
A Experimental Details

We first describe the experimental details that
are common to the experiments on both datasets.
Dataset-specific choices are listed in their respec-
tive subsections.

A.1 Preprocessing and Tokenization

We do not apply any further preprocessing to the
datasets that we obtain. We use BPE for tokeniza-
tion, and restrict the vocabulary to 30,000. We
truncate all inputs to 100 tokens at maximum.

A.2 Experimental Setup

Computing Infrastructure. For all of our exper-
iments, we relied on a computation cluster with a
variety of different GPUs with at minimum 12GB
GPU memory and 50GB RAM. For the text sim-
plification experiments where we measure training
speed, we ran all experiments on the same machine
(with a GeForce GTX 1080 Ti) in succession to
ensure a fair comparison.

Implementation. We used Python 3.7 with Py-
Torch 1.4 for all our experiments. Our open-source
implementation is available at https://github.
com/florianmai/emb2emb.

Adversarial Training. We employ a 2-layer
MLP with 300 hidden units and ReLU activation
as discriminator, and train it using Adam with a
learning rate of 0.00001 (the remaining parameters
are left at their PyTorch defaults). We train it in
alternating fashion with the generator Φ, in batches
of size 64.

A.3 Neural Architectures

Encoder For encoding, we employ a one-layer
bidirectional LSTM as implemented in PyTorch.
To obtain the fixed-size bottleneck, we average the
last hidden state of both directions. The input size
(and token embedding size) is 300.

Decoder For decoding, we initialize the hidden
state of a one-layer LSTM decoder as implemented
in PyTorch with the fixed size embedding. During
training, we apply teacher forcing with a probabil-
ity of 0.5. The input size is 300. We use greedy
decoding at inference time.

Transformation Φ. We train all neural network
architectures with one layer. The hidden size is set
to the same as the input size, which in turn is de-
termined by the size of the autoencoder bottleneck.

Hence, the MLP and OffsetNet have the same num-
ber of parameters. Due to its extra weight matrix
at the output-layer, the ResNet has 50% more pa-
rameters than the other models. All networks use
the SELU activation function. All training runs
with our model were performed with the Adam
optimizer.

A.4 Text Simplification
A.4.1 Dataset Details
We evaluate on the WikiLarge dataset by Zhang
and Lapata (2017), which consists of sentence pairs
extracted from Wikipedia, where the input is in En-
glish and the output is in simple English. It contains
of 296,402 training pairs, 2,000 development pairs,
and 359 pairs for testing. The 2,359 development
and test pairs each come with 8 human-written ref-
erence sentences to compute the BLEU and SARI
overlap with. The dataset can be downloaded from
https://github.com/XingxingZhang/dress.

A.4.2 Experimental Details
Training our model. We use a fixed learning
rate of 0.0001 to train our model for 10 epochs. We
evaluate the validation set performance in terms of
BLEU after every epoch and save the iteration with
the best validation loss performance.

Training S2S models. For all S2S mod-
els we compare against in Section 3.1.1,
we select the best performing run on the
validation set among the learning rates
{0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005},
and also assess the validation set performance after
each of the 20 epochs. Training is performed with
the Adam optimizer.

Encoder hyperparameters We use a 1-layer
bidirectional LSTM with a memory size of 1024
and an input size of 300.

Number of Parameters All models share the
same encoder and decoder architecture, consist-
ing of 34,281,600 parameters in total. The map-
pings MLP, OffsetNet, and ResNet have 2,097,132,
2,097,132, and 3,145,708 parameters, respectively.
We report total numbers for the models used in the
experimental details below.

Evaluation metrics. For computing BLEU,
we use the Python NLTK 3.5 library.7

7https://www.nltk.org/api/nltk.
translate.html#module-nltk.translate.
bleu_score

https://github.com/florianmai/emb2emb
https://github.com/florianmai/emb2emb
https://github.com/XingxingZhang/dress
https://www.nltk.org/api/nltk.translate.html##module-nltk.translate.bleu_score
https://www.nltk.org/api/nltk.translate.html##module-nltk.translate.bleu_score
https://www.nltk.org/api/nltk.translate.html##module-nltk.translate.bleu_score

For computing SARI score, we use the
implementation provided by (Xu et al.,
2016) at https://github.com/cocoxu/

simplification/blob/master/SARI.py.

A.4.3 SARI Score by λadv
Experimental details. We measure the perfor-
mance of our model on the development set of
WikiLarge in terms of SARI score. These results
are for the same training run for which we reported
the BLEU score, hence, the stopping criterion for
early stopping was BLEU, and we report the results
for all 10 exponentially increasing values of λadv .
The best value when using BLEU score as stopping
criterion is λadv = 0.032.

Results. The results in Figure 7 show the same
pattern as for the BLEU score, although with a
smaller relative gain of 23% when using the adver-
sarial term.

Figure 7: Performance on WikiLarge in terms of SARI
score (higher is better) by weight for the adversarial
term λadv .

A.4.4 Development Set Results for
Comparison to S2S Models

In Table 3, we report the development set perfor-
mances corresponding to the experiments reported
in Section 3.1.1. For each model, we also specify
the best learning rate, if applicable, and the number
of parameters in the model

A.5 Sentiment Transfer

A.5.1 Dataset Details
We evaluate on the Yelp dataset as prepro-
cessed by (Shen et al., 2017), which consists of
sentences with positive or negative sentiment

Model BLEU SARI LR |Θ|
S2S-Scratch 3.2 14.3 0.0001 34.3m
S2S-Pretrain 5.9 15.1 0.0005 34.3m
S2S-MLP 8.6 16.0 0.0001 36.4m
S2S-Freeze 17.4 20.1 0.00005 36.4m
Ours 26.7 23.5 - 36.4m

Table 3: Text simplification performance of model vari-
ants of seq2seq training on the development set. |Θ|
denotes the number of parameters for each model.

extracted from restaurant reviews. The training
set consists of 176,787 negative and 267,314
positive examples. The development set has
25,278 negative and 38,205 positive examples,
and the test set has 50,278 negative and 76,392
positive examples. The dataset can be downloaded
from https://github.com/shentianxiao/

language-style-transfer/tree/master/

data/yelp.

Training our models. We use a fixed learning
rate of 0.00005 to train our model for 10 epochs
(for the ablations) or 20 epochs (for the final model).
We evaluate the validation set performance in terms
of self-BLEU plus transfer accuracy after every
epoch and save the iteration with the best validation
loss performance.

For all models involving training the map-
ping Φ (including the ablation below), we
perform a search of λadv among the val-
ues {0.008, 0.016, 0.032, 0.0640.128}. We se-
lect them based on the following metric:
5∑

i=1
(BLEU(λadv , λ

i
sty) + accuracy(λadv , λ

i
sty),

where λisty corresponds to the i-th value of
λsty that we have used to obtain the BLEU-
accuracy tradeoff curve. By BLEU(λadv , λ

i
sty)

and accuracy(λadv , λ
i
sty), respectively, we mean

the score resulting from training with the given
parameters.

Encoder hyperparameters We use a 1-layer
bidirectional LSTM with a memory size of 512.

Number of Parameters All models again share
the same encoder and decoder architecture, consist-
ing of 22,995,072 parameters in total. The map-
pings MLP, OffsetNet, and ResNet have 524,288,
524,288, and 786,432 parameters, respectively.
Hence, the total number of parameters for our mod-
els is 23.5m, whereas the variants we report as Shen

https://github.com/cocoxu/simplification/blob/master/SARI.py
https://github.com/cocoxu/simplification/blob/master/SARI.py
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp

et al. and FGIM have 23m parameters.

Sentiment classifier on autoencoder manifold.
For binary classification, we train a 1-layer MLP
with a hidden size of 512 with Adam using a learn-
ing rate of 0.0001. For regularization, we use
dropout with p = 0.5 at the hidden and input layer,
and also add isotropic Gaussian noise with a stan-
dard deviation of 0.5 to the input features.

BERT classifier. The DistilBERT classifier is
trained using the HuggingFace transformers li-
brary.8 We train it for 30 epochs with a batch size
of 64 and a learning rate of 0.00002 for Adam, with
a linear warm-up period over the first 3000 update
steps. We evaluate the validation set performance
every 5000 steps and save the best model.

A.5.2 Implementation of Wang et al. Baseline
We reimplemented the Fast Gradient Iterative Mod-
ification method by (Wang et al., 2019) to either i)
follow the gradient of the sentiment classifier from
the input, or ii) from the output of Φ, follow the
gradient of the complete loss function of training
Φ.

Following the implementation by (Wang et al.,
2019), in all runs, we repeat the computation for
weights ω ∈ {1, 10, 100, 1000} and stop at the first
weight that leads to the classification probability
exceeding a threshold t. For each weight, we make
30 gradient steps at maximum.

The Wang et al. (2019) baseline is generated
from choosing t = {0.5, 0.9, 0.99, 0.999, 0.9999},
i.e., we choose lower thresholds to stop the gradient
descent from changing the input too much towards
the target attribute, leading to lower transfer accu-
racy performances.

When we apply FGIM to the output of Φ in
our model (with the more sophisticated loss func-
tion, where we set λsty = 0.5), we apply the same
thresholds.

A.5.3 Development Set Result for
Comparison of Plug and Play

In Figure 8, we report the development set result
corresponding to the test set results of the exper-
iments presented in Section 3.2.1. These results
are shown for λadv = 0.008, which performed

8Specifically, we use the run glue.py script in
from https://github.com/huggingface/
transformers and only replace the SST-2
dataset with the Yelp dataset. We used the commit
“11c3257a18c4b5e1a3c1746eefd96f180358397b” for training
our model.

the best in terms of the development score metric
introduced in the training details.

Figure 8: Comparison of plug and play methods for un-
supervised style transfer on the Yelp sentiment transfer
task’s development set. Up and right is better

A.5.4 Model Analysis

Experimental Setup We investigate the effect of
OffsetNet and the adversarial training term on our
unsupervised style transfer model by measuring
the self-BLEU score with the input sentence and
the accuracy of a separately trained BERT classi-
fier (achieving 97.8% classification accuracy) on
the Yelp development set. We again report the
best performance among 6 exponentially increas-
ing λadv values for each model. To inspect the
behavior of the models at varying levels of trans-
fer, we trained and plotted one model each for
λsty ∈ {0.1, 0.5, 0.9, 0.95, 0.99}.

Results. The results in Figure 9 show that Offset-
Net reaches better transfer accuracy than the MLP
at comparable self-BLEU scores. The performance
drops significantly if the adversarial term is not
used. This confirms the importance of our design
decisions.

Figure 9: Ablation of our model components on the
Yelp sentiment transfer tasks. Up and right is better.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

B Qualitative Analysis

We provide several example outputs of our method
in comparison to the outputs of the baseline by
Shen et al. (2020) in Tables 4, 5, 6, and 7. More-
over, we show how the output evolves as the multi-
plier and λsty (i.e., the level of transfer accuracy)
increases.

In our qualitative analysis we generally observe
that both models generate similar outputs when
the inputs are short and can be transferred by only
changing or deleting single words (e.g., Table 4).
We observe that grammaticality degrades in both
methods for higher transfer levels. However, our
method is more often able to preserve the content
of the input as the transfer accuracy increases: At a
multiplier of 3.0, the method by Shen et al. (2020)
outputs rather general positive statements that are
mostly disconnected from the input, whereas our
method is able to stay on the topic of the input
statement. This observation matches the quantita-
tive results from Section 3.2.1, where our method
attains substantially higher self-BLEU scores at
comparable levels of transfer accuracy.

However, it is clear that both models mostly rely
on exchanging single words in order to change
the sentiment classification. In the example from
Table 5, our model changes the input “the cash reg-
ister area was empty and no one was watching the
store front .” to the rather unnatural sentence “the
cash area was great and was wonderful with watch-
ing the front desk .” instead of the more natural,
but lexically distant reference sentence “the store
front was well attended ”. We think that this is
best explained by the fact that we use a denoising
autoencoder with a simple noise function (deleting
random words) for these experiments, which en-
courages sentences within a small edit-distance to
be close to each other in the embedding space (Shen
et al., 2020). Denoising autoencoders with a more
sophisticated noise functions focused on semantics
could possibly mitigate this, but is out of scope for
this study.

multiplier / λsty Shen et al. (2019) Ours
1.5 / 0.5 i will be back . i will be back .
2.0 / 0.9 i will be back back i will definitely be back .
2.5 / 0.95 i will definitely be back . i will definitely be back
3.0 / 0.99 i love this place ! i will be back !

Table 4: Input: i will never be back .

multi-
plier /
λsty

Shen et al. (2019) Ours

1.5 / 0.5 the cash area was great and the the best staff the cash area was great and was wonderful
one watching the front desk .

2.0 / 0.9 the cash register area was empty and no one
was watching the store front .

the cash area was great and was wonderful
with watching the front desk .

2.5 / 0.95 the cash bar area was great and no one was
the friendly staff .

the cash area was great and was wonderful
with watching the front desk .

3.0 / 0.99 the great noda area and great and wonderful
staff .

the cash area was great and her and the
staff is awesome !

Table 5: Input: the cash register area was empty and no one was watching the store front . Reference: the store
front was well attended

multiplier
/ λsty

Shen et al. (2019) Ours

1.5 / 0.5 we sit down and we got some really slow
and lazy service .

we sit down and we got some really slow
and lazy service .

2.0 / 0.9 we sit down and we got really awesome
and speedy service .

we sit down and we got some really slow
and lazy service .

2.5 / 0.95 we sit down and we we grab the casual
and and service .

we sit down and we got some really great
and and awesome service .

3.0 / 0.99 we sit great and and some really great and
awesome atmosphere .

we sit down and we got some really
comfortable and and service .

Table 6: Input: the cash register area was empty and no one was watching the store front . Reference: the service
was quick and responsive

multiplier
/ λsty

Shen et al. (2019) Ours

1.5 / 0.5 definitely disappointed that i ’m not my
birthday !

definitely disappointed that i could not
use my birthday gift !

2.0 / 0.9 definitely disappointed that i have a great ! definitely not disappointed that i could
use my birthday gift !

2.5 / 0.95 definitely super disappointed and i ’ll
definitely have a great gift !

definitely disappointed that i could use
my birthday gift !

3.0 / 0.99 definitely delicious and i love the ! definitely disappointed that i could use
my birthday gift !

Table 7: Input: definitely disappointed that i could not use my birthday gift ! Reference: definitely not disap-
pointed that i could use my birthday gift !

