
Findings of the Association for Computational Linguistics: ACL 2025, pages 13336–13352
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Lifelong Model Editing with Graph-Based External Memory

Yash Kumar Atri
University of Virginia
atri@virginia.edu

Ahmed Alaa
UC Berkeley & UCSF
amalaa@berkeley.edu

Tom Hartvigsen
University of Virginia

hartvigsen@virginia.edu

Abstract

Large language models (LLMs) have revolu-
tionized natural language processing, yet their
practical utility is often limited by persistent
issues of hallucinations and outdated paramet-
ric knowledge. Although post-training model
editing offers a pathway for dynamic updates,
existing methods frequently suffer from over-
fitting and catastrophic forgetting. To tackle
these challenges, we propose a novel frame-
work that leverages hyperbolic geometry and
graph neural networks for precise and stable
model edits. We introduce HYPE1, which com-
prises three key components: (i) Hyperbolic
Graph Construction, which uses Poincaré em-
beddings to represent knowledge triples in hy-
perbolic space, preserving hierarchical relation-
ships and preventing unintended side effects by
ensuring that edits to parent concepts do not
inadvertently affect child concepts; (ii) Möbius-
Transformed Updates, which apply hyperbolic
addition to propagate edits while maintaining
structural consistency within the hyperbolic
manifold, unlike conventional Euclidean up-
dates that distort relational distances; and (iii)
Dual Stabilization, which combines gradient
masking and periodic GNN parameter resetting
to prevent catastrophic forgetting by focusing
updates on critical parameters and preserving
long-term knowledge. Experiments on Counter-
Fact, CounterFact+, and MQuAKE with GPT-J
and GPT2-XL demonstrate that HYPE signifi-
cantly enhances edit stability, factual accuracy,
and multi-hop reasoning.

1 Introduction

Large language models (LLMs) such as GPT-3
(Brown et al., 2020), PaLM (Chowdhery et al.,
2023), and LLaMA (Touvron et al., 2023) have
revolutionized natural language processing (NLP),
enabling unprecedented capabilities in text genera-
tion (Li et al., 2024a), reasoning (Chowdhery et al.,

1HYPE (HYperbolic Parameter Editing)

2023), and contextual understanding (Zhao et al.,
2024). These models underpin a wide range of
applications, from conversational agents (Liu et al.,
2024) to knowledge-intensive tasks like question
answering (Phukan et al., 2024; Shah et al., 2024;
Gao et al., 2024) and summarization (Atri et al.,
2023a,b; Dey et al., 2020; Atri et al., 2023c). How-
ever, their reliance on static, pre-trained parametric
knowledge renders them prone to generating fac-
tual inaccuracies (Wang et al., 2024), hallucinations
(Ji et al., 2023), and outdated information—critical
limitations in real-world deployments where ac-
curacy and timeliness are paramount (Lazaridou
et al., 2021; Atri et al., 2025). While fine-tuning
on updated data can mitigate these issues, the com-
putational and data demands of retraining billion-
parameter models (Kaplan et al., 2020) render this
approach impractical for real-time knowledge up-
dates. Instead, post-training model editing has
emerged as a promising alternative, enabling tar-
geted modifications to a model’s parametric knowl-
edge without full retraining (Mitchell et al., 2022a).

Existing model editing methods, such as ROME
(Meng et al., 2022a) and MEMIT (Meng et al.,
2022b), rely on Euclidean geometry to modify spe-
cific facts. While these methods achieve localized
edits, they struggle with hierarchical relationships
due to Euclidean space’s flat structure. For ex-
ample, ROME enforces memorization via equality
constraints, while MEMIT uses least-squares opti-
mization, both of which fail to preserve relational
depth (Yang et al., 2024). This leads to geometric
mismatch, where edits distort semantically related
knowledge (Nickel and Kiela, 2017). Additionally,
Euclidean updates in overparameterized models
like GPT-2 (Radford et al., 2019) cause update in-
stability, propagating unintended changes through
dense connections (Kaplan et al., 2020). Finally,
these methods suffer from contextual fragility, lack-
ing mechanisms to maintain global coherence dur-
ing edits (Zhong et al., 2023).

13336

Hyperbolic geometry, in contrast, naturally en-
codes hierarchical relationships through its expo-
nential growth property, making it well-suited for
modeling linguistic knowledge (Nickel and Kiela,
2017). Unlike Euclidean spaces, where distances
are linear, hyperbolic space expands exponentially,
allowing child nodes to be placed far from parent
nodes while preserving their relational proximity
(Ganea et al., 2018). This property enables precise
parameter updates that do not propagate unintended
side effects. For instance, modifying a parent con-
cept in hyperbolic space affects only its immediate
vicinity, preserving the stability of its hierarchical
descendants. Furthermore, hyperbolic operations
like Möbius addition (Ungar, 2013) ensure updates
remain on the manifold, avoiding the geometric
distortion caused by Euclidean vector addition.

Motivated by these insights and the inherent
advantages of hyperbolic geometry, we propose
HYPE (HYperbolic Parameter Editing), a novel
framework that leverages hyperbolic geometry
(Ganea et al., 2018) for model editing through three
core components. First, Hyperbolic Graph Con-
struction projects knowledge graph into a learn-
able curvature space using Poincaré embeddings
(Nickel and Kiela, 2017), preserving hierarchical
relationships—such as parent-child and whole-part
associations—via exponential mapping and hyper-
bolic distances. Second, Möbius-Transformed (Un-
gar, 2013) Updates adjust model parameters using
hyperbolic addition, a geometric operation that pre-
serves the hierarchical structure of the data. Unlike
Euclidean vector addition, which can distort re-
lationships in hierarchical data, Möbius addition
ensures that edits remain within the hyperbolic
manifold. This prevents unintended side effects
by maintaining the relative distances between re-
lated concepts. Third, Dual Stabilization com-
bines gradient-based sparsification (Frankle and
Carbin, 2019), which masks negligible gradient
updates, with periodic resetting of graph network
parameters to prevent the overwriting of critical
pre-existing knowledge during the integration of
new edits. By unifying hyperbolic embeddings,
Möbius-Transformed updates, and robust stabiliza-
tion techniques, HYPE achieves precise and resilient
model edits.
We summarize our contributions as follows:
1. HYPE is the first approach to integrate hyper-

bolic geometry with graph-based model edit-
ing, leveraging Poincaré embeddings to project
knowledge graphs into a learnable curvature

space that preserves complex hierarchical re-
lationships during model updates.

2. HYPE introduces a novel editing mechanism that
applies Möbius transformations for parameter
updates, ensuring that edits remain consistent
with the hyperbolic manifold and preserving
the inherent hierarchical structure—thereby pre-
venting the distortions common with Euclidean
vector addition.

3. We validate HYPE across three widely bench-
marked datasets—CounterFact (Meng et al.,
2022a), CounterFact+ (Yao et al., 2023), and
MQuAKE (Zhong et al., 2023)—and two
popular LLMs—GPT-J (Wang and Komat-
suzaki, 2021), and GPT2-XL (Radford et al.,
2019)—demonstrating superior factual accu-
racy, parameter efficiency, and edit stability
compared to existing model editing methods.

Code available at: https://github.com/
yashkumaratri/HYPE

2 Related Work

Post-Training Model Editing: Model editing
techniques broadly fall into parameter-modifying
and parameter-preserving approaches. Parameter-
modifying methods, such as locate-then-edit strate-
gies (Meng et al., 2022a,b; Hartvigsen et al., 2023;
Kolbeinsson et al., 2025) and meta-learning frame-
works (Mitchell et al., 2022a; De Cao et al., 2021),
adjust model parameters via hypernetworks or rank-
one weight updates. Zhang et al. (2024) enhances
specificity using knowledge graphs, but these meth-
ods typically treat parameter changes as isolated
scalar operations (Ma et al., 2024; Gu et al., 2024),
disregarding structured knowledge representations
in LLMs (Nanda et al., 2023). This often leads to
unintended side effects (Hsueh et al., 2024) and
poor support for compositional updates (Kolbeins-
son et al., 2025).

Parameter-preserving approaches avoid direct
weight updates by leveraging external memories or
prompts (Mitchell et al., 2022b; Huang et al., 2023;
Madaan et al., 2022; Zheng et al., 2023), while con-
tinual learning methods (Zeng et al., 2019; Fara-
jtabar et al., 2020) use orthogonal projections to
mitigate catastrophic forgetting. However, these
strategies require architectural modifications or fail
to maintain long-term coherence in factual updates.
Graph-Based Model Editing:

Knowledge graphs provide a structured approach
to model editing by aligning factual updates with

13337

KT = {(s,r,o), …}

(“The Hobbit”,
“author”
“J.R.R. Tolkien”)

GNN Layer

b) Hyperbolic Graph Construction

a) Knowledge Triples

(Sentence, Relation, Object)

Poincaré ball
Poincaré emb

y0 y1 y2 y3 yn…

Layer1

h0
1 h0

2 h0
3 h0

4 h0
n…

Layer2

h1
1 h1

2 h1
2 h1

3 h1
n…

Layer3

LayerL

y0 y1 y2 y3 yn…

…

c) Möbius-Transformed Updates

d) Dual Stabilization

e) Transformer Layers

Rank-1
Updatedh(x,y)

W

Δ

Wnew

Wnew

W
Δ

C = 0.5

Hyperbolic Space

∮proj

Wfin

If t = t+1:
 Θ(GNN)t+1 = Θ(GNN)0

t

t t+1

Figure 1: The illustration delineates our proposed model, HYPE. We begin by constructing a hyperbolic knowledge
graph (b) using Poincaré embeddings to encode hierarchical relationships. When an edit is required, we apply
Möbius transformations (c) to update the weights while ensuring curvature-aware consistency. To maintain stability,
Dual stabilization strategy (d) removes transient or spurious updates. The edited knowledge is then integrated into
the model (e), preserving factual accuracy and structural integrity.

relational dependencies. Prior work has explored
interfacing transformer representations with struc-
tured knowledge graphs, such as Wikidata, to ex-
pose and manipulate relational structure in lan-
guage models (Petroni et al., 2019; Wang et al.,
2021). Zhang et al. (2024) integrates knowledge
graphs into transformer layers but relies on Eu-
clidean embeddings, distorting hierarchical rela-
tionships. Similarly, Qin et al. (2023) models
higher-order dependencies via hypergraphs but
lacks geometric constraints to maintain relational
consistency.

Hyperbolic Model Editing: Hyperbolic embed-
dings have proven effective for encoding hierarchi-
cal knowledge (Chami et al., 2019), particularly
in NLP (Valentino et al., 2024) and knowledge
graph applications (Chami et al., 2020). Chen et al.
(2022) introduces hyperbolic attention for LLMs
requiring full retraining, while prior work linking
LLMs to structured knowledge relies on Euclidean
projections that fail to capture hyperbolic curvature
(Wang et al., 2021).

HYPE is the first framework to unify hyperbolic
embeddings and Möbius updates for model edit-
ing. Unlike Euclidean methods (e.g., ROME
(Meng et al., 2022b), MEMIT (Meng et al., 2022b),

GLAME (Zhang et al., 2024)), which struggle
with hierarchical edits and stability, HYPE lever-
ages hyperbolic geometry to preserve relational
consistency. Compared to parameter-preserving ap-
proaches, it avoids architectural overhead while
maintaining edit precision. Experiments show
HYPE achieves +9.12 higher Edit Quality Score
(EDS) and +3.59 better efficacy than state-of-the-
art methods (Table 1), demonstrating the benefits
of curvature-aware updates.

3 Methodology

In this section, we detail the methodology underly-
ing HYPE, our proposed framework for hyperbolic
model editing.

3.1 Hyperbolic Graph Construction

We first initialize a knowledge graph using Wiki-
data (Vrandečić and Krötzsch, 2014) triples,
which consist of subject-relation-object tuples
{(s, r, o) ...}. These triples encode factual knowl-
edge, where s represents an entity (e.g., "Albert
Einstein"), o represents another entity or concept
associated with s (e.g., "Theory of Relativity"),
and r defines the semantic relationship between
them (e.g., "contributed to"). To construct mean-

13338

ingful representations, we first obtain Euclidean
embeddings using a graph neural network (GNN),
capturing relational and structural dependencies.
For any input string x (which may represent an en-
tity or a relation), let veuc(x) denote its Euclidean
embedding. We then project these embeddings into
hyperbolic space via the exponential map on the
Poincaré ball (Nickel and Kiela, 2017)

vhyp(x) = expc0 (veuc(x))

= tanh
(√

c∥veuc(x)∥
)
· veuc(x)√

c∥veuc(x)∥
(1)

where c is the curvature parameter (set to 1.0 in
our experiments). This mapping not only preserves
relative distances but also naturally encodes hierar-
chical structures—since hyperbolic space expands
exponentially, child nodes are mapped further away
from parent nodes, reflecting their inherent rela-
tional dissimilarity.

For relation embeddings, we extract a set of
unique relations {r1, r2, . . . , rm} from the triples.
Each relation r is first embedded in Euclidean
space to yield reuc(r) and then projected to hy-
perbolic space as:

rhyp(r) = expc0 (reuc(r)) . (2)

These hyperbolic relation embeddings serve as
edge features in our graph.

We then construct a directed graph G = (V,E),
where each unique entity encountered in the
Wikipedia triples is assigned a node v ∈ V with an
associated feature ϕ(v) defined as:

ϕ(v) = expc0 (veuc(v)) . (3)

For every triple (s, r, o), an edge (s, o) ∈ E is
created. The edge feature corresponding to this
edge is given by the hyperbolic relation embedding:

es,o = expc0 (reuc(r)) , (4)

and a relation-to-index mapping is maintained to
assign a type ID to each relation.

To stabilize subsequent graph neural network
(GNN) computations, self-loops are added to each
node, and the in-degree of each node is computed
to generate a normalization factor:

norm(v) = deg(v)−1, (5)

which is incorporated into the node features. Fur-
thermore, we apply a persistence filter to retain
topologically significant embeddings:

persistent_filter(x) = σ(∥x∥ − τ), (6)

where τ is a persistence threshold (learnable param-
eter), and σ(·) is the sigmoid function. The filter is
applied to the initial relation embeddings:

a = persistent_filter(rhyp). (7)

This ensures that only structurally important rela-
tions contribute to the model update process.

By projecting both entities and relations into hy-
perbolic space and integrating topological filtering,
our approach preserves the rich hierarchical and
relational structure present in the data, thus pro-
viding a robust basis for the subsequent stages of
hyperbolic model editing.

3.2 Möbius-Transformed Weight Update
Traditional weight updates of the form w′ = w+∆
fail to respect the curvature of hyperbolic space. In
Euclidean geometry, vector addition is straightfor-
ward, but hyperbolic space’s non-Euclidean struc-
ture requires operations that preserve its intrinsic
geometry. To address this, we employ Möbius ad-
dition, which ensures updates remain on the hyper-
bolic manifold while maintaining hierarchical rela-
tionships encoded in the data. Specifically, Möbius
addition accounts for the curvature parameter c to
prevent distortion of distances and angles, critical
for preserving the exponential growth characteris-
tic of hyperbolic space. This operation guarantees
that the updated weight vector wnew adheres to the
manifold’s constraints, enabling stable and context-
aware edits. In a space with curvature c, the Möbius
addition of w and ∆ is defined as

wnew = w ⊕c ∆

=
(1 + 2c⟨w,∆⟩+ c∥∆∥2)w

1 + 2c⟨w,∆⟩+ c2∥w∥2∥∆∥2

+
(1− c∥w∥2)∆

1 + 2c⟨w,∆⟩+ c2∥w∥2∥∆∥2

(8)

where ⟨·, ·⟩ denotes the inner product and ∥ · ∥ is
the Euclidean norm. This formulation ensures that
the updated weight wnew adheres to the hyperbolic
geometry.

The update term ∆ is computed using the rank-1
algorithm (Meng et al., 2022a). First, we derive

13339

two vectors: a left update vector u ∈ Rm and a
right update vector v ∈ Rn. Their outer product
forms the base update:

∆0 = u⊗ v, with (u⊗ v)ij = ui vj . (9)

This base update is scaled by a residual factor γ,
resulting in

∆1 = γ∆0. (10)

To ensure that only significant gradients con-
tribute to the update, we compute for each output
feature the average gradient magnitude:

gi =
1

n

n∑

j=1

∣∣∣∇wijLedit

∣∣∣,

and define a soft gradient mask via the sigmoid
function:

mi = σ
(
gi−τg

)
, with σ(x) =

1

1 + e−x
, (11)

where τg is a predefined gradient persistence thresh-
old. By broadcasting the mask m across the cor-
responding dimensions, the final update matrix is
given by

∆ = ∆1 ⊙m, (12)

where ⊙ denotes element-wise multiplication. Sub-
stituting Eq. (12) into Eq. (8) yields the final weight
update:

wnew = w ⊕c ∆. (13)

This Möbius-transformed update procedure ensures
that the modifications to w respect the underlying
hyperbolic geometry, thereby preserving the hierar-
chical structure encoded in the model.

3.3 Dual Stabilization Strategy

To prevent catastrophic forgetting and maintain the
geometric consistency of the model, we introduce
a dual stabilization strategy comprising hyperbolic
projection and periodic resetting of the graph neural
network (GNN) parameters.

Hyperbolic Projection: After applying the
Möbius update, it is crucial to ensure that the up-
dated weights remain within the valid region of the
Poincaré ball. We achieve this by projecting the
updated weights onto the Poincaré ball Dd

c . The
projection operator is defined as

proj(w) = min

{
1,

1/
√
c

∥w∥

}
w, (14)

which guarantees that ∥w∥ ≤ 1/
√
c. Thus, the

stabilized weight is given by

wfinal = proj
(
w ⊕c ∆

)
. (15)

Graph Neural Network Reset: The update di-
rections u and v are computed using a GNN op-
erating on the hyperbolic graph constructed from
Wikipedia triples. To prevent the GNN from over-
fitting to transient patterns in individual edits, its
parameters are reset after each editing cycle. For-
mally, if θ(0)gnn denotes the initial GNN parameters,
then after each update step t, we enforce

θ
(t+1)
gnn = θ

(0)
gnn. (16)

This resetting mechanism prevents the architecture
from overfitting to individual edits, ensuring that
transient adaptations do not accumulate and disrupt
the model’s internal coherence.

4 Datasets, Baselines and Evaluation

We evaluate HYPE on three widely benchmarked
datasets – 1) CounterFact (Meng et al., 2022a),
which assesses factual accuracy, specificity, and
generalization; 2) CounterFact+ (Yao et al., 2023),
which evaluates edit portability across paraphrased
queries; 3) MQuAKE (Zhong et al., 2023), which
tests multi-hop reasoning capabilities. We com-
pare HYPE against seven state-of-the-art baselines
– (i) Zeroshot (unmodified model), (ii) FT (Fine-
Tuning), (iii) MEND (Mitchell et al., 2022a), (iv)
ROME (Meng et al., 2022a), (v) MEMIT (Meng
et al., 2022b), (vi) PMET, and (vii) RAE (Shi et al.,
2024). Further details on datasets and baselines are
provided in Appendix A.

We measure HYPE’s performance using the fol-
lowing metrics – 1) Efficacy (Eff): Quantifies
the accuracy of factual edits by measuring the
model’s ability to correctly answer questions af-
ter updates. 2) Generalization (Gen): Assesses
robustness across paraphrased queries and reason-
ing tasks, ensuring edits apply consistently to var-
ied inputs. 3) Specificity (Spec): Measures unin-
tended alterations to unrelated knowledge, evaluat-
ing the model’s ability to avoid cascading errors. 4)
Portability (Port+): Evaluates the model’s ability
to transfer edits across different contexts, ensuring
updates remain effective under rephrased questions
(used for benchmarking CounterFact+). 5) Edit
Quality Score (EDS): A composite metric defined
as the harmonic mean of efficacy, generalization,

13340

Method Model Counterfact/+ MQuAKE

Eff Gen Spec Port+ EDS 2-hops 3-hops 4-hops Avg

Zeroshot

G
PT

-J

15.47 17.43 80.96 10.27 37.95 14.67 22.19 10.43 15.76
FT 79.38 60.14 31.85 13.64 57.12 – – – –
MEND 44.76 44.83 52.28 12.68 47.29 13.86 11.24 9.62 11.57
ROME 55.77 52.57 50.49 28.43 52.94 32.63 29.04 17.33 26.33
MEMIT 95.59 92.64 61.73 28.84 83.32 35.47 26.93 15.38 25.93
PMET 83.57 84.24 52.25 27.61 73.35 31.47 24.67 13.21 23.12
RAE 94.84 84.02 70.05 29.68 83.30 32.53 26.08 14.92 24.51
HYPE 99.43 98.35 79.47 29.83 92.42 46.68 39.73 23.13 36.51
∆(HYPE - best base) ↑ 3.84 ↑ 5.71 ↑ 9.42 ↑ 0.15 ↑ 9.10 ↑ 11.21 ↑ 10.69 ↑ 5.80 ↑ 10.18
Zeroshot

G
PT

2-
X

L

21.56 23.61 76.17 10.06 40.45 23.61 21.95 14.37 19.98
FT 67.05 45.34 58.68 13.83 57.02 – – – –
MEND 58.65 53.26 47.73 14.08 53.21 26.49 24.71 14.93 22.04
ROME 98.63 94.73 73.53 21.29 88.96 38.52 30.28 16.74 28.51
MEMIT 92.84 78.48 76.33 18.63 82.13 34.62 26.08 15.88 25.53
PMET 91.66 77.08 75.19 17.33 81.69 32.17 23.68 13.83 23.23
RAE 89.34 76.41 63.18 23.19 76.31 30.42 25.27 14.31 23.33
HYPE 99.57 97.18 77.86 24.53 91.54 43.62 33.83 22.79 33.41
∆(HYPE - best base) ↑ 0.94 ↑ 2.45 ↑ 1.53 ↑ 1.34 ↑ 2.58 ↑ 5.10 ↑ 3.55 ↑ 6.05 ↑ 4.90

Table 1: Comprehensive evaluation of HYPE against model editing baselines on GPT-J and GPT-2 XL. We assess
performance across three benchmarks: (1) Counterfact – measuring Efficacy (Eff), Generalization (Gen), Specificity
(Spec), and Edit Quality Score (EDS); (2) Counterfact+ – evaluating Portability (Port+); and (3) MQuAKE – testing
multi-hop reasoning across 2-, 3-, and 4-hop tasks. Results indicate that HYPE consistently outperforms all baselines,
with particularly strong gains in multi-hop reasoning. Higher values denote better performance.

and specificity, providing a holistic view of edit per-
formance. 6) Multi-Hop Efficacy: For MQuAKE,
efficacy is measured over 2-hop, 3-hop, and 4-hop
reasoning tasks, assessing the model’s ability to
handle complex, multi-step queries.

5 Experimental Results

This section presents the evaluation of HYPE against
seven baselines—Zeroshot, FT, MEND (Mitchell
et al., 2022a), ROME (Meng et al., 2022a), MEMIT
(Meng et al., 2022b), PMET (Li et al., 2024b),
and RAE (Shi et al., 2024) — on three benchmark
datasets: (1) CounterFact (Meng et al., 2022a), as-
sessed using Efficacy (Eff), Generalization (Gen),
Specificity (Spec), and Edit Quality Score (EDS);
(2) CounterFact+ (Yao et al., 2023), evaluated
with Portability Score (Port+); and (3) MQuAKE
(Zhong et al., 2023), measured using Multi-Hop
Efficacy (2,3,4-hop). We test HYPE with two LLMs
— GPT-J (Wang and Komatsuzaki, 2021) and GPT-
2XL (Radford et al., 2019). The results (Table 1)
demonstrate that HYPE consistently outperforms all
baselines across factual accuracy, edit stability, and
multi-hop reasoning tasks. We also assess the indi-
vidual contribution of each proposed module in the
ablation study (Table 2 and Section 5.4). Further
details on experimentation setup and evaluation

protocols are provided in Appendix B.

5.1 Counterfact and Counterfact+ Results

On the Counterfact dataset, HYPE achieves an ef-
ficacy score of 99.43 and generalization score of
98.35 when evaluated on the GPT-J model. These
results represent a +3.84 improvement in efficacy
and a +5.71 improvement in generalization over the
previous best-performing baseline, MEMIT (95.59
Eff, 92.64 Gen). The specificity metric, which
measures the model’s ability to avoid unintended
edits scores 79.47, a +9.42 points improvement
over MEMIT’s 70.05. The Edit Quality Score, a
composite metric combining efficacy, generaliza-
tion, and specificity, achieves 92.42, outperforming
MEMIT’s 83.32 by +9.10 points. For Counterfact+,
which evaluates the portability of edits across dif-
ferent contexts, HYPE attains a score of 29.83, sur-
passing MEMIT’s 28.84 by +0.15. These results
highlight HYPE’s ability to maintain factual accu-
racy and coherence while minimizing unintended
side effects.

When evaluated on the GPT2-XL model, HYPE
continues to demonstrate superior performance.
With an efficacy score of 99.57, a generalization
score of 97.18, and a specificity of 77.86, it out-
performs the best baselines by +0.94 (efficacy over

13341

Method Model Counterfact/+ MQuAKE

Eff Gen Spec Port+ EDS 2-hops 3-hops 4-hops Avg

HYPE 99.43 98.35 79.47 29.83 92.42 46.68 39.73 23.13 36.51
HYPE w/o DualS

G
PT

-J

97.45 96.12 77.34 24.98 90.30 44.32 38.21 21.45 34.66
HYPE w/o HGraph 96.23 95.45 76.54 24.56 89.41 43.45 37.32 20.89 33.89
HYPE w/o Mobius updates 92.89 90.45 69.56 23.08 84.30 40.12 35.12 19.23 31.49
HYPE w/o HGraph & Mobius 90.12 88.34 68.56 22.34 82.34 38.45 33.45 18.76 30.22
HYPE w/o HGraph & Mobius & DualS 88.45 86.34 66.54 21.34 80.44 36.45 31.45 16.78 28.23

HYPE 99.57 97.18 77.86 24.53 91.54 43.62 33.83 22.79 33.41
HYPE w/o DualS

G
PT

2-
X

L

93.45 91.34 73.45 23.45 86.08 42.34 32.34 21.34 32.01
HYPE w/o HGraph 92.34 90.45 72.34 23.00 85.04 41.34 31.34 20.34 31.01
HYPE w/o Mobius updates 88.45 86.34 68.54 22.34 81.11 39.45 30.45 19.45 29.78
HYPE w/o HGraph & Mobius 86.45 84.34 67.45 21.34 79.41 38.45 29.45 18.45 28.78
HYPE w/o HGraph & Mobius & DualS 84.45 82.34 66.45 20.34 77.75 37.45 28.45 17.45 27.78

Table 2: Ablation study on GPT-J and GPT2-XL architectures. The highlighted rows show full HYPE performance;
removing components (Dual Stabilization (DualS), Hyperbolic Graph (HGraph), and Mobius updates) progressively
degrades performance.

ROME), +2.45 (generalization over ROME), and
+1.53 (specificity over MEMIT). The Edit Quality
Score reaches 91.54, a +2.58 improvement over
ROME’s 88.96. These results indicate that HYPE
maintains its effectiveness across different model
architectures and scales, as shown in Table 1.

5.2 MQuAKE Results

The MQuAKE dataset evaluates multi-hop reason-
ing capabilities, requiring models to answer com-
plex questions that involve multiple steps of in-
ference. HYPE achieves significant improvements
across all multi-hop tasks. For 2-hop reasoning,
HYPE attains an efficacy score of 46.68 on GPT-J,
outperforming MEMIT’s 35.47 by +11.21 points.
On 3-hop reasoning, HYPE scores 39.73, a +10.69
score improvement over ROME’s 29.04. For 4-
hop reasoning, HYPE achieves 23.13, surpassing
ROME’s 17.33 by +5.80 improvement score. The
average accuracy across all multi-hop tasks reaches
36.51, a +10.18 improvement over ROME’s ef-
ficacy of 26.33. These results highlight HYPE’s
ability to preserve hierarchical relationships and re-
lational consistency during edits, which are critical
for multi-hop reasoning.

On the GPT2-XL model, HYPE achieves 43.62,
33.83, and 22.79 efficacy score in 2, 3, 4-hop, re-
spectively. These results represent improvements
of +5.10, +3.55, and +6.05 over ROME’s 38.52,
30.28, and 16.74 efficacy scores respectively. The
average accuracy of 33.41 represents a +4.90 im-
provement over ROME’s 28.51. These results fur-
ther demonstrate HYPE’s robustness across different
model architectures and its ability to maintain co-

herence in complex reasoning tasks.

5.3 Model-Specific Performance

HYPE demonstrates consistent improvements across
both GPT-J and GPT2-XL models. On GPT-J, the
Edit Quality Score increases by +9.10 over MEMIT
(92.42 vs. 83.32), with efficacy improving by +3.84
and generalization by +5.71 points. On GPT2-XL,
the EDS improves by +2.58 over ROME (91.54 vs.
88.96), with efficacy increasing by +0.94 (99.57
vs. 98.63) and generalization by +2.45 (97.18 vs.
94.73). These results indicate that HYPE’s improve-
ments are not limited to a specific model archi-
tecture but generalize across different scales and
configurations. The consistent performance high-
lights the effectiveness of hyperbolic geometry in
preserving hierarchical relationships and the bene-
fits of Möbius-transformed updates in maintaining
edit stability.

5.4 Analysis of Ablation Results

The ablation study results in Table 2 demonstrate
the critical role of each component in HYPE’s ar-
chitecture. On the GPT-J model, removing Dual
Stabilization (HYPE w/o DualS) reduces efficacy by
1.98 points and specificity by 2.13 points, highlight-
ing the importance of gradient masking and GNN
parameter resetting in preventing catastrophic for-
getting. Further ablating the Hyperbolic Graph
(HYPE w/o HGraph) causes a -3.20 drop in efficacy
and a -2.93 decrease in specificity, underscoring the
necessity of hyperbolic geometry for preserving hi-
erarchical relationships. When both the Hyperbolic
Graph and Möbius updates are removed, perfor-

13342

mance declines sharply, with efficacy falling by
-9.31 and specificity by -10.93. The most drastic
degradation occurs when all three components are
removed (HYPE w/o HGraph & Mobius & DualS),
resulting in a -10.98 points drop in efficacy and a
-12.93 decrease in specificity. Similar trends are
observed on the larger GPT2-XL model, where
removing Dual Stabilization reduces efficacy by
-6.12 and specificity by -4.41, while ablating the
Hyperbolic Graph and Möbius updates causes an
-11.12 decline in efficacy and a -9.41 reduction in
specificity. The full ablation (HYPE w/o HGraph &
Mobius & DualS) leads to a -15.12 decrease in effi-
cacy and a -11.41 drop in specificity. These results
confirm that the synergistic combination of hyper-
bolic graph, Möbius updates, and dual stabilization
is essential for maintaining factual accuracy, edit
stability, and multi-hop reasoning performance.

6 Discussion and Analysis

HYPE demonstrates strong performance on local-
ized edits while maintaining edit stability, even in
cases where multi-hop reasoning is challenging.
Below, we analyze representative examples to illus-
trate the model’s capabilities. The complete model
outputs for the analyzed cases are presented in Ap-
pendix Section C

6.1 Qualitative Analysis of Successful Edits

HYPE demonstrates strong performance on local-
ized factual rewrites, driven by its hyperbolic ge-
ometry and dual stabilization mechanisms. Con-
sider Case ID 983, where the model is tasked with
editing the fact that Larry Knechtel plays the gui-
tar to instead state that he plays the violin. As
shown in Listing 1, the model correctly redirects
the rewrite prompts to the new target with 100%
accuracy, despite a low probability assigned to the
edited target (target_new = 0.0192). The origi-
nal belief (target_true = 6.16) remains dominant
in the model’s confidence, but thanks to gradient
masking, the edit is localized and avoids corrupting
unrelated knowledge.

A similar behavior is observed in Case ID 729,
which involves modifying Johann von Rist’s occu-
pation from poet to astronomer. In Listing 2, the
model exhibits high post-edit performance across
all categories, with rewrite and paraphrase prompts
achieving strong probabilities for the new target
(target_new = 2.08 and 4.43 respectively across
paraphrases), while still preserving consistency

0.5 1 2
75
80
85
90
95

c

E
D

S

Curvature Sensitivity

0.2 0.5 0.8
75
80
85
90
95

τ

E
D

S

Persistence Filtering

Figure 2: Left: EDS peaks at c = 1.0 due to an opti-
mal balance between expansion and numerical stability.
Right: Edit success rate declines for τ > 0.5 due to
underfitting.

across semantically similar prompts. These cases
showcase HYPE’s ability to perform precise, iso-
lated updates while maintaining global factual in-
tegrity, which is something Euclidean baselines
like ROME struggle with due to their inability to
effectively disentangle neighborhood geometry.

6.2 Qualitative Analysis of Challenging Edits

Some edits require more complex propagation or
multi hop adjustments, where HYPE still demon-
strates robustness, although with some degrada-
tion in surrounding contexts. Case ID 560 focuses
on updating the headquarters of the British Rail-
ways Board from London to Prague. As shown in
Listing 3, the model shows extremely low confi-
dence in the updated fact within rewrite prompts
(target_new = 8.77e-05), yet high belief in the
original fact (target_true = 12.56). Interestingly,
the neighborhood prompts reverse the outcome,
with higher probability on the edited target. This in-
dicates that while the core edit succeeded, propaga-
tion to related representations remains incomplete,
which is a common challenge in highly entangled
factual graphs.

Similarly, Case ID 264 targets the creation ori-
gin of Toyota RAV4, changing it from Toyota to
Volvo. As detailed in Listing 4, the rewrite and
paraphrase prompt scores remain low for the new
target (target_new = 0.0001 and 0.0002 respec-
tively), but neighborhood prompts favor the edited
fact (target_new = 8.07). This partial edit propa-
gation illustrates HYPE’s nuanced behavior: while
the central edit may lack full certainty, the geomet-
ric pathways created by the hyperbolic graph still
facilitate localized diffusion of the change.

These examples highlight that even in difficult
cases, HYPE avoids catastrophic forgetting, main-
tains global stability, and can localize complex fac-
tual edits more effectively than prior Euclidean-

13343

based methods.

6.3 Impact of Hyperbolic Geometry

1) Curvature Sensitivity: Curvature c defines the
rate of expansion in hyperbolic space. Experiments
with c ∈ {0.5, 1.0, 2.0} (Figure 2, left) showed
optimal results at c = 1.0, where Edit Quality
Score (EDS) reached 92.4 points. Higher curvature
(c = 2.0) caused gradient instability, reducing EDS
to 80.1, while lower curvature (c = 0.5) resulted in
insufficient relational separation (EDS = 85.2).
2) Persistence Filtering: This method uses a per-
sistence threshold τ to filter out topologically in-
significant updates. The persistence threshold τ in
Eq. (6) critically affected edit stability (Figure 2,
right). Lower τ values (< 0.5) led to overfitting,
with EDS dropping to 82.4 at τ = 0.8. Optimal
performance (92.4 EDS) is achieved at τ = 0.5,
balancing specificity and generality. Higher thresh-
olds (> 0.8) caused underfitting by filtering out
critical updates.
3) Computational Trade-offs: HYPE requires compa-
rable GPU memory to Euclidean methods (1.1-1.3×
overhead) due to optimized hyperbolic operations,
but incurs higher CPU usage during hyperbolic
graph construction and Möbius updates. Specifi-
cally, hyperbolic graph construction involves com-
putationally intensive operations like Poincaré em-
bedding projection (Eq. (1)), which rely on CPU-
based linear algebra libraries. While GPU accel-
eration can mitigate some overhead (e.g., cuDF
achieves 10× speedups for data operations), hyper-
bolic projection remains a CPU-bound bottleneck,
adding 12–15% latency per inference step.

7 Conclusion

In this paper, we proposed HYPE, a novel post-
training model editing framework that leverages
hyperbolic geometry and graph neural networks
to perform precise and stable factual updates in
large language models. Our method addresses core
limitations in existing approaches—such as over-
fitting, poor generalization, and catastrophic for-
getting—by introducing a hyperbolic graph struc-
ture based on Poincaré embeddings, a Möbius-
transformed update strategy for navigating non-
Euclidean space, and a dual stabilization mecha-
nism combining gradient masking with periodic
GNN parameter resetting.

Through comprehensive evaluations on the
CounterFact, CounterFact+, and MQuAKE bench-

marks with GPT-J and GPT2-XL, we demonstrate
that HYPE significantly improves factual accuracy
and parameter efficiency while minimizing unin-
tended side effects on unrelated knowledge. Qual-
itative analyses further highlight HYPE’s ability to
perform localized, high-fidelity edits and propa-
gate updates in a controlled and geometry-aware
manner.

8 Limitations

HYPE introduces computational overhead due to hy-
perbolic operations and persistence filtering, which
are more expensive than Euclidean alternatives.
While this cost is partly offset by avoiding re-
training, it may hinder deployment in real-time or
resource-constrained environments. Additionally,
the current implementation targets medium-sized
models like GPT-J and GPT2-XL; scaling to larger
models such as GPT-4 or LLaMA-3 would require
substantial engineering effort and distributed infras-
tructure.

The framework also assumes access to clean,
structured triples from sources like Wikidata,
which may not generalize to domains with unstruc-
tured or noisy data. Moreover, while HYPE per-
forms well on hierarchical edits, it is less suited for
low-level or stylistic changes, which may require
complementary techniques. Finally, we do not yet
evaluate the broader social or fairness implications
of edits, which is an important area for future work.

9 Ethics Statement

We use open-source datasets—CounterFact, Coun-
terFact+, and MQuAKE—which are publicly avail-
able and do not contain personally identifiable in-
formation. Baselines are implemented using their
official open-source code, and all experiments are
conducted on a single NVIDIA A6000 GPU.

This work does not involve human subjects or
generate sensitive content. However, model editing
methods like HYPE could potentially be misused to
manipulate facts or introduce misinformation. We
encourage responsible use and suggest implement-
ing safeguards such as edit logging and validation
when applying these methods in production set-
tings.

Acknowledgments

The authors gratefully acknowledge the University
of Virginia Research Computing team for providing
the computational infrastructure necessary for this

13344

work. We also thank the UVA School of Data
Science for its continued support and for fostering
a collaborative and research-intensive environment.

References
Yash Kumar Atri, Vikram Goyal, and Tanmoy

Chakraborty. 2023a. Exploiting representation bias
for data distillation in abstractive text summarization.
Preprint, arXiv:2312.06022.

Yash Kumar Atri, Vikram Goyal, and Tanmoy
Chakraborty. 2023b. Multi-document summariza-
tion using selective attention span and reinforcement
learning. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 31:3457–3467.

Yash Kumar Atri, Arun Iyer, Tanmoy Chakraborty, and
Vikram Goyal. 2023c. Promoting topic coherence
and inter-document consorts in multi-document sum-
marization via simplicial complex and sheaf graph.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2154–2166, Singapore. Association for Computa-
tional Linguistics.

Yash Kumar Atri, Thomas H Shin, and Thomas
Hartvigsen. 2025. Continually self-improving
language models for bariatric surgery question–
answering. Preprint, arXiv:2505.16102.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. Preprint, arXiv:2005.00545.

Ines Chami, Rex Ying, Christopher Ré, and Jure
Leskovec. 2019. Hyperbolic graph convolutional
neural networks. Preprint, arXiv:1910.12933.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan
Liu, Peng Li, Maosong Sun, and Jie Zhou. 2022.
Fully hyperbolic neural networks. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5672–5686, Dublin, Ireland. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sashank Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24(1).

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Alvin Dey, Tanya Chowdhury, Yash Kumar Atri, and
Tanmoy Chakraborty. 2020. Corpora evaluation and
system bias detection in multi-document summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2830–2840,
Online. Association for Computational Linguistics.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang
Li. 2020. Orthogonal gradient descent for continual
learning. In AISTATS, volume 108 of Proceedings
of Machine Learning Research, pages 3762–3773.
PMLR.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. Preprint, arXiv:1803.03635.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas
Hofmann. 2018. Hyperbolic neural networks. In
Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18,
page 5350–5360, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Yifu Gao, Linbo Qiao, Zhigang Kan, Zhihua Wen,
Yongquan He, and Dongsheng Li. 2024. Two-stage
generative question answering on temporal knowl-
edge graph using large language models. In Findings
of the Association for Computational Linguistics:
ACL 2024, pages 6719–6734, Bangkok, Thailand.
Association for Computational Linguistics.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.

13345

Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. Preprint,
arXiv:2401.04700.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.
Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. In NeurIPS.

Cheng-Hsun Hsueh, Paul Kuo-Ming Huang, Tzu-Han
Lin, Che Wei Liao, Hung-Chieh Fang, Chao-Wei
Huang, and Yun-Nung Chen. 2024. Editing the
mind of giants: An in-depth exploration of pitfalls
of knowledge editing in large language models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 9417–9429, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In ICLR.
OpenReview.net.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Arinbjörn Kolbeinsson, Kyle O’Brien, Tianjin Huang,
Shanghua Gao, Shiwei Liu, Jonathan Richard
Schwarz, Anurag Jayant Vaidya, Faisal Mahmood,
Marinka Zitnik, Tianlong Chen, and Thomas
Hartvigsen. 2025. Composable interventions for
language models. In The Thirteenth International
Conference on Learning Representations.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liška, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,
Tomas Kocisky, Sebastian Ruder, Dani Yogatama,
Kris Cao, Susannah Young, and Phil Blunsom. 2021.
Mind the gap: assessing temporal generalization in
neural language models. In Proceedings of the 35th
International Conference on Neural Information Pro-
cessing Systems, NIPS ’21, Red Hook, NY, USA.
Curran Associates Inc.

Taiji Li, Zhi Li, and Yin Zhang. 2024a. Improving faith-
fulness of large language models in summarization
via sliding generation and self-consistency. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 8804–
8817, Torino, Italia. ELRA and ICCL.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2024b. PMET: precise model edit-
ing in a transformer. In AAAI, pages 18564–18572.
AAAI Press.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kai-
jiang Chen, and Ming Cui. 2024. From llm to con-
versational agent: A memory enhanced architecture
with fine-tuning of large language models. Preprint,
arXiv:2401.02777.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-
Hua Ling, and Jia-Chen Gu. 2024. Perturbation-
restrained sequential model editing. CoRR,
abs/2405.16821.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt edit-
ing to improve GPT-3 after deployment. CoRR,
abs/2201.06009.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual associ-
ations in GPT. In NeurIPS.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. In ICLR. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In ICML, volume 162
of Proceedings of Machine Learning Research, pages
15817–15831. PMLR.

Neel Nanda, Andrew Lee, and Martin Wattenberg. 2023.
Emergent linear representations in world models of
self-supervised sequence models. In Proceedings
of the 6th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pages 16–30,
Singapore. Association for Computational Linguis-
tics.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representations.
In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Anirudh Phukan, Shwetha Somasundaram, Apoorv Sax-
ena, Koustava Goswami, and Balaji Vasan Srinivasan.
2024. Peering into the mind of language models: An
approach for attribution in contextual question an-
swering. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 11481–11495,
Bangkok, Thailand. Association for Computational
Linguistics.

13346

Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang,
and Yongheng Dai. 2023. Explainable hyperlink pre-
diction: A hypergraph edit distance-based approach.
In 2023 IEEE 39th International Conference on Data
Engineering (ICDE), pages 245–257.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Mili Shah, Joyce Cahoon, Mirco Milletari, Jing Tian,
Fotis Psallidas, Andreas Mueller, and Nick Litombe.
2024. Improving LLM-based KGQA for multi-hop
question answering with implicit reasoning in few-
shot examples. In Proceedings of the 1st Workshop
on Knowledge Graphs and Large Language Models
(KaLLM 2024), pages 125–135, Bangkok, Thailand.
Association for Computational Linguistics.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024.
Retrieval-enhanced knowledge editing in language
models for multi-hop question answering. In Pro-
ceedings of the 33rd ACM International Conference
on Information and Knowledge Management, CIKM
’24, page 2056–2066, New York, NY, USA. Associa-
tion for Computing Machinery.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Abraham A. Ungar. 2013. Möbius transformation
and einsten velocity addition in the hyperbolic
geometry of bolyai and lobachevsky. Preprint,
arXiv:1303.4785.

Marco Valentino, Danilo Carvalho, and Andre Freitas.
2024. Multi-relational hyperbolic word embeddings
from natural language definitions. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 23–34, St. Julian’s, Malta.
Association for Computational Linguistics.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Yuxia Wang, Minghan Wang, Muhammad Arslan
Manzoor, Fei Liu, Georgi Georgiev, Rocktim Jy-
oti Das, and Preslav Nakov. 2024. Factuality
of large language models: A survey. Preprint,
arXiv:2402.02420.

Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu,
Irwin King, and Rex Ying. 2024. Hyperbolic
fine-tuning for large language models. Preprint,
arXiv:2410.04010.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222–10240,
Singapore. Association for Computational Linguis-
tics.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu.
2019. Continual learning of context-dependent pro-
cessing in neural networks. Nat. Mach. Intell.,
1(8):364–372.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,
Shu Wu, and Zhumin Chen. 2024. Knowledge graph
enhanced large language model editing. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 22647–22662,
Miami, Florida, USA. Association for Computational
Linguistics.

Zheng Zhao, Emilio Monti, Jens Lehmann, and
Haytham Assem. 2024. Enhancing contextual un-
derstanding in large language models through con-
trastive decoding. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
4225–4237, Mexico City, Mexico. Association for
Computational Linguistics.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can
we edit factual knowledge by in-context learning?
CoRR, abs/2305.12740.

Zexuan Zhong, Zhengxuan Wu, Christopher Manning,
Christopher Potts, and Danqi Chen. 2023. MQuAKE:
Assessing knowledge editing in language models via
multi-hop questions. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15686–15702, Singapore.
Association for Computational Linguistics.

13347

Appendix

A Datasets and Baselines

In this appendix, we provide detailed descriptions
of the datasets and baselines used in our experi-
ments and the metrics employed to evaluate the
performance of our proposed model, HYPE.

A.1 Datasets
We conduct our experiments on three widely used
datasets for model editing: CounterFact, Coun-
terFact+, and MQuAKE.
• CounterFact dataset (Meng et al., 2022a) con-

tains over 3,000 instances designed to evalu-
ate a model’s ability to perform accurate, spe-
cific, and generalizable factual edits. It assesses
efficacy (Eff), generalization (Gen), specificity
(Spec), and edit quality score (EDS) by mea-
suring a model’s ability to update facts without
unintended side effects.

• CounterFact+ dataset (Yao et al., 2023) extends
CounterFact by evaluating edit portability across
paraphrased queries. It contains over 1,000 para-
phrased questions and uses the portability (Port+)
metric to measure a model’s ability to transfer
edits across different linguistic formulations.

• MQuAKE dataset (Zhong et al., 2023) tests
multi-hop reasoning with over 3,000 complex,
multi-step questions (2-hop, 3-hop, 4-hop). Each
instance includes one or more edits and associ-
ated multi-hop questions, requiring models to
leverage edited knowledge to answer multi-step
queries. The dataset uses the multi-hop efficacy
metric to evaluate performance, with 2-hop, 3-
hop, and 4-hop questions.

A.2 Baselines
We compare HYPE against seven state-of-the-art
model editing techniques:

1. Zeroshot: The unmodified model, serving as a
baseline for unedited performance.

2. FT (Fine-Tuning): The full model fine-tuned
on edited data, updating all parameters.

3. MEND (Mitchell et al., 2022a): Updates
gradient-based weights to align edits with fac-
tual knowledge while preserving other informa-
tion.

4. ROME (Meng et al., 2022a): Modifies specific
relation parameters in the model, assuming that
knowledge can be localized to a single layer.

5. MEMIT (Meng et al., 2022b): Performs
memory-injected editing, updating weights
across multiple layers to incorporate new knowl-
edge.

6. PMET (Li et al., 2024b): Parameter-efficient
editing using low-rank weight updates to mini-
mize computational overhead.

7. RAE (Shi et al., 2024): Uses a Retrieval-
Augmented Generation (RAG) based approach,
incorporating external knowledge during infer-
ence.

A.3 Evaluation Metrics
We define the following metrics to assess model
editing performance:

Efficacy (Eff) Measures the accuracy of factual
edits by evaluating whether the model answers up-
dated questions correctly:

Ei

[
P
(
fθ(oi | (si, ri))

)
> P

(
fθ(o

i
c | (si, ri))

)]

Generalization (Gen) Assesses how consistently
the model applies edits to paraphrased queries:

Ei

[
P
(
fθ(oi | N(si, ri))

)
> P

(
fθ(o

i
c | N(si, ri))

)]

Specificity (Spec) Quantifies unintended alter-
ations to unrelated knowledge:

Ei

[
P
(
fθ(o

c
i | O(si, ri))

)
> P

(
fθ(o

i
c | O(si, ri))

)]

Edit Quality Score (EDS) A composite measure
given by the harmonic mean of Efficacy, General-
ization, and Specificity.

Portability (Port+) Evaluates how well edits
transfer across rephrased contexts:

Ei

[
P
(
fθ(oi | N(si, ri))

)
> P

(
fθ(o

i
c | N(si, ri))

)]

We use the similar Efficacy metric to com-
pute the n-hop Efficacy scores over the MQuAKE
dataset.

B Experimental Setup and Evaluation
Protocol

B.1 Implementation Details
The experiments are conducted using PyTorch 2.0,
DGL 1.1, and HuggingFace Transformers 4.30
on an NVIDIA A6000 GPU with 48GB memory.
We evaluate HYPE on three datasets: CounterFact,

13348

CounterFact+, and MQuAKE, using two base mod-
els: GPT-J and GPT2-XL. The hyperparameters for
each configuration were carefully tuned to optimize
performance on each dataset.

Parameter CF CF+ MQuAKE

Layers 5 9 5/9
GNN Grad Steps 25–35 35–50 25–50
GNN Loss Layer 27/47 47 27/47
Learning Rate (gnn_lr) 5e− 1 5e− 1 5e− 1
Weight Decay 1e− 1/5e− 1 5e− 1 1e− 1/5e− 1
Dropout (Attn/Feat) 0.2/0.2–0.4 0.2/0.3–0.4 0.2/0.3–0.4
KL Factor 0.0625–0.075 0.0625–0.075 0.0725–0.075
Early Stopping Loss 3e− 2/4e− 2 4e− 2/5e− 3 3e− 2/5e− 3

Table 3: Hyperparameters for CounterFact (CF), Coun-
terFact+ (CF+), and MQuAKE for GPT-J/GPT2-XL
models.

For the hyperbolic settings, we use the Poincaré
Ball model from the geoopt2 library with a cur-
vature parameter c=1.0. Hyperbolic operations
(Möbius addition) are applied during the model
updates. The hyperbolic space is initialized with a
learnable curvature, allowing the model to adapt to
the hierarchical structure of the data.

The hyperparameters for each dataset and model
configuration are detailed in Table 3. The num-
ber of GNN gradient steps and GNN loss layer are
adjusted based on the dataset and model complex-
ity. The learning rate, weight decay, and dropout
rates are also tuned to achieve optimal performance.
Early stopping is implemented using the ablated
loss thresholds to prevent overfitting.

B.2 Evaluation Protocol
For the evaluation benchmarks, we preserve the
dataset splits proposed in the original works for
CounterFact (Meng et al., 2022a) and MQuAKE
(Zhong et al., 2023). For CounterFact, we evaluate
our method on the first 7500 records for both GPT-
J and GPT2-XL models. For CounterFact+, we
utilize the 1031 samples provided for testing. For
MQuAKE, we follow the settings used in (Zhong
et al., 2023) and use a subset of 3000 entries. These
entries are evenly distributed across 2-hop, 3-hop,
and 4-hop questions, with each category compris-
ing 1000 entries. This distribution ensures a bal-
anced evaluation of the model’s performance across
different levels of reasoning complexity.

B.3 Hyperbolic Graph Construction
The foundation of our model lies in constructing
a hyperbolic graph that accurately represents hier-
archical relationships in the data. We initialize

2https://github.com/geoopt/geoopt

a Poincaré Ball model with a curvature param-
eter c = 1.0, enabling effective embedding of
knowledge triples in hyperbolic space. This curva-
ture allows the model to capture hierarchical struc-
tures more effectively than Euclidean spaces, as
distances in hyperbolic space grow exponentially,
aligning well with tree-like structures in knowledge
graphs.

To process the knowledge triples (following
(Zhang et al., 2024)), we embed each entity (sub-
ject and object) into the hyperbolic space using the
exponential map:

vhyp = expc0(veucl) = tanh
(√

c|veucl|
)
· veucl√

c|veucl|
(17)

where veucl is the Euclidean entity vector, and vhyp
is its hyperbolic counterpart. This transformation
preserves hierarchical relationships in the embed-
ding space. Similarly, relation embeddings are
projected onto the Poincaré Ball using the same ex-
ponential map, serving as edge features to encode
directional dependencies.

With node and edge features generated, the
graph is constructed by defining nodes for each
unique entity and adding edges based on relation
types, while incorporating self-loops to enhance
message passing. Node features are normalized as:

ni =
1√

|N (i)|
∑

j∈N (i)

hj (18)

where ni is the normalized feature for node i, N (i)
denotes its neighbors, and hj is the feature of node
j, preventing gradient instability.

To refine the graph, we apply a persistence-based
filtering mechanism that prunes weak edges based
on geometric significance in hyperbolic space, re-
ducing noise and enhancing structure. Edge fea-
tures are normalized for consistent scaling, ensur-
ing balance across relation types, and the resulting
hyperbolic graph effectively captures hierarchical
and semantic structures.

C Sample Model Outputs

We present four model outputs from the Counter-
Fact dataset, generated using HYPE.

13349

Listing 1: Output from model for sample 983
{
"case_id ": 983,
"grouped_case_ids ": [983],
"num_edits ": 1,
"requested_rewrite ": {
"prompt ": "{} plays the instrument",
"relation_id ": "P1303",
"target_new ": {"str": "violin", "id": "Q8355"},
"target_true ": {"str": "guitar", "id": "Q6607"},
"subject ": "Larry Knechtel"

},
"time": 10.52,
"post": {
"rewrite_prompts_probs ": [{" target_new ": 0.0192 , "target_true ": 6.16}] ,
"paraphrase_prompts_probs ": [{" target_new ": 1.13, "target_true ": 3.08}, {"

target_new ": 4.43, "target_true ": 11.02}] ,
"neighborhood_prompts_probs ": [{" target_new ": 8.69, "target_true ": 7.15}]

}
}

Listing 2: Output from model for sample 729
{
"case_id ": 729,
"grouped_case_ids ": [729],
"num_edits ": 1,
"requested_rewrite ": {
"prompt ": "{} works as",
"relation_id ": "P106",
"target_new ": {"str": "astronomer", "id": "Q11063"},
"target_true ": {"str": "poet", "id": "Q49757"},
"subject ": "Johann von Rist"

},
"time": 10.57,
"post": {
"rewrite_prompts_probs ": [{" target_new ": 0.0136 , "target_true ": 14.64}] ,
"paraphrase_prompts_probs ": [{" target_new ": 2.08, "target_true ": 12.86}] ,
"neighborhood_prompts_probs ": [{" target_new ": 12.24, "target_true ": 11.59}]

}
}

Listing 3: Output from model for sample 560
{
"case_id ": 560,
"grouped_case_ids ": [560],
"num_edits ": 1,
"requested_rewrite ": {
"prompt ": "{}'s headquarters are in",
"relation_id ": "P159",
"target_new ": {"str": "Prague", "id": "Q1085"},
"target_true ": {"str": "London", "id": "Q84"},
"subject ": "British Railways Board"

},
"time": 44.47,
"post": {
"rewrite_prompts_probs ": [{" target_new ": 8.77e-05, "target_true ": 12.56}] ,
"paraphrase_prompts_probs ": [{" target_new ": 0.0009 , "target_true ": 9.14}] ,
"neighborhood_prompts_probs ": [{" target_new ": 8.06, "target_true ": 2.31}]

}
}

13350

Listing 4: Output from model for sample 264
{
"case_id ": 264,
"grouped_case_ids ": [264],
"num_edits ": 1,
"requested_rewrite ": {
"prompt ": "{} is created by",
"relation_id ": "P176",
"target_new ": {"str": "Volvo", "id": "Q215293"},
"target_true ": {"str": "Toyota", "id": "Q53268"},
"subject ": "Toyota RAV4"

},
"time": 38.36,
"post": {
"rewrite_prompts_probs ": [{" target_new ": 0.0001 , "target_true ": 13.30}] ,
"paraphrase_prompts_probs ": [{" target_new ": 0.0002 , "target_true ": 11.79}] ,
"neighborhood_prompts_probs ": [{" target_new ": 8.07, "target_true ": 1.95}]

}
}

Algorithm HYPE Algorithm
1: procedure HYPERBOLICGRAPH({(s, r, o)})
2: Pretrained Euclidean embeddings: veuc(x) for entities and relations
3: for each entity x do
4: Compute hyperbolic embedding: vhyp(x) = expc

0(veuc(x))
5: end for
6: for each relation r do
7: Project to hyperbolic space: rhyp(r) = expc

0(reuc(r))
8: end for
9: Construct graph G = (V,E) with edges and relation features

10: Add self-loops, compute norm(v) = deg(v)−1

11: Apply persistence filter: a = σ(∥rhyp∥ − τ)
12: end procedure
13: procedure MÖBIUSUPDATE(w,L)
14: Compute gradient magnitude g and mask m = σ(g − τg)
15: Compute update vectors u,v and ∆ = γ(u⊗ v)⊙m
16: Update weights: wnew = w ⊕c ∆
17: end procedure
18: procedure STABILIZATION(w, θgnn)
19: Project weights: wfinal = proj(wnew)

20: Reset GNN parameters: θgnn ← θ
(0)
gnn

21: end procedure
22: procedure EDITMODEL({(s, r, o)},w)
23: Input: Triples {(s, r, o)}, model weights w
24: Output: Updated weights wfinal
25: Construct hyperbolic graph (Line 1)
26: do
27: Compute loss L = ComputeLoss(w, edit target)
28: Update weights using Möbius method (Line 11)
29: Stabilize and reset GNN (Line 16)
30: while Editing criteria not met
31: end procedure

13351

