Out of the four BioELEC-
TRA models, BioELECTRA (P) model pretrained
from scratch on PubMed abstracts alone along with
biomedical domain specific vocabulary (from Pub-
MedBERT (Gu et al., 2020)) achieves new State-
of-the-Art (SOTA) results on all of the datasets in
BLURB benchmark. Our results on BioELECTRA
(P) along with the scores for BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), Clinical-
BERT (Alsentzer et al., 2019) , BlueBERT (Peng
etal., 2019) and PubMedBERT (Gu et al., 2020) for
all the tasks in the BLURB benchmark are shown
in table 2. The scores on these datasets for all
these models are taken from the BLURB bench-
mark. As we do not have details on train, test and
dev split of datasets used by Bio-Im (Lewis et al.,
2020) paper, we are not able to compare our re-
sults with their results. For NCBI-Disease, where
the train, test and dev split is publicly available,
our model (89.38%) performs better than the Bio-
Im Base (PM + Voc) model (88.2%). ELECTRA
performs significantly better than all other BERT
based models on the SQuUAD (Rajpurkar et al.,
2016b) benchmark in the general domain. Sim-
ilarly, BioELECTRA (P) model has significantly
higher scores on the Question Answering tasks. It
achieves new SOTA of 64.02% (3.78% increase
over the previous SOTA) on PubMedQA and with
anew SOTA of 88.57% (1.01 % increase over the
previous SOTA) on BioASQ. Our overall BLURB
score (macro average of the average metric for each

of the six tasks) is 82.40% which is 1.3% higher
than PubMedBERT BLURB score of 81.10%.

BLUE benchmark We present results of Bio-
ELECTRA (P) pretrained on PubMed abstracts
alone and BioELECTRA (P+F) pretrained on both
PubMed abstracts and PubMed full text articles
on four of the clinical datasets in the BLUE bench-
mark in table3. We compare the performance of our
models with the results of BioBERT, ClinicalBERT,
BlueBERT and PubMedBERT. Since the scores on
the train, dev and test split of these clinical datasets
by BioBERT, Clinical BERT, BlueBERT and Pub-
MedBERT are not available, we used their pre-
trained weights on these datasets and documented
the results. We do not have the results of SciBERT
model as it was trained on mixed domain data. Out
of the four datasets in the BLUE benchmark, we
have results of Biolm for i2b2-2010 and MedNLI.
Since we do not have the train, dev and test split
used by Biolm for i2b2-2010, we compare our re-
sults only for the MedNLI dataset. Score of our
BioELECTRA (P+F) model 86.34% is significantly
higher than Biolm Base model (PM + Voc) score of
83.2%. We also note that BIoOELECTRA performs
better than BERT based models trained on MIMIC
data. BiIoELECTRA (P) achieves new SOTA on
three of the datasets - 12b2-2010, ShARe/CLEFE
and ClinicalSTS. BioELECTRA (P+F)’s score of
86.34% on MedNLI task is marginally (0.07%)
higher than the score of BIoOELECTRA (P)’s score
of 86.27% and this is the new SOTA for MedNLI
dataset for models trained on PubMed abstracts and
PubMed Central full text articles.

Our models pretrained on domain specific text
along with domain specific vocabulary have con-
sistently shown that the pretraining from scratch
with domain specific data enables the model to cap-
ture the contextual representations of the language
better.
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BioELECTRA BioELECTRA BioELECTRA BioELECTRA

P P+F P+F (LT) W+P
Vocab PubMed PubMed PubMed General
BC5-chem 93.60 93.51 93.75 93.03
BC5-disease 85.84 85.55 85.32 84.66
NCBI-disease 89.38 88.43 88.73 88.45
BC2GM 84.69 84.61 84.68 83.90
JNLPBA 80.17 79.98 80.10 79.63
EBM PICO 74.26 73.88 73.86 73.33
ChemProt 78.20 77.76 76.76 77.06
DDI 82.76 83.53 82.34 79.68
GAD 83.70 84.18 85.67 83.16
BIOSSES 92.49 93.80 91.45 88.65
HoC 83.50 82.79 83.20 82.30
PubMedQA 64.02 63.80 62.21 61.20
BioASQ 88.57 91.42 91.50 90.01
BLURB Score 82.47 82.72 82.24 80.96
MedNLI 86.27 86.34 85.36 83.53
i2b2-2010 76.50 75.73 76.17 75.48
ShARe/CLEFE 83.71 83.15 83.52 83.02
ClinicalSTS 89.07 88.34 89.02 88.46

Table 4: Comparison of BioELECTRA models on BLURB (Gu et al., 2020) and BLUE (Peng et al., 2019) bench-
mark. (P - PubMed abstracts, F - PubMed Central full text articles, W - Wikipedia, LT - Longer Training )

Comparison of BioELECTRA models Table 4
shows the comparison of results of our models
BioELECTRA(P), BioELECTRA (P+F) and Bio-
ELECTRA (P+F) LT with longer training of addi-
tional 1 million steps and BioELECTRA (W+P).
BioELECTRA (W+P) is pretrained from scratch
on Wikipedia and PubMed abstracts along with a
general domain vocabulary (BERT (Devlin et al.,
2018) uncased vocabulary). We observe that Bio-
ELECTRA (P+F) LT with longer training of 2
million steps does not give substantial improve-
ments on all of the tasks. BIoOELECTRA (P+F) LT
model’s result is slightly better than BioELECTRA
(P) on BC5-chem dataset. BioELECTRA (P+F)
LT model’s result on GAD and BioASQ datasets
are marginally better than BioELECTRA (P+F).
BioELECTRA (P+F) performs slightly better than
BioELECTRA (P) on DDI and BIOSSES datasets.

The results clearly show that all BIoELECTRA
models pretrained from scratch with biomedical do-
main text and domain specific vocabulary perform
better than the model pretrained on both general
and biomedical domain text with general domain
vocabulary. However it is interesting to note that

BioELECTRA (W+P) model has significantly bet-
ter results for i2b2-2010, ShARe/CLEFE and Clin-
icalSTS datasets than PubMedBERT. BioELEC-
TRA (W+P)’s score for MedNLI is comparable to
that of PubMedBERT (Gu et al., 2020).

6 Conclusion and Future Work

We release BioELECTRA-base models pretrained
from scratch on biomedical domain specific text
and evaluate the performance on seven different
biomedical NLP tasks with 17 datasets. We achieve
SOTA on all the datasets in the BLURB (Gu et al.,
2020) benchmark and all four clinical datasets in
the BLUE (Peng et al., 2019) benchmark. Our
results show that pretraining from scratch with
biomedical domain text helps the model to learn
better contextual representations. We release the
pretrained weights for all our models and the code
for reproducibility.

We plan to explore and experiment with our do-
main specific pretraining approach on ELECTRA-
LARGE models. @ We also intend to train
ELECTRA-BASE and ELECTRA-LARGE mod-
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els on MIMIC III (Johnson et al., 2016) clinical
notes and evaluate the performance of the models
on biomedical NLP tasks. As ELECTRA shows
a significant improvement on SQuAD (Rajpurkar
et al., 2016b), we want to focus on Biomedical QA
tasks (span prediction) and evaluate domain spe-
cific pretrained ELECTRA models performance.
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A Pretraining

Hyperparameter Discriminator/Generator
Number of layers 12
Hidden Size 768/256
FFN inner hidden size 3072/1024
Attention heads 12/4
Attention head size 64
Embedding Size 768
Mask percent 15
Learning Rate Decay Linear
Warmup steps 10000
Learning Rate 2e-4
Adam € le-6
Adam 3 0.9
Adam (9 0.999
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.01
Batch Size 512
Train Steps M

Table 5: Pre-train hyperparameters.

All the BioELECTRA models are trained on
TPU v3-8 instances. Adopting bfloat16° training
helped us in improving the training speed. Very
similar to BERT, we train the model in 2 phases,
90% of steps with sequence length of 128 (phasel)
and 10% of steps with sequence length of 512
(phase?2) to learn the positional embeddings. Model
training reached 1M steps in 5 days (phasel - 4
days and phase?2 - 1day). For pretraining, we use
the original ELECTRA code’ released by authors.
Refer table 5 for details regarding all the parame-
ters.

B Finetuning

Figure 2 shows different architecture schema of
different models.

* Single Sentence Classification : ChemProt,
DDI, GAD, i2b2-2010, HoC

* Entity Classification: BC5-chem, BCS5-
disease, NCBI-Disease, BC2GM, JNLPBA,
ShARe/CLEFE, EBM PICO

®https://cloud.google.com/blog/products/ai-machine-

learning/bfloat16-the-secret-to-high-performance-on-cloud-
tpus
"https://github.com/google-research/electra
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Figure 2: Overview of BioELECTRA model finetuning.

Hyperparameter Value
Adam € le-6
Adam 4 0.9
Adam (9 0.999
Layerwise LR decay 0.8
Learning rate decay = Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0

Table 6: Common hyperparamters across tasks

¢ Sentence Pair Classification: BIOSSES, Clin-
icalSTS

* Question Answering: PubMedQA, BioASQ

’Discriminative finetuning’ is adopted where the
learning rate varies across the layers. The learning
rate decays across the layers from top to bottom
with a factor of 0.8 for all the NLP tasks. The
colour gradient in figure 2 represents this . For a
learning rate of le-4 , only the task specific pre-
diction layer (final layer) is finetuned at this rate.
With a decay factor of 0.8, the embedding layer

Dataset LR BS MSL EPOCHS
BC5-chem 2e-4 16 256 5
BC5-disease 2e-4 16 256 5
NCBI-disease 2e-4 32 128 5
BC2GM 2e-4 32 256 5
JNLPBA 2e-4 16 256 3
ShARe/CLEFE  2e-4 32 512 5
EBM PICO 2e-4 32 256 3
ChemProt le-4 32 256 5
DDI 2e-4 32 256 3
GAD 2e-4 32 128 5
i2b2-2010 2e-4 32 128 5
BIOSSES 1.5e-4 16 128 60
ClinicalSTS S5e-5 32 128 10
HoC 2e-4 32 128 5
MedNLI le-4 32 128 5
PubMedQA 2e-4 32 512 20
BioASQ 2e-4 32 512 20

Table 7: LR : Learning Rate, BS : Batch Size, MSL :
Maximum Sequence Length

for that particular task is finetuned at a learning
rate of 5.5e-6. Table 6 shows the common hyperpa-
rameters used across tasks, and table 7 shows task
specific hyperparameters.
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Abstract

To keep pace with the increased genera-
tion and digitization of documents, automated
methods that can improve search, discovery
and mining of the vast body of literature are
essential. Keyphrases provide a concise rep-
resentation by identifying salient concepts in
a document. Various supervised approaches
model keyphrase extraction using local con-
text to predict the label for each token and per-
form much better than the unsupervised coun-
terparts. Unfortunately, this method fails for
short documents where the context is unclear.
Moreover, keyphrases, which are usually the
gist of a document, need to be the central
theme. We propose a new extraction model
that introduces a centrality constraint to enrich
the word representation of a Bidirectional long
short-term memory. Performance evaluation
on two publicly available datasets demonstrate
our model outperforms existing state-of-the
art approaches. Our model is publicly avail-
able at https://github.com/ZHgero/
keyphrases_centrality.git

1 Introduction

Keyphrase extraction is an important information
extraction task that identifies single or multi-word
linguistic units that concisely represent a docu-
ment. They can also serve to provide a brief sum-
mary of the document content. Keyphrases are
widely used in variety of natural language process-
ing tasks such as document summarization (Bharti
and Babu, 2017; Sarkar, 2014), query formula-
tion (Jones and Staveley, 1999), text classifica-
tion (Coenen et al., 2007), clustering (Hammouda
et al., 2005), and recommendation systems (Naw
and Hlaing, 2013). Keyphrases have become in-
creasingly important for biomedical documents as
there has been an exponential growth with over 32
million articles indexed by PubMed (NLM). Fig-
ure 1 shows a PubMed document with the author-
specified keyphrases highlighted in blue.

Existing keyphrase extraction methods mainly
fall either under a supervised or unsupervised ap-
proach. Common unsupervised approaches use
word co-occurrence statistics to build graph-based
ranking algorithms. Each word is mapped to a
node and edges connect words that co-occur within
a specified window size. Even though unsuper-
vised approaches are desirable for datasets which
do not have manually-labeled ground truth values,
most such methods perform worse compared to the
supervised counterparts.

The supervised approaches use classification to
label every token as being part of a keyphrase or not
by using features such as part-of speech tags, term-
frequency inverse document frequency (tf-idf), and
the position of the token in the document. Re-
cently, supervised methods based on deep learning
have been employed for keyphrase extraction. In
Thomaidou and Vazirgiannis (2011) and Gollapalli
et al. (2017), the authors posed the problem as a
sequence labeling task and applied a Long Short-
Term Memory network (LSTM) and conditional
random fields (CRF) to tag each token in document
as positive (i.e., part of a keyphrase) or negative.
While these approaches achieve much better per-
formance, they still suffer from a major limitation
when applied on biomedical literature. The task of
labelling each token does not consider how central
the token is to the document contents. For Figure 1,
the main theme of the keyphrases are genes associ-
ated with breast cancer. Thus, the document theme
can be used as additional information to improve
the keyphrase extraction performance.

To this end, we propose to address the problem
of keyphrase extraction as a sequence labelling task
with an additional component to capture the cen-
trality of each token. We design a centrality layer
built on top of a bidirectional LSTM (BiLSTM)
layer to constrain each token with regards to the
central theme of the document. The output depen-
dencies are then modeled using a CRF layer. The
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Protein tyrosine kinase (PTK) is one of the major
signaling enzymes in the process of cell signal
transduction, which catalyzes the transfer of ATP-y-
phosphate to the tyrosine residues of the substrate
protein, making it phosphorylation, regulating cell
growth, differentiation, death and a series of
physiological and biochemical processes. Abnormal
expression of PTK usually leads to cell proliferation
disorders, and is closely related to tumor invasion,
metastasis and tumor angiogenesis. At present, a variety
of PTKs have been used as targets in the screening of
anti-tumor drugs. Tyrosine kinase inhibitors (TKls)
compete with ATP for the ATP binding site of PTK and
reduce tyrosine kinase phosphorylation, thereby
inhibiting cancer cell proliferation. TKI has made great
progress in the treatment of cancer, but the attendant
acquired resistance is still inevitable, restricting the
treatment of cancer. In this paper, we summarize the role
of PTK in cancer, TKI treatment of tumor pathways and
TKI acquired resistance mechanisms, which provide
some reference for further research on TKI treatment of
tumors.

Figure 1: An example document from PubMed with
author-provided keyphrase