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Introduction

It is our great pleasure to present the Proceedings of the SIGDIAL 2011 Conference, the 12th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. The conference is held in Portland,
Oregon, June 17-18, 2011, co-located with the ACL conference.

We received 68 paper submissions: 51 as long papers, 17 as short papers. The members of the
Program Committee did a superb job in reviewing the submitted papers, providing helpful comments
and contributing to discussions when required. We wish to thank all of them for their advice in selecting
the accepted papers and for helping to maintain the high quality of the program. Special thanks go to
Nicholas Asher, Dan Bohus, Deborah Dahl, Curry Guinn, Staffan Larsson, Andrei Popescu-Belis, and
Antoine Raux for helping out with last minute review requests. Many submissions received strong
recommendations from the Program Committee. In line with the SIGDIAL tradition, our aim has been
to create a balanced program that could accommodate as many favorably rated papers as possible. Of
the 68 submissions, 36 were accepted: 18 of 51 long paper submissions papers were accepted as full
papers for plenary presentation, 7 were accepted as long papers for poster presentation, and 5 were
accepted as as short papers for poster presentation. In addition, 6 of the 17 short paper submissions
were accepted for poster presentation, for a total of 18 posters. Of special note this year, four papers
were accepted as part of a Special Theme on situated dialogue. In addition, 7 of the 8 demo submissions
were presented; the 8th was accepted but withdrawn.

This year, the review process continued the mentoring program that was initiated last year, and was
coordinated by Ronnie Smith. The mentoring goal is to assist authors of papers that contain innovative
ideas to improve their quality regarding English language usage or paper organization. Compared with
the first year, reviewers accepted fewer papers that required mentoring, but we hope the initiative will
continue and expand. Our thanks go to Ronnie Smith and the Program Committee members who
volunteered to serve as mentors.

We are also grateful to the two keynote speakers whose topics expanded on the special theme of situated
dialogue: Professor Alex Lascarides (The University of Edinburgh) and Professor Michael Tanenhaus
(University of Rochester).

We would like to thank Peter Heeman, Local chair, and Pat Dickerson and Ethan Selfridge, the members
of the local committee for taking care of the many details for the local arrangements. For on-site
assistance, we thank the student volunteers, Lin Chen, Joanna Drummond, Joshua Gordon, Elnaz Nouri,
Ethan Selfridge and William Wang. For help on the design of the conference bag, we thank Anabel-
Franco-Heurta and Jennifer Wohlner.

We would like to thank Jason Williams, Sponsorships chair, for recruiting and liaising with our
conference sponsors. The sponsorship program enables valuable aspects of the program, such as
the invited speakers, conference reception and dinner, and best paper awards. We would also like
to thank our sponsors. General conference sponsors include Microsoft Research, Vlingo, and AVIOS.
The banquet is sponsored by Honda Research. AT&T Research sponsored the best paper award, and
IBM Research sponsored the best student paper award.

We would like to thank last year’s program co-chairs Raquel Ferndndez and Oliver Lemon for their
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advice, and responses to our questions. We thank last year’s General co-chair Mikio Nakano for
updates to the conference chair kit, and much helpful advice. Thanks also go to Kazunori Komatani
and Guodong Zhou for answering our questions related to assembling the conference proceedings.

We would like to thank Priscilla Rasmussen at ACL for handling the financial transactions, including
advance registration. We would also like to thank Drago Radev, ACL Secretary, for helpful advice.
Thanks to SoftConf for use of the START conference management systems as well as helpful responses
on its use. Thanks also to the SIGDIAL board, in particular Tim Paek, Amanda Stent, and Kristiina
Jokinen, for their advice and support in all matters.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Johanna D. Moore and David R. Traum
General Co-Chairs

Joyce Y. Chai and Rebecca J. Passonneau
Technical Program Co-Chairs
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Strategic Conversation

Alex Lascarides

School of Informatics
University of Edinburgh
Edinburgh, EH8 9AB, Scotland, UK

alex@inf.ed.ac.uk

Models of conversation that rely on a robust notion of cooperation don't model dialogues where
the agents' goals conflict; for instance, negotiation over restricted resources, courtroom cross ex-
amination and political debate. We aim to provide a framework in which both cooperative and
non-cooperative conversation can be analyzed. We develop a logic that links the public com-
mitments that agents make through their utterances to private attitudes---e.g., belief, desire and
intention. This logic incorporates a qualitative model of human action and decision making that
approximates principles from game theory: e.g., choose actions that maximize expected utility.
However, unlike classical game theory, our model supports reasoning about action even when
knowledge of one's own preferences and those of others is incomplete and/or changing as the
dialogue proceeds---an essential feature of many conversations. The logic validates decidable
inferences from utterances to mental states during interpretation, and from mental states to dia-
logue actions during language production. In a context where the agents' preferences align we
derive axioms of co-operativity that are treated as primitive in BDI logics for analyzing dialogue.
Thus models of cooperative conversation are a special case in our framework.

The research presented in this talk is joint work with Nicholas Asher.

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 1,
Portland, Oregon, June 17-18, 2011. (©2011 Association for Computational Linguistics



Spoken Dialog Challenge 2010:
Comparison of Liveand Control Test Results

Alan W Black', Susanne Burger', Alistair Conkie®, Helen Hastie?, Simon Keizer®, Oliver
L emon?, Nicolas Merigaud?, Gabriel Parent!, Gabriel Schubiner?, Blaise Thomson?, Jason
D. Williams®, Kai Yu®, Steve Young® and M axine Eskenazi*

Language Technologies Institute, Carnegie Melloivehsity, Pittsburgh, USA
“Dept of Mathematical and Computer Science, HeriattWniversity, Edinburgh, UK
Engineering Department, Cambridge University, Cadug, UK
“AT&T Labs — Research, Florham Park, NJ, USA

awb@cs.cmu.edu

tages. First, there was a system that had been used
by many callers. Second, there was a substantial
dataset that participants could use to train their sys-
tems. Finally, there were real callers, rather than
only lab testers. Past work has found systems
which appear to perform well in lab tests do not
always perform well when deployed to real callers,
in part because real callers behave differently than
lab testers, and usage conditions can be considera-
bly different [Raux et al 2005, Ai et al 2008]. De-
ploying systems to real users is an important trait
of the Spoken Dialog Challenge.

The CMU Let's Go Bus Information system
[Raux et al 2006] provides bus schedule informa-
tion for the general population of Pittsburgh. It is
directly connected to the local Port Authority,
whose evening calls for bus information are redi-
rected to the automated system. The system has
been running since March 2005 and has served
over 130K calls.

The software and the previous years of dialog
data were released to participants of the challenge
to allow them to construct their own systems. A
number of sites started the challenge, and four sites
successfully built systems, including the original
CMU system.

An important aspect of the challenge is that
the quality of service to the end users (people in
Pittsburgh) had to be maintained and thus an initial
The goal of the Spoken Dialog Challenge (SDC) imbustness and quality test was carried out on con-
to investigate how different dialog systems pettributed systems. This control test provided sce-
form on a similar task. It is designed as a regularlyarios over a web interface and required
recurring challenge. The first one took place inesearchers from the participating sites to call each
2010. SDC participants were to provide one af the systems. The results of this control test were
more of three things: a system; a simulated usgniblished in [Black et al. 2010] and by the individ-
and/or an evaluation metric. The task chosen faal participants [Williams et al. 2010, Thomson et
the first SDC was one that already had a largd. 2010, Hastie et al, 2010] and they are repro-
number of real callers. This had several advan-

2

Abstract

The Spoken Dialog Challenge 2010 was an
exercise to investigate how different spo-
ken dialog systems perform on the same
task. The existing Let's Go Pittsburgh Bus
Information System was used as a task and
four teams provided systems that were first
tested in controlled conditions with speech
researchers as users. The three most stable
systems were then deployed to real callers.
This paper presents the results of the live
tests, and compares them with the control
test results. Results show considerable
variation both between systems and be-
tween the control and live tests. Interest-
ingly, relatively high task completion for
controlled tests did not always predict
relatively high task completion for live
tests. Moreover, even though the systems
were quite different in their designs, we
saw very similar correlations between word
error rate and task completion for all the
systems. The dialog data collected is
available to the research community.

1 Background

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 2-7,
Portland, Oregon, June 17-18, 2011. (©2011 Association for Computational Linguistics



duced below to give the reader a comparison withart because the call center is open fewer hours on
the later live tests. weekends. Figure 1 shows a histogram of average
Important distinctions between the controtalls per hour for the evening and the early morn-
test callers and the live test callers were that tleg of each day of the week.
control test callers were primarily spoken dialog
researchers from around the world. Although the
were usually calling from more controlled acoustic calls per weekday / ave per hour
conditions, most were not knowledgeable abou
Pittsburgh geography.
As mentioned above, four systems took par
in the SDC. Following the practice of other chal-
lenges, we will not explicitly identify the sites
where these systems were developed. We simp
refer to them as SYS1-4 in the results. We will
however, state that one of the systems is the syste 1
that has been running for this task for severé ©
years. The architectures of the systems cover @S’;@Q o)&’g V‘a‘iﬁifﬂ,\ﬂo ﬁ;fo «5’1&""0 @94
number of different techniques for building spoker

dialog systems, including agenda based systenfigure 1: average number of calls per hour on wedske

=
]

OFRP NWMUON®O
T

VoiceXML and statistical techniques. (dark bars) and weekdays. Listed are names of @lays
times before and after midnight when callers catlted
2 Conditionsof Control and Livetests system.

For this task, the caller needs to provide the depar- The control tests were set up through a simple
ture stop, the arrival stop and the time of departuifeh interface that presented 8 different scenarios
or arrival in order for the system to be able to pefy callers. Callers were given a phone number to
form a lookup in the schedule database. The routgi; each caller spoke to each of the 4 different
number can also be provided and used in thgstems twice. A typical scenario was presented
lookup, but it is not necessary. The present livgith few words, mainly relying on graphics in or-

system covers the East End of Pittsburgh. Aler to avoid influencing the caller's choice of vo-

though the Port Authority message states that Oﬂ@ibulary. An example is shown in Figure 2.
areas are not covered, callers may still ask for

routes that are not in the East End; in this case, the
live system must say it doesn’t have informatio

available. Some events that affect the length of t|  vou are here: ., You want to go to:
dialog include whether the system uses implicit ¢ >

explicit confirmation or some combination of both E—?’

whether the system has an open-ended first turn * J<

a directed one, and whether it deals with requeg Forpes

for the previous and/or following bus (this latte ey Av.

should have been present in all of the systems).

Just before the SDC started, the Port Autho
ity had removed some of its bus routes. The sy
tems were required to be capable of informing th
caller that the route had been canceled, and th
giving them a suitable alternative.

SDC systems answer live calls when the Pg
Authority call center is closed in the evening anéigure 2: Typical scenario for the control testhis
early morning. There are quite different types angkample requests that the user find a bus froredhe
volumes of calls over the different days of th&er of Forbes and Morewood (near CMU) to the aigpor
week. Weekend days typically have more calls, i#ing bus route 28X, arriving by 10:45 AM.

Arrive

©.10:45

1)

3



3 Control Test Results bus at the requested tinmos_out: identifies calls
where a specific time schedule is given. Both

The logs from the four systems were labeled fQfonthave andpos_out calls may be correct or er-

task success by hand. A call is successful if any gfneous (e.g the given information is not for the

the following outputs are correctly issued: requested bus, the departure stop is wrong, etc).

* Bus schedule for the requested departure and

2;r)ival stops for the stated bus number (if givzl Live Tests Results
* A statement that there is no bus available fdn the live tests the actual Pittsburgh callers had

that route. access to three systems: SYS1, SYS3, and SYS4.
« A statement that there is no scheduled bus Atthough engineering issues may not always be

that time. seen to be as relevant as scientific results, it is im-
portant to acknowledge several issues that had to
be overcome in order to run the live tests.

Since the Pittsburgh Bus Information System

* A departure/arrival stop within 15 minutesis a real system, it is regularly updated with new

We additionally allowed the following boundary
cases:

walk. schedules from the Port Authority. This happens
« Departure/arrival times within one hour of re-about every three months and sometimes includes

quested time. changes in bus routes as well as times and stops.
* An alternate bus number that serves the r&he SDC participants were given these updates

quested route. and were allowed the time to make the changes to

In the control tests, SYS2 had system connecti He” systems. Making things more difficult is the
issues that caused a number of calls to fail to co ct that the Port Authority often only releases the

nect, as well as a poorer task completion. It Wéghedules a few days ahead of the change. Another

not included in the live tests. It should be pointeﬁogcgrrl] was .thé"t thetrl:vte tLests hbe run_W|th|E 3”?
out that SYS2 was developed by a single gradua§8 elduet pfefrlot thso alt € change In schedule
student as a class project while the other syste?ﬁgu not aftect the resufts.

were developed by teams of researchers. The re The second engineering issue concerned

sults of the Control Tests are shown in Table 1 a talep?ony ?IonPeCt'\f[':]y' ;he;reA ht";d tf ?e fthway to
are discussed further below. ranster calls from the Port Authority to the par-

ticipating systems (that were run at the participat-

SYSL | SYS2 | SYS3 | SYs4 ing sites, not at CMU) without slowing down or
Total Calls 91 61 75 83 perturbing service to the callers. This was
go—tir?fo 13;-22//0 23;762/% 141%% ggcf’% achieved by an elaborate set of call-forwarding
odnon;\g\a/e_corr 68.8% | 33.3% | 1000% | 100.0% mechanisms that performed very reliably. How-
Jonthave incorr | 31.3% 1 66.7% | 0.0% | 0.0% ever, since one system was in Europe, connections
pos_out 791% | 37.7% | 84.0% | 80.7% to it were sometimes not as reliable as to the US-
pos out_corr | 66.7% | 78.3% | 88.9% | 80.6% based systems.

pos out incorr | 33.3% | 21.7% | 11.1% | 19.4%

SYSL | SYS3 | SYHA

Table 1. Results of hand analysis of the four syst& Total Calls 678 451 742
thecontrol test Non-empty calls 633 430 670
The three major classes of system response | ho_info 18.5% | 14.0% 11.0%

are as follows.no info: this occurs when the sys- donthave 26.4% | 30.0% | 17.6%
~ y donthave _corr | 47.3% | 40.3% | 37.3%

tem gives neither a specific time nor a valid excuse Jonthave incorr T 527% 1 59.7% | 62.7%
(bus not covered, or none at that timejo_info pos_out 55.1% | 56.0% | 71.3%
calls can be treated as errors (even though there "pos out_corr | 86.8% | 93.8% | 91.6%
maybe be valid reasons such as the caller hangs up| _ pos out_incorr | 132% | 6.2% | 84%
because the bus they are waiting for arrives). _

donthave: identifies calls that state the requested@Ple 2. Results of hand analysis of the three systa
bus is not covered by the system or that there is it /'vetests. Row labels are the same as in Table 1.
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We ran each of the three systems for multiple twlogistic regression of success against word error
day periods over July and August 2010. This deate (WER) for each of the systems. Figure 3
sign gave each system an equal distribution shows the regressions for the Control Tests and
weekdays and weekends, and also ensured tRagure 4 for the Live Tests.

repeat-callers within the same day experienced the

same system. Sysi SYs3 SYs
One of the participating systems (SYS4)| Control 38.4 27.9 27.5
Live 438 425 35.7

could support simultaneous calls, but the other twe
could not and the caller would receive a busy sig-
nal if the system was already in use. This, how-
ever, did not happen very often.

Results of hand analysis of real calls are
shown in Table 4 alongside the results for the Con-< |
trol Test for easy comparison. In the live tests we
had an additional category of call types — empty
calls (O-turn calls) — which are calls where there < |
are no user turns, for example because the caller
hung up or was disconnected before saying any-© |
thing. Each system had 14 days of calls and exte?? ©
nal daily factors may change the number of callsa
We do suspect that telephony issues may have preo
vented some calls from getting through to SYS3 on
some occasions.

Table 3 provides call duration information for O
each of the systems in both the control and live
tests. g 4

Table 4: Average dialogue word error rate (WER).

| T T T T T

0 20 40 60 80 100

WER

Length (s) | Turns/call | Words/turn

SYS1 control 155 18.29 2.87 (2.84) Figure 3: Logistic regression of control test sesces
SYS1 live 111 16.24 2.15 (1.03) WER for the three fully tested systems
SYS2 control 147 17.57 1.63 (1.62
SYS3 control 96 10.28 2.73 (1.94) o
SYS3 live 80 9.56 2.22 (1.14) |
SYS4 control 154 14.70 2.25(1.78 ©
SYS4 live 126 11.00 1.63 (0.77) o]
Table 3: For live tests, average length of each aatr- g -
age number of turns per call, and average number of g
words per turn (numbers in brackets are standaridde &
tions). o

Each of the systems used a different speechg .
recognizer. In order to understand the impact of
word error rate on the results, all the data were © | )
hand transcribed to provide orthographic transcrip- © o 20 40 60 80 100
tions of each user turn. Summary word error sta-
tistics are shown in Table 4. However, summar
statistics do not show the correlation between wofd
error rate and dialogue success. To achieve this,
following Thomson et al (2010), we computed a

gure 4: Logistic regression of live success vsRAfar
the three fully tested systems
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In order to compare the control and live testsimilar error rates but the success rate of SYS3 was
we can calculate task completion as the percentdgigher. The regression in Figure 3 shows this
of calls that gave a correct result. We include onlglearly. In the live tests SYS3 had a significantly
non-empty calls (excluding O-turn calls), and treatigher word error rate and average success rate
all no_info calls as being incorrect, even thougtvas much lower than in SYS4.
some may be due to extraneous reasons such as the It is interesting to speculate on why the rec-

bus turning up (Table 5). ognition rates for SYS3 and SYS4 were different
in the live tests, but were comparable in the control
Sysi SYS3 Sy tests. In a spoken dialogue system the architecture

Control | 64.9% (5.0%) | 89.4% (3.6%)| 74.6% (4.8%) has a considerable impact on the measured word

Live | 60.3% (1.9%) | 64.6% (2.3%)| 71.9% (1.7%6) grror rate. Not only will the language model and

use of dialogue context be different, but the dia-
logue design and form of system prompts will in-
fluence the form and content of user inputs. Thus,
word error rates do not just depend on the quality
of the acoustic models — they depend on the whole
All systems had lower WER and higher task consystem design. As noted above, SYS4 was more
pletion in the controlled test vs. the live test. Thisystem-directed than SYS3 and this probably con-
agrees with past work [Raux et al 2005, Ai et dributed to the comparatively better ASR perform-

2008], and underscores the challenges of deployiagce with live users. In the control tests, the
real-world systems. behavior of users (research lab workers) may have

For all systems, dialogs with controlled subbeen less dependent on the manner in which users
jects were longer than with live callers — both invere prompted for information by the system.
terms of length and number of turns. In additiorfpverall, of course, it is user satisfaction and task
for all systems, live callers used shorter utterancégccess which matter.
than controlled subjects. Controlled subjects ma o )
be more patient than live callers, or perhaps Ii\/g Corpus Availability and Evaluation
callers were more likely to abandon calls in th
face of higher recognition error rates.

Table 5: Live and control test task completion (etul).

5 Discussion

%he SDC2010 database of all logs from all systems

. . . including audio plus hand transcribed utterances,
Some interesting differences between the Syspy hang defined success values is released

tems are evident in the live tests. Looking at diqhrough CMU's Dialog Research Center
log durations, SYS3 used confirmations least Oftefhttp://dialrc.ord.

and vyielded the fastest dialogs (80s/call). SYSIT
made extensive use of confirmations, yielding th&hal
most turns of any system and slightly longer diggeachers to test their systems on a common plat-
Io_gs (111s/call). SYS‘.‘ was the most SysteMe m with real users, but also create common data
directed, "’?'Ways coIIectlng_ information one eleéets for testing evaluation metrics. Although some
mentatatime. As aresult it was the slowest of the, y a5 heen done on this for the control test data
WE.g. [zhu et al 2010]), we expect further evalua-
'tion techniques will be applied to these data.
. _ One particular issue which arose during this
For task co_mpletl_on, SYS3 performed best .'Qvaluationpconcerned the difficulty of defininggpre-
the controlled wials, W.'th SYS.l worst and SYS4 '%isely what constitutes task success. A precise de-
between. How_ever in the live test, SY.SA' P€Enition is important to developers, especially if
formed best, with S.Y.S3 and SYS1 S|m|Ia_1r aNfeinforcement style learning is being used to opti-
worse. It was surprising that task completion folrnize the success. In an information seeking task
SYS3 was the highest for the controlied tests Y8t e ype described here, task success is straight-
among the lowest for the live tests. Investlgatlngbrward when the user's requirements can be satis-

tcryfn pvl\:eeti(];?\upodr E[Eit Iwgctgsc;]; tggp\éagrigtf[ig%;n dtl?sliiied but more difficult if some form of constraint
laxation is required. For example, if the user
WER. In the control tests SYS3 and SYS4 had o on 1S requl xampie, 1t the u

6

One of the core goals of the Spoken Dialog
lenge is to not only create an opportunity for

plicit confirmation instead of explicit confirmation
it had fewer turns/call than SYS1.



asks if there is a bus from the current location tdS National Science foundation under the project
the airport — the answer “No.” may be strictly corDialogue Research Center”.

rect but not necessarily helpful. Should this dia-

logue be scored as successful or not? The ansvrefer ences

No, but there is a stop two bIOCkS.‘ away Wherﬁi, H., Raux, A., Bohus, D., Eskenzai, M., and Lam)
you can take the number 28X bus direct to the air-'y (2008) “Comparing spoken dialog corpora col-

port.” is clearly more useful to the user. Should |ecteqd with recruited subjects versus real usétesc
success therefore be a numeric measure rather thag|gpial, Columbus, Ohio, USA.
a binary decision? And if a measure, how can it

. : ; ck, A., Burger, S., Langner, B., Parent, G., &
precisely defined? A. second _and relat(_ed ISsue kenazi, M. (9.]2010) “Spokgen Dialog Challenge 2010”
the need for evaluation algorithms which deter- o 15919 Berkeley, CA ’
mine task success automatically. Without these, ’ ’

system optimization will remain an art rather thah@stie, H., Merigaud, N., Liu, X and Oliver Lemon.
a science. (2010) “ ‘Let’'s Go Dude’, Using The Spoken Dia-

logue Challenge to Teach Spoken Dialogue Devel-

opment”, SLT 2010, Berkeley, CA.
. . . Raux, A., Langner, B., Bohus, D., Black, A., Eskana
This paper has described the first attempt at an ex-\y (2005) “Let's go public! Taking a spoken diglo
ercise to invfestigate ?10W diﬁerentkqurI;]en dialog system to the real world”, Interspeech 2005, Lisbon
systems perform on the same task. e existingPortugal.
Let's Go Pittsburgh Bus Information System Was, . A Bohus. D Langner, B., Black, A., andks
used as a.taSk and _four teams provid_e_d SySt_em%aéi, M (2066) .:‘Doing R,esé:arch o'n ; Deployed
that were first tested in controlled conditions with gpaken Dialogue System: One Year of Let's Go! Ex-
speech researchers as users. The three most stabjgrience”, Interspeech 2006 - ICSLP, Pittsburgh, PA
systems were then deployed “live” with real call- _ , ,
ers. Results show considerable variation both bje—b&rgﬁggsi"g ua’mﬁ' :((gl'fnzr' SS'",E?:;g;’ia'\g"D‘?:&fek’sys_
tween system_s and betyveen 'the control and_hvetem for the Let's Go S;;oken Dialogue Challenge”,
tests. Interestingly, relatively high task completion g 15010, Berkeley, CA.
for controlled tests did not always predict rela- _ _ _
tively high task completion for live tests. ThisW'l'ig":‘oslg ,iT 8’2“??&?2%3;; 2ngr§(;)§0ktli§nAé|‘:aDdeg1§tg-iS
ﬁg?}fggsu;g%i;ir,:;/p;ﬁ;.lggtesl()f testing on live callers, tical Spoken Dialog System.” SLT 2010, Berkeley,

The general organization and framework CA
of the evaluation worked well. The ability to routeZhu, Y., Yang, Z., Meng, H., Li, B., Levow, G., and
audio telephone calls to anywhere in the world us- King. |. (2010) "Using Finite State Machines for
ing voice over IP protocols was critical to the suc- Evall(u?tmgc ASpO"e” Dialog Systems”, SLT 2010,
cess of the challenge since it provides a way for erketey, LA
individual research labs to test their in-house sys-
tems without the need to port them to a central co-
ordinating site.
Finally, the critical role of precise evalua-

tion metrics was noted and the need for automatic
tools to compute them. Developers need these at
an early stage in the cycle to ensure that when sys-
tems are subsequently evaluated, the results and
system behaviors can be properly compared.

7 Conclusions
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Abstract

We investigate how to jointly explain the per-
formance and behavioral differences of two
spoken dialogue systems. The Join Evalu-
ation and Differences Identification (JEDI),
finds differences between systems relevant
to performance by formulating the problem
as a multi-task feature selection question.
JEDI provides evidence on the usefulness of
a recent method, ¢;/{,-regularized regres-
sion (Obozinski et al., 2007). We evaluate
against manually annotated success criteria
from real users interacting with five different
spoken user interfaces that give bus schedule
information.

1 Introduction

This paper addresses the problem of how to deter-
mine which differences between two versions of a
system affect their behavior. Researchers in Spo-
ken Dialogue Systems (SDSs) can be perplexed as to
which of the differences between alternative systems
affect performance metrics (Bacchiani et al., 2008).
For example, when testing on real users at differ-
ent periods of time, the variance of the performance
metrics might be higher than the difference between
systems, causing (i) significantly different scores in
identical systems deployed at different times, and
(ii) the same score on different systems (Gonzalez-
Brenes et al., 2009).

We approach the problem of finding which system
differences matter by describing dialogues as feature
vectors constructed from the logs of dialogs gener-
ated by the SDSs interacting with real users. Hence,
we aim to identify features that jointly characterize
the system differences and the performance of the
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SDS being evaluated. These features should be able
to (i) predict a performance metric and (ii) distin-
guish between the two SDS being evaluated.

The main contribution of this paper is a novel al-
gorithm for detecting differences between two sys-
tems that can explain performance. Additionally, we
provide details on how to implement state-of-the-art
multi-task learning for SDSs.

The rest of this manuscript is organized as fol-
lows. Section 2 reviews multi-task feature selection.
Section 3 describes two algorithms to find which
system differences matter. Section 4 describes the
specific SDS used to illustrate our algorithms. Sec-
tion 5 presents some experimental results. Section 6
reviews related prior work. Section 7 presents some
concluding remarks and future work. Appendix A
provides implementation details of the multi-task
learning approach we used.

2 Feature Selection

In this section we describe how we use regression to
perform feature selection. Feature selection meth-
ods construct and select subsets of features in order
to build a good predictor. We focus our attention on
feature selection methods that use complexity (regu-
larization) penalties, because of their recent theoret-
ical and experimental success (Yuan and Lin, 2006;
Park and Hastie, 2007). We provide a more rigorous
description of how to implement this formulation as
an optimization problem in Appendix A.

We use labels to encode the output we want to
predict. For example, if our performance metric is
binary, we label successful dialogues with a 41, and
unsuccesful dialogues with a —1. Given a training
set consisting of labeled dialogues, we want to learn

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 8—17,
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a model that assigns a label to unseen dialogues. We
follow an approach called empirical risk minimiza-
tion (Obozinski et al., 2007), that aims to minimize
the error of fitting the training data, while penalizing
the complexity of the model:

Minimize | Model loss | + A|Complexity (1)

Here the hyper-parameter A controls the trade-off
between a better fit to the training data (with a higher
risk of over-fitting it), and a simpler model, with
fewer features selected (and less predictive power).
We now review the two components of risk mini-
mization, model loss and complexity penalty.

2.1 Model Loss

We model probabilistically the loss of our model
against the real-life phenomenon studied. Given a
dialogue x, with correct label [, its loss using a
model 3 is:

lossg(y, x) = P(y = l|z;reality) — P(y = l|z; 3)

2
Here g is the predicted value of the event y. Since [
is the true label, P(y = l|z;reality) = 1. To get the
overall loss of the model, we aggregate over the pre-
diction loss of each of the dialogues in the training
set by summing their individual loss calculated with
Equation 2. Let X = {z(1) 2®) . 2"} be the n
dialogues in the training set. Then the overall loss of
model 3 is:

Since we use discrete labels, we use a logistic
function to model their probability. Let x1,...xx
be the k features extracted from dialogue x. Then
the logistic regression model is:

P(j =11z 8) = 5 exp(Bras + -+ Bray)

Here (3;...0; are the parameters of the model, and
Z simply normalizes P to ensure that P is a valid
probability function (the range of P should be O to
1):
Z =1+ exp(frzy + - + Oy

Multi-task learning solves related regression
problems at the same time using a shared representa-
tion. We now describe the risk-minimization formu-
lation for multi-task learning. Let y™ be the value
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of the performance metric. Let y° be the label of the
system that generated the dialogue. The individual
dialogue loss of using models 3™ and 3° is:

lossgm (9™, x) + lossgs (3°, x)

2.2 Complexity Penalties

We consider a feature z; to be selected into the
model if its regression coefficient (; is non-zero.
Complexity penalties encourage selecting only a few
features. We review several commonly used penal-
ties (Zou and Hastie, 2005):

e ¢5 Penalty. Under some circumstances fo
penalties perform better than other types of
penalties (Zou and Hastie, 2005). The ¢»
penalty for a model 3 is:

18llez = V(B2 + - + (Br)?

e {1 Penalty. An /; penalty induces sparsity by
setting many parameters of the model 3 to ex-
actly zero (Tibshirani, 1996).

1Blley = 181] + -+ - + Bl

e (1 /€5 Penalty. Yuan and Lin (2006) proposed
a group penalty for penalizing groups of fea-
tures simultaneously. Previous work has shown
that grouping features between tasks encour-
ages features to be used either by all tasks or
by none (Turlach et al., 2005; Obozinski et
al., 2007; Lounici et al., 2009; Puniyani et al.,
2010). Our ¢y /5 penalty is:

' G 1 (B

- ] B + (52

3 Finding Features that Predict
Performance and System Differences

We find system differences that are predictive of
SDS performance, relying on:

e Describing dialogues as feature vectors. The
behavior of the systems must be describable
by features extracted from the logs of the sys-
tems. A discussion of feature engineering for
dialogue systems is found in (Gonzilez-Brenes
and Mostow, 2011).



o Finding system differences. The features of a
classifier that distinguishes between SDSs, can
be used to identify their differences (Gonzalez-
Brenes et al.,, 2009). When comparing two
SDSs, we label the baseline system with —1,
and the alternate version with +1.

e Modeling performance.  Although our ap-
proach does not depend on a specific perfor-
mance metric, in this paper we use dialogue
success, a binary indicator that triggers that
the user’s query was answered by the SDS.
Task completion is cheaper to compute than di-
alogue success, as it does not require a man-
ual human labeled reference, but we consider
that dialogue success is a more accurate metric.
Task completion is used in commercial applica-
tions (Bacchiani et al., 2008), and has been ex-
tensively studied in the literature (Walker et al.,
2001; Walker et al., 2002; Hajdinjak and Mi-
helic, 2006; Levin and Pieraccini, 2006; Moller
et al., 2007; Moller et al., 2008; Schmitt et
al., 2010). We encode success of dialogues by
manually annotating them with a binary vari-
able that distinguishes if the user query is ful-
filled by the SDS.

We now present two algorithms to find what dif-
ferences matter between systems. We introduce Se-
rial EvaluatioN Analysis (SERENA) as a scaffold
for the Join Evaluation and Differences Identifica-
tion (JEDI) algorithm.

3.1 SERENA algorithm

The input to SERENA is a collection of log files
created by two different SDSs and two functions that
represent the correct label for the regression tasks.
In our case these functions should return binary la-
bels (+1, —1): one task distinguishes between suc-
cessful and unsuccessful dialogues, and the other
task distinguishes a baseline from an alternative SDS
version. SERENA’s objective is to select features
from one task, and use them to predict the other task.
For example, SERENA selects features that predict
differences between versions, and uses them to pre-
dict performance.

Algorithm 1 provides the pseudo-code for SER-
ENA. Line 1 builds the training set X from parsing
the logs of the SDSs. Lines 2 and 3 create the output
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Algorithm 1 SERENA algorithm
Require: Logs;, Logss are the collections of SDS
logs of two systems. task;, tasks are func-
tions that return the value of a performance met-
ric, and which system is being evaluated (—1 if
is the baseline, 41 otherwise).
1: X « extract_features(Log;, Log,)

Lot taski (Logs;)
2y = |:task1(Log52)

ty |:task2(Logsl)i|

Y tasko (Logs,)
/I Select features that explain both tasks:
for \ = {0.1,0.2,...} do
B — regression,, (X, y", \)
/I Get feature weights:
X’ «— X; where z|Vzy € X/, ,t; #0
B* «— regression,, (X', y", A.)
10: end for
11: return 3*

R e A U

variables y for the regression tasks. Line 6 returns
the most predictive features using ¢; regularization
as described in Section 2. Line 8 builds a new train-
ing set, removing the features that were not selected
in line 6. Line 9 builds the final coefficients by fitting
a {o-regularized model using a constant \.. We cal-
culate the coefficients using an ¢, penalty, because
it has a better fit to the data (Zou and Hastie, 2005).
Moreover, by using the same penalty, we control for
the idiosyncrasies different penalties have in param-
eter learning. In the experiments described in Sec-
tion 5, all of our experiments are reported fitting a
fo-regularized models.

SERENA is not conmutative with regards to the
order of the tasks: selecting the features that predict
performance and using them to predict system dif-
ferences is not the same as the reverse. More impor-
tantly, SERENA only searches in one of the tasks at
a time. We are interested in finding the features that
explain both tasks simultaneously. In the next sub-
section we describe JEDI which makes use of recent
advances in multi-task feature selection in order to
find the features for both tasks at the same time.

3.2 JEDI algorithm

Algorithm 2 provides the pseudo-code for JEDI.
JEDI uses multi-task regression to find the fea-
tures that affect performance and system differences



Algorithm 2 JEDI algorithm
Require: Logs;, Logss are the collections of SDS
logs of two systems. task;, tasks are func-
tions that return the value of a performance met-
ric, and which system is being evaluated (—1 if
is the baseline, 41 otherwise).
1: X « extract_features(Log;, Log,)

Lot taski (Logs;)
2y = |:task1(Log52)

ty |:task2(Logsl):|

Y tasks (Logs,)

/I Select features that explain both tasks:

for A\ = {0.1,0.2,...} do
Bt 3tz — regressiony, /4, (X, yi, vt \)
/I Get feature weights:
X’ «— X; where z|Vzy € X/, ,t; #0
B* « regression,, (X', y", \.)

10: end for

11: return 3*

R e A U

jointly. To ensure a sparse feature set across the
tasks, it applies a /1 /{5 penalty. In this way, a feature
is either selected to predict performance and system
differences, or it is not selected at all. In the next
section we review a concrete example of a SDS in
which we apply SERENA and JEDI.

4 Case Study

We use data collected from Let’s Go!/, an experi-
mentary SDS available for research purposes' that
provides bus planning information to the Pittsburgh
East End community (Raux et al., 2006). Figure 1
shows a sample dialogue.

We assembled three disjoint datasets to have di-
alogues just before and after what we considered
important architectural differences of Let’s Go’s im-
plementation. By going through the change log, we
realize that the magnitude of the differences varies
widely. Table 1 describes the date the systems were
deployed, the description of the change in the SDS,
and the number of dialogues in each set. From the
86 dialogues of “Set A”, half are a random sam-
ple of the logs before the acoustic model was re-
trained (Logi), and the other half is a sample af-
ter the acoustic model was retrained (Logs). In the
case of the 84 dialogues of “Set B”, half of the logs

'http://www.dialrc.org/
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Welcome to the CMU Let’s Go!
Bus Information System. How
may I help you?

I’d like to go to Forbes and Mur-
ray.

To Forbes and Murray. Where
are you leaving from?

Carnegie Mellon.

From Carnegie Mellon. There
are five buses running between
Carnegie Mellon and Forbes and
Murray: the 501, the 59U, the
61A, the 61B, and the 61C.
What else can I do for you?
When is the next one?

The next 61C going to Forbes
and Murray will leave Carnegie
Mellon at 5:13 PM.

System:

User:
System:

User:
System:

User:
System:

Figure 1: Example of a Let’s Go dialogue, from (Raux et
al., 2006)

use an older version of the Olympus SDS infrastruc-
ture (Bohus et al., 2007), and the other half uses
Olympus II. Since each system was deployed in a
different period of time, we want to corroborate that
we are modeling the differences among systems, and
not seasonal. Hence, for control conditions, we also
chose a data set that contained no major change to
the system or to other conditions (Set C).

Sets were built by randomly sampling from the
collection of logs. They have the same number of di-
alogues from each SDS version (baseline/alternate).
Each dialogue was manually annotated to indicate
whether the user’s query was fulfilled, and we re-
moved from our analysis the two dialogues that were
only partially fulfilled. The number of successful di-
alogues is different from the number of unsuccessful
dialogues.

We created a script to extract features from the log
files of Let’s Go!. The script has an explicit list of
features to extract from the event logs, such as the
words that were identified by the Automatic Speech
Recognizer. Although this script is dependent on our
specific log format, it should be a simple program-
ming task to adapt it to a different dialogue system,
provided its logs are comprehensive enough. The



Table 1: Dataset Description

Set Size Description Date

A 36 Baseline 8/05 10/05
New acoustic model 12/05  2/05

B 36 Baseline 8/06 10/06
New SDS architecture  6/07  7/07

C 24 Baseline 10/07 11/07
No change 11/07 12/07

script performs the standard transformation of cen-
tering feature values as z-scores with mean zero and
standard deviation one.

Table 2 summarizes the properties we are inter-
ested to model. Dialogue properties are the features
that summarize the behavior of the whole dialogue,
and turn properties work at a finer-grain. We encode
turn properties into features in the following way:

e Global average. Turn properties are averaged
over the entire dialogue.

e Beginning window. Turn properties are aver-
aged across an initial window. Based on pre-
liminary experiments, we defined the window
as the first 5 turns.

e State. We relied on the fact that SDSs are of-
ten engineered as finite state automata (Bohus
et al., 2007). Properties are averaged across the
states that belong to a specific dialogue state
(for example, asking departure place). Because
we are interested in early identification of dif-
ferences, we restricted state features to be in-
side the beginning window.

5 Evaluation

We assess the performance of our algorithms by
evaluating the classification accuracy using the fea-
tures selected. To facilitate assessment of SDS, we
only consider models that select up to 15 features.
Figure 2 reports mean classification accuracy using
five-fold cross-validation. Its first column describes
how well the features selected perform on detecting
system differences, and the second column describes
how well they predict task success as a performance
metric. We compare JEDI and SERENA against the
following approaches:
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Table 2: Features
Dialogue Properties

# of re-prompted turns

# of turns

Mean Dialogue length

is evening?, is weekend?, 0-23 hour

Turn Properties

Occurrences of word w

# of parse errors

# of unrecognized words

# of words

# of repeated words

# of unique words

Turn length

Words per minute

Failed prompts (number and percentage)
Mean Utterance Length
Barge-in (in seconds)
Machine-user pause (in seconds)
User-machine pause (in seconds)
Amplitude (power) statistics

e Majority classifier baseline. A classifier that
always selects the majority class (datasets B
and C are not balanced in the number of suc-
cessful dialogues).

e Same Task Classifier We report the classifica-
tion accuracy of the model trained and tested
on the same task. Features are selected using
an ¢ penalty, and the coefficients are estimated
with {o-regularized logistic regression. For ex-
ample, in the column of the left, SERENA uses
the most predictive features of system differ-
ences to predict success, while the same task
classifier uses them to predict system differ-
ences. The same task classifier does not answer
“which system differences matter”, it is just an
interesting benchmark.

We used a one-sample t-test to check for sta-
tistically significant differences against the classifi-
cation accuracy of the majority classifier baseline.
We used a paired-sample t-test to check for sig-
nificant differences in classification accuracy be-
tween classifiers. Paired samples have the same A
hyper-parameter, which was described in the risk-
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Figure 2: Classification accuracy of different feature se-
lection techniques

minimization formulation explained in Section 2.
This hyper-parameter is related to the number of fea-
tures selected — as \ increases, the number of fea-
tures selected decreases. We use 5% as the signif-
icance level at which to reject the null hypothesis.
When checking for statistical differences, we tested
on the range of As computed?.

First we investigate the performance of the sim-
pler algorithm SERENA. For Dataset A, SERENA
does not yield significant differences over the ma-
jority classifier baseline. For Dataset B, SERENA
is significantly better than the majority classifier in
predicting system differences, but is significantly
worse for predicting success. This means that the or-
der in which we choose the tasks in SERENA affects
its performance. SERENA performs significantly
worse in the Control Set C. We conclude that SER-

2)\ = {100, 30, 25,20, 19,18, ...,1,0.5,0.25,0.1}

13

Table 3: Features selected in Dataset A

Feature Suc. Diff. JEDI
System-user pause 5 5
Weekend night? 3

% of failed prompts 4

“Forbes_St.” word 5 3
User’s max. power 5

Table 4: Features selected in Dataset B

Feature Suc. Diff. JEDI
% of failed prompts 5 4
User’s power std.dev. 5

Weekend night? 3

Unrecognized word 5
Words/min. 4
User-system pause 5

Turn length 5 5

ENA is not very reliable in predicting which system
differences matter.

We now discuss how well JEDI is able to fill-in for
the deficiencies of SERENA. As an “upper-bound”,
we will compare it to a classifier trained and tested
in the same task. This classifier significantly dom-
inates over the majority baseline, even for the the
Control Set C, where there were no changes in the
SDS. This suggests that the classifier might be pick-
ing up on seasonal differences. For Set A, JEDI per-
forms significantly better than the majority classi-
fier and than SERENA. For Set B, there are no sig-
nificant differences between the upper-bound clas-
sifier and JEDI when predicting for changes in the
SDS. Again, JEDI dominates over SERENA and the
majority baseline. For the Control Set C, JEDI is
not statistically different from the majority baseline.
This is the expected behavior, since the difference in
performance cannot be explained by the differences
between the SDS. We hypothesize that the classifi-
cation accuracy of JEDI could be used as a distance
function between SDS: The closer the accuracy of
distinguishing SDS is to 50%, the more similar the
SDSs are. Conversely, when JEDI is able to classify
system differences closer to 100%, it is because the
SDSs are more different.

Tables 3 and 4 describe the features selected for
Sets A and B respectively. The numbers indicate



in how many folds the feature was selected by JEDI
and by classifiers trained to predict Success and SDS
differences using five-fold cross validation. The A
used is selected to contain the closest to five features
(ties are resolved randomly). We only report fea-
tures that appeared in at least three folds. In Dataset
A we see that time of day is selected to predict di-
alogue success. Anecdotally, we have noticed that
many users during weekend nights appear to be in-
toxicated when calling the system. JEDI does not
select “is weekend night” as a feature, because it
has little predictive power to detect system differ-
ences. In Dataset A, JEDI selects a speech recogni-
tion feature (the token “Forbes_St”” was recognized),
and an end-pointing feature. Since in Dataset A, the
difference between systems correspond to a differ-
ent acoustic model, these features make sense intu-
itively. In Dataset B, JEDI detected that the features
most predictive with system differences and success
are percentage of failed prompts and the length of
the turn. The models for both systems make sense
after the fact. However, neither model was known
beforehand, nor did we know which of many fea-
tures considered would turn out to be informative.
Anecdotally, the documentation of the history of
changes of Let’s Go! is maintained manually. Some-
times, because of human error, this history is incom-
plete. The ability of JEDI to identify system differ-
ences has been able to help completing the history
of changes (Gonzalez-Brenes et al., 2009).

6 Relation to Prior Work

The scientific literature offers several performance
metrics to assess SDS performance (Polifroni et al.,
1992; Danieli and Gerbino, 1995; Bacchiani et al.,
2008; Suendermann et al., 2010). SDS are eval-
uated using different objective and subjective met-
rics. Examples of objective metrics are the mean
number of turns in the dialogue, and dialogue suc-
cess. Subjective evaluations study measure satisfac-
tion through controlled user studies. Ai et al. (2007)
studied the differences in using assessment metrics
with real users and paid users.

PARADISE, a notable example of a SDS subjec-
tive evaluation, finds linear predictors of a satisfac-
tion score using automatic and hand-labeled features
(Hajdinjak and Mihelic, 2006; Walker et al., 2001),
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or only automatic features (Hastie et al., 2002). Sat-
isfaction scores are calibrated using surveys in con-
trolled experiments (Moller et al., 2007; Mboller et
al., 2008). Alternatively, Eckert et al. (1998) pro-
posed simulated users to evaluate SDSs. Their per-
formance metric has to be tuned with a subjective
evaluation as well, in which they refer to the PAR-
ADISE methodology. Our approach does not re-
quire user surveys to be calibrated. Moreover, it
would be feasible to adapt JEDI to regress to PAR-
ADISE, or other performance metrics. Our work ex-
tends previous studies that define performance met-
rics, in proposing an algorithm that finds how system
differences are related to performance.

7 Conclusions and Future Work

We have presented JEDI, a novel algorithm that finds
features describing system differences relevant to a
success metric. This is a novel, automated “glass
box” assessment in the sense of linking changes in
overall performance to specific behavioral changes.
JEDI is an application of feature selection using reg-
ularized regression.

We have presented empirical evidence suggesting
that JEDI’s use of multi-task feature selection per-
forms better than single-task feature selection. Fu-
ture work could extend JEDI to quantify the vari-
ability in performance explained by the differences
found. Common techniques in econometrics, such
as the Seemingly Unrelated Regressions (SUR) for-
mulation (Zellner, 1962), may prove useful for this.

In our approach we used a single binary evalu-
ation criterion. By using a different loss function,
JEDI can be extended to allow continuous-valued
metrics. Moreover, previous work has argued that
evaluating SDSs should not be based on just a sin-
gle criterion (Paek, 2001). JEDI’s multi-task for-
mulation can be extended to include more than one
performance criterion at the same time, and may
prove helpful to understand trade-offs among differ-
ent evaluation criteria.

A Implementation Details of Feature
Selection

In this appendix we review how to set-up multi-task
feature selection as an optimization problem.



A.1 £¢;-Regularized Regression for Single-Task
Feature Selection

We first review using regression with ¢ regulariza-
tion for single-task feature selection. Given a train-
ing set represented by X, denoting a n X k matrix,
where n is the number of dialogues, and k is the
number of features extracted for each dialogue, we
want to find the coefficients of the parameter vector
B, that can predict the output variables described in
the vector ¥ of length n.

For this, we find the parameter vector that mini-
mizes the loss function J, penalized by a regulariza-
tion term (Tibshirani, 1996):

argmin J(leéa}_") + )\HBHﬁ )
B

In the case of binary classification, outputs are bi-
nary (any given y = £1). A commonly used loss
function J is the Logistic Loss:

1

Jlog(xu@ay) = m

“)

The /,-norm of a vector B is defined as:
: /
3 1
18lle, = (3_16:7)"
i=1

The {s-norm is defined as ||3|]o. =

max (81, B2, - - -, Br)- B

The regularization term ||3||,, in Equation 3 con-
trols model complexity: The higher the value of the
hyper-parameter A, the smaller number of features
selected. Conversely, the smaller the value of A,
the better the fit to the training data, with higher
risk of over-fitting it. Thus, Equation 3 jointly per-
forms feature selection and parameter estimation; it
induces sparsity by setting many coefficients of B
to zero (Tibshirani, 1996). Features with non-zero
coefficients are considered the features selected.

A.2 ¢;-Regularized Regression for Multi-Task
Feature Selection

1 regularization can be used to learn a classifier for
each of T prediction task independently. In our case
we are interested in only two prediction tasks: ver-
sion and success. We will index tasks with super-
script ¢, and we define X% as the n x k training
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data for task t, used to predict the output variable y.
Learning each model separately yields the following
optimization problem (Obozinski et al., 2007):

T
. =t =1
arginin E JXEB.5)+ B e )
8 =1

Solving this problem leads to individual sparsity in

each task (each Bt has many zeros), but the model
does not enforce a common subset of features for
all of the related output variables simultaneously
(Turlach et al., 2005). In the next subsection we
study how to achieve global sparsity across tasks.

A.3 ¢1/£,-Regularized Regression for
Multi-task Feature Selection

Although ¢;-regularization is very successful at se-
lecting individual features, it does not perform ad-
equately when a group of features should enter
or leave the model simultaneously (Yuan and Lin,
2006). Group LASSO (Yuan and Lin, 2006), which
relies on ¢; /¢,-regularization to overcome this lim-
itation, by allowing groups of feature entering or
leaving the model simultaneously. ¢;//, regular-
ization has been studied for multi-task learning by
grouping each of the k features across the 7" learning
tasks (Turlach et al., 2005; Obozinski et al., 2007,
Lounici et al., 2009; Puniyani et al., 2010).

Let us define B as a n x T matrix, whose t" col-
umn is the parameter vector for the task ¢. For ex-
ample, since we have two tasks B = [Bt:1, Btzz].
Let 5 4 denote the g'" row of B. In the context of
multi-task learning, the ¢; //,-norm of a matrix B is
defined as (Obozinski et al., 2007; Puniyani et al.,
2010):

K
1Blley e, = > 11Bylle, (6)
g=1

Multi-task feature selection with ¢; /¢, regular-
ization is formulated as (Obozinski et al., 2007,
Puniyani et al., 2010):

T
. 2t S
argglln E J(X5 8,5 + MBlley e, (1
t=1

When 7" = 1, the multi-task problem of Equation 7
reduces to the single-task problem of Equation 5.



A.4 Optimization procedure

Puniyani et al. (2010) describe that finding the pa-
rameter coefficients B of Equation 7 can be achieved
more easily by transforming the problem into an
equivalent single-task multivariate regression. We
follow their procedure to create 4, B, and Xg:

1. Concatenate the vectors ¥'’s into a single vec-
tor ¥, of length n x T". In our case, since we

have only two tasks (1" = 2), we get the vector
ot=1

Ve = [g=]

. Sty .
2. Similarly, we concatenate the 3 ’sinto a k x T’
=t=1

vector [3;, in our case ,8_;] = [BtZQ ] .

3. Builda (n-T') x (k- T) block-diagonal matrix
Xg, where X'’s are placed along the diagonal,
and the rest of the elements are set to zero. In
our case since we only have two tasks this is
Xg = [th):l XP=2], where each () denotes a
n X k zero-matrix. The expanded notation of
Xg is:

Xt=1(11) Xt:l(l) 0 0
_ Xt:lgn) t:l}(;l) 0 0
Xg = 1=a(1) 1=2(1)
0 0 x4 X7
I 0 0 Xt:z(n) Xt:QJ(;L)

Thus, the multi-task learning problem from Equa-
tion 7 is equivalent to (Yuan and Lin, 2006; Puniyani
et al., 2010):

argglin J(Xg,ﬁ:],y_é) +)\||B||Z1/£2 ®)

In this work we solve this optimization problem us-
ing an existing® implementation of Block Coordi-
nate Descent (Schmidt et al., 2008) that solves re-
gression problems with a /1 /¢, penalty.
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Abstract

This paper describes a general and effective
domain selection framework for multi-domain
spoken dialogue systems that employ dis-
tributed domain experts. The framework con-
sists of two processes: deciding if the current
domain continues and estimating the probabil-
ities for selecting other domains. If the current
domain does not continue, the domain with
the highest activation probability is selected.
Since those processes for each domain expert
can be designed independently from other ex-
perts and can use a large variety of informa-
tion, the framework achieves both extensibil-
ity and robustness against speech recognition
errors. The results of an experiment using
a corpus of dialogues between humans and
a multi-domain dialogue system demonstrate
the viability of the proposed framework.

1 Introduction

As spoken dialogue interfaces are becoming more
widely utilized, they will be expected to be able to
engage in dialogues in a wide variety of topics. Par-
ticularly, spoken dialogue interfaces for office robots
(Asoh et al., 1999) and multimodal kiosk systems
(Gustafson and Bell, 2000) are expected to deal with
people’s various requests, unlike automated call cen-
ter systems that are dedicated to specific tasks.

One effective methodology to build such a sys-
tem is to integrate systems in small domains by
employing distributed multi-domain system archi-
tecture. This architecture has distributed modules

*Currently with Panasonic Corporation.
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that independently manage their own dialogue state
and knowledge for speech understanding and ut-
terance generation (e.g., Lin et al. (1999)). From
an engineering viewpoint, such architecture has an
advantage in that each domain expert can be de-
signed independently and that it is easy to add new
domains. It enables each domain expert to em-
ploy a dialogue strategy very different from those
for other domains. For example, the strategy may
be frame-based mixed-initiative, finite-state-based
system-initiative, or plan-based dialogue manage-
ment (McTear, 2004).

One of the crucial issues with distributed multi-
domain spoken dialogue systems is how to select an
appropriate domain for each user utterance so that
the system can appropriately understand it and an-
swer it. So far several methods have been proposed
but none of them satisfy two basic requirements at
the same time: the ability to be used with a variety
of domain experts (extensibility) and being robust
against ASR (Automatic Speech Recognition) errors
(robustness). We suspect that this is one of the
main reasons why not many multi-domain spoken
dialogue systems have been developed even though
their utility is widely recognized.

This paper presents a new general framework for
domain selection that satisfies the above two require-
ments. In our framework, each expert needs to have
two additional submodules: one for estimating the
probability that it is newly activated, and one for de-
ciding domain continuation when it is already acti-
vated. Since these submodules can be designed in-
dependently from those of other experts, there is no
restriction on designing experts in our framework,
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and thus extensibility is achieved. Robustness is also
achieved because those submodules can be designed
so that they can utilize domain-dependent informa-
tion, including information on speech understanding
and dialogue history, without detracting from ex-
tensibility. Especially the submodule for deciding
domain continuation has the ability to utilize dia-
logue history to avoid erroneous domain shifts that
often occur in previous approaches. Note that we do
not focus on classifying each utterance without con-
textual information (e.g., Chu-Carroll and Carpenter
(1999)). Rather, we try to estimate the user inten-
tion with regard to continuing and shifting domains
in the course of dialogues.

In what follows, Section 2 explains the distributed
multi-domain spoken dialogue system architecture
and requirements for domain selection. Section 3
discusses previous work, and Section 4 presents our
proposed framework. Section 5 describes an exam-
ple implementation and its evaluation results, and
Section 6 concludes the paper.

2 Domain Selection in Multi-Domain
Spoken Dialogue Systems

2.1 Distributed Architecture

In distributed multi-domain spoken dialogue archi-
tecture (Figure 1), distributed modules indepen-
dently manage their own dialogue state and knowl-
edge for speech understanding and utterance gener-
ation (Lin et al., 1999; Salonen et al., 2004; Pakucs,
2003; Nakano et al., 2008). Although those modules
are referred to with various names in that literature,
we call them domain experts in this paper. In this
architecture, when an input utterance is received, its
ASR results are sent to domain experts. They try to
understand the ASR results using their own knowl-
edge for understanding. The domain selector gathers
information from those experts and decides which
expert should deal with the utterance and then de-
cide on the system utterances. In this paper, the do-
main expert engaging in understanding user utter-
ances and deciding system utterances is called acti-
vated.

2.2 Example Systems

So far many multi-domain spoken dialogue sys-
tems based on distributed architecture have been
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Figure 1: Distributed multi-domain spoken dialogue sys-
tem architecture.

built and have demonstrated their ability to engage
in dialogues in a variety of domains. For exam-
ple, several systems integrated information provid-
ing and database searches in multiple domains (Lin
et al., 1999; Komatani et al., 2006; O’Neill et al.,
2004; Gustafson and Bell, 2000). Some other sys-
tems integrated domain experts that employ very
different dialogue strategies. Lee et al. (2009) and
Nakano et al. (2006) integrated task-oriented and
non-task-oriented dialogue managements. Nakano
et al. (2008) integrated domain experts for not only
dialogues but also tasks requiring physical actions.

Below we explain an example system that we
used to collect dialogue data for the domain se-
lection experiment described in Section 5. It is a
Japanese system that can provide information on
UNESCO World Heritage Sites using speech, slides,
and Microsoft Agent' gestures. It employs the fol-
lowing ten domain experts:

A question answering (QA) expert. It has a
database consisting of question-answer pairs on
World Heritage Sites (Narimatsu et al., 2010). Each
question-answer pair consists of a set of example
question sentences and answers to them. The an-
swers consist of one or more utterances, plus slides.
Keyphrase-based matching is used to select an ex-
ample question that matches the input utterance.

Eight interactive presentation (IP) experts: Each
of them explains in detail a famous World Her-
itage Site and adds a detailed explanation or skips
some explanation according to the user’s interrup-
tions (Nishimura et al., 2007). Patterns of interrup-
tion utterances are described in the expert’s knowl-
edge base.

"http://www.microsoft.com/MSAgent/



utterance expert

S1: Hello. I can answer questions about fa- QA
mous World Heritage Sites in Italy, Ger-
many, Greece, and other areas. I can also
explain some World Heritage Sites in de-
tail. Please ask me anything.

Ul: Show me the list of the World Heritage QA
Sites in Italy.

S2: (show aslide of the list) I can tell you about QA
the World Heritage Sites in these areas in
Italy.

U2: Can you show me the list of World Her- QA
itage Sites you can explain in detail?

S3: (show a slide of the list) I can explain these QA
in detail.

U3: Can you explain Maritime Greenwich? RU

S4: Maritime Greenwich, right? RU

U4: Yes. RU

S5: (show a slide on Greenwich) Okay. I'll ex- IP1
plain Maritime Greenwich, a historic port
town known for Greenwich Mean Time.

US: What is Greenwich Mean Time? IP1

S6: Greenwich Mean Time is the mean solar IP1

time at the Royal Greenwich Observatory.

S means system utterance and U means user utterance.
IP1 is one of the IP experts.

Figure 2: An example dialogue with the system for data
collection (translation from Japanese).

A request understanding (RU) expert: It under-
stands the user’s request to start one of the interac-
tive presentations explained above, and engages in
a dialogue to confirm the request. When the under-
standing finishes, the understood request is sent to
a module called task planner (Nakano et al., 2008;
Nakano et al., 2011). The task planner then activates
another expert to perform the requested presentation
(S5 in Figure 2).

Figure 2 shows an example dialogue between a
human and this system. Note that user utterances
are relatively short and include words related to spe-
cific World Heritage Sites or area names. If those
words are misrecognized, domain selection is diffi-
cult unless dialogue context information is used.

This figure also indicates the domain experts that
understood each user utterance and selected each
system utterance. The domain expert that should
deal with a user utterance is decided based on the set
of user utterances that the expert is designed to deal
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with. The domains of utterances Ul and U3 are dif-
ferent because the QA expert has knowledge for un-
derstanding U1 and the RU expert has knowledge for
understanding U3. Thus, in this study, the domain of
each utterance is determined based on the design of
the experts employed in the system. If none of the
experts can deal with an utterance, it is considered
as an out-of-domain utterance. Sometimes the cor-
rect domain needs to be determined using contextual
information. For example, utterance U4 “Yes” can
appear in all domains, but, since this is a reply to S4,
its domain is RU.

This definition of domain is different from that of
domain (or topic) recognition and adaptation stud-
ies in text, monologue, and human-human conver-
sation processing, in which reference domains are
annotated based on human perspectives rather than
system perspectives. From a human perspective, all
user utterances in Figure 2 may be in “World Her-
itage Site” domain. However, it is not always easy
to build domain experts according to such domain
definitions, because different dialogue tasks in one
such domain may require different dialogue strate-
gies (such as question answering and request under-
standing).

2.3 Requirements for Domain Selection

We pursue a method for domain selection that can
be used in distributed architecture. Such a method
must satisfy the following two requirements.

Extensibility It must not detract from the extensi-
bility of distributed architecture, that is, any kind of
expert must be able to be incorporated, and each ex-
pert must be able to be designed independently from
other experts. This requires the interface between
each domain expert and the domain selector to be as
simple as possible.

Robustness It needs to be robust against ASR er-
rors; that is, the system needs to be able to avoid
erroneous domain transition caused by ASR errors.

3 Previous Work

So far various methods for domain selection have
been proposed, but, as far as we know, no method
satisfies both extensibility and robustness. Isobe et
al. (2003) estimate a score for each domain from the



ASR result and select the domain with the highest
score (hereafter referred to as RECSCORE). Since
each domain expert has only to output a numeric
score, it satisfies extensibility. However, because
this method does not take into account dialogue con-
text, it tends to erroneously shift domains when the
score of some experts becomes high by chance. For
example, if U4:“Yes” in Figure 2 is recognized as
“Italy” with a high recognition score in the QA ex-
pert, the domain erroneously shifts to QA and the
system explains about World Heritage Sites in Italy.
Thus this method is not robust.

To avoid erroneous domain shifts, Lin et al.
(1999) give preference to the preceding domain
(the domain in which the previous system utterance
was made) by adding a certain value to the score
of the preceding domain (hereafter called REC-
SCORE+BIAS ). However, to what extent the do-
main tends to continue varies depending on the dia-
logue context. For example, if a dialogue task in one
domain finishes (e.g., when an IP expert finishes its
presentation and says “This is the end of the presen-
tation. Do you have any questions?”), the domain is
likely to shift. So, adding a fixed score does not al-
ways work. O’Neill et al.’s (2004) system does not
change the dialogue domain until it finishes a task
in the domain, but it cannot recover from erroneous
domain shifts.

To achieve robustness against ASR errors, several
domain selection methods based on a classifier that
uses features concerning dialogue history as well as
ones concerning speech understanding results have
been developed (Komatani et al., 2006; Ikeda et al.,
2008; Lee et al., 2009). These studies, however, use
some features available only in some specific type
of domain experts, such as features concerning slot-
filling, so they cannot be used with other kinds of
domain experts. That is, these methods do not sat-
isfy extensibility.

Methods that use classifiers based on word (and
n-gram) frequencies have been developed for utter-
ance classification (e.g., Chu-Carroll and Carpenter
(1999)), topic estimation for ASR of speech cor-
pora (e.g., Hsu and Glass (2006) and Heidel and
Lee (2007)) and human-human dialogues (Lane and
Kawahara, 2005). These methods can be applied to
domain selection in multi-domain spoken dialogue
systems. However, since they require training data
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in the same set of domains as the target system, it
detracts from extensibility. In addition, they are not
robust because they cannot utilize a variety of di-
alogue and understanding related features. Word
frequencies are not always effective when two do-
mains share words as in our system described in Sec-
tion 2.2.

4 Proposed Framework

4.1 Basic Idea

To achieve extensibility, we need to restrict the infor-
mation that each expert sends to the domain selector
to a simple one such as numeric scores. Although
RECSCORE and RECSCORE+BIAS satisfy this, they
would not achieve high accuracy as explained above.

One possible extension to those methods to im-
prove accuracy is to use not only recognition scores
but also various expert-dependent features such as
ones concerning dialogue history and speech under-
standing. Each expert first estimates the probability
that the input utterance is in its domain using such
features, and then the expert with the highest proba-
bility is selected (hereafter called MAXPROB). This
method retains extensibility because the domain se-
lector does not directly use those expert-dependent
features. However, it suffers from the same prob-
lem as RECSCORE and RECSCORE+BIAS; if one of
the experts other than the preceding domain’s expert
outputs a high probability by mistake, the domain
shifts regardless of the dialogue state in the preced-
ing domain’s expert.

We focus attention on the fact that the domain
does not often shift. Our idea is to decide if the do-
main continues or not by using information available
in the preceding domain’s expert. This prevents er-
roneous domain shifts when the utterance is consid-
ered not to change the domain. When it is decided
that the currently active domain does not continue,
each remaining expert estimates the probability of
being newly activated using information available in
the expert, and the expert whose probability is the
highest is selected as the new domain expert.

We further refine this idea in two ways. One is by
taking into account how likely the input utterance is
to activate one of the other domain experts. We pro-
pose to use the maximum value of probabilities for
other experts’ activation (maximum activation prob-
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Figure 3: Two-stage domain selection framework.

ability) in the decision regarding domain continua-
tion. Since the maximum activation probability is
just a numeric score, this does not spoil extensibil-
ity. Unlike RECSCORE and RECSCORE+BIAS, in
our method, even if the maximum activation prob-
ability is very high, the preceding domain’s expert
can decide to continue or not to continue based on
its internal state. This makes it possible to retain ro-
bustness.

The other refinement is to explicitly deal with ut-
terances that are not in any domains (out-of-domain
(OOD) utterances). They include fillers and mur-
murs. They should be treated separately, because
they appear context-independently. So we make the
expert detect OOD utterances when deciding do-
main continuation. That is, it performs three-fold
classification, continue, not-continue, and OOD.

4.2 Two-Stage Domain Selection Framework

This idea can be summarized as a domain selection
framework which consists of two stages (Figure 3).
It assumes that each domain expert has two submod-
ules: activation probability estimator and a domain
continuation decision maker, which use information
available in the expert itself.

When a new input utterance is received, at Stage
1, the activation probability estimators of all non-
activated experts estimate probabilities and send
them to the domain selector. Then at Stage 2, the
domain selector sends their maximum value to the
expert of the preceding domain and asks it to decide
whether it continues to deal with the new input utter-
ances or does not continue, or it deals with the utter-
ance as out-of-domain. If it decides not to continue,
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the domain selector selects the expert that outputs
the highest probability at Stage 1.

The reason we use the term “framework” is that
it does not specify the details of the algorithm and
features used in each domain expert’s submodules
for domain selection. It rather specifies the inter-
faces of those submodules. Note that RECSCORE,
RECSCORE+BIAS, and MAXPROB can be consid-
ered as one of the implementations of this frame-
work. This framework, however, allows developers
to use a wider variety of features and gives flexibility
in designing those submodules.

5 Example Implementation and
Evaluation

Since the proposed framework is an extension of
the previous methods, if the activation probability
estimator and domain continuation decision maker
for each expert are designed well and trained using
enough data, it should outperform previous methods
that satisfy extensibility. We believe that this theo-
retical consideration and an experimental result us-
ing a human-system dialogue corpus show the via-
bility of the framework. Below we explain our im-
plementation and an experiment.

5.1 Data

For the implementation and evaluation, we used a
corpus of dialogues between human users and the
World Heritage Site information system described
in Section 2.2. Domain selection of this system was
performed using hand-crafted rules.

35 participants (17 males and 18 females) whose
ages range from 19 to 57 were asked to engage in



domain | preceding | training | training | test
domain data A data B data
RU RU 134 169 145
QA 51 102 59
1P 21 16 23
subtotal 206 287 227
QA RU 46 55 51
QA 783 870 888
1P 59 87 66
subtotal 888 1,012 | 1,005
IP RU 2 1 3
QA 7 11 18
1P 311 305 277
subtotal 320 317 298
O0OD RU 24 19 39
QA 168 155 183
1P 66 68 113
subtotal 258 242 335
total 1,672 [ 1,858 | 1,865 |
Table 1: Number of utterances in each domain in the

training and test data.

conversation with the system four times. Each ses-
sion lasted eight minutes. For each utterance, the
correct domain or an OOD label was manually an-
notated. We also annotated its preceding domain,
i.e., the domain in which the previous system utter-
ance was made. It can be different from the previous
user utterance’s domain because of the system’s er-
roneous domain selection. Utterances including re-
quests in two domains at the same time should be
given an OOD label but there are no such utterances.
We used data from 23 participants (3,530 utterances)
for training and those from the remaining 12 par-
ticipants (1,865 utterances) for testing. We further
split the training data into training data A (1,672
utterances) and B (1,858 utterances) to train each
of the two submodules. Each training data set in-
cludes data from two sessions for each participant.
Table 1 shows detailed numbers of utterances in the
data sets.

5.2 Implementation
5.2.1 Expert Classes

Among the ten experts, eight IP (Interactive Pre-
sentation) experts have the same dialogue strategy
and most of the predicted user utterance patterns. In
addition, the number of training utterances for each
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[ expertclass | QA IP RU

LM for ASR trigram trigram  finite-state
grammar

language keyphrase keyphrase finite-state
understanding -based -based transducer
vocabulary 1,140 407 79
size (word)
phone error 10.95 19.47 23.60
rate (%)

Table 2: Speech understanding in each expert.

IP expert’s domain is small. We therefore used all
training utterances in the IP domains to build a com-
mon ASR language model (LM), a common acti-
vation probability estimator, and a common domain
continuation decision maker for all IP experts. Here-
after we call the set of IP experts the IP expert class.
The RU (Request Understanding) expert and the QA
(Question Answer) expert are themselves also expert
classes.

5.2.2 Speech Understanding

For all experts, we used the Julius speech recog-
nizer and the acoustic model in the Japanese model
repository (Kawahara et al., 2004).> Features of
speech understanding in each expert class are shown
in Table 2. Compared to the system used for data
collection, LMs are enhanced based on the training
data. We obtained the ASR performance on the ut-
terances in each domain in the test data in terms of
phone error rates. This is because Japanese has no
standard word boundaries so it is not easy to cor-
rectly compute word error rates. The poor perfor-
mance of ASR for IP is mainly due to the small
amount of training utterances for LM and that for
RU is mainly due to out-of-grammar utterances.

5.2.3 Stagel

For Stage 1, we used logistic regression to es-
timate the probability that a non-activated expert
would be activated by a user utterance. Features for
logistic regression include those concerning speech
recognition and understanding results as well as dia-
logue history (see Table 5 for the full list of features).
These features are expert-dependent. This makes it
possible to estimate how the input utterance is suit-

*Multiple LMs can be used at the same time with Julius.



able to the dialogue context more precisely than us-
ing just features available in any kind of expert.

To train the activation probability estimators, we
fitted logistic regression coefficients using Weka
data mining toolkit ver.3.6.2 (Witten and Frank,
2005)* and training data A. In the training for each
expert class, we used utterances whose preceding
domain was not that of the class because activation
probabilities are estimated only for such utterances
during domain selection. If the utterance is in a do-
main of the expert class, it is assigned an activate la-
bel and otherwise not-activate. Next, we performed
feature selection to avoid overfitting. We used back-
ward stepwise selection so that the weighted (by the
sizes of activate and not-activate labels) average of
the Fy scores for training set B could be maximized.
Table 6 lists the remaining features and their sig-
nificances in terms of the F; score obtained when
each feature is removed. Then, we duplicated the
activate-labeled utterances in the training data A so
that the ratio of activate-labeled utterances to not-
activate-labeled utterances became 1 to 3. This is
because the training data include a larger number of
not-activate-labeled utterances and thus the results
would be biased. The ratio was decided by trial and
error so that the weighted average of the F; scores
for training data B becomes high.

5.2.4 Stage2

For Stage 2, we used multi-class support vector
machines (SVMs)* to decide if the activated expert
should continue to be activated, should not continue,
or should regard the input utterance as OOD. We
used the same set of features as Stage 1 as well
as the maximum activation probability obtained at
Stage 1. The training data for the SVM of each ex-
pert class is the set of utterances in training data B
whose preceding domain is in that expert class, be-
cause domain continuation is decided only for such
utterances during domain selection. They are la-
beled continue, not-continue, or OOD. Next, we
performed backward stepwise feature selection so
that the weighted average of F; scores for continue,
not-continue, and OOD utterance detection on train-
ing data A could be maximized. Remaining fea-

*Multinominal logistic regression model with a ridge esti-

mator with Weka’s default values.
“Weka’s SMO with the linear kernel and its default values.
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tures are listed in Table 7. The maximum activa-
tion probability was found to be significant in all ex-
pert classes. This suggests our two-stage framework
that uses maximum activation probability is viable.
Then, we duplicated utterances with not-continue la-
bel and OOD label in the training data so that the
ratio of continue, not-continue, and OOD utterances
became 3:1:1. This is because the number of utter-
ances with the continue label is far greater than oth-
ers. The ratio was experimentally decided by trial
and error so that the weighted average of F; scores
on training data A becomes high.

5.3 Evaluation

5.3.1 Compared Methods

We compared the full implementation described in
Section 5.2 (FULLIMPL hereafter) with the follow-
ing four methods which satisfy extensibility. Note
that the first three methods were mentioned in Sec-
tion 4.

RECSCORE: This chooses the expert class whose
recognition score is the maximum (Isobe et al.,
2003). We used the ASR acoustic score normalized
by the duration of the utterance. If the IP expert class
was chosen, the IP expert that had been most re-
cently activated was chosen, because, in this system,
domain shifts to other IP experts never occur due to
the system constraints and the user did not try to do
it. If none of the experts had a higher score than a
fixed threshold, it recognized the utterance as OOD.
The threshold was experimentally determined using
the training data so that the weighted (by the sizes
of OOD and non-OOD utterances) average of the
F; scores of OOD/non-O0D classification is max-
imized.

RECSCORE+BI1AS: This is the same as REC-
SCORE except that a fixed value (bias) is added to
the score used in RECSCORE for the expert of the
preceding domain. This is basically the same as Lin
et al.’s (1999) method but we use a different recog-
nition score since the recognition score they used
cannot be used in our system due to the difference
of speech understanding methods. The most appro-
priate bias for each expert class was decided using
the training data so that the weighted average of the
F; scores could be maximized. OOD detection was
done in the same way as RECSCORE.



method class | recall | prec- F1 | weighted
ision ave. F1
RECSCORE | cont. | 0.763 | 0.867 | 0.812
shift | 0.559 | 0.239 | 0.335
OOD | 0.501 | 0.848 | 0.630 0.789
RECSCORE | cont. | 0917 | 0.824 | 0.868
+BIAS shift | 0.400 | 0.421 | 0.410
OOD | 0.501 | 0.848 | 0.630 0.838
MAXPROB cont. | 0.925 | 0.843 | 0.882
shift | 0.282 | 0.264 | 0.273
OOD | 0.275 | 0.477 | 0.348 0.832
NOACTIV cont. | 0.875 | 0.890 | 0.882
PRrROB shift | 0.464 | 0.385 | 0.421
OOD | 0.785 | 0.843 | 0.813 0.849
FuLLIMPL cont. | 0.902 | 0.907 | 0.904
shift | 0.591 | 0.565 | 0.578
OOD | 0.824 | 0.829 | 0.826 0.883
CLASSIFIER | cont. | 0.956 | 0.881 | 0.917
(reference) shift | 0.545 | 0.759 | 0.635
OOD | 0.755 | 0.885 | 0.815 0.899

Table 3: Evaluation results (“cont.” means “continue.”).

MAXPROB: The activation probabilities for all ex-
perts were obtained using logistic regression and the
expert whose probability was the maximum was se-
lected. IP experts that had never been activated were
excluded because they cannot be activated due to
system constraint. For logistic regression, in addi-
tion to the features used in FULLIMPL, the previous
domain was used as a feature so that domain conti-
nuity was taken into account. Feature selection was
also performed. The probability that the utterance is
OOD was estimated in the same way using the fea-
tures concerning speech understanding. If the maxi-
mum probability of OOD detection was greater than
the maximum activation probability, then the utter-
ance was considered to be OOD.

NOACTIVPROB: This is the same as FULLIMPL
except that Stage 2 does not use the result of Stage
1, i.e., maximum activation probability.

5.3.2 Evaluation Results

To evaluate the domain selection, we focused on
domain shifts rather than the selected domain. We
classified the domain selection results into domain
continuations, domain shifts, and OOD utterance
detection. As the evaluation metric, we used the
weighted average of F; scores for those classes.
Here the weight is the ratio of those classes of cor-
rect labels. Note that shifting to an incorrect do-
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main is counted as a false positive when calculat-
ing precision for domain shifts. Table 3 shows the
results. In addition, the confusion matrices for the
three best methods are shown in Table 4. We found
FULLIMPL outperforms the other four methods. We
also found that the differences between the results of
the compared methods are all statistically significant
(p < .01) by two-tailed binomial tests.

For reference, we also evaluated a classifier-based
method that uses features from all the experts. Note
that this method does not satisfy extensibility be-
cause it requires training data in the same set of do-
mains as the target system. We evaluated this just
for estimating how well our proposed method works
while satisfying extensibility. It classifies each ut-
terance into one of four categories: the QA expert’s
domain, the RU expert’s domain, the most recently
activated IP expert’s domain, and OOD. If no IP ex-
pert has been activated before the utterance, three-
fold classification was performed. The training and
test data were split depending on whether one of the
IP experts has been activated before, and training
and testing were separately conducted. The training
data A was used for training SVM classifiers. Then
feature selection was performed using the training
data B. The performance of this method is shown
as CLASSIFIER in Tables 3 and 4. Although this
method outperforms FULLIMPL, FULLIMPL’s per-
formance is close to this method. This shows that
our method does not degrade its performance very
much even though it satisfies extensibility.

5.3.3 Discussion

One of the reasons why FULLIMPL outperforms
other methods is that its precision for domain shifts
is relatively higher than the other methods. This
suggests it can avoid erroneous domain shifts, thus
the proposed two-stage framework is more robust.
RECSCORE+BIAS performed relatively well despite
it used only limited features. We guess this is be-
cause adding preferences to the preceding domain
was effective since domain shifts are rare in these
data. Its low F; score for OOD utterances suggests
using just recognition scores is insufficient to detect
them. The comparison of FULLIMPL with NOAC-
TIVPROB shows the effectiveness of using maxi-
mum activation probability in the second stage.

The F; score for domain shifts is low even with



RECSCORE+BIAS:

estimated result
correct cont. | correct | wrong | OOD | total
shift shift
continue | 1,201 - 82 27 | 1,310
shift 115 88 14 3 220
00D 142 - 25 168 335
total 1,458 88 121 198 | 1,865
NOACTIVPROB:
estimated result
correct cont. | correct | wrong | OOD | total
shift shift
continue | 1,146 - 123 41 | 1,310
shift 92 102 18 8 220
00D 50 - 22 263 335
total 1,288 102 163 312 | 1,865
FULLIMPL:
estimated result
correct cont. | correct | wrong | OOD | total
shift shift
continue | 1,181 - 77 52 | 1,310
shift 70 130 15 5 220
00D 51 - 8 276 335
total 1,302 130 100 333 | 1,865
CLASSIFIER (reference):
estimated result
correct cont. | correct | wrong | OOD | total
shift shift
continue | 1,252 - 30 28 | 1310
shift 92 120 3 5 220
00D 77 - 5 253 335
total 1,421 120 38 286 | 1,865

Table 4: Confusion matrices for the domain shifts.

FULLIMPL, although it is higher than those with
other methods. One typical reason for this is that
when one keyword in the ASR result of an utter-
ance to shift the domain is also in the vocabulary of
the preceding domain’s expert, the selection tends to
continue the previous domain by mistake. For ex-
ample, an utterance “tell me about other World Her-
itage Sites” to shift from an IP domain to the QA
domain is sometimes misclassified as an IP domain
utterance, because “World Heritage Sites” is also in
IP domains’ vocabulary. We think this is because
the training data do not include a sufficient amount
of utterances that shift domains, and that a larger
amount of training data would solve this problem.
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6 Concluding Remarks

This paper presented a novel general framework for
domain selection in extensible multi-domain spoken
dialogue systems. This framework makes it possi-
ble to build a robust domain selector because of its
flexibility in exploiting features and taking into ac-
count domain continuity. An experiment with data
collected with an example multi-domain system sup-
ported the viability of the proposed framework. We
believe that this framework will promote the devel-
opment of multi-domain spoken dialogue systems
and conversational robots/agents.

Among future work is to investigate how accurate
the activation probability estimator and the domain
continuation decision maker in each domain expert
should be for achieving a reasonable accuracy in do-
main selection. We also plan to conduct experiments
with systems that have a larger number of domain
experts to verify the scalability of this framework.
In addition, we will explore a way to estimate the
confidence of the domain selection to reduce erro-
neous domain selections.
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expert Features
expert Features
class
class
- - 1P F; If the SRR, 1 is out of database
all F;.1  If SRR; 1 is obtained or not ip,rl0 ip,1 . .
’ ’ . Fipr11 Y .((# of keyphrases in SRR, ;) / (# of words in
classes |F; 2  If SRR; 1 contains a filler or not J ’
. . ’ . SRRy, ;) ) / (# of ASR results)
U= ru,|Fig - min (CMs of words in SRR;,1) F min;( # of keyphrase; in SRRy a1 / (# of ASR re
ip,qa |Fir4 avg (CMs of words in SRR;, 1) ipri2 ‘ P ¢ ip,all
Fi:TS (acoustic score of SRR;,1) / duration F, ?IlllzlitS)() # of keyphrase; in SRR / (# of ASR re
) X, ) ) -
F;.¢ LM score of SRR; ; ip.ri3 sultsz)) yp ¢ ip,all
F; # of words in SRR; o .
br? . &1 Fip,r14 avg( CM of keyphrase; in SRR;p,1)
Fi s #of words in SRR; 41 . .
. Fip,r15 min; (CM of keyphrase; in SRR, 1)
Firo  (Firs - (acoustic score of SRRy, 1)) .
. Fip r16 max; (CM of keyphrase; in SRR 1)
/ duration . .
- - Fip,n1  If this expert has been activated before
RU Fruri0 If SRR, 1 is an affirmative response
’ T . Fz‘p,hg Same as Fru,hg
Fru r11 If SRR, 1 is a denial response . .
’ ’ . Fip,n3 If the previous system utterance is the final utter-
Fry r12 # of ASR results with LM,.,, .
’ . ance of the presentation
Frur13 If SRR, 1 contains the name of a . .
’ " . Fip,na 1If the previous system utterance is an utterance to
World Heritage Site . .
.. react to a user interruption
Fry r1a max (CMs of words comprising the
. . Fipns  Same as Fry ne
name of a World Heritage Site)
. . Fip.ne If the system has made the final utterance of the pre-
Fru r15 ave (CMs of words comprising the . . . .
’ . . sentation since this expert was activated
name of a World Heritage Site)
. . Fip.n7  If the system has made an utterance to react to a user
Frun1 If SRRy 1 is an affirmative response . . . . .
’ ’ interruption since this expert was activated
(Stage 2 only)
F, # of turns since this expert is acti Fip,ns Same as Fru,hs
ru,h2 ted P Fip,no 1If the system has made the final utterance of the pre-
vate .
P 4 of denial ived sentation before
of denial responses recognize
ru,h3 . .p . g Fip nio If the system has made an utterance to react to a user
since this expert is activated . .
interruption before
F’ru,h4 Fru,h4/Fru,h3 F F
. . ip,h11l Same as Fry 1o
Fyu,ns  If the previous system utterance is a
. QA an,ﬂo Same as Fiple
confirmation request to a user request
. . Fya,r11 Same as Fip, 13
for starting a presentation
. . Fya,r12 Same as Fip 14
Frune If the previous system utterance is
an,T13 Same as Fip,'rlf)
an utterance to react to a non-
Fya,r14 Same as Fip, r16
understandable user utterance
an,rlS Same as Fip,'rl?
Fry n7 If the system has made a confirma- .
’ . Fya,r16 If SRRgq,1 is an acknowledgment
tion request to a user request for start-
. . . . Foa,n1 Same as Fry p1
ing a presentation since this expert ’ ’
. Fya,n2 Same as Fry po
was activated 5 Same as F
Fruns If the system has made an utterance aeh3 ruhd
an,h4 an,h4/an,h3
to react to a non-understandable user . .
. . . Fua,ns If the previous system utterance is the final utter-
utterance since this expert was acti-
ance of an answer
vated
Foa,ne Same as Fry ne
Fru no If the system has made a confirma-
’ . Fya,n7  If the system has made the final utterance of an an-
tion request to a user request for start- ’ . . .
. . swer since this expert was activated
ing a presentation before
Fya,ns Same as Frqy ns
Frw n1o If the system has made an utterance
’ Fya,no If the system has made the final utterance of an an-
to react to a non-understandable user ’
swer before
utterance before
Fya,n10 Same as Fry p1o

SRR; ; means j-th speech recognition result with the language model (LM) for expert class 7. SRR; 4;; means all the recognition
results in the n-best list. Fj .., are speech understanding related features and Fj p, are dialogue history related features. SRR, ;
is an ASR result with a large-vocabulary (60,250 words) statistical model (Kawahara et al., 2004), which we used for utterance
verification. CM means confidence measure.

Table 5: Features used in the experiment.
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expert class
(F1  score
obtained
after feature
selection)

remaining features (F; score obtained
when each feature is removed)

RU(0.948)

Fru,rQ (0922)7 Fru,hS (0939)’ Fru,r5
(0940)9 Fru,r14 (0941)9 Fru,r?
(0.944), Fruno (0944), Foyps
0.944),  Fryriz (0.945),  Frunio
(0945)7 Fru,rlO (0946)7 Fru,rS
(0.946), Fy.,, r7 (0.946)

IP(0.837)

Fip 7 (0.771), Fypre (0.772), Fip o
(0.781), FEipnr (0.781), Fypn
(0.786), Fipra (0.79), Fipro (0.799),
Fip,r16 (0809)’ Fip,r5 (0809)’ Fip,rS
(0.809), Fip s (0.809), Fipro (0.814),
Fip 15 (0.833), Fipy r12 (0.834), Fp 113
(0.835), Fip n10 (0.836)

QA(0.836)

Foora (0.813),  Fyrr (0.817),
an,rlG (0817)7 an,rlO (0818),
Fua.ne (0.820), Fyy 6 (0.822), Fyqr3
(0.831), Fyq,r5 (0.832)

expert class
(F1  score
obtained
after feature
selection)

remaining features (F; score obtained
when each feature is removed)

RU(0.773)

Fru,r3 (0728)’ Fru,a (0737)a Fru,h5
(0.743), Fry p1 (0.751), Fry ro (0.754),
Frunio (0.757),  Frups  (0.757),
Fru,rS (0758)’ F’ru,rQ (0759)s Fru,rlB
(0762)7 Fru,rl4 (0763)7 Fru,h9
0.767),  Fruyr1s (0.768),  Fryri0
(0.768), Iy n3 (0.772)

1P(0.827)

Fip s (0.808), Fip 5 (0.809), Fipra
(0.810), Fipre (0.811), Fyy, o (0.812),
Fip na (0.812), Fiy r13 (0.813), Fip n3
(0.817), Fip.r15 (0.818), Fip. 3 (0.818),
Fipnio (0.819), Fy 12 (0.820),
Fip w7 (0.821), Fip r11 (0.822), Fyp r10
(0.822), Fp, ng (0.822), Fyp 6 (0.822),
Fip 2 (0.824), Fip g (0.824), Fip po
(0.824), Iy, p2 (0.825)

QA(0.873)

an,a (0838), an,rS (0857)9 an,hl
(0.859), Fyq.r3 (0.862), Fyq g (0.865),
an,h8 (0867)’ an,r? (0868)’ an,7>15
(0.870), Fyq s (0.870), Fyq 7 (0.870),
an,rlZ (0871)’ an,r2 (0871), an,rlﬁ
(0.871), Fyq s (0.871), Fyq p3 (0.871),
an,rll (0872)» an,hﬁ (0872), an,h5

Table 6: Features that remained after feature selection at
Stage 1 and their significances in terms of the F; score

obtained when each feature is removed.

29

(0.872)

Table 7: Features that remained after feature selection at
Stage 2 and their significances in terms of the F; score
obtained when each feature is removed. F,.,, 4, F;p 4, and
Fga,q are the maximum activation probabilities obtained
at Stage 1.
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Abstract

With the evolution of online communication
methods, conversations are increasingly han-
dled via email, internet forums and other such
methods. In this paper, we attempt to model
lexical information in a context sensitive man-
ner, encoding our belief that the use of lan-
guage depends on the participants in the con-
versation. We model the discourse as a com-
bination of the speaker, the addressee and
other participants in the conversation as well
as a context specific language model. In or-
der to do this, we introduce a novel method
based on an HMM with an exponential state
space to capture speaker-addressee context.
We also study the performance of topic model-
ing frameworks in conversational settings. We
evaluate the models on the tasks of identify-
ing the set of people present in any conver-
sation, as well as identifying the speaker for
every utterance in the conversation, and they
show significant improvement over the base-
line models.

1 Introduction

In this paper, we experiment with different methods
of automatically analyzing discourse. We present
and validate hypotheses on how conversations can
be better analyzed using information about the
speakers, as well as other participants in the con-
versation. We present a novel method of modeling
discourse using an exponential state Hidden Markov
Model where states are based on speakers and ad-
dressees. We also cast the problem into the popular
topic modeling frameworks, and compare the vari-
ous approaches.
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Consider a small group of people that a person
knows well. Given a transcript of a discussion on
a topic of mutual interest, that person would likely
be able to identify who is likely to have said what,
based on his knowledge of the speakers and their in-
clinations on various topics. We would like to be
able to encode similar intelligence into a system that
could automatically learn about speakers based on
transcripts of prior conversations, and use that infor-
mation to analyze new conversations.

The scenario we consider in this work is as fol-
lows: we have a known set of characters, any subset
of whom could be present in a conversation. Given
the transcript of a conversation only, without speaker
annotations, we would like to : 1. Predict the set of
participants in the conversation from the character-
istics of the entire conversation, and 2. Identify the
individual speakers at each conversation turn.

In order to do this, we model each utterance in
a conversation as dependent on the speaker, the ad-
dressee and the other people present. As we shall
describe, our models encode the belief that people
speak/behave differently depending on other partic-
ipants in the conversation. This has a two-fold ben-
efit: first, it can help us discover social (or even,
professional) relationship structures; second, it can
help us understand how to respond to different peo-
ple, and incorporate that information into automated
conversational agents which can then behave in a
more context sensitive manner. The ability to auto-
matically model discourse as context specific in this
manner is also useful for other tasks such as directed
advertising and duplicity detection.

In Section 2, we describe relevant related work.
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Section 3 describes the dataset for our experiments,
Section 4 describes the problem, our use of topic
models, and the novel HMM based method, while
Section 5 summarizes the results and we conclude
in Section 6.

2 Related Work

The task of automatically segmenting speech and
then identifying speakers from audio (Reynolds
and Torres-Carrasquillo, 2005) is referred to as di-
arization and has been well-studied (Tranter and
Reynolds, 2006). More recently, approaches have
been developed to fuse information from both the
audio and video modalities (Noulas et al., 2011)
to improve diarization systems when video informa-
tion is available. In this paper, we attempt to under-
stand just how much information is available in the
text alone. Systems that can work with text only can
be used to improve audio-based systems which can
provide speech recognition output to a text-based
system. They can also be used to work with closed
caption streams, or on human-generated transcrip-
tions of meeting recordings.

Research on identifying speakers from text or lex-
ical information is limited in comparison to work
with audio data. However, efforts have been made
to use discourse level information to automatically
identify speakers to calibrate idiolectal differences
between speakers (Doddington, 2001). (Canseco et
al., 2005, ) investigated the use of lexical features
to automatically diarize (but not actually identify)
transcripts to determine if a current speaker contin-
ued or a previous speaker spoke or the next speaker
spoke. Lei and Mirghafori (2 007) attempted to in-
corporate idiolect based speaker information by us-
ing word conditioning of phone N-grams to recog-
nize speakers in dialogs with 2 speakers.

In our work, the models we use to identify speak-
ers are powerful enough to predict the addressee as
well. In this context, we note that several attempts
have been made recently to automatically identify
addressees in dialog settings. These approaches
have used information about the context and con-
tent of the utterance, using dialog acts and informa-
tion about the speaker’s gaze to aid classifier per-
formance (Jovanovic et al., 2006). Den Akker and
Traum (2009) proposed rule-based methods for ad-
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dressee classification. Unlike in these works, we
attempt to jointly model both the speaker and the
addressee as one of our proposed approaches. This
is similar to the approach employed by (Otsuka et
al., 2005, ), who proposed a Dynamic Bayesian Net-
work model to understand multiparty conversation
structure using non-verbal cues only— eye gaze, fa-
cial expression, gesticulations and posture.

3 Data

The data for our experiments consists of fan-
sourced transcripts of the episodes of the sitcom
FR.LE.N.D.S. The structure of the data is as fol-
lows: we have a set of conversations as training data.
Each conversation contains a sequence of turns, with
each turn annotated with its speaker. We do not
have any information about the addressee from the
dataset. We do, however, have implicit informa-
tion of the set of speakers within a conversation seg-
ment (we make the assumption here that if a char-
acter doesn’t speak in a segment, he is not present).
Annotator notes appear periodically to indicate that
the scene changed or that new characters entered the
scene or that some characters left the scene. We
treat these annotator notes as conversation bound-
aries and the segment of turns between two such
boundaries constitutes one conversation instance.
The set of characters used for our experiments is
finite. The 6 primary characters in the sitcom (Chan-
dler, Joey, Monica, Phoebe, Rachel and Ross) are
retained. In addition to these 6 primary characters,
there are a number of supporting characters who ap-
pear occasionally. We use Other to denote all other
characters, as the amount of data for a number of the
supporting characters is quite small and would not
result in learning useful patterns regarding their be-
havior. As a result, we treat all of these characters
as one character that can be thought of as a univer-
sal supporting character. Hence, we have a total of
7 possible characters. Any subset of these 7 char-
acters could be part of a conversation. Below is an
example of a pair of conversations from our dataset:

[EVENT]

Paul: thank you! thank you so much!

Monica: stop!

Paul: no, i’'m telling you last night was like umm,
all my birthdays, both graduations, plus the barn



raising scene in witness.
Monica: we’ll talk later.
Paul: yeah. thank you.
[EVENT]

Joey: that wasn’t a real date?! what the hell do
you do on a real date?

Monica: shut up, and put my table back.
All: okayyy!
[EVENT]

The event markers are tags inserted at pre-
processing time, to denote transcriber annotations
such as characters entering or leaving scenes. The
sequence of turns between two event markers are
treated as one conversation. Also, note the character
Paul in the first conversation in the example above
— when training the system, the content of Paul’s ut-
terances are used to train the model for Other, since
Paul is not one of the primary characters that we
track. At test time, the input looks similar to the
above, except that the turns are not annotated by
speaker.

The transcripts used in our experiments are seg-
mented by speaker turns, so that consecutive turns
are uttered by different speakers. The entire set of
230 episodes was split randomly into training, de-
velopment and test splits. Sequential information
for the individual conversations were not used. Each
episode was further divided into conversations based
on the scene boundaries denoted by the transcribers.
For training, overall, we used 195 episodes from
FR.ILENN.D.S, with a total of 9,171 conversations
and a total 52,516 turns. The average length in num-
ber of turns for each conversation was 5.73. The
test set consisted of a total of 20 episodes with 855
conversations and 4,981 turns. The average length
of a conversation in the test set was 5.83. The re-
maining 15 episodes were used as development data
to tune hyperparameters — this set consisted of 529
conversations and 2,984 turns in total. The distribu-
tion of the number of utterances by speakers across
the training, test and development set are shown in
Figure 1. As one can observe, the distribution is not
particularly skewed for any of the speakers across
the splits of the dataset.
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Figure 1: Distribution of #utterances for each speaker in
the dataset.

4 Conversation Models

Previous work in analyzing participants in a conver-
sation have used meeting data, with a fixed number
of participants. In our task, the total number of pos-
sible participants is finite, but we do not have in-
formation on how many of them are present at any
particular instant. Thus, our model first attempts to
detect the participants in a segment of conversation,
and then attempts to attribute speaker turns to indi-
viduals.

Our model for discourse structure is based on two
premises. First, we believe that what a person says
will depend on who he or she is speaking to. Intu-
itively, consider a person trying to make the same
point to his boss and (at a different time and place)
to his friend. It is likely that he will be more formal
with his boss than his friend. Second, if the speaker
addresses someone specifically in a group of people,
knowing who he addressed would likely help us pre-
dict better who would speak next. We assume that
the first hypothesis above also holds for groups of
people in conversations, where the topics and their
distribution in discussions (and words that affect the
tone of the discussion) depend on the participants.

As described earlier, we evaluate our models on
two tasks. First, we would like to identify the set of
characters present in any conversation. Given seg-
ments of conversation, we attempt to understand the
distribution of topics for specific subsets of charac-
ters present in that segment. To do this, we cast
this problem into a topic modeling framework — we
experiment with the Author-Topic model (Rosen-



Zvi et al., 2004), described in Section 4.1, for this
task. We use the Author Topic Model to link the co-
occurrence information of characters with the words
in the conversation.

Second, we attempt to attribute speakers to ut-
terances, described in Section 4.2. We introduce a
novel approach using an HMM with an exponen-
tial state space to model speakers and addressees,
described in Section 4.2.1. We also use the Author
Topic Model and the Author-Recipient Topic Model
(McCallum et al., 2007), described in Section 4.2.2
for this task. The key difference between the HMM-
based model and the topic model based approaches
is that the former explicitly takes sequence informa-
tion into account.

4.1 Identifying Character Subset Presence

The premise behind attempting to model subsets of
characters is that the nature of the conversation de-
pends on the group of people participating. For in-
stance, it seems intuitively likely that the content of
a conversation between two friends would be differ-
ent if they were the only ones present than it would
be if their families were also present. To extend this
hypothesis to a general scenario, the content of each
speaker’s turn depends not only on the speaker, but
also on the person being spoken to as well as the
other people present. To model this, we require a
model that captures the distribution of the text for
entire conversation, for each possible subset of char-
acters. In this section, we describe the training of a
generic model for conversations, and use it to pro-
duce features for a discriminative classifier.

Let there be NV characters who could participate
in a conversation. We assume a general scenario,
where any subset of these characters may be present.
Thus, there are 2"V — 1 character subsets that are pos-
sible. We can model this as a multi-class classifica-
tion problem (we will refer to this as subset model-
ing, henceforth).

The generative model for this task is as follows:
Each conversation segment is associated with a set
of utterances, and a set of characters. For each such
set of characters, we associate a distribution over
topics. For each word that is present in the seg-
ment, we select a topic from the subset-specific topic
distribution, and then we select the word from that
topic. Figure 2 shows the graphical model for this in
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plate notation.

(o —

(s —

Figure 2: Graphical representation of the subset model in
plate notation

In the plate notation, the observed variables are
shaded and the latent variables are unshaded. Plates
encapsulate a set of variables which are repeatedly
sampled a fixed number of times, and the number at
the bottom right indicates this fixed number.

S, represents a subset of the characters who were
present in the conversation segment. We have C'
such conversations, and each conversation contains
N, words. z represents the latent topic variable, and
0 represents the multinomial topic distribution for
each subset of characters (there are 2V such sub-
sets). The multinomial distribution of topics has a
prior distribution characterized by «. Similarly, ev-
ery topic (there are a set of 7" topics) has a multino-
mial distribution ¢ over the words in the vocabulary,
and ¢ has a prior distribution characterized by 3.

For every conversation in the training corpus, the
set of characters present is known. The content of
the conversation is treated as a bag of words. From
the topic distribution for the subset of characters
present, we sample a topic. Based on the word dis-
tributions for this topic, we sample a word. This
process is repeated N, times corresponding to the
number of words in the conversation. The entire
process of generating a conversation is repeated C'
times, corresponding to the number of conversations
in the training corpus.

Depending on the value of /N, the number of pos-



sible classes may be very high. Training a large
number of models may lead to a data scarcity, es-
pecially given the high dimensionality of language
data. We therefore slightly modify the model, so that
instead of topic distributions for each possible sub-
set, we have a topic distribution for each character,
and the distribution of topics in the conversation is
a mixture of the topic distributions for each charac-
ter. This leads us to a graphical model that has been
well-studied in the past — the Author-Topic model
(ATM, henceforth) and is shown in Figure 3.

(o —
(s —

ROaRIDS

Figure 3: Graphical representation of the simplified sub-
set model in plate notation

Thus, given the set of characters present, we sam-
ple one of them (z) from a uniform distribution.
Then we generate a topic by sampling from the dis-
tribution of topics for that speaker. The rest of the
process remains the same.We use this model to help
us predict which subset of characters was present in
a given conversation.

We learn speaker-specific topic distributions us-
ing the ATM. In order to predict characters present
in a test conversation, we train binary SVM (Shawe-
Taylor and Cristianini, 2000) classifiers for each
speaker in the following manner: we compute the
distribution of the speaker-specific topics in each
conversation, and use these as the features of the
data point. If the speaker was present in the con-
versation, the data point corresponding to the con-
versation has a class label of +1, else -1. A linear
SVM classifier is trained over the data. At test time,
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we compute the distribution of the speaker’s topics
in the conversation, and use the SVM to predict if
the speaker was present or not.

4.2 Identifying Speakers From Utterances

In this section, we describe our approach to identi-
fying speakers from the text of the utterance. The
ATM (as described above) treats all the participants
in the conversation as being potential contributors to
each turn. However, we can also use the ATM to
predict speakers directly. In this case, we will use
each turn as analogous to a document. Each such
document has only one author and the author topic
model can be used to learn models for each author.
The plate notation for this would look very similar
to the one in Figure 2, except that instead of a sub-
set of characters being observed, only one would be
observed, and the number of possible topic distribu-
tions would be equal to the number of characters.

The ATM for this task does not take any context
information into account. In the following subsec-
tion, we introduce a novel HMM based approach
that seeks to leverage information from the sequence
of turns.

4.2.1 Exponential State Hidden Markov Model

In this model, we assign a state to each speaker-
addressee combination possible. If our data consists
of N characters, only one of the NV characters will be
speaking at any given point. He/She may be speak-
ing to any combination of the remaining N — 1 char-
acters. Thus, the number of states in this model is
N x 2(N=1) Note that the addressee is not observed
directly from the data.

The sequence of turns in a conversation is mod-
eled by a Hidden Markov Model (Rabiner, 1989).
At each time instant, the speaker corresponding to
the state speaks a turn, which is the observed emis-
sion, before transitioning to another state at the next
time instant. The state at the next time instant is con-
strained to have a different speaker.

The model is trained using the standard Baum-
Welch training. The emission probabilities are cap-
tured by a trigram language model, trained using
the SRILM toolkit (Stolcke, 2002). The parameters
of the model are initialized as follows: for emis-
sion probabilities, we take all the utterances by a
speaker and distributing them uniformly among the



states that have that speaker, since we do not have
direct information about the addressees. For tran-
sition probabilities, we initialize with a bias instead
of uniformly. Given a conversation, for a state with
speaker A and set of addressees (R, say — Note
that R may have multiple characters), we give equal
probabilities of transitioning to all states that have
one of the characters in R as the speaker. Now, we
pick the set of speakers (call it M) that uttered the
next three turns (essentially, we look ahead in the
data stream to see who the next 3 speakers are while
training). We add a bias to every state with A as
the speaker, and every possible combination of the
speakers in M, to encode the hypothesis that the ad-
dressee would be likely to speak pretty soon, if not
directly after.

The large state space in this model makes compu-
tation extremely expensive. However, an examina-
tion of the posterior probabilities show that a number
of states are rarely, or never, entered. We prune away
such states after every 5 iterations in the following
manner — we use the current parameters of the model
after each iteration to identify the speakers of each
turn on the development set. Decoding of a sequence
of turns at test time is done using the Viterbi algo-
rithm. However, instead of using the best path only,
we keep track of the top 10 best paths. Thus, after
an iteration of training, we test on the development
data, and obtain 10 possible sequences of speakers
for each conversation. Over 5 iterations, we have
the 50 best paths for each conversation. We then
compute the average number of states entered in all
the decoded paths obtained. If the average number
of times a state was entered is p, then any state that
was entered less than k x p times (kK = 0.02, for
our experiments), according to the posterior proba-
bilities was pruned out. In order to set the value of
k, the development set was split into 2 halves, with
one half being used to compute the average number
of times a state is entered across the 10 best decodes
for data in that half. For different values of &, accu-
racy of speaker identification on the 1-best decode
was computed on the other half of the development
set, for values of k from 0.005 to 0.1.

The optimal state sequence at test time also con-
tains information about the addressee. For the tasks
we evaluate, this information is not directly used.
However, in other applications, such as those in-
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volving automated agents, this information could be
valuable in triggering the agent.

4.2.2 Author-Recipient Topic Model

The Author Recipient Topic Model (McCallum et
al., 2007) (ARTM, henceforth) was used for discov-
ering topics and roles in social networks. It is built
over the Author-Topic Model discussed previously,
with the exception that messages are conditioned on
the sender as well as the receivers. The graphical
model in plate notation is shown in Figure 4.
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Figure 4: Graphical representation of the Author-
Recipient Topic model in plate notation

Here, we model each turn as having a set of Vy
words. Each turn has one speaker S, and a set of
addressees A;. The generative model works as fol-
lows: For each word in a turn, sample an addressee
a from the set of addressees. Topic distributions are
now conditioned over speaker-addressee pairs, in-
stead of only the speaker as we saw in the ATM.
A topic is now sampled from the speaker-addressee
specific topic distribution. A word is now sampled
from this topic using the topic specific word distri-
butions. The parameters «, (3, and z have the same
meaning as in the ATM described earlier.

Note that the set of addressees in our setting is
not explicitly observed. We know the participants in
the conversation at training time, and we know the
speaker, but we do not know who was addressed.
Since we do not have information to make a better
choice of addressee, we model the entire set of par-



ticipants without the speaker as the set of addressees,
in this model.

For the task of identifying the speaker who uttered
the turn, we employ an approach, similar to the one
used for ATM. We train speaker-addressee-specific
models. The feature set for this task includes fea-
tures not only from the turn itself, but also from
the context. Thus, we have the distribution of the
topics in the turn for every speaker-addressee pair
with the right speaker, the speakers of the previ-
ous two turns, and the distribution of topics of the
speaker of the current turn over the previous two
turns. (Thus, while the model does not explicitly
model sequence, as an HMM does, it utilizes con-
text information in its feature space.) Using these
features, we train a linear SVM to predict whether
or not the speaker uttered the turn. In this case, we
could potentially have multiple speakers (or none of
them) predicted to have uttered the same turn. In
that case, we choose the speaker with the maximum
distance from the margin.

4.3 Baseline Models

In this section, we set up simple baseline models to
evaluate our performance against. We describe how
we set up a random baseline, a Naive Bayes baseline
and an HMM baseline model.

4.3.1 Random Baseline

For the task of identifying the set of charac-
ters present in a conversation, the random baseline
would work as follows: it knows that the number of
characters present in any conversation lies between
1 and N (N =7, in this case). (Note that monologues,
with only 1 person being present, are possible. Typ-
ically, in our data, they happen at the beginning or
end of scenes.) Thus, it randomly decides if each
of these characters are present or not in any given
conversation.

Suppose that the total number of characters are n
and r of them are actually present in the conversa-
tion. Let us say the random guess system predicts
t of the characters to be present. If we use the uni-
form distribution for picking ¢, then P(t) = 1,Vt €
[1,2,...,7], in this case. For any given t, the proba-
bility that we get k correct is given by:
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() < (i)
(?)
To compute the probability of getting k right, we
marginalize out the number of characters guessed to
be present, t:

P(k[t) = (1)

P(k)=>_ P(k,t) =Y _ P(klt).P(t) (2)

t t

Now we can compute the probability of getting &
correct by randomly guessing, for all £ from O to 7.
Using these, we can compute the expected number
of correct guesses, which turns out to be 0.571.r for
an average recall would be 57.1%.

For the task of identifying the characters, every
turn could have been uttered by one of the n charac-
ters (n = 7, for our case). Thus, the average accu-
racy at identifying turns would be % or 14.29%.

4.3.2 Naive Bayes Classifier

For the task of predicting the subset of speakers,
we set up a Naive Bayes using words as features.
We build up a term-document matrix, with each con-
versation treated as a document. For each charac-
ter, we train a binary classifier using the training
data- conversations where the character was present
were marked as a positive instance for that charac-
ter, and ones where he was not present were marked
as negative instances. We experimented both with
using priors based on the empirical distribution in
the training data and with using uniform prior (i.e.
P(character) = 0.5). Given a test conversation,
we use individual classifiers for each of the charac-
ters to determine whether he/she was present or not.

For the task of identifying speakers, given an ut-
terance, the Naive Bayes classifier is set up as fol-
lows: Again, we create term-document matrices for
each of the speakers, where a document is a turn ut-
tered by the speaker. Turns uttered by that speaker
are positive instances and those uttered by someone
else are negative instances. For each speaker, we
compute the Naive Bayes probability ratio (odds) of
him uttering the turn and not uttering the turn, in or-
der to decide. If multiple speakers are classified as
having uttered the turn, or no speaker is classified
as having uttered the turn, the speaker with the best
odds of having uttered the turn is selected.



System Precision | Recall
Author Topic Model | 63.22% | 74.71%
NB 52.33% | 44.19%
NB-prior 68.31% | 36.25%
Random Baseline 28.05% 57.1%

Table 1:
present

Results for predicting subset of characters

4.3.3 Single Speaker HMM

This model is only used to attribute speakers to
turns. Section 4.2.1 described an HMM model
that captures speaker-addressee information. In the
single- speaker HMM, we have a state for each
speaker. Emission probabilities are given by a tri-
gram language model that is trained on the speaker’s
utterances in the training data. The transition proba-
bilities are initialized as per the empirical transitions
between speakers in the data. This model does not
capture any kind of addressee information.

5 Results

In this section, we present results of our experi-
ments with the models we described earlier, on the
two tasks, identifying the set of speakers in any
given conversation and identifying individual speak-
ers who uttered each turn in a conversation.

For the task of identifying the set of speakers in
any given conversation, we evaluate performance
using precision and recall, which are defined as fol-
lows: If the conversation actually contained r char-
acters, the system predicted that it contained ¢ char-
acters, and got k right, then:

k k
Precision = ? Recall = - 3

The results are summarized in Table 1. In the ta-
ble, NB-prior indicates that the prior for the binary
classifier was determined based on the number of
conversations each character appeared in, while NB
indicates that the prior was uniform (i.e., for each
character, P(present) = P(absent) = 0.5). We
find that the results obtained using the author-topic
model are significantly better than each of the other
three models.

On average, the number of speakers in each con-
versation in the test data was 2.44 (the correspond-
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System Accuracy
ESHMM 27.13%
Speaker-LM HMM 25.04%
ARTM 23.64%
Author Topic Model | 26.2%
NB 23.41%
NB-prior 21.39%
Random Baseline 14.29%

Table 2: Results for predicting speakers of utterances

ing number in the training data appears to be some-
what higher at 2.65). Our attempts to restrict the set
of characters in a real setting plays a significant role
here as we shall discuss later.

The Naive Bayes classifier with empirical priors
on average predicted that there were 1.3 characters
present per conversation, while the version with uni-
form priors predicted 2.2 characters to be present per
conversation on average. The author-topic model,
on average, over-estimated the number of characters
at 2.86 characters per conversation.

For the task of predicting the speaker, given an ut-
terance, we have two kinds of Hidden Markov Mod-
els, the Exponential State HMM (ESHMM) and and
HMM with emission probabilities based on individ-
ual speaker language models (Speaker LM HMM).
We also have the topic model based systems- the
ARTM and the ATM. Finally, we have the baseline
models- the Naive Bayes with empirical priors and
with uniform priors, and the random baseline. Table
2 summarizes their performance. In this case, we
only report accuracy. Since each turn has only one
speaker, we can constrain each of the models to pro-
duce one speaker, in order to calculate the accuracy.

The HMM and topic based models all incorporate
sequence information in some form. In the case of
the HMM based models, state transitions are condi-
tioned on the previous speaker. In the case of the
topic model based systems, the feature vectors con-
tain context, although the task is modeled as a dis-
criminative classification task. The ESHMM model
worked the best on this dataset. With the exception
of the ATM and the speaker LM HMM (p < 0.10),
the improvements obtained by using the ESHMM
over all other models were statistically significant
(p < 0.05). Surprisingly, the single speaker LM



HMM and the ATM both outperform the ARTM on
this task. One of the reasons for this could be that
the ARTM does not suitably capture what we hoped
it would, perhaps because of the fact that the recipi-
ents (addressees) are not observed.

6 Conclusion

In this paper, we presented a set of latent variable
model based approaches to analyzing conversation
structure using the text transcript of the conversa-
tions only. The initial set of experiments show
promising improvements over simple baseline meth-
ods, though the overall results leave considerable
room for improvement. Conversations are a dy-
namic process, with the content varying significantly
with time, and the use of formulations such as dy-
namic topic modeling (Blei and Lafferty, 2006) may
help.

We believe that the concept of modeling speak-
ers and addressees would be a powerful one in mod-
eling conversation structure and useful in applica-
tions such as those involving automated agents, or
in understanding discourse on discussion forums, as
well as understanding development of authority in
such forums. The state sequences predicted by the
ESHMM implicitly predict addressees for each turn.
This is not directly used in our tasks, but could be
useful for automated agents, in understanding appro-
priate moments to take its turn.

The dataset used in this case introduced some
noise. We decided to subsume everyone aside from
the 6 main characters under the moniker other, in or-
der to keep the state space manageable. In reality, it
was a collection of a few dozen characters, some of
whom appeared intermittently through the episodes.
As aresult, the emission model for this state was not
a stable one. The system rarely predicted this class,
and had very low accuracy when it did.

Further, development of datasets with annotations
specifying the addressees explicitly would probably
accelerate development of methods that work well
in such settings.
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Abstract

We present a dialogue collection and enrich-
ment framework that is designed to explore
the learning and evaluation of dialogue poli-
cies for simple conversational characters us-
ing textual training data. To facilitate learning
and evaluation, our framework enriches a col-
lection of role-play dialogues with additional
training data, including paraphrases of user ut-
terances, and multiple independent judgments
by external referees about the best policy re-
sponse for the character at each point. As
a case study, we use this framework to train
a policy for a limited domain tactical ques-
tioning character, reaching promising perfor-
mance. We also introduce an automatic policy
evaluation metric that recognizes the validity
of multiple conversational responses at each
point in a dialogue. We use this metric to ex-
plore the variability in human opinion about
optimal policy decisions, and to automatically
evaluate several learned policies in our exam-
ple domain.

1 Introduction

There is a large class of potential users of dialogue
systems technology who lack the background for
many of the formal modeling tasks that typically
are required in the construction of a dialogue sys-
tem. The problematic steps include annotating the
meaning of user utterances in some semantic formal-
ism, developing a formal representation of informa-
tion state, writing detailed rules that govern dialogue
management, and annotating the meaning of system
utterances in support of language generation, among
other tasks.
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In this paper, we explore data collection and ma-
chine learning techniques that enable the implemen-
tation of domain-specific conversational dialogue
policies through a relatively small data collection ef-
fort, and without any formal modeling. We present
a case study, which serves to illustrate some of
the possibilities in our framework. In contrast to
recent work on data-driven dialogue policy learn-
ing that learns dialogue behavior from existing data
sources (Gandhe and Traum, 2007; Jafarpour et al.,
2009; Ritter et al., 2010), we address the task of au-
thoring a dialogue policy from scratch with a spe-
cific purpose, task and scenario in mind. We exam-
ine the data collection, learning and evaluation steps.

The contributions of this work include a data col-
lection and enrichment framework without formal
modeling, and the creation of dialogue policies from
the collected data. We also propose a framework for
evaluating learned policies. We show, for the sce-
nario in our case study, that these techniques deliver
promising levels of performance, and point to possi-
ble future developments in data-driven dialogue pol-
icy creation and evaluation.

2 Case study

For our case study we selected an existing dialogue
system scenario designed for Tactical Questioning
training (Traum et al., 2008). The character targeted
in our study, Amani, is modeled closely after the
Amani Tactical Questioning character described by
Gandhe et al. (2009) and Artstein et al. (2009). Tac-
tical Questioning dialogues are those in which small
unit military personnel, usually on patrol, hold con-
versations with individuals to produce information
of military value. A tactical questioning dialogue
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system is a simulation training environment where
virtual characters play the role of a person being
questioned. Tactical questioning characters are de-
signed to be non-cooperative at times. They may
answer some of the interviewers questions in a coop-
erative manner, but may refuse to answer other ques-
tions, or intentionally provide incorrect answers.
Therefore the interviewer is encouraged to conduct
the interview in a manner that induces cooperation
from the character: building rapport with the char-
acter, addressing their concerns, making promises
and offers, as well as threatening or intimidating the
character; the purpose of the dialogue system is to
allow trainees to practice these strategies in a realis-
tic setting (Gandhe et al., 2009).

This type of scenario is a good testbed for our
proposed learning and evaluation framework, since
it involves both flexible conversational choices and
well-defined constraints regarding the disclosure of
specific information. In the Amani scenario, the user
plays the role of a commander of a small military
unit in Iraqg whose unit had been attacked by sniper
fire. The user interviews a character named Amani
who was a witness to the incident and is thought to
have some information about the identity of the at-
tackers. Amani is willing to tell the interviewer ev-
erything she knows provided that the user promises
her safety, secrecy, and small monetary compensa-
tion for the information (Artstein et al., 2009).

An exhaustive formal definition of Amani’s ideal
dialogue policy might include a large number of
rules covering a wide range of user utterance types.
The key constraints for the training simulation, how-
ever, can be stated simply with a few rules governing
the release of five pieces of information that Amani
knows. Amani will only reveal one of these pieces of
information if a precondition is met. Table 1 shows
how certain information relates to each of the pre-
conditions in Amani’s dialogue policy. Amani can
only reveal a fact from the first column if the user
promised her an item from the second column. For
example, Amani can only tell the user the shooter’s
name if the user promised her safety. If the user
has not promised safety, Amani will ask him for
safety. If the user refuses to promise safety, Amani
will either decline to answer the question or lie to
the interviewer. Amani does keep track of the user’s
promises and once she is promised safety, she would
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information precondition
about shooter’s name safety
about shooter’s description safety
about shooter’s location secrecy
about the occupant of the shop secrecy
about shooter’s daily routine money

Table 1: Amani’s dialogue policy.

not ask for it again.

While the key constraints for Amani’s policy, as
summarized in Table 1, may be easily expressed
in terms of rules involving dialogue-acts, the rest
of Amani’s behavior is more open-ended and un-
derspecified. Ideally, the system designers would
like for the character to obey conversational conven-
tions (such as responding appropriately to greetings,
thankings, etc.). Her responses to other user utter-
ances should match human intuition about what a
good response would be, but specific responses are
not generally dictated by the goals for the training
simulation. There is therefore room for some flex-
ibility, and also for the character to reply that she
does not understand. Of course, her conversational
repertoire is inevitably limited by the available au-
thoring and development effort as well as language
processing challenges.

3 Data collection

The exponential number of possible utterances and
dialogue paths in even a simple conversational dia-
logue scenario such as the Amani scenario suggests
that learning acceptable dialogue behavior from sur-
face text examples without annotation or formal
modeling would require a seemingly insurmount-
able quantity of dialogues to serve as training data.
We address this problem in a data collection frame-
work with four main characteristics: (1) we sidestep
the problem of learning natural language generation
by using a fixed predefined set of utterances for the
Amani character. This so-called “utterance selec-
tion” approach has been used in a number of dia-
logue systems (Zukerman and Marom, 2006; Sell-
berg and Jnsson, 2008; Kenny et al., 2007, for ex-
ample) and often serves as a reasonable approxima-
tion to generation (Gandhe and Traum, 2010); (2)
we collect dialogues from human participants who



play the parts of Amani and the commander in a
structured role play framework (Section 3.1); (3) we
enrich the dialogues collected in the structured role
play step with additional paraphrases for the utter-
ances of the commander, in an attempt to deal with
large variability of natural language input, even for
a limited domain conversational dialogue scenario
(Section 3.2); (4) we further augment the existing
dialogue data by adding acceptable alternatives to
the dialogue acts of the Amani role through the use
of external referees (Section 3.3).

Our data collection procedure is designed to cap-
ture the necessary information for learning dialogue
policies and evaluating their quality by approxi-
mating the exponentially large dialogue variability
while keeping the data collection effort tractable.

3.1 Structured role play

To examine the hypothesis that dialogue policies
such as Amani’s can be learned from examples with-
out explicit rules or any kind of formal modeling,
we collected dialogue data through a constrained
form of role play, which we call structured role play,
where the person playing the role of Amani is en-
couraged, whenever possible, to only use utterances
from a fixed set. Each utterance in the available set
of Amani replies corresponds roughly to one of the
dialogue acts (consisting of an illocutionary force
and some semantic content) described by Artstein et
al. (2009) for their version of the Amani character.
The players in the roles of Amani and the com-
mander take turns producing one utterance at a time,
each in a separate terminal. The commander player,
who receives a natural language description of the
scenario and the goal of the commander, enters utter-
ances through a teletype (chat) interface. The Amani
player, who receives a natural language descrip-
tion of the scenario and of Amani’s dialogue policy,
chooses an utterance from a list for each dialogue
turn. The Amani player is encouraged to use an ut-
terance from this list whenever possible; however,
for user utterances that the Amani player judges can-
not possibly be handled by any existing response, a
new response can be authored (as English text) and
immediately used in the role play. Each player sees
the other’s utterance as text in their own terminal.
This closely resembles a Wizard-of-Oz setup, with
they key difference being that both dialogue partic-
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ipants believe they are interacting with another per-
son, which is in fact the case, and the idea of a wiz-
ard controlling a system is not part of the exercise.
However, because the Amani player is encouraged
to limit Amani’s responses to a fixed utterance set,
and the dialogue is constrained to a strict turn-taking
setup that interleaves utterances from each partici-
pant, the situation also differs from conventional role
play.

We collected a total of 19 dialogues and 296 ut-
terances for Amani, for an average of 15.6 Amani
utterances per dialogue.

3.2 Paraphrase generation

The dialogues collected through structured role play
are intended for serving as training data from which
Amani’s dialogue policy can be learned. However,
to cover the natural language variability with which
dialogue acts from the commander can be expressed
would require a much larger number of dialogues
than it would be practical to collect, since a learned
system that deals only with the surface text in the
dialogues would need to deal both with the dia-
logue policy and natural language understanding for
the scenario. Instead, we require only that the di-
alogues collected cover the desired dialogue acts
for the player role in the scenario. To address the
language understanding problem (indirectly), we at-
tempt to cover the variability of expression of these
dialogue acts through the collection of paraphrases
for the commander utterances in the set of dialogues.

For each commander utterance in the 19 dialogues
we collected, we had annotators create a set of para-
phrases. In creating paraphrases, annotators were
asked to take not just the original utterance into ac-
count, but also its context in the dialogue. We did
not specify a fixed number of paraphrases per utter-
ance, but instead asked for as many paraphrases as
the annotator could quickly think of.

Figure 1 exemplifies the paraphrases created dur-
ing this process, for a target user utterance of can
you tell me what you know of the incident?. For this
utterance, a total of 6 paraphrases were generated.

We used a total of 9 annotators, who created para-
phrases for the 296 utterances in the 19 dialogues.
Most annotators were responsible for no more than
two dialogues, and took on average less than 30
minutes per dialogue. The average number of para-



Previous Dialogue History

Paraphrases:
could you please tell me what you saw?
what can you tell me about the incident?

can you tell me about the incident?

tell me what you saw, please

Lieutenant:  hi amani
Amani:  hello.
Lieutenant:  how are you doing?
Amani: fine thank you.
Lieutenant:  thank you for meeting with me
Amani:  you're welcome.
Target User Utterance
Lieutenant:  can you tell me what you know of the incident?

please tell me what information you have about the incident

please, tell me what you know about the incident

System Response
Amani:
External Referees:

i saw all the shooting from my window. what do you want to know about it?

(3 referees) i saw all the shooting from my window. what do you want to know about it?

(2 referees) i remember that the gun fire was coming from the window on the second floor of assad’s
shop. the shop is only one story but there are apartments on top of the shop.

(1 referee) what is it you want to know about the incident?

Figure 1: An enriched dialogue turn from an Amani structured role play.

phrases collected per user utterance was 5.5.

Our 9 annotators had differing backgrounds, rang-
ing from transcribers and summer interns to experi-
enced NLP researchers. It should be noted that all
had at least some experience working with natural
language processing technologies. In future work,
we would like to explore using less experienced an-
notators for paraphrasing.

3.3 External referee annotation

Although the paraphrase generation step helps with
coverage of the language used by the commander
in our scenario, the combination of the original di-
alogues collected through structured role play and
the paraphrases do not address one crucial issue in
learning of data-driven dialogue policies, and their
automated evaluation: at each turn, a dialogue par-
ticipant has multiple valid dialogue acts that can be
performed, not a single correct one. In other words,
given the same dialogue history up to a given point,
multiple human dialogue participants following the
same underspecified policy may choose different di-
alogue acts to continue the dialogue, and each of
these different choices may be perfectly acceptable
and coherent. This is one of main challenges in cre-
ation and evaluation of data-driven policies, since
the exponentially many acceptable dialogue paths
are both difficult to model explicitly, and difficult
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to recognize automatically when performed during
testing. Of course, the degree to which this is a prac-
tical problem in a specific dialogue scenario depends
on several factors, including how underspecified the
targeted dialogue policy is. In our case study, the
policy has a high level of underspecification, since
only behaviors related to the information in Table 1
are mentioned directly, and even those are only de-
scribed in natural language, without formal rigor.
The rest of the policy dictates only that human play-
ers in the part of Amani act according to their com-
monsense in playing the role of the Amani character.
However, we limit the otherwise potentially infinite
possibilities for dialogue behavior by strongly en-
couraging the Amani player to perform only one of a
set of predefined utterances corresponding to certain
dialogue acts in the scenario. In our experiments, the
number of utterances available for Amani was 96.

We first investigate this issue by attempting to
characterize the amount of human variation in the
choice of one of the 96 available dialogue acts at
any given point in a dialogue. To this end, we intro-
duce the idea of the external referee, who essentially
provides a “second opinion” for dialogue acts per-
formed by the original role player. The external ref-
eree annotation task works as follows: (1) Starting
with an existing dialogue containing n utterances




(u1,ug, ..., u,) for the participant whose utterances
will be externally refereed (one of the dialogues
collected through structured role play, in our case
study, where we externally referee the Amani utter-
ances), produce n dialogue histories hi, ho, ..., hy,
with each h; consisting of every utterance from each
dialogue participant from the beginning of the dia-
logue down to, but not including, the i*" utterance in
the dialogue. (2) For each dialogue history h;, the
external referee (who must not be the person who
played a part in the original dialogue) chooses an
utterance v from the choices available for the sce-
nario, without knowledge of the original utterance
u; in the dialogue from which the history was pro-
duced.

Figure 1 provides an example of the choices made
by 6 external referees for a single target user ut-
terance. Given the previous dialogue history and
the target user utterance (can you tell me what you
know of the incident?), each external referee inde-
pendently chose a single best utterance for the char-
acter to respond with. In the example in the figure,
it can be seen that 3 of the 6 external referees chose
the same response as the original Amani player, as-
serting that Amani did indeed witness the incident
and asking what the commander would like to know.
The other three chose alternative responses; two
of these selected a response asserting information
about where the gun fire was coming from, while
a third referee chose a response simply asking what
the commander would like to know. It is important
to note that all three of these alternative responses
would be acceptable from a design and training per-
spective.

In this annotation task, the task is not to pro-
vide alternative dialogues, but simply one charac-
ter response to each individual utterance, assuming
the fixed history of the original dialogue. In other
words, the annotator has no control or impact over
the dialogue history at any point, and provides only
additional reference utterances for possible immedi-
ate continuations for each dialogue history. It is for
this reason we call the annotator an external referee.

Annotations from multiple external referees for
the dialogues collected through structured role play
do not result in a representation of the lattice of the
many possible dialogue paths in the scenario, but
rather an approximation that represents the possible
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options in the immediate future of a given dialogue
history. The main difference is that the available his-
tories are limited to those in the original dialogues
from structured role play. While this may be a lim-
iting factor if one attempts to model dialogue be-
havior based on entire dialogue histories, since the
available histories represent only a very sparse sam-
ple of the space of valid histories, it is possible that
good approximate models can be achieved with fac-
torization of dialogues by sequences of a fixed num-
ber of consecutive turns, e.g. a model that makes a
second-order Markov assumption, considering only
the previous two turns in the dialogue as an approx-
imation of the entire history (Gandhe and Traum,
2007). This is in a way the same approximation used
in n-gram language models, but at the level of gran-
ularity of sentences, rather than words.

We collected annotations from 6 different exter-
nal referees, with each individual referee annotating
the entire set of 19 dialogues, and taking on average
about two hours to complete the annotation of the
entire set. All of our external referees were very fa-
miliar with the design of the Amani character, and
most had natural language processing expertise.

4 Evaluation of dialogue policies with
multiple external referees

4.1 External referee agreement

The dialogues and external referee annotations col-
lected using the procedure described in Section 3
provide a way to characterize the targeted policy
with respect to human variability in choosing utter-
ances from a fixed set, since the annotations include
the choices made by multiple external referees.

From the annotations of utterances chosen for
Amani in our 19 dialogues, we see that human an-
notators agree only 49.2% of the time when choos-
ing an utterance in the external referee framework.
That is, given the same dialogue history, we expect
that two human role players would agree on average
slightly less than 50% of the time on what the next
utterance should be!.

Based on this level of pairwise agreement, one
might conclude that using these data for either policy
learning or policy evaluation is a lost cause. How-

IThis represents the averaged agreement over all pairs of
external referees.
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Figure 2: Distribution in number of distinct choices by
external referees

ever, this result does not necessarily indicate that hu-
man raters disagree on what the correct choice is; it
is more likely to reflect that there are in fact mul-
tiple “correct” (acceptable) choices, which we can
capture through multiple annotators.

The annotations from multiple external referees
in our case study support this view: Figure 2 shows
the number of distinct utterance choices made by
each of the six external referees for each specific ut-
terance in the 19 dialogues collected through struc-
tured role play. Each external referee chooses only
one utterance (out of 96 options) per Amani turn in
the 19 dialogues. Over the 296 Amani utterances
in the entire set of dialogues, all six referees agreed
unanimously on their utterance choice only 23.3%
of the time. The most frequent case, totaling almost
30% of all utterances, was that the set composed by
the single choice from each of the six wizards for
an utterance had exactly two distinct elements. For
only 1.3% of the 296 utterances did that set contain
the maximum number of distinct elements (six), in-
dicating complete disagreement among the external
referees. We note that, in this case, very low agree-
ment to complete disagreement reflects a situation
in dialogue where it is likely that there are many di-
alogue act choices considered acceptable by the col-
lective body of external referees. In our scenario,
there were at most two choices from the six referees
for more than 50% of the Amani turns, indicating
that in the majority of the cases there is only a small
set of acceptable dialogue acts (from the 296 avail-
able), while five or more options were chosen for
less than 10% of all Amani turns.

For a more direct characterization of dialogue sce-
narios, and also for the purposes of evaluation, we
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Figure 3: Weak agreement between external referees

now define a metric that reflects overall agreement
in a group of external referees. Instead of compar-
ing one choice from a single referee to another single
choice, we instead check for membership of a single
choice c;; from a single referee R?; for utterance u;
in the set of choices {cy;|k # i} from all of the
other referees { Ri|k # i}. In the positive case, we
say that R; weakly agrees with the rest of the raters
{Rk|k # i} on the annotation of utterance u;. We
define the weak agreement agr,, for a set of N ex-
ternal referees over a set of m utterances to be rate
at which each rater R; weakly agrees with the n — 1
raters { R |k # i}, for all integer values of 4 ranging
from 1 to IV, inclusive. Intuitively, weak agreement
reflects two important questions: (1) how often is
the choice of a referee supported by the choice of
at least one more referee? and (2) given a set of
n — 1 referees, how much new information (in the
form of unseen choices) should I expect to see from
a new n'" referee? Figure 3 addresses these ques-
tions for the scenario in our case study by showing
the weak agreement figures obtained for sets of in-
creasing numbers of external referees, from 2 to 6.
Each point in the graph corresponds to the average
of the weak agreement values obtained for all possi-
ble ways of holding out one external referee R;, and
computing the weak agreement between R; and the
other referees, assuming an overall pool containing
the given number of external referees.

We note that with the dialogue act choices of a
single person, coverage of the possible acceptable
options is quite poor, corresponding only to an aver-
age of 50% of the choices made by another person.



The coverage increases rapidly as two more external
referees are added, and more slowly, although still
steadily from there. The rightmost point in Figure 3
indicates that with a set of five external referee we
should expect to cover almost 80% of the choices of
a sixth referee.

4.2 Dialogue policy evaluation with multiple
external referees

The weak agreement metric defined in the previ-
ous section can be used to measure the quality of
automatically learned policies, and to provide in-
sight into how a learned policy compares to human-
level performance. Because it recognizes the valid-
ity of multiple responses, the weak agreement metric
can help distinguish true policy errors from policy
choices that are consistent with the intuitions of at
least some human referees about what the character
should say.

In particular, given the choices made by five exter-
nal referees for our 19 Amani dialogues, we can ex-
pect their choices to cover about 80% of the choices
a sixth person would make for what Amani should
say at each turn in these dialogues. (Il.e., we know
that the weak agreement among a group of six hu-
man referees is about 80% for this Amani scenario.)

We proceed to rate the quality of an automatic
policy by computing a one-vs-others version of
weak agreement—intuitively treating our policy as
if it were such a “sixth person”, and comparing it
to the other five. Instead of computing the average
weak agreement for referees randomly selected from
an entire group, as in the previous section, to eval-
uate a policy, we compute its weak agreement com-
pared to the combined set of human external refer-
ees, as follows. For every system utterance u; in our
set of role play dialogues, a given automatic policy
P is used to select a response c;- (corresponding to
a dialogue act in the domain). We then check for
membership of c; in the set that contains only and
all dialogue act choices cy; for k ranging from 1 to
N, inclusive, where N is the number of external ref-
erees and cy; corresponds to the kth referee’s choice
for the j*" utterance. Another way to interpret this
evaluation metric is to consider it a form of accuracy
that computes the number of correct choices made
by the policy divided by the total number of choices
made by the policy, where a choice is considered
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“correct” if it matches any of the external referees’
choices for a specific utterance. For this reason, we
refer to this evaluation-focused one-vs-all version of
weak agreement as weak accuracy.

Based on the definition above, an automatic pol-
icy with quality indistinguishable from that of a
person choosing utterances for the Amani character
would have a weak accuracy of about 80% or higher
when measured using a set of five external referees.
We see then that this metric is far from perfect, since
it cannot rank two policies with weak accuracy lev-
els of, say, 80% and 90%. It is also possible for a
policy that results in dialogue behavior noticeably
inferior to that of a human referee to be rated at
the same weak accuracy value for a human referee
(80%). In practice, however, weak accuracy with
five or six external referees has far greater power for
discriminating between policies of varying quality,
and ranking them correctly, than a naive version of
accuracy, which corresponds to weak accuracy us-
ing a single referee. Furthermore, the addition of
only a few more external referees would very likely
increase the efficacy of the weak agreement metric.

Despite the shortcomings of weak accuracy as a
metric for evaluation of quality of dialogue poli-
cies, it opens up a wide range of opportunities for
development of learned policies. Without an auto-
mated metric, development of such techniques can
be only vaguely incremental, relying on either costly
or, more likely, infrequent human evaluations with
results that are difficult to optimize toward with cur-
rent machine learning techniques. The use of im-
perfect automated metrics in situations where ideal
metrics are unavailable or are impractical to deploy
is fairly common in natural language processing.
PARSEVAL (Abney et al., 1991), commonly used
for parser evaluation, and BLEU (Papineni et al.,
2002), commonly used in machine translation, are
two examples of well-known imperfect metrics that
have been the subject of much criticism, but that are
widely agreed to have been necessary for much of
the progress enjoyed by their respective fields. Un-
like BLEU, however, which has been shown to cor-
relate with certain types of human judgment on the
quality of machine translation systems, our notion
of weak accuracy has not yet been demonstrated to
correlate with human judgments on the quality of di-
alogue policies, and as such it is only hypothesized



to have this property. We leave this important step
of validation as future work.

5 Learning dialogue policies from
examples without formal modeling

Equipped with a dataset with 19 dialogues in the
Amani scenario (including paraphrases for the un-
constrained commander utterances, and external ref-
eree annotations for the constrained Amani utter-
ances), and an automatic evaluation framework for
distinguishing quality differences in learned poli-
cies, we now describe our experiments on learning
dialogue policies from data collected in structured
role play sessions, and enriched with paraphrases
and external referee annotations.

In each of our experiments we attempt to learn
a dialogue policy as a maximum entropy classi-
fier (Berger et al., 1996) that chooses one utterance
out of the 96 possible utterances for Amani after
each commander utterance, given features extracted
from the dialogue history. This policy could be in-
tegrated in a dialogue system very easily, since it
chooses system utterances directly given previous
user and system utterances. We evaluate the dia-
logue policies learned in each experiment through
19-fold cross-validation of our set of 19 dialogues:
in each fold, we hold out one dialogue (and all of its
related information, such as external referee anno-
tations and user utterance paraphrases) and use the
remaining 18 dialogues as training data.

5.1 Learning from examples

Using only the dialogues collected in structured role
play sessions, and no additional information from
external referees or paraphrases, we train the maxi-
mum entropy classifier to choose a system utterance
s; based on features extracted from the two previous
user utterances u; and u;_; and the previous system
utterance s;_1. The features extracted from these ut-
terances are the words present in each user utterance,
and the complete text of each system utterance. Low
frequency words occurring fewer than 5 times in the
corpus are excluded.

The weak accuracy for this simple policy is 43%,
a low value that indicates that for more than half its
turns the policy chooses an utterance that was not
chosen by any of the referees, giving us a reasonable
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level of confidence that this policy is of poor quality.

5.2 Enhanced training with external referees

The next experiment expands the training set avail-
able to the maximum entropy classifier by adding
training instances based on the utterances chosen by
the external referees. For each of the training in-
stances (target utterance coupled with features from
u;, Si—1 and u;_1) we add six new training instances,
each using the same features as the original train-
ing instance, but replacing the target class with the
choice made by an external referee. Note that this
creates identical training instances for cases when
the same utterance is chosen by multiple annotators,
which has the effect of weighting training examples.
With the additional information, weak accuracy for
this policy improves to 56%, which is a large gain
that still results in a mediocre dialogue policy.

5.3 Expanding training examples with
paraphrases

To help determine how much of difficulty in our
policy learning task is due to the related problem
of natural language understanding (NLU), and how
much is due to modeling dialogue behavior regard-
less of NLU, we performed manual annotation of
dialogue acts for the user utterances, and trained a
policy as in the previous section, but using manu-
ally assigned dialogue acts instead of the words for
user utterances in the dialogue history. With this
gold-standard NLU, weak accuracy improves from
56% to 67%, approaching the level of human perfor-
mance, and already at a level where two out of every
three choices made by the learned policy matches
the choice of a human referee.

To bridge the gap between learning purely from
surface text (with no formal modeling) and learn-
ing from manually assigned dialogue acts specifi-
cally designed to capture important information in
the scenario, we turn to the paraphrases collected
for user utterances in our 19 dialogues. These para-
phrases are used to create additional synthetic train-
ing material for the classifier, as follows: for each
training instance produced from a chosen system ut-
terance s; and previous utterances u;, s;—1 and u;_1
(see previous section), we create additional training
instances keeping the target system utterance s; and
previous system utterance s;_; the same, but using



a paraphrase v, in the place of u;, and a paraphrase
w,_, in the place of u;_;. Training instances are
added for all possible combinations of the available
paraphrases for u; and u;_1, providing some (arti-
ficial) coverage for parts of the space of possible
dialogue paths that would be otherwise completely
ignored during training.

Training the classifier with material from the ex-
ternal referees (see previous section) and additional
synthetic training examples from paraphrases as de-
scribed above produces a dialogue policy with weak
accuracy of 66%, at the same level as the policy
learned with manually assigned speech acts. It is
noteworthy that this was achieved through a very
simple and intuitive paraphrase annotation task that
requires no technical knowledge about dialogue sys-
tems, dialogue acts or domain modeling. As men-
tioned in section 3.2, paraphrases for each of the 19
dialogues were generated in less than 30 minutes on
average.

6 Conclusion and future work

We introduced a framework for collection and en-
richment of scenario-specific dialogues based only
on tasks that require no technical knowledge. Data
collected in this framework support novel ap-
proaches not just for learning dialogue policies,
but perhaps more importantly for evaluating learned
policies, which allows us to examine different tech-
niques using an objective automatic metric.

Although research on both learning and evalu-
ating dialogue policies is still in early stages, this
case study and proof-of-concept experiments serve
to illustrate the basic ideas of external referee and
paraphrase annotation, and the use of multiple refer-
ence dialogue act choices in evaluation of dialogue
policies, in a way similar to how multiple reference
translations are used in evaluation of machine trans-
lation systems. We do not consider this line of re-
search a replacement for or an alternative to for-
mal modeling of domains and dialogue behavior,
but rather as an additional tool in the community’s
collective arsenal. There are many unexplored av-
enues for including data-driven techniques within
rule-based frameworks and vice-versa.

In future work we intend to further validate the
ideas presented in this paper by performing addi-
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tional collection of dialogues in the Amani domain
to serve as a virgin test set, and applying these
techniques to other dialogue domains and scenar-
ios. We also plan to refine the weak accuracy and
weak agreement metrics to take into account the
level of agreement within utterances to reflect that
some parts of dialogues may be more open-ended
than others. Finally, we will conduct human evalu-
ations of different policies to begin validating weak
accuracy as an automatic metric for evaluation of di-
alogue policies.
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humans employ permits us to directly extract con-
Abstract versational and task-based expertise. These tech-

Human dialogue serves as a valuable model
for learning the behavior of dialogue systems.
Hidden Markov models’ sequential structure is
well suited to modeling human dialogue, and
their theoretical underpinnings are consistent
with the conception of dialogue as a stochastic
process with a layer of implicit, highly influen-
tial structure. HMMs have been shown to be
effective for a variety of descriptive and pre-
dictive dialogue tasks. For task-oriented dia-
logue, understanding the learning behavior of
HMMs is an important step toward building
unsupervised models of human dialogue. This
paper examines the behavior of HMMs under
six experimental conditions including different
task-oriented feature sets and preprocessing
approaches. The findings highlight the im-
portance of providing HMM learning algo-
rithms with rich task-based information.
Additionally, the results suggest how specific
metrics should be used depending on whether
the models will be employed primarily in a de-
scriptive or predictive manner.

1 Introduction

Human dialogue serves as a valuable model for
learning the behavior of dialogue systems. For this
reason, corpus-based approaches to dialogue man-
agement tasks have been an increasingly active area
of research (Bangalore, Di Fabbrizio, & Stent,
2006; Di Eugenio, Xie, & Serafin, 2010; Georgila,
Lemon, Henderson, & Moore, 2009; Rotaru &
Litman, 2009). Modeling the dialogue policies that
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niques hold great promise for scaling gracefully to
large corpora, and for transferring well across do-
mains.

The richness and flexibility of human dialogue
introduce nondeterministic and complex patterns
that present challenges for machine learning ap-
proaches. One approach that has been successfully
employed in dialogue modeling is the hidden Mar-
kov model (HMM) (Rabiner, 1989). These models
are well suited to the sequential nature of dialogue
(Stolcke et al., 2000). Moreover, their theoretical
underpinnings are consistent with the conception of
dialogue as a stochastic process whose observations
are influenced by a layer of implicit, yet highly rel-
evant, structure (Boyer et al., 2009; Woszczyna &
Waibel, 1994).

HMMs have been shown to perform well on
important dialogue management tasks such as au-
tomatic dialogue act classification (Stolcke et al.,
2000). Our work has employed HMMs for a differ-
ent goal: learning dialogue policies, or strategies,
from corpora (Boyer, Phillips, et al., 2010; Boyer,
Phillips, Ingram, et al., in press). This work can be
viewed from two perspectives. First, a descriptive
goal of the work is to learn models that describe the
nature of human dialogues in succinct probabilistic
terms, in a way that facilitates important qualitative
investigations. The second and complementary goal
is predictive: learning models that accurately pre-
dict the dialogue moves of humans, in order to cap-
ture a dialogue policy that can be used within a
system.

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 49-58,
Portland, Oregon, June 17-18, 2011. (©2011 Association for Computational Linguistics



Both of these goals are of paramount im-
portance in tutorial dialogue, in which tutors and
students engage in dialogue in support of a learning
task (Boyer, Ha, et al., 2010; VanLehn et al., 2007).
Descriptive modeling represents a critical step to-
ward more fully understanding the phenomena that
contribute to the high effectiveness of human tutor-
ing, which has to date been unmatched by tutorial
dialogue systems. Predictive models, on the other
hand, may be used directly as dialogue policies
within systems.

The HMMs considered here were learned from
an annotated corpus of textual human-human tuto-
rial dialogue. In this domain, HMMs have been
shown to correspond qualitatively to widely held
conceptions of tutorial dialogue strategies, and ad-
jacency pair analysis before model learning has
been shown to enhance this qualitative correspond-
ence (Boyer et al., 2009). Moreover, HMMs can
identify in an unsupervised fashion structural com-
ponents that correlate with student knowledge gain
(Boyer, Phillips, Ingram, et al., in press).

However, to date, several important questions
have not been explored. The answers to these ques-
tions have implications for learning HMMs for
task-oriented dialogues. The questions include the
following: 1) How reliably does the HMM learning
framework converge to the hyperparameter N, the
best-fit number of hidden states? 2) What are the
effects of preprocessing approaches, specifically,
adjacency pair analysis, on the resulting HMMs?
3) How do different feature sets for task-oriented
dialogue impact the descriptive fit and predictive
power of learned HMMs? This paper addresses
these questions. The findings suggest that model
stability and predictive power benefit from the
richest possible input sequences, which include not
only dialogue acts but also information about the
task state and the absence of particular tutor dia-
logue moves. Additionally, we find that traditional
measures of HMM goodness-of-fit may not identify
the most highly predictive models under some con-
ditions.

2  Background

HMMs have been used for dialogue modeling tasks
for many years. Early work utilized HMMs to
model underlying linguistic structure for the pur-
poses of identifying speech acts and reducing per-
plexity for speech recognition (Stolcke et al., 2000;

50

Woszczyna & Waibel, 1994). These projects treat-
ed underlying dialogue structure as the hidden lay-
er, and dialogue utterances as observations. This
treatment is analogous to the work presented in this
paper, except that our observations are dialogue act
tags only, rather than being constituent words in
each utterance. Our goals are also different: to cre-
ate a qualitatively interpretable model of dialogue
structure that corresponds to widely accepted no-
tions of task-oriented dialogue, and to learn a high-
ly predictive dialogue policy from a human-human
dialogue corpus.

HMMs rely on treating dialogue as a sequential
Markov process in which each observation depends
only on a finite set of preceding observations. Some
other approaches that rely on this assumption treat
dialogue as a Markov decision process or partially
observable Markov decision process, in which state
changes are associated with actions and rewards
(e.g., Young et al., 2010). Such work focuses on
learning an optimal policy, typically utilizing a
combination of human and simulated dialogue cor-
pora. Reinforcement learning techniques can then
be applied to learn the optimal policy based on the
observed rewards. In contrast, we start with a rich
corpus of human-human dialogue, which may have
poor coverage in some areas (though the dialogue
act tags were empirically derived and therefore mit-
igate this problem to some extent), and subsequent-
ly learn a model that explains the variance in that
human corpus as well as possible.

Capturing the dialogue policy implicit within a
corpus of human-human dialogue has been ex-
plored in other work in a catalogue-ordering do-
main (Bangalore, Di Fabbrizio, & Stent, 2006).
That work utilized maximum entropy modeling to
predict human agents’ dialogue moves within a
vector-based framework. Although a vector-based
approach differs in many regards from the sequen-
tial HMM approach described here, both approach-
es assume a dependence only on a finite history.
HMMs accomplish this through graphical depend-
encies, while vector-based approaches accomplish
it by including features for a restricted window of
left-hand context. The results of this catalogue-
ordering project highlight how challenging it is to
predict human agents’ dialogue moves in a task-
oriented domain.



3 Corpus

The corpus was collected during a human-human
tutoring study. Students solved an introductory
computer programming problem in the Java pro-
gramming language. Tutors were located in a sepa-
rate room and communicated with students through
textual dialogue while viewing a synchronized
view of the student’s problem-solving workspace.
Forty-eight students interacted for approximately
one hour each with a tutor. Students exhibited sta-
tistically significant learning gains from pretest to
posttest, indicating that the tutoring was effective
(Boyer, Phillips, Ingram, et al., in press). The cor-
pus contains 1,468 student moves and 3,338 tutor
moves. Overlapping utterances, which are common
in dialogue platforms such as instant messaging,
were prevented by permitting only one user to con-
struct a dialogue message at a time. Because the
corpus is textual, utterances were segmented at tex-
tual message boundaries except when the lead dia-
logue annotator noted the presence of two separate
dialogue acts within non-overlapping chunks of
text. In these events the utterance was segmented
by the primary annotator prior to being tagged by
the second dialogue act annotator.

In addition to dialogue act annotation, the cor-
pus was manually annotated for task structure and
correctness (Section 3.2), and for delayed tutor
feedback (Seciton 3.3). The appendix displays an
excerpt from the annotated corpus.

3.1 Dialogue Act Annotation

As part of prior work, the corpus was annotated
with dialogue acts for both tutor (Boyer, Phillips,
Ingram, et al., in press) and student (Boyer, Ha, et
al., 2010) utterances (Table 1). One annotator
tagged the entire corpus, while a second annotator
independently tagged a randomly selected 10% of
tutoring sessions. The inter-annotator agreement
Kappa score was 0.80.

3.2 Task Annotation

The corpus includes 97,509 keystroke-level task
events (computer programming actions), all taken
by the student. Tutors viewed synchronously, but
could not edit, the computer program. The task ac-
tions were manually clustered and labeled for sub-
task structure (Boyer, Phillips, et al., 2010). The
task structure annotation was hierarchical, with

51

leaves corresponding to specific subtasks such as
creating a temporary variable in order to swap two
variables’ values (subtask 3-c-iii-2). Each problem-
solving cluster, or subtask, was then labeled for
correctness (Table 2). These correctness labels are
utilized in the models presented in this paper. The
Kappa agreement statistic for the correctness anno-

tation on 20% of the corpus was 0.80.

Table 1. Dialogue act tags

Dialogue Act Tutor Example
ASSESSING Q. |Which type should that be?
EXTRA-DOMAIN |A coordinator will be there soon.
GROUNDING Ok.

:;L;:iWARM That'’s close.
LUKEWARM Almost there, but the second

CONTENT FDBK

parameter isn’t quite right.

NEGATIVE FDBK

That’s not right.

NEGATIVE
CONTENT FDBK

No, the counter has to be an int.

POSITIVE FDBK

Perfect.

PosITIVE Right, the array is a local varia-
CONTENT FDBK |ble.

QUESTION Which approach do you prefer?
RESPONSE It will be an int.

STATEMENT They start at 0.

Table 2. Task correctness tags

Correctness
Tag Description
Fully conforming to the require-
CORRECT ments of the task.
Violating the requirements of the
BuGay task. These task events typically
require tutorial remediation.
INCOMPLETE Not violating, but not yet fulfilling,

the requirements of the task.

DISPREFERRED

Technically fulfilling requirements
but not utilizing the target con-
cepts being tutored. These
events typically require tutorial
remediation.

3.3 Annotation for Delayed Tutor Feedback

The dialogue act and task annotations reflect posi-
tive evidence regarding what did occur in the dia-
logues. An additional annotation was introduced for
what did not occur—specifically, instances in
which tutors did not to make a dialogue move in
response to students’ relevant task actions. The task
in our corpus is computer programming, so bugs in
the task correspond to errors either in syntax or se-



mantics of the computer program compared to the
desired outcome. The human tutors were working
with only one student at a time and were carefully
monitoring student task actions during the dialogue,
so we take the absence of a dialogue move at a rel-
evant point to be an intentional choice by the tutor
to delay feedback as part of the tutorial strategy.
The automatic annotation for delayed feedback in-
troduced two new event tags: NO-MENTION of cor-
rectly completed subtasks, and NO-REMEDIATION
of existing bugs within the task.

The intuition behind these tags is that within a
learned dialogue policy, specifically modeling
when not to intervene is crucial. Typically human
tutors mention correctly completed subtasks, but at
times other tutorial goals eclipse the importance of
doing so. The NO-MENTION tag captures these in-
stances. On the other hand, typically when working
with novices, human tutors remediate an existing
bug quickly. However, tutors may choose to delay
this remediation for a variety of reasons such as
remediating a different bug instead or asking a con-
ceptual question to encourage the student to reflect
on the issue. The NO-REMEDIATION tag captures
these instances of the absence of remediation given
that a bug was present. These two annotations for
delayed feedback were performed automatically
(Boyer, Phillips, Ha, et al., in press).

3.4 Adjacency Pair Modeling

Prior work has demonstrated that adjacency pairs
can be identified in an unsupervised fashion from a
corpus (Midgley, Harrison, & MacNish, 2006).
This technique relies on statistical analysis to de-
termine the significant dependencies that exist be-
tween pairs of dialogue acts, or in our task-oriented
corpus, pairs of dialogue acts or task actions. After
the pairs of dependent events are identified, they
are joined within the corpus algorithmically (Boyer
et al., 2009). Joining a pair of dependent moves in
this way is equivalent to introducing a deterministic
(probability=1) succession between observation
symbols. This type of dependency cannot be
learned in the traditional first-order HMM frame-
work, but is desirable when two observations are
strongly linked.'

! Enhanced HMM structures, such as autoregressive HMMs,
which allow for direct graphical links between observation
symbols, can learn such a dependency but only in stochastic
terms.
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The experiment that is described in Section 4
utilizes different feature sets to learn and compare
HMMs. Table 3 shows these feature sets and their
most highly statistically significant adjacency pairs.

Table 3. Experimental conditions and top three ad-
jacency pairs (subscripts denote speaker, Student or

Tutor)
Significant Adjacency
Condition| Description Pairs
: Qs~Rspt
DAONLY g’f}logue acts Grounds~Groundr
y AssessQr~PosFdbks
jal t
& ook oo | QsRspr
DATASK CorrectTasks~CorrectTasks
rectness
Grounds~Groundr
events
Dialogue
acts, task Qs~Rspr
Dégfy}(_ correctness, | NoRemediater~BuggyTasks
& delayed CorrectTasks~CorrectTasks
feedback
4 Models

HMMs were selected as the modeling framework
for this work because their sequential nature is well
suited to the structure of human dialogue, and their
“hidden” variable corresponds to widely held con-
ceptions of dialogue as having an unobservable, but
influential, layer of stochastic structure. For exam-
ple, in tutoring, an “explanation” mode is common,
in which the tutor presents new information and the
student provides acknowledgments or takes task
actions accordingly. Although the presence of the
“explanation” goal is not directly observable in
most dialogues, it may be inferred from the obser-
vations. These sequences correspond to the input
observations for learning an HMM.

4.1 Hidden Markov Models

HMMs explicitly model hidden states within a
doubly stochastic structure (Rabiner, 1989). A first-
order HMM, in which each hidden state depends
only on the immediately preceding hidden state, is
defined by the following components:

* Y = {0y, 03 ..., om}, the observation sym-

bol alphabet
e S={s5,53...,5x}, the set of hidden states



* [IH[x], i=1,...,N, the initial probability dis-
tribution, where #; is the probability of the
model beginning in hidden state s; in S

* A=[ay], a transition probability distribution,
where a;; is the probability of the model
transitioning from hidden state i to hidden
state j for i,j=1,....N

* B=[by], an emission probability distribu-
tion where by is the probability of state i
(i=1,...,N) emitting (or generating) obser-
vation symbol k (k=1,...,M).

4.2 Dialogue Modeling with HMMs

In this work, the observation symbol alphabet ¥ is
given. For each experimental condition, Y’ is either
1) all dialogue act tags, 2) all dialogue acts plus
task correctness tags, or 3) dialogue act, task cor-
rectness, and delayed feedback tags. The transition
probability distribution 4, emission probability dis-
tribution B, and initial probability distribution /7 are
learned by the standard Baum-Welch algorithm for
optimizing HMM parameters (Rabiner, 1989). This
algorithm is susceptible to becoming trapped in
local optima, so our approach uses ten-time random
restart with new initial parameters for each model
to reduce the probability of selecting a model that
represents only a local optimum.

The hyperparameter N, which is the best number
of hidden states, is also learned rather than fixed.
This process involves running the full HMM train-
ing algorithm, including random restarts in ten-fold
cross-validation, across the data and selecting the N
that corresponds to the best mean goodness-of-fit
measure. For HMMs, a typical goodness-of-fit
measure is log-likelihood, which captures how like-
ly the observations would be under the current
model. The log is taken for practical reasons, to
avoid numerical underflow. Higher log-likelihood
corresponds to improved model fit. However, typi-
cally it is desirable to penalize a higher number of
hidden states, since increasing the model complexi-
ty results in tradeoffs that may not be fully warrant-
ed by the improvement in model fit. In this work,
we utilize the Akaike Information Criterion (AIC),
a standard penalized log-likelihood metric (Akaike,
1976).
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AIC = 2*N = 2*[n(likelihood)
Lower values of AIC indicate better model fit.

4.3 Experimental Conditions

HMMs were learned using three separate feature
sets, each providing a progressively more complete
picture of the task-oriented dialogues: dialogue acts
only (DAONLY), dialogue acts and task events
(DATASK), and dialogue acts with both task cor-
rectness events and tags for delayed tutor feedback
(DATASKDELAY).

In addition to the three different feature sets,
each condition included one of two types of pre-
processing. Each type of model was trained on un-
altered sequences of the annotated tags, which we
refer to as the UNIGRAM condition. Additionally,
each type of model was trained on sequences with
statistically dependent adjacency pairs joined in a
preprocessing step as described in Section 3.4. The
UNIGRAM and ADJPAIR conditions were explored
for each of the three feature sets, resulting in six
experimental conditions. These conditions were
chosen in order to explore the convergence behav-
ior of HMMs under the different feature sets and
preprocessing, and to compare measures of descrip-
tive fit with measures of predictive power.

4.4 Learned HMMs

Figures 1 and 2 show a subset of the DAONLY
UNIGRAM model and the DATASKDELAY ADJPAIR
model. These figures depict the structure of our
HMMs: each hidden state is associated with an
emission probability distribution over the possible
observation symbols.

5 Goodness-of-Fit Curves

The learning algorithm described in Section 4.2
was applied to input sequences under the six exper-
imental conditions to learn the best-fit HMM pa-
rameters. Figure 3 displays these AIC results,
which are discussed in detail in the remainder of
this section.
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Figure 1. Subset of learned HMM (N=13) for
DAONLY UNIGRAM condition
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Figure 2. Subset of learned HMM (N=9) for
DATASKDELAY ADJPAIR condition

5.1

For the DAONLY condition, both the UNIGRAM and
ADJPAIR models generally improve until N=12 or
13, after which the fit generally worsens. A differ-

Impact of Experimental Conditions
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ent pattern emerges for the DATASK condition, in
which the UNIGRAM sequences are optimally fit to
a model with 16 states, while the ADJPAIR se-
quences are fit to a model with 8 states. Finally, for
the DATASKDELAY condition, the UNIGRAM se-
quences are best fit by a model with 10 hidden
states, while the ADJPAIR sequences are fit best
by 9. Typically, we see that ADJPAIR sequences are
fit to slightly simpler models in terms of the hy-
perparameter N, number of hidden states.

a) Dialogue ActsOnly (DAONLY)
1600

1400

O 1200
<
8 1000 -
% 200 “+Unigram
=X AdjPair
2 600
400
200
0 24
2 4 6 8
N (number of hidden states)
b) Dialogue Act and Task Events (DATASK)
1800
1600
9 1400
<C 1200
el
Q 1000
> =*=Unigram
3. 800 AdjPair
el
<< 600
400 A 2
200 /\‘" 7 \/\/
0 A T T T y
2 4 6 8 10 12 14 16 18 20
N (number of hidden states)
c) Dialogue Act, Task, & Delayed Feedback
(DATASKDELAY)
3000 \
9 2500
= ol \
B 2000
§ “*Unigram
2
<
AdjPair

o\
D Ml

6

N (number of hidden states)
Figure 3. Number of hidden states and cor-
responding adjusted AIC, shifted to a mini-
mum score of zero indicating the best-fit N



Stability in the hyperparameter N is an im-
portant consideration because an underlying as-
sumption of our work is that the hidden states
correspond to unobserved stochastic structures of
the real world process—that is, we hypothesize
that a “true” value for N exists. We would like
models to exhibit decreasing variation in goodness
of fit measures around this true N. To examine this
stability we consider the three best AIC values for
each condition and their corresponding Ns: the set
{Nibest | k=1,2,3}. The range of this set indicates
how “far apart” the best three Ns are: for example,
in the DAONLY UNIGRAM condition, the top three
models have Ns of {13,10,15}, yielding a range of
5. Intuitively, a small value for this metric indicates
that the model has converged tightly on N.

Figure 4 shows the stability results for the six
different experimental conditions. As shown in the
figure, for the DATASK and DATASKDELAY condi-
tions, the ADJPAIR models achieve the smallest
range among the top three values of N; these mod-
els converge most tightly to the “best” value.

1k

DAOnly DATask DATaskDelay

Figure 4. Stability of N (range of {N;pes, Noves:,
Nipesi} ) — smaller implies tighter convergence to
“best” N

® Unigram

AdjPair

6 Predictive Analysis

Section 5 presented an analysis of the goodness-of-
fit curves of HMMs learned from the corpus. The
measures of stability and discrimination for N cap-
ture important aspects of the behavior of HMMs
toward this parameter, which is conceived of as
representing “true” real-world stochastic behavior.
In this way, Section 5 has presented a descriptive
view of HMM dialogue models.

This section presents a predictive view of the
models. Specifically, we consider prediction accu-
racy, defined as the percent of tutor dialogue moves
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that the model is able to correctly predict given the
dialogue history sequence up to that point.

6.1

We first explore whether the preprocessing step of
joining dependent adjacency pairs impacted predic-
tion accuracy. The prediction accuracy of the best-
fit model in each condition is displayed in Figure 5.
This figure includes prediction accuracy on training
data, which were used to learn model parameters,
as well as prediction accuracy on testing data,
which were withheld from model training.

0.7

Impact of Dependent Adjacency Pairs

0.6

05
0.
0.
0.
0.1

0
Training | Testing Training Testing | Training = Testing

-

® Unigram

w

" AdjPair

N

DAOnly DATask

Figure 5. Prediction accuracy for tutor moves

DATaskDelay

As shown in Figure 5, joining the adjacency
pairs improved model performance on the training
sets of all three conditions, indicating that the varia-
tion within the training data was better explained
by ADJPAIR models. (This measure of predictive
power is different from a goodness-of-fit criterion
as described in the previous section, a relationship
that will be discussed further in Section 7.) In con-
trast to the training set performance, the ADJPAIR
models performed better than UNIGRAM models for
the testing set only in the DATASKDELAY condi-
tion.

6.2

As illustrated in Figure 5, the three feature sets per-
form similarly under the UNIGRAM condition. This
performance is slightly above baseline (DAONLY
and DATASK baselines = 0.38; DATASKDELAY
baseline = 0.30), and diminishes little between the
training and testing sets. In contrast, under the
ADJPAIR condition, performance between condi-
tions and across training and testing sets varies. The
DATask model performs far better on predicting
observations in the training than the testing set,

Impact of Task-Oriented Feature Sets



suggesting possible overfitting to the training set.
This relationship is discussed further in Section 7.
The DATASKDELAY model performs well during
both training and testing, though with a slight de-
crease in accuracy on the testing set.

6.3 Relationship Between Predictive and De-
scriptive Metrics

Measures of fit such as log-likelihood and AIC cap-
ture the likelihood of observing the data given a
model. Predictive accuracy, on the other hand,
measures the probability that the model can predict
the next observation given a partial sequence. In
general, we would expect these measures to corre-
late well; however, there is not perfect correlation
between these metrics because the mechanism by
which log-likelihood (and thereby AIC) is derived
involves maximizing likelihood over complete se-
quences, while prediction is performed over partial
sequences.

To examine how well AIC and prediction accu-
racy correlate, Figure 6 displays these values for a
subset of the models in the DAONLY UNIGRAM
condition and the DATASKDELAY ADJPAIR condi-
tion. These two conditions represent the extremes
of the experimental conditions, with DAONLY con-
taining the least information about the task-oriented
dialogue while DATASKDELAY contains the most
information.

As shown in Figure 6, the correlation for
DAONLY UNIGRAM roughly conforms to what
would be expected: lower AIC, indicating better
model fit, is associated with the highest prediction
accuracies. The relationship is less clear for the
DATASKDELAY ADJPAIR condition. While its
worst AIC is associated with the lowest prediction
accuracy as expected, the best AIC is not associated
with the highest prediction accuracy. This phenom-
enon may be due to the lack of spread among AIC
values overall for this condition; as seen in Figure
3, the DATASKDELAY ADJPAIR condition has the
flattest AIC curve of all conditions, indicating that
for this condition the difference between best-fit
and worst-fit models is smaller than for any other
condition. The inconsistent relationship between
AIC and prediction accuracy, therefore, may be the
product of noise surrounding a large set of “good”
models, whereas for the DAONLY UNIGRAM condi-
tion, the set of good models is smaller.
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Figure 6. Prediction accuracy vs. AIC

7 Discussion

The results suggest several important findings re-
garding feature sets and preprocessing for learning
HMMs of task-oriented dialogue. First, the models’
convergence patterns to a best-fit N, number of
hidden states, indicate that more information em-
bedded within the sequences may correspond with
a flatter goodness-of-fit curve. Adding more infor-
mation to the input sequences may introduce some
regularities that partly mitigate the limitations of
even a poorly fit HMM. This additional infor-
mation may come in the form of adjacency pairs
discovered in an unsupervised fashion, which im-
proved the stability of convergence on the best-fit
N under the DATASK and DATASKDELAY condi-
tions. This increased stability is likely due to the
fact that under these conditions, leveraging adja-
cency pair information augments the HMM’s struc-
ture with contextual dependencies that could
otherwise not be learned under the traditional
HMM framework.

For predictive accuracy, the benefits of richer
input sequences are also highlighted. The most
highly predictive models included all three sources



of information: dialogue acts, task events, and de-
layed feedback tags. However, with the addition of
this rich information to the input sequences and the
accompanying flatter goodness-of-fit curve as dis-
cussed above, we noted an irregular pattern of cor-
relation between goodness-of-fit and predictive
accuracy that is worthy of future exploration. Spe-
cifically, it appears that the most highly predictive
DATASKDELAY ADJPAIR model, which is the most
highly predictive of all models in all conditions,
does not correspond to the best (lowest) AIC for
that condition (Figure 3). This finding suggests that
when a predictive task is the primary goal, a predic-
tive metric should be used to select the best-fit
model. Additional support for such an approach is
provided by the close correspondence between
training and testing set prediction accuracy.

8 Conclusion

Understanding how HMMs behave under different
feature sets is an important step toward learning
effective models of task-oriented dialogue. This
paper has examined how HMMs converge to a best
number of hidden states under different experi-
mental conditions. We have also considered how
well HMMs under these conditions predict tutor
dialogue acts within a corpus of task-oriented tutor-
ing, a crucial step toward learning dialogue policies
from human corpora. The findings highlight the
importance of adding rich task-based features to the
input sequences in order to learn HMMs that con-
verge tightly on the best-fit number of hidden
states. The results also indicate that caution should
be used when utilizing traditional goodness-of-fit
metrics, which are appropriate for descriptive ap-
plications, if the goal is to learn a highly predictive
model.

This line of research is part of a larger research
program of learning unsupervised models of human
task-oriented dialogue that can be used to define
the behavior of dialogue systems. Developing a
framework for learning a dialogue policy from hu-
man corpora, as discussed here, is a critical step
toward that goal. Future work should focus on un-
supervised dialogue act classification, and address
the challenges of user plan recognition.
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Appendix. Excerpt from task-oriented textual human-human tutoring corpus.

Speaker Utterance or Event Tag
Student: | /[Task action on subtask 3-c-i-4] BuGGy
Student: | /Task action on subtask 3-c-ii-5] CORRECT
Tutor: | [Does not provide remediation for existing bug] NOREMEDIATION
Student: | /Task action on subtask 3-c-iii-1] BuGGy
Student: | i don't remember off the top of my head how the swap | NEGATIVECONTENTFDBK
function worked. most of the time i just copied and
pasted it from some of my older code
Tutor: | The easiest way to swap x and y is to make a tempo-
rary variable
Student: | Ok ACK
Student: | do i need to pass the entire array and the indecies of the | ASSESSQ
items to swap?
Tutor: | if you want to use a seperate method to swap, then yes, | POSCONTENTFDBK
you'll have to pass those things
Tutor: | [Does not mention a correctly completed subtask] NOMENTIONCOMP
Student: | oh. i guess i could just swap it in the same method. itis | STMT
problably easier that way, and less code. we were
showed in class how to do it separately, but i had never
thought of doing it the other way.
Student: | /Task action on subtask 3-c-iii-2] DISPREFERRED
Tutor: | Both ways work, but it’s definitely less code to just do | STMT
it inside this method.
Student: | Ok AcCK
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Spoken Dialogue System based on Information Extraction
using Similarity of Predicate Argument Structures

Koichiro Yoshino, Shinsuke Mori and Tatsuya Kawahara
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Sakyo-ku, Kyoto, 606-8501, Japan

Abstract

We present a novel scheme of spoken dialogue
systems which uses the up-to-date informa-
tion on the web. The scheme is based on in-
formation extraction which is defined by the
predicate-argument (P-A) structure and real-
ized by semantic parsing. Based on the in-
formation structure, the dialogue system can
perform question answering and also proac-
tive information presentation. Feasibility of
this scheme is demonstrated with experiments
using a domain of baseball news. In order to
automatically select useful domain-dependent
P-A templates, statistical measures are intro-
duced, resulting to a completely unsupervised
learning of the information structure given a
corpus. Similarity measures of P-A structures
are also introduced to select relevant infor-
mation. An experimental evaluation shows
that the proposed system can make more rel-
evant responses compared with the conven-
tional "bag-of-words” scheme.

Introduction

interesting. To cope with user’s vague information
demands is an important mission for interactive spo-
ken dialogue systems. Moreover, supporting user’s
information collection in a small-talk style is one of
the new directions of spoken dialogue systems.

Existing spoken dialogue systems can be clas-
sified into two types (T.Kawahara, 2009): those
using relational databases (RDB) such as the Air-
line Travel Information System (ATIS) (D.A.Dahl,
1994), and those using information retrieval tech-
niques based on statistical document matching
(T.Misu and T.Kawahara, 2010). The first scheme
can achieve a well-defined task by using a struc-
tural database, but this scheme cannot be applied to
the web information in which the structure and task
are not well defined. The second scheme has been
studied to handle large-scale texts such as web, but
most of the conventional systems adopt a “bag-of-
words” model, and naive statistical matching often
generates irrelevant responses which have nothing
to do with the user’s requests. Our proposed scheme
solves this problem by using information extraction
based on semantic parsing from web texts, with-

Recently, a huge amount of information is accumueut constructing an RDB. We adopt the predicate-
lated and distributed on the web day by day. As argument (P-A) structure generated by a parser as
result, many people get information via web rathea baseline, but every P-A structure is not useful for
than the conventional mass media. On the othémformation extraction and retrieval(Y.Kiyota et al.,
hand, the amount of information on the web is s@002; M.O.Dzikovska et al., 2003; S.Harabagiu et
huge that we often encounter the difficulty in findingal., 2005). In fact, the useful information structure
information we want. Keyword search is the mosts dependent on domains. Conventionally, the tem-
widely-used means for the web information accesglates for information extraction were hand-crafted
However, this style is not necessarily the best fofR.Grishman, 2003), but this heuristic process is so
information demands of all users who do not haveostly that it cannot be applied to a variety of do-
definite goals or just want to know what would bemains on the web. In this paper, therefore, we pro-
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Figure 2: Example of information extraction and dia-
logue.

Figure 1:System overview.
pletely matches the user’s query, the system makes

response using the corresponding web text. When

pose a filtering method of predicate-argument (P'A@]e system cannot find exact information, it searches

patterns generated by the parser, in order to autom%—r some information which matches partially. For

|_caIIy define the domain-dependent useful mformaéxample, in Fig. 2, when a user asked “Did Ichiro
tion structure.

hit a home-run?”, the system cannot find exact in-

We also address flexible matching based on the l{:;drmation “[ichiro (agent), home-run (object), hit]”,

A structure, because the exact matching often fai ut finds “[Lopez (agent), three-run homer (object),

and does not gener{:lte any putputs. In_ orde_zr t_o rﬁ?t]" which is partially matched and most relevant.
trieve most relevant information, we define similar-

. : . This information is used to generate a relevant re-
ity measures of predicates and arguments, which aéﬁonse that the user would expect
also learned from a domain corpus. . -
) . . In the conventional RDB-based dialogue scheme,
In this paper, the proposed scheme is applied to

domain of baseball news, and implemented asasptﬁ-e system hardly m_akes relevant responses it it
ken dialogue system wh’ich can reply to the userﬁ)nds no matched gntrles, thus usually_ replies “There

) o . is no matched entries”. In the conventional question-
guestion as well as make proactive information preénswering scheme, the same situation often hap-
sentation using a news website. An overview of this ’

. ) . . ens. Occasionally, a set of close-matched answers
system is described in Section 2, and the tempIaP Y

e L .
M . . . may be found by statistical matching, but the found
filtering method is presented in Section 3. Then, sys- Y y g ,

. . _answers may not be relevant to the user’s query. In

_tem response gener_atlon ba_sed on flexible m.atCh'?lqe proposed scheme, we guarantee that the answer
IS explalneq in Section 4 Flna!ly, an evaluation OIS at least partially matched to the user’s query in
the system is presented in Section 5. . .

terms of the information structure.

2 System Overview . )
y 2.2 Information Extraction based on P-A

2.1 Architecture Structure

The architecture of the proposed spoken dialogu#/e use the predicate argument (P-A) structure to de-
system is depicted in Fig. 1. First, information ex{ine the information structure from web texts. The
traction is conducted by parsing web texts in adP-A structure represents a sentence with a predicate,
vance. A user’s query is also parsed to extract th@erguments and their semantic cases, as shown in the
same information structure, and the system matchesevious examples. There are some required se-
the extracted information against the web informamantic cases depending on the type of the predicate
tion. According to the matching result, the systengfverb), and also arbitrary semantic cases like time,
either answers the user’s question or makes proggtace, and other modifications. This structure is a
tive presentation of information which should beclassic concept in natural language processing, but
most relevant to the user’s request. recently, automatic semantic parsing has reached a
If the system finds some information which com-practical level thanks to corpus-based learning tech-
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niques (D.Kawahara and S.Kurohashi, 2006) andhereC(w;,t) is the occurrence count of worg;
has been used for several large-scale tasks (D.Sheanthe domaint in the corpus, and is a smooth-
and M.Lapata, 2007; R.Wang and Y.Zhang, 2009ng factor given by the Dirichlet process prior. The
D.Wu and P.Fung, 2009). We use KN&s a syntac- IDF term is the inverse log probability of documents
tic and semantic parser. containing wordw;:

C(d) ~ C(d)+
Cld:wied) =~ Cld:w;ed) +p

whereC(d) is the number of documents (=newspa-
The P-A structure automatically generated by thger articles) in the corpus ar@(d Tw; € d) is
semantic parser provides useful information strughe number of documents which contain. 8 is
ture as a baseline. However, every P-A pair is ngf smoothing factor given by the Dirichlet process
meaningful in information navigation; actually, only prior. We estimater and;3 by a likelihood function
a fraction of the patterns are useful, and they argsing the training corpus. We compute the TF-IDF
domain-dependent. For example, in the baseball dgajue for a predicate and each argument, and then
main, key patterns include “[A (agent) beat B (obtompute their geometric mean to define the evalua-

ject)]” and “[A (agent) hit B (object)]”, and in the tion measure for a P-A template.

business domain, “[A (agent) sell B (object)]” and

“[A (agent) acquire B (object)]”. We propose a3.2 Naive Bayes (NB) Model

method to automatically extract these useful patternghe second measure is based on the Naive Bayes

given a domain corpus. We assume each article ipodel.

the newspaper corpus/websites is annotated with a C(w;, t) + Dyy

domain such as sports-baseball and economy-stock. P(tlw;) = “Clw) 4)
The method is to filter P-A structure patterns ] ] ‘ 7_

(=templates) based on some statistical measuft£re:7 is @ smoothing factor and, is a normal-

which accounts for the domain. The filtering Ioro_|zat|on coefficient of the corpus size of the domain

cess is also expected to eliminate inappropriate péft-

terns caused by parsing errors. Moreover, in spoken D — (5)

dialogue systems, errors in automatic speech recog- ! > Clwg)

nition (ASR) may result in erroneous matching. Byl’he evaluation measure for a P-A pattern is ob-

ellmlne_ltlng |rreleyant patterns, we expect robust Ntained by taking a geometric mean of the component
formation extraction for spoken input.

e . - words.
Specifically, the following two significance mea-
sures are investigated in this work. 3.3 Clustering of Named Entities

3 Extraction of Domain-Dependent P-A
Templates

3)

. Zj C(wjv t)

The statistical learning often falls in the data sparse-
ness problem, especially for proper nouns, for ex-
First, we use the TF-IDF measure to evaluate impoample, name of persons. Moreover, there may be
tance of wordw; in a particular domain or topit mismatch in the set of named entities between the
training corpus and the test phase. For robust estima-

tfidf (wi,t) = Plwlt)log = ?(d) 1) tion, we introduce_cla_sses for named entities (na_me
(d:w; €d) of persons, organizations, places). Note that unify-

) N ing all named entities in the corpus before comput-

The TF term is the occurrence probability of worgg the evaluation measure would weaken the sig-
w;, defined as: nificance of these entities. Thus, we compute statis-
tics for every proper noun before clustering, and sum

3.1 TF-IDF Measure

C(w;, t
P(w;|t) =~ ((le, ) +a (2) up values for the class afterwards. For example, the
Zj( (wj, t) + O‘) score for “[[person](agent), hit]” is computed as a
http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html sum over all persons of this pattern.
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Table 1: Evaluation of template filtering. 4 Presentation of Relevant Information

model feature || Precision| Recall F When the system fails to find exact information that
Baseline - 0.444 1 0.615  matches the user’s query, or the user does not speak
TF-IDF | Predicate|| 0.587 | 0.840 | 0.691  for a while, the system tries to make proactive in-
Argument| 0.658 | 0.730 | 0.692  formation presentation. It is based on the partially
NE Pfe;i?ate 8-23‘1’ 8'2?2 ggii matched entries of the current or latest query. The
Argument|| 0661 | 0.794 | 0722 fa!l-ba_ck is similar tq collaborative response gener-
P+ A 0878 | 0.726 | 0795 ationin the conventhngl _spoken dialogue systgms
(D.Sadek, 1999), but it is intended for proactive in-

formation presentation using general documents.

3.4 Evaluation of Template Filtering 4.1 Response generation based on partial

) ) matching
We performed an experimental evaluation to com-

pare the effectiveness of the two significance me&=0" Preference among multiple components in the
sures (TF-IDF and Naive Bayes (NB)) in theP_-A.pattern of the user query, we mgke use of th_e
Japanese professional baseball domain. The mogjgnificance measure defined in Section 3. Specifi-
els are trained with the Mainichi Newspaper corSally; we relax (=ignore) the component of the least
pus 2008. The clustering of named entities is aF§Tignificance score, then S(_earch for relevant informa-
plied to both methods. The P-A templates havlion- If any eqtry is not still matched, we relax the
ing larger significance scores are selected. We dB&Xt less S|gn|f|c§mt component. If multiple entries
termined a threshold for selecting templates using® found with this matching, we need to select the
a development set which was held out from thahost relevant entry. Thus, we introduce two scores
test set by 10%. The test set was made frorff relevance. The relevance measure is defined in
Mainichi newspaper’'s website which talks abouflifferent manners for predicates (=verbs) and argu-
games played between April 21-23, 2010. Manua{PemS (=nouns). The measure for ar_gu_me_nts is de-
annotation was made on typical predicates and sfined based on the co-occurrence_statlgtlcs in the cor-
mantic cases which can be used for question answéyS: The measure for predicate is defined based on
ing and proactive presentation. The filtering wa§listributional analysis of arguments.

performed on the test set by matching the patterns, Rpelevance measure of arguments

defined by each measure, and evaluated against the

annotated answers in terms of recall, precision ant'€ rélévance of argument words (=nouns)and
F-measure (F). Table 1 lists the result for the twdts 1S defined as
measures using predicate-only, argument-only, and

both of them. $iMgrg (Wi, wj) =

In this result, using both predicates and arguments
in the Naive Bayes (NB) model performs the bestHere, w; is in the original query, and relaxed (ig-
Compared with the baseline without any filteringnored) in the partial matching, and; of the best
the proposed methods significantly improved prerelevance score is retrieved for response generation.
cision with some degradation of recall. This propin the example of Fig. 2y; is “Ichiro” and w; is
erty is important in realizing informative response‘Lopez”.
generation robust against ASR and parsing errors. )

Among the selected templates, we can find typic4-3 Reélevance measure of predicates

and important patterns like “have a win”, “come intoDistributional analysis (Z.Harris, 1951; Lin, 1998)
pitch”, and “make it consecutive wins”. Most of re-has been used to define similarity of words, assum-
call errors are infrequent patterns, and majority oihg that similar words have similar contexts. In this
precision errors are those patterns that are frequenfdaper, we use the distribution of arguments which
observed but not useful for presentation. have a modification relation to predicates (Fig. 3)

{C(wi, wy)}?

Clw) x Cluwy)” O
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1. Exact Matching of P-A templates.

2. Partial Matching using significance measure for query
relaxation and relevance score for candidate selection.

3. Back-off to “Bag-of-Words” (BOW) model with
significance measure for disambiguation.

Figure 4:Strategy for flexible matching in steps.

“[Ichiro(agent), hit]”, we select the former portion
of the sentence which exactly answers the user’s
guery, and generate a response “Ichiro hit a three-
(T.Shibata et al., 2008; P.Pantel et al., 2009). Theun homer in the seventh inning.”

relevance of predicate words,,., andwy,., is de-

fined as a cosine distance of occurrence vectors bf System Evaluation

the modifying arguments(J.Mitchell and M.Lapata _ _

2008; S.Thater et al., 2010). Here, argument enVe have implemented a spoken dialogue system
tries are distinguished by their semantic cases su@Sed on the significance measure (Naive Bayes

as Agent and Object, as shown in Fig 3. As the OHsmodel) and the relevance measures, which were

tribution of arguments is sparse and its reliable est€aMed using the Mainichi Newspaper corpus of ten

mation is difficult, we introduce smoothing by usingY&a's (2000-2009). For evaluation of the system, we
another distributional analysis of arguments, whicR'€Pared 201 questions from news articles (Septem-
is similar to the one in the previous section. ber 19-26, 2010) seen at the website of Mainichi
Newspaper. Correct answers to the test queries
4.4 Bag-of-Words (BOW) Model were annotated manually. Evaluation was done with
the text input as well as speech input. A word N-

matching, we resort to the naive “bag-of-words”gram language model for ASR dedicated to the do-

(BOW) model, in which a sentence is represente ain was trained using the relevant newspaper arti-

with a vector of word occurrence and matching icljo/corpus. The word error rate was approximately
0.

done based on this vector. This method is widely H for th i
used for document retrieval. We count only content e system responses for the test queries are cat-

words. In this method, we make use of the signifi—eg‘mr'zeolI m}gone OI the fOIIOWh'_nE foulr:dcorrict an-
cance score for preference of the words when mult?/¢" °MY ( borrelct ) chase V\(’j ch Includes the ?‘Xr_
ple candidates are matched for a short query. rect answer but also other redundant answers ("Am-

The overall matching strategy of the propose%guous,,)’ |$;:]orrectb§1nswer( Incorrect’), aﬂd ( NOI
scheme is summarized in Fig. 4. nswer”). The ambiguous cases occur when mul-

tiple sentences or predicates are matched. We also

4.5 Selection of Relevant Information from calculate recall, precision and F-measure by count-
Sentence ing individual answers separately even when multi-
gle answers are output. The results based on these

Answer or information presentation is generate . : :
: evaluation measures are summarized in Table 2 and
based on the matched sentence in a newspaper ar- . .
able 3 for text input and speech input.

ticle. As a sentence is often complex or made o :
. . . pie In the tables, the proposed method is broken down
multiple predicates, simple presentation of the sen-

tence would be redundant or even irrelevant. Thert'ar-'tO three phases as shown in Fig. 4: exact match-

fore, we select the portion of the matched P-A struch9 of P-A structure (Section 3), incorporation of

) We partial matching (Section 4.1), and back-off to
ture, to generate a concise response relevant to t

€ .

, « .- the “bag-of-words” (BOW) model (Section 4.4). For
user’s query. For example, when a sentence Ich|roOm arison. we also tested the BOW model and
hit a three-run homer in the seventh inning ang°mP '

Mariners won the game” is matched by the pattern 2http://iwww.mainichi.jp

Figure 3:Distribution analysis of P-A structure.

If no entry is matched with all possible partial
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Table 2: Evaluation of system response.

Input Model Correct| Ambiguous| Incorrect| No Answer
Text Exact 29.9% 0.5% 1.5% 68.1%
Exact+Partial 66.2% 5.0% 20.3% 8.5%
Exact+Partial+BOW 69.7% 5.0% 25.3% 0.0%

(cf) Bag-of-words (BOW) 46.8% 13.9% 39.3% 0.0%
(cf) Sequence-of-words (SOW) 54.2% 11.4% 34.3% 0.0%

Speech Exact 19.4% 1.0% 0.5% 79.1%
(ASR) Exact+Partial 57.2% 6.0% 18.9% 17.9%
Exact+Partial+BOW 64.1% 6.5% 28.9% 0.0%

(cf) Bag-of-words (BOW) 39.8% 9.4% 48.8% 0.0%
(cf) Sequence-of-words (SOW) 46.3% 10.4% 43.3% 0.0%

Table 3: Accuracy of system response.

Input Model Precision| Recall F
Text Exact 93.8% | 30.3% | 45.8%
Exact+Partial 725% | 71.1% | 71.8%
Exact+Partial+BOW 70.1% | 74.6% | 72.3%

(cf) Bag-of-words (BOW) 49.8% | 60.7% | 54.7%
(cf) Sequence-of-words (SOW) 55.2% | 65.6% | 60.0%

Speech Exact 89.1% | 20.4% | 33.2%
(ASR) Exact+Partial 65.8% | 63.2% | 64.5%
Exact+Partial+BOW 61.7% | 70.6% | 65.9%

(cf) Bag-of-words (BOW) 42.9% | 49.3% | 45.9%
(cf) Sequence-of-words (SOW) 48.3% | 56.7% | 52.2%

“sequence-of-words” (SOW) model, which consideredundant portions. This property is particularly im-
the sequence order in the BOW model. The exagiortant in the speech interface.

matching assumes strong constraint of P-A patterns, v show a dialogue example in Fig. 5 which is

so the generated answers are almost Cofre‘“’ but fﬁoJapanese and translated to English for reference
answers are generated very often. By mcorpora{—_

ing the partial matching and BOW model, the sys-_ltahc)'

tem can output more relevant answers. Compared

with the BOW model, the proposed method achieve . .
: ; iy Fg Domain Portability

much higher ratio or precision of correct answers. F-

measure is also higher by 17% absolute.

A similar tendency is observed for speech inputin the proposed scheme, we construct a domain-
although the overall accuracy is degraded becaudependent system in a pre-determined domain. It
of the ASR errors. However, degradation is relais straightforward to port the system to other do-
tively small considering the word accuracy of 76%mains just by preparing a domain corpus. This sys-
The partial matching works effectively even if thetem uses a newspaper corpus for training domain-
exact matching fails due to ASR errors. Moreoverdependent statistical models. Newspaper articles are
the back-off to the BOW model is effective in ASRclassified according to domain categories such as
input. sports/baseball and business/finance. Therefore, itis

The proposed method generates concise rstraightforward to select relevant articles for a par-
sponses by selecting the relevant portion as déeular domain. In the proposed scheme, we do not
scribed in Section 4.5, while the BOW method ofheed any further annotations and all statistical mod-
ten generates long responses which includes maais are trained in an unsupervised manner.
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User:  Hanshin ha katta? structure analysis. IRroc. HLT-NAACL pages 176—
(Did Hanshin win the game?) 183.

System: Hanshin ha nanakai ni Kanemoto, Hiyama Dsadek 1999 DeSIgn COI’]SIdeI’atIOI’l on dla|0gue SyS'
no daida kousei de katta yo. tems: From theory to technology - the case of Artimis
(Hanshin won the game by Kanemoto and -. In Proc. ESCA workshop on Interactive Dialogue in
Hyama’s pinch-hiting in the seventh inning.) Multi-Modal Systemsgpages 173-187.

User:  Noumi ha touban shita? D.Shen and M.Lapata. 2007. Using semantic roles to im-
(Did Noumi come in to pitch?) prove question answering. FProc. EMNLP-CoNLL

System Noumi ga nanakai mushitten de kachitousyu pages 12-21. . o
ni natta yo. D.Wu and P.Fung. 2009. Can semantic role labeling im-
(Noumi was the winning pitcher, by shutting prove SMT? InProc. EAMT pages 218-225.

f innings. .
out for seven innings.) J.Mitchell and M.Lapata. 2008. Vector-based models of

User:  Sanshin wo tori mashita ka? semantic composition. IRroc. ACL-HLT, pages 236—
(Did he get strikeout? (“he” is omitted.)) 244,

System: Noumi ha nishi ichi-nirui deha Abe wo Dekan.g _Lin. 1998. Automatic retrieval and clustering
naikaku suraida- de sanshin ni totta yo. of similar words. InProc. ACL and COLINGpages
(Noumi struck out Abe on a slider with two 768-774.
out two-on jam.) M.O.Dzikovska, M.D.Swift, and J.F.Allen. 2003. Inte-

grating linguistic and domain knowledge for spoken
dialogue systems in multiple domains. HRroc. of
IJCAI-03 Workshop on Knowledge and Reasoning in
Practical Dialogue Systems

P.Pantel, E.Crestan, A.Borkovsky, A.-M.Popescu, and
V.Vayas. 2009. Web-scale distributional similarity
and entity set expansion. Rroc. EMNLRP pages 938-

We have presented a new scheme of spoken dialogued47.

systems which can talk about web texts in an inR.Grishman. 2003. Discovery methods for informa-

teractive manner. The information extraction tech- tion extraction. InProc. ISCA & IEEE Workshop

nique is adopted to conduct question answering as 9N Spontaneous Speech Processing and Recognition

well as proactive information presentation. Filtering P29es 243-247.

based on a statistical significant measure is intrd3-Pieraccini, E.Tzoukermann, Z.Gorelov, J-L.Gauvain,

duced to automatically select useful templates in a E-Levin, C.-H Lee, and J.G.Wilpon. 1992. A speech

. . . nderstanding system based on statistical representa-
given domain. Relevance measures are also deflneoﬁOn of semantics. IfProc. IEEE-ICASSPvolume 1
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Common Ground and Perspective-taking in Real-time
Language Processing

Michael K. Tanenhaus
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University of Rochester
Rochester, NY 14627

mtan@bcs.rochester.edu

Successful communication would seem to require that speakers and listeners distinguish between
their own knowledge, commitments and intentions, and those of their interlocutors. A particu-
larly important distinction is between shared knowledge (common ground) and private knowl-
edge (privileged ground). Keeping track of what is shared and what is privileged might seem too
computationally expensive and too memory intensive to inform real-time language processing--a
position supported by striking experimental evidence that speakers and listeners act egocentri-
cally, showing strong and seemingly inappropriate intrusions from their own privileged ground.
I’ll review recent results from my laboratory using unscripted conversation demonstrating that
(1) speaker’s utterances provide evidence about whether they believe information is shared or
privileged; and (2) addressees are extremely sensitive to this evidence. I’ll suggest an integrative
framework that explains discrepancies in the literature and might be informative for researchers
in the computational dialogue community.
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Abstract

Instruction giving can be used in several
applications, ranging from trainers in sim-
ulated worlds to non player characters for
virtual games. In this paper we present a
novel algorithm for rapidly prototyping virtual
instruction-giving agents from human-human
corpora without manual annotation. Automat-
ically prototyping full-fledged dialogue sys-
tems from corpora is far from being a reality
nowadays. Our approach is restricted in that
only the virtual instructor can perform speech
acts while the user responses are limited to
physical actions in the virtual worlds.

We have defined an algorithm that, given a
task-based corpus situated in a virtual world,
which contains human instructor’s speech acts
and the user’s responses as physical actions,
generates a virtual instructor that robustly
helps a user achieve a given task in the vir-
tual world. We explain how this algorithm
can be used for generating a virtual instructor
for a game-like, task-oriented virtual world.
We evaluate the virtual instructor with human
users using task-oriented as well as user satis-
faction metrics. We compare our results with
both human and rule-based virtual instructors
hand-coded for the same task.

1 Introduction

Virtual human characters constitute a promising
contribution to many fields, including simulation,
training and interactive games (Kenny et al., 2007;
Jan et al., 2009). The ability to communicate using
natural language is important for believable and ef-
fective virtual humans. Such ability has to be good
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enough to engage the trainee or the gamer in the ac-
tivity. Nowadays, most conversational systems oper-
ate on a dialogue-act level and require extensive an-
notation efforts in order to be fit for their task (Rieser
and Lemon, 2010). Semantic annotation and rule
authoring have long been known as bottlenecks for
developing conversational systems for new domains.

In this paper, we present a novel algorithm for
generating virtual instructors from automatically an-
notated human-human corpora. Our algorithm,
when given a task-based corpus situated in a virtual
world, generates an instructor that robustly helps a
user achieve a given task in the virtual world of the
corpus. There are two main approaches toward au-
tomatically producing dialogue utterances. One is
the selection approach, in which the task is to pick
the appropriate output from a corpus of possible out-
puts. The other is the generation approach, in which
the output is dynamically assembled using some
composition procedure, e.g. grammar rules. The se-
lection approach to generation has only been used
in conversational systems that are not task-oriented
such as negotiating agents (Gandhe and Traum,
2007a), question answering characters (Kenny et al.,
2007), and virtual patients (Leuski et al., 2006). To
the best of our knowledge, our algorithm is the first
one proposed for doing corpus based generation and
interaction management for task-oriented systems.

The advantages of corpus based generation are
many. To start with, it affords the use of complex
and human-like sentences without detailed analysis.
Moreover, the system may easily use recorded au-
dio clips rather than speech synthesis and recorded
video for animating virtual humans. Finally, no
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rule writing by a dialogue expert or manual an-
notations is needed. The disadvantage of corpus
based generation is that the resulting dialogue may
not be fully coherent. For non-task oriented sys-
tems, dialogue management through corpus based
methods has shown coherence related problems.
Shawar and Atwell (2003; 2005) present a method
for learning pattern matching rules from corpora in
order to obtain the dialogue manager for a chat-
bot. Gandhe and Traum (2007b) investigate several
dialogue models for negotiating virtual agents that
are trained on an unannotated human-human corpus.
Both approaches report that the dialogues obtained
by these methods are still to be improved because
the lack of dialogue history management results in
incoherences. Since in task-based systems, the di-
alogue history is restricted by the structure of the
task, the absence of dialogue history management is
alleviated by tracking the current state of the task.
In the next section we introduce the corpora used
in this paper. Section 3 presents the two phases of
our algorithm, namely automatic annotation and di-
alogue management through selection. In Section 4
we present a fragment of an interaction with a virtual
instructor generated using the corpus and the algo-
rithm introduced in the previous sections. We evalu-
ate the virtual instructor in interactions with human
subjects using objective as well as subjective met-
rics. We present the results of the evaluation in Sec-
tion 5. We compare our results with both human
and rule-based virtual instructors hand-coded for the
same task. Finally, Section 7 discusses the weak-
nesses of the approach for developing instruction
giving agents, as well as its advantages and draw-
backs with respect to hand-coded systems. In this
last section we also discuss improvements on our al-
gorithms designed as a result of our error analysis.

2 The GIVE corpus

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
a shared task in which Natural Language Gener-
ation systems must generate real-time instructions
that guide a user in a virtual world. In this paper,
we use the GIVE-2 Corpus (Gargett et al., 2010), a
freely available corpus of human instruction giving
in virtual environments. We use the English part of
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the corpus which consists of 63 American English
written discourses in which one subject guided an-
other in a treasure hunting task in 3 different 3D
worlds.

The task setup involved pairs of human partners,
each of whom played one of two different roles. The
“direction follower” (DF) moved about in the vir-
tual world with the goal of completing a treasure
hunting task, but had no knowledge of the map of
the world or the specific behavior of objects within
that world (such as, which buttons to press to open
doors). The other partner acted as the “direction
giver” (DG), who was given complete knowledge of
the world and had to give instructions to the DF to
guide him/her to accomplish the task.

The GIVE-2 corpus is a multi-modal corpus
which consists of all the instructions uttered by the
DG, and all the object manipulations done by the DF
with the corresponding timestamp. Furthermore, the
DF’s position and orientation is logged every 200
milliseconds, making it possible to extract informa-
tion about his/her movements.

3 The unsupervised conversational model

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

3.1 The automatic annotation

The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary
determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction Ry, to an instruction Uy begins right af-
ter the instruction Uy, is uttered and ends right before
the next instruction Uy is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-



tion (2, 3,4), instruction 5 corresponds to (6), and
instruction 7 to (8).

DG(1): hit the red you see in the far room
DF(2): [enters the far room]

DF(3): [pushes the red button]

DF(4): [turns right]

DG(5): hit far side green

DF(6): [moves next to the wrong green]
DG(7): no

DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway. We discuss
in Section 5 the impact that inappropriate associa-
tions have on the performance of a virtual instructor.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2
into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning problem: i.e., a
specification of how the virtual world works (i.e.,
the actions), a way to represent the states of the vir-
tual world (i.e., the state representation) and a way
to represent the objective of the task (i.e., the goal).
Therefore, we decided to use them in order to dis-
cretize the reaction.

For the virtual instructor we present in Section 4
we used the planner LazyFF and the planning prob-
lem provided with the GIVE Framework. The
planner LazyFF is a reimplementation (in Java) of
the classical artificial intelligence planner FF (Hoff-
mann and Nebel, 2001). The GIVE framework (Gar-
gett et al., 2010) provides a standard PDDL (Hsu et
al., 2006) planning problem which formalizes how
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the GIVE virtual worlds work. Both the LazzyFF
planner and the GIVE planning problem are freely
available on the web!.

Now we are ready to define reaction formally. Let
S}, be the state of the virtual world when uttering in-
struction Uy, Sk+1 be the state of the world when ut-
tering the next utterance Uy1 and Acts be the rep-
resentation of the virtual world actions. The reaction
to Uy, is defined as the sequence of actions returned
by the planner with S}, as the initial state, S as
the goal state and Acts as the actions.

Given this reaction definition, the annotation of
the corpus then consists of automatically associat-
ing each utterance to its (discretized) reaction. The
simple algorithm that implements this annotation is
shown in Figure 1. Moreover, we provide a fragment
of the resulting annotated corpus in Appendix A.

1: Acts «— world possible actions

2: for all utterance Uy, in the corpus do

3 S < world state at Uy,

4:  Sky1 — world state at Uy

5 Ug.Reaction < plan(Sy, Sk+1, Acts)
6: end for

Figure 1: Annotation algorithm

3.2 Selecting what to say next

In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm, displayed in
Figure 2, consists in finding in the corpus the set of
candidate utterances C for the current task plan P
(P is the sequence of actions that needs to be exe-
cuted in the current state of the virtual world in or-
der to complete the task). We define C = {U €
Corpus | P starts with U.Reaction}. In other words,
an utterance U belongs to C' if the first actions of the
current plan P exactly match the reaction associated
to the utterance U. All the utterances that pass this
test are considered paraphrases and hence suitable in
the current context.

Whenever the plan P changes, as a result of the
actions of the DF, we call the selection algorithm in
order to regenerate the set of candidate utterances C.

"http://www.give-challenge.org/



C 1
Plan < current task plan
for all utterance U in the corpus do
if Plan starts with U. Reaction then
C—Cu{U}
end if
end for
return C'

e A A o

Figure 2: Selection algorithm

While the plan P doesn’t change, because the
DF is staying still, the virtual instructor offers al-
ternative paraphrases of the intended instruction.
Each paraphrase is selected by picking an utterance
from C' and verbalizing it, at fixed time intervals
(every 3 seconds). The order in which utterances
are selected depends on the length of the utterance
reaction (in terms of number of actions), starting
from the longest ones. Hence, in general, instruc-
tions such as “go back again to the room with the
lamp” are uttered before instructions such as “go
straight”, because the reaction of the former utter-
ance is longer than the reaction of the later.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-
cretization. If the granularity is too coarse, many
instructions in the corpus will have an empty reac-
tion. For instance, in the absence of the representa-
tion of the user orientation in the planning domain
(as is the case for the virtual instructor we evaluate
in Section 5), instructions like “turn left” and “turn
right” will have empty reactions making them indis-
tinguishable during selection. However, if the gran-
ularity is too fine the user may get into situations
that do not occur in the corpus, causing the selec-
tion algorithm to return an empty set of candidate
utterances. It is the responsibility of the virtual in-
structor developer to find a granularity sufficient to
capture the diversity of the instructions he wants to
distinguish during selection.

4 A virtual instructor for a virtual world

We implemented an English virtual instructor for
one of the worlds used in the corpus collection we
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presented in Section 2. The English fragment of the
corpus that we used has 21 interactions and a total
of 1136 instructions. Games consisted on average
of 54.2 instructions from the human DG, and took
about 543 seconds on average for the human DF to
complete the task.

On Figures 4 to 7 we show an excerpt of an in-
teraction between the system and a user. The fig-
ures show a 2D map from top view and the 3D in-
game view. In Figure 4, the user, represented by a
blue character, has just entered the upper left room.
He has to push the button close to the chair. The
first candidate utterance selected is “red closest to
the chair in front of you”. Notice that the referring
expression uniquely identifies the target object us-
ing the spatial proximity of the target to the chair.
This referring expression is generated without any
reasoning on the target distractors, just by consid-
ering the current state of the task plan and the user
position.
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Figure 4: “red closest to the chair in front of you”

After receiving the instruction the user gets closer
to the button as shown in Figure 5. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the
chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan
(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression
algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would
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yes left

straight now go back

go back out now go back out
closest the door down the passage
go back to the hallway

go back out of the room

exit the way you entered

back to the room with the lamp

Go through the opening on the left

okay now go back to where you came from
now i ned u to go back to the original room

nowin to the shade room

out the way you came in

ok now go out the same door

go back to the door you came in

okay now go back to the original room

ok go back again to the room with the lamp

Go through the opening on the left with the yellow wall paper

Figure 3: All candidate selected utterances when exiting the room in Figure 7
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Figure 5: “the closet one”
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Figure 6: “good”

be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead
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D go back to the room with the lamp

Figure 7: “go back to the room with the lamp”

of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 6),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this is then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next ac-
tion in the plan is to leave the room (Figure 7). The
system selects the utterance “go back to the room
with the lamp” which refers to the previous interac-
tion. Again, the system keeps no representation of
the past actions of the user, but such utterances are
the ones that are found at this stage of the task plan.



We show in Figure 3 all candidate utterances se-
lected when exiting the room in Figure 7. That is,
for our system purposes, all the utterances in the fig-
ure are paraphrases of the one that is actually uttered
in Figure 7. As we explained in Section 3.2, the
utterance with the longest reaction is selected first
(“‘go back to the room with the lamp”), the second
utterance with the longest reaction is selected sec-
ond (“ok go back again to the room with the lamp”),
and so on. As you can observe in Figure 3 the ut-
terances in the candidate set can range from tele-
graphic style like “L” to complex sentences like “Go
through the opening on the left with the yellow wall
paper”. Several kinds of instructions are displayed,
acknowledgements such as “yes”, pure moving in-
structions like “left” or “straight”, instructions that
refer to the local previous history such as “go back
out the room” or “ok now go out the same door” and
instructions that refer back to the global history such
as “okay now go back to the original room”.

Due to the lack of orientation consideration in our
system, some orientation dependent utterances are
inappropriate in this particular context. For instance,
“left” is incorrect given that the player does not have
to turn left but go straight in order to go through
the correct door. However, most of the instructions,
even if quite different among themselves, could have
been successfully used in the context of Figure 7.

S Evaluation and error analysis

In this section we present the results of the evalu-
ation we carried out on the virtual instructor pre-
sented in Section 4 which was generated using the
dialogue model algorithm introduced in Section 3.

We collected data from 13 subjects. The partici-
pants were mostly graduate students; 7 female and
6 male. They were not English native speakers but
rated their English skills as near-native or very good.

The evaluation contains both objective measures
which we discuss in Section 5.1 and subjective mea-
sures which we discuss in Section 5.2.

5.1 Objective metrics

The objective metrics we extracted from the logs of
interaction are summarized in Table 1. The table
compares our results with both human instructors
and the three rule-based virtual instructors that were
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top rated in the GIVE-2 Challenge. Their results cor-
respond to those published in (Koller et al., 2010)
which were collected not in a laboratory but con-
necting the systems to users over the Internet. These
hand-coded systems are called NA, NM and Saar.
We refer to our system as OUR.

Human NA Saar NM OUR
Task success 100% 47% 40% 30% 70%
Canceled 0% 24% n/a  35% 1%
Lost 0% 29% n/a  35% 23%
Time (sec) 543 344 467 435 692
Mouse actions 12 17 17 18 14
Utterances 53 224 244 244 194

Table 1: Results for the objective metrics

In the table we show the percentage of games that
users completed successfully with the different in-
structors. Unsuccessful games can be either can-
celed or lost. We also measured the average time
until task completion, and the average number of ut-
terances users received from each system. To ensure
comparability, we only counted successfully com-
pleted games.

In terms of task success, our system performs bet-
ter than all hand-coded systems. We duly notice that,
for the GIVE Challenge in particular (and proba-
bly for human evaluations in general) the success
rates in the laboratory tend to be higher than the suc-
cess rate online (this is also the case for completion
times) (Koller et al., 2009). Koller et al. justify this
difference by stating that the laboratory subject is
being discouraged from canceling a frustrating task
while the online user is not. However, it is also pos-
sible that people canceled less because they found
the interaction more natural and engaging as sug-
gested by the results of the subjective metrics (see
next section).

In any case, our results are preliminary given the
amount of subjects that we tested, but they are in-
deed encouraging. In particular, our system helped
users to identify better the objects that they needed
to manipulate in the virtual world, as shown by the
low number of mouse actions required to complete
the task (a high number indicates that the user must
have manipulated wrong objects). This correlates
with the subjective evaluation of referring expres-
sion quality (see next section).



We performed a detailed analysis of the instruc-
tions uttered by our system that were unsuccessful,
that is, all the instructions that did not cause the in-
tended reaction as annotated in the corpus. From the
2081 instructions uttered in total (adding all the ut-
terances of the 13 interactions), 1304 (63%) of them
were successful and 777 (37%) were unsuccessful.

Given the limitations of the annotation discussed
in Section 3.1 (wrong annotation of correction utter-
ances and no representation of user orientation) we
classified the unsuccessful utterances using lexical
cues into 1) correction like “no” or “wrong”, 2) ori-
entation instruction such as “left” or “straight”, and
3) other. We found that 25% of the unsuccessful ut-
terances are of type 1, 40% are type 2, 34% are type
3 (1% corresponds to the default utterance “go” that
our system utters when the set of candidate utter-
ances is empty). In Section 7 we propose an im-
proved virtual instructor designed as a result of this
error analysis.

5.2 Subjective metrics

The subjective measures were obtained from re-
sponses to the GIVE-2 questionnaire that was pre-
sented to users after each game. It asked users to rate
different statements about the system using a contin-
uous slider. The slider position was translated to a
number between -100 and 100. As done in GIVE-
2, for negative statements, we report the reversed
scores, so that in Tables 2 and 3 greater numbers
indicates that the system is better (for example, Q14
shows that OUR system is less robotic than the rest).
In this section we compare our results with the sys-
tems NA, Saar and NM as we did in Section 5.1, we
cannot compare against human instructors because
these subjective metrics were not collected in (Gar-
gett et al., 2010).

The GIVE-2 Challenge questionnaire includes
twenty-two subjective metrics. Metrics Q1 to Q13
and Q22 assess the effectiveness and reliability of
instructions. For almost all of these metrics we got
similar or slightly lower results than those obtained
by the three hand-coded systems, except for three
metrics which we show in Table 2. We suspect that
the low results obtained for Q5 and Q22 relate to
the unsuccessful utterances identified and discussed
in Section 5.1 (for instance, corrections were some-
times contradictory causing confusion and resulting
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in subjects ignoring them as they advanced in the in-
teraction). The high unexpected result in Q6, that
is indirectly assessing the quality of referring ex-
pressions, demonstrates the efficiency of the refer-
ring process despite the fact that nothing in the algo-
rithms is dedicated to reference. This good result is
probably correlated with the low number of mouse
actions mentioned in Section 5.1.

NA Saar NM OUR
Q5: I was confused about which direction to go in
29 5 9 -12
Q6: I had no difficulty with identifying the objects the
system described for me
18 20 13 40
Q22: I felt I could trust the system’s instructions
37 21 23 0

Table 2: Results for the significantly different subjective
measures assessing the effectiveness of the instructions
(the greater the number, the better the system)

Metrics Q14 to Q20 are intended to assess the nat-
uralness of the instructions, as well as the immer-
sion and engagement of the interaction. As Table 3
shows, in spite of the unsuccessful utterances, our
system is rated as more natural and more engaging
(in general) than the best systems that competed in
the GIVE-2 Challenge.

NA Saar NM OUR

Q14: The system’s instructions sounded robotic
-4 5 -1 28

Q15: The system’s instructions were repetitive
31 -26  -28 -8

Q16: I really wanted to find that trophy
-1 -7 -8 7

Q17: T 'lost track of time while solving the task
-16 -11  -18 16

Q18: I enjoyed solving the task
8 5 -4 4

Q19: Interacting with the system was really annoying
8 -2 -2 4

Q20: I would recommend this game to a friend
30 25 24 -28

Table 3: Results for the subjective measures assessing
the naturalness and engagement of the instructions (the
greater the number, the better the system)



6 Portability to other virtual environments

The hand-coded systems, which we compared to, do
not need a corpus in a particular GIVE virtual world
in order to generate instructions for any GIVE vir-
tual world, while our system cannot do without such
corpus. These hand-coded systems are designed to
work on different GIVE virtual worlds without the
need of training data, hence their algorithms are
more complex (e.g. they include domain indepen-
dent algorithms for generation of referring expres-
sions) and take a longer time to develop.

Our algorithm is independent of any particular
virtual world. In fact, it can be ported to any other
instruction giving task (where the DF has to per-
form a physical task) with the same effort than re-
quired to port it to a new GIVE world. This is not
true for the hand-coded GIVE systems. The inputs
of our algorithm are an off-the-shelf planner, a for-
mal planning problem representation of the task and
a human-human corpus collected on the very same
task the system aims to instruct. It is important to
notice that any virtual instructor, in order to give in-
structions that are both causally appropriate at the
point of the task and relevant for the goal cannot do
without such planning problem representation. Fur-
thermore, it is quite a normal practice nowadays to
collect a human-human corpus on the target task do-
main. It is reasonable, then, to assume that all the
inputs of our algorithm are already available when
developing the virtual instructor, which was indeed
the case for the GIVE framework.

Another advantage of our approach is that vir-
tual instructor can be generated by developers with-
out any knowledge of generation of natural language
techniques. Furthermore, the actual implementation
of our algorithms is extremely simple as shown in
Figures 1 and 2. This makes our approach promising
for application areas such as games and simulation
training.

7 Future work and conclusions

In this paper we presented a novel algorithm for
automatically prototyping virtual instructors from
human-human corpora without manual annotation.
Using our algorithms and the GIVE corpus we have
generated a virtual instructor for a game-like vir-
tual environment. A video of our virtual instruc-
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tor is available in nttp://cs.famaf.unc.edu.ar/
~luciana/give-OUR. We obtained encouraging re-
sults in the evaluation with human users that we did
on the virtual instructor. In our evaluation, our sys-
tem outperforms rule-based virtual instructors hand-
coded for the same task both in terms of objective
and subjective metrics. We plan to participate in the
GIVE Challenge 20112 in order to get more evalua-
tion data from online users and to evaluate our algo-
rithms on multiple worlds.

The algorithms we presented solely rely on the
plan to define what constitutes the context of utter-
ing. It may be interesting though to make use of
other kinds of features. For instance, in order to inte-
grate spatial orientation and differentiate “turn left”
and “turn right”, the orientation can be either added
to the planning domain or treated as a context fea-
ture. While it may be possible to add orientation
in the planning domain of GIVE, it is not straight-
forward to include the diversity of possible features
in the same formalization, like modeling the global
discourse history or corrections. Thus we plan to in-
vestigate the possibility of considering the context of
an utterance as a set of features, including plan, ori-
entation, discourse history and so forth, in order to
extend the algorithms presented in terms of context
building and feature matching operations.

In the near future we plan to build a new version
of the system that improves based on the error anal-
ysis that we did. For instance, we plan to take ori-
entation into account during selection. As a result
of these extensions however we may need to enlarge
the corpus we used so as not to increase the number
of situations in which the system does not find any-
thing to say. Finally, if we could identify corrections
automatically, as suggested in (Raux and Nakano,
2010), we could get an increase in performance, be-
cause we would be able to treat them as corrections
and not as instructions as we do now.

In sum, this paper presents the first existing al-
gorithm for fully-automatically prototyping task-
oriented virtual agents from corpora. The generated
agents are able to effectively and naturally help a
user complete a task in a virtual world by giving
her/him instructions.

2http://www.givefchallenge.org/research
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A Automatically annotated fragment of the GIVE corpus

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

Utterance:
Reaction:

make a left and exit the room

(move(b2-room-1-9,room-1-9), move(room-1-9,room-1-8), move(room-1-8,room-1-7),
move(room-1-7,room-1-6), move(room-1-6,room-1-3), move(room-1-3,room-1-4),
move(room-1-4,room-1-5), move(room-1-5,d3-room-1-5))

go forward and turn 90 degrees
(move(d3-room-1-5,d3-room-2), move(d3-room-2,room-2))

go into the room on the right
(move(room-2,d6-room-2), move(d6-room-2,a2-d6-room-3), move(a2-d6-room-3,room-3))

push the green button to the left of the red button
(move(room-3,b6-room-3), manipulate-stateless(b6), move(b6-room-3,room-3))

go into the room on your right
(move(room-3,d11-room-3), move(d11-room-3,d11-room-7), move(d1l-room-7,room-7))

turn 90 degrees right and push the red button
(move(room-7,b11-room-7), manipulate(b11), move(b11-room-7,room-7))

on your right, push the yellow button
(move(room-7,b10-room-7), manipulate-stateless(b10), move(b10-room-7,room-7))

turn 180 degrees and push the red button next to the plant
(move(room-7,b12-room-7), manipulate-stateless(b12), move(b12-room-7,room-7))

turn 180 degrees and push the blue button in the middle of the yellow and blue button
(move(room-7,b8-b9-room-7), manipulate-stateless(b9), move(b8-b9-room-7,room-7))

turn 90 degrees left

v

go into the room on the right
(move(room-7,d10-room-7), move(d10-room-7,d10-room-6), move(d10-room-6,room-6))

turn right and proceed down the room

o

push the red button next to the blue button on your right
(move(room-6,b13-b14-room-6), manipulate(b14), move(b13-b14-room-6,room-6))

turn left 120 degrees left

v

and walk through the hall
(move(room-6,d9-room-6), move(d9-room-6,d9-room-5), move(d9-room-5,room-5))
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Abstract

Natural language generators are faced with a
multitude of different decisions during their
generation process. We address the joint opti-
misation of navigation strategies and referring
expressionsin a situated setting with respectto
task success and human-likeness. To this end,
we present a novel, comprehensive framework
that combines supervised learning, Hierarchi-
cal Reinforcement Learning and a hierarchical
Information State. A human evaluation shows
that our learnt instructions are rated similar
to human instructions, and significantly better

use techniques from Al planning for the combined
generation of navigation instructions and referring
expressions (RE). More generally, the NLG prob-
lem of non-deterministic decision making has been
addressed from many different angles, including
PENMANS-style choosers (Mann and Matthiessen,
1983), corpus-based statistical knowledge (Langk-
ilde and Knight, 1998), tree-based stochastic models
(Bangalore and Rambow, 2000), maximum entropy-
based ranking (Ratnaparkhi, 2000), combinatorial
pattern discovery (Duboue and McKeown, 2001),
instance-based ranking (Varges, 2003), chart gen-

eration (White, 2004), planning (Koller and Stone,
2007), or probabilistic generation spaces (Belz,
2008) to name just a few.

than the supervised learning baseline.

1 Introduction
More recently, there have been several approaches

Natural Language Generation (NLG) systems ar®wards using Reinforcement Learning (RL) (Rieser
typically faced with a multitude of decisions dur-et al., 2010; Janarthanam and Lemon, 2010) or Hi-
ing their generation process due to nondetermina@rarchical Reinforcement Learning (HRL) (Deth-
between a semantic input to a generator and its reefs and Cuayahuitl, 2010) for NLG decision mak-
alised output. This is especially true in situated seing. All of these approaches have demonstrated that
tings, where sudden changes of context can occHiRL/RL offers a powerful mechanism for learn-
at anytime. Sources of uncertainty include (a) theng generation policies in the absence of complete
situational context, such as visible objects, or tasknowledge about the environment or the user. It
complexity, (b) the user, including their behaviourovercomes the need for large amounts of hand-
and reactions, and (c) the dialogue history, includerafted knowledge or data in rule-based or super-
ing shared knowledge or patterns of linguistic convised learning accounts. On the other hand, RL
sistency (Halliday and Hasan, 1976) and alignmertan have difficulties to find an optimal policy in a
(Pickering and Garrod, 2004). large search space, and is therefore often limited to
Previous work on context-sensitive generation ismall-scale applications. Pruning the search space
situated domains includes Stoia et al. (2006) andf a learning agent by including prior knowledge is
Garoufi and Koller (2010). Stoia et al. present @herefore attractive, since it finds solutions faster, re-
supervised learning approach for situated referrinduces computational demands, incorporates expert
expression generation (REG). Garoufi and Kolleknowledge, and scales to complex problems. Sug-
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gestions to use such prior knowledge include Litan instruction giver (IG) navigates an instruction fol-
man et al. (2000) and Singh et al. (2002), whdower (IF) through the world, pressing a sequence of
hand-craft rules of prior knowledge obvious to theébuttons and completing the task by obtaining a tro-
system designer. Cuayahuitl (2009) suggests uphy. Pairs take part in three dialogues (in three dif-
ing Hierarchical Abstract Machines to partially pre-ferent worlds); after the first dialogue, they switch
specify dialogue strategies, and Heeman (2007) usedes. The GIVE-2 corpus (Gargett et al., 2010) pro-
a combination of RL and Information State (IS)vides transcripts of such dialogues in English and
to also pre-specify dialogue strategies. Williamsserman. For this paper, we complemented the En-
(2008) presents an approach of combining Partiallyglish dialogues of the corpus with a set of seman-
Observable Markov Decision Processes with cortic annotations. The feature set is organised in five
ventional dialogue systems. The Information Statgroups (Table 1). The first two groups cover manip-
approach is well-established in dialogue manageHation instructions (i.e., instructions to press a but-
ment (e.g., Bohlin et al. (1999) and Larsson antbn), including distractofsand landmarks (Gargett
Traum (2000)). It allows the system designer teet al., 2010). The third group describes high- and
specify dialogue strategies in a principled and sydew-level navigation, the fourth group describes the
tematic way. A disadvantage is that random desigaser. The fifth group finally contains grammatical
decisions need to be made in cases where the bagbrmation.
action, or sequence of actions, is not obvious.

The contribution of this paper consists in a com2.2 Navigation and Manipulation Instructions

prehensive account of constrained Hierarchical R?ﬂavigation instructions can take many forms, even

inforcement Learning through a combination Withfor the same route. For example, a way to another
a hierarchical Information State (HIS), which is in—room can be described as ‘go to the room with the

formed by prior knowledge induced from decisionlamp, ‘go left and through the door’, or ‘turn 90

trees._ W? apply ou_r framework FO the gene_rat'oﬁegrees, left, straight’. Choosing among these vari-
of navigation strategies and referring expressions Mtsis a highly context- and speaker-dependent task.

a situated setting, jointly optimised for task SucFigure 1 shows the six user strategies we identified

cess and linguistic consistency. An evaluation shovxﬁom the corpus based on an analysis of the combi-
that humans prefer our learnt instructions to the sy of navigation levetligh’ vs. ‘low’) and con-
pervised learning-based instructions, and rate the{gnt (destination’

lto h 4 i imulation-based , ‘direction’, ‘orientation’, ‘path’,
equal to human instructions. Simulation-base reé,traight’). User models are based on the navigation

sults show that our semi-learnt approach learns MO[&/el and content decisions made in a sequence of in-

quickly than the fully-learnt baseline, which makesyy,ions, so that different sequences, with a certain
it suitable for large and complex problems. Our apdistribution, lead to different user model classifica-

proach differs from Heeman’s in that we transfer tions. The proportions are shown in Figure 1. We
to NLG and to a hierarchical sgtting. A_lthOUQh HeeTound that 75% of all speakers use the same strat-
man was able to show that his combined approacly, iy consecutive rounds/games. 62.5% of pairs

Iearrllls mcl)re quickly than ?g_re_dRL' '; IS I|m|tec! 0 4re consistent over all three dialogues, indicating
small-scale systems. Our ‘divide-and-conquer aFTnter-speaker alignment. These high measures of

proach, on the other hand, scales up to large Searﬁnman consistency suggest that this phenomenon
spaces and allows us to address complex problem% worth modelling in a learning agent, and there-

fore provides the motivation of including linguis-
tic consistency in our agent’s behaviour. Manipula-
2.1 The GIVE-2 Domain tion instructions were treated as an REG task, which

. . L needs to be sensitive to the properties of the referent
Our domain is the generation of navigation instruc-

) ) _ ) ) dand distractors (e.g, size, colour, or spatial relation
tions and referring expressions in a virtual 3D worl
task, two people engage in a ‘treasure hunt’, where ZDistractors are objects of the same type as the referent.

2 The Generation Tasks
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ID Feature Type Description

f1  absoluteproperty(referent) boolean |s the colour of the referent mentioned?

f2  absoluteproperty(distractor) boolean 1s the colour of the distractor mentioned?

f3  discriminativecolour(referent)  boolean Is the colour of the referent discriminating?
f1+  discriminativecolour(distractor) boolean Is the colour of the distractor discriminating?

f5  mention(distractor) boolean Is a distractor mentioned?

fe  firstmention(referent) boolean s this the first reference to the referent?

fr mention(macrdandmark) boolean Is a macro (non-movable) landmark mentioned?
fs  mention(micralandmark) boolean 1s a micro (movable) landmark mentioned?

fo  num(distractors) integer How many distractors are present?

fio  num(micralandmarks) integer  How many micro landmarks are present?

f11 spatialrel(referent,obj) string ~ Which spatial relation(s) are used in the RE?

fi2 taxonomicproperty(referent) boolean Is the type of the distractor mentioned?
f1z  within_field_of_vision(referent)  boolean Is the referent within the user’s field of vision?

fi4  mention(colour, Im) boolean |s the colour of a macro- / micro Im mentioned?
fis mention(size, Im) boolean s the size of a macro- / micro Im mentioned?
fie  abstractness(nawstruction) string Is the instructiorexplicit or implicit?

fir  content(navinstruction) string  Vals: destination direction, orientation path straight
fis level(navinstruction) string Isthe instructiorhigh-or low-level?

fio  position(user) string Is the usepn track or off_track?

f20 reaction(user) string  Vals: takeaction takewrong action wait, req_help
fa1  type(user) string  Vals: likeswaiting, likes.exploring in_between
fa2  waits(user) boolean |s the user waiting for the next instruction?
f23 model(user) string  User model/navig. strategy used (cf. Fig.1)?
f2a  actor(instruction) boolean Is the actor of the instruction inserted?

f2s5  mood(instruction) boolean s the mood of the instruction inserted?

fa¢  process(instruction) boolean |s the process of the instruction inserted?

for locationalphrase(instruction)  boolean Is the loc. phrase (path, straight, etc.) inserted?

Table 1:Corpus annotation features that were used as knowledgedé#iining agent and the Information State. Fea-
tures are presented in groups, describing the propertigsfefents in the environmenfy(.. f13) and their distractors
(f14..-f15), features of high- and low-level navigatiofi ... f1s), the user fiq... f23), and grammatical information
about constituentsfty... for).

with respect to the referent) to be natural and diszonsistency. Table 3 (in Section 5.2) presents an ex-
tinguishing. We also considered the visual saliencemple dialogue generated by our system.

of objects, and the type of spatial relation involved,

since recent studies indicate the potential relevance Constrained Hierarchical Reinforcement

of these features (Viethen and Dale, 2008). Given Learning for NLG

these observations, we aim to optimise tigigk suc-
cessandlinguistic consistencyof instructions. Task _ _ o
success is measured from user reactions after eagh" idéa oflanguage generation as an optimisa-
instruction (Section 5.1). Linguistic consistency idion Problemis as follows: given a set of genera-
achieved by rewarding the agent for generating irio" States, a set of actions, and an objective reward
structions that belong to the same user model as tf#"Ction, an optimal generation strategy maximises

previous one. The agent has the same probabiliﬂ?e objective function by choosing the actions lead-

for choosing any pattern, but is then rewarded fo9 t© the highest reward for every reached state.

Such states describe the system’s knowledge about

3.1 Hierarchical Reinforcement Learning
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% content(nav, destination) > imises the reward for each visited state, according to
— Ty T™(s) = arg MaX,e 4i Q*j(s,a), where@j'(s, a)

specifies the expected cumulative reward for exe-

)

\
|
|
Fae
=)

'model(user, 0)| (‘Z{/c;:lent(nav, orientatiﬁfr;))(\‘/’é’éontent(nav, orienia\ti\oﬁ\)/ Cuting actiona in states and then fO”OWing p0|-

S icy 7r*§ We use HSMQ-Learning (Dietterich, 1999)

B ‘ (<20) \7@) o2 for learning a hierarchy of generation policies. This
imodel(user. 3) T | medeifuser, 2)| hierarchical approach has been applied successfully
<% content(nav, path) > model(user, 1) to dialogue strategy learning by Cuayahuitl et al.
e (2010).
\220/ o
model(user, 4)| | model(user, 5)| 3.2 Information State

The notion of an Information State has traditionally
Figure 1: Decisign tree for the Classifi'cati'on of userpeen applied to dialogue, where it encodes all infor-
models (UM) defined by the use of navigation level ang, ,iinn relevant to the current state of the dialogue.
content. L.JM 0=high-level, UM Emw‘l.evel (LL), UM This includes, for example, the context of the in-
2=orientation-based LL, UM 3=orientation-based mix- , o v .
ture (M), UM 4=path-based M, UM 5=pure M. teraction, participants and their beliefs, and the sta-
tus of grounding. An IS consists of a setiafor-
mational componentencoding the information of
the dialogueformal representation®f these com-

the generation task (e.g. navigation strategy, or r%’onents, a set dlialogue moveteading to the up-

ferring expressions). The action set describes te,e of the 1S, a set afpdate rulesvhich govern the
system’s capabilities (e.g:use high level naviga- ,qate and finally anpdate strategywhich speci-
tion strategy, ‘mention colour of referent’ €iC.). gag \yhich update rule to apply in case more than one
The rew_ard function assigns a numeric value f%pplies (Larsson and Traum (2000), p. 2-3). In this
each action taken. I_n _thls way, language generatl_o&bper’ we apply the theory of IS to language gener-
can be seen as a finite sequence of states, actidfg,, ' For this purpose we define the informational
and rewards{so, ao, 1, 51, 1, -, 7e—1, 5}, Where components of an IS to represent the (situational and
the goal is to find an optimal strategy automatlcally”nguistic) knowledge of the generator (Section 4.2).

To do this we use RL with a divide-and-conquer apyy e ryles are triggered by generator actions, such
proach in order to optimise a hierarchy of generatios the decision to insert a new constituent into the

policies rather than a single policy. The hierarchy of, rant |ogical form, or the decision to prefer one

RL agents consists of levels andV-models per 4 order sequence over another. We use the DIP-

level, denoted asi/j, wherej € {0,....N — 1}  pgR toolkit (Bos et al., 2003for our implementa-
and: € {0,...,L — 1}. Each agent of the hierar- tion of the IS.

chy is defined as a Semi-Markov Decision Process
(SMDP) consisting of a 4-tuple: 57, A3, T}, 5 >. 3.3 Combining Hierarchical Reinforcement
S5 is a set of statesA’ is a set of actions(7 is Learning and Information State

a transition function that determines the next statg, ., .- .« \work has suggested the HSMQ-Learning

, -
s’ from the current state and the performed ac algorithm for optimizing text generation strategies

:'r‘])n a, angl ﬁj tIS a rewatrd fun'ctlonf thf:\tkgpe0|f|es Dethlefs and Cuayahuitl, 2010). Because such an
_e reWar atan _agen _recelves or taking an a Igorithm uses all available actions in each state,
tion a in states lasting 7 time steps. The random

iabl s th b i . than important extension is to constrain the actions
variable represents the number ot ime Seps e, ilable with some prior expert knowledge, aim-
agent takes to complete a subtask. Actions can

tﬁ?g to combine behaviour specified by human de-

e:ther pI’II’T;ItIV?hOI’ ;:ot;nposne. The ;ortmesrk//llglg Sln's'gners and behaviour automatically inferred by re-
gle rewards, the latier correspond 1o S an%forcement learning agents. To that end, we sug-

yield cumulative discounted rewards. The goal o
each SMDP is to find an optimal policy that max- 3http://www.ltg.ed.ac.uk/dipper
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State variables (features) ‘

MY fr9-.-faz
M fi...f10, fr2...f13, fro...f20, fo2
M} fi6...f22
M3 Jiz...fo3
M(z Jr, fil, fis...fis
M; Ji-f5, fu1, fis
M21 M3 f8, fi1, fi3, fao ,fa2
M2, M2 | fie, fa1, foo sfea--fas
faa...far

Figure 2: (Left:) Hierarchy of learning agents executedrfitop to bottom for generating instructions. (Right:) State
representations for the agents shown in the hierarchy olethelhe featured ... fo7 refer back to the features used
in the annotation given in the first column of Table 1. Notd #gents can share information across levels.

gest combining the Information State approach witfinding a goal state for the root subtask. This process
hierarchical reinforcement learning. We thereforéterates until convergence occurs to optimal context-
re-define the characterisation of each Semi-Markowndependent policies, as in HSMQ-Learning.
Decision Process (SMDP) in the hierarchy as a 5-

tuple modelM; =< Si A% T¢, R;,I; >, where 4 Experimental Setting

Si, AL, Tj and R’, are as before, and the additional '

element/ is an Information State used as knowl-4-1 Hierarchy of Agents

edge base and rulg—based dgcisi_on maker. In this &gure 2 shows a (hand-crafted) hierarchy of learn-
tended model, action selection is based on a Cofxg agents for navigating and acting in a situated en-
strained set of actions provided by the IS updatgonment. Each of these agents represents an indi-
rules. We assume that the names of update rulggy,a| generation task. Modalr? is the root agent

in I} represent the agent actiony. The goal of 514 js responsible for ensuring that a set of naviga-
each SMDP is then to find an optimal policy thakjo, jnstructions guide the user to the next referent,
maximises the reward for each visited state, accorgyhere an RE is generated. Model! is responsible
ing to 77;(s) = argmax,eainsi Q75(s,a), Where  for the generation of the RE that best describes an
Q3'(s,a) specifies the expected cumulative rewaréhtended referent. SubtasRg? ... M3 realise sur-
for executing constrained actiarin states and then face forms of possible distractors, or macro- / micro
following w*j— thereafter. For learning such poli- landmarks. Model/] is responsible for the gener-
cies we use a modified version of HSMQ-Learningation of navigation instructions which smoothly fit
This algorithm receives subtaﬂK;f and Information into the linguistic consistency pattern chosen. Part
State[;ﬁ used to initialise state, performs similarly of this task is choosing between a low-level (model
to Q-Learning for primitive actions, but for compos-A/2) and a high-level (model/?) instruction. Sub-

ite actions it invokes recursively with a child sub-tasksM... M realise the actual instructions, des-
task. In contrast to HSMQ-Learning, this algorithmtination, direction, orientation, path, and ‘straight’,
chooses actions from a subset derived by applyingspectivelyt Finally, model M can repair previ-
the IS update rules to the current state of the worldus system utterances.

When the subtask is completed, it returns a cumu-

lative rewardr;-, and continues its execution until “Note that navigation instructions and REs correspond to se-
guences of actions, not to a single one.
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Model(s) | Actions

MY navigation, manipulation, confirmation, stop, repsjstemact, repaimo_systemact

Mg insertdistractor, inserno_distractor, inserho_absoluteproperty, insermicro_relatum, insetimacrarelatum
insertno_taxonomicproperty, inserabsoluteproperty, inserno_macrarelatum, insertaxonomicproperty

M} choosehigh_level, choosdow_level, getroute, chooseasyroute, choosehortroute

M3... M3 | exphead, expo_head, insertolour, insertno_colour, insertsize, inserino_size, expspatialrelation

M3 chooseexplicit abstractness, choasmplicit_abstractness, destinatidmstruction, pathinstruction

M3 chooseexplicit abstractness, choasmplicit_abstractness, directianstr, orientationinstr, straightinstr

Mg§... M3} | expactor, expno_actor, expmood, exploc_phrase, exmo_loc_phrase, exgprocess, exmo_process

Table 2:Action set of the learning agents and Information States.

4.2 State and Action Sets intuitions. In our case, we use a supervised learn-

The HRL agent’s knowledge base consists of all sitNd @pproach to induce prior knowledge into our
uational and linguistic knowledge the agent needdRL agent. We trained decision trees on our anno-
for decision making. Figure 2 shows the hierarchj@t€d corpus data using Weka's (Witten and Frank,
of learning agents together with the knowledge bas&’09) J48 decision tree classifer. A separate tree
of the learning agent with respect to the semanti¥a@s trained for each semantic attribute (cf. Table
features shown in Table 1 that were used for the a)- The obtained decision trees represent our super-
notation of the GIVE-2 corpus dialogues. The firstiSéd leaming baseline. They achieved an accuracy
column of the table in Figure 2 indicates the respe@f 917 in a ten-fold cross-validation. For our semi-
tive model, also referred to as agent, or subtask, affgfnt combination of HRL and HIS, we performed a
the second column refers to the knowledge variabl@anual analysis of the resulting rules to assess their
it uses (in the form of the feature index given in thdMPact on a learning agent. In the end, the fol-
first column of Table 1). In the agent, boolean value!PWing rules were used to constrain the agent's be-
and strings were represented as integers. The Hgviour: (1) In REs, always use a referent's colour,
shares all information of the learning agent, but ha8XCepPt in cases of repair when colour is not discrim-
an additional set of relational feature-value pairs fof?2ting; (2) mention a distractor or micro landmark,
each slot. For example, if the agent knows that thié the CO'QUV Pf the referent is not dlsc.rlml'natmg;
slot content(nav_instruction) has valuel (mean- (3) In nav_lg_atlon, alwa_ys_ make O”_entatlon 'nSt_ruc'
ing “filled’), the HIS knows also which value it was oS exphcﬂ. All remaining behaviour was subject
filled with, such agath. Such additional knowledge O l€aming.

is required for the supervised learning baseline (Seg-4 Reward Function

tion 5). The action set of the hierarchical Iearningw the followi d function to train the hi
agent and the hierarchical information state is give € use fne following reward function fo train the hi-
archy of policies of our HRL agent. It aims to re-

in Table 2. The state-action space size of a flat Ieang-r di lenath at imal task suce
ing agent would béS x A| = 10!, the hierarchical 2Uc® dISCOUrse fength alt maximal task SUctess

setting has a state-action space size.df x 107. Ing & consistent navigation strategy.

The average state-action space size of all subtasks is 0 for reaching the goal state
|S x A|/14 = 1.7 x 107. Generation actions can -2 for an already invoked subtask
R=1< +1 for generating instruction con-

be primitive or composite. While the former corre-
spond to single generation decisions, the latter rep-
resent separate generation subtasks (Fig. 2).

sistent with instruction_
-1 otherwise.

SWe excluded rules that always choose the same value, since
4.3 Prior Knowledge they would work against our aim of generating consistent, bu

. . . . variable instructions.
Prior knowledge can include decisions obvious t0  s1ask success is addressed by that the user has to ‘accept

the system designer, expert knowledge, or generedch instruction for a state transition.
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The third reward that encourages consistency of ir

structions rewards a sequence of actions_ _that allo o, SRS
the last generated instruction to be classified as b ]
longing to the same navigation strategy/user mod: & R

as the previously generated instruction (cf. 2.2). g 2 Py Lot

5 Experiments and Results e

5.1 The Simulated Environment

10
Episodes

The simulated environment contains two kinds of

uncertainties: (1) uncertainty regarding the state dfigure 3: Comparison of fully-learnt, semi-learnt, and su-
the environment, and (2) uncertainty concerning theervised learning (deterministic) behaviours.

user’s reaction to a system utterance. The first aspect

is represented by a set of contextual variables de-

scribing the environmenf,and user behavioirAl- ~ Supervised learning policy generates successful in-
together, this leads tbl5 thousand different contex- structions from the start. Note that we are not ac-
tual configurations, which are estimated from datéJally learning dialogue strategies, but rather gen-
(cf. Section 2.1). The uncertainty regarding th&ration strategies using dialogue features. There-
user's reaction to an utterance is represented byfgre the described policies, fully-learnt, semi-learnt
Naive Bayes classifier, which is passed a set &hd supervised-learning, exclusively guide the sys-
contextual features describing the situation, mappé@m's behaviour in the interaction with the simulated
with a set of semantic features describing the uttekSer. An example dialogue is shown in Table 3. We
ance® From these data, the classifier specifies thgan observe that the agent starts using a low level
most likely user reaction (after each system act) dtavigation strategy, and then switches to high level.
performdesiredaction, performundesiredaction, wait When the user gets confused, the system temporar-
andrequesthelp® The classifier was trained on thelly switches back to low level. For referring expres-
annotated data and reached an accura®2#fin a sions, it first attempts to locate the referent by ref-
ten-fold cross validation. erence to a distractor, and then repairs by using a
micro landmark. The surface forms of instructions
were realised from templates, since the NLG system
so far only generates a sequence of content selection

With respect to REs, th&illy-learnt policy (onl - L
P . y o p_ y (only decisions. We address surface realisation in Dethlefs
HRL) uses colour when it is discriminating, and a

distractor or micro landmark otherwise. Themi- and Cuayahuitl (2011).

learnt policy (HRL with HIS) behaves as defined in]c I\IN(T comparzd our semi—lde?rnt _policl:)y aglg_ainstAﬁ\
Section 4.3. Theupervised learning policy(only ully-learnt, and a supervised learning baseline.

HIS) uses the rules learnt by the decision trees. BOHPI_'C_'es vtvhere :rame_zd fot0 thousandh_err)]ls_,og_es.t For
learnt policies learn to maximise task success, arfffining, the step-size parameter which indicates

to generate consistent navigation strategleshe the learning rate, was initiated withand then re-

duced over time by = -1, wheret is the time step.

"previous system act, route length, route statudhe discount rate, which indicates the relevance of
(known/unknown), objects within vision, ~objects within future rewards in relation to immediate rewards, was
dialogue history, number of instructions, alignment(maion) _set t00.99, and the probability of a random actien

g ) . "
previous user reaction, user position, user wait- .
ing(true/false), user type(explorative/hesitant/meagiu was0.01. See (Sutton and Barto, 1998) for details

®navigation level(high / low), abstractness(implicit / ex-On these parameters.
plicit), repair(yes / no), instruction type(destinatiodirection /
orientation / path / straight)

10yser reactions measure the system’s task success. .

UThey thereby also learn to adapt their semantic choices f5igure 3 compares the rewards averaged over 10
those most frequently made by humans. runs. In terms ofearning speed we can see that

5.2 Learnt Policies

5.3 Comparison of Policies
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Agent| Policy | Action (composite in italics) Utterance

Usr requestroute How do | get to the trophy?
Sys | =), w5 | root, navigation dontRepair, orientation

w3, T low level navigationadd direction+degrees| First, turn 90 degrees left.

w2, w3 low level navigation‘straight’ Then go straight ahead.
Usr perform.desiredaction
Sys ] confirmation OK.

73, 7, 5 | high level navigationdestination, direction,
72, w3, 5 | addLocation Turn left at the end of the hallway.

Usr wait
Sys i repair system acgtchange navigation strategy

73,5 | low level navigationdirection Turn right

73,75 | high level navigationpath and go down the hallway.
Usr perform.desiredaction
Sys 73,7 | low level navigationdirection Now turn left.
Usr perform.desiredaction
Sys ™ confirmation OK.

72,3 | high level navigationdestination,

73,73 | addLocation Enter to the room in front of you.
Usr perform.desiredaction
Sys s, 3 manipulation use colour, use distractor Press the red button beside the blue.
Usr requesthelp
Sys i repair system acgtchange granularity

73, T high level navigation, manipulation

T3, T3 destination, use colour, use micro landmarkGo to the red button beside the chair.
Usr perform.desiredaction
Sys Ty manipulation Press it.
Usr perform.desiredaction
Sys ey confirmation Well done.

Table 3: Sample dialogue in the GIVE-2 scenario showing theathics of generation policies. See Figure 2 for the
corresponding hierarchy models, and Table 2 for the acBonSee Section 5.2 for an explantation of the dialogue.

while the semi-learnt behaviour is able to follow dearning instruction. Instructions consisted of a nav-
near-optimal policy from the beginning, the fully-igation instruction followed by a referring expres-
learnt policy takes about0 thousand episodes to sion. Subjects were asked to rate instructions on a
reach the same performance. In terms of simulated5 Likert scale (where 5 is the best) for their help-
task successwe see that while the supervised learnfulness on guiding the displayed person from its ori-
ing behaviour follows a good policy from the start,gin to pressing the intended button. We selected

it is eventually beaten by the learnt policies. six different scenarios for the evaluation: (a) only
one button is present, (b) two buttons are present,
5.4 Human Evaluation Study the referent and a distractor of the same colour as

We asked 11 participars to rate altogether 132 the referent, (c) two buttons are present, the referent

sets of instructions, where each set contained a sp%{]d a dlstractqr ofa dlﬁeren'F colour than the refe_r—
t, (d) one micro landmark is present and one dis-

tial graphical scene containing a person, mappe%[1

with one human, one learnt, and one supervisettﬁe_lc'[Or of the Same colour as the refe_rent, () one
micro landmark is present and one distractor of a

126 female, 5 male with an age average26f4. different colour than the referent. All scenarios oc-
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(1) Please rate each instruction for its helpfulness
on a scale of 1 to 5, where 5 represents the best and
1 the worst. o 5 !

(a) Go to the room on the left. Press the green
button.

1 2 3 4 5 : : : :
LA NN ]
(b) Go to the green button. Press it. el
1 2 3 4 5 : € J;i i
(c) Go to the next room and press green. : ; : : |:|

1 2 3 4 5

(2) Please circle the intended referent.

Figure 4: Example scenario of the human evaluation study.

curred twice in each evaluation sheet, their specifistructions and referring expressions, in situated dia-
instances were drawn from the GIVE-2 corpus abgue under the aspects of task success and linguis-
random. Scenes and instructions were presentedtin consistency. Based on an evaluation in a simu-
a randomised order. Figure 4 presents an examgbted environment estimated from data, we showed
evaluation scene. Finally, we asked subjects to cithat our semi-learnt behaviour outperformed a fully-
cle the object they thought was the intended refefearnt baseline in terms of learning speed, and a su-
ent. Subjects rated the human instructions with apervised learning baseline in terms of average re-
average oB.82, the learnt instructions with an aver-wards. Human judges rated our instructions signif-
age 0f3.55, and the supervised learning instructionscantly better than the supervised learning instruc-
with an average dt.39. The difference between hu- tions, and close to human quality. The study re-
man and learnt is not significant. The difference bevealed a task success rate f%. Future work
tween learnt and supervised learning is significant &an transfer our approach to different applications to
p < 0.003, and the difference between human andonfirm its benefits, and induce the agent’s reward
supervised learning is significantzat< 0.0002. In  function from data to test in a more realistic setting.

96% of all cases, users were able to identify the in-
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Abstract

Although not very well investigated, a crucial as-
pect of gesture use in dialogues is to regulate the
organisation of the interaction. People use gestures
decisively, for example to indicate that they want
someone to take the turn, to 'brush away' what
someone else said, or to acknowledge others' con-
tributions. We present first insights from a corpus-
based investigation of how gestures are used to
regulate dialogue, and we provide first results from
an account to capture these phenomena in agent-
based communication simulations. By advancing a
model for autonomous gesture generation to also
cover gesture interpretation, this account enables a
full gesture turn exchange cycle of generation, un-
derstanding and acceptance/generation in virtual
conversational agents.

1 Motivation

Research on gestures must combine empirical,
theoretical and simulation methods to investigate
form, content and function of gestures in relation
to speech. Our work is based on a corpus of multi-
modal data, the Bielefeld Speech and Gesture
Alignment corpus of route-description dialogues
(SAGA corpus, Licking et al. 2010). The point of
departure of our research has been work on iconic
and deictic gestures over many years. In this paper
we focus on a not very well investigated function
of gestures which we have repeatedly observed in
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this corpus, namely, the regulation of dialogue.

Most of current gesture research is oriented to-
wards the semiotics of a Peircean tradition as can
for instance be seen from McNeill’s “Kendon’s
continuum” (McNeill 1992, p. 37). As a conse-
guence of this Peircian orientation, gestures have
been viewed as single signs interfacing with
speech. Going beyond the integration of in-
put/output modalities in single speech-gesture
compositions (Johnston and Bangalore, 2005), lit-
tle effort has been spent on the investigation of
sequences of gestures and speech-gesture composi-
tion both within and across speakers (Hahn and
Rieser 2010, Rieser 2010). Furthermore, research
of gesture meaning was restricted to the contribu-
tion of gesture content to propositional content. An
exception to this research line has been the work of
Bavelas et al. (1992, 1995). It is characterised by
two features, a functional perspective on gesture in
opposition to purely classificatory and typological
ones and an interest to systematically investigate
the role of gesture in interaction. In particular,
Bavelas et al. (1992) proposed a distinction be-
tween ‘topic gestures’ and ‘interactive gestures’:
Topic gestures depict semantic information di-
rectly related to the topic of discourse, while inter-
active gestures refer to some aspect of the process
of conversing with another person. Interactive ges-
tures include delivery gestures (e.g. marking in-
formation status as new, shared, digression), citing
gestures (acknowledging others’ prior contribu-
tions), seeking gestures (seeking agreement, or
help in finding a word), and turn coordination ges-

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 88-97,
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tures (e.g. taking or giving the turn). Gill et al.
(1999) noted similar functions of gesture use, add-
ing body movements to the repertoire of pragmatic
acts used in dialogue act theory (e.g. turn-taking,
grounding, acknowledgements).

We aim to find out how gestures are related to and
help regulate the structure of dialogue. We will call
these gestures “discourse gestures”. Relevant re-
search questions in this respect are the following:
How can gesture support next speaker selection if
this follows regular turn distribution mechanisms
such as current speaker selects next? From the dia-
logues in SAGA we know that averting next
speaker’s self-selection is of similar importance as
handing over the floor to the next speaker. So, how
can averting self-selection of other be accom-
plished gesturally? A still different problem is how
gesture is utilised to establish an epistemically
transparent, reliable common ground, say a tight
world of mutual belief. A precondition for that is
how gesture can help to indicate a gesturer’s stance
to the information he provides. Natural language
has words to indicate degrees of confidence in in-
formation such as probably, seemingly, approxi-
mately, perhaps, believe, know, guess etc. Can ges-
tures acquire this function as well?

All these issues can be synopsised as follows: How
can gesturesdapart from their manifest contribu-
tion to propositional contentlbe used to push the
dialogue machinery forward? In our research, ges-
ture simulation and theory of speech-gesture inte-
gration are developed in tandem. Up to now, both
have been tied to occurrences of single gestures
and their embedding in dialogue acts. In this paper,
we present first steps along both methodological
strands to explore the use and function of gesture
in dialogue. We start with an empirical perspective
on discourse gestures in section 2. In section 3 we
briefly describe our gesture simulation model
which so far simulates gesture use employing the
virtual agent MAX independent of discourse struc-
tures. Section 4 analyses a corpus example of a
minimal discourse which is regulated mainly by
gestures of the two interactants. This provides the
basis for our proposed extension of the gesture
generation approach to capture the discourse func-
tion of gestures as described in section 5. This ex-
tension will encompass a novel approach to em-
ploy the very generation model used for gesture
production, and hence all the heuristic gesture
knowledge it captures, also for gesture interpreta-
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tion in dialogue. Section 6 discusses the difference
between pure interactive gestures and discourse
gestures and proposes further steps that need to be
taken to elucidate how gestures are used as a vehi-
cle for regulating dialogue.

2 Empirical Work on Discourse Gestures

In looking for discourse gestures we started from
the rated annotation of 6000 gestures in the SAGA
corpus. We managed to annotate and rate about
5000 of them according to traditional criteria using
practices and fine-grained gesture morphology like
hand-shape and wrist-movement. About 1000 ges-
tures could not be easily subsumed under the tradi-
tional gesture types (iconics, deictics, metaphorics,
beats). Furthermore, they were observed to corre-
late with discourse properties such as current
speaker’s producing his contribution or non-
regular interruption by other speaker.

For purposes of the classification of the remaining
1000 gestures we established the following func-
tional working definition: "Discourse gestures” are
gestures tied up with properties or functions of
agents’ contributions in dialogue such as success-
fully producing current turn, establishing coher-
ence across different speakers’ turns by gestural
reference or indicating who will be next speaker.
What did we use for dialogue structure? Being fa-
miliar with dialogue models such as SDRT (Asher
and Lascarides, 2003), PTT (Poesio and Traum,
1997), and KoS (Ginzburg, 2011) we soon found
that these were too restricted to serve descriptive
purposes. So we oriented our “classification of dia-
logue gesture enterprise” on the well known turn
taking organisation model of Sacks et al. (1974)
and Levinson’s (1983) discussion of it. However, it
soon turned out that even these approaches were
too normative for the SAGA data: This is due to
the fact that dialogue participants develop enor-
mous creativity in establishing new rules of con-
tent production and of addressing violations of
prima facie rules.

Rules of turn-taking, for example, are not hard and
fast rules, they can be skirted if the need arises,
albeit there is a convention that this has to be ac-
knowledged and negotiated. A very clear example
of an allowed interruption of an on-going produc-
tion is a quickly inserted clarification request serv-
ing the communicative goals of current speaker
and the aims of the dialogue in general. Another



Figure 1: Examples of discourse gestures: the brush-away
gesture (left) and situated pointing to the upper part of the
interlocutor’s torso (right) used for next speaker selection in
a “Gricean” sense (see text for explanation).

problem with the Sacks et al. model consists in the
following fact: Since its origination many dialogue
regularities have been discovered which cannot be
easily founded on a phenomenological or observa-
tional stratum which is essentially semantics-free.
This can for example be seen from the develop-
ment of the notion of grounding and common
ground as originally discussed by Stalnaker (1978),
Clark (1996) and others. Nevertheless, grounding
(roughly, coming to agree on the meaning of what
has been said (see e.g. Traum, 1999; Roque and
Traum, 2008; Ginzburg 2011, ch. 4.2 for the op-
tions available) generates verbal structure and ver-
bal structure interfaces with gesture. Other exam-
ples in this class are acknowledgements or accepts
discussed in more detail below.

How did we decide on which distinctions of ges-
ture annotation have to be used for characterising
discourse gestures? In other words, how did we
conceive of the map between gestures of a certain
sort and discourse structures? First of all we ob-
served that two types of discourse gestures emerge
from the SAGA data. Some of them come with
their own global shape and are close to emblems,
(i.e. conveyors of stable meaning like the victory
sign). This is true for example of the “brush aside
or brush away” gesture shown in Figure 1 (left),
indicating a gesturer’s assessment of the down-
rated relevance of information, actions or situa-
tions. Discourse gestures of the second class ex-
ploit the means of, for instance, referring gestures
or iconic gestures. An example of an iconic gesture
in this role will be discussed to some extent in sec-
tion 4. Its simulation will be described in sections 3
and 5.
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Here we explain the phenomenon with respect to
referring pointing gestures which are easier to fig-
ure out (see Figure 1 (right)). Their usage as under
focus here is not tied to the information under dis-
cussion but to objects in the immediate discourse
situation, preferably to the participants of the dia-
logue. These uses have a Gricean flavour in the
following way: Only considerations of relevance
and co-occurrence with a turn transition relevance
place together indicate that prima facie not general
reference is at stake but indication of next speaker
role. It wouldn’t make sense to point to the other
person singling her or him out by indexing, be-
cause her or his identity is clear and well estab-
lished through the on-going interaction. Thus we
see that a gestural device associated with estab-
lished morphological features, pointing, acquires a
new function, namely indicating the role of next-
speaker.

Now both classes of gestures, “brush away” used
to indicate informational or other non-relevance
and pointing, indicating the role of being next
speaker exploit the motor equipment of the hands.
For this reason, annotation of discourse gestures
can safely be based on the classification schemas
we have developed for practices like indexing,
shaping or modelling and for the fine-grained mo-
tor behaviour of the hands as exhibited by palm
orientation, back-of-hand trajectory etc. In work by
Hahn & Rieser (2009-2011) the following broad
classes of discourse gestures were established. We
briefly comment upon these classes of gestures
found in the SAGA corpus relevant for dialogue
structure and interaction:

e Managing of own turn: A speaker may in-
dicate how successful he is in editing out his
current production.

e Mechanisms of next-speaker selection as
proposed in classical CA research, for in-
stance, pointing to the other’s torso is often
used as a means to indicate next speaker.

e In grounding acts and feed-back especially
iconic gestures are used to convey proposi-
tional content.

e Clarification requests to work on contribu-
tions: An addressee may indicate the need
for a quick interruption using a pointing to
demand a clarification. In contrast, a current
speaker can ward off the addressee’s incipi-
ent interruption using a palm-up gesture di-



rected against the intruder thus setting up a
“fence”.

e Evidentials for establishing a confidence
leve: There are fairly characteristic gestures
indicating the confidence a speaker has in
the information he is able to convey.

e Handling of non-canonical moves by dis-
course participants: Interaction sequences
consisting of attempts by other speaker to in-
terrupt and to thwart this intention by current
speaker or to give way to it show how dis-
course participants handle non-canonical
moves.

e Assessment of relevance by discourse par-
ticipants: Speakers provide an assessment
of which information is central and which
one they want to consider as subsidiary.

e An indication of topical information with
respect to time, place or objects is fre-
quently given by pointing or by “placing ob-
jects” into the gesture space.

We know that this list is open and could, more-
over, depend on the corpus. In this paper the focus
will be on grounding acts and feedback (see sec-
tions 3-5). The reason is that this way we can pro-
vide an extension of existing work on the simula-
tion of gesture production in a fairly direct manner.

3 Simulating Gesture Use: The Genera-
tion Perspective

Our starting point to simulate gestural behavior in
dialogue is a gesture generation system which is
able to simulate speaker-specific use of iconic ges-
tures given (1) a communicative intention, (2) dis-
course contextual information, and (3) an imagistic
representation of the object to be described. Our
approach is based on empirical evidence that
iconic gesture production in humans is influenced
by several factors. Apparently, iconic gestures
communicate through iconicity, that is their physi-
cal form depicts object features such as shape or
spatial properties. Recent findings indicate that a
gesture’s form is also influenced by a number of
contextual constraints such as information struc-
ture (see for instance Cassell and Prevost, 1996), or
the use of more general gestural representation
techniques such as shaping or drawing is decisive.

91

Discourse/Linguistic
Context

YO
e

Visuo-spalial
Referent Features

Previous Geslure

Figure 2: Schema of a gesture generation network in which
gesture  production choices are considered either
probabilistically (chance nodes drawn as ovals) or rule-based
(decision nodes drawn as rectangles). Each choice is
depending on a number of contextual variables. The links are
either learned from speaker-specific corpus data (dotted lines)
or defined in a set of if-then rules (solid lines).

In addition, inter-subjective differences in gestur-
ing are pertinent. There is, for example, wide vari-
ability in how much individuals gesture when they
speak. Similarly, inter-subjective differences are
found in preferences for particular representation
techniques or low-level morphological features
such as handshape or handedness (Bergmann &
Kopp, 2009).

To meet the challenge of considering general and
individual patterns in gesture use, we have pro-
posed GNetlc, a gesture net specialised for iconic
gestures (Bergmann & Kopp, 2009a), in which we
model the process of gesture formulation with
Bayesian decision networks (BDNSs) that supple-
ment standard Bayesian networks by decision
nodes. This formalism provides a representation of
a finite sequential decision problem, combining
probabilistic and rule-based decision-making. Each
decision to be made in the formation of an iconic
gesture (e.g., whether or not to gesture at all or
which representation technique to use) is repre-
sented in the network either as a decision node
(rule-based) or as a chance node with a specific
probability distribution. Factors which contribute
to these choices (e.g., visuo-spatial referent fea-
tures) are taken as input to the model (see Figure 2)
The structure of the network as well as local condi-
tional probability tables are learned from the
SAGA corpus by means of automated machine



learning techniques and supplemented with rule-
based decision making. Individual as well as gen-
eral networks are learned from the SAGA corpus
by means of automated machine learning tech-
niques and supplemented with rule-based decision
making. So far, three different factors have been
incorporated into this model: discourse context, the
previously performed gesture, and features of the
referent. The latter are extracted from a hierarchi-
cal representation called Imagistic Description
Trees (IDT), which is designed to cover all deci-
sive visuo-spatial features of objects one finds in
iconic gestures (Sowa & Wachsmuth, 2009). Each
node in an IDT contains an imagistic description
which holds a schema representing the shape of an
object or object part. Features extracted from this
representation in order to capture the main charac-
teristics of a gesture’s referent are whether an ob-
ject can be decomposed into detailed subparts
(whole-part relations), whether it has any symmet-
rical axes, its main axis, its position in the VR
stimulus, and its shape properties extracted on the
basis of so called multimodal concepts (see Berg-
mann & Kopp, 2008).

Analyzing the GNetlc modelling results enabled us
to gain novel insights into the production process
of iconic gestures: the resulting networks for indi-
vidual speakers differ in their structure and in their
conditional probability distributions, revealing that
individual differences are not only present in the
overt gestures, but also in the production process
they originate from.

The GNetlc model has been extensively evaluated.
First, in a prediction-based evaluation, the auto-
matically generated gestures were compared
against their empirically observed counterparts,
which yielded very promising results (Bergmann &
Kopp, 2010). Second, we evaluated the GNetlc
models in a perception-based evaluation study with
human addressees. Results showed that GNetlc-
generated gestures actually helped to increase the
perceived quality of object descriptions given by
MAX. Moreover, gesturing behaviour generated
with individual speaker networks was rated more
positively in terms of likeability, competence and
human-likeness (Bergmann, Kopp & Eyssel,
2010).

GNetlc gesture formulation has been embedded in
a larger production architecture for speech and ges-
ture production. This architecture comprises mod-
ules that carry out content planning, formulation,
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and realisation for speech and gesture separately,
but in close and systematic coordination (Berg-
mann & Kopp, 2009). To illustrate gesture genera-
tion on the basis of GNetlc models, consider the
following example starting upon the arrival of a
message which specifies the communicative intent
to describe the landmark townhall with respect to
its characteristic properties:

lmDescrProperty (townhall-1).

Based on this communicative intention, the imag-
istic description of the involved object gets acti-
vated and the agent adopts a spatial perspective
towards it from which the object is to be described
(see Figure 3). The representation is analyzed for
referent features required by the GNetlc model:
position, main axis, symmetry, number of subparts,
and shape properties. Regarding the latter, a unifi-
cation of the imagistic townhall-1 representation
and a set of underspecified shape property repre-
sentations (e.g. for ,,longish®, ,,round* etc.) reveals
,»U-shaped* as the most salient property to be de-
picted. All evidence available (referent features,
discourse context, previous gesture and linguistic
context) is propagated through the network
(learned from the data of one particular speaker)
resulting in a posterior distribution of probabilities
for the values in each chance node.

Figure 3: The townhall in the virtual world (left) and sche-
matic of the corresponding IDT content (right); activated parts
are marked.

This way, it is first decided to generate a gesture in
the current discourse situation at all, the represen-
tation technique is decided to be ,,drawing“, to be
realized with both hands and the pointing hand-
shape ASL-G. Next, the model’s decision nodes
are employed to decide on the palm and back of
hand (BoH) orientation as well as movement type
and direction: as typical in drawing gestures, the
palm is oriented downwards and the BoH away
from the speaker’s body. These gesture features are
combined with a linear movement consisting of
two segments per hand (to the right and backwards
with the right hand; accordingly mirror-
symmetrical with the left hand) to depict the shape
of the townhall.

Accompanying speech is generated from selected
propositional facts using an NLG engine. Syn-



chrony between speech and gesture follows co-
expressivity and is set to hold between the gesture
stroke (depicting the U-shape property) and corre-
sponding linguistic element. These values are used
to fill the slots of a gesture feature matrix which is
transformed into an XML representation to be real-
ized with the virtual agent MAX (see Figure 4).

Figure 4: Specification (left) and realization (right) of an
autonomously generated drawing gesture which depicts the U-
shaped townhall.

4  Example of a Minimal Discourse

To start with the analysis of how gestures are not
only employed to carry referential content but also
to regulate dialogue and discourse, we first present
a datum from the SAGA corpus showing how the
Follower’s gesture aligns with the Router’s gesture
to indicate acknowledgement or accept. The situa-
tion is as follows: the Router describes to the Fol-
lower that he would approach the town-hall and
how it looks to him. A transcription of the initial
dialogue passage by the Router and the subsequent
crucial speech-gesture annotation, including the
Follower, in ELAN looks as displayed in Figure 5
(placing, drawing, and shaping are names of anno-
tated gestural representation techniques).

A short comment on the data might be in order:
When introducing the townhall as a U-shaped
building, the Router draws the boundary of it,
namely a “U”. He then goes on to describe how the
on-looker apprehends the building. This is accom-
panied by a forward-oriented direction gesture with
both hands, mimicking into it. In principle, all the
information necessary to identify the townhall
from a front perspective is given by then. There is
a short pause and we also have a turn transition
relevance place here. However, there is no feed-
back by the Follower at this point. Therefore the
Router selects a typical pattern for self-repairs or
continuations in German, a that is construction in
the guise of a propositional apposition. Overlap-
ping the production of kind, he produces a three-
dimensional partial U-shaped object maintaining
the same perspective as in his first drawing of the
U-shaped border.

Observe that the Follower already gives feedback
after front. The most decisive contribution is the
Follower’s acknowledgement, however. She imi-
tates the Router’s gesture but from her perspective
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as a potential observer. Also, at the level of single
form features, she performs the gesture differently.
(different movement direction, different symmetry)
The imitating gesture overlaps with her nod and
her contribution OK. It is important to see that her
gesture provides more than a repetition of the word
townhall could possibly give. It refers at the same
time to the town-hall (standing for a discourse ref-
erent) and provides the information of a U-shape
indicating property, in other words, it expresses the
propositional information “This building being U-
shaped” with this building acting as a definite
anaphora to the occurrence of a building in the first
part of the Router’s contribution. Hence, assessed
from a dialogue perspective the following happens:
The grounding process triggered by the Follower’s
acknowledgement amounts to mutual belief among
Router and Follower that the town hall is U-shaped
and the approaching on-looker on the route per-
ceives it from the open side of the U.

Router: Das ist dann das Rathaus [placing].

This is then the townhall [placing].

Das ist ein u-férmiges Gebaude [drawing].
That is a U-shaped building [drawing].

Du blickst praktisch da rein [shaping]. Yo
look practically there into it [shaping].

Das heisst, es hat vorne so zwei Buchtunger
That is, it has to the front kind of two bulges.
und geht hinten zusammen dann. and closes i
the rear then.

LR1

|Das heikt] es hat vorne S0 wel
| That is| kind of two

Router-Speech:
it has to the front
Router-Gesture:

mhm

zusammen dann.

Follower-Specch:
Follower-Gesture:

Router-5.: Buchtungen und geht  hinten
bulges and closes in the rear then.
Router-G.:
Follower-5.: OK

Nod + Fl

Follower-G.:

Figure 5: Example showing the Router’s and the Fol-
lower’s gestures and their crucial exchange in terms of
the Router’s assertion and the Follower’s acknowl-
edgement.
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5 Extending the Simulation: The Under-
standing-Acceptance/Generation Cycle

How can we go beyond the simulation of isolated
speaker-specific gestures towards the generation of
gestures in dialogues? We build on our findings in
the corpus study, briefly taken up here again (see
list in section 2 and the respective comments):
Gesture helps in structuring the dialogue support-
ing next speaker selection or indicating non-regular
contributions of other speaker. It enables assess-
ment of the current speaker’s (Router’s or Fol-
lower’s) communicative intentions by the ad-
dressee, for example of whether the Router wants
to keep the turn but indicates current memory and
recapitulation problems thus appealing to the ad-
dressee’s cooperation. In addition, appraisal of the
reliability of the information given by the Router
can be read off from some of the Router’s gestures.
Finally, as shown in section 4, gestures comple-
menting or even replacing verbal information is
used in acknowledgements.

Building on these observations, our goal is to
simulate such dialogic interaction with two virtual
agents (Router and Follower), each of whom pro-
vided with a speaker-specific GNetlc model. In the
minimal discourse example Router and Follower
use similar gestures which, notably, differ with
respect to some details (e.g. speaker’s perspective).
In the simulation we essentially capture the
Router’s contribution in Figure 5 (R1) and the sub-
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sequent acknowledgement by the Follower (F1). In
order to vary the Router’s gesturing behavior we
use the representation technique of drawing instead
of shaping in the simulation.

What we need to extend the model with is an
analysis of the Follower’s understanding of the
Router’s gesture. Psychologically plausible but
beyond commonly specialised technical ap-
proaches, we want to employ the same model of an
agent‘s ,,gesture knowledge* for both generating
and understanding gestures. For an overview of the
production and understanding cycle see Figure 6.
Here we can make use of the fact that the BDN
formalism allows for two different types of infer-
ence, causal inferences that follow the causal inter
actions from cause to effect, and diagnostic infer-
ences that allow for introducing evidence for ef-
fects and infer the most likely causes of these ef-
fects. This bi-directional use of BDNs could be
complementary to approaches of plan/intention
recognition such as in Geib and Goldman (2003).
To model a use of gestures for regulation as ob-
served with the Follower F1, the Router agent’s
gestural activity is set as evidence for the output
nodes of the Follower‘s BDN. A diagnostic infer-
ence then yields the most likely causes, that is, the
most likely referent properties and values of dis-
course contextual variables. In other words, we
employ the same speaker-specific GNetlc model
for generation and for understanding. That is, in-
formation about the physical appearance of the



Router’s gesture (as specified in Figure 4) is pro-
vided as evidence for the Follower’s GNetlc model
revealingJ.correctlyJthat the gesture’s representa-
tion technique is “drawing” and the shape property
is “U-shaped”.

Notably, just as the gesture generation process has
to make choices between similarly probable alter-
natives, not all diagnostic inferences which are
drawn by employing the Follower agent’s GNetlc
model are necessarily in line with the evidence
from which the Router agent’s gesture was origi-
nally generated. For instance, the communicative
goal as inferred by the Follower agent is
“ImDescrPosition” (with a likelihood of .65) in-
stead of “ImDescrProperty”. Nevertheless, the in-
ferred knowledge reveals an underspecified repre-
sentation of the referent (see Figure 7) as well as
the most likely specification of the discourse con-
text. That way, the Follower agent develops his
own hypothesis of the Router agent’s communica-
tive goal and the content being depicted gesturally.
This hypothesis is forwarded to the follower
agent‘s dialogue manager, which responds to such
declaratives by the Router with an acknowledge-
ment grounding act. Now the very same generation
process as described in section 3 sets in. The Fol-
lower agent’s feedback is generated by employing
his GNetlc model for causal inference. The result-
ing gesture is, notably, different from the Router
agent’s gesture: it is a two-handed shaping gesture
with handshape ASL-C. Movement type and
movement features are the same as in the Router
agent’s drawing gesture. Palm and BoH orientation
are different due to representation technique spe-
cific patterns which are implemented in the deci-
sion nodes (see Figure 7). This case of using iconic
gesture for regulating dialogue has been success-
fully implemented using GNetlc and the overall
production architecture.

6 Discussion and further research agenda

In this paper we addressed the dialogue-regulating
function of gestures. Based on empirical observa-
tions of interactional patterns from the SAGA cor-
pus, the starting points for the simulation of these
gestures were non-interactional propositional ones
such as iconics used to describe routes or land-
marks. We achieved to simulate such iconic ges-
tures used in their function as acknowledgements
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shown in section 3 which clearly transcends their
mere representational task.

Figure 7: Imagistic representation of what the Follower un-
derstood from the Router’s gestural depiction of the townhall
(left) and the simulation of the Follower’s autonomously gen-
erated shaping gesture used as an acknowledgement.

We first note that we draw a distinction between
gestures relevant for dialogue structure such as
next speaker selection or acknowledgement and
those which focus on influencing the social climate
among the dialogue participants. We did not have
many of the latter in SAGA but observed some
which we classified as “calming down” and “don’t
bother”. In certain communication cultures also
touching the other’s body is accepted.

As for a research agenda to elucidate further the
functions of gestures in dialogue, we do not go too
deeply into matters of dialogue theory here. We
already have shown that gestures accompanying
base-line information, being part of the Router’s
report or the Follower’s uptake can be modelled in
PTT (Poesio and Rieser 2009, Rieser and Poesio
2009), if one assumes a unified representation for
verbal and gestural meaning. Here we concentrate
on how the simulation work can be pushed forward
based on theoretical analyses of empirical data.
Note that on the list of discourse gestures given in
section 2 the following items are tied to Router’s
behaviour and can be generated in an autonomous
fashion:

e managing of own turn
e evidentials for establishing a confidence
level
e assessment of relevance by discourse par-
ticipants
e indication of topicality with respect to time,
place or objects.
Observe, however, that these will also have an im-
pact on the mental state of the Follower as is e.g.,
obvious for evidentials or the “brush away gesture”
(Figure 1). Relevant for the sequencing of multi-
modal contributions are clearly the following:
e mechanisms of next-speaker selection as
proposed in classical CA research

e grounding acts and feedback

e handling of non-canonical moves by dis-
course participants



e clarification requests to work on contribu-
tions.

These are intrinsically involved in the production
of adjacency pairs, having a current and a next
contribution and it is on these that simulation will
focus on in future work. In combination with an
information state-based multimodal discourse re-
cord (Traum & Larsson, 2003), the implementated
cycle of generation, understanding and accep-
tance/generation provides the basis for modeling
this kind of gesture-based discourse regulation.

Acknowledgments

This research is partially supported by the DFG in
the CRC 673 “Alignment in Communication” and
the Center of Excellence “Cogpnitive Interaction
Technology”.

References

Asher, N. and Lascarides, A. (2003). The Logic of Con-
versation. Cambridge University Press

Bavelas, J., Chovil, N., Lawrie, D., and Wade, A.
(1992). Interactive gestures. Discourse Processes,
15(4):469-491.

Bavelas, J., Chovil N., Coated, L., Roe, L. (1995). Ges-
tures Specialised for Dialogue. Personality and
Social Psychology Bulletin, 21(4):394-405

Bergmann, K., & Kopp, S. (2010). Modelling the Pro-
duction of Co-Verbal Iconic Gestures by Learning
Bayesian Decision Networks. Applied Artificial In-
telligence, 24(6):530-551.

Bergmann, K. & Kopp, S. (2009). Increasing expres-
siveness for virtual agents—Autonomous generation
of speech and gesture in spatial description tasks. In
Proceedings of AAMAS 2009, pages 361-368.

Bergmann, K. & Kopp, S. (2009a). GNetlc-Using
Bayesian Decision Networks for iconic gesture gen-
eration. In Proceedings of the 9th International Con-
ference on Intelligent Virtual Agents, pages 76—89.

Bergmann, K., Kopp, S., and Eyssel, F. (2010). Indi-
vidualized gesturing outperforms average gesturing—
Evaluating gesture production in virtual humans. In
Proceedings of IVA 2010, pages 104-117, Ber-
lin/Heidelberg. Springer.

Cassell, J. and S. Prevost (1996). Distribution of Seman-
tic Features Across Speech and Gesture by Humans
and Computers. Proceedings of the Workshop on the
Integration of Gesture in Language and Speech.

Clark, H.H. (1996). Using Language. CUP

Geib, C., Goldman, R.,(2003). Recognizing Plan/Goal
Abandonment. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
pp. 1515-1517.

96

Gill, S. P., Kawamori, M., Katagiri, Y., and Shimojima,
A. (1999). Pragmatics of body moves. In Proceed-
ings of the 3rd International Cognitive Technology
Conference, pages 345-358.

Ginzburg, J. (2011). The Interactive Stance. Meaning
for Conversation. Oxford University Press (in press).

Hahn, F. and Rieser, H. (2009-2011): Dialogue Struc-
ture Gestures and Interactive Gestures. Manual, 1%
version. CRC 673 Working Paper. Bielefeld Univer-
sity

Hahn, F. and Rieser, H. (2010): Explaining Speech-
Gesture Alignment in MM Dialogue Using Gesture
Typology. In P. Lupowski and M. Purver (Eds.), As-
pects of Semantics and Pragmatics of Dialogue.
SemDial 2010, pp. 99-111.

Levinson, St. C. (1983). Pragmatics. Cambridge Uni-
versity Press.

Licking, A., Bergmann, K., Hahn, F., Kopp, S., & Rie-
ser, H. (2010): The Bielefeld Speech and Gesture
Alignment Corpus (SaGA). In M. Kipp et al. (Eds.),
LREC 2010 Workshop: Multimodal Corpora.

McNeill, D. (1992). Hand and Mind. Chicago Univer-
sity Press.

Poesio, M. & Rieser, H. (2009). Anaphora and Direct
Reference: Empirical Evidence from Pointing. In J.
Edlund et al. (Eds.), Proceedings of the 13th Work-
shop on the Semantics and Pragmatics of Dialogue
(DiaHolmia) (pp. 35-43). Stockholm, Sweden.

Rieser, H. (2010). On Factoring out a Gesture Typology
from the Bielefeld Speech-And-Gesture-Alignment
Corpus (SAGA). In Kopp and Wachsmuth (Eds.),
Proceedings of GW 2009. Springer, pp. 47-61.

Rieser, H. & Poesio, M. (2009). Interactive Gesture in
Dialogue: a PTT Model. In P. Healey et al. (Eds.),
Proceedings of the SIGDIAL 2009 Conference (pp.
87-96). London, UK: ACL.

Poesio, M. and Rieser, H. (2010). Completions, coordi-
nation and alignment in dialogue. Dialogue and Dis-
course 1(1), 1-89

Poesio, M. and Traum, D. (1997). Conversational ac-
tions and discourse situations. Computational Intel-
ligence, 13(3): 309-347

Roque, A. and Traum, D. (2008). Degrees of Grounding
Based on Evidence of Understanding. In Proceed-
ings of the 9" SIGdial Workshop on Discourse and
Dialogue, pp. 54-63

Sacks, H., Schegloff, E., Jefferson, G. (1974). A sim-
plest systematics for the organization of turn-taking
for conversation. Language, 50: 696-735

Stalnaker, R. (1978): Assertion. In Cole, P. (Ed.) Syntax
and Semantics 9: Pragmatics, pp. 315-322.

Sowa, T. and Wachsmuth, 1. (2009). A computational
model for the representation an processing of shape
in coverbal iconic gestures. In K. Coventry et al.
(Eds.), Spatial Language and Dialogue, pages 132—
146. Oxford University Press.



Traum, D. (1999). Computational models of grounding
in collaborative systems. In Working Notes of AAAI
Fall Symposium on Psychological Models of Com-
munication, pp. 124-131.

Traum, D., & Larsson, S. (2003). The information state
approach to dialogue management. In R.W. Smith
and J.C.J. van Kuppevelt (Eds.), Current and New
Directions in Discourse & Dialogue (pp. 325-353).
Kluwer Academic Publishers.

97



Multiparty Turn Taking in Situated Dialog:
Study, Lessons, and Directions

Dan Bohus
Microsoft Research
One Microsoft Way

Redmond, WA, 98052

dbohus@microsoft.com

Abstract

We report on an empirical study of a multiparty
turn-taking model for physically situated spo-
ken dialog systems. We present subjective and
objective performance measures that show how
the model, supported with a basic set of sensory
competencies and turn-taking policies, can en-
able interactions with multiple participants in a
collaborative task setting. The analysis brings
to the fore several phenomena and frames chal-
lenges for managing multiparty turn taking in
physically situated interaction.

1. Introduction

Effective dialog relies on the coordination of con-
tributions by participants in a conversation via turn
taking. The complexity of understanding and man-
aging turns grows significantly in moving from
dyadic to multiparty settings, including situations
where groups of people converse as they collabo-
rate on shared goals. We are exploring computa-
tional methods that can endow dialog systems with
the ability to participate in a natural, fluid manner
in conversations involving several people.

In Bohus and Horvitz (2010a), we presented a
computational model for managing multiparty turn
taking. The model harnesses multisensory percep-
tion and reasoning and includes a set of compo-
nents and representations. These include methods
for tracking multiparty conversational dynamics,
for making turn-taking decisions, and for rendering
decisions about turns into an appropriate set of
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low-level, coordinated gaze, gesture and speech
behaviors. We implemented the model and have
been testing it in several domains. The investiga-
tions have been aimed at characterizing the sys-
tem’s performance in complex multiparty settings.

In Bohus and Horvitz (2010b), we examine data
collected during a user study to evaluate the ability
of the system to shape the flow of multiparty con-
versational dynamics. In this paper, we focus our
attention on the performance of the inference and
decision-making models. We analyze the accuracy
of current turn-taking inferences, the influence of
inference errors on decisions, and the overall effec-
tiveness of the system’s decision making. We re-
port on subjective and objective measures of the
system’s turn-taking performance. We find that the
turn-taking methodology enables our system to
successfully participate in multiparty interactions,
even when relying on relatively coarse models for
inference and decision making. The analysis high-
lights several general phenomena including stand-
ing bottlenecks and difficulties, and opportunities
for enhancing multiparty turn taking in dialog sys-
tems. Based on the results, we discuss challenges
and directions for research on turn taking in physi-
cally situated dialog.

2. Related Work

We begin by placing this work within the larger
context of research on multiparty interaction and
turn taking. In a seminal paper on turn taking in
natural conversations, Sacks, Schegloff and Jeffer-
son (1974) proposed a basic model for the organi-
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zation of turns in conversation. The model is cen-
tered on the notion of turn-constructional-units,
separated by transition relevance places that pro-
vide opportunities for speaker changes. In later
work, Schegloff (2000) elaborates on several as-
pects of this model, including interruptions and
overlap resolution devices. Other researchers in
conversational analysis and psycho-linguistics
have highlighted the important role played by gaze,
gesture, and other non-verbal communication
channels in regulating turn taking. For instance,
Duncan (1972) discusses the role of non-verbal
signals, and proposes that turn taking is mediated
via a set of verbal and non-verbal cues. Wiemann
and Knapp (1975) survey prior investigations on
turn-taking cues in several conversational settings,
in an effort to elucidate differences. Goodwin
(1980) discusses various aspects of the relationship
between turn taking and attention. More recently,
Hjalmarsson (2011) investigates the additive effect
turn-taking cues have on listeners in both human
and synthetic voices.

Within the dialog systems community, efforts
have been made on designing and implementing
computational models for managing turn taking
(e.g., Traum, 1994; Thorrissén, 2002; Raux and
Eskenazi, 2009; Selfridge and Heeman, 2010).
Moving beyond the dyadic setting, Traum and
Rickel (2002) describe a turn management compo-
nent for supporting dialog between a trainee and
multiple virtual humans. Kronlid (2006) describes
a Harel state-chart implementation of the original
SSJ model. Researchers studying human-robot in-
teraction have developed prototype robots that can
interact with multiple human participants (e.g. Ma-
tsusaka et al., 2001; Bennewitz et al., 2005). In our
previous work Bohus and Horvitz (2009; 2010a;
2010b), we describe a platform that leverages mul-
timodal perception and reasoning to support multi-
party dialog in open-world settings.

3. Multiparty Turn-Taking Model

We engaged in a set of experiments to probe the
inference and decision making competencies of a
computational model for multiparty turn taking
(Bohus and Horvitz 2010a; 2010b). To set the
stage for the analysis to follow, we briefly review
the proposed approach.

We model turn taking as an interactive, collabo-
rative process by which participants in a conversa-

99

Sensing Semantic
r Input
CDED |
- Dialog I=
I = Context| @
y v @ 1S
Decis e [0
Y N ecisions ) o
Aud!o-wsual @ CONTRIB % Contribute | g
evidence [« "1 ©
g £
System S o
_ Floor E Q
¥ Action =} .G
_Speech Behavioral Control i — [a)
ore Behaviors and
fGesture Output Management Semantic
< Output

Figure 1. Components of turn-taking model.

tion monitor one another and take coordinated ac-
tions to ensure that (generally) only one person
speaks at a given time. The participant ratified to
speak via this process is said to have the floor.
Each participant engaged in the interaction con-
tinuously produces (i.e. at every time tick) one of
four floor management actions: a hold action indi-
cates that a participant is maintaining the floor; a
release action indicates that the participant is
yielding the floor to a set of other participants
(which could be void, allowing for self-selection
next turn allocation); a take action indicates that
the participant is trying to acquire the floor; finally,
a null action indicates that a participant is not mak-
ing any floor claims. The floor shifts from one par-
ticipant to another as the result of the joint, coop-
erative floor management actions taken by the par-
ticipants. Specifically, a release action must be met
with a take action for a floor shift to occur; in all
other cases the floor stays with the participant that
currently holds it.

Figure 1 illustrates the main components and
key abstractions in the model. The sensing sub-
component tracks the conversational dynamics,
and includes models for detecting spoken signals s,
inferring the source S(s) and the set of addressees
A(s) for each signal, as well as the floor state
FS(p), actions FA(p) and intentions FI(p) of each
participant p engaged in a conversation. This in-
formation is used in conjunction with higher-level
dialog context to decide when the system should
generate new contributions and which floor action
should be produced at each point in time. Finally,
floor actions are rendered by a behavioral compo-
nent into a set of coordinated gaze, gesture and
speech behaviors. By harnessing these different
components, the proposed model can enable an



embodied conversational agent to handle a broad
spectrum of turn-taking phenomena.

4. User Study

We implemented an initial set of turn-taking infer-
ence and decision making models in the context of
a multiparty dialog system, and we conducted a
large-scale multiparty interaction user study with
this system. The study, described in more detail
below, was designed to fulfill two goals: (1) to as-
certain an initial performance baseline and identify
current bottlenecks and challenges to be addressed
moving forward, and (2) to collect a large set of
multiparty human-computer dialog data that can be
used to study and improve multiparty turn taking in
dialog systems.

4.1. System

The platform used in these experiments, described
in detail in Bohus and Horvitz (2009), takes the
form of a multimodal interactive kiosk that dis-
plays an avatar head which plays a questions game
with multiple participants. The system leverages
audiovisual information and employs components
for visually tracking multiple people in the scene,
sound source localization, speech recognition,
conversational scene analysis, behavioral control
and dialog management. Figure 2 shows a screen
generated by the system, with the rendered avatar
and a sample challenge question. Users can col-
laborate on selecting an answer, and, after a con-
firmation, the system provides an explanation if the
answer is incorrect, before moving on to the next
question. Sample interactions are found in Appen-
dix C and videos are available online (Situated In-
teraction, 2011).

4.2. Turn-Taking Inference and Decisions

In the current system, a voice activity detector is
used to identify and segment spoken utterances.
The source of each utterance is assumed to be the
participant who is closest in the horizontal plane to
the sound direction identified by the microphone
array. The set of addressees is identified by fusing
information probabilistically about the focus of
attention of the source, as obtained through face
detection and head pose tracking, while the utter-
ance is being detected. In addition, the system as-
sumes that non-understandings are addressed to
other engaged participants, since initial tests indi-
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Figure 2. Questions game: screen and Kiosk.

cated that in this domain about 80% of utterances
that led to non-understandings were in fact ad-
dressed to others. Similarly, the system assumes
that utterances longer than three seconds are ad-
dressed to others (responses addressed to the sys-
tem tend to be short in this domain)

Floor management actions are inferred as fol-
lows. If a participant has the floor, we assume they
are performing a hold action if speaking and a re-
lease action otherwise. The release is assumed to
be towards the addressees of the last spoken utter-
ance. Although the latter assumption on releases
may not hold in the most general case, it is a rea-
sonable one for the questions game domain. If a
participant does not have the floor, the system as-
sumes they perform a take action if speaking or a
null action otherwise. The system also assumes
that the floor intentions are fully reflected by the
floor actions, i.e., a participant intends to have the
floor if and only if she performs a hold or take ac-
tion. Floor states are updated based on the joint,
coordinated floor actions of all participants, as de-
scribed earlier.

Turn-taking decisions are based on a simple
heuristic policy. The system takes the floor if (1)
the floor is being released to it or (2) a participant
releases the floor to someone else, but no one
claims the floor for a preset duration. In most cas-
es, this duration is set to 3.5 seconds. However, if
the floor is released to someone else after the sys-
tem is interrupted during a question dialog act, the
system will try to quickly reacquire the floor
should no one else be speaking, so as to finish or
restate its question. The waiting duration is set in
the latter case to 500 milliseconds. If after 500ms,
when the system tries to take the floor another con-
flict occurs (followed by a floor release to someone
else), the waiting duration is increased again to 3.5
seconds. Finally, if a third consecutive conflict oc-



curs when the system tries to acquire the floor, the
waiting duration is set to a longer, 20 seconds.

The system releases the floor at the end of its
own outputs. In addition, it has to decide whether it
should release the floor when a user performs a
take action (i.e. barges in) while the system is
speaking. The heuristic policy currently imple-
mented by the system releases the floor only for
barge-ins occurring during question dialog acts.

Finally, the behavioral models employ policies
informed by the existing literature on the role of
gaze in regulating turn taking. In particular, the
system’s gaze is directed towards the speaking par-
ticipant, or, if the system is speaking, towards the
addressees of the system’s utterance. During si-
lences, the system’s gaze is directed towards the
participants that the floor is being released to.

The models and policies described above repre-
sent a starting point for inference and action, con-
structed to enable data collection and an initial
evaluation in this domain. We are working to up-
date the turn-taking architecture with more sophis-
ticated evidential reasoning and utility-theoretic
decision making. Nevertheless, when harnessed as
an ensemble within the turn-taking approach that
we have described, the current procedures provide
for an array of complex, multiparty turn-taking
behaviors. For instance, the system can address
each participant individually or all participants as a
group via controlling the orientation of its head
pose. When participants talk amongst themselves,
the system can monitor their exchanges and wait
until the floor is being released back to it. If an
answer is heard during such a side conversation
(e.g., one participant suggests an answer to an-
other), the system highlights it on the screen (see
Figure 2). If a significant pause is detected during
this side conversation, the avatar takes the floor
and the initiative, e.g., “So, what do you think is
the correct answer?”” Once a participant provides
an answer, the system seeks confirmation from
another participant before moving on. In some
cases, the avatar passes back the floor and seeks
confirmation non-verbally, by simply turning to-
wards another participant and raising its eyebrows.
The system can try to require the floor immediately
after being interrupted, but can also back off, giv-
ing the participants a chance to finish a side con-
versation, if successive floor conflicts occur. Sam-
ple interactions can be viewed in Appendix C and
online (Situated Interaction, 2011).
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4.3. Study Design

The user study was conducted in a usability lab
and involved a total of 60 participants recruited as
pairs of people from the general population who
previously knew one another (30 male and 30 fe-
male, with ages between 18 and 61). The study
was structured in 15 one-hour sessions, with each
session involving four participants, i.e., two pairs
of two previously acquainted participants. In each
session, we formed all possible subgroups of size
two (6 subgroups) and of size three (4 subgroups)
with the four participants. Each subgroup played
one game with the system. This setup allowed us to
collect a large set of multiparty interactions under
diverse conditions (e.g., all-male, all-female,
mixed-gender groups; groups where people were
previously acquainted vs. not, etc.). At the end of
each session, participants filled in a subjective as-
sessment survey.

4.4. Corpus, Annotations, and Cost Assessment

In total, 150 multiparty interactions were collected:
90 with two participants and the system, and 60
with three participants and the system. A profes-
sional annotator transcribed the utterances detected
by the system at runtime, and labeled them with
source and addressee information.

The system was noted to commit several types
of turn-taking errors. To expand the error analysis
beyond occurrence statistics and to characterize the
impact of various types of errors, we conducted a
follow-up study. In this second study, a set of ad-
ditional participants were recruited to review vid-
eos of interactions from the first study and asked to
(1) identify the turn-taking errors committed by the
system and (2) to assess the costliness of the error
on a five-point scale.

A total of 9 interactions (5 with two participants
and system; 4 with three participants and system)
were randomly sampled from the collected corpus,
while ensuring that each turn-taking outcome of
interest (discussed in Section 5 and summarized in
Table 1) was sufficiently represented. Nine partici-
pants were recruited via an email request to em-
ployees at our organization. Each participant re-
viewed three interactions, and each interaction was
reviewed by three different participants. Prior to
the experiment, each of the annotators received a
brief review of the turn-taking process in human-
human interaction. Next, they used a multimodal



annotation tool that we created to review the inter-
action videos. As each video played, the annotator
pushed a button at each point they believed that the
system had committed a turn-taking error. In a se-
cond pass, each annotator was asked to review the
errors that they had previously identified and to
assess the relative cost of the error, on a scale from
0 (“no error”) to 5 (“worst error”). In a final step,
the authors manually aligned each identified turn-
taking error with a turn-taking decision made by
the system and its corresponding outcome.

5. Evaluation

We now focus on the various types of turn-taking
errors, the outcomes that these errors lead to, and
the costs assessed for the outcomes. We begin by
focusing on diarization challenges described in
Section 5.1. In Sections 5.2 and 5.3, we review the
accuracy of the system’s turn-taking inferences and
decisions, and their corresponding outcomes. Fi-
nally, in Section 5.4, we turn our attention to the
subjective assessment results obtained via the post-
experiment user survey.

Before diving into the details, we note that we
eliminated 7 out of the total 150 interactions from
the analysis due to significant problems with
acoustic echo cancellation. In the remaining 143
interactions, we also identified and eliminated 24
utterances in the transitional engagement stages,
e.g., when the users were not ready or properly
setup in front of the system. The analysis below is
based on the remaining 4379 utterances.

5.1. Diarization

The system uses a voice activity detector which
leverages energy, acoustics and grammar to detect
spoken utterances. Our experiments indicate that
this type of black-box solution can make diariza-
tion errors, especially in multiparty settings where
people may speak simultaneously, at a fast pace,
and address each other with language outside the
system’s grammar. Results show that only 72% of
the detected segments contain speech from a single
participant. Another 2% contain background noises
incorrectly identified as speech. Most often these
are instances where the system heard itself due to
acoustic echo-cancellation problems; the ratio
grows to about 6% among all utterances detected
while the system is speaking. The remaining 26%
contain overlapping or successive utterances from
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multiple speakers. Inspection of the data reveals
that some utterances spoken softly by participants
were not detected and that segmentation boundary
errors are also sometimes present. While such er-
rors may be mitigated by inferences at higher lev-
els in the turn-taking model, they can significantly
influence the system’s ability to track the conver-
sational dynamics and make appropriate turn-
taking decisions. We plan to pursue more robust
audiovisual diarization methods that integrate
sound localization as detected by a microphone
array, along with higher-level interaction context.

5.2. Take versus Null

We now turn our attention to the system’s floor
control decisions. The analysis below is based on
the utterances and segmentation detected by the
system at runtime. We note that a more precise
analysis could be conducted with a ground truth
segmentation of utterances. Utterances detected by
the system can be classified into three categories,
based on their relationship to system outputs, as
shown in Figure 3: overlaps, which start and end
during a system’s output, continuers, which begin
during but finish after a system output has ended,
and responses, which do not overlap anywhere.
With the current policy, the system chooses
whether it should take the floor following each
detected continuer and response. The dataset con-
tains a total of 3265 such instances. The system’s
decision at each of these points hinges on the re-
sults of its inferences about the participants’ floor
actions, and thus of inferences about the addressees
of each utterance. Table 1 displays a tabulation of
the release actions performed by the participants
versus the actions identified by the system. The
release actions are determined from labels assigned
manually by the professional annotator. Recall that
we make an assumption that the release is towards
the set of addressees of an utterance. For segments
that were labeled as containing multiple utterances,
the release is made to the addressee of the last ut-
terance. The last row in Table 1 corresponds to
background noises and system speech incorrectly

turn-internal overlap ~ continuer  response }um-initial overlap (TIO)

/
L1 |
T e L

Figure 3. Schematic of different classes of overlap.
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Table 1. Decisions to take floor (vs. null), outcomes, and estimated costs (bar graph with confidence intervals).
Echo denotes cases where the turn initial overlap is created by utterances where the system hears itself because

of errors with echo cancellation.

identified as utterances.

On the task of detecting addressees, and thus
floor release actions, the results show an error rate
of 18%, including 305 false-positives (erroneous
detections) and 277 false-negatives (missed detec-
tions) of floor releases to the system. These errors
influence the quality of turn taking in a variety of
ways and underscore the need for more robust in-
ferences about speech source and target, and floor
release actions. We believe that more sophisticated
models learned from audiovisual information (e.g.,
prosody, head and body pose, etc.) and attributes
of the interaction context (e.g., who spoke last,
where is the system looking, etc.) can reduce errors
significantly.

Table 1 indicates that in 305 (9%) of the cases
the system incorrectly inferred that the floor was
being released to it. In 79% of these cases, the sys-
tem took the floor and produced a verbal contribu-
tion. Since the floor was not released to the system,
such errors can lead to significant turn-taking prob-
lems, which often manifest as floor conflicts
marked by turn-initial overlaps, where a partici-
pant and the system start speaking around the same
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time (see Figure 3). Operationally, we define turn-
initial overlaps as all detected overlaps with an
actual onset of less than 300 milliseconds from the
beginning of the system’s utterance (see discussion
in Appendix A); the other overlaps are dubbed
turn-internal. We note that the time at which an
overlap is detected by the system lags behind the
actual onset of the utterance by an average of about
700 milliseconds, due to core latencies in our audio
and speech processing pipeline. Accounting for
these computational lags, and others arising at dif-
ferent places in processing pipelines, raise chal-
lenges for turn taking in spoken dialog systems.
42% of the verbal takes performed incorrectly
by the system led to turn-initial overlaps. This is
not surprising, as the system starts speaking when
the floor was not released to it. In some of these
cases the same participant continues (e.g., diariza-
tion errors incorrectly segmented the utterance), or
someone else starts speaking. The cost assessment
experiment confirmed the impact of these errors —
the average estimated cost was 1.76. If no turn-
initial overlap occurred after the system incorrectly
took the floor, the average cost was 0.42. Clearly



floor conflicts come with a cost. The specific cost
assessments we obtained are perhaps influenced to
a degree by the role of game mediator played by
the system. With this role, taking the floor in cases
when the system was not addressed is perhaps not
as costly as it might be in other domains.

Note that 182 turn-initial overlaps also occur
when the system takes the floor after correctly
identifying that the floor was released to it (upper-
left quadrant in Table 1). 17 of them are created by
the system hearing itself as it starts speaking, due
to errors in acoustic echo cancellation; these in-
stances are marked Echo in Table 1. While the rel-
ative percentage of turn-initial overlaps is smaller
after a floor release to the system (~10%), the ma-
jority of all turn-initial overlaps (shaded cells in
Table 1) occur in this context, because of the larger
incidence of the situation. Often, these utterances
contain an immediate answer or a short confirma-
tion from another participant. The cost of these
turn-initial overlaps is also much lower: 0.25 ver-
sus 1.76 (again, the cost structure is probably sen-
sitive to details of the domain).

We believe the turn-initial overlaps that occur
when the floor is released to the system can be ex-
plained in part by the interpretation of the system’s
short delay in responding (per processing) as a sig-
nal that the system is not taking the floor, leading
other participants to take initiative. As another fac-
tor, turn taking is a mixed-initiative process, and
other participants might vie for the floor and issue
their own contributions immediately after an an-
swer directed to the system. These observations
bring to the fore two questions: (1) how can we
minimize the number of turn-initial overlaps, and
(2) how can the system gracefully handle such
overlaps once they occur?

One approach to minimizing turn-initial over-
laps is to reduce the system’s response delays via
faster processing or via the use of predictive mod-
els to anticipate the end of turns (e.g. Ferrer et al.,
2003; Schlangen, 2006; Raux and Eskenazi, 2008;
Skantze and Schlangen, 2009). Multiparty settings
require methods for forecasting not only when a
current speaker will finish, but also whether any
participant will try to take (or release) the floor
within a small window of time in the future, i.e.,
accurately modeling all floor intentions. Our turn-
taking framework includes components for repre-
senting and modeling floor intentions, but these are
not used in the current system. We believe there is
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promise in learning models to predict floor inten-
tions and the timing of ends of utterances from in-
teraction data. The availability of such predictions
can fuel additional turn-taking strategies and also
pave the way to more graceful handling of turn-
initial overlaps after they occur. For instance, if the
system can anticipate that someone else might start
speaking, it might still decide to take the floor but
it might start with a filler, e.g., “So [pause] What
do you think?”” constructing a natural opportunity
for resolving a potential conflict after “So”” We
plan to investigate the use of decision-theoretic
methods to anticipate and resolve such conflicts by
introducing and modulating an array of strategies,
including the use of fillers, restarts, and acknowl-
edgment gestures.

In 21% of the 305 incorrectly detected floor re-
leases to the system, our system immediately per-
formed a non-verbal floor release to another par-
ticipant by turning the avatar’s face towards them
and raising its eyebrows (Take + Non-verbal Release in
Table 1). These situations are not costly, as the
system’s action does not interrupt the flow of the
conversation. Indeed they were never penalized in
the cost assessment experiment that we conducted.
However, the same action, performed when the
floor is actually released to the system (13% of
2063 cases), has the potential to create problems if
not properly recognized by the targeted participant
as a floor release by the system; the average cost
assessed in this case was 0.42.

The right-hand column in Table 1 shows cases
where the system detected that the floor was not
released to it. In these cases, the system waits (per-
forms null) for a specified duration. The cost as-
sessment indicates that waiting in this situation is
overall costly, and the cost depends on the ultimate
outcome. If no one else takes the floor, the system
will eventually do so (Delayed System Take cases in
Table 1). In some of these cases, turn-initial over-
laps also occur. The 277 cases in which the system
fails to detect that the floor was in fact released to
it lead to no immediate response from the system.
In these cases the system can be perceived as unre-
sponsive and the participants eventually repeat
themselves. We believe that performance can be
improved with the use of an ongoing decision-
theoretic analysis that continuously reassesses the
situation while the system waits. Such an analysis
would consider the delay, floor holder’s previous
actions, inferences about participants’ floor inten-



tions, and cost-benefit tradeoffs of different floor
actions.

5.3.Release versus Hold

We now turn our attention to the system’s deci-
sions to release the floor. Recall that, according to
the current policy, the system performs a floor hold
while it is speaking and a floor release at the end of
its outputs. In addition, if an overlap (i.e., barge-in)
was detected during question dialog acts, the sys-
tem performed a floor release immediately, inter-
rupting its own output and allowing for the user
barge-in.

Since such barge-ins were allowed only during
the question dialog acts, as Table 2 shows, the cur-
rent policy leads to an abundance of cases in which
the system performs hold when an overlap is de-
tected. Some of these cases are continuers: the
overlap only happens at the very end of the sys-
tem’s output. These cases do not create significant
turn-taking problems, as the floor still transitions to
the participant relatively quickly (the system re-
leases at the end of its output). However, in a sig-
nificant number of cases the system appears to ig-
nore the participants (shaded cells in Table 2).
About three quarters of these overlaps occur while
the system is providing an explanation after an in-
correct answer. Observations of the data indicate
that in these cases participants may discuss or give
their opinion on the answer or some aspect of the
system’s explanation, while ignoring the system as
it blindly continues the explanation.

We have separated in Table 2 turn-initial from
turn-internal overlaps. The two types of overlaps
reflect different phenomena. As we have discussed,
turn-initial overlaps mark floor conflicts, and vari-
ous strategies could be used to negotiate such con-
flicts (e.g., Yang and Heeman, 2010). In contrast,
turn-internal overlaps may reflect efforts by other
participants to take the floor, or might simply be

Action performed by system when overlap detected
HOLD RELEASE
315 (23%)

EE Overlap Continuer 43 (3%)
g8 F= 285 (90%) 30 (10%) [7 Echo]
2 [14 Echo] [3 Echo]
= 968 (69%)

3 Et Overlap Continuer 73 (5%)

S o

FE 828 (86%) 140 (14%) [13 Echo]

[44 Echo] [7 Echo]

Table 2. Decisions to release floor (vs. hold).
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backchannels, laughter, exclamations or other lexi-
cal or non-lexical events that do not mark a claim
for the floor. Making appropriate floor control de-
cisions in this case will require models for reliably
distinguishing between the two, i.e., between the
take or null floor actions of the participants. This is
an especially challenging inference problem as
decisions need to be made as early as possible after
the onset of an utterance.

We note the relatively large incidence of failures
in echo cancellation in our microphone array. On
the utterances marked Echo in Table 2, the system
heard itself and thought a user was speaking. We
believe these failures could be significantly re-
duced with better acoustic echo cancellation.

5.4.Subjective Assessment

Finally, we present results from a subjective as-
sessment of the system by participants, based on a
post-experiment survey. The survey included sev-
eral 7-point Likert scale questions related to turn
taking, which are displayed in Figure 4, together
with the mean user responses and the correspond-
ing 95% confidence intervals. Generally, partici-
pants rated the system’s turn-taking abilities fa-
vorably, with scores around 4.5-5. No statistically
significant differences were detected in assess-
ments across the participant’s gender or previous
familiarity with speech recognition systems. We
also note that a parallel human—human interaction
study would help us characterize better the sys-
tem’s performance relative to human dialog.
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In addition to the survey questions, participants
were invited to describe in their own words what
they liked best and the first thing they would
change about the system. 21 of the 60 participants
mentioned aspects of multiparty interaction in the
“what | liked best” category, such as the system’s
ability to track the speaking participant and address
people individually. Other frequent answers to this
question called out the overall experience with the
integrative intelligence of the system (15 answers),
the fun/educational nature of the game (14), and
aspects of speech recognition (11). On the “first
thing you would change,” the majority of answers
(32) included references to shortcomings in render-
ing the avatar, while 13 answers included refer-
ences to problematic aspects of the multiparty turn
taking. Other answers included task domain sug-
gestions (6) and comments about improving the
speech recognition (5). A sampling of answers is
presented in Appendix B.

6. Summary and Future Work

We reported on a user study of a multiparty turn-
taking model. Objective measures of system per-
formance and subjective assessments by partici-
pants indicate that the approach can enable suc-
cessful multiparty turn taking in the questions
game domain. When the correct turn-taking deci-
sions are made, the multiparty interaction is seam-
less and resembles human-human collaboration.
The conversations exhibit fluid exchanges among
people and the system, including mixed-initiative,
multiparty floor control, fluid back offs and re-
starts, natural use of non-verbal cues, such as par-
ticipants’ utterances being triggered by a turn of
the avatar’s head or a lift of the eyebrows. In con-
trast, turn-taking failures lead to a striking loss of
fluidity and a qualitative jump out of an engaged
process, where the system rapidly shifts from a
collaborating participant into a distant and uncoor-
dinated appliance.

The results we have discussed are based on an
initial set of coarse perceptual and decision-making
models and thus reflect an initial baseline; there is
significant room for improvements. A careful dis-
section of the outcomes demonstrates the subtleties
of multiparty turn taking and highlights several
directions we plan to address in future work. First,
our experiments have highlighted the importance
of accurate diarization in multiparty dialog set-
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tings. Minimizing errors requires rich perceptual
and inferential competencies, leveraging audiovis-
ual evidence, general patterns of human discourse,
and attributes of the task-specific goals and con-
text. We plan to explore the use of machine learn-
ing procedures for constructing predictive models
that harness richer streams of evidence to identify
and segment utterances, and to make inferences
about their sources and targets, and the floor state,
actions and intentions of all participants. Better
turn-taking decisions can also be supported by in-
ferences about social norms, roles and dynamics,
pace of interaction, and engagement.

Although handcrafted turn-taking policies went
a long way in this domain, enabling more general
multiparty turn taking will require continuous in-
ference and decision making under uncertainty that
considers subtleties of intention and timing, and
that takes into consideration tradeoffs associated
with different courses of actions. We foresee the
value of extending the current decision models
with richer temporal reasoning for performing such
ongoing analyses. Challenges include a more in-
depth understanding of the cost of different types
of turn-taking errors; the development of a wider
array of graded strategies and behaviors for taking,
releasing, or holding the floor, and for gracefully
negotiating floor conflicts; and finally, the ability
to reason about uncertainty in the world as well as
in the system’s own processing delays in order to
resolve tradeoffs between taking timely action and
delaying for additional evidence that promises to
enhance the accuracies of decisions.

Much also remains to be done with the corre-
sponding generation of subtle verbal and non-
verbal cues for enhanced signaling and naturalness
of conversation, including the use of fillers, re-
starts, backchannels, and envelope feedback. We
are excited about tackling these and other chal-
lenges on the path to fielding systems that can en-
gage in fluid multiparty dialog.
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Appendix A. Details on derivation of operational definition of turn-initial overlaps.

As described in Section 5.2, we operationally define turn-initial overlaps as
detected user utterances that have an actual onset of less than 0.3 seconds from
the beginning of a system utterance. Figure 5 shows the histogram of the onset
time for user speech with respect to system utterances (start of system utter-
ance is at 0 seconds), for overlapping utterances, where this onset is between -
2 and +5 seconds. If multiple user utterances overlap with a single system
utterance, only the first user utterance, i.e. the first overlap, is considered in
computing this histogram. As Figure 5 shows, the onset distribution has a bi-
modal character. We believe that the two modes may reflect two different
phenomena in terms of the floor transition. The early-onset mode corresponds
to situations in which a user starts to speak right around (before or immedi-
ately after) the time the system also started speaking; this indicates a situation
where there is contention for the floor and the system cannot assume it has
successfully acquired the floor. In contrast, user utterances starting at later
times represent cases where the floor did first transition to the system and the
user is aware of this transition. In producing an utterance the user is attempt-
ing to barge-in and take the floor back from the system (unless the user utter-
ance is a backchannel). The threshold of 0.3 seconds on the onset for turn-
initial overlaps was selected based on the shape of this distribution.

Appendix B. Sample responses from survey

12%

10%

8%

6%

4%

2%

0%"—

onset seconds

Figure 5. Histogram of onsets for first
overlaps.

Category | # | Example comment

Please describe what you liked best about interacting with the system

| enjoyed how it recognized who was speaking and actually looked at you
- Iliked how the avatar tracked the players; how it understood speech

Multipart ) . .
intergctig:] 7 |- It was great to play a game where you don’t have to use your hands, just your mind. The way the avatar would recognize
position of who spoke was nice. The blinking action at the avatar made her more realistic but she needed more than her face.
prowess - That it would look right at you and ask a question
- |liked how the avatar made eye contact with each person playing the game
- It was very new and thus it was fun. | don’t play computer games often and | did enjoy this one. Which is rare for me.
Overall ; o ! .
experience 15 | - It was different than any other trivia game I've played in the past
,p - I think this is a great way for a human to interact with a computer
with system - It's cool interacting with the avatar
. - |liked the challenge of the questions
Fevkvardlng 14 | - It'sagreatfun way to improve knowledge
as - New experience that | found enjoyable. | enjoyed thinking about choices and having an interaction with the avatar
- Voice recognition was fairly accurate, no need to repeat
Eﬁ;ﬁﬁ;:nd 11 | - The ability of it to understand what | was saying. Plus it's pretty cool.

| liked it because it wasn't really hard for the system to understand what we were saying. Even though we have an accent.

If there was one thing you could change about this system, what would it be?

right, it was only “pretty good”.

The avatar should be more friendly — she came off a bit austere — she didn’t smile even when we got 5 out of 6 questions

Avatar. 32 | - The way it moves its lips needs to be better
rendering - The avatar seemed a little to “stiff”. It needs to be more natural in movement and speech
- The face was a “warmer face”. Smiling perhaps.
- Extend the time limit when questions haven't been fully answered. It would sometimes say we were correct or false before we
Multiparty had confirmed our answer
. 13 | - Sometimes it skips and pauses and making it difficult to understand
failures - Consistency in waiting and asking player to confirm answer instead of overhearing conversations and choosing an answer
itself
Task domain 6 - Itwould be cool if it could remember our names. Also, 6 questions was a little short. | think 8 or 10 questions would be better.
- | think the questions should be more pop culture related
Speech and 5 - | enjoyed her. | would like her to understand a little easier. We had to repeat answers on occasion which wasn't too bad.
language Overall | really liked it. Perhaps it could ask our names and call us by name when speaking to us

108




Appendix C. Excerpts from interactions with the system. We present and discuss two segments from an interaction
with the questions game system. The segments illustrate challenges for diarization, tracking conversational dynamics (e.g. infer-
ring speech source, target, floor actions, etc.) and decisions making for multiparty turn taking. The video for this entire interac-
tion, as well as an additional interaction are available online at (Situated Interaction, 2011)

1 S>P4

P7>8
P1>$8
Pi7>S
P1g>S
S>Pss

> o W N

7 P1s>S

8 S>Py

9 PPy
10 Pi>Pi
1 Py>S

12 S>P1s,Py7

13 Pie>Py7
14 Pig>P1
15 P17>Pis
15 Pis>S

17 S>P1s,Pir

Hi. Would you like to play a questions
game?

Hi

Hello

Yes

Yes

Here is the first question. The study of
the size and shape of the skull as an
indicator of a person’s character is
known as: telepathy, graphology, or
phrenology?

I'l go... Graphology

What do you think?

graph-

That doesn’t sound right but
Phrenology

I'm sorry but that's incorrect. Popular
during the 19t century but not dis-
credited, phrenology is a theory that a

person’s character and intelligence
can be determined by the size and

shape of their skull.

phrenology

She did not wait for your answer
1 quess not

You didn't wait for my answer

Next question [...]

Immediately after the system’s greeting, the two participants also say “Hi” and “Hello”. Their
greetings are detected as a single utterance by the system which partially overlaps with the be-
ginning of the system’s follow-up question (overlaps are underlined in the examples to the left).
According to the current policy, the system does not release the floor on this interruption and
continues with its question. The “Yes” responses from (4) and (5) are overlapping with each other
and are detected by the system as a single utterance which is correctly decoded.

The system correctly infers the floor was addressed to it, and therefore takes the floor and pro-
duces the first question

Given the pause between “I'll go” and “Graphology” the response in (7) is in fact detected as two
separate utterances by the system. The first part is non-understood, hence assumed addressed to
other and the system does not take the floor. The system correctly understands and takes the
floor after “Graphology”, and moves to ask for confirmation (8). Next, while the system asks the
other participant for confirmation, due to imperfections in echo cancellation, the system hears a
noise at the beginning of its utterance, but ignores the detected “barge-in”.

P17 softly says to herself “graph-“. This utterance is not actually detected by the system.

Next, the system misunderstands the utterance in (10) as “that sounds right” and incorrectly infers
that the utterance was addressed to it. It therefore takes the floor and continues. This leads to a
turn-initial overlap with the “Phrenology” utterance immediately produced by P17 (11)

The follow-up utterances and discussion between participants (13-16) overlap with portions of the
system'’s explanation. They indicate the high cost of the misunderstanding and of the system’s
incorrect inference and decision to take the floor (admonished by the user in (16) @, as well as
the shortcomings of the current policy to not release the floor for barge-ins detected during expla-
nations. This example highlights the need for more robust inferences, but also better policies for
releasing back the floor and for machinery that would allow the system to gracefully backing from
detected floor conflicts.

The system then moves on to the next question

S>Pss

2 Pis>P1s

P7>8
S>Pss
Pi7>S
S>Pis,P17
P17>P1s
P7>8
9 S>Pss
10 Pi>S
1 S>P1s,Py7

® N @ o & w

In the USA hospitals have a red
cross, what sign do they use in the
Arab World?

Hospitals have a red cross what sign
do they user in the Arab World...
Solid blue circle

Is that correct?

No

So what's the correct answer?

Red crescent moon

Red crescent moon

[turns to Pss, lifts eyebrows]

Yes

That's right. Okay, so far you're two
out of three [...]

This segment starts with the system asking a question

P16 echoes back the question to himself in a low voice. The system detects this utterance, cor-
rectly inferred that the floor is not being released to it (the utterance leads to a non-
understanding), and the system turns towards the other participant, which produces “Solid blue
circle” (3). The utterance and corresponding floor release to the system are correctly understood,
and the system turns back to P1s for confirmation. Next, the system detects an utterance from P17,
who has changed her mind (5). The system takes the floor and asks both participants (by directing
gaze towards them) what the correct answer is (6), and releases the floor to both participants @.
P17 speaks first towards P15 (7) — this utterance is low energy and not detected by the system, and
then towards the system (8). The system recognizes the floor is released to it after (8), takes the
floor and directs it back towards P1¢ non-verbally, by turning towards him and raising eyebrows.
P16 responds immediately, and the system takes the floor and continues to the next question.

© In the first segment, while the system is

2

" Bl sk[4]: Trivia
= : Engaged
- WL LA

s A

speaking to both participants (12), P17 leans
in as she produces utterance (16)

lllustrations of conversational scene
analysis performed by the system in real-
time, at runtime.

arrow shows
P | direction of
attention
P has floor
—
Task[4]: Trivia
tatus: Engaged P is speaking
@ In the second segment, the system re- Pisan
leases the floor to both participants after addressee

producing (6)
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Abstract

Conventional speech recognition ap-
proaches wusually wait until the user
has finished talking before returning a
recognition hypothesis. This results in
spoken dialogue systems that are unable
to react while the user is still speaking.
Incremental Speech Recognition (ISR),
where partial phrase results are returned
during user speech, has been used to
create more reactive systems. However,
ISR output is unstable and so prone to
revision as more speech is decoded. This
paper tackles the problem of stability
in ISR. We first present a method that
increases the stability and accuracy of
ISR output, without adding delay. Given
that some revisions are unavoidable,
we next present a pair of methods for
predicting the stability and accuracy of
ISR results. Taken together, we believe
these approaches give ISR more utility for
real spoken dialogue systems.

1 Introduction

Incremental Speech Recognition (ISR) enables a
spoken dialogue system (SDS) to react quicker
than when using conventional speech recogni-
tion approaches. Where conventional methods
only return a result after some indication of user
completion (for example, a short period of si-
lence), ISR returns partial phrase results while
the user is still speaking. Having access to a real-
time stream of user speech enables more natural
behavior by a SDS, and is a foundation for cre-
ating systems which take a more active role in
conversations.

{iker, jdw}@research.att.com

Research by Fink et al.(1998) and Skantze
& Schlangen (2009), among others, has demon-
strated the efficacy of ISR but has also drawn
attention to a significant obstacle to widespread
use: partial phrase results are generally unsta-
ble and so, as more speech is decoded, are prone
to revision. For example, the ISR component in
a bus information SDS may return the partial
“leaving from Hills”, where “Hills” is a neigh-
borhood name. It may then return the revi-
sion “leaving from Pittsburgh”, which the sys-
tem must handle gracefully. Given this propen-
sity to revise, a Stability Measure (SM) — like-
lihood of a partial result remaining unchanged
compared to the final result — is necessary for
optimal incremental system behavior. Further-
more, since a stable partial may still be inaccu-
rate, a Confidence Measure (CM) — likelihood
of partial correctness — is also necessary.

Effective ISR enables systems to participate in
more dynamic turn-taking. For instance, these
two measures would enable an SDS to identify
inaccurate recognition results while the user is
still speaking. The SDS could then interrupt
and prompt the user to start again. On the
other hand, ISR allows systems to handle pauses
gracefully. If the SDS recognizes that an utter-
ance is incomplete (though stable and accurate),
it could give the user more time to speak before
reacting.

We present two contributions specific to the
use of ISR. First, we characterize three ap-
proaches to ISR which make different trade-offs
between stability and the number of partials
generated. We then present a novel hybrid ap-
proach that combines their strengths to increase
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stability without adding latency. However, even
with this method, some partial results are still
later revised. The second contribution of the
paper is to present a pair of methods which pre-
dict the stability and accuracy of each partial
result. These two measures are designed for use
in concert by dialogue systems, which must de-
cide whether to act on each partial result in real
time.

2 Background and Related Work

We now describe modern speech recognition
methodology, the production of partial phrase
results, and the advantages and deficiencies of
ISR. In this we seek only to provide a topical
foundation, and not a comprehensive review.

Most modern speech recognition engines use
Hidden-Markov Models and the Viterbi algo-
rithm to decode words from audio. Decod-
ing employs three models: an acoustic model,
which assigns probabilities to speech audio given
a phone; a lexicon, which specifies phone se-
quences for a word; and a language model, which
specifies the probability of a word sequence. The
aim of the decoding process is to find the IV most
probable word sequences given the audio spoken
and these three models.

Two useful but different forms of language
models are commonly used in spoken dialogue
systems. A Rule-based Language Model (RLM)
specifies a list of valid sentences which may be
recognized, usually via expansion rules. By con-
trast, a Statistical Language Model (SLM) spec-
ifies a vocabulary of words, allowing arbitrary
sentences to be formed. Both models specify
probabilities over their respective sets — RLMs
via whole-sentence probabilities, and SLMs via
probabilities of short word sequences called N-
grams. In an SLM, special word symbols are
used to represent the beginning and end of the
phrase, so the probability of beginning or ending
phrases with words can be modeled.

As speech frames are received, the recognizer
builds up a lattice which compactly describes the
probable sequences of words decoded from the
audio. In conventional turn-based speech recog-
nition, decoding continues until the user finishes
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speaking. Once the user has finished, the engine
searches the lattice for the most probable word
sequence and returns this to the dialogue man-
ager. By contrast, in ISR the engine inspects
the lattice as it is being built, and returns partial
results to the dialogue manager as they become
available. A key issue for ISR is that partial
results may later be revised, because as more
speech is received and the lattice is extended, a
different path may become the most probable.
In other words, partial results are unstable in
the sense that they may later be revised. Note
that stability is not the same as accuracy: a par-
tial result may be accurate (correct so far) but
unstable, because it is later revised. Similarly, a
stable result may not be accurate.

In the literature, ISR has been proposed for
dialogue systems to enable them to engage in
more natural, human-like interactions. Stud-
ies have shown that incremental systems react
faster than non-incremental ones, and are well-
liked by users because of their naturalness (Aist
et al., 2007; Skantze and Schlangen, 2009). Aist
et al. (2007) found that incremental speech
recognition yielded 20% faster task completion.
Moreover, adding ISR improved users’ satisfac-
tion with the interaction; the authors attributed
this improvement to “naturalness”: “incremen-
tal systems are more like human-human con-
versation than their non-incremental counter-
parts.” Skantze & Schlangen (2009) observed a
similar trend, finding that an incremental sys-
tem was “clearly preferred” since it “was ex-
perienced as more pleasant and human-like”,
though it did not actually outperform the non-
incremental system in a number dictation task.

Some recent work has focused on incremen-
tal natural language understanding (NLU). De-
Vault et al. (2009) showed that when using a
relatively small number of semantic possibili-
ties the correct interpretation could be predicted
by early incremental results. Schlangen et al.
(2009) demonstrated that an incremental refer-
ence resolver could identify the correct reference
out of 12 more than 50% of the time. This
type of NLU can use context and other infor-
mation to be somewhat resilient to errors, and
word recognition inaccuracies may not yield a



change in understanding. In this paper we focus
on improving accuracy and stability at the word
level; we belief that improvements at the word
level are likely to improve performance at the
understanding level, although we do not evalu-
ate this here.

A number of researchers have described meth-
ods for evaluating and improving the stability of
ISR results (Baumann et al., 2009; Fink et al.,
1998). Baumann, Atterer, & Schlangen spoke
directly to stability by comparing partial phrase
results against the “final hypothesis produced
by the ASR”. They show that increasing the
amount of “right context” — the amount of
speech after the end of the putative partial result
— increases the stability of the partials. Fink et
al. (1998) also used a right context delay to de-
crease the word error rate of ISR results.

A key limitation of these past efforts to im-
prove stability is that adding right context nec-
essarily incurs delay, which degrades responsive-
ness and erodes the overall benefits of ISR. Fur-
thermore, past work has not addressed the prob-
lem of identifying which partials are likely to be
revised. In this paper, we tackle both of these
problems. We first present a method for im-
proving stability by considering features of the
lattice itself, without incurring the delay asso-
ciated with adding right context. Additionally,
since some partials will still be revised, we then
propose a method of scoring the stability of par-
tial speech recognition results.

3 Three approaches to ISR

We now describe three approaches to ISR: Ba-
sic, Terminal, and Immortal. Basic ISR simply
returns the most likely word sequence observed
after some number of speech frames has been de-
coded (in our case every 3 frames or 30ms). This
is the least restrictive approach, and we believe
is the method used by recent ISR research.
Terminal ISR, a more restrictive approach,
finds a partial result if the most likely path
through the (partially-decoded) lattice ends at
a terminal node in the language model. The in-
tuition is that if a partial result finishes a com-
plete phrase expected by the language model,
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it is more likely to be stable. The meaning of
terminal is slightly different for rule-based lan-
guage models (RLMs) and statistical language
models (SLMs). For a rule-based grammar,
the terminal node is simply one that ends a
valid phrase (‘Pittsburgh’ in ‘leaving from Pitts-
burgh’). For an SLM, a terminal node indicates
that the most likely successor state is the spe-
cial end-of-sentence symbol. In other words, in
an SLM Terminal partial result, the language
model assigns the highest probability to ending
the phrase.

A third method, Immortal ISR, is the most
restrictive method (Spohrer et al., 1980). If all
paths of the lattice come together into a node
— called an immortal node — then the lattice
structure before that node will be unchanged by
any subsequent decoding. This structure guar-
antees that the best word sequence prior to an
immortal node is stable. Immortal ISR operates
identically for both RLMs and SLMs.!

To compare these approaches we evaluate
their performance. Utterances were extracted
from real calls to the Carnegie Mellon “Lets
Go!” bus information system for Pittsburgh,
USA (Raux et al., 2005; Parent and Eskenazi,
2009). We chose this domain because this cor-
pus is publicly available, and this domain has
recently been used as a test bed for dialogue
systems (Black et al. , 2010). The AT&T WAT-
SON speech recognition engine was used, modi-
fied to output partials as described above (Goffin
et al., 2005). We tested these three approaches
to ISR on three different recognition tasks. The
first two tasks used rule-based language models
(RLM), and the third used a statistical language
model (SLM).

The two rule-based language models were de-
veloped for AT&T “Let’s Go” dialogue sys-
tem, prior to its deployment (Williams et al.
, 2010). The first RLM (RLM1) consisted

The choice of search beam size affects both accuracy
and the number of immortal nodes produced: a smaller
beams yields a sparser lattice with more immortal nodes
and lower accuracy; a larger beam yields a richer lattice
with fewer immortal nodes and higher accuracy. In this
work we used our recognizer’s default beam size, which
allows recognition to run in less than real time and yields
near-asymptotic accuracy for all experiments.



of street and neighborhood names, built from
the bus timetable database. The second RLM
(RLM2) consisted of just neighborhood names.
Utterances to test RLM1 and RLM2 were se-
lected from the corpus provided by Carnegie
Mellon to match the expected distribution of
speech at the dialogue states where RLM1 and
RLM2 would be used. RLM1 was evaluated on
a set of 7722 utterances, and RLM2 on 5411 ut-
terances. To simulate realistic use, both RLM
test sets were built so that 80% of utterances
are in-grammar, and 20% are out-of-grammar.
The SLM was a 3-gram trained on a set of 140K
utterances, and is tested on a set of 42620 ut-
terances.

In past work, Raux et al. (2005) report word
error rates (WERs) of 60-68% on data from the
same dialogue system, though on a different set
of utterances. By comparison, our SLM yields
a WER of 35%, which gives us some confidence
that our overall recognition accuracy is compet-
itive, and that our results are relevant.

Table 1 provides a few statistics of the LMs
and test sets, including whole-utterance accu-
racy, computed using an exact string match.
Results are analyzed in two groups: All, where
all of the utterances are analyzed, and Multi-
Word (MW), where only utterances whose tran-
scribed speech (what was actually said) has
more than one word. Intuitively, these utter-
ances are where ISR would be most effective.
That said, ISR is beneficial for both short and

long utterances — for example, ISR systems
can react faster to users regardless of utterance
length.

ISR was run using each of the three ap-
proaches (Basic, Terminal, Immortal) in each of
the three configurations (RLM1, RLM2, SLM).
The mean number of partials per utterance is
shown in Table 2. For all ISR methods, the more
flexible SLM produces more partials than the
RLMs. Also as expected, multi-word utterances
produce substantially more partials per utter-
ance than when looking at the entire utterance
set. The Basic approach produces nearly dou-
ble the number of partials than Terminal ISR
does, and Immortal ISR production highlights
its primary weakness: in many utterances, no
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Table 1: Statistics for Recognition Tasks. In all ta-
bles, All refers to all utterances in a test set, and
MW refers to the subset of multi-word utterances in
a test set.

RLM1 | RLM2 | SLM
Num. Utts All 7722 5411 | 42620
Num. Utts MW | 3213 1748 | 20396
Words/Utt All 1.7 1.5 2.3
Words/Utt MW | 2.8 2.6 3.8
Utt. Acc. All 50 % | 60 % | 62 %
Utt. Acc. MW | 53 % | 56 % | 44 %

immortal nodes are found. Given this however,
immortal node occurrence is directly related to
the number of words, as indicted by the greater
number of immortal partials in multi-word ut-
terances.

Stability is assessed by comparing the partial
to the final recognition result. For simplicity, we
restrict our analysis to 1-Best hypotheses. If the
partial 1-Best hypothesis is a prefix (or full ex-
act match) of the final 1-Best hypothesis then it
is considered stable. For instance, if the partial
1-Best hypothesis is “leaving from Forbes” then
it would be stable if the final 1-Best is “leaving
from Forbes” or “leaving from Forbes and Mur-
ray” but not if it is “from Forbes and Murray” or
“leaving”. Accuracy is assessed similarly except
that the transcribed reference is used instead of
the final recognition result.

We report stability and accuracy in Table 3.
Immortal partials are excluded from stability
since they are guaranteed to be stable. The first
four rows report stability, and the second six
report accuracy. The results show that Termi-
nal Partials are relatively unstable, with 23%-

Table 2: Average Number of Partials per utterance

ISR Group | RLM1 RLM2 SLM
Basic All 12.0 9.9 11.6
MW 14.6 12.3  29.7
Terminal All 5.4 3.3 6.2
MW 6.4 4.1 8.8
Inmortal All 0.22 0.32  0.55
MW 0.42 0.67  0.63




Table 3: Stability and Accuracy Percentages

ISR | Group [ RLM1 RLM2 SLM
Stability
Basic Al [ 10% 1% 7%
MW | 14% 15% 9%
Terminal | AL | 23%  31%  37%
MW | 20% 28% 36%
Accuracy
Basic Al [ 9% 1% 5%
MW | 11% 13% 6%
Terminal | AL | 13%  21% 24 %
MW | 12% 17% 21%
homortal | AL [ 91% 93% 55 %
MW | 90% 90 % 56 %

37% of partials being stable, and that their sta-
bility drops off when looking at multi-word ut-
terances. SLM stability seems to be somewhat
higher than that of the RLM. Basic partials
are even more unstable (about 10% of partials
are stable), with extremely low stability for the
SLM. Unlike Terminal ISR, their stability grows
when only multi-word utterances are analyzed,
though the maximum is still quite low.

The results also show that partials are always
less accurate than they are stable, indicating
that not all stable partials are accurate. Immor-
tal partials are rare, but when they are found,
they are much more accurate than Terminal or
Basic partials. The RLM accuracy is very high,
and we suspect that immortal nodes are corre-
lated with utterances which are easier to recog-
nize. Terminal ISR is far more accurate than
Basic ISR for all of the utterances, but its im-
provement declines for multi-word RLMs.

We have shown three types of ISR: Basic, Ter-
minal and Immortal ISR. While Basic and Ter-
minal ISR are both highly productive, Terminal
ISR is far more stable and accurate than Basic.
Furthermore, there are far more Basic partials
than Terminal partials, implying that the dia-
logue manager would have to handle more un-
stable and inaccurate partials more often. Given
this, Terminal ISR is a far better “productive
ISR” than the Basic method. Taking produc-
tion and stability together, there is a double dis-
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Table 4: Lattice-Aware ISR (LAISR) Example

1-best Partial Type
yew Terminal
sarah Terminal
baum Terminal
dallas Terminal
downtown Terminal
downtown Immortal
downtown pittsburgh Terminal
downtown pittsburgh Immortal

sociation between Terminal and Immortal ISR.
Terminal partials are over produced and rela-
tively unstable. Furthermore, they are even less
stable when the transcribed reference is greater
than one word. On the other hand, Immortal
partials are stable and quite accurate, but too
rare for use alone. By integrating the Immortal
Partials with the Terminal ones, we may be able
to increase the stability and accuracy overall.

4 Lattice-Aware ISR (LAISR)

We introduce Lattice-Aware ISR (LAISR —
pronounced “laser”), that integrates Terminal
and Immortal ISR by allowing both types of par-
tials to be found. The selection procedure works
by first checking for an Immortal partial. If one
is not found then it looks for a Terminal. Re-
dundant partials are returned when the partial
type changes. An example recognition is shown
in Table 4. Notice how the first four partials
are completely unstable. This is very common,
and suppressing this noise is one of the primary
benefits of using more right context. Basic ISR
has even more of this type of noise.

LAISR was evaluated on the three recogni-
tion tasks described above (see Table 5). The
first two rows show the average number of par-
tials per utterance for each task and utterance
group. Unsurprisingly, these numbers are quite
similar to Terminal ISR. The stability percent-
age of LAISR is shown in the second two rows.
For all the utterances, there appears to be a very
slight improvement when compared to Termi-
nal ISR in Table 3. The improvement increases
for MW utterances, with LAISR improving over



Table 5: Lattice-Aware ISR Stats

Partials per Utterance
RLM1 RLM2 SLM
All 5.6 3.5 6.7
MW 6.7 4.5 9.6
Stability Percentage
All | 24% 33% 40%
MW | 24% 35% 41 %
Accuracy Percentage
All | 5% 23% 26 %
MW | 16% 22% 24 %

Terminal ISR by 4-7 percentage points. This
is primarily because there is a higher occur-
rence of Immortal partials as the utterance gets
longer. Accuracy is reported in the final two
rows. Like the previous ISR methods described,
the accuracy percentage is lower than the sta-
bility percentage. When compared to Terminal
ISR, LAISR accuracy is slightly higher, which
confirms the benefit of incorporating immortal
partials with their relatively high accuracy. To
be useful in practice, it is important to exam-
ine when in the utterance ISR results are be-
ing produced. For example, if most of the par-
tials are returned towards the end of utterances,
than ISR is of little value over standard turn-
based recognition. Figure 1 shows the percent
of partials returned from the start of speech to
the final partial for MW utterances using the
SLM. This figure shows that partials are re-
turned rather evenly over the duration of ut-
terances. For example, in the first 10% of dura-
tion of each utterance, about 10% of all partial
results are returned. Figure 1 also reports the
stability and accuracy of the partials returned.
These numbers grow as decoding progresses, but
shows that mid-utterance results do yield rea-
sonable accuracy: partials returned in the mid-
dle of utterances (50%-60% duration) have an
accuracy of near 30%, compared to final partials
47% percent.

For use in a real-time dialogue system, it is
also important to assess latency. Here we define
latency as the difference in (real-world) time be-
tween (1) when the recognizer receives the last

115

W Partials 90
[ Stability
B Accuracy

Percent
(42
o

20

1°nﬂﬂ
970 10 20 30 40 50 60 70 80 90 100
Percent of time after speech start to final partial

Figure 1: Percent of LAISR partials returned from
the start of detected speech to the final partial using
the SLM. The percentage of partials returned that
are stable/accurate are also shown.

frame of audio for a segment of speech, and (2)
when the partial that covers that segment of
speech is returned from the recognizer. Mea-
suring latencies of LAISR on each task, we find
that RLM1 has a median of 0.26 seconds and a
mean of 0.41s; RLM2 has a median of 0.60s and
a mean of 1.48s; and SLM has a median of 1.04s
and a mean of 2.10s. Since reducing latency
was not the focus on this work, no speed opti-
mizations have been made, and we believe that
straightforward optimization can reduce these
latencies. For example, on the SLM, simply
turning off N-Best processing reduces the me-
dian latency to 0.55s and the mean to 0.79s.
Human reaction time to speech is roughly 0.20
seconds (Fry, 1975), so even without optimiza-
tion the RLM latencies are not far off human
performance.

In sum, LAISR produces a steady stream
of partials with relatively low latency over the
course of recognition. LAISR has higher stabil-
ity and accuracy than Terminal ISR, but its par-
tials are still quite unstable and inaccurate. This
means that in practice, dialogue systems will
need to make important decisions about which
partials to use, and which to discard. This need
motivated us to devise techniques for predicting
when a partial is stable, and when it is accurate,
which we address next.



Table 6: Equal Error Rates: Significant improvements in bold. Basic at p < 0.016, Terminal at p < 0.002,

and LAISR at p < 0.00001

| All | Multi-Word
Stability Measure (SM) Equal Error Rate
RLM1 RLM2 SLM | RLM1 RLM2 SLM
Basic WATSON Score | 13.3 13.3 12.8 15.6 16.4 15.2
Regression 10.7 11.3 12.3 13.2 15.2 15.1
Terminal WATSON Score | 24.3 29.1 34.4 26.6 26.0 34.1
Regression 19.7 26.5 26.5 23.0 24.3 24.7
LAISR WATSON Score | 24.7 29.3 35.0 24.0 27.0 35.3
Regression 19.2 25.6 25.0 18.4 23.3 22.7
Confidence Measure (CM) Equal Error Rate
Basic WATSON Score | 11.3 11.7 9.9 14.1 14.0 11.6
Regression 9.8 9.8 9.7 12.3 12.9 11.0
Terminal WATSON Score | 15.1 21.1 30.6 15.7 174 29.3
Regression 11.7 16.8 20.8 12.1 14.5 18.4
LAISR WATSON Score | 15.8 21.8 32.3 18.4 19.5 31.8
Regression 11.6 16.6 21.0 11.6 14.2 18.7

5 Stability and Confidence Measures

As seen in the previous section, partial speech
recognition results are often revised and inaccu-
rate. In order for a dialogue system to make
use of partial results, measures of both stability
and confidence are crucial. A Stability Measure
(SM) predicts whether the current partial is a
prefix or complete match of the final recogni-
tion result (regardless of whether the final result
is accurate). A Confidence Measure (CM) pre-
dicts whether the current partial is a prefix or
complete match of what the user actually said.
Both are useful in real systems: for example, if
a partial is likely stable but unlikely correct, the
system might interrupt the user and ask them
to start again.

We use logistic regression to learn separate
classifiers for SM and CM. Logistic regression is
appealing because it is well-calibrated, and has
shown good performance for whole-utterance
confidence measures (Williams and Balakrish-
nan, 2009). For this, we use the BXR pack-
age with default settings (Genkin et al., 2011).
For Terminal and Basic ISR we use 11 features:
the raw WATSON confidence score, the individ-
ual features which affect the confidence score,
the normalized cost, the normalized speech like-
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lihood, the likelihoods of competing models,
the best path score of word confusion network
(WCN), the length of WCN, the worst probabil-
ity in the WCN, and the length of N-best list.
For LAISR, four additional features are used:
three binary indicators of whether the partial is
Terminal, Immortal or a Terminal following an
Immortal, and one which gives the percentage
of words in the hypothesis that are immortal.

We built stability and confidence measures for
Basic ISR, Terminal ISR, and LAISR. Each of
the three corpora (RLM1, RLM2, SLM) was di-
vided in half to form a train set and test set.
Regression models were trained on all utter-
ances in the train set. The resulting models were
then evaluated on both All and MW utterances.
As a baseline for both measures, we compare
to AT&T WATSON’s existing confidence score.
This score is used in numerous deployed com-
mercial applications, so we believe it is a fair
baseline. Although the existing confidence score
is designed to predict accuracy (not stability),
there is no other existing mechanism for pre-
dicting stability.

We first report “equal error rate” for the mea-
sures (Table 6). Equal error rate (EER) is the
sum of false accepts and false rejects at the rejec-



Figure 2: True accept percentages for stability measure (a) and confidence measure (b), using a fixed false
accept rate of 5%. LAISR yields highest true accept rates, with p < 0.0001 in all cases.
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(a) Stability measure

tion threshold for which false accepts and false
rejects are equal. Equal error rate is a widely
used metric to evaluate the quality of scoring
models used for accept/reject decisions. A per-
fect scoring model would yield an EER of 0. For
statistical significance we use x? contingency ta-
bles with 1 degree of freedom. It is inappropri-
ate to compare EER across ISR methods, since
the total percentage of stable or accurate par-
tials significantly effects the EER. For example,
Basic ISR has relatively low EER, but this is
because it also has a relatively low number of
stable or accurate partials.

The top six rows of Table 6 show EER for the
Stability Measure (SM). The left three columns
show results on the entire test set (all utterances,
of any length). On the whole, the SM outper-
forms the WATSON confidence scores, and the
greatest improvement is a 10.0 point reduction
in EER for LAISR on the SLM task. The right
three columns show results on only multi-word
(MW) utterances. Performance is similar to the
entire test set, with a maximum EER reduction
of 12.6 percent. The SLM MW performance is
interesting, suggesting that it is easier to pre-
dict stability after at least one word has been
decoded, possibly due to higher probability of
immortal nodes occurring. This suggests there
would be benefit in combining our method with
past work that adds right-context, perhaps us-
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This

ing more context early in the utterance.
idea is left for future work.

The bottom six rows show results for the Con-
fidence Measure (CM). We see that that even
when comparing our CM against the WATSON
confidence scores, there is significant improve-
ment, with a maximum of 13.1 for LAISR in the
MW SLM task.

The consistent improvement shows that logis-
tic regression is an effective technique for learn-
ing confidence and stability measures. It is most
powerful when combined with LAISR, and only
slightly less so with Terminal. Furthermore,
though the gains are slight, it is also useful with
Basic ISR, which speaks to the generality of the
approach.

While equal error rate is useful for evaluating
discriminative ability, when building an actual
system a designer would be interested to know
how often the correct partial is accepted. To
evaluate this, we assumed a fixed false-accept
rate of 5%, and report the resulting percentage
of partials which are correctly accepted (true-
accepts). Results are shown in Figure 1. LAISR
accepts substantially more correct partials than
other methods, indicating that LAISR would be
more useful in practice. This result also shows
a synergy between LAISR and our regression-
based stability and confidence measures: not
only does LAISR improve the fraction of stable



and correct partials, but the regression is able
to identify them better than for Terminal ISR.
We believe this shows the usefulness of the ad-
ditional lattice features used by the regression
model built on LAISR results.

6 Discussion and Conclusion

The adoption of ISR is hindered by the num-
ber of revisions that most partials undergo. A
number of researchers have proposed the use of
right context to increase the stability of par-
tials. While this does increase stability, it mit-
igates the primary gain of ISR: getting a rela-
tively real-time stream of the user’s utterance.
We offer two methods to improve ISR function-
ality: the integration of low-occurring Immortal
partials with higher occurring Terminal partials
(LAISR), and the use of logistic regression to
learn stability and confidence measures.

We find that the integrative approach,
LAISR, outperforms Terminal ISR on three
recognition tasks for a bus timetable spoken dia-
logue system. When looking at utterances with
more than one word this difference becomes even
greater, and this performance increase is due to
the addition of immortal partials, which have
a higher occurrence in longer utterances. This
suggests that as dialogue systems are used to
process multi-phrasal utterances and have more
dynamic turn-taking interactions, immortal par-
tials will play an even larger roll in ISR and par-
tial stability will further improve.

The Stability and Confidence measures both
have lower Equal Error Rates than raw recog-
nition scores when classifying partials. The im-
provement is greatest for LAISR, which benefits
from additional features describing lattice struc-
ture. It also suggests that other incremental fea-
tures such as the length of right context could be
useful for predicting stability. The higher num-
ber of True Accept partials by LAISR indicates
that this method is more useful to a dialogue
manager than Basic or Terminal ISR. Even so,
for all ISR methods there are still more use-
ful stable partials than there are accurate ones.
This suggests that both of these measures are
important to the downstream dialogue manager.
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For example, if the partial is predicted to be sta-
ble but not correct, than the agent could possi-
bly interrupt the user and ask them to begin
again.

There are a number of avenues for future
work. First, this paper has examined the word
level; however dialogue systems generally oper-
ate at the intention level. Not all changes at
the word level yield a change in the resulting
intention, so it would be interesting to apply
the confidence measure and stability measures
developed here to the (partial) intention level.
These measures could also be applied to later
stages of the pipeline — for example, tracking
stability and confidence in the dialogue state re-
sulting from the current partial intention. Fea-
tures from the intention level and dialogue state
could be useful for these measures — for instance,
indicating whether the current partial intention
is incompatible with the current dialogue state.

Another avenue for future work would be to
apply these techniques to non-dialogue real-time
ASR tasks, such as transcription of broadcast
news. Confidence and stability measures could
be used to determine whether /when /how to dis-
play recognized text to a viewer, or to inform
down-stream processes such as named entity ex-
traction or machine translation.

Of course, an important objective is to eval-
uate our Stability and Confidence Measures
with LAISR in an actual spoken dialogue sys-
tem. ISR completely restructures the conven-
tional turn-based dialogue manager, giving the
agent the opportunity to speak at any mo-
ment. The use of reinforcement learning to make
these turn-taking decisions has been shown in a
small simulated domain by Selfridge and Hee-
man (2010), and we believe this paper builds
a foundation for pursuing these ideas in a real
system.
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Predicting the Micro-Timing of User Input for an Incremental
Spoken Dialogue System that Completes a User’s Ongoing Turn
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Abstract

We present the novel task of predicting tem-
poral features of continuations of user input,
while that input is still ongoing. We show that
the remaining duration of an ongoing word, as
well as the duration of the next can be predicted
reasonably well, and we put this information to
use in a system that synchronously completes
a user’s speech. While we focus on collabo-
rative completions, the techniques presented
here may also be useful for the alignment of
back-channels and immediate turn-taking in an
incremental SDS, or to synchronously monitor
the user’s speech fluency for other reasons.

1 Introduction

Turn completion, that is, finishing a user’s ongoing ut-
terance, can be considered an ideal test-case of incre-
mental spoken language processing, as it requires that
all levels of language understanding and production
are carried out in real time, without any noticeable
lags and with proper timing and even with the ability
to predict what will come. Spoken dialogue systems,
especially incremental ones, have come a long way
towards reducing lags at turn changes (e. g. (Raux and
Eskenazi, 2009; Skantze and Schlangen, 2009)), or
even predicting upcoming turn changes (Schlangen,
2006; Baumann, 2008; Ward et al., 2010). Com-
pared to regular turn changes, where short pauses or
overlaps occur frequently (Weilhammer and Rabold,
2003), turn completions in natural dialogues are typ-
ically precisely aligned and prosodically highly in-
tegrated with the turn that is being completed (Lo-
cal, 2007). With ever more incremental (and hence
quicker) spoken dialogue systems, the phenomenon
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of completion comes into reach for SDSs, and hence
questions of micro-timing become important.

While completing someone else’s turn — especially
for a computer — may be considered impolite or even
annoying, being able to do so can be a useful capa-
bility. Some tasks where it might be helpful are

e negotiation training to induce stress in a human

trainee as presented by DeVault et al. (2009), or

e pronunciation aids for language learners, in

which hard to pronounce words could be spoken
simultaneously by the system.

A system should certainly not try to complete all

or even many user turns, but having the capability

to do so means that the system has a very efficient
interactional device at its disposal.

Furthermore, monitoring the user’s timing, as is
required for the temporal prediction of turn continua-
tions, can also be used for other conversational tasks
such as producing back-channels that are precisely
aligned to the user’s back-channel inviting cues, to
enable micro-alignment of turn-onsets, or to quickly
react to deviations in the user’s fluency.

In this paper, we concentrate on the temporal as-
pects of turn completion, that is, the prediction of
the precise temporal alignment of a turn continuation
and the technical realization of this timing. We as-
sume the task of predicting the completion itself to
be handled by some other system component. Such
components are indeed under development (see Sec-
tion 2). However, previous work has left out the
question of how the precise timing of turn comple-
tions can be accomplished, which is what we try to
answer here.

The remainder of this paper is structured as fol-
lows: In Section 2 we review literature on turn com-
pletion and related work in spoken dialogue systems,
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before we explain what exactly our task is in Sec-
tion 3. In Section 4 we present our system’s overall
architecture and the duration modelling technique
that we use, before describing the corpus that we use
in Section 5. In Section 6 we first analyse whether
enough time to output a completion is available suffi-
ciently often, before turning to the question for the
actual sub-tasks of when and how to complete. We
wrap up with concluding remarks and ideas for future
work.

2 Related Work

The general phenomenon of turn completion can
be broken down into cases where the completion
is spoken simultaneously with the original speaker
(turn sharing, (Lerner, 2002)) and where the floor
changes in mid-utterance (collaborative turn se-
quences (Lerner, 2004) or split utterances (Purver
et al., 2009)). In this paper, a differentiation be-
tween the two cases is not important, as we only
deal with the question of when to start speaking
(for the previously non-speaking system) and not the
question of whether the current turn owner will stop
speaking. Moreover, whether the other speaker will
stop is beyond the system’s control. Lerner (2004)
distinguishes turn co-optation, in which a listener
joins in to come first and win the floor, and turn co-
completion, in which the completion is produced in
chorus. Both of these phenomena relate to the cur-
rent speaker’s speech: either to match it, or to beat
it. While we focus on matching in this work, the
methods described similarly apply to co-optation.

As Lerner (2002) notes, attributing this view to
Sacks et al. (1974), simultaneous speech in conver-
sation is often treated exclusively as a turn taking
problem in need of repair. This is exactly the point
of view taken by current spoken dialogue systems,
which avoid overlap and interpret all simultaneous
speech as barge-in, regardless of content. However,
Lerner (2002) also notes that simultaneous speech
systematically occurs without being perceived as a
problem, e. g. in greetings, or when saying good bye,
which are relevant sub-tasks in deployed SDSs.

Two corpus studies are available which investi-
gate split utterances and their frequency: Skuplik
(1999) looked at sentence cooperations in a corpus
of task-oriented German (Poesio and Rieser, 2010)
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and found 3.4 % of such utterances. Purver et al.
(2009) find 2.8 % of utterance boundaries in the BNC
(as annotated by Ferndndez and Ginzburg (2002))
to meet their definition of utterances split between
speakers. Thus, while the absolute frequency may
seem low, the phenomenon does seem to occur con-
sistently across different languages and corpora.
Local (2007) describes phonetic characteristics at
utterance splits (he calls the phenomenon turn co-
construction) which distinguish them from regular
turn handovers, namely temporal alignment and close
prosodic integration with the previous speaker’s utter-
ance. In this paper, we focus on the temporal aspects
(both alignment and speech rate) when realizing turn
completions, leaving pitch integration to future work.
Cummins (2009) analyses speech read aloud by
two subjects at the same time (which he calls syn-
chronous speech): Synchrony is slightly better in a
live setting than with a subject synchronizing to a
recording of speech which was itself spoken in syn-
chrony and this is easier than to a recording of uncon-
strained speech. Cummins (2009) also experiments
with reduced stimuli: eliminating fy-contour had no
significant impact on synchrony, while a carrier with-
out segmental information (but including fy-contour)
fared significantly better than speaking to an uninfor-
mative hiss. (The first sentence of each recording was
always left unmodified, allowing subjects to estimate
speech rate even in the Hiss condition.) Thus, pitch
information does not seem necessary for the task but
may help in the absence of segmental information.
On a more technical level and as mentioned above,
much work has been put into speeding up end-of-
turn detection and reducing processing lags at turn
changes (Raux and Eskenazi, 2009) and more re-
cently into end-of-turn prediction: Ward et al. (2010)
present a model of turn-taking which estimates the
remaining duration of a currently ongoing turn. We
extend the task to predicting the remaining duration
of any currently ongoing word in the turn. Of course,
for this to be possible, words must be recognized
while they are still being uttered. We have previ-
ously shown (Baumann et al., 2009) that this can be
achieved with incremental ASR for the vast major-
ity of words and with an average of 102 ms between
when a word is first recognized and the word’s end.
As mentioned above, our work relies on other in-
cremental components to form a meaningful, turn



completing application and such components are be-
ing developed: Incremental understanding is well un-
derway (Sagae et al., 2009; Heintze et al., 2010), as is
decision making on whether full understanding of an
utterance has been reached (DeVault et al., 2009), and
Purver et al. (2011) present an incremental semantics
component aimed explicitly at split utterances. In
fact, DeVault et al. (2009) provide exactly the coun-
terpart to our work, describing a method that, given
the words of an ongoing utterance, decides when the
point of maximum understanding has been reached
and with what words this utterance is likely to end.
However, in their system demonstration, Sagae et al.
(2010) use short silence time-outs to trigger system
responses. Our work eliminates the need for such
time-outs.

Hirasawa et al. (1999) present a study where im-
mediate, overlapping back-channel feedback from
the system was found to be inferior to acknowledg-
ing information only after the user’s turn. However,
they disregarded the back-channels’ micro-temporal
alignment as explored in this study (presumably pro-
ducing back-channels as early as possible), so their
negative results cannot be taken as demonstrating a
general shortcoming of the interactional strategy.

3 The Task

The general task that our timing component tackles
is illustrated in Figure 1. The component is triggered
into action when an understanding module signals
that (and with what words) a turn should be com-
pleted. At this decision point, our component must
estimate (a) when the current word ends and (b) how
the user will speak the predicted continuation. Ide-
ally, the system will start speaking the continuation
precisely when the next word starts and match the
user’s speech as best as possible. Thus, our compo-
nent must estimate the time between decision point
and ideal onset (which we call holding time) and the
user’s speech rate during the following words.

In order for the system to be able to produce a
continuation (“five six seven” in Figure 1) in time,
of course the decision point must come sufficiently
early (i. e. during “four”) to allow for a completion
to be output in due time. This important precondition
must be met by-and-large by the employed ASR.
However, it is not a strict requirement: If ASR results
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decision point (the
current point in time)

User: [ one I two Ithreel four | five i six | seven

(Cfive [six | seven ]

\"Vj

reference for a) estimate b) estimate
estimation holding time  speech rate to

¢ T be synthesized

\ Duration Model \

System:

Figure 1: The task: When notified that the ongoing utter-
ance should be completed with “five six seven” after the
word “four”, the first three words are used to (a) estimate
the remaining duration of “four” and to (b) estimate the
speech rate for the completion.

are lagging behind, the timing component’s estimated
holding time should turn negative. Depending on the
estimated lag, a completion can be suppressed or,
if it is small, fairly good completions can still be
realized by shortening the first (few) phonemes of
the completion to be synthesized.

We will now present our overall system before
describing two strategies we developed for solving
the task just described, and further on present the
experiments we conducted with the system and their
results in Sections 5 and 6.

4 System Description

Our system is based on the InproTK toolkit for in-
cremental spoken dialogue systems (Schlangen et
al., 2010) which uses Sphinx-4 (Walker et al., 2004)
and MaryTTS (Schroder and Trouvain, 2003) as un-
derlying ASR and TTS engines, respectively. The
core of our system is a component that incrementally
receives rich speech recognition input (words, their
durations and a pitch track) from an incremental ASR
and computes the timing of completions.

When receiving a new word from ASR, our com-
ponent queries an understanding component whether
a completion can be predicted, and if so, whether
such a completion should be performed. In order to
not duplicate the work of DeVault et al. (2009), we
use a mock implementation of an understanding mod-
ule, which actually knows what words are going to be
spoken (from a transcript file) and aims to complete
after every word spoken.

We have implemented two strategies for the timing
module, which we will describe in turn, after first
discussing a simple baseline approach.



Baseline: Speak Immediately A first, very simple
approach for our timing component is to never wait
between the decision point and outputting a comple-
tion right away. We believe that this was the strategy
taken by Hirasawa et al. (1999) and we will show in
our evaluation in Section 6.2 that it is not very good.

Strategy 1: Estimating ASR Lookahead In our
ASR-based strategy (illustrated in Figure 2, top) the
system estimates what we call its lookahead rate,
i.e. the average time between when a word is first
recognized by ASR and the word’s end in the signal.
This lookahead is known for the words that have been
recognized so far and the average lookahead can then
be used as an estimate of the remaining duration
of the word that is currently being detected (i. e. its
holding time). Once the currently spoken word is
expected to end, the system should start to speak.

The strategy just described, as well as the baseline
strategy, only solve half of the task, namely, when the
continuation should be started, but not the question
of how to speak, which we will turn to now. Both
sub-tasks can be solved simultaneously by estimating
the speech rate of the current speaker, based on what
she already said so far, and considering this speech
rate when synthesizing a completion. Speech rate
estimation using some kind of duration model thus
forms the second strategy’s main component. For the
purpose of this work, we focus on duration models
in the context of TTS, where they are used to assign
durations to the phones to be uttered. Rule-based
approaches (Klatt, 1979) as well as methods using
machine learning have been used (primarily CART
(Breiman et al., 1984)); for HMM-based speech syn-
thesis, durations can be generated from Gaussian
probability density functions (PDFs) (Yoshimura et
al., 1998). We are not aware of any work that uses
duration models to predict the remaining time of an
ongoing word or utterance.

In our task, we need the duration model to make
estimations based on limited input (instead of pro-
viding plausibility ratings as in most ASR-related
applications). As it turns out, a TTS system in itself
is an excellent duration model because it potentially
ponders all kinds of syntactic, lexical, post-lexical,
phonological and prosodical context when assigning
durations to words and their phones. Also, our task
already involves a TTS system to synthesize the turn
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Figure 2: Our strategies to estimate holding time (when to
speak), and speech rate (how to speak; only Strategy 2).

completion — in our case MaryTTS (Schroder and
Trouvain, 2003). The durations can be accessed in
symbolic form in MaryTTS, and the system allows
to manipulate this information prior to acoustic syn-
thesis. Depending on which voice is used, MaryTTS
uses machine-learned duration models (CART or
PDFs) or an optimized version of Klatt’s (1979) rules
which have been shown to perform only marginally
worse than the CART-based approach (Brinckmann
and Trouvain, 2003).

Strategy 2: Analysis-by-Synthesis As just de-
scribed, we hence employ the TTS’ duration model
in an analysis-by-synthesis approach in this second
strategy, as illustrated in Figure 2 (bottom): When
triggered to complete an ongoing utterance, we query
the TTS for the durations it would assign to a produc-
tion of the predicted full utterance, i. e. the prefix that
was heard plus the predicted continuation of the turn.
In that way, the TTS can take the full utterance into
account when assigning prosodic patterns which may
influence durations. We then compute the factor that
is needed to scale the TTS’s duration of the words
already finished by the user (in the example: “one
two three”) to the duration of the actual utterance
and apply this scaling factor to the remaining words
in the synthesized completion. We can then read off
the expected duration of the currently spoken word
from the scaled TTS output and, by subtracting the
time that this word is already going on, find out the
holding time. Similarly, the completion of the turn
which is now scaled to match the user’s speech rate
can be fed back to the synthesis system in order to
generate the acoustic waveform which is to be output
to the speakers once the system should start to speak.



5 Corpus and Experiment Setup

In order to evaluate the accuracy of the individual
components involved in the specific subtasks, we
conducted a controlled offline experiment. We have
not yet evaluated how actual users of our system
would judge its performance at outputting collabora-
tive completions.

As evaluation corpus we use recordings of the
German version of the story The North Wind and
the Sun (IPA, 1999) from the Kiel Corpus of Read
Speech (IPDS, 1994). The story (including title)
consists of 111 words and is read by 16 speakers,
giving a total of 1776 words in 255 inter-pausal-units
(IPUs), altogether resulting in about 12 minutes of
speech. (In the following, we will equate “turns” with
IPUs, as our corpus of read speech does not contain
true turns.) Words and phones in our corpus have
a mean/median/std dev duration of 319/290/171 ms
and 78/69/40 ms, respectively.

We assume that every word can be a possible com-
pletion point in a real system, hence we evaluate the
performance of our timing component for all words
in the corpus. (This generalization may have an in-
fluence on our results: real collaborative completions
are sometimes invited by the speaker, probably by
giving cues that might simplify co-completion; if that
is true, the version tackled here is actually harder than
the real task.)

Good turn completions (and good timings) can
probably only be expected in the light of high ASR
performance. We trained a domain-specific language
model (based on the test corpus) and used an acous-
tic model trained for conversational speech which
was not specifically tuned for the task. The resulting
WER is 4.2 %. While our results could hence be con-
sidered too optimistic, Baumann et al. (2009) showed
that incremental metrics remained stable in the light
of varying ASR performance. We expect that lower
ASR performance would not radically change pre-
diction quality itself; rather, it would have an impact
on how often continuations could be predicted, since
that is based on correct understanding of the prefix
of the utterance, limiting the amount of data points
for our statistics.

Even though we simulated the understanding and
prediction module, we built in some constraints that
are meant to be representative of real implementa-
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tions of such a module: it can only find the right
completion if the previous two words are recognized
correctly and the overall WER is lower than 10 %.
(Coming back to Figure 1, if the system had falsely
recognized “on two three”, no completion would
take place: Even though the last two words “two
three” were recognized correctly, the WER between
“on two three” and “one two three” is too high.) Un-
der this constraint, the timing component generated
data for 1100 IPU-internal and 223 IPU-final words
in our corpus.

The main focus of this paper is turn completion and
completions can only take place if there is something
left to complete (i.e. after turn-internal words). It
is still useful to be able to predict the duration of
turn-final words, though, as this is a prerequisite for
the related task of timing speaker changes. For this
reason, we include both turn-internal and turn-final
words in the analyses in Section 6.2.

In the evaluation, we use the ASR’s word align-
ments from recognition as gold standard (instead of
e. g. hand-labelled timings), which are essentially
equal to output from forced alignment. However,
when evaluating how well our timing component pre-
dicts the following word’s duration, we need that
word to also be correctly recognized by ASR. This
holds for 1045 words in our corpus, for which we
report results in Section 6.3.

6 Results

We evaluate the timing of our system with regards to
whether completions are possible in general, when a
completion should be produced, and what the speech
rate of the completion should be in the subsections
below.

6.1 Availability of Time to Make a Decision

While it is strictly speaking not part of the timing
component, a precondition to being able to speak
Jjust-in-time 1is to ponder this decision sufficiently
early as outlined above.

Figure 3 shows a statistic of when our ASR first
hypothesizes a correct word relative to the word’s
end (which can be determined post-hoc from the
final recognition result) on the corpus. Most words
are hypothesized before their actual endings, with a
mean of 134 ms (median: 110 ms) ahead. This leaves
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Figure 3: Statistics of when decisions can be first taken
relative to the word’s end (determined post-hoc).

enough lookahead to synthesize a completion and
for some delays that must be taken into account for
input and output buffering in the sound card, which
together take around 50 ms in our system.

Interestingly, lookahead differs widely for the
speakers in our corpus with means between 97 and
237 ms. As can be seen in Figure 3, some words are
only hypothesized after the fact, or at least too late
to account for the inevitable lags, which renders im-
possible successful turn-completions following these
words. However, the timing component should know
when it is too late — the holding time should be nega-
tive — and could either not output the completion at
this point or e. g. back off to setting in one or more
phones or syllables later (actually, back off until the
holding time turns positive).

6.2 When to Start Speaking

We evaluate the strategies from Section 4 by com-
paring the predicted holding times with the ideal
holding time, i.e. the time necessary to match the
ASR’s lookahead.

Figure 3 can also be taken as depicting the error
distribution of our baseline strategy to find out when
to start a completion: on average, the completion
will be early by 134 ms if it is uttered immediately
and the distribution is somewhat skewed. An unbi-
ased baseline strategy is obtained by subtracting the
global mean from the holding times. This however re-
quires the mean to be known in advance and is hence
inflexible: the global mean may very well be differ-
ent for other data sets as it already differs between
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error distribution metrics (in ms)

model mean median stddevn = MAE
baseline: all -134 -110 107 110
baseline — 0 23 107 63
ASR-based : all -2 19 105 60
IPU-internal 26 33 82 51
IPU-final -148 -143 87 142
TTS-based : all -3 4 85 45
IPU-internal 12 11 77 41
IPU-final -78 -76 83 79

Table 1: Descriptive statistics of the error distributions
over estimated onset times for different duration models.

speakers in our corpus. The two other strategies’ er-
ror distributions are less skewed, so we just report
the distributions’ mean, median, and standard devi-
ation,! as well as the median absolute error (MAE)
for the ASR-based, the TTS-based and the baseline
strategies in Table 1.

As can be seen in Table 1, both strategies are
similarly effective in predicting the average remain-
ing time of a currently uttered word, reducing the
mean error close to zero, a significant improvement
over starting a completion or next turn immediately.
(ANOVA with post-hoc Tukey’s honest significance
differences test.) While our two approaches perform
similarly when comparing the performance for all
words, there actually are differences when looking
separately at IPU-internal and IPU-final words. In
both cases the TTS-based approach has a significantly
lower bias (paired Student’s t-tests, p < 0.01).

The bias of both strategies differs depending on
whether the current word is IPU-internal or -final.
We believe this to be due to final lengthening: phones
are about 40 % longer in IPU-final words. This is not
captured by the ASR-based strategy and the length-
ening may be stronger than what is predicted by the
pronunciation model of the TTS we use.

A low standard deviation of the error distribution
is probably even more important than a low mean
error, as it is variability, or jitter, that makes a system
unpredictable to the user. While there is no signifi-
cant improvement of the ASR-based approach over
the baseline, the TTS-based approach significantly
outperforms the other approaches with a 20 % re-

"'We prefer to report mean and stddev for bias and jitter
separately; notice that RMSE= \/u? + o2.



error distribution metric (in ms)

task mean median stddev MAE
TTS-based : duration -5 4 75 45
+ ASR-based : onset 26 33 82 51
=end of word 25 30 100 81

+ TTS-based : onset 12 11 77 41
=end of word 7 10 94 74

Table 2: Descriptive statistics of the error distributions for
the first spoken word of a completion.

duction of jitter down to about the average phone’s
length (Browne-Forsythe’s modified Levene’s test,
p < 0.001).

Regarding human performance in synchronous
speech, Cummins (2002) reports an MAE of 30 ms for
the synchronous condition. However, MAE increased
to 56 ms when synchronizing to an (unsynchronously
read) recording, a value which is in the range of our
results (and with our system relying on similar input).

6.3

As explained in the task description, knowing when
to speak is only one side of the medal, as a turn
completion itself must be integrated with the previ-
ous speech in terms of duration, prosodic shape and
loudness.

Only our TTS-based strategy is capable of out-
putting predictions for a future word; our ASR-based
approach does not provide this information. How-
ever, both duration and onset estimation (the next
onset is identical to the end of the current word as
estimated in Section 6.2) together determine the error
at the word’s end. Hence, we report the error at the
next word’s end for the TTS strategy’s duration esti-
mate combined with both strategies’ onset estimates
in Table 2.

Duration prediction for the next word with the
TTS-based strategy works similarly well as for on-
going words (as in Section 6.2), with an MAE of
45 ms (which is again in the range of human perfor-
mance). However, for the next word’s end to occur
when the speaker’s word ends, correct onset estima-
tion is just as important. When we combine onset
estimation with duration prediction, errors add up
and hence the error for the next word’s end is some-
what higher than for either of the tasks alone, with a
standard deviation of 94 ms and an MAE of 74 ms for
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the TTS-based model, which again outperforms the
ASR-based model.

So far, we have not evaluated the matching of
prosodic characteristics such as loudness and intona-
tion (nor implemented their prediction). We believe
that simple matching (as we implemented for onset
and speech rate) is not as good a starting point for
these as they are more complex. Instead, we believe
these phenomena to mostly depend on communica-
tive function, e. g. a co-optation having a wide pitch-
range and relatively high loudness regardless of the
current speaker’s speech. Additionally, pitch-range
would have to be incrementally speaker-normalized
which results in some implementation difficulties.?

7 Demo Application: Shadowing

To get a feeling for the complete system and to
demonstrate that our timing component works on
live input, we implemented a shadowing application
which completes — or rather shadows — a user utter-
ance word-by-word. Given the prediction for the next
word’s onset time and duration it prepares the output
of that next word while the user is still speaking the
preceding word. As the application expects to know
what the user is going to speak, the user is currently
limited to telling the story of North Wind and the
Sun.

Two examples of shadowings are shown in Ap-
pendix A.> As can be seen in the screenshots, the
decision points for all words are sufficiently early
before the next word, allowing for the next word’s
output generation to take place. Overall, shadowing
quality is good, with the exception of the second “die”
in the second example. However, there is an ASR
error directly following (“aus” instead of “/uft”) and
the ASR’s alignment quality for “sonne die” is al-
ready sub-optimal. Also, notice that the two words
following the ASR error are not shadowed as per our
error recovery strategy outlined in Section 5.

Edlund and Heldner (2007) report that for a reliable pitch-
range estimation 10 to 20 seconds of voiced speech and hence —
in our view — twice the amount of audio is necessary. This would
have reduced our corpus size by too much.

3 Audio files of the examples are available at http: //www.
ling.uni-potsdam.de/~timo/pub/shadowing/.



8 Discussion and Future Work

We described the task of micro-timing, or micro-
aligning a system response (in our case a turn com-
pletion and shadowing a speaker) to the user’s speech
based on incremental ASR output and with both ASR
and symbolic TTS output as duration models to pre-
dict when and how a completion should be uttered.

We have shown first of all, that a completion is pos-
sible after most words, as an incremental ASR in a
small-enough domain can have a sufficient lookahead.
Additionally, we have shown that the TTS-based du-
ration model is better than both the baseline and the
ASR-based model. Both the next word’s onset and
duration can be predicted relatively well (o = 77 ms
and 0 = 75 ms, respectively), and within the mar-
gin of human performance in synchronously reading
speech. It is interesting to note here that synchronous
speech is simplified in prosodic characteristics (Cum-
mins, 2002), which presumably facilitates the task.
Errors in speech rate estimation add up, so that the
deviation at the next word’s end is somewhat higher
(0 = 94 ms). Deviation will likely increase for longer
completions, underlining the need for an incremen-
tal speech synthesis system which should allow to
instantly adapt output to changes in speech rate, con-
tent, and possibly sentiment of the other speaker.

Clearly, our duration modelling is rather simplistic
and could likely be improved by combining ASR and
TTS knowledge, more advanced (than a purely lin-
ear) mapping when calculating relative speech rate,
integration of phonetic and prosodic features from
the ASR, and possibly more. As currently imple-
mented, improvements to the underlying TTS sys-
tem (e. g. more “conversational” synthesis) should
automatically improve our model. The TTS-based
approach integrates additional, non-ASR knowledge,
and hence it should be possible to single out those
decision points after which a completion would be es-
pecially error-prone, trading coverage against quality
of results. Initial experiments support this idea and
we would like to extend it to a full error estimation
capability.

We have focused the analysis of incrementally
comparing expected to actual speech rate to the task
of micro-aligning a turn-completion and shadowing a
speaker. However, we believe that this capability can
be used in a broad range of tasks, e. g. in combination
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with word-based end-of-turn detection (Atterer et al.,
2008) to allow for swift turn taking. In fact, precise
micro-alignment of turn handovers could be used for
controlled testing of linguistic/prosodic theory such
as the oscillator model of the timing of turn-taking
(Wilson and Wilson, 2005).

Finally, duration modelling can be used to quickly
detect deviations in speech rate (which may indicate
hesitations or planning problems of the user) as they
happen (rather than post-hoc), allowing to take the
speaker’s fluency into account in understanding and
turn-taking coordination as outlined by Clark (2002).
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Appendix A Examples of Shadowing
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ZCFDil ‘ ‘ | ‘ | | | ‘ ‘

J— ‘ die| ‘ diE| | mit| ‘ frEundli:‘hEn|

sxtwos | sonne| | Tut| | ihren| | strahlen

Figure 4: Example of shadowing for a file in our corpus (k73nord2). The first line of labels shows the final ASR output,
the second line shows the decision points for each word and the third and fourth lines show the system’s output (planned
output may overlap, hence two lines; in the system, an overlapped portion of a word is replaced by the following word’s
audio).
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Figure 5: Example of shadowing with live input (verena2nord2). Notice that “Luft” is predicted and synthesized
although it is (later) misunderstood by ASR as “aus”, resulting in a missing shadowing of “mit” and “ihren”. In order
to not disturb the speaker, the system’s audio output was muted.
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Abstract

This paper provides a first assessment of a sta-
tistical dialog system in public use. In our di-
alog system there are four main recognition
tasks, or slots — bus route names, bus-stop lo-
cations, dates, and times. Whereas a conven-
tional system tracks a single value for each slot
— i.e., the speech recognizer’s top hypothesis
— our statistical system tracks a distribution
of many possible values over each slot. Past
work in lab studies has showed that this distri-
bution improves robustness to speech recog-
nition errors; but to our surprise, we found
the distribution yielded an increase in accu-
racy for only two of the four slots, and actu-
ally decreased accuracy in the other two. In
this paper, we identify root causes for these
differences in performance, including intrin-
sic properties of N-best lists, parameter set-
tings, and the quality of statistical models. We
synthesize our findings into a set of guidelines
which aim to assist researchers and practition-
ers employing statistical techniques in future
dialog systems.

1 Introduction

Over the past decade, researchers have worked to ap-
ply statistical techniques to spoken dialog systems,
and in controlled laboratory studies, statistical di-
alog systems have been shown to improve robust-
ness to errors compared to conventional approaches
(Henderson and Lemon, 2008; Young et al., 2010;
Thomson and Young, 2010). However, statistical
techniques have not yet been evaluated in a publicly
deployed system, and real users behave very differ-
ently to usability subjects (Raux et al., 2005; Ai et
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al., 2008). So there is an important open question
whether statistical dialog systems improve perfor-
mance with real users.

This paper provides a first evaluation of a publi-
cally deployed statistical dialog system, AT&T Let’s
Go (Williams et al., 2010). AT&T Let’s Go pro-
vides bus times for Pittsburgh, and received approx-
imately 750 calls from real bus riders during the
2010 Spoken Dialog Challenge (Black et al., 2010).
AT&T Let’s Go is based on a publicly available
toolkit (Williams, 2010a) and achieved the highest
rates of successful task completion on real callers in
the challenge, so it provides a relevant exercise from
which to draw inferences.

AT&T Let’s Go collected four types of informa-
tion, or slots: bus route names, bus-stop names,
dates, and times. For each slot, we measured turn-
level accuracy of the deployed statistical system and
compared it to accuracy without application of the
statistical techniques (i.e., the top speech recogni-
tion result).

To our surprise, we found that statistical tech-
niques appeared to improve accuracy for only two of
the four slots, and decreased accuracy for the other
two. To investigate this, we considered four mech-
anisms by which statistical methods can differ from
the top speech recognition result. Analyzing the ef-
fects of each mechanism on each slot enables un-
derlying causes to be identified: for example, one
mechanism performed exceptionally well when its
statistical models was well matched to usage data,
but rather poorly when its model diverged from real
usage. We believe this analysis — the focus of this
paper — is relevant to researchers as well as practi-
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tioners applying statistical techniques to production
systems.

In this paper, Section 2 reviews the operation of
statistical spoken dialog systems. Section 3 then
describes the AT&T Let’s Go dialog system. Sec-
tion 4 reports on overall accuracy, then analyzes the
underlying reasons for accuracy gains and losses.
Section 5 tackles how well error in the belief state
can be identified compared to speech recognition er-
rors. Section 6 concludes by summarizing lessons
learned.

2 Statistical dialog systems

Statistical dialog systems maintain a distribution
over a set of hidden dialog states. A dialog state
includes information not directly observable to the
dialog system, such as the user’s overall goal in the
dialog or the user’s true action (e.g., the user’s true
dialog act). For each dialog state s, a posterior prob-
ability of correctness called a belief is maintained
b(s). The set of hidden dialog states and their be-
liefs is collectively called the belief state, and up-
dating the belief state is called belief tracking. Here
we will present belief tracking at a level sufficient
for our purposes; for a more general treatment, see
(Williams and Young, 2007).

At the start of the dialog, the belief state is initial-
ized to a prior distribution by(s). The system then
takes an action a, and the user takes an action in
response. The automatic speech recognizer (ASR)
then produces a ranked list of IV hypotheses for the
user’s action, u = (uq,...,uy), called an N-best
list. For each N-best list the ASR also produces a
distribution P,y (u) which assigns a local, context-
independent probability of correctness to each item,
often called a confidence score. The belief state is
then updated:

V(s) =k Pas(u)Pactluls,a)b(s) (1)

where P, (u|s, a) is the probability of the user tak-
ing action u given the dialog is in hidden state s and
the system takes action a. k is a normalizing con-
stant.

In practice specialized techniques must be used to
compute Eq 1 in real-time. The system in this paper
uses incremental partition recombination (Williams,
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2010b); alternatives include the Hidden Information
State (Young et al., 2010), Bayesian Update of Dia-
log States (Thomson and Young, 2010), and particle
filters (Williams, 2007). The details are not impor-
tant for this paper — the key idea is that Eq 1 synthe-
sizes a prior distribution over dialog states together
with all of the ASR N-best lists and local confidence
scores to form a cumulative, whole-dialog poste-
rior probability distribution over all possible dialog
states, b(s).

In the system studied in this paper, slots are
queried separately, and an independent belief state is
maintained for each. Consequently, within each slot
user actions u and hidden states s are drawn from
the same set of slot values. Thus the top ASR result
u; represents the ASR’s best hypothesis for the slot
value in the current utterance, whereas the top dia-
log state arg maxg b(s) = s* represents the belief
state’s best hypothesis for the slot value given all of
the ASR results so far, a prior over the slot values,
and models of user action likelihoods. The promise
of statistical dialog systems is that s* will (we hope!)
be correct more often than w;. In the next section,
we measure this in real dialogs.

3 AT&T Let’s Go

AT&T Let’s Go is a statistical dialog system that
provides bus timetable information for Pittsburgh,
USA. This system was created to demonstrate a
production-grade system built following practices
common in industry, but which incorporates two sta-
tistical techniques: belief tracking with the AT&T
Statistical Dialog Toolkit (Williams, 2010a), and
regression-based ASR confidence scores (Williams
and Balakrishnan, 2009).

As with most commercial dialog systems, AT&T
Let’s Go follows a highly directed flow, collecting
one slot at a time. There are four types of slots:
ROUTE, LOCATION, DATE, and TIME. The sys-
tem can only recognize values for the slot being
queried, plus a handful of global commands (“re-
peat”, “go back”, “start over”, “goodbye”, etc.) —
mixed initiative and over-completion were not sup-
ported. As mentioned above, an independent belief
state is maintained for each slot: this was an inten-
tional design decision made in order to use statistical
techniques within current commercial practices.



The system opens by asking the user to say a bus
ROUTE, or to say “I’m not sure.” The system next
asks for the origin and destination LOCATIONS. The
system then asks if the caller wants times for the
“next few buses”; if not, the system asks for the
DATE then TIME in two separate questions. Finally
bus times are read out.

After requesting the value of a slot, the system re-
ceives an N-best list, assigns each item a confidence
score Py (u), and updates the belief in (only) that
slot using Eq 1. The top dialog hypothesis s* and
its belief b(s*) are used to determine which action
to take next, following a hand-crafted policy. This is
in contrast to a conventional dialog system, in which
the top ASR result and its confidence govern dialog
flow. Figure 6 shows the design of AT&T Let’s Go.

In the period July 16 — August 16 2010, AT&T
Let’s Go received 742 calls, of which 670 had one
or more user utterances. These calls contained a
total of 8269 user utterances, of which 4085 were
in response to requests for one of the four slots.
(The remainder were responses to yes/no questions,
timetable navigation commands like “next bus”,
etc.)

Our goal in this paper is to determine whether
tracking a distribution over multiple dialog states
improved turn-level accuracy compared to the top
ASR result. To measure this, we compare the accu-
racy of the top belief state and the top ASR result. A
transcriber listened to each utterance and marked the
top ASR hypothesis as correct if it was an exact lex-
ical or semantic match, or incorrect otherwise. The
same was then done for the top dialog hypothesis in
each turn.

Accuracy of the top ASR hypothesis and the top
belief state are shown in Table 1, which indicates
that belief monitoring improved accuracy for ROUTE
and DATE, but degraded accuracy for LOCATION and
TIME. We had hoped that belief tracking would im-
prove accuracy for all slots; seeing that it hadn’t
prompted us to investigate the underlying causes.

4 Belief tracking analysis

When an ASR result is provided to Eq 1 and a new
belief state is computed, the top dialog state hypoth-
esis s* may differ from top ASR result u;. For-
mally, these differences are simply the result of eval-
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Slot \ ROUTE LOCATION DATE TIME

Utts 1520 2235 173 157
ASR 769 1326 124 80
correct | 50.6% 59.3% 71.7% 51.0 %
Belief 799 1246 139 63
correct | 52.6% 55.7% 80.3% 40.1%
Belief +30 -80 +15 -17
— ASR | +2.0% -3.6% +8.7% -10.8%

Table 1: Accuracy of the top ASR result and top be-
lief state. LOCATION includes both origin and des-
tination utterances. Most callers requested the next
bus so few were asked for DATE and TIME.

uating this equation. However, intuitively there are
four mechanisms which cause differences, and each
difference can be explained by the action of one or
more mechanisms. These mechanisms are summa-
rized here; the appendix provides graphical illustra-
tions. !

e ASR re-ranking: When computing a con-
fidence score P (u), it is possible that the
entry with the highest confidence u* =
arg max, Py (u) will not be the first ASR re-
sult, u; # u*. In other words, if the confidence
score re-ranks the N-best list, this may cause s*
to differ from u; (Figure 7).

e Prior re-ranking: Statistical techniques use a
prior probability for each possible dialog state
— in our system, each slot value — by(s). If an
item recognized lower-down on the N-best list
has a high prior, it can obtain the most belief,
causing s* to differ from w; (Figure 8).

e Confidence aggregation: If the top belief
state s* has high belief, then subsequent low-
confidence recognitions which do not contain
s* will not dislodge s* from the top position,
causing s* to differ from u; (Figure 9).

o N-best synthesis: If an item appears in two N-
best lists, but is not in the top ASR N-best posi-
tion in the latter recognition, it may still obtain
the highest belief, causing s* to differ from u;
(Figure 10).

This taxonomy was developed for belief tracking over a
single slot. For systems which track joint beliefs over multiple
slots, additional mechanisms could be identified.
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Figure 1: Differences in accuracy between ASR and belief monitoring. “Baseline” indicates accuracy among
utterances where belief monitoring had no effect — where ASR and belief monitoring are both correct, or
both incorrect. Blue bars show cases where the top belief state s* is correct and the top ASR result w; is
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deployment.

We selected utterances where the correctness of the
top ASR result and top dialog hypothesis differed —
where one was correct and the other was not — and
labeled these by hand to indicate which of the four
mechanisms was responsible for the difference. In
a few cases multiple mechanisms were responsible;
these were labeled with the first contributing mech-
anism in the order listed above.

Figures 1 shows results. Of the four mechanisms,
prior re-ranking occurred most often, and confidence
aggregation occurred least often. Interestingly, some
mechanisms provided a performance gain for certain
slots and a degradation for others. This led us to look
at each mechanism in detail.
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4.1 Evaluation of ASR Re-ranking

The recognizer used by AT&T Let’s Go produced an
N-best list ordered by decoder cost. After decoding,
a confidence score was assigned to each item on the
N-best list using a regression model that operated on
features of the recognition (Williams and Balakrish-
nan, 2009). The purpose of this regression was to
assign a probability of correctness to each item on
the N-best list; while it was not designed to re-rank
the N-best list, the design of this model did allow it
to assign a higher score to the n = 2 hypothesis than
the n = 1 hypothesis. When this happens, we say
the N-best list was re-ranked. Table 2 shows how
often ASR re-ranking occurred, and how often the
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Figure 2: Cumulative distribution of the position
of the correct item on N-Best lists for the ROUTE
when the correct item is in position 2... N. Depth
is shown as a fraction of the N-Best list length.

ASR re-ranking helped and hurt ASR accuracy. We
found that re-ranking degraded ASR accuracy for all
slots, except DATE where it had a trivial positive im-
pact. This suggested a problem with our confidence
score; examining ROUTE, LOCATION, and TIME we
found that the distributions used by the confidence
score that apportions mass to items 2 ... N were far
more concentrated on the N=2 entry than observed
in deployment (Figure 2). Investigation revealed a
bug in the model estimation code for these slots.

Where ASR re-ranking decreased ASR accuracy,
we’d expect to see it also decrease belief state ac-
curacy. Indeed, for the TIME slot, ASR re-ranking
causes a substantial decrease in belief state accu-
racy, highlighting the importance of an accurate con-
fidence score to statistical techniques. However, for
the ROUTE slot, we see an increase in belief state ac-
curacy attributed to ASR re-ranking. This can be ex-
plained by interaction between ASR re-ranking and
prior re-ranking, discussed next.

4.2 Evaluation of prior re-ranking

Whereas N-best re-ranking affects b/(s) via Py,
prior re-ranking affects b'(s) via the prior proba-
bility in a slot by(s) — i.e., the initial belief, at the
start of the dialog, for each value the slot may take.
If the slot’s prior is uniform (non-informative), we
expect to see no effect on accuracy due to the prior
— indeed, Figure 1 shows that priors had no effect
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on belief accuracy for DATE and TIME, which used
uniform priors.

ROUTE and LOCATION employed a non-uniform
prior, and here we’d expect to see a gain in perfor-
mance if the prior matches actual use. Both priors
were computed using a simple heuristic in which the
prior was proportional to the number of distinct bus-
stops on the route or covered by the location expres-
sion, smoothed with a smoothing factor. For exam-
ple, the phrase “downtown” covered 17 stops and its
prior was 0.018; the phrase “airport” covered 1 stop
and its prior was 0.00079. Even though historical us-
age data was available to Spoken Dialog Challenge
2010 participants (Parent and Eskenazi, 2010), we
instead chose to base priors on bus-stop counts as a
test of whether effective priors could be constructed
without access to usage data.

Overall the prior for ROUTE fit actual usage data
well (Figure 3), and we see a corresponding net gain
in belief accuracy of 3.7% = 4.0% — 0.3% in Fig-
ure 1. However the prior for LOCATION was a poor
match with actual usage (Figure 4), and this caused
a net degradation in belief accuracy of —0.9% =
0.5% — 1.4%. The key problem is that the heuris-
tic wrongly assumed all stops are equally popular:
for example, although the airport contained a sin-
gle stop (and thus received a very low prior), it was
very popular. This suggests that it would be better
to estimate priors based on usage data rather than
the bus-stop count heuristic. More broadly, it also
underscores the importance of accurate priors to sta-
tistical dialog techniques.

In the previous section, for ROUTE, it was ob-
served that ASR re-ranking degraded ASR accuracy,
yet caused an improvement in belief accuracy. The
effects of the prior explain this: the prior was often
stronger, such that an error introduced by ASR re-
ranking was cancelled by prior re-ranking. Exam-
ining cases where ASR re-ranking occurred but the
belief state was still correct confirmed this. Where
ASR re-ranking and prior re-ranking agreed, the
ASR re-ranking received credit. Looking at LOCA-
TION, the prior was essentially noise, so ASR re-
ranking errors could not be systematically canceled
by prior re-ranking in the same way — indeed, LO-
CATION belief accuracy was degraded by both ASR
re-ranking and prior re-ranking. More broadly, this
provides a nice illustration of how statistical tech-



Slot \ ROUTE LOCATION  DATE TIME
All utterances 1520 2235 173 157
Utterances with 505 305 3 40
ASR re-ranking 33.2% 13.6% 1.7%  25.5%
ASR re-ranked; N=2 correct 36 11 1 3
(ASR re-ranking helped) +2.4% +0.5 % +0.6 % +19%
ASR re-ranked; N=1 correct 63 33 0 9
(ASR re-ranking hurt) -4.1% -1.5% 0 % -5.7 %
Net gain from =27 -22 +1 -6
ASR re-ranking -1.8 % -1.0% +0.6% -3.8%

Table 2: ASR re-ranking.
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Figure 3: Modeled prior for ROUTE vs. observed
usage. The modeled prior was a relatively good pre-
dictor of actual usage.

niques can combine conflicting evidence — in this
case, from the prior and ASR.

4.3 Evaluation of confidence score aggregation

The conditions for confidence score aggregation oc-
cur somewhat rarely: for no slot did it have the great-
est effect on belief accuracy. It had the largest effect
on DATE; investigation revealed that belief scores for
DATE were relatively lower than for other slots (Ta-
ble 3). Since all slots used the same thresholds to
make accept/reject decisions, DATE had proportion-
ally more retries in which the top belief hypothesis
was correct, yielding more opportunities for confi-
dence aggregation to have an effect.

But why were belief values for DATE lower than
for other slots? Investigation revealed that a bug
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Figure 4: Modeled prior for LOCATION vs. ob-
served usage. The modeled prior was essentially
noise compared to actual usage.

Slot \ ROUTE LOCATION DATE TIME
Correct 0.90 0.89 0.60 0.73
Incorrect 0.52 0.59 0.34 0.53

Table 3: Average belief in the top dialog state hy-
pothesis when that hypothesis was correct or incor-
rect.

was causing priors for DATE to be nearly an or-
der of magnitude too small, so that each recognized
date was artificially improbable. As a result, DATE
effectively had a more stringent threshold for ac-
cept/reject decisions. Although caused by a bug, this
case study provides a more general illustration: ob-
taining sufficient belief to meet higher thresholds re-
quires more ASR evidence in the form of more re-



Slot \ ROUTE LOCATION DATE TIME

Average N-best list length 5.0 2.8 2.1 4.3
N-best accuracy 27.9% 10.6% 46.0% 34.7%

Average position of correct item (n > 1) 33 3.2 2.6 29

Table 4: Descriptive statistics for N-best lists. Average N-best list length indicates the average length of all
N-best lists, regardless of accuracy. N-best accuracy indicates how often the correct item appeared in any
position n > 1 among cases where the top ASR result n = 1 was not correct. Average position of correct
item refers to the average n among cases where the correct item appeared with n > 1.

tries.

4.4 Evaluation of N-best synthesis

For DATE, N-best synthesis had a large positive ef-
fect, TIME and LOCATION a small positive effect
(or no effect), and ROUTE a small negative effect.
N-best synthesis occurs when commonality exists
across N-best lists, so we next examined the N-best
lists for each slot.

Table 4 shows three key properties of the N-best
lists. ROUTE and DATE had the most extreme values:
ROUTE had the longest N-best lists, comparatively
poor N-best accuracy, and the correct item appeared
furthest down the N-best list. By contrast, DATE had
the shortest N-best lists, the best N-best accuracy,
and the correct item appeared closest to the top. LO-
CATION and TIME were between the two. This rela-
tive ordering aligns with the observed effect that N-
best synthesis had on belief accuracy, where DATE
enjoyed a large improvement and ROUTE suffered a
small degradation.

This correlation suggests that basic properties of
the N-best list govern the effectiveness of N-best
synthesis: when N-best lists are shorter, more of-
ten contain the correct answer, and when the correct
answer is closer to the top position, N-best synthesis
can lead to large gains. When N-best lists are longer,
less often contain the correct answer, and when the
correct answer is farther from the top position, N-
best synthesis can lead to small gains or even degra-
dations.

5 Identifying belief state errors

The analysis in the preceding section assessed the
accuracy of the belief state. In practice, a system
must decide whether to accept or reject a hypoth-
esis, so it is also important to evaluate the ability
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of the belief state to discriminate between correct
and incorrect hypotheses. We studied this by plot-
ting receiver operating characteristic (ROC) curves
for each slot, in Figure 5.

Where the belief state has higher accuracy
(ROUTE, DATE), the belief state shows somewhat
better ROC results, especially at higher false-accept
rates. However, gains in ROC performance appear
to be due entirely to gains in accuracy: In LOCA-
TION, belief tracking made nearly no difference to
accuracy, and the belief state shows virtually no dif-
ference to ASR in ROC performance. TIME suf-
fered degradations in both accuracy and ROC perfor-
mance. The trend appears to be that if belief tracking
does not improve over ASR 1-best, then it seems that
belief tracking does not enable better accept/reject
decision to made. Perhaps addressing the model de-
ficiencies mentioned above will improve discrimina-
tion — this is left to future work.

6 Conclusions

This paper has provided a first assessment of sta-
tistical techniques in a spoken dialog system under
real use. We have found that belief tracking is not
guaranteed to improve accuracy — its effects vary de-
pending on the operating conditions:

e Overall the effects of prior re-ranking and N-
best synthesis are largest; confidence aggrega-
tion has the smallest effect.

e When N-best lists are useful, N-best synthesis
can have a large positive effect (DATE); when
N-best lists are more noisy, N-best synthesis
has a small or even negative effect (ROUTE).

e In the presence of more rejection, confidence
aggregation can have a positive effect (DATE),
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made using its belief b(s*).

but otherwise plays a small role.

When there exists an informative prior and it is
estimated correctly, prior re-ranking produces
an accuracy gain (ROUTE); when estimated
poorly, it degrades accuracy (LOCATION).

The belief state, at least when using our current
models, improves accept/reject decisions only
when belief tracking produces a gain in accu-
racy over ASR. Absent an accuracy increase,
the belief state is no more informative than a
good confidence score for making accept/reject
decisions.

We believe these findings validate that statistical
techniques — properly employed — have the capabil-
ity to improve ASR robustness under real use. This
paper has focused on descriptive results; in future
work, we plan to test whether correcting the model
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deficiencies and re-running belief tracking does in-
deed improve performance. For now, we hope that
this work serves as a guide to practitioners building
statistical dialog systems, providing some instruc-
tion on the importance of accurate model building,
and examples of the effects of different design deci-
sions.
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schedules for that route.
Where are you 3‘ _ Tellme just the East
leaving from? Pittsburgh
(quer DB) O Iheard Avalon, but neighborhoodyou're Origin
query Idon't have any g. y beliefstate
. leaving from.
stopsin that
neighborhood.
e
Where are you _~ Tellme just the East
. 5 .
going to: I heard Bellevue, Plthburgh . .
(query DB) , neighborhoodyou're Destination
but 1 don't have any oing to belief state
routes that run from going to.
downtown to
Bellevue.
Do you want times for the x/’_/ > Say just the day you Date
next few buses? want. beliefstate
) & Say just the time you Time
(query DB) @ want. beliefstate
Optional: There are more
buses than the 61C that
run from Downtown to I'm sorry, | can't find
Dusquesne. ['ll tell you any buses at all that
about all of them. run from Kennywood
to McKeesport. |
At 11:45 PM today, checked route 61C
. and | also checked all
thereisa 61 C the other bus routes
from Fifth Ave and X

Market St Downtown, Iknow about too.

arriving Second St And
Grant Ave in Duquesne
at 12:34 AM.

b Repeat, next, previous

Figure 6: Flowchart of AT&T Let’s Go. The system asks for the bus route, then the origin bus stop, then
the destination bus stop. If the user does not want the next few buses, the system also asks for the date and
time. Prompts shown are paraphrases; actual system prompts include example responses and are tailored to
dialog context. Different language models are used for each slot, and separate belief states are maintained
over each of these 5 slots. In the analysis in this paper, results for the origin and destination slots have been
combined to form the LOCATION slot.
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Appendix: Mechanism illustrations

This appendix provides graphical illustrations of
each of the four mechanisms that can cause the top
ASR hypothesis to be different from the top belief
state hypothesis. These examples were taken from
logs of calls with real users, although some surface
forms have been simplified for space.

At the top of each panel is the system action taken.
The user’s true response is shown in italics in the
left-most column. The second column shows the
top 7 entries from the ASR N-best list, displayed

in the order produced by the speech recognition en-
gine. The third column shows the confidence score —
the local probability of correctness assigned to each
ASR N-best entry. The last column shows the re-
sulting belief state, sorted by the magnitude of the
belief. Correct entries are shown in bold red.

ASR re-ranking and prior re-ranking occur within
one turn, and confidence aggregation and N-best
synthesis occur across two turns. These examples
all show cases where the belief state is correct and
the ASR is incorrect; however, the opposite also oc-
curs of course.

System : "What time are you leaving?"

User ASR Conf Belief
action Result Score State
"seven AM" seven PM [l seven AM [l
seven AM [l seven PM [l
ten AM | ten AM |

Figure 7: Illustration of ASR re-ranking: The correct ASR hypothesis (“seven AM”) is in the n = 2
position, but it is assigned a higher confidence score than the misrecognized n = 1 entry “seven PM”.
TIME uses a flat prior, so the higher confidence score results in “seven AM” attaining the highest belief.

System : "Say a bus route, or say I'm not sure."

User ASR Conf Belief

action Result Score State

"54C" sac [N s4c [N
s54c [l 84c ||

Figure 8: Illustration of Prior re-ranking: The correct ASR hypothesis (“54C”) is in the n = 2 position,
and it is assigned less confidence than the mis-recognized n = 1 entry, “84C”. However, the prior on 54C
is much higher than on 84C, so 54C obtains the highest belief.
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System : "Say the day you want, like today." System : "Sorry, say the day you want, like Tuesday."
User ASR Conf Belief User ASR Conf Belief
action Result Score State action Result Score State
“tomorrow" tomorrow [l tomorrow [l "tomorrow" july sth [l tomorrow [
- - | july 3rd [l july 8th |
- | - | tuesday | july 3rd |
- | - | sunday | tuesday |
- - | july 5th | sunday |
- - | july 6th | july 5th |
- | - | - | july 6th |

Figure 9: Illustration of Confidence aggregation: In the first turn, “tomorrow” is recognized with medium
confidence. In the second turn, “tomorrow” does not appear on the N-best list; however the recognition
result has very low confidence, so this misrecognition is unable to dislodge “tomorrow” from the top belief
position. At the end of the second update, the belief state’s top hypothesis of “tomorrow” is correct even
though it didn’t appear on the second N-best list.

System : "Where are you leaving from?" System : "Sorry, where are you leaving from?"

User ASR Conf Belief User ASR Conf Belief

action Result Score State action Result Score State
"highland ridge ave [ ridge ave [i "highland heronave [l highland ave ||
ave” dallas ave [ kelly ave || ave” herman ave || ridge ave |
vernon ave | dallas ave | highland ave | kelly ave |
lindenave | lindenave | - | heron ave |
highland ave | highland ave | - | dallas ave |
kelly ave | vernon ave | - | herman ave |
- | - | - | lindenave |

Figure 10: Illustration of N-best synthesis: In the first turn, the correct item “highland ave” is on the
ASR N-best list but not in the top position. It appears in the belief state but not in the top position. In
the second turn, the correct item “highland ave” is again on the ASR N-best list but again not in the top
position. However, because it appeared in the previous belief state, it obtains the highest belief after the
second update. Even though “highland ave” was mis-recognized twice in a row, the commonality across the
two N-best lists causes it to have the highest belief after the second update.
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Abstract

Generating Temporal Expressions (TE) that
are easy to understand, unambiguous, and rea-
sonably short is a challenge for humans and
Spoken Dialogue Systems. Rather than devel-
oping hand-written decision rules, we adopt a
data-driven approach by collecting user feed-
back on a variety of possible TEs in terms
of task success, ambiguity, and user prefer-
ence. The data collected in this work is freely
available to the research community. These
data were then used to train a simulated user
and a reinforcement learning policy that learns
an adaptive Temporal Expression generation
strategy for a variety of contexts. We evalu-
ate our learned policy both in simulation and
with real users and show that this data-driven
adaptive policy is a significant improvement
over a rule-based adaptive policy, leading to
a 24% increase in perceived task completion,
while showing a small increase in actual task
completion, and a 16% decrease in call dura-
tion. This means that dialogues are more ef-
ficient and that users are also more confident
about the appointment that they have agreed
with the system.

1 Introduction

Temporal Expressions are linguistic expressions that
are used to refer to a date and are often a source of
confusion in human-human, human-computer and
text interactions such as emails and instant messag-
ing. For example, “Let’s meet next Sunday”— “do
you mean Sunday this week or a week on Sunday?”.
(Mccoy and Strube, 1999) state that changes in tem-
poral structure in text are often indicated by either
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cue words and phrases (e.g. “next Thursday”, “this
week”, “tomorrow”), a change in grammatical time
of the verb (e.g. present tense versus future tense),
or changes in aspect (e.g. atomic versus extended
events versus states as defined by (Moens and Steed-
man, 1988)). In this study, we will concentrate on
the first of these phenomena, generating TEs with
the optimal content and lexical choice.

Much work in the field of Natural Language Pro-
cessing concerns understanding and resolving these
temporal expressions in text (Gerber et al., 2002;
Pustejovsky et al., 2003; Ahn et al., 2007; Mazur
and Dale, 2007; Han et al., 2006), however, little
work has looked at how best to plan and realise tem-
poral expressions in order to minimize ambiguity
and confusion in a Spoken Dialogue System (SDS).
(Reiter et al., 2005) presented a data driven ap-
proach to generating TEs to refer to time in weather
forecast information where appropriate expressions
were identified using contextual features using su-
pervised learning. We adopt an adaptive, data-driven
reinforcement learning approach instead. Similar
data-driven approaches have been applied to infor-
mation presentation (Rieser et al., 2010; Walker et
al., 2007) where each Natural Language Generation
(NLG) action is a sequential decision point, based on
the current dialogue context and expected long-term
reward of that action. A data-driven approach has
also been applied to the problem of referring expres-
sion generation in dialogue for expert and novice-
users of a SDS (Janarthanam and Lemon, 2010).
However, to date, there has been no previous work
on adaptive data-driven approaches for temporal re-
ferring expression generation, where uncertainty in
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the stochastic environment is explicitly modelled.

The data-driven approach to temporal expression
generation presented here is in the context of ap-
pointment scheduling dialogues. The fact that there
are multiple ways that a time slot can be referred to
leads to an interesting NLG problem of how best to
realise a TE for a particular individual in a particular
context for certain domains. For example, the fol-
lowing expressions all vary in terms of length, ambi-
guity, redundant information and users’ preference:
“next Friday afternoon” or “Friday next week at the
same time”, or “in the afternoon, a week on Friday”.

Temporal Expressions contain two types of refer-
ences: absolute references such as “Tuesday” and
“12th January”, and relative references such as “to-
morrow” and “this Tuesday”. Generating TEs there-
fore, involves both in selecting appropriate pieces of
information (date, day, time, month, and week) to
present and deciding how to present them (absolute
or relative reference).

Our objective here is to convey a target appoint-
ment slot to users using an expression that is optimal
in terms of the trade-off between understandability,
length and user preference.

2 Methodology

We address the issue of generating TEs by adopting
a data-driven approach that has four stages. Firstly,
we define Temporal Expression Units (TEU) as de-
scribed in Section 2.1. Secondly, we design and im-
plement a web-based data collection, gathering met-
rics on the TEUs in various contexts for a variety
of date types (Section 3). Thirdly, we train a user
simulation and use it to learn a policy using rein-
forcement learning techniques that generates the op-
timal combination of TEUs for each context (Sec-
tion 4). Finally, we deploy and evaluate this pol-
icy in a Spoken Dialogue System for appointment
scheduling and show that our learned policy per-
forms better than a hand-written, adaptive one (re-
sults presented in Section 5).

2.1 Temporal Expression Units

For this study, TEs are broken down into 5 cate-
gories or units (TEUs) presented in a fixed order:
DAY, DATE, MONTH, WEEK and TIME. Each of
these units can be expressed relative to the current
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TEU \ Choices

DAY abs, rel, rc, nn
DATE abs, nn
MONTH | abs, nn
WEEK abs, rel, nn
TIME abs, rc

Table 1: TEU choices where abs is absolute, rel is rela-
tive, rc is relative to context and nn is none

day and to the current context (i.e. previously men-
tioned dates). Specifically, there are 3 unit attributes:
absolute (e.g. DAY=abs “Tuesday”); relative to cur-
rent day (e.g. DAY=rel “tomorrow”); and relative to
context (e.g. DAY=rc “the following day”).

Certain restrictions on possible TEU combina-
tions were imposed, for example, DATE=rc and
DAY=rel were combined to be just DAY=rel, and
some combinations were omitted on the basis that
it is highly unlikely that they would be uttered
in natural speech, for example WEEK=rel and
MONTH=abs would result in “this week in Septem-
ber”. Finally, every TE has to contain a time (am or
pm for this application). The possible combinations
are summarised in Table 1.

3 Data Collection

The data collection experiment was in two parts
(Task 1 and Task 2) and was designed using the We-
bexp experimental software!. Webexp is a client-
server set up where a server application hosts the ex-
periment and stores the experimental files, logs and
results. The client side runs an applet on the user’s
web-browser.

In Task 1, participants listened to an audio file
containing a TE generated from absolute and rela-
tive TEUs (see Figure 1). No relative-context (rc)
TEUs were used in Task 1 since the dialogue ex-
cerpt presented was in isolation and therefore had
no context. Each participant was asked to listen to
10 different audio files in a sequence corresponding
to a variety of dates randomly chosen from 8 pos-
sible dates. The participant then had to identify the
correct appointment slot that the system is referring
to. There is scope for the participant to add multi-
ple answers in order to capture potential ambiguity

"http://www.webexp.info



Appointment Scheduling Experiment: Task 1

You call up British Telecom to book an appointment for an engineer to come round to your house to fix your phone line.
Please play the audio which will give you an appointment slot (e.g. Tuesday between 2pm and 4pm).

Enter the letter of the slot in the calendar that the audio is

ing to. For

ple, Tuesday 7th Sep 2pm and 4pmis Slot C.

Ifitis not clear please enter more than one slot letter.

Today is Monday September 6th in the morning.

APPOINTMENT SLOTS: SEPTEMBER

AM NOW B

Monday Tuesday | Wednesday
6th 7th 8th
D F H

PM A C E G 1
Monday Tuesday | Wednesday | Thursday | Friday
13th 14th 15th 16th 7+

AM 1 L N P R

PM K M

o}

Q 5

Appointment date:

( Play )

Slot letter

Alternative slot letter (optional):

Alternative slot letter (optional):

Alternative slot letter (optional):

Alternative slot letter (optional):

e )
( Next )

Figure 1: Screen shot of Task 1 in the on-line data collection experiment

of a TE, and we report on this below. The 8 dates
that were used to generate the TEs fell into a two
week period in a single month which is in-line with
the evaluation set-up of the appointment scheduling
SDS discussed in Section 5.3.

For each date, the TE was randomly picked from a
set of 30 possible combinations of TEUs. Each TEU
was generated by a rule-based realiser and synthe-
sized using the Baratinoo synthesizer (France Tele-
com, 2011). This realiser generates text from a can-
didate list for each TEU based on the given date.
For example, if the slot currently being discussed
is Tuesday 7th, the realiser would generate “tomor-
row” for DAY=rel; if the date in discussion was
Wednesday 8th then DAY=rel would be realised as
“the day after tomorrow”. There was potential for
overlap of stimuli, as any given TE for any given
date may be assessed by more than one participant.

Task 2 of the experiment was in two stages. In the
first stage (Task 2A), the participants are given to-
day’s date and the following dialogue excerpt; Op-
erator: “We need to send out an engineer to your
home. The first available appointment is ...” (see
Figure 2). They are then asked to listen to 5 audio
files of the system saying different TEs for the same
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date and asked to rate preference on a scale of 1-6
(where 1 is bad and 6 is great.) For the second stage
(Task 2B), the dialogue is as follows; Operator: “‘so
you can’t do Wednesday 8th September in the morn-
ing.” and then the participants are asked to listen
to 5 more audio files that are generated TEs includ-
ing relative context such as “how about Thursday at
the same time?”. This two-stage process is then re-
peated 4 times for each participant.

Table 2 summarizes the metrics collected in the
different parts of the experiment. The metric Dis-
tance is calculated in terms of the number of slots
from the current date to the target date (TD). In-
stances were grouped into four distance groups: G1:
TD is 1-2 slots away; G2: TD is 3-6 slots away; G3:
TD is 7-11 slots away and G4: TD more than 11
slots away. P_replay is calcuated by the total num-
ber of replays divided by the total number of plays
for that temporal expression, i.e. the probability that
the temporal expression played is requested to be re-
played. P_ambiguous is calculated by the number of
times a given temporal expression is given more than
1 interpretation divided by the total number of times
that the same given referring expression is answered.

In total there were 73 participants for Task 1 and



Appointment Scheduling Experiment: Task 2

You will now be presented with 4 scenarios, each scenario contains two parts of dialogue
where you are presented with an initial appointment slot and then an alternative slot.
Please listen to the date phrases and rate your preference on a scale of 1-6.

1 is bad and 6 is great.

You must listen to ALL the audio and rate each one.

Today's date is Tuesday 7th September in the afternoon.

Dialogue Part 1

Operator: "We need to send out an engineer to your home.
The first available appointment is:"

Rating (1 is bad, 6 is great): |5

Rating (1 is bad, 6 is great): 4

Rating (1 is bad, 6 is great): 4

Rating (1 is bad, 6 is great): 3

Rating (1 is bad, 6 is great): 2

Next

Figure 2: Screen shot of Task 2 in the on-line data collection experiment

730 TE samples collected. Although Task 2 directly
followed on from Task 1, there was a significant
drop out rate as only 48 participants completed the
second task resulting in 1,920 TE samples. Partici-
pants who completed both tasks were rewarded by a
chance to win an Amazon voucher.

3.1 Data Analysis

Figure 3 shows various metrics with respect to TE
absoluteness and relativeness is the number of ab-
solute and relative TEUs respectively. These two
graphs represent the state space that the genera-
tion policy described in Section 4 is exploring, trad-
ing off between various features such as Length,
taskSuccess and userPref.

As we can see, there is a tendency for average
taskSuccess to increase as absoluteness increases
whereas, for relativeness the distribution is more
even. The TE with the greatest taskSuccess has an
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absoluteness of 4 and zero relativeness: DATE=abs,
MONTH=abs, WEEK=abs, TIME=abs (e.g. “11th
September, the week starting the 10th, between 8am
and 10am”) and the TE with the least raskSuccess
has an absoluteness of only 2, again with no rela-
tiveness: DATE=abs, TIME=abs, (e.g. “8th between
8am and 10am”).

Average userPref stays level and then decreases
if absoluteness is 5. We infer from this that al-
though long utterances that are completely explicit
are more clear in terms of taskSuccess, they are not
necessarily preferred by users. This is likely due
to TE length increasing. On average, the inclusion
of one relative expression is preferred over none at
all or two. The most preferred TE has an abso-
luteness of 3 with a relativeness of 2: DAY=rel,
DATE=abs, MONTH=abs, WEEK=rel, TIME=abs
(e.g. “Tomorrow the 7th of September, this week,
between 8am and 10am™).
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Figure 3: Graph showing the trade-offs between various metrics with respect to absoluteness and relativeness (number
of absolute/relative TEUs) in terms of probabilities or normalised values.

Metric

P_ambiguous

| Task |

Probability that the expres- | 1
sion is ambiguous to the
user

Correct slot identified 1
Probability of replay (mea- | 1 & 2
sure of understandability)
Expression length in terms
of number of TEUs that
are non null divided by the
total number of possible
TEUs (5)

Expression length in words
normalised over max num
of words (15)

Preference rating of audio | 2
from 1-6

Distance from target date
(TD) to current date in
terms of number of slots

Description

taskSuccess
P_replay

Length 1&2

wordLength 1&2

userPref

Distance

Table 2: Metrics collected in various parts of the experi-
ment
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The probability of ambiguity and replay does not
seem to be affected by absoluteness. The most am-
biguous TE has an absoluteness of 3 and zero rela-
tiveness: DAY=abs MONTH=abs TIME=abs, (e.g.
“Tuesday September between 8am and 10am”) in-
dicating that a date is needed for precision. The
TEs that the participants were most likely to replay
tended to be short e.g. “Tomorrow at the same time”.
This may be due to the clarity of the speech synthe-
siser.

4 Learning a TE generation policy

Reinforcement learning is a machine learning ap-
proach based on trial and error learning, in which
a learning agent learns to map sequences of “opti-
mal” actions to environment or task states (Sutton
and Barto, 1998). In this framework the problem
of generating temporal expressions is presented as
a Markov Decision Process. The goal of the learn-
ing agent is to learn to choose those actions that ob-
tain maximum expected reward in the long run. In
this section, we present the reinforcement learning
setup for learning temporal expression generation
policies.

4.1 Actions and States

In this learning setup, we focus only on generating
the formal specification and treat the set of TEU
choices as the sequential actions of the learning
agent. Table 1 presents the choices that are available
for each TEU.

The actions are taken based on two factors: the



distance (in terms of time slots: morning or after-
noon appointments) between (1) the current date
and the target slot and (2) the current date and the
slot in context. Based on the distance, the target
slot was classified to belong to one of the four dis-
tance groups (G1-G4). The slot in context repre-
sents whether there was any other slot already men-
tioned in the conversation so far, so that the system
has an option to use “relative_context” expressions
to present day and time information. Information
concerning the target slot’s group and the slot in con-
text make up the state space of the Markov Decision
Process (MDP).

4.2 User Simulation

We built a user simulation to simulate the dialogue
behaviour of a user in appointment scheduling con-
versations based on the data from real users de-
scribed in Section 3. It responds to the TE used
by the system to refer to an appointment slot. It
responds by either accepting, rejecting, or clarify-
ing the offered slot based on the user’s own calen-
dar of available slots. For instance, the simulated
user rejects an offered slot if the user is not avail-
able at that time. If they accept or reject an offered
slot, the user is assumed to understand the TE unam-
biguously. However, if the user is unable to resolve
the appointment slot from the TE, it responds with a
clarification request. The simulation responded with
a dialogue action (A, ;) to TEs based on the sys-
tem’s dialogue act (A, ), system’s TE (T'E ;). The
following probabilistic model was used to generate
user dialogue actions:

P(Au,t’As,ta TE&t, G, C, Cal)

In addition to T'F; ; and A, ;, other factors such as
distance between the target slot and the current slot
(@), the previous slot in context (C), and the user’s
calendar (C'al) were also taken into account. G is ei-
ther G1, G2, G3 or G4 as explained in Section 3. The
User’s dialogue action (A, ;) is one of the three: Ac-
cept_slot, Reject_slot or Request_Clarification. The
probability of clarification request was calculated as
the average of the ambiguity and replay probabilities
seen in real user data.

147

4.3 Reward function

The learning agent was rewarded for each TE that it
generated. The reward given to the agent was based
on trade-offs between three variables: User prefer-
ence (UP), Length of the temporal expression (L),
and Clarification request probability (CR). UP for
each TE is obtained from Task 2 of the data collec-
tion. In the following reward function, UP is nor-
malised to be between 0 and 1. L is based on number
of TEUs used. The maximum number of TEUs that
can be used is 5 (i.e. DAY, DATE, WEEK, MONTH,
TIME). L is calculated as follows:

Length of TE (L) = 372222070

The clarification request (CR) is set to be 1 if the
user responds to the TE with a Request_Clarification
and O otherwise. Reward is therefore calculated on
a turn-by-turn basis using the following formula:

Reward = UP % 10.0 — L * 10.0 — CR = 10.0

In short, we chose a reward function that penalises
TEs that are long and ambiguous, and which rewards
TEs that users prefer. It also indirectly rewards task
success by penalising ambiguous TEs resulting in
clarification requests. This trade-off structure is evi-
dent from the data collection where TEs that are too
long are dispreferred by the users (see Figure 3). The
maximum possible reward is 6 (i.e. UP=1, CR=0,
L=2/5) and the minimum is -20 (i.e. UP=0, CR=1,
L=1). Note that other reward functions could be ex-
plored in future work, for example maximising only
for user preference or length.

4.4 Training

We trained a TE generation policy using the above
user simulation model for 10,000 runs using the
SARSA reinforcement learning algorithm (Sutton
and Barto, 1998). During the training phase, the
learning agent generated and presented TEs to the
user simulation. When a dialogue begins, there is no
appointment slot in context (i.e. C = 0). However,
if the user rejects the first slot, the dialogue system
sets C to 1 and presents the next slot. This is again
reset at the beginning of the next dialogue. The
agent was rewarded at the end of every turn based
on the user’s response, length of the TE, and user
preference scores as shown above. It gradually ex-
plored all possible combinations of TEUs and identi-
fied those TEUs in different contexts that maximize
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= | earmed policy
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-20

-25

No. of dialogues

Figure 4: Learning curve

the long-term reward. Figure 4 shows the learning
curve of the agent.

Table 3 presents the TE generation policy learned
by the agent. As one can observe, it used a mini-
mum number of TEUs to avoid length penalties in
the reward. In all cases, MONTH and WEEK in-
formation have not been presented at all. For target
slots that were closest (in group G1) and the farthest
(in group G4), it used relative forms of day (e.g. “to-
morrow”, “next Tuesday”, etc.). This is probably
because users dispreferred day information for in-
between slots (e.g. “the day after the day after to-
morrow”). Also, MONTH information may have
been considered to be irrelevant due to the fact that
the two week window over which the data has been
collected do not span over two different months.

5 Evaluation

In this section, we present the baseline policies that
were evaluated along with the learned policy. We
then present the results of evaluation.

Slots | Specification learned

1-2 DAY =rel;DATE=abs;MONTH=nn;

> 11 | WEEK=nn;TIME=abs

3-11 | DAY=nn;DATE=abs;MONTH=nn;
WEEK=nn;TIME=abs

Table 3: Learned policy

5.1 Baseline policies

The following are the baseline TEG policies:

1. Absolute policy: always use absolute for-
mats for all TEUs (i.e. DAY=abs; DATE=abs;
MONTH=abs; WEEK=abs; TIME=abs)

2. Minimal policy: always use a minimal format
with only date, month and time information in
their absolute forms (i.e. DAY=nn; DATE=abs;
MONTH=abs; WEEK=nn; TIME=abs)

3. Random policy: select possible formats ran-
domly for each TEU.
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] TEG Policy \ Average reward ‘

Learned -0.071%* (£3.75)
Absolute -4.084 (£4.36)
Minimal -1.340 (+=4.2)
Random -8.21 (£7.72)

Table 4: Evaluation with simulated users (* p < 0.05,
two-tailed independent samples t-test)

5.2 Results

We evaluated the learned policy and the three other
hand-coded baseline TE generation policies with our
user simulation model. Each policy generated 1,000
TEs in different states. Table 4 present the results
of evaluation with simulated users. On average, the
learned policy scores higher than all the baseline
policies and the differences between the average re-
ward of the learned policy and the other baselines
are statistically significant. This shows that target
slots can be presented using different TEs depending
on how far they are from the current date and such
adaptation can produce less ambiguous, shorter and
user preferred expressions.

5.3 Evaluation with real users

The policy was also integrated into an NLG com-
ponent of a deployed Appointment Scheduling spo-
ken dialogue system. Please note that this is differ-
ent from the web environment in which the training
data was collected. Our data-driven policy was acti-
vated when the system informs the user of an avail-
able time slot. This system was compared to the
exact same system but with a rule-based adaptive
baseline system. In the rule-based policy MONTH,
DATE and TIME were always absolute, DAY was
relative if the target date was less than three days
away (i.e. “today, tomorrow, day after tomorrow”),
and WEEK was always relative (i.e. “this week, next
week”). All 5 information units were included in the
realisation (e.g. “Thursday the 15th July in the after-
noon, next week”) although the order was slightly
different (DAY-DATE-MONTH-TIME-WEEK).

In this domain, the user tries to make an appoint-
ment for an engineer to visit their home. Each user
is given a set of 2-week calendars which shows their
availability and the goal is to arrange an appoint-
ment when both they and the engineer are available.
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There were 12 possible scenarios that were evenly
rotated across participants and systems. Each sce-
nario is categorised in terms of scheduling difficulty
(Hard/Medium/Easy). Scheduling difficulty is cal-
culated for User Difficulty (UD) and System Diffi-
culty (SD) separately to assess the system’s mixed
initiative ability. Scheduling difficulty is calculated
as the ordinal of the first session that is free for both
the User and the System. Hard scenarios are with an
ordinal of 3 or 4; Medium with an ordinal of 2, and
Easy with an ordinal of 1. There are 4 scenarios in
each of these difficulty categories for both the user
and system. To give an example, in Scenario 10,
the user can schedule an appointment on Wednes-
day afternoon but he/she also has one free session
on the previous Tuesday afternoon when the engi-
neer is busy therefore UD = 2. For the system, in
this scenario, the first free session it has is on the
Wednesday afternoon therefore SD=1. In this case,
the scenario is easier for the system than the user be-
cause the system could just offer the first session that
it has free.

605 dialogues were collected and analysed. The
system was evaluated by employees at France Tele-
com and students of partner universities who have
never used the appointment scheduling system be-
fore. After each scenario, participants were then
asked to fill out a questionnaire on perceived task
success and 5 user satisfaction questions on a 6-
point Likert Scale (Walker et al., 2000). Results
from the real user study are summarised in Table 5.
The data-driven policy showed significant improve-
ment in Perceived Task Success (+23.7%) although
no significant difference was observed between the
two systems in terms of Actual Task Success (Chi-
square test, df=1). Perceived Task Success is users’
perception of whether they completed the task suc-
cessfully or not. Overall user satisfaction (the aver-
age score of all the questions) was also significantly
higher (+5%)?. Dialogues with the learned policy
were significantly shorter with lower Call Duration
in terms of time (-15.7%)? and fewer average words
per system turn (-23.93%)>. Figure 5 shows the
length results in time for systems of varying UD and
SD. We can see that the data-driven adaptive policy
consistently results in a shorter dialogue across all
levels of difficulty. In summary, these results show
that using a policy trained on the data collected here



Parameters Learned Baseline
TEG TEG

Actual Task Success 80.05% 78.57%

Perceived Task Success | 74.86%* 60.50%

User satisfaction 4.51% 4.30

No. system turns 22.8 23.2

Words per system turn | 13.16* 17.3

Call duration 88.60 sec * | 105.11 sec

Table 5: Results with real users (* statistically significant
difference at p<0.05)

results in shorter dialogues and greater confidence
in the user that they have had a successful dialogue.
Although the learned policy was trained to generate
optimal TEs within a two week window and there-
fore is not general policy for all TE generation prob-
lems, we believe that the data-driven approach that
we have followed can generalise to other TE gener-
ation tasks.

140.00

120.00

100.00

80.00 - — —

& Baseline NLG

60.00 1 —1 1 1 — —
& Data driven NLG

Time in seconds

40.00 |

20.00

0.00

uUubl UD2 UD3 SD1 SD2 SD3

Figure 5: Graph comparing length of dialogues for user
(UD) and system difficulty (SD)

6 Conclusion

We have presented a principled statistical learning
method for generating Temporal Expressions (TEs)
that refer to appointment slots in natural language
utterances. We presented a method for gathering
data on TEs with an on-line experiment and showed
how we can use these data to generate TEs us-
ing a Markov Decision Process which can be opti-
mised using reinforcement learning techniques. We
showed that a TEG policy learned using our frame-

%independent two-tailed t-test p < 0.05
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work performs signifcantly better than hand-coded
adaptive policies with real users as well as with sim-
ulated users.

The data collected in this work has been freely
released to the research community in 20113,
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Abstract

Detecting levels of interest from speakers
is a new problem in Spoken Dialog Under-
standing with significant impact on real world
business applications. Previous work has fo-
cused on the analysis of traditional acous-
tic signals and shallow lexical features. In
this paper, we present a novel hierarchical fu-
sion learning model that takes feedback from
previous multistream predictions of promi-
nent seed samples into account and uses a
mean cosine similarity measure to learn rules
that improve reclassification. Our method is
domain-independent and can be adapted to
other speech and language processing areas
where domain adaptation is expensive to per-
form. Incorporating Discriminative Term Fre-
quency and Inverse Document Frequency (D-
TFIDF), lexical affect scoring, and low and
high level prosodic and acoustic features, our
experiments outperform the published results
of all systems participating in the 2010 Inter-
speech Paralinguistic Affect Subchallenge.

1 Introduction

In recent years, there has been growing interest in
identifying speakers’ emotional state from speech
(Devillers and Vidrascu, 2006; Ai et al., 2006; Lis-
combe et al., 2005). For Spoken Dialog Systems
(SDS), the motivation has been to provide users with
improved over-the-phone services by recognizing
emotions such as anger and frustration and direct-
ing users to a human attendant. Other forms of par-
alinguistic information which researchers have at-
tempted to detect automatically include other classic
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emotions, charismatic speech (Biadsy et al., 2008),
and deceptive speech (Hirschberg et al., 2005).
More recently, the 2010 Interspeech Paralinguisic
Affect Subchallenge sparked interest in detecting a
speaker’s level of interest (LOI), including both the
speaker’s interest in the topic and his/her willingness
to participating in the dialog (Schuller et al., 2010).
Sensing users’ LOI in SDS should be useful in sales
domains, political polling, or service subscription.
In this paper, we present a similarity-based hi-
erarchical regression approach to predicting speak-
ers’ LOL The system has been developed based on
the hierarchical fusion learning of lexical and acous-
tic cues from speech. We investigate the contri-
bution of a novel source of information, Discrimi-
native TFIDF; lexical affect scoring; and prosodic
event features. Inspired by the successful use of
Pseudo Relevance Feedback (Tao and Zhai, 2006)
techniques in Information Retrieval and the cosine
similarity measure (Salton, 1989) in Data Mining,
we design a novel learning model which takes the
multistream prediction feedback that is initially re-
turned from seed samples ! and uses a mean cosine
similarity measure to calculate the distance between
the new instance and prominent seed data points in
the Euclidean Space. We then add this similarity
measure as a new feature to perform a reclassifi-
cation. Our main contributions in this paper are:
(1) the novel Discriminative TFIDF approach for
lexical modeling and keywords spotting; (2) using
lexical affect scoring and language modeling tech-
niques to augment lexical modeling; (3) combin-

'Seed samples are from a random small subset in the test
set.
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ing (1) and (2) with additional low-level prosodic
features together with voice quality and high-level
prosodic event features; and (4) introducing a mul-
tistream prediction feedback and mean cosine simi-
larity based fusion learning approach.

We outline related work in Section 2. The corpus,
system features, and machine learning approaches
are described in Section 3. We describe our experi-
mental results in Section 4 and conclude in Section
5.

2 Related Work

Schuller et al. (2006) were among the first to study
LOI from conversational speech. They framed this
task as either a three-way or binary classification,
extracting standard acoustic features and building a
bag-of-words vector space model for lexical anal-
ysis. By linearly combining lexical features with
acoustic features, they achieved high F-measures
when using Support Vector Machine (SVM). Since
a bag-of-words model is a naive model, there may
be more valuable lexical information that it cannot
capture. Moreover, as lexical and acoustic features
are extracted from different domains, a single layer
linear combination may not yield the optimal results.
In 2010, Interspeech launched a Paralinguistic
Challenge (Schuller et al., 2010) that included the
task of detecting LOI from speech as a subchallenge.
Competitors were given conversational speech cor-
pora with annotated LOI, baseline acoustic features,
and two baseline results. The evaluation metric used
for the challenge was primarily the cross correlation
2 (CC) measure (Grimm et al., 2008), with mean
linear error > (MLE) also taken into consideration.
The baseline was built only on acoustic features, and
the CC and MLE for Training vs. Development sets
were 0.604 and 0.118. For the test data, CC and
MLE scores of 0.421 and 0.146 were observed.
Gajsek et al. (2010) participated in this challenge
and proposed the use of Gaussian Mixture Models
as Universal Background Model (GMM-UBM) with
relevance MAP estimation for the acoustic data.
This is based on the success of GMM-UBM mod-

2Pearson product-moment correlation coefficient is a mea-
sure of the linear dependence that is widely used in regression
settings.

3MLE is a regression performance measure for the mean ab-
solute error between an estimator and the true value.
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eling in the speaker identification tasks (Reynolds et
al., 2000). They achieved CC and MLE of 0.630 and
0.123 in the training vs. development condition, but
CC and MLE of only 0.390 and 0.143 in the testing
condition. This performance may have been due to
the fact that different subsets of the corpus include
different speakers: acoustic features alone may not
be robust enough to capture the speaker variation.

Jeon et al. (2010) approach won the 2010 Sub-
challenge for this task. In addition to the baseline
acoustic features provided, they used term frequency
and a subjectivity dictionary to mine the lexical in-
formation. In addition to a linear combination of
all lexical and acoustic features, they designed a hi-
erarchical regression framework with multiple level
of combinations. Its first two combiners tackle the
prediction problems from different acoustic classi-
fiers and then uses a final stage SVM classifier to
combine the overall acoustic predictions with lexi-
cal predictions to form the final output. They report
a result of 0.622 for CC and 0.115 for MLE. On the
test set, they report CC and MLE of 0.428 and 0.146
respectively.

3  Our System

Unlike previous approaches, we emphasize lexical
modeling, to counter problems of speaker variation
in acoustic features (Jeon et al., 2010). We propose
an improved version of standard TFIDF (Spirck
Jones, 1972) — Discriminative TFIDF — which
computes the IDF score of the target word by dis-
criminating its different mean LOI score tags during
training to produce more informative keyword spot-
ting in testing.

In addition to Discriminative TFIDF, we uti-
lize the Dictionary of Affect in Language (DAL)
(Whissell, 1989) to detect lexical affect and com-
pute an utterance-level affect score. To maximize
the coverage of lexical cues, we also train trigram
language models on the training data to capture con-
textual information and use the test output log like-
lihoods and perplexities as features. Besides these
lexical features and the 1582 baseline acoustic fea-
tures from the Interspeech Paralinguistic Challenge,
we extract 32 additional prosodic and voice quality
features using Praat (Boersma, 2001). In order to
model sentence-level prosodic events, we use Au-



ToBI (Rosenberg, 2010) to extract pitch accent and
phrase-based features. These features are described
in detail in Section 3.2.

The simplest approach to classification is to in-
clude all features in a single classifier. However,
different features streams include different number
of features, extracted and represented in different
domains. The Sum Rule approach (Kittler et al.,
1998) is an early solution to this classifier combi-
nation problem. Instead, we train 1st-tier classi-
fiers for each of the feature streams and then train
a 2nd-tier classifier to weight the posterior predic-
tions of the 1st-tier classifiers. We further improve
this method by integrating a novel model which con-
siders the 1st-tier multistream prediction feedback
from the seed samples and uses a mean cosine simi-
larity method to measure the distance between a new
instance and prominent seed samples. We use this
similarity measure to improve classification.

3.1 Corpus

The corpus we use in our experiments is the 2010
Paralinguistic Challenge Affect Subchallenge cor-
pus Technische Universtdt Munchén Audiovisual In-
terest Corpus (TUM AVIC), provided by Schuller
(2010). The corpus consists of 10 hours of audio-
visual recordings of interviews in which an inter-
viewer provides commercial presentations of vari-
ous products to a subject. The subject and inter-
viewer discuss the product, and the subject com-
ments on his/her interest in it. Subjects were in-
structed to relax and not to worry about politeness
in the conversation. 21 subjects participated (11
male, 10 female), including three Asians and the rest
of European background. All interviews were con-
ducted in English; while none of the subjects were
native speakers, all were fluent. 11 subjects were
younger than 30; 7 were between 30-40; and 3 were
over 40. The subject portions of the recordings were
segmented into speaker turns (continuous speech by
one speaker with backchannels by the interviewer
ignored). These were further segmented into sub-
speaker turns at grammatical phrase boundaries such
that each segment is shorter than 2sec.

These smaller segments were annotated by four
male undergraduate psychology students for subject
LOI, using a 5-point scale as follows: (-2) Disin-
terest (subject is totally tired of discussing this topic
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and totally passive); (-1) Indifference (subject is pas-
sive and does not want to give feedback); (0) Neu-
trality (subject follows and participates in the dialog,
but it is not recognized if she/he is interested in the
topic); (1) Interest (subject wants to talk about the
topic, follows the interviewer and asks questions);
(2) Curiosity (subject is strongly interest in the topic
and wants to learn more.) A normalized mean LOI
is then derived from mean LOI/2, to map the scores
into [-1, +1]. (Note that no negative scores occur
for this corpus.) In our experiments, we consider
the normalized mean LOI score as the label for each
sub-speaker turn segment; we refer to this as “mean
LOI” below. The corpus was divided for the Sub-
challenge into training, development, and test cor-
pora; we use these divisions in our experimens.

3.2 Feature Sets

Table 1 provides an overview of the feature sets in
our system.
Discriminative TFIDF

In the standard vector space model, each word
is associated with its Term Frequency (TF) in the
utterance. The Inverse Document Frequency (IDF)
provides information on how rare the word is over
all utterances. The standard TFIDF vector of a term
¢ in an utterance u is represented as V(t,u):

C(t,u) |U|
C(v,u) > u(t)
TF is calculated by dividing the number of occur-
rences of term ¢ in the utterance u by the total num-
ber of tokens v in the utterance u. IDF is the log of
the total number of utterances U in the training set,
divided by the number of utterances in the training
set in which the term ¢ appears. u(t) can be viewed
as a simple function: if # appears in utterance u, then
it returns 1, otherwise 0.

In Discriminative TFIDF we add additional infor-
mation to the TFIDF metrics. When calculating IDF,
we weight each word by the distribution of its labels
in the training set. This helps us to weight words by
the LOI of the utterances they are uttered in. An in-
tuitive example is this: Although the words “chaos”
and “Audi” both appear once in the corpus, the oc-
currence of “Audi” is in an utterance with a Mean
LOI score of 0.9, while “chaos” appears in an utter-
ance with a label of 0.1. A standard TFIDF approach

V(t,u) =TF*IDF =

* log



Feature Sets Features

Discriminative TFIDF

Sum of word-level Discriminative TFIDF scores

Lexical Affect Scoring

Language Modeling

Trigram language model log-likelihood and perplexity

Acoustic Features

|
|
Sum of word-level lexical affect scores ‘
|
|

1582 acoustic features. Detail see Schuller et. al, (2010)

# Pulses, # Periods, Mean Periods, SDev Period
Fraction, # Voice Breaks, Degree, Voiced2total Frames

Local, Local (dB), APQ3, APQS5, APQ11
Mean Autocorrelation, Mean NHR, Mean NHR (dB)

Pulses

Voicing

Jitter Local, Local (absolute), RAP, PPQ5
Shimmer

Harmonicity

Duration Seconds

Fundamental Frequency | Min, Max, Mean, Median, SDev, MAS
Energy Min, Max, Mean, SDev

Prosodic Events

Pitch accents, intermediate phrase, and intonational boundaries. ‘

Table 1: Feature Sets. RAP: Relative Average Perturbation. PPQ5: five-point Period Perturbation Quotient. APQn:
n-point Amplitude Perturbation Quotient. NHR: Noise-to-Harmonics Ratio. MAS: Mean Absolute Slope.

will give these two terms the same score. To differ-
entiate the importance of these two words, we define
our Discriminative TFIDF measure as follow:

V(t,u) = Oft, u) *1 Ul

Clo,u) S u(t) * (1 — |[MeanLOI|)

Here, the Mean LOI score ranging from (0,1) is
the label of each utterance. Instead of summing
the u(t) scores directly, we now assign a weight to
each utterance. The weight is (1 — [MeanLOI|) in
our task. The overall IDF score of words important
to identifying the LOI of an utterance will thus be
boosted, as the denominator of the IDF metric de-
creases compared to the standard TFIDF. Discrimi-
native TFIDF can be viewed as a generalized version
of Delta TFIDF (Martineau and Finin, 2009) that can
be used in various regression settings.

Wang and McKeown (2010) show that adding
Part-of-Speech (POS) information to text can be
helpful in similar classification tasks. So we have
also used the Stanford POS tagger (Toutanova and
Manning, 2000) to tag these transcripts before cal-
culating the Discriminative TFIDF score.

Lexical Affect Scoring

Whissell’s Dictionary of Affect in Language
(DAL) (Whissell, 1989) attempts to quantify emo-
tional language by asking raters to judge 8742 words
collected from various sources including college es-
says, interviews, and teenagers descriptions of their
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own emotional state. Its pleasantness (EE) score in-
dicates the negative or positive valence of a word,
rated on a scale from 1 to 3. For example, “aban-
don” scores 1.0, implying a fairly low level of pleas-
antness. A previous study (Agarwal et al., 2009)
notes that one of the advantages of this dictionary
is that it has different scores for various forms of a
root word. For example, the words “affect” and “af-
fection” have very different meanings; if they were
given the same score, the lexical affect quantifica-
tion might not be discriminative. To calculate an
utterance’s lexical affect score, we first remove the
stopwords and then sum up # the EE score of each
word in the utterance.

Statistical Language Modeling

In order to capture the contextual information and
maximize the use of lexical information, we also
train a statistical language model to augment the
Discriminative TFIDF and lexical affect scores. We
train trigram language models on the training set
using the SRI Language Modeling Tookit (Stolcke,
2002). In the testing stage, the log likelihood and
perplexity scores are used as language modeling fea-
tures. Due to the data sparsity issue, we are not able
to train language models on subsets of training data
that correspond to different LOI scores.

“We have experimented with Min, Max and Mean scores,
but the results were poor.



Acoustic, Prosodic and Voice Quality Features

As noted above, the TUM AVIC corpus includes
acoustic features (Schuller et al., 2010) for all of the
data sets. These include: PCM loudness, MFCCJ0-
14], log Mel Frequency Band[0-7], Line Spectral
Pairs Frequency [0-7], FO by Sub-Harmonic Sum.,
FO Envelope, Voicing Probability, Jitter Local, Jit-
ter Difference of Difference of Periods, and Shim-
mer local. We have extracted an additional 32 stan-
dard prosodic and voice quality features to aug-
ment these, including Glottal Pulses, Voicing, Jitter,
Shimmer, Harmonicity, Duration, Fundamental Fre-
quency, and Energy (See Table 1).

Prosodic Event Features

To examine the contribution of higher-level
prosodic events, we have also experimented with
AuToBI (Rosenberg, 2010) to automatically de-
tect pitch accents, word boundaries, intermedi-
ate phrase boundaries, and intonational bound-
aries in utterances. AuToBI requires annotated
word boundary information; since we do not have
hand-annotated boundaries, we use the Penn Pho-
netics Lab Forced Aligner (Yuan and Liberman,
2008) to align each utterance with its transcription.
We use AuToBI’s models, which were trained on
the spontaneous speech Boston Directions Corpus
(BDC) (Hirschberg and Nakatani, 1996), to identify
prosodic events in our corpus.

3.3 Fusion Learning Approaches

Assuming that our various lexical, acoustic and
prosodic feature streams are informative to some ex-
tent when tested separately, we want to combine in-
formation from the streams in different domains to
improve prediction. We experimented with several
approaches, including Bag-of-Features, Sum Rule
combination, Hierarchical Fusion, and a new ap-
proach. We present here results of each on our LOI
prediction task. In the Bag-of-Features approach,
a simple classification method includes all features
in a single classifier. A potential problem with this
method is that, when combining 1582 acoustic fea-
tures with 10 lexical features, the classifier will treat
them equally, so potentially more useful lexical fea-
tures will not be evaluated properly. A second prob-
lem is that our features are extracted from differ-
ent domains using different methods, and normal-
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ization across domains is not possible in a bag-of-
features classification/regression approach. Another
possible approach is the Sum Rule Combiner, which
uses product or sum rules to combine the predictions
from 1st-tier classifiers. Kittler et al. (1998) show
that the Sum Rule approach outperforms the product
rule, max rule and mean rule approaches when com-
bining classifiers. Their sensitivity analysis shows
that this approach is most resilient to estimation er-
TOrS.

A third method of combining features is the Hier-
archical Fusion approach of fusing multistream in-
formation, which involves multiple classifiers and
performs classification/regression in multiple stages.
This can be implemented by first training 1st-tier
classifiers for each single stream of features, collect-
ing the predictions from these classifiers, and train-
ing a 2nd-tier supervector classifier to weight the im-
portance of predictions from the different streams
and make a final prediction. The rationale behind
this approach is to solve the cross-domain issue by
letting the 2nd-tier classifier weight the streams, as
the predictions from 1st-tier classifiers will be in a
unified/normalized form (e.g. O to 1 in this task).

The Multistream Prediction Feedback and Mean
Cosine Similarity based Hierarchical Fusion

Our Multistream Prediction Feedback and Mean
Cosine Similarity based Hierarchical Fusion ap-
proach combines a similarity based two-stage ap-
proach with a multistream feedback approach. Fig-
ure 1 shows the architecture of this system. It is
based on the intuition that, if we can identify the
prominent samples (e.g. the samples that all 1st-tier
classifiers assign high average prediction scores),
then we can measure the average distance between
a new sample and all these prominent samples in the
Euclidean Space. Furthermore, we can use this av-
erage distance (average similarity) as a new feature
to improve the 2nd-tier classifier’s final prediction.

To implement this process, we first train five
Ist-tier Additive Logistic Regression (Friedman et
al., 2000) classifiers and a Random Subspace meta
learning (Ho, 1998) 1st-tier classifier (for the acous-
tic stream), using six different feature streams in our
training data. In the testing stage, we use a random
subset of the test set as seed samples. Next, we run
the seed samples for each of these 1st-tier classifiers
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Figure 1: The Overview of Multistream Prediction Feedback and Mean Cosine Similarity based Hierarchical

Fusion Learning

to obtain prediction scores ranging from 0 to 1. Now,
we take the mean of these predicted scores for each
sample, and use the following method to select the
top n samples from the seed samples S as “promi-
nent samples’:

Prominent(S,n) = Max,(Mean(S))

Recall that the cosine similarity (Salton, 1989) of
two utterances U;, U; in the vector-space model is:

Ui - U

U’LaU':
0s(UsUs) = L= 10T

where “-” indicates ‘dot product’. Now, given our
hypothesized prominent samples, for each of these
samples and new samples, we choose the original
Discriminative TFIDF, Lexical Affect Scoring, Lan-
guage Modeling, Prosodic and Voice Quality, and
Prosodic Event features as k vectors to represent all
the samples in Euclidean Space. The reason we drop
the acoustic features from the vector space model is
because of the dimensionality issue — 1582 acous-
tic features. We substitute our 32 standard prosodic
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features instead. Now we use the mean cosine simi-
larity score to represent how far a new sample U, is
from the prominent samples Ug in the space:

k
Sim(Uy,,Ug) = Mean iz Vo Vs

\/E?:l Vi \/Zf:l V?

In the next step, we add this mean cosine sim-
ilarity measure as a new feature and include it in
the 2nd-tier classifier for reclassification. Now, in
the reclassification stage, all 1st-tier feature stream
predictions will be re-weighted by the new 2nd-tier
classifier that incorporated with Multistream Feed-
back information.

The reason why the Multistream Prediction Feed-
back is useful in this task is that, like many spoken
language understanding tasks, in LOI detection, if
we have a different set of speakers with different
genders, ages, and speaker styles, the overall feature
distribution for lexical, prosodic, and acoustic cues
in the test set can be very different from the training
set. Traditional speaker adaptation techniques typi-



cally focus only on the acoustic stream and may be
very expensive to perform. So, by extracting more
knowledge about the lexical, prosodic, and acoustic
features distributions in test set using our novel ap-
proach, we will have a better understanding about
the skewed distributions in the test set. In addition,
our approach is inexpensive and does not require ex-
tra unlabeled data.

4 Experiments and Results

We conduct our experiments in three parts. First, we
examine how well the Discriminative TFIDF feature
performs, compared with standard TFIDF feature.
Secondly, we look at how different feature sets influ-
ence our results. For the first two parts, we evaluate
our features using the Subchallenge training vs. de-
velopment sets only. Finally, we compare our sim-
ilarity based multistream fusion feedback approach
to other feature-combining approaches. We exam-
ine our final system first comparing training vs. de-
velopment performance, and then combined training
and development sets vs. the test set. WEKA (Wit-
ten and Frank, 2005) and LIBSVM (Chang and Lin,
2001) are used for regression.

4.1 TFIDF v.s. Discriminative TFIDF

Method CC MLE
TFIDF 0.296 0.142
D-TFIDF 0.368 0.140
S-D-TFIDF 0.381 0.136

Table 2: Single TFIDF Feature Stream Single Re-
gression Results (Train vs. Develop, Additive Logis-
tic Regression). D-TFIDF: Discriminative TFIDF. S-D-
TFIDF': the POS tagged version of D-TFIDF. CC: Cross
Correlation. MLE: Mean Linear Error.

When working with the training and develop-
ment sets, we are able to access the label and tran-
scriptions of each set to calculate the Discrimina-
tive TFIDF scores. For the testing scenario dis-
cussed in in Section 4.3, we do not have these anno-
tations. So, we redefine the task as a keyword spot-
ting task, where we can use the identified keywords
in the training and development sets as keyword fea-
tures in testing. We also sum up the word-level
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TFIDF scores and use the sentence-level TFIDF as
a single feature for the classification experiment.
The regression algorithm we use is Additive Logis-
tic Regression with 50 iterations. Table 2 shows
how different approaches perform in the experiment.
We see that the Syntactic Discriminative TFIDF ap-
proach is much more informative than the standard
TFIDF approach. Note that, after calculating the
global IDF score, the standard TFIDF approach se-
lects 732 terms as top-1 level keywords. In contrast,
our Discriminative TFIDF has stronger discrimina-
tive power and picks a total number of 59 truly rare
terms as top-1 level keywords.

4.2 Regression with Different Feature Streams

Table 3 shows performance using different feature
streams in our system. We see that the acoustic

Feature Streams CC MLE
S-D-TFIDF 0.394 0.132
Language Modeling 0.404 0.141
Prosodic Events 0.458 0.133
Lexical Affect Scoring 0.459 0.132
Standard Prosody + VQ 0.591 0.122
Acoustic 0.607 0.118
Multistream Feedback (n=3) 0.234 0.150
Multistream Feedback (n=10) 0.262 0.149
Multistream Feedback (n=20) 0.290 0.146

Table 3: Comparing Contributions of Different Fea-
ture Streams in the 2nd-tier Classifier (Training vs. De-
velopmen, Random Subspace for the Ist-tier classifier of
Acoustic Stream, and Additive Logistic Regression for
other Ist-tier classifiers. Radial Basis Function (RBF)
Kernel SVM as 2nd-tier Classifier.) S-D-TFIDF': the POS
tagged version of D-TFIDF. VQ: Voice Quality. n: Top-n
Feedback. CC: Cross Correlation. MLE: Mean Linear
Error.

and prosodic features are the dominating features in
this task. The Prosodic Events feature stream also
emerges as a new informative high-level prosodic
feature in this task.

When testing the multistream feedback informa-
tion as a single feature stream, we see in the bottom
half of Table 3 that CC and MLE are improved when
we increase the number of prominent samples. Dis-
criminative TFIDF and Language Modeling are also



important, as seen from these results, but the Lexi-
cal Affect Scoring feature performs best among the
lexical features in this task. We suspect that the rea-
son may be a data sparsity issue, as we do not have a
large amount of data for training robust global Dis-
criminative IDF scores, language models, and the
feedback stream. In contrast, the DAL is trained on
much larger amounts of data.

4.3 Comparing with State-of-the-Art Systems

Table 4 compares our approach to alternative learn-
ing approaches. The first half of this table reports
results on training vs. development sets, and the sec-
ond half compares combined training and develope-
men vs. test set result.

Method CC MLE
Shuller et al.,(2010) 0.604 0.118
Jeon et al., (2010) 0.622 0.115
Gajsek et al. (2010) 0.630 0.123
Bag-of-features Fusion 0.602 0.118
Sum Rule Combination 0.617 0.117
SVM Hierarchical Fusion 0.628 0.115
Feedback + Hierarchical Fusion 0.640 0.113
Gajsek et al. (2010) 0.390 0.143
Shuller et al.,(2010) 0.421 0.146
Jeon et al., (2010) 0.428 0.146
Bag-of-features Fusion 0.420 0.145
Sum Rule Combination 0.422 0.138
SVM Hierarchical Fusion 0.450 0.131
Feedback + Hierarchical Fusion 0.480 0.131

Table 4: Comparing Different Systems. Above: Train-
ing vs. Development. Bottom: Combined Training+ De-
velopment vs. Test. CC: Cross Correlation. MLE: Mean
Linear Error.

Note that, in order to transcribe the test data, we
have trained a 20 Gaussian per state 39 MFCC Hid-
den Markov Model speech recognizer with HTK, us-
ing the training and development sets together with
TIMIT (Fisher et al., 1986), the Boston Directions
Corpus (BDC) (Hirschberg and Nakatani, 1996),
and the Columbia Game Corpus (Hirschberg et al.,
2005). The word error rate (WER) is 29% on the
development set.
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Note that a Bag-of-Features approach combin-
ing all features results in poorer performance than
the use of acoustic features alone. The Sum Rule
approach improves over this method by achieving
CC score of 0.422. Although the improvement of
CC seems small, it is extremely statistically signifi-
cant (Paired t¢-test with two-tailed P-value less than
0.0001), comparing to the Bag-of-features model.
However, when using the SVM as the 2nd-tier su-
pervector classifier to weight different prediction
streams, we achieve 0.628 CC and 0.115 MLE in
training vs. development data, and 0.450 CC and
0.131 MLE on the test set; this result is significantly
different from the Bag-of-features baseline (paired
t-test, p < 0.0001), but it is not significantly differ-
ent from the Sum Rule Combination approach.

Augmenting the SVM hierarchical fusion learn-
ing approach with multistream feedback, we observe
a significant improvement over all other systems and
methods. We obtain a final CC of 0.480 and MLE of
0.131 in the test mode, which is sigificantly differ-
ent from the Bag-of-features approach (paired t-test
p < 0.0001), but does not differ significantly from
the SVM hierarchical fusion approach.

5 Conclusion

Detecting levels of interest from speakers is an im-
portant problem for Spoken Dialog Understanding.
While earlier work, done in the 2010 Interspeech
Paralinguistic Affect Subchallenge, employing tra-
ditional acoustic features and shallow lexical fea-
tures, achieved good results, our new features —
Discriminative TFIDF, lexical affect scoring, lan-
guage modeling, prosodic event — when used with
standard prosodic features and our new Multistream
Prediction Feedback and Mean Cosine Similarity
heuristic-based Hierarchical Learning method im-
proves over all published results on the LOI cor-
pus. Our method is domain-independent and can
be adapted to other speech and language process-
ing areas where domain adaptation is expensive to
perform. In the future, we would like to experiment
with different distributional similarity measures and
bootstrapping strategies.
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Abstract

User satisfaction is a common evaluation met-
ric in task-oriented dialogue systems, whereas
tutorial dialogue systems are often evaluated
in terms of student learning gain. However,
user satisfaction is also important for such
systems, since it may predict technology ac-
ceptance. We present a detailed satisfaction
questionnaire used in evaluating the BEETLE
IT system (REVU-NL), and explore the un-
derlying components of user satisfaction us-
ing factor analysis. We demonstrate interest-
ing patterns of interaction between interpreta-
tion quality, satisfaction and the dialogue pol-
icy, highlighting the importance of more fine-
grained evaluation of user satisfaction.

1 Introduction

User satisfaction is one of the primary evaluation
measures for task-oriented spoken dialogue systems
(SDS): the goal of an SDS is to accomplish the task,
and to keep the user satisfied, so that they will want
to continue using the system. Typically, the PAR-
ADISE methodology (Walker et al., 2000) is used to
establish a performance function which relates user
satisfaction measured through questionnaires to in-
teraction parameters that can be derived from sys-
tem logs. This function can then be used to better
understand which properties of the interaction have
the most impact on the users, and to compare differ-
ent system versions.

In contrast, tutorial dialogue systems are typically
evaluated in terms of student learning gain, by com-
paring student scores on standardized tests before

and after interacting with the system. This is clearly
an important evaluation metric, since it directly as-
sesses the benefit students obtain from using the sys-
tem. However, it is also important to evaluate user
satisfaction, since it can influence students’ willing-
ness to use computer tutors in a long run. Thus,
recent studies have looked at factors that could in-
fluence user satisfaction in tutorial dialogue, such as
different tutoring policies (Forbes-Riley and Litman,
2011), quality of speech output (Forbes-Riley et al.,
20006), and students’ prior attitudes towards technol-
ogy (Jackson et al., 2009).

Assessing user satisfaction, however, is not a
straightforward task. As we discuss in more detail in
Section 2, user satisfaction is known to be a complex
multi-dimensional construct, composed of largely
independent factors such as perceived ease of use
and perceived usefulness. Therefore, questionnaires
used for assessing satisfaction need to be validated
through user studies, and different satisfaction di-
mensions should be assessed independently. There-
fore, SDS researchers are now starting to use tech-
niques from psychometrics for this purpose (Hone
and Graham, 2000; Mdller et al., 2007). However,
user satisfaction studies tutorial dialogue currently
rely on simple questionnaires adapted from either
task-oriented SDS or non-dialogue intelligent tutor-
ing systems (Michael et al., 2003; Forbes-Riley et
al., 2006; Forbes-Riley and Litman, 2011; Jackson
et al., 2009), and these questionnaires have not been
validated for tutorial dialogue systems.

In this paper, we make the first step towards de-
veloping a better user satisfaction questionnaire for
tutorial dialogue systems. We present a user satis-
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faction evaluation of the BEETLE II tutorial dialogue
system. Starting with a detailed user satisfaction
questionnaire, we employ exploratory factor analy-
sis to discover a set of dimensions for the students’
satisfaction with a dialogue-based tutor. We then
use the factors we derived to compare user satisfac-
tion between two versions of our computer tutor that
use different policies for generating the tutor’s feed-
back. We investigate the relationships between the
subjective satisfaction dimensions and the objective
learning gain metric for the two systems. Finally, we
carry out a more detailed investigation of our prior
results on the relationship between user satisfaction
and interpretation quality in tutorial dialogue. Our
analysis also provides insights for further improving
the questionnaire we developed and gives an exam-
ple of how user satisfaction metrics developed for
task-oriented dialogue can be adapted to different
dialogue applications. It also opens new questions
about how different properties of the interaction af-
fect user satisfaction in tutorial dialogue, which can
be investigated in future work.

The rest of the paper is organized as follows. We
discuss the approaches for assessing user satisfac-
tion with SDS in Section 2. In Section 3 we describe
the BEETLE II tutorial dialogue system used in this
evaluation. We describe our questionnaire design in
Section 4, and describe its use in BEETLE II evalu-
ation in Section 5. We conclude by discussing the
implication of our analysis for tutorial dialogue sys-
tem evaluation in Section 6.

2 Background

A typical approach to assessing user satisfaction in
dialogue systems is collecting user survey data by
asking users to rate their agreement with statements
such as “the system was easy to use”. In the simplest
case of early PARADISE studies, the questionnaires
contained 5 items assessing different dimensions of
satisfaction, which were then summed to produce a
total satisfaction score.

However, using simple questionnaires has draw-
backs now recognized by the SDS community. First,
if individual questions are expected to assess differ-
ent dimensions of user satisfaction, they need to be
validated first, or else they may be ambiguous and
mean different things to different users. Second,
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summing or averaging over questions measuring dif-
ferent satisfaction components may not be the best
approach, since it may conflate unrelated judgments
(Hone and Graham, 2000).

To address this problem, SDS researchers have
started using more complex questionnaires, where
each underlying dimension of user satisfaction is as-
sessed through multiple questions. Factor analysis is
then used to determine which questions are related
to one another (and therefore are likely to be assess-
ing the same underlying satisfaction dimension), and
to discard possibly ambiguous questions. Then, the
PARADISE methodology can be used to relate dif-
ferent interaction parameters to individual compo-
nents of user satisfaction.

Several such studies have been conducted recently
(Hone and Graham, 2000; Larsen, 2003; Moller et
al., 2007; Wolters et al., 2009), covering command-
and-control and information-seeking dialogue. The
questionnaires in those studies contained 25 to 50
items, and factor analyses typically resulted in 6- or
7-factor solutions, with dimensions such as accept-
ability, affect, system response accuracy and cogni-
tive demand. The underlying factors found by those
analyses tend to match up well, but not to over-
lap perfectly. In comparison, all user satisfaction
questionnaires for tutorial dialogue systems that we
are aware of contain 10-15 items which are either
summed up for PARADISE studies, or compared
individually to track system improvement (Michael
et al., 2003; Forbes-Riley et al., 2006; Forbes-Riley
and Litman, 2011; Jackson et al., 2009).

In this paper, we apply the more sophisticated
SDS evaluation methodology to the BEETLE II tu-
torial dialogue system. We devise a more sophis-
ticated user satisfaction questionnaire using SDS
questionnaires for guidance and then apply factor
analysis to investigate the underlying dimensions.
We compare our results to analyses from two pre-
vious studies: SASSI (Hone and Graham, 2000),
which is a validated questionnaire intended for use
with a variety of task-oriented dialogue systems,
and a more recent “modified SASSI” questionnaire
which is a version of SASSI adapted for use with the
INSPIRE home control system (Méller et al., 2007).
Henceforth we will refer to this as INSPIRE.



3 BEETLE II Tutorial Dialogue System

The goal of BEETLE II (Dzikovska et al., 2010c)
is to teach students conceptual knowledge in the do-
main of basic electricity and electronics. The system
is built on the premise that encouraging students to
explain their answers and to talk about the domain
will lead to improved learning, a finding consistent
with analyses of human-human tutoring in several
domains (Purandare and Litman, 2008; Litman et
al., 2009). BEETLE II has been engineered to test
this hypothesis by eliciting contentful talk through
explanation questions.

The BEETLE II learning material consists of two
self-contained lessons suitable for college-level stu-
dents with no prior knowledge of basic electricity
and electronics. The lessons take 4 to 5 hours to
complete, and consist of reading materials and inter-
active exercises. During the exercises, the students
interact with a circuit simulator, building electrical
circuits containing bulbs, batteries and switches, and
using a multimeter to measure voltage. Then the
tutor asks students to explain circuit behavior, for
example, “Why was bulb A on when switch Y was
open and switch Z was closed?” In addition, at dif-
ferent points in the lesson the tutor asks “summary”
questions, asking students to define concepts such
as voltage, and verbalize general patterns such as
“What are the conditions that are required for a bulb
to light?”. At present, students use a typed chat in-
terface to communicate with the system.!

We built and evaluated two versions of the sys-
tem (Dzikovska et al., 2010a). The baseline non-
adaptive tutor (BASE) requires students to produce
answers, but does not provide any remediation and
immediately states the correct answer. The fully
adaptive version (FULL) engages in dialogue with
the student, and tailors its feedback to the student’s
answer by confirming its correct parts and giving
hints in order to help students fix missing or incor-
rect parts. The FULL system generates feedback au-
tomatically based on a detailed analysis of the stu-
dent’s input, and is capable of giving hints at differ-
ent levels of specificity depending on the student’s
previous performance.

'A speech interface is being developed, but typed communi-

cation is common in online and distance learning, and therefore
is an acceptable choice for tutorial dialogue as well.
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These two system versions were designed to eval-
uate the impact of adaptive feedback (within the lim-
itations of current language interpretation technol-
ogy) on student learning and satisfaction. Our initial
data analysis focused on the differences in student
language depending on the condition (Dzikovska et
al., 2010a), and on the impact of different types of
interpretation errors on learning gain and user sat-
isfaction (Dzikovska et al., 2010b). However, these
initial results were based on an aggregate satisfac-
tion score obtained by averaging over scores for all
questions in our user satisfaction questionnaire. In
this analysis, we take a more detailed look at the dif-
ferent factors that contribute to students satisfaction
with the system, and their relationship with learning
gain and interpretation quality.

4 Data Collection

4.1 Questionnaire Design

To support user satisfaction evaluation we developed
a satisfaction questionnaire, REVU-IT (Report on
the Enjoyment, Value, and Usability of an Intelli-
gent Tutor). It consists of 63 items which cover all
aspects of interaction with the tutoring system: the
clarity and usefulness of the reading material; the
graphical user interface to the circuit simulator; in-
teraction with the dialogue tutor; and the overall im-
pression of the BEETLE II system as a whole. The
reading material, graphical user interface and inter-
action with the tutor sections are complementary,
because they cover separate parts of the BEETLE 11
interface. We expect that all of these three compo-
nents contribute to the overall impression score. For
purposes of this paper, we will focus on the part of
the questionnaire that relates to the natural language
interaction with the tutor (REVU-NL), and its re-
lationship to the overall impression score (REVU-
OVERALL).

The REVU-IT questionnaire was developed by
experienced cognitive psychologists (two of the au-
thors of this paper). The REVU-NL section con-
sists of 35 items shown in Appendix A. Its design
was guided by questionnaires used in previous re-
search, including INSPIRE and a questionnaire used
to evaluate the ITSPOKE tutorial dialogue system
(Forbes-Riley et al., 2006). REVU-NL contains a
number of items from these, but omits items that are



not relevant to the BEETLE II domain (e.g, “Domes-
tic devices can be operated efficiently with the sys-
tem” or “The tutor responded effectively after I was
uncertain”), and adds extra questions related to tu-
toring (e.g., “Our dialogues quickly led to me hav-
ing a deeper understanding of the material”), based
on the authors’ previous experience in human factors
research. We also slightly rephrased all questions to
refer to “the tutor” rather than “the system”.

The REVU-OVERALL section of REVU-IT
consists of 5 items assessing the student’s satis-
faction with their learning as a whole. The ques-
tions are: “Overall, I am satisfied with my experi-
ence learning about electricity from this system.”;
“Working in this learning environment was just like
working one-on-one with a human tutor”; “I would
have preferred to learn about electricity in a different
way.”; “I would use this system again in the future to
continue to learn about electricity.”; “I would like to
be able to use a system like this to learn about other
topics in the future.”. We use the averaged score over
these 5 items to represent the student’s overall satis-
faction with the learning environment, referring to it
as “overall satisfaction”.

Adding new questions to the REVU-NL ques-
tionnaire on top of already existing questions is the
initial step in addressing the issues discussed in Sec-
tion 2: validating the individual questions and dis-
covering the underlying dimensions of user satis-
faction. Having a large number of questions ask-
ing about the same aspects of the interaction will
allow us to group related questions together into di-
mensions (“factors”), and also to discover ambigu-
ous questions that will need to be improved in future
studies. The detailed discussion of the technique and
issues involved is presented in Hone and Graham
(2000).

4.2 Participants

We used REVU-IT as part of a controlled experi-
ment comparing the BASE and FULL versions of the
system. We recruited 87 participants from a uni-
versity in the Southern US, paid for participation.
Participants had little knowledge of the domain.
Each participant signed consent forms and com-
pleted a pre-test, then worked through both lessons
(with breaks), and then completed a post-test and a
REVU-IT questionnaire. Each session lasted 3.5
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hours on average.

Out of 87 participants that completed the study, 13
had an inordinate amount of trouble with interface:
they typed utterances that could not be interpreted
by the tutor (defined as having more than 3 standard
deviations in interpretation errors compared to the
rest), did not follow tutor’s instructions or experi-
enced system crashes. In addition, two participants
were learning gain outliers (again, more than 3 stan-
dard deviations from average). These participants
were removed from the analysis. The questionnaires
from the remaining 72 participants are used in our
data analysis.

5 Analysis

5.1 Underlying satisfaction dimensions

Each item in the REVU-NL questionnaire used a
5-point Likert scale, from “completely disagree” (1)
to “fully agree” (5). Most of the items were phrased
so that the agreement with the statement meant a
positive evaluation of the system. For a few items,
however, the polarity was reversed (e.g., “The tutor
was not helpful”’). Those items were reverse-coded,
with 1 meaning “fully agree” and 5 “completely dis-
agree”, to ensure that a lower score on all questions
corresponds to a negative assessment.

Following Hone and Graham (2000), we used
exploratory factor analysis to group questionnaire
items into clusters representing different dimen-
sions. One of the standard approaches in determin-
ing how many factors (“question clusters”) to use
is the scree test which checks the number of eigen-
values in the question covariance matrix which are
greater than 1. These typically correspond to prin-
cipal components which reflect the underlying ques-
tionnaire structure. The scree test showed 7 eigen-
values greater than 1, resulting in the 7-factor solu-
tion presented in Table 1.

The loadings in the table are the correlation coef-
ficients between the individual question scores and
the variables representing the factors. Most of the
correlations are quite high, indicating that the ques-
tions are strongly correlated both among themselves
and the underlying factor. However, the last two fac-
tors contain only non-loading questions according to
the criteria in (Hone and Graham, 2000), i.e., ques-
tions for which the correlations are too weak to be



# Question Load-
ing

1 29: Knew what to say at each point 0.82
1 t22: Easy to interact with the tutor. 0.79
1 t9: Not sure what was expected. 0.73
1 t18: Knew what to say to the tutor. 0.70
1 tl14: The tutor was too inflexible. 0.69
1 t19: Able to recover easily from errors  0.69
1 t24: Easy to learn to speak to tutor. 0.69
1 t16: Tutor didn’t do what I wanted. 0.65
1 t3: Tutor understood me well. 0.65
1 t15: Working as easy as with a human. 0.64
1 t13: Had to concentrate when talking.  0.62
2 31 Tutor was an efficient way to learn.  0.79
2 t32: Easy to learn from the tutor. 0.78
2 t34: Tutor was worthwhile 0.72
3 t28: Tutor was irritating. 0.76
3 t10: Tutor was fun. 0.74
3 t7: Enjoyed talking with tutor. 0.72
3 t30: Dialogues were boring. 0.66
4 t2: Tutor took too long to respond 0.84
4 t33: Tutor responded quickly 0.84
5 t26: Didn’t always understand tutor 0.89
6 (t3: The tutor understood me well) 04
7 (t25: Comfortable talking with tutor) 0.59

Table 1: Factors derived from the REVU-NL question-
naire, with question loadings for the factor to which each
question was assigned. Question text shortened due to
space limitations, full text presented in the appendix.
Non-loading questions in parentheses.

reliable. In addition, factors 4 and 5 had fewer than
3 questions. Since the number of subjects in our data
set is small, such factors may not be reliable. There-
fore, we focus our remaining analysis on the top 3
factors from the questionnaire, each of which con-
tains 3 or more questions.

Twelve questions in REVU-NL were “cross-
loading” according to criteria in Hone and Graham
(2000), that is, their two top loadings differed by
less than 0.2. This indicates questions that are likely
to be ambiguous, since they are strongly correlated
with two (theoretically independent) variables. Such
questions should be refined and re-designed in future
surveys. These were questions ¢/, t4, t6, t11, ti2,
t17, 120, 121, 123, 125, 127, t35 from the appendix.
We removed them from our solution, and discuss the
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implications for survey design in Section 6.

The first component in our analysis lines up well
with the Transparency and Cognitive load factors
from INSPIRE, and Response accuracy, Cognitive
demand and Habitability from SASSI, though it was
not split into individual factors as in those analyses.
We will refer to this factor as Transparency. The
second component contains questions specific to tu-
toring. However, it is similar to the Acceptability
dimension from INSPIRE (the original SASSI ques-
tionnaire did not include similar questions), which
asked users to rate statements such as “domestic de-
vices can be operated efficiently with the system”.
Thus, we will refer to it as Acceptability. Finally,
our third dimension lines up best with the Affect and
Annoyance items from SASSI.Z We will refer to it as
Affect.

Although the correspondences between our fac-
tors and those derived from SASSI and INSPIRE
are not perfect, the fact that similar underlying fac-
tors are derived from different user groups and sys-
tems indicates that they are likely to be measuring
the same underlying constructs.

5.2 Comparing satisfaction in different systems

Recall that in this study we combined the data from
two systems: FULL, where the system provided stu-
dents with adaptive feedback and hints, and BASE,
where the system simply acknowledged the stu-
dent’s answers and then provided a correct answer
without engaging in dialogue. Table 2 separates out
the average factor scores for these two conditions,
where a factor score is computed by averaging over
scores of all questions assigned to that factor.

When comparing learning gain and overall satis-
faction between the two systems (which is the over-
all impression of the system behavior as a whole,
including circuit simulation and lesson design), the
difference is not statistically significant (learning
gain t(69) = —0.95,p = 0.35, overall satisfac-
tion ¢(69) = —1.52,p = 0.13). In contrast, on
individual dimensions related to tutoring the scores
for BASE is significantly higher than the score for
FULL (Transparency, t(69) = —7.19,p < 0.0001;
Acceptability: t(69) = —3.24,p < 0.01; Affect:

>The acceptability dimension from INSPIRE is split be-
tween our factors 2 and 3, but most of the questions correspond
to our factor 2 questions.



FULL BASE
Transparency  2.15 (0.56) 3.36 (0.81)
Acceptability  3.11 (1.02) 3.80 (0.77)
Affect 2.43 (0.80) 2.86 (0.996)
Overall 3.39 (0.88) 3.70(0.83)
Learning gain  0.61 (0.15) 0.65 (0.22)

Table 2: Average scores for different satisfaction dimen-
sions in FULL and BASE (standard deviation in parenthe-
ses)

t(69) = —1.97,p = 0.05). Comparing the means,
the biggest difference in student ratings shows on the
Transparency scale, while the affective reaction for
the two systems is more similar (though still rated
higher for BASE).

It is somewhat unexpected to see that the students
were equally satisfied overall with both systems but
rated the tutor in BASE more highly than in FULL,
since the tutor behavior was the only thing different
between conditions. We are at present investigating
the reasons for this result. One possibility is that
when students did not get much feedback from the
tutor (as in BASE), other factors became more im-
portant to overall satisfaction, such as course design
and quality of user simulation.

5.3 Relationships between subjective and
objective outcome measures

We investigated the correlations between learning
gain and different user satisfaction factors for the
two system versions. Results are presented in Table
3. As can be seen from the table, learning gain and
user satisfaction are only significantly correlated in
FULL, and only for the acceptability and overall sat-
isfaction factors. None of the factors in the BASE
system correlate with learning gain. This indicates
that the student’s affective reaction to the system is
not necessarily linked directly to its objective bene-
fits. We discuss these results further in Section 6

5.4 Impact of interpretation quality on user
satisfaction

It is generally known in SDS research that measures
of interpretation quality such as word error rate and
concept accuracy are strongly correlated with user
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FULL BASE
Transparency 0.32 (0.07) 0.06 (0.69)
Acceptability  0.38 (0.03) 0.23 (0.16)
Affect 0.29 (0.08) -0.10 (0.53)
Overall 0.38 (0.02) 0.18 (0.28)

Table 3: Correlations between satisfaction factors and
learning gain for two dialogue policies. Significance level
in parentheses. Bold indicates significance at p < 0.05
level.

satisfaction (e.g., (Walker et al., 2000; Moller et al.,
2007)). Our system uses typed input and produces
complex logical representations (rather than sim-
ple slot-value pairs), thus, these measures cannot be
computed directly. However, in an earlier study we
showed that another measure of interpretation qual-
ity, namely, percentage of utterances that could not
be interpreted by the system (“uninterpretable utter-
ances”) is negatively correlated with learning gain
and user satisfaction (Dzikovska et al., 2010b).3

That study revealed an unexpected pattern. Al-
though the system recorded the number of utter-
ances it could not interpret in both FULL and BASE,
students in BASE were never informed of any in-
terpretation problems. Nevertheless, the proportion
of such uninterpretable utterances was still signifi-
cantly negatively correlated with user satisfaction in
BASE. After analyzing correlations between differ-
ent types of errors and user satisfaction, we hypoth-
esized that this can be explained by the lack of align-
ment between the system and the student, in partic-
ular when students used terminology different from
that used by the system (Dzikovska et al., 2010b).

We can now analyze this relationship in more de-
tail, looking at correlations between interpretation
problems and different components of user satisfac-
tion. The results are presented in Table 4.

As can be seen from the table, the proportion
of uninterpretable answers is significantly correlated
with Acceptability in FULL, but not in BASE. This
is not surprising, indicating that students who were
told that they were not understood perceived the
system as less useful for them. More surprisingly,
Transparency, which is related to perceived ease of

3In that study, we computed user satisfaction with the tutor
by averaging over the entire 35 questions in our questionnaire
as an initial approximation.



FULL BASE
Transparency -0.28 (0.1) -0.25 (0.10)
Acceptability  -0.58 (< 0.001) -0.29 (0.07)
Affect -0.35 (0.04) -0.34 (0.04)
Overall -0.38 (0.03) -0.27 (0.11)
Learning gain  -0.38 (0.03) -0.09(0.60)

Table 4: Correlations between satisfaction factors and un-
interpretable utterances for two different policies. Signif-
icance level in parentheses.

use for the system, was not correlated with uninter-
pretable utterances. Finally, the proportion of unin-
terpretable utterances is significantly correlated with
Affect for both systems. Moreover, the unexpected
negative correlation we observed in the earlier study
between satisfaction with the tutor and interpretation
problems in BASE can be primarily attributed to the
negative correlation with the Affect score.

6 Discussion

In this study, we attempted to apply insights from
studies of user satisfaction in spoken dialogue sys-
tems to a different type of dialogue application: tu-
torial dialogue. We were looking to develop a better
user satisfaction questionnaire for evaluating tutorial
dialogue systems, and to implement an evaluation
methodology which takes into account different un-
derlying dimensions of user satisfaction.

The three dimensions we obtained based on ex-
ploratory factor analysis of REVU-NL align well
with the dimensions reported in the SDS litera-
ture, which provides some evidence of their valid-
ity. However, the results are preliminary because
of the small number of participants involved, and
need to be replicated with additional participants and
different tutoring systems. Regardless, our analysis
highlighted important issues in designing satisfac-
tion surveys for different dialogue genres.

When choosing which questions to include in a
satisfaction questionnaire for a new system type,
SASSI is a very attractive starting point, because
it was validated across multiple SDS in two gen-
res (command and control and information seeking).
This also means that SASSI items are phrased very
generally and therefore easier to adapt. In contrast,
INSPIRE contains a number of questions specific to
the command and control domain, asking whether
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the user thinks the system is useful in achieving their
goals (i.e., operating the domestic devices). SASSI
includes only one similar item, “The system was
useful”. It was classed as Affect, most likely be-
cause there were no other similar items. However,
we think that such questions represent an important
separate dimension, namely the “perceived useful-
ness” factor known to predict technology acceptance
(Adams et al., 1989). Therefore we included sev-
eral items in REVU-NL with similar intent, asking
whether users thought the system was beneficial to
their goal (i.e., learning the material). These items
were clustered into a separate dimension by factor
analysis, indicating that they should be included in
other satisfaction surveys.

Moreover, some of the questions that appeared
genre-independent to us proved to be cross-loading
in our analysis, which is an indicator of ambiguity.
Apparently, some of the items from task-oriented di-
alogue questionnaires did not transfer well. For ex-
ample, statements like “The system didn’t always do
what I expected” are unambiguous for task-oriented
dialogue, where the user is supposed to be in control
of the interaction, and therefore has clear expecta-
tions of what the system should do. In contrast, in
tutorial dialogue the tutor has control over the learn-
ing material. Thus, it may be more ambiguous as
to what, if anything, students are expecting from the
interaction.

Overall, our experience shows that it may not
be possible, or indeed useful, to create completely
generic surveys. However, we believe that question-
naires can be phrased generally enough to apply to a
range of systems with similar goals, and REVU-NL
in particular is useful starting point for comparing
dialogue-based tutoring systems. We believe that the
18 questions that we retained as unambiguous in our
analysis provide adequate assessment of user satis-
faction, and are grouped into factors consistent with
results of previous research. However, the question-
naire could be further improved by revisiting the
cross-loading items we rejected as ambiguous, and
seeing if their wording could be improved. We are
also intending to use REVU-IT in evaluating a spo-
ken version of BEETLE 11, thus providing additional
validation data on a different version of the interface.

With respect to evaluation methodology, our re-
sults highlight the need to look at different satis-



faction dimensions separately. We used our fac-
tors to further investigate a pattern that we discov-
ered in previous research, namely, that students who
speak in a way that is difficult for the system to in-
terpret tend to be less satisfied with the tutor, even
when they are not told of the interpretation prob-
lems. Looking at correlations with individual di-
mensions shows that this relationship is primarily
explained by the Affect dimension. Our working hy-
pothesis is that the lack of alignment between in-
correct student answers and the answers supplied by
the system caused students to perceive the system as
a less likeable or cooperative conversational partner.

We also observed that Acceptability, but no other
dimensions, were correlated with learning gain in
FULL. One possible explanation is that students who
are learning more believe that the system is help-
ing them reach their goals (our definition of Accept-
ability). The FULL condition provides students with
more explicit feedback as to their learning; whereas
in BASE students may have a less accurate estimate
of how well they are doing, and hence no satisfaction
dimensions are correlated with learning gain.

It is worth noting that an earlier study investigat-
ing the relationship between user satisfaction and
learning in two different tutorial dialogue systems
(Forbes-Riley and Litman, 2009) found little corre-
lation between the answers to individual questions
on their satisfaction questionnaire and learning gain.
Only one correlation, with the question “The tutor
helped me to concentrate”, reached significance in
only one of the 4 conditions they investigated. This
adds further evidence that the relationship between
learning gain and satisfaction is not straightforward.
However, our results are difficult to compare since
the questionnaires used are different, and Forbes-
Riley and Litman (2009) are studying correlations
with individual questions rather than grouping re-
lated questions together. Developing better validated
questionnaires will make such results easier to com-
pare and interpret, and we believe that REVU-NL
makes a significant step in that direction.

7 Conclusion and Future Work

In this paper, we proposed an improved question-
naire (REVU-NL) for evaluating user satisfaction
in tutorial dialogue systems, which is an important
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evaluation metric alongside learning gain. We used
the methodology from SDS evaluations to investi-
gate different dimensions of user satisfaction, and
their relationship to learning gain and different in-
teraction properties. Next, we are planning to use
the PARADISE methodology to establish predictive
models that relate satisfaction dimensions to mea-
surable interaction properties, so that we can de-
termine development priorities, and make it eas-
ier to compare different system versions. We are
also planning to collect additional questionnaire data
with a speech-enabled version of the system, and
verify our analyses on this extended data set.
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A REVU-NL Questions

tl
t2
t3
t4
t5
t6
t7
t8
t9
t10
tl1
t12
t13
t14
t15

t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
26
t27
t28
t29
t30
t31
t32
t33
t34
t35

I felt in control of my conversations with the tutor.

It took the tutor too long to respond to my statements.

I felt that the tutor understood me well.

The tutor didn’t always do what I expected.

The information that the tutor provided to me was incomplete.

It was easy for me to become confused during our dialogue.

I enjoyed talking with the tutor.

The tutor interfered with my understanding of the topics in electricity and circuits.
I was not always sure what the tutor expected of me.

Conversing with the tutor was fun.

It was easy to understand the things that the tutor said.

The dialogue between me and the tutor was very repetitive.

I had to really concentrate when I was talking with the tutor.

The tutor was too inflexible.

Working through the lessons with the computer tutor was as easy as working through the lessons
with a human tutor.

The tutor didn’t always do what I wanted.

I felt confident when talking with the tutor.

I always knew what to say to the tutor.

I was able to recover easily from errors during our dialogues.

Talking with the tutor was frustrating.

The information provided by the tutor was clear.

It was easy to interact with the tutor.

The tutor’s dialogue was clumsy and unnatural.

It was easy to learn how to speak to the tutor in a way that the tutor understood.
I felt comfortable talking with the tutor.

I didn’t always understand what the tutor meant.

The tutor was not helpful.

I found conversing with the tutor to be irritating.

I knew what I could say or do at each point in the conversation with the tutor.

I found our dialogues to be boring.

Having the tutor help me with the material was an efficient way to learn.

It was easy to learn from the tutor.

The tutor responded quickly.

Having the tutor was worthwhile

Our dialogues quickly led to me having a deeper understanding of the material.

B REVU-OVERALL questions

ol
02
03
o4
05

Overall, I am satisfied with my experience learning about electricity from this system.
Working in this learning environment was just like working one-on-one with a human tutor.
I would have preferred to learn about electricity in a different way.

I would use this system again in the future to continue to learn about electricity.

I would like to be able to use a system like this to learn about other topics in the future.
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C REVU-IT questions related to GUI and reading material (mentioned but not analyzed
in the paper)

sl1
sl2
s13
sl4
s15
sl6
s17
sI8
s19
s110
el
e2
e3

e4
e5
eb
e7
e8
e9
el0

ell
el2
el3

It was easy to navigate through the slides.

It took a long time for each new slide to be displayed.

The material on the slides was easy to understand.

The material on the slides was poorly written.

I would have benefited from more instrucion on how to move through the slides.

The material on the slides was interesting.

The slide navigation buttons didn’t always work the way I expected them to.

The slides were annoying.

The material on the slides was written at a level far beneath my abilities.

I would prefer reading a text book over reading these slides.

I found it difficult to learn how to build circuits and take measurements in the workspace.
Completing exercises in the workspace was fun.

Before beginning the lesson, I received the right amount of instruction on how to build circuits in
the workspace and take measurements.

The exercises were well designed to illustrate the important lesson concepts.

Sometimes I didn’t understand what I was supposed to do for an exercise.

The method for connecting components with wires was counter-intuitive.

Having to build all those circuits was annoying.

I always knew exactly what to build and/or measure in the workspace, and how to do it.

Circuits loaded quickly.

Even if I didn’t predict the outcome correctly ahead of time, once I completed an exercise, |
always understood the point.

It was easy to use the meter.

There were more exercises than necessary to cover the lesson topics.

I would have learned more if I had been able to build circuits with actual light bulbs and batteries.
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Abstract

In this work we describe the modeling and
prediction of Interaction Quality (IQ) in Spo-
ken Dialogue Systems (SDS) using Support
Vector Machines. The model can be employed
to estimate the quality of the ongoing inter-
action at arbitrary points in a spoken human-
computer interaction. We show that the use
of 52 completely automatic features character-
izing the system-user exchange significantly
outperforms state-of-the-art approaches. The
model is evaluated on publically available data
from the CMU Let’s Go Bus Information sys-
tem. It reaches a performance of 61.6% un-
weighted average recall when discriminating
between 5 classes (good to very poor). It can
be further shown that incorporating knowl-
edge about the user’s emotional state does
hardly improve the performance.

1 Introduction

For years, the research community has been trying
to model quality of Spoken Dialogue Systems (SDS)
with statistical approaches. Most vividly discussed
has been the PARADISE approach which tries to
map objective performance metrics of an SDS to
subjective user ratings (Walker et al., 2000). The
paradigm assumes that task success and dialogue
costs contribute to user satisfaction which is the tar-
get variable in the model. By that, an automatic eval-
uation of an SDS should be enabled. While the in-
tention of PARADISE is to evaluate and compare
SDS or different system versions among each other,
it is not suited to evaluate a spoken dialogue at ar-
bitrary points during an interaction. Such a model

can be helpful for a number of reasons: Firstly,
it allows for a prediction of critical dialogue sit-
vations. These predictions could be employed to
adapt the dialogue strategy or - in telephone appli-
cations with human assistance - escalate to human
operators. Secondly, it could help to uncover poten-
tially weak dialogue design and point out problem-
atic turns that need a re-design. Thirdly, user sat-
isfaction models help understand the satisfaction of
the users. In this study we present such a statisti-
cal model that is trained with a large set of domain-
independent features taken from system logs and use
additional manually created features, such as emo-
tional state and dialogue acts, to create an upper
baseline.

This paper is organized as follows: In Section 2
we present related work and discuss afterwards in
Section 3 further issues that need to be addressed in
this field. There, we also disambiguate the term user
satisfaction from Interaction Quality. After that, we
describe the annotation scheme as well as the rating
process for modeling IQ and present, how we derive
a generic label from the different raters’ opinions in
Section 4. The input feature groups along with their
features are presented in Section 5. We anticipate
that the problem is best modeled with Support Vec-
tor Machines (SVM), which is addressed in Section
6. Ensuing, the performance of the model is evalu-
ated. In the first place, we analyze the impact of dif-
ferent feature groups on the SVM classifier in Sec-
tion 7 and secondly, we optimize the model and de-
termine the most relevant features for predicting the
IQ score in Section 8. A linear modeling approach
of IQ by use of multivariate linear regression will be
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presented and discussed in Section 9 to obtain com-
parability with PARADISE. This study closes with
a conclusion and a discussion in Section 10.

2 Related Work

Models predicting user satisfaction at any point in
an SDS have only been deficiently explored to date.
(Engelbrecht et al., 2009) modeled user satisfac-
tion as process evolving over time with Hidden
Markov Models (HMM). In the experiment, users
were asked to interact with a Wizard-of-Oz restau-
rant information system. Each participant followed
dialogues which have previously been defined fol-
lowing predefined scripts, i.e. specific scenarios.
This resulted in equally long dialogue transcripts
for each scenario. The users were constrained to
rate their satisfaction on a 5-point scale with “bad”,
“poor”, “fair”, “good” and “excellent” after each di-
alogue step. The interaction was halted while the
user voted.

In a similar spirit, (Higashinaka et al., 2010a)
developed a model for predicting turn-wise rat-
ings, which was evaluated on human-machine and
human-human dialogues. The data employed was
not spoken dialogue but text dialogues from a chat
system and a transcribed conversation between hu-
mans. The labels in the model originated from
two expert raters that listened to the recorded in-
teractions and provided turn-wise scores from 1-7
on smoothness (“Smoothness of the conversation™),
closeness (“Closeness perceived by the user towards
the system”) and willingness (“Willingness to con-
tinue the conversation”). Rater-independent perfor-
mance scores of the model reached about 0.2-0.24
unweighted average recall, which is about 0.1 points
above the baseline of app. 0.14.

(Hara et al., 2010) created n-gram models from
dialogue acts (DA) to predict user satisfaction based
on dialogues from real users interacting with a music
retrieval system. The model is based on overall rat-
ings from the users measuring their satisfaction on a
five point scale after the interaction. The best result
could be achieved with a 3-gram model that reached
34% accuracy in distinguishing between six classes
at any point in the dialogue. It seems that the predic-
tion of turn-level user satisfaction scores given only
one overall dialogue-level score seems hardly possi-
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ble and is close to random: The prediction of the five
user satisfaction classes reach an average F-score as
low as 0.252, which is only 0.052 score points above
the baseline of 0.20. A similar result as (Hara et al.,
2010) was obtained by (Higashinaka et al., 2010b).
Using HMMs they derived turn-level ratings from
dialogue-wide ratings. The model’s performance
when trained on dialogue-level ratings was closer to
random than when trained on turn-level ratings. The
open issues that arise from the cited work are ad-
dressed in the following.

3 Issues

Our aim is to create a general model that may be
used to predict the quality of the interaction - or
ideally the actual satisfaction of the user - at arbi-
trary system-user exchanges in an SDS. It has be-
come obvious from the cited work that current mod-
els are not suited for deployment due to low predic-
tion accuracy. Crucial for a successful recognition
of user satisfaction is the choice and appropriateness
of the input variables. (Higashinaka et al., 2010a),
(Higashinaka et al., 2010b) and (Hara et al., 2010)
employ a - mostly hand annotated - “dialogue act”
feature to predict the target variable. Dialogue acts
are frequently highly system-dependent and do not
model the full bandwidth of the interaction. (Engel-
brecht et al., 2009) additionally employed contex-
tual appropriateness, confirmation strategy and task
success, of which many require hand annotation. Yet
it is mandatory for an automatic prediction of user
satisfaction to design and derive completely auto-
matic features that do not require manual interven-
tion. It is further easy to comprehend that the mod-
eling of user satisfaction in ongoing dialogues starts
with a dilemma: tracking user satisfaction from real
users in real environments performing real tasks is
virtually impracticable. Consequently data for de-
riving models can either be obtained under labora-
tory conditions with real users performing fake tasks
in an artificial environment, cf. (Engelbrecht et al.,
2009), or by manual annotation of real-life data from
experts that pretend to be the users.

It is thus vital for modeling “user satisfaction” to
understand the term itself. In the literature there ex-
ists no rigorous definition, however, it seems obvi-
ous that it is the user himself who determines the



satisfaction - and not expert annotators. Accord-
ing to (Doll and Torkzadeh, 1991) “user satisfac-
tion” is the opinion of users about a specific com-
puter application, which they use. Other terms for
“user satisfaction” are common, such as “user infor-
mation satisfaction”, which is defined as “the extent
to which users believe the information system avail-
able to them meets their information requirements”
(Ives et al., 1983). User satisfaction and usability are
closely interwoven. (ISO, 1998) subsumes under the
definition “usability” a compound of efficiency, ef-
fectiveness and satisfaction. Yet satisfaction is often
seen as a by-product of great usability in HCI lit-
erature (Lindgaard and Dudek, 2003). They could
also show that user satisfaction ratings are subject to
large fluctuations among different users and it can be
further assumed that those fluctuations do also occur
within a single dialogue of a user. As a result, gen-
eral prediction models that mirror a universal, un-
biased understanding of satisfaction can presumably
hardly be derived from user’s impressions. Large
influence of subjectivity - and also randomness in
assigning the scores - would prevent such a general
model. Consequently, it seems unavoidable to em-
ploy expert annotations. In the proper meaning of
the word, the scores then do not exactly mirror the
subjective impression of users but the more objec-
tive impression of expert raters.

Thus we decide against the use of the term user
satisfaction in the course of this work in contrast to
(Higashinaka et al., 2010a) and instead opt for the
expression Interaction Quality. It can be assumed
that basic attitudes towards dialogue systems in gen-
eral, opinions about the TTS voice, environmental
factors etc. that would typically influence user satis-
faction scores, and which are not of interest for our
prediction, are not dominant in expert satisfaction
scores in a series of annotated dialogues. Experts
are expected to fade out such system-dependent and
environment-dependent influences and instead focus
on the dialogue behavior (i.e. the Interaction Qual-
ity) only.

As a result, two key issues are addressed in this
work: First of all, the input feature set has to be de-
signed as a generic, domain-independent set that can
be derived from any spoken dialogue system log and
that takes into account a maximum of available in-
formation about the interaction. Secondly, the tar-
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get variable, i.e. the IQ score, needs to be deter-
mined in a guided rating process in order to be re-
producible in future work and has to be empirically
derived from several expert annotators that provide
scores for each single system-user turn of an inter-
action.

4 Corpus Annotation

For our study we employ data from the Let’s Go
Bus information system (Raux et al., 2006). Three
raters, advanced students of computer science and
engineering, annotated respectively 200 dialogues
comprising 4885 system-user exchanges from the
2006 corpus. The raters were asked to annotate the
quality of the interaction at each system-user ex-
change with the scores 5 (very good), 4 (good), 3
(fair), 2 (poor) and 1 (very poor). Every dialogue
is initially rated with a score of 5 since every inter-
action at the beginning can be considered as good
until the opposite eventuates. Our model assumes
that users are initially interacting with an SDS with-
out bias, i.e. the basic attitude towards a dialogue
system is positive. Other assumptions would not be
statistically predictable. An example dialogue is de-
picted in Table 5 along with the ratings (cf. Figure 2
in the Appendix). (Higashinaka et al., 2010b) and
(Higashinaka et al., 2010a) report low correlation
among the ratings (Spearman’s p 0.04-0.32), which
motivated us to develop a set of basic guidelines that
should be used by the raters (cf. Table 6 in the Ap-
pendix). The guidelines have been designed in such
a way that the raters still have sufficient level of free-
dom when choosing the labels but preventing them
from too strong variations among the neighboring
system-user exchanges.

The distribution of the labels provided by the sin-
gle raters is depicted in Figure 3. As expected, the
distribution is skew towards label “5” since every di-
alogue initially is assumed to have a good IQ.

The inter-rater agreement shows that Interaction
Quality is still a subjective metric, although guide-
lines seem to synchronize the labels to a certain ex-
tent. The overall mean agreement can be reported
with Cohen’s k = 0.31 and the correlation among
the raters can be reported with Spearman’s p = 0.72
which depicts a by 0.4 points higher correlation as
reported by (Higashinaka et al., 2010a). Since we



aim to model a general opinion on Interaction Qual-
ity, i.e. the model should mirror the IQ score other
raters - and in the last instance users - agree with,
we determine the final label empirically. A major-
ity voting for the distinction of the final label can-
not be used since in 21% of the exchanges all three
raters opted for different scores. Thus we consider
the mean of all rater opinions as possible candidates
for the final class label:

R
1
ratingmean = L(R Z IQT> +0.5]
r=1

where I(Q) is the Interaction Quality score pro-
vided by rater r. |y]| denotes the biggest integer
value smaller than y. Every value 1Q), contributes
equally to the result that is finally rounded half up to
an integer value. Furthermore we consider the me-
dian, which we define as

R+1

ratingmedian = select(sort(IQR), 5

)

for an odd number of raters R, where sort is a func-
tion that orders the ratings of all raters ascending and
select(X = [z1,...,Zy], 1) chooses the item with in-
dex ¢ from X.

The compliance of the single user ratings with the
final label (calculated on mean and median) is de-
picted in Table 1. As can be seen, the agreement of
the three raters with the median label is significantly
higher than with the mean label. Consequently the
median label represents the most objective measure-
ment of Interaction Quality and commends itself for
creating the model.

S Input Features

The system-user interaction is modeled on exchange
level. Each system-user exchange consists of a set
of fully automatic features that can be derived from
system logs. We used parameters similar to the ones
described in (Schmitt et al., 2008; Schmitt et al.,
2010b). In the first place, we modeled each system-
user exchange with a number of Speech Recognition
(ASR), Spoken Language Understanding (SLU) and
Dialog Manager (DM)-related features:
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Mean Label Median Label
Cohen’s k
Raterl 0.557 0.688
Rater2 0.554 0.679
Rater3 0.402 0.478
Mean 0.504 0.608*
Spearman’s p
Raterl 0.901 0.900
Rater2 0911 0.907
Rater3 0.841 0.814
Mean 0.884 0.874
Accuracy
Raterl 0.651 0.755
Rater2 0.647 0.749
Rater3 0.539 0.598
Mean 0.612 0.701*

Table 1: Agreement of single rater opinions to the merged
label when determined by mean and median, measured in
K, p and accuracy. (*)=significantly higher (o < 0.05)

ASR ASRRECOGNITIONSTATUS: one of ’suc-
cess’, ‘reject’, ‘timeout’; ASRCONFIDENCE:
confidence of the ASR; BARGED-IN?: did the
user barge-in?, MODALITY: one of ’speech’,
’DTMF’; EXMO: the modality expected from
the system (’speech’, ’DTMF’, ’both’); UN-
ExMo?: did the user employ another modal-
ity than expected?; GRAMMARNAMES: names
of the active grammars; TRIGGEREDGRAM-
MAR: name of grammar that matched; UTTER-
ANCE: raw ASR transcription; WPUT: num-
ber of words per user turn; UTD: utterance turn
duration;

SLU SEMANTICPARSE: semantic interpretation
of caller utterance; HELPREQUEST?: is the
current turn a help request?; OPERATORRE-
QUEST?: is the current turn an operator re-
quest?;

Dialog Manager ACTIVITY: identifier  of
the current system action; ACTIVITY-
TYPE: one of ’question’, ’announcement’,
"wait_for_user_feedback’; PROMPT: system
prompt; WPST: number of words per system
turn; REPROMPT?: is the current system turn
a reprompt?; CONFIRMATION?: whether the



current system prompt is a confirmation to
elicit common ground between user and system
due to low ASR confidence; TURNNUMBER:
current turn; DD: dialog duration up to this
point in seconds.

To account for the overall history of important
system events we added running tallies, percentages
and mean values for certain features symbolized
with the suffixes '#°, "%’ and "MEAN’. They
are: MEANASRCONFIDENCE, the average of
ASR confidence scores from all user utterances
so far in the dialog, and #ASRSUCCESS, the
number of succesfully parsed user utterances so far.
Further we calculate #ASRREJECTIONS, #TIME-
OUTPROMPTS, #BARGEINS, #UNEXMO and the
respective normalized equivalents with the prefix
"%’ instead of '#. We consider the immediate
context within the previous 3 turns of the current
turn as particularly relevant for the Interaction Qual-
ity. Hence, derived from the basic parameters we
created further parameters that emphasize specific
user behavior prior to the classification point. They
are symbolized with the prefix {#} for a number and
{Mean} for the mean value. A number of successive
barge-ins or recognition problems might indicate a
low IQ. Thus we add {MEAN}ASRCONFIDENCE,
the mean confidence of the ASR within the win-
dow, {#}ASRSUCCESS, {#}ASRREJECTIONS
and {#}TIME-OUTPROMPTS, i.e. the number
of successfully and unsuccessfully parsed ut-
terances within the window and the number
of time-outs. = The other counters are calcu-
lated likewise: {#}BARGEINS; {#}UNEXMo,
{#}HELPREQUESTS, {#}OPERATORREQUESTS,
{#}REPROMPT, {#} CONFIRMATIONS,
{#}SYSTEMQUESTIONS.

To provide comparability to previous work (Hi-
gashinaka et al., 2010a), we further introduce a
dialogue act feature group that we create semi-
automatically:

DAct SYSTEMDIALOGUEACT: one of 28 dis-
tinct dialogue acts, such as greeting,offer_help,
ask_bus, confirm_departure, deliver_result, etc.
USERDIALOGUEACT: one of 22 distinct DAs,
such as confirm_departure, place_information,
polite, reject_time, request_help, etc.
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To create an upper baseline of our model we fur-
ther introduce the negative emotional state of the
user that is manually annotated by a human rater
who chooses one of the labels garbage, non-angry,
slightly angry, very angry for each single user turn:

Emo EMOTIONALSTATE: emotional state of the
caller in the current exchange. One of garbage,

non-angry, slightly angry, very angry.

The same annotation scheme as in our previous
work on anger detection has been applied, see e.g.
(Schmitt et al., 2009). From all 4,832 user turns,
68.5% were non-angry, 14.3% slightly angry, 5.0%
very angry and 12.2% contained garbage, i.e. non-
speech events. In total, the number of interaction
parameters servings as input variables for the model
amounts to 52.

6 Non-Linear Modeling with Support
Vector Machines

The IQ scores are classified with Support Vector
Machines (Bennett and Campbell, 2000). In short,
an SVM uses a set of training examples

(xlvyl) e (xnayn)|xl € Xayl € {_17 1}

to create a hyperplane that separates two classes
{—1,1} in such a manner that the smallest margin
between all training samples is maximized. The hy-
perplane is described by a normal vector w and a
so-called bias b. To classify an unknown sample the
following decision rule is applied:

wlz+b>0
wlz+b<0

+1,

Y:sgn[wTa:—l-b>O]:{ 1

Depending on the position of the training sample in
relation to the hyperplane, the class 1 or —1 is as-
signed to the unknown sample. Multi-class prob-
lems are solved by reducing the problem to several
binary classification problems where usually a one-
versus-all decision is applied.

The model is constructed with an SVM with lin-
ear kernel that uses the fast Sequential Minimal Op-
timization (SMO) algorithm (Platt, 1999). Input
variables are features from the described groups, i.e.
x € {DAct, ASR,SLU, DM, Emo}. The target
variable is the IQ score.



7 Feature Group Evaluation

The skew distribution of the five classes requires the
employment of an evaluation metric that weights the
prediction of all classes equally. Hence, a perfor-
mance metric, such as accuracy, would not be a re-
liable measurement. We select the unweighted aver-
age recall (UAR) to assess the model performance.
Although it does not consider the severity of the er-
ror, i.e. predicting “1” for an IQ of “5” is considered
as fatal as predicting “4”, it has been proven to be su-
perior to other evaluation metrics, see (Higashinaka
et al., 2010a), where the UAR is called Match Rate
per Rating (MR/R). It is defined as follows:

> match(R;, H;)
|Ri=r}

K
1 ic{i
MR/R(R,H) = - 3 ,
r=1

1
ie{i|R;=r}

where K is the number of classes, here “5”, and
‘match’ is either "1’ or 0’ depending on whether
the classifier’s hypothesis H; for the class  matches
the reference label R;. In the course of this work
we will stick to the expression MR/R by reason of
clearness. We further list Cohen’s x and Spearman’s
p to make our work comparable to other studies but
will use MR/R as central evaluation criterion and for
feature selection.

We have split all available data into two disjoint
subsets consisting of 60% of the dialogues for train-
ing and testing via 10-fold cross-validation and the
remaining 40% of the dialogues for optimization.
The dialogues have been selected randomly.

In order to assess the performance contribution of
the single feature groups, we trained the SVM re-
spectively with all features from the DAct, ASR, SLU
and DM groups. Further, we subsumed the groups
ASR, SLU and DM as AUTO features since they can
automatically be derived from logs without manual
intervention. In addition, the AUTOEMO group con-
tains all AUTO features plus the emotion label. Fi-
nally, the ALL group contains the AUTOEMO fea-
tures plus the DAct features. For all groups, the sup-
port vector classifier has been trained and evaluated
in 10-fold cross validation with the 3110 exchanges
from the 118 training/testing dialogues. The first
turn of each dialogue has been excluded from the
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evaluation since each dialogue starts with a score of
“5”. Results are depicted in the first half of Table 2.

Input Feature Selection MR/R K p

Majority Baseline 0.200 0.0 NA
DAct no 0269 0.136  0.363
ASR no 0.605 0.551 0.753
SLU no 0.250 0.083 0.293
DM no 0.429 0.334 0.653
AUTO no 0.584 0.526 0.776
AUTOEMO no 0.606 0.549 0.785
ALL no 0.619 0.559 0.800
DAct - - - -
ASR 13/25 0.598 0.545 0.730
SLU 4/5 0.250 0.083 0.293
DM 10/17 0436 0.338 0.649
AUTO 20/47 0.616 0.563 0.786
AUTOEMO 31/48 0.604 0.545 0.785
ALL 23/52 0.625 0.575 0.795

Table 2: Model performance after 10-fold cross valida-
tion on training/test set. The first half comprises results
when all features of a group are employed. The second
half contains results after feature selection on the opti-
mization set ((z/y)=where z is the number of features
used from all y available features.)

As can be seen, the model reaches a similar
performance as (Higashinaka et al., 2010a) with
MR/R=0.26, when trained with dialogue act features
alone. The slightly higher performance of our model
can potentially be explained by the lower number
of classes (5 vs. 7), a different definition of the
dialogue act set, the employment of Support Vec-
tor Machines instead of Hidden Markov Models or
the difference in the target variable (IQ vs. close-
ness/smoothness/willingness). It can be noted that
the utilization of other features considerably outper-
forms dialogue act features. Particularly the group
of the ASR features alone reaches a performance
of 60.5%. The employment of all AUTO features
delivers 58.4% which is 2.1% below the ASR fea-
tures. Consequently, other variables seem to be
less meaningful for predicting the Interaction Qual-
ity and seem to harm the performance of the SVM.
The knowledge of the emotional state of the user
contributes with merely another 0.1% in compari-
son to the ASR features. It can be assumed that the
emotion feature increases the recognition rate of the
lower IQ scores “1” and “2”. However, this could
not be confirmed: even when considering class-wise



performance values a significant contribution of the
emotion feature cannot be observed. We also have
to bear in mind that we employed hand-annotated
emotions. Emotion recognition itself is error-prone
and a distinction of the emotional state of the caller
with the employed annotation scheme can be ex-
pected with approximately 70%-80% UAR, see e.g.
(Schmitt et al., 2010a). The influence of emotion
recognition on the IQ distinction can be considered
as limited and is insofar not surprising as the occur-
rence of strong anger in the data is not dominant
(5.0%). The contribution of the single features to
the classification result (across the groups they are
assigned to) is analyzed in the following.

8 Optimizing the Model by Feature
Selection

Since too many (potentially irrelevant) features
might harm the classifier’s performance we perform
feature selection with the optimization set. First,
the features are ordered according to an Informa-
tion Gain Ratio (IGR) ranking. The 10 most rele-
vant features according to IGR for predicting 1Q are
depicted in Table 3.

Feature IGR
1 #ASRREJECTIONS 1
2 #TIMEOUT_ASRREJ 0.967288
3 #ASRSUCCESS 0.834238
4 #REPROMPTS  0.804752
5 %REPROMPTS  (0.800462
6 #TIMEOUTPROMPTS  0.757596
7 #SYSTEMQUESTIONS  0.757596
8 ROLEINDEX  0.699246
9 DD 0.566836
10 #BARGE-INS  0.566836

Table 3: Top 10 features on optimization set according to
IGR.

As can be seen the Interaction Quality is obvi-
ously heavily influenced by the performance of the
ASR. In other words, it can be assumed that the
raters themselves are influenced by the ASR’s per-
formance when assigning the IQ scores. All features
belong to the group AUTO, i.e. they can be deter-
mined automatically during runtime. Furthermore,
nearly all features are related to the overall interac-
tion, i.e. features related to the current exchange,
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such as UTTERANCE, ASRSUCCESS? etc. do not
even occur. It can also be noted that the emotional
state and the dialogue acts are not listed as most rel-
evant features. To determine the global maximum of
the classifier, i.e. the best performing feature set, we
incrementally select the k& topmost features from the
list and perform 10-fold cross validation on the opti-
mization set. A plot of the iterative feature selection
is depicted in Figure 1.
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Figure 1: Performance of the SVM when iteratively in-
creasing the size of the feature vector with the k topmost
features according to IGR.

Several observations can be made: the best per-
forming feature set consists of 20 features with an
absolute performance of 65 % MR/R on the op-
timization set. However, a similar performance
can already be gained with the 7 top-most fea-
tures. All other features obviously neither signif-
icantly decrease nor increase the performance and
can be considered irrelevant for predicting the 1Q
score. The impact of feature selection on the model
when evaluated on the single feature groups from
the test/training set using only the most relevant fea-
tures from the optimization set can be seen in the
lower part of Table 2. Again, 10-fold cross vali-
dation has been applied. The AUTO group benefits
from the selection and delivers the highest perfor-
mance with 20 features with an MR/R of 61.6%,
which is an increase of 3.2%. The upper baseline
with hand annotated features (ALL group) amounts
t0 62.5%. The fact that the AUTOEMO set underper-
forms with 60.4% - in comparison to the AUTO set
- can be explained due to the potentially too small
size of the optimization set.

The confusion matrix for the AUTO feature set is
depicted in Table 4, along with the class-wise pre-
cision and recall values. The model yields the best



performance in predicting the scores at the edge, i.e.
“5” and “1”. In between, the confusion is slightly
higher and the model performance lower.

Table 4: Confusion matrix including class-wise preci-
sion and recall values after 10-fold cross validation (train-
ing/test set) using the AUTO set. A (weighted average)
accuracy of 67.5% can be derived.

true5 true4 true3 true2 truel  prec.

pred. 5 721 154 42 9 5 0774

pred. 4 89 464 104 44 19 0.644

pred. 3 17 63 231 49 38  0.580

pred. 2 2 15 39 89 33 0.500

pred. 1 4 23 29 27 169 0.670
rec. 0.865 0.645 0519 0408 0.640

9 Linear Regression Modeling

Models from the initially mentioned PARADISE ap-
proach presume a linear relationship between input
variables - quantifying the dialogue - and the target
variable U S, the user satisfaction. Assuming lin-
earity, such linear models allow inferences such as
“The longer the dialogue duration, the lower the sat-
isfaction”. While linear modeling is descriptive and
easy to read it delivers poor performance when ap-
plied on non-linear problems. Such non-linear prob-
lems reach a better predictability using Support Vec-
tor Machines (SVM). Although we anticipate that a
relationship between 1Q and the interaction param-
eters is not given, we list a multivariate linear re-
gression model for comparison reasons with PAR-
ADISE.

The linear regression model of Interaction Quality
is calculated as follows:

I1Q = Zwi -N(pi)
i—1

where w; is the weight for the interaction parame-
ters p;, and N the z-score normalization function.
N normalizes the input variables to a mean of zero
and a standard deviation of one. This eliminates the
variying scales of the input variables.

From the CMU Let’s Go dataset we obtained the
following IQ function using the ALL feature set:
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IQ = 0.7797 - N(TURNNUMBER)
+0.7797 - N (#SYSTEMTURNS)
— 0.7386 - N (#ASRSuccess)
—0.7175 - N (#USERTURNS)
—0.3019 - N'(%RePrompts)
—0.2371 - N(EMOTIONALSTATE)
— 0.2224 - N (#ASRRejections)
—0.1961 - N (#TIMEOUTS_-ASRREJ)
+0.1912 - N(ASRRECOGNITIONSTATUS)
+0.1648 - N (ASRCONFIDENCE)
—0.1592 - N (#ASRSUCCESS)
—0.1466 - N (ACTIVITY)
+0.1388 - N(ACTIVITYTYPE)
+0.1231 - N(MEANASRCONFIDENCE)

—0.0981 -
+ 0.0948 -
—0.0918 -

+ 0.0835

+0.0812 -
— 0.0567 -
— 0.0555 -
— 0.0467 -
+ 0.0461 -
+ 0.0432 -
—0.0425 -
+0.0375 -
+0.0374 -
—0.0345 -
+0.0338 -
—0.0335 -
— 0.0316 -
+ 0.0302 -
+0.0249 -

#SYSTEMQUESTIONS)
% ASRREJECTIONS)
#TIMEOUTS_-ASRREJ)

%BARGE-INS)

% TIME-OUTPROMPTS)
#TIMEOUTS ASRREJ)
#Time-OutPrompts)
WPST)
HANDTRANSCRIPTION)
LOOPNAME)
#SystemQuestions)
SEMANTICPARSE)
BARGED-IN?)
RoleIndex)
#REPROMPTS)
#ASRREJECTIONS)
REPROMPT?)

WPUT)

N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
- N (#Reprompts)
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(
N(

+0.0225 - N(ROLENAME)

Parameters occurring in the top 10 feature list ac-
cording to IGR (see Table 3) are printed in bold-
face. It is interesting to note that parameters related
to the progress of the dialogue (TURNNUMBER,
#SYSTEMTURNS, #USERTURNS) seem to play the
most important role, which can easily be explained:
the later in the dialogue, the higher the probabil-
ity that the score is low, due to the nature of IQ.
Remember that all dialogues have been annotated
with high IQ scores (“5”) in the beginning (see also



Table 5). However, many inconsistencies remain
unexplained, e.g. the negative sign in “—0.7175 -
N (#USERTURNS)” contradicting the positive sign
in “4+0.7797 - N (#SYSTEMTURNS)”. The nega-
tive sign in “—0.7386 - N (#ASRSUCCESS)” would
further imply that the more successful the ASR, the
lower the IQ score. This corroborates our suspicion
that IQ is not a linear problem.

To assess the performance of linear regression for
predicting IQ we employed 10-fold cross validation,
again with all 200 annotated dialogues. We obtained
a root mean squared error of 0.594 and R? = 0.646.

Mapping the continuous values to discrete score
classes from 1-5, we obtain MR/R = 45.5%
(62.5% using SVM), k = 0.352 (0.575) and p =
0.46 (0.795). All values finally suggest that IQ is
better modeled with non-linear classifiers such as
SVMs or Multilayer Perceptrons (MLP).

10 Conclusion and Discussion

In this work we have developed a statistical model
that predicts Interaction Quality, an objective mea-
sure of user satisfaction, at arbitrary points in an
SDS. The model targets on predicting critical situ-
ations on exchange level in ongoing dialogues. The
classifier, an SVM, reaches a performance of 61.6%
MR/R (k = 0.563,p = 0.786) by use of an opti-
mized feature set that can be automatically derived
during the interaction. It could be further shown
that linear modeling with multivariate linear regres-
sion is not appropriate for predicting IQ and reaches
merely 45.5.% MR/R. Among all five feature groups
comprising altogether 52 features, the ASR and DM
groups contribute the most, while the EMOTIONAL-
STATE underperforms. We could further show that
features requiring manual annotation, such as dia-
logue acts, do not significantly improve the model’s
performance. The model has been evaluated with
200 dialogues from the CMU Let’s Go corpus com-
prising 4885 system-user exchanges where three an-
notators labeled the Interaction Quality on a score
from 1-5. We could show that the median of all three
opinions depicts the most generic view on the IQ and
is thus chosen as final score for the model.

Some issues have to be addressed in future work:
In the current study we assume that Interaction
Quality is an objective metric for determining the
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satisfaction of users during the interaction. How
far this assumption is justified has to be empirically
proven in a laboratory study with real users. A cor-
responding study is in preparation and the results
will be published in a follow-up work. Although
the model’s performance can be considered as sat-
isfying, the direct deployment in dialogue systems
cannot be recommended at this stage. For enabling
a dialogue system to react on poor interaction qual-
ity, a correct prediction of the low IQ scores 1,2 and
3 is urgent, i.e. the classifier has to be optimized
to deliver a very high precision on such low scores
rather than towards a high general MR/R value. We
assume that the performance can be further driven
up by extending the feature space to the last n ex-
changes, which would take into account a larger
dialogue history for the decision (cf. (Schmitt et
al., 2010b)). The presented model can principally
be trained on data from any dialogue system; how-
ever, we did not yet deliver the proof that the present
model trained on Let’s Go data is general enough
for cross-domain and cross-system application with-
out significant performance loss. Due to the general
character of the ten most relevant features (cf. Table
3), portability can at least be assumed - without the
need for domain-dependent and system-dependent
re-training.
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Appendix
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10

11

12

13

14

15

16

17

Welcome to the CMU Let’s Go bus information system.

To get help at any time, just say Help or press zero.

What can I do for you?

<DTMF-Zero>

I am an automated spoken dialogue system that can give you
schedule information for bus routes in Pittsburgh’s East End.
You can ask me about the following buses: 28X, 54C, 56U,
59U, 61A, 61B, 61C, 61D, 61F, 64A, 69A, and 501.

What bus schedule information are you looking for?

For example, you can say, when is the next 28X from DOWN-
TOWN to THE AIRPORT? or I'd like to go from MCK-
EESPORT to HOMESTEAD tomorrow at 10 a.m..

28X

The 56C . Is this correct?

No, 28X

What can I do for you?

I want to know whether /uh/ tomorrow the bus is available or
not.

Leaving at 11 p.m. . Did I get that right?

No, I just want to know is there any bus service for 28X tomor-
TOW.

Please use shorter answers because I have trouble understand-
ing long sentences.

Leaving at 11 p.m. . Is this correct?

On twenty third november.

Leaving at 11 p.m. . Is this correct?

No, I want to know the schedule on twenty third november
Leaving at 2 a.m. . Did I get that right?

<noise>

If you want to leave at 2 a.m. say yes or press one, otherwise
say no or press three.

no <noise>

Going to NORTH AND CEDAR. Did I get that right?

28x going to airport at seven a.m.

Please use shorter answers because I have trouble understand-
ing long sentences.

Going to NORTH AND CEDAR. Is this correct?

No.

18

20

21
22

23

24
25

26

27

28

34

35

36

Leaving from DYNAMO. Is this correct?

No.

Leaving from DYNAMO. Is this correct?
Leaving to airport.

Leaving from AIRPORT . Did I get that right?
yes

Right

Where are you going?

To airport.

Going to AIRPORT. Did I get that right?
yeah, yep

Okay

When would you like to travel?

yes

When would you like to travel?

Twenty third November.

When would you like to travel?

Tomorrow.

At what time do you wanna travel?

Seven a.m.

Leaving at 7 a.m. . Is this correct?

yep

Alright

Just a minute. I'1l look that up.

AIRPORT and AIRPORT are both the same stop. Please pro-
vide a different start or end point.

To ask about a different trip, you can say, start a new query. If
you are finished, you can say goodbye.

Yes.

You can say start a new query, or goodbye.
No.

To ask about a different trip, you can say, start a new query. If
you are finished, you can say goodbye.
<noise>

You can say start a new query, or goodbye.
<noise>

You can say start a new query, or goodbye.
<hangup>

Table 5: Example dialogue (ID: 2061122025) from the CMU Let’s Go System (2006 corpus) with low Interaction
Quality. The user utterances are printed in italic.

Interaction Quality
N w S v

[y

Interaction Quality

Exchanges

26 31 36

e median
—{raterl
—A—rater2

rater3

median
—O—model hypothesis

Figure 2: Upper chart: Turn-wise Interaction Quality (IQ) annotation from 3 raters. The final label is the median of
all three opinions. Lower chart: median reference vs. hypothesis of the model trained with AUTO feature set.
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Rule

Frequency

Raterl Rater2 Rater3

1656
1,500 1,500 1417 1,500 1416
120 1294
083 z 1072 1043 z
1,000 ' S 1,000 5 1,000 927
792 E 797 E
] ]
595 = 555 5
500 500 500 | 443 442
0 T T T | 0 T T 0+ T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Rating Rating Rating

Figure 3: Rating distribution for Interaction Quality within the Let’s Go Corpus for each rater.

Table 6: Rater guidelines for annotating Interaction Quality.

Description

e

A S EONY

11.

12.

13.

14.

15.

16.

The rater should try to mirror the users point of view on the interaction as objectively as possible.

An exchange consists of the system prompt and the user response. Due to system design, the latter is not always present.
The IQ score is defined on a 5-point scale with “1=bad”, “2=poor”, “3=fair”, “4=good” and “5=excellent”.

The Interaction Quality is to be rated for each exchange in the dialogue. The history of the dialogue should be kept in
mind when assigning the score. For example, a dialogue that has proceeded fairly poor for a long time, should require
some time to recover.

A dialogue always starts with an Interaction Quality score of “5”.

The first user input should also be rated with 5, since until this moment, no rateable interaction has taken place.

A request for help does not invariably cause a lower Interaction Quality, but can result in it.

In general, the score from one exchange to the following exchange is increased or decreased by one point at the most.
Exceptions, where the score can be decreased by two points are e.g. hot anger or sudden frustration. The rater’s
perception is decisive here.

Also, if the dialogue obviously collapses due to system or user behavior, the score can be set to “1” immediately. An
example herefore is a reasonable frustrated sudden hang-up.

Anger does not need to influence the score, but can. The rater should try to figure out whether anger was caused by the
dialogue behavior or not.

In the case a user realizes that he should adapt his dialogue strategy to obtain the desired result or information and
succeeded that way, the Interaction Quality score can be raised up to two points per turn. In other words, the user
realizes that he caused the poor Interaction Quality by himself.

If the system does not reply with a bus schedule to a specific user query and prompts that the request is out of scope,
this can nevertheless be considered as “task completed”. Therefore this does not need to affect the Interaction Quality.
If a dialogue consists of several independent queries, each query’s quality is to be rated independently. The former
dialogue history should not be considered when a new query begins. However, the score provided for the first exchange
should be equal to the last label of the previous query.

If a dialogue proceeds fairly poor for a long time, the rater should consider to increase the score more slowly if the
dialogue starts to recover. Also, in general, he should observe the remaining dialogue more critical.

If a constantly low-quality dialogue finishes with a reasonable result, the Interaction Quality can be increased.
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Abstract

SMS dictation by voice is becoming a viable al-
ternative providing a convenient method for
texting in a variety of environments. Contextual
knowledge should be used to improve perfor-
mance. We propose to add topic knowledge as
part of the contextual awareness of both texting
partners during SMS conversations. Topics can
be used for speech applications, if the relation
between the conversed topics and the choice of
words in SMS dialogs is measurable. In this
study, we collected an SMS corpus, developed
a topic annotation scheme, and built a topic hie-
rarchy in a tree structure. We validated our top-
ic assignments and tree structure by the
Agglomerative Information Bottleneck method,
which also proved the measurability of the in-
terrelation between topics and wording. To
quantify this relation we propose a naive classi-
fication method based on the calculation of top-
ic distinctive word lists and compare the
classifiers’ topic recognition capabilities for
SMS dialogs with unigram language models.
The results demonstrate that the relation be-
tween topic and wording is significant and can
be integrated into SMS dictation.

1 Introduction

One of the largest growth areas in communication
is the Short Message Service (SMS) or text mes-
saging, as it is more popularly known. SMS grew
out of what was initially a by-product of the mo-
bile phone industry (Agar, 2003; Goggin, 2006). In
fact, by 2009 text messaging has become the most
frequently used communication means among
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teens in the US, supported by the mobile phone
industry offering unlimited texting plans (Lenhart
et. al., 2010).

For many reasons, voice enabled texting has be-
come a desirable alternative in a variety of mobile
scenarios. The number of speech applications for
mobile phones including texting by voice is con-
stantly growing. However, the challenges for SMS
dictation by voice are multifold, from particular
noise conditions, to the use of vocabulary and do-
main specific language, the dialogical nature of
text messaging (Thurlow and Poff, 2009), and to
error correction of imperfect recognition results.

Achieving a high and robust performance is cru-
cial for the success of the application. For this pur-
pose additional contextual factors can be integrated
into the recognition process. One possible factor,
the conversed topic, has influence on the speaker’s
choice of words. Hence, it is an important contex-
tual factor for the prediction of the speaker’s word-
ing, since it originates in the speaker’s mental
concepts during a dialog situation, which is the
nature of texting.

To date, research on text messaging has primari-
ly examined socio-linguistic phenomena (e.g.,
Thurlow, 2003). With respect to language and
communication, text messaging is still an under-
examined research area. Thurlow and Poff (2009)
provide a comprehensive overview of existing lite-
rature about SMS in linguistics. Moreover, there
exists noteworthy work on SMS text normalization
(Aw et. al., 2006; Fairon and Paumier, 2006; Cook
and Stevenson, 2009; Kobus et. al., 2008; Pennell
and Liu, 2010), for instance for the purpose of Ma-
chine Translation, Text-to-Speech engines or spell
checking, work on SMS based question answering
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services (Kothari, 2009), and work on predefined
SMS replies in automobiles (Wu et. al., 2010).
However, conversed topics in the context of SMS
discourse have not been examined in the literature,
neither in linguistics nor for any Natural Language
Processing applications.

Hence, in this paper we have developed a new
approach to make topics useful as context know-
ledge for SMS dictation by voice. We describe top-
ic annotation of a novel SMS corpus and study the
influence which SMS dialog topics may have on
the choice of words. Based on the results, we are
able to estimate and initially quantify its impact.
This research can serve as the basis for developing
algorithms that use topic knowledge for SMS dic-
tation in speech applications.

2 Topic Annotation for SMS

2.1 SMS Corpus in US English

SMS data was collected from 250 participants who
conversed with another 900. Participants were dis-
tributed almost evenly across gender, two age
groups, and four US regions. Participants under 30
years comprised 48% of the dataset, and partici-
pants over 30 years comprised 52% of the dataset.
Within each of these two age groups, there were
equal number of men and women. The demograph-
ic spread contained datasets from participants from
the various regions in the USA: east coast 19%,
west coast 24%, central 29%, and south 28%.

The corpus dataset contains a total number of
more than 51,000 messages, chosen randomly from
a significantly larger set of data, for which partici-
pants provided authentic SMS conversations from
their mobile phones to online SMS backup servic-
es. Besides demographic constraints, all text mes-
sages are part of SMS conversations, each
composed at least by one message and a textual
response, to preserve a contextual authentic situa-
tion. A conversation is considered to be ended if a
time frame of 4 hours elapses without a response.
The average length of SMS conversations in the
corpus is between 8-9 messages, distributed over a
notably higher number of shorter conversions than
longer dialogs. Altogether the corpus contains
more than 5800 conversations.

Personal information of the SMS conversations
was removed. Nonetheless the corpus itself is cur-
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rently not published, because identifying informa-
tion can be indirectly present in SMS dialogs.

The SMS corpus is semi-automatically norma-
lized following a general guideline to transform
each texted message into one which could be dic-
tated by the user. For all following research the
normalized rather than the raw SMS textual utter-
ances are used.

Table 1 shows representative examples for text
normalization.

Raw Normalized

Yea b workin for yeah be working for

hospice hospice

I am at vetran I am at Veteran at

@at@8 am eight ei-em

Lets go 2 eat Let’s go to eat

Youwannagotoda | Youwanna go to the

b walk or sumthin? | bee walk or some-
thing?

Table 1: Text messages in raw and normalized format.

2.2

A key point for usefulness of an annotated corpus
is the abstraction which maps SMS conversations
present in the corpus to an abstract model serving
the research goals (Wallis and Nelson, 2001; Mc
Enery et. al., 2006). In our research, the corpus
shall be used to explore to what extent the know-
ledge of one or more discussed topics, for which
both SMS dialog partners try to make progress, can
contribute to the performance of a speech recogni-
tion engine, where we expect the engine to be
based on Statistical Language Models (SLM).
Consequently, the annotation needs to enable us to
trace a path from discussed topics to the choice of
words and phrases in SMS conversations. This ab-
straction leads to our definition of the term topic
and to guidelines for the annotation which are
identified to be essential, when incorporating top-
ics into speech recognition.

Other than an agreement on “what is being
talked about”, the definition of topic in linguistics
is a matter of viewpoint and dispute (Levinson,
1983; Li and Thompson, 1976; Chafe, 1976;
Molnéar, 1993; Stutterheim, 1997). Moreover, a
literature review has not revealed existing topic
annotations which can be used for our purpose (Mc
Enery et. al., 2006; Meyer, 2002). Since the inten-

Topic Annotation Method



tion is to build a task driven, problem oriented an-
notation scheme we further specify a discourse
topic as observable content or story line which dis-
course partners follow up in an SMS conversation.
Hence, we understand a topic foremost as an
attribute of an SMS dialog rather than of a single
SMS, or of a phrase within the dialog. We assign at
least one topic to each dialog. Since dialogs can in
fact contain several distinct topics, we assign all
explicitly mentioned topics to a conversation and
mark separately all SMS which belong doubtlessly
to each topic in the context of the conversation,
Topics describe the content only, not any other
level of discourse. The example in figure 1 shows a
conversation with the topic ‘meeting arrangement’.

Hey how is every-

- - l)
thing going?~ Good. Wanna go

2
Maybe, when are u to the lax house?

planning on going?

In a little bit
I'm still at the li-
brary... maybe i'll
meet u ther Ok sounds good.

Figure 1: Example of SMS dialog about “meeting
arrangement”.

2.3 Topic Annotation Procedure

Discourse topics are highly domain dependent in
their nature and may differ from the SMS domain
to other domains, even to computer mediated
communication services, like e-mail, Twitter, or
Instant Messaging. Because of that, the list of SMS
relevant topics evolves from the data itself. Addi-
tionally the list of possible topics always remains
an open tag list, although one can expect recurring
topics after a while with sparse extension of an
existing topic list. Hence, the approach for annotat-
ing the SMS corpus must be manual. For this pur-
pose a team of four annotators marked the
conversations with the help of an annotation tool
developed specifically for the topic annotation. To
ensure annotator agreement a linguist verified and
confirmed the growing topic list and all topic as-
signments in several iterations. Further annotation
of a larger corpus may be semi-automated based on
the achieved topic list.
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Assigning topics to a dialog remains intuitive to
a certain extent, because any mutual understanding
of the dialog’s content and pragmatic meaning is
supported by social cues, situation awareness and
world knowledge of dialog partners (Levinson,
1983; Lambert and Carberry, 1992). These know-
ledge dimensions need to be reconstituted during
the annotation process, when assigning a new top-
ic. One criterion is to ask if the topic is distinct
from other topics with regard to describing pieces
of our world knowledge dimensions, e.g. scripts
and events that people repeatedly experience, or
subjects, they are recurrently dealing with.

Furthermore, a task driven approach demands to
determine the level of specialization and detail for
topics. Even if broad topics, such as “food” or “ap-
pointment”, may prove themselves to be distinct
and meaningful enough for speech recognition, the
annotation is done to one degree more detailed.
Each topic is composed by a term and one restric-
tive attribute which divides a major topic into more
distinctive topics. Thus “appointment” appears in
the corpus divided into “cancel appointment”, “at-
tending an appointment”, “meeting arrangements”,
and other. The advantage of the annotation proce-
dure is twofold; it leads to a list of topics, which
can be depicted in a tree structure with several le-
vels of specialization, and, even though the annota-
tion is targeted to a special problem, there is
sufficient information to make the corpus useful
for a broader range of research.

3 Corpus Analysis for Topic Usage

3.1

SMS conversations may follow up on one or more
topics. Multiple topic conversations may make
progress on topics even in parallel, either switching
topics or addressing both within the same SMS. In
general, we avoid topics which are suspected to
describe the intention or strategy for the conversa-
tion rather than the content. There are a few excep-
tions, where the topic is implicitly or explicitly
present in the dialog not only on content level but
also as driving force for texting, e.g. “maintain
friendship/relationship” or “small talk” (see exam-
ple (2) in figure 2). The border cannot be clearly
drawn in these cases.

Two topic assignments require explanation.
“Small talk” is used for a group of short SMS di-
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alogs, for which one cannot identify a topic. One is
able to understand the dialog as a short form of
friendship maintenance though, where both parties
achieve mutual positive feedback about their cur-
rent situation, e.g. via salutation. Therefore “small
talk” is expected to be of interest regarding word
usage contrary to “undefined topic”. The latter is
assigned to all conversations, where we do not
share enough knowledge about the background and
situation of the texters to understand and identify
the topic of the dialog (example (3) in figure 2).

1 Missed phone call, planned schedule
Texter 1: Hi, sorry | missed your call. I'm
actually at an appointment right now.

Texter 1: | will call you about 12:45pm.
Please answer, so we can finally connect, if
not I will call after 17:00.

Texter 2: O.K no problem, call me when
you're free :)

Texter 1: The appointment is over, | tried
calling you but you didn't answer, will talk
when I'm on my way home

Texter 2: Thankyou.

2 small talk
Texter 1: What’s up?
Texter 2: ’'m good, u?
Texter 1: I'm fine, talk to you later
Texter 2: Sure :)

3 Topic undefined

Texter 1: df

Texter 2: what?

Texter 1: don’t forget
Texter 2: Lol :-) | won't

Figure 2: SMS dialogs with (1) multiple topics, (2)
small talk, and (3) undefined topic.

All in all, the corpus contains 42.1% of dialogs
with one annotated topic and 46.6% with multiple
topics. The remaining 11.3% of dialogs are tagged
as “undefined”.

3.2 Building a Topic Tree

The identification of similar or related topics in our
corpus allow for grouping them together in specific
topic clusters, such as “human relations”, “tech-
nology”, and “transportation”, and represent them
in a tree structure hierarchy. The assignment to a
topic cluster for each topic is determined by the
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relation between topics, which humans define
based on their world knowledge and based on the
semantic meaning of the topic.

The topic tree hierarchy consists of four levels.
The nodes in the first two levels build the tree
structure and represent the topic clusters. Therefore
they have not been used during the annotation
process. Only from level three and above the topic
names are assigned to the corpus and may be
leaves of the tree. A forth level is used, when third
level topics are frequently used in SMS dialogs and
can further be divided into meaningful sub topics.

activities & events

travel recreation special occasions ...

sport activities going shopping going out ...

buy clothes buy gift buy item going to store
Figure 3: Topic tree branch related to “shopping”.

emotion

negative positive

express joy express love feeling better ...

Figure 4: Topic tree branch for “positive emotion”.

3.3 Topic Distribution in SMS Corpus

87.1% of all text messages are categorized in nine
preferably conversed topic clusters (see figure 5),
the remaining messages belong either to SMS di-
alogs, where the topic is labeled as undefined, or to
miscellaneous, rarely conversed topics, e.g.
“weather” or “religious belief”.

More than 55% of all text messages are moti-
vated by interpersonal and emotional matters.
About 45% of all text messages deal with “human
relations”, mainly including sub topics regarding
relation maintenance (36% of “human relations”,
e.g. “make promise”, “make apology”, “health
condition”, “small talk”, a. 0.), regarding relations
with friends (14%), concerning relationship issues



with a partner (11%). The latter 10% converse
about negative or positive emotions, nearly 50% of
these dialogs expressing love. SMS dialogs from
“human relations” contain 9.3 messages per dialog
in the average, which is significantly more than the
average of 4-6 messages in all other topic clusters.

The second most discussed topic is “activities &
events” (14% of all messages), such as “going out”
(32% of “activities & events” labeled messages),
or “going shopping” (15%). Interestingly, the topic
of “appointment & scheduling” is only the third
most popular, consisting of less than 13% of all
text messages.

Figure 5 shows the topic distribution in the cor-
pus with respect to the topic tree’s first hierarchy.

%
50

45
40
35
30
25
20
15

10

5

0
o\‘r‘

Figure 5: Topic distribution on first tree level.

Thurlow (2003) has presented a study about the
communicative intent of US English text messag-
es, describing their functional orientation rather
than the content. Thurlow’s findings concur in that
the amount of SMS with relational and intimate
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orientation vs. transactional orientation is similar
to the amount of SMS with interpersonal and emo-
tional content vs. all other topic clusters.

Finally, we examine if distribution differences
depend on the demographic data of the users re-
garding gender, age groups (18-23, 24-28, 29-35,
36-42) and regions. Users older than 42 years are
not taken into account because of the limited num-
ber of text messages in the corpus.

Generally, males and females talk about the
same topics in SMS conversations through all age
groups and regions. However, there are still some
differences between those groups worth mention-
ing and shown in figure 6.

While interpersonal and emotional text messag-
es together are present in fairly equal quantity for
both gender groups, females tend to express their
“emotion” via text messages much more frequently
than males (12.5% compared to 8.5%); likely on
the expense of non-emotional “human relations”
messages (46.8% for males compared to 41.9%).
Furthermore, males and females have contradicting
trends in “emotion” talk over ages. Females tend to
express emotions more with age progression, while
males have the opposite tendency. In both genders,
the corpus suggests a tradeoff between the topics
“human relations” and ‘“emotion”, i.e. age may
change the portion of one topic on the expense of
the other one.

4  Relation between Topic and Wording

4.1 Automated Validation of Topic Tree

A human annotation process is highly effective
due to people’s ability to exploit their mental
knowledge base and mind concepts, and thus a
broad range of information sources. However, even
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20
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Males 36-42

W Females 18-23
o M Females 24-28
Females 29-35
Females 36-42

Figure 6: Topic distribution by gender (males left, females right) and age groups
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in a most rigorous procedure errors may occur,
especially regarding annotation and tree consisten-
cy. Therefore we need to verify the quality of the
annotation. Additionally, we want to ensure that
relevant algorithms can trace the interrelation be-
tween topics and the choice of words in SMS.

In order to verify both requirements, we perform
an automatic validation by applying a nuance
(Hecht et al., 2009) of the Agglomerative Informa-
tion Bottleneck (AIB) method (Tishby et al., 1999;
Slonim and Tishby, 2000). This derivative of the
AIB is a hierarchical clustering algorithm, and as
such, it produces a hierarchical topic tree.

The clustering starts with each lower level topic
as a singleton. In an iterative process, the two clos-
est topics are merged to form a larger topic, where
the two closest topics are defined as the ones that
minimize the AIB functional (Eq. 1). The process
ends when all topics are merged into a single topic.

Lp(Rx))=1(x;X)-A(v; X) 1)

X, Y and X are the set of topics, set of words
and clustered set of topics respectively. 1(A;B) is
the mutual information between A and B.

emotion negative hurt feelings

emotion nedative express Sorrow

human relations relations maintenance.maké apology

emotion.negative feeling stressed

human relations relgiions mamtgnance. dream discussion

technolagy phone answering theqphon

emotion negative feeling bad

emotion.negative express concern

human relations relations maintenance health condition

emotion negative express ander

human relations relations maintenance.make ingu

t

miscellaneous.otherreligious belief]

emotion negative express frustration

human relations partner.relationship break up

human relations partner.relationship concern

Figure 7: Tree branch of the hierarchical clustering of
topics into groups.
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Intuitively, the function tries to achieve two
goals simultaneously. It minimizes (x;x )which

can be interpreted as finding the most compact top-
ic representation and at the same time it maximizes
I{r;X) which can be interpreted as finding the

most indicative subset of topics. These two goals
contradict one another. Therefore a tradeoff para-
meter A is added.

Presenting the entire AIB tree is not feasible in
this paper. In order to provide some intuition, a sub
tree is shown in figure 7. Briefly, each AIB tree
branch shows a distribution of topics that is mostly
in line with the hand crafted topic tree. Even sen-
timents are clustered (negative sentiment for all
lower level topics in figure 7), a superior achieve-
ment to the manual topic tree, where this is done
only for “emotion”. Moreover, it becomes evident
that the interrelation between topics and wording
in SMS can likely be captured automatically.

4.2

Being confident regarding automatic computation,
we can strive for more and aim to discover the in-
terrelation between topics and wording in detail.
Any vocabulary used in SMS dialogs can intuitive-
ly be viewed as containing information which
points to one or a limited group of conversed top-
ics, or as being general vocabulary with respect to
topic distinctiveness. Such a view point entails
guestions. How can we extract a list of distinctive
words per topic; words which are dominant in a
certain topic but subordinate in others respective-
ly? To what extent are topic distinctive words still
ambiguous and are assigned to more than one top-
ic? And ultimately, can we use topic distinctive
vocabulary to recognize a list of conversed topics
for each SMS dialog based on its choice of words?
Our method evolves from the questions as fol-
lows: First, we categorize the SMS vocabulary into
topic distinctive vs. general vocabulary by intro-
ducing an algorithm which uses topic information
as qualitative measurement to extract a list of dis-
tinctive words operating as classifiers for topics. In
a second step we evaluate for each topic to what
extent topic distinctive word list classifiers can
recognize topics in SMS dialogs. Finally we com-
pare the classifiers’ topic recognition capabilities
with unigram language models. We use only the
nine first level topic clusters to guarantee that the
amount of available dialogs per topic is sufficient.

Method for Relation Discovery



4.3 Topic Distinctive Vocabulary

To categorize the vocabulary we calculate for each
word w; with at least 4 occurrences in the corpus
and topic t; the ratio between word frequency in the
topic and general word frequency in the corpus
(known as Term Frequency/Collection Frequency
Measure) normalized by the topic size (Eq. 2):

Tf oCf (W, t.) = freqy () , 1
v 1:reqcorpus(wi) Size(tj)

count(w;, t;)
> count(w,,t,)* )" count(w,,t,)
| m

(2)

After scores are calculated for all words, we sort
the words for each topic from their highest to low-
est score. Then we assign a topic dependent thre-
shold for each topic determined by a Receiver
Operating Characteristic (ROC) analysis as de-
scribed in 4.4. All words above the threshold be-
long to the distinctive word set (DWS) per topic. In
additionally conducted experiments with the cor-
pus this method has proven to outperform other
alternatives, such as TF*IDF or Term Discrimina-
tion Models (Salton et. al., 1975).

transporta- | finance & emotion
tion property

lane loan loss
boarding payments XO0X
tires printing beyond
flight sander childish
wheel cheque love
license paypal bitching
roads discount mentally
battery invoice S00
plane price stressed
exit dollars nerves

Table 2: Examples of topic distinctive words.

Table 2 illustrates examples of high-scored re-
trieved distinctive words from several topics. It
becomes evident that words with high scores are
related to a topic in our intuition or mental con-
cepts. However, frequently used general words,
such as pronouns, prepositions, and common
nouns, do not receive high scores, because of their
vast number of occurrences in other topics, e.g.
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2 (13

“never”, “flat”, “boy”, “you”, or “from”. Topics
that are more descriptive or transactional in their
orientation, such as “transportation” or “finance”,
generate better content distinctive word sets than
the ones with relational intent, such as “emotion”.

4.4  Topic Recognition by Word Sets

In order to determine optimal thresholds (see 4.3)
and to analyze the coverage and distinctiveness of
the word sets, we divide the corpus into a training
batch (90% of all messages) and a test batch
(10%). The training batch is used for the calcula-
tion of word scores as described in 4.3. By itera-
tively increasing the score threshold which defines
a word set, we calculate per iteration the amount of
dialogs from the test batch containing at least one
word of the set, for dialogs annotated with the affi-
liated topic as well as for dialogs tagged different-
ly. Consequently, ROC curves are created for all
topics. This process is performed in a cross valida-
tion manner (10-fold).

Figure 8 shows the ROC curves for the topics
“human relations”, “activities & events”, “finance
& property”, and “food & drinks”, averaged over
the 10-fold iterations.
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——human relations =—food & drinks finance & property

activities & events —x=y

Figure 8: ROC curves for selected topics including best
and worst performing topics with x axes for false posi-
tive rate (FPR) and y axes for true positive rate (TPR).

These results show that once appropriate thre-
sholds are chosen, relatively small DWS, mostly
ranging between 60-120 words per set, have the
capability of achieving a true positive rate (TPR,




also known as recall) of 80.3% for topic dialogs
with an average false positive rate (FPR, also
known as fall-out) of 26.8%, even with a relatively
naive classification method. Table 3 provides de-
tailed results of TPR and FPR. Topic DWS for
more descriptive or transactional topics (e.g.
“transportation”, “food & drinks”) manage to dis-
tinguish better than relational targeted topics, such
as “emotion” and “human relations”, since words
like “love”, “babe”, or “thank” are highly related to
the “emotion” topic, but also appear in many other
topics. Hence, these words are increasing the FPR.

Eventually, the word sets chosen by optimal
thresholds allow us to quantify topic recognition of
dialogs. We automatically assign topics to each
dialog in the corpus according to the described al-
gorithm. Then we compare these topics to the ma-
nually annotated topics and measure recall and
precision per dialog, denoted (Eqg. 3):

#correct _matched _topics
#annotated _topics

_ #correct _matched _topics

~ #matched _topics

recall =

®)

prec

The average recall and precision rates over all
dialogs are 73.5% and 44.3%, respectively. Taking
into account the complexity of the recognition task
due to the possibility of multiple topic assignment
for each dialog, the results strengthen the hypothe-
sis of the positively measureable interrelation be-
tween topics and wording.

4.5

Finally, we wish to better understand the impact of
DWS, in comparison to the general language de-
rived from the topic text, which is motivated by the
fact that speech applications rely on SLMs. To this
end, we construct a unigram language model bi-
nary classifier for each topic as baseline and per-
form a 10-fold cross validation classification task,
to identify whether a given dialog is related to the
topic or not, using the following formula (Eq. 4),
where D; is the i™ dialog and M is the language
model of topic t:

Comparison to Full Vocabulary Models

topic™(D;) =argmax(D; | M,)

tetopictopic 4

=argmax ([ | p(w|M,))

tetopictopic weD;
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Table 3 summarizes the results of TPR and FPR
of the two approaches. As expected, the DWS ap-
proach suffers from a higher FPR, due to a lack of
weights and relative comparisons to other classes.
Since the differences in FPR between the two me-
thods are not immense, we conclude that our cho-
sen word sets are indeed distinctive, and with
proper tuning have the potential of achieving better
results. On the other hand, the DWS approach
manages to outperform language models in terms
of TPR. Hence, most of the information needed for
the identification of dialog topics is provided by
distinctive words to a significant higher extent as
by the rest of the vocabulary.

Topic DWS Language
models

TPR | FPR | TPR | FPR
Activities & events 819 | 347 | 641 | 228
Appoint. & schedule | 69.5 | 31.0 | 826 | 21.4
Transportation 78.7 |17.3 |68.8 | 9.8
Finance & property 779 |17.0 | 765 | 9.6
Food & drinks 88.4 | 11.7 | 741 | 10.6
School & work 80.9 | 224 |543 | 14.0
Technology 924 | 28.7 | 755 | 12.6
Emotion 80.7 | 344 | 713 | 127
Human relation 722 | 347 |69.8 |20.8

80.3 | 26.8 |70.7 |14.9

Table 3: True and false positive rates for all topics using
DWS classification and language models.

5 Conclusion

The primary motivation of this study has been to
estimate and facilitate the potential integration of
contextual knowledge, in particular topics, into
SMS dictation by voice. We have identified the
interrelation between conversed topics and the
choice of words in SMS dialogs as a key property,
which needs to be quantified. After creating an
annotated corpus and developing a classification
method based on topic distinctive word lists, we
have presented initial, promising results, which
encourage further research.

Our study exposes also some challenges, which
may not be easy to address. It would be useful to
have a larger annotated corpus. Fully automated
annotation of topics seems hardly achievable in
view of our results. We may therefore rely on
semi-supervised or unsupervised learning algo-
rithms. Moreover, the study explores the relation
of topics to single words. It needs to be enhanced



to phrases, because SMS dictation by voice relies
on higher order n-gram SLMs.

In summary, when taking the next step and
moving towards speech applications, we expect
performance improvement after making topic
knowledge useful for SMS dictation.
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Abstract

Many discourse connectives can signal several
types of relations between sentences. Their
automatic disambiguation, i.e. the labeling of
the correct sense of each occurrence, is impor-
tant for discourse parsing, but could also be
helpful to machine translation. We describe
new approaches for improving the accuracy
of manual annotation of three discourse con-
nectives (two English, one French) by using
parallel corpora. An appropriate set of labels
for each connective can be found using infor-
mation from their translations. Our results for
automatic disambiguation are state-of-the-art,
at up to 85% accuracy using surface features.
Using feature analysis, contextual features are
shown to be useful across languages and con-
nectives.

1 Introduction

Discourse connectives are generally considered as
indicators of discourse structure, relating two sen-
tences of a written or spoken text, and making ex-
plicit the rhetorical or coherence relation between
them. Leaving aside the cases when connectives are
only implicit, the presence of a connective does not
unambiguously signal a specific discourse relation.
In fact, many connectives can indicate several types
of relations between sentences, i.e. they have several
possible “senses” in context.

This paper studies the manual and automated dis-
ambiguation of three ambiguous connectives in two
languages: alors que in French, since and while in
English. We will show how the multilingual per-
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spective helps to improve the accuracy of annota-
tion, and how it helps to find appropriate labels for
automated processing and MT. Results from auto-
matic annotation experiments, which are close to the
state of the art, as well as feature analysis, help to as-
sess the usefulness of the proposed labels.

The paper is organized as follows. Section 2 ex-
plains the motivation of our experiments, and of-
fers a wider perspective on our research goals, illus-
trating them with examples of translation problems
which arise from ambiguous discourse connectives.
Current resources and methods for discourse anno-
tation are discussed in Section 3. Section 4 analyzes
our experiments in manual annotation and in partic-
ular the influence of the set of labels on the reliability
of annotation. The automatic disambiguation exper-
iments, the features used, the results and the analysis
of features are described in Section 5. Section 6 con-
cludes the paper and outlines future work.

2 Explicit Connectives and their
Translation

2.1 Three Multi-functional Connectives

Discourse connectives form a functional category of
lexical items that are used to mark coherence rela-
tions such as Cause or Contrast between units of
discourse. Along with other function words, many
connectives appear among the most frequent words,
as shown for instance by counts (Cartoni et al.,
2011) over the Europarl corpus (Koehn, 2005). The
Penn Discourse Treebank (Prasad et al., 2008) (see
Section 3.1 below) includes around 100 connective
types, but the exact number varies across studies,
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depending on the discourse theory used to classify
them. Among these types, Pitler et al.(2008) have
shown that most of them are unambiguous and easy
to identify, but others, especially temporal ones, of-
ten signal multiple senses depending on their con-
text.

Following the terminology of Petukhova and
Bunt (2009, Section 2), we are interested here in
“sequential” multi-functionality, i.e. the fact that the
same connective can signal different relations in dif-
ferent contexts. We do not deal with “simultane-
ous” multi-functionality, i.e. the possibility for a
single occurrence to signal several relations, which
has been less frequently studied for connectives (see
Petukhova and Bunt (2009) for the discourse usage
of and).

We identified the two English connectives while
and since, along with the French connective alors
que, as being particularly problematic because they
are highly multi-functional, i.e. they can signal mul-
tiple senses. For alors que, a French database of
connectives (LexConn (Roze et al., 2010), see Sec-
tion 3 below) contains examples of sentences where
alors que expresses either a Background or a Con-
trast relation. For the English connective since,
Miltsakaki et al. (2005) identified three possible
meanings: Temporal, Causal, and simultaneously
Temporal/Causal. For while, even more senses are
observed: Comparison, Contrast, Concession, and
Opposition. In fact, in the Penn Discourse Tree-
bank, the connective while is annotated with more
than twenty different senses.

2.2 Wider Research Objectives

Our long-term goal is to identify automatically the
senses of connectives for an application to machine
translation (MT). Going beyond the labels provided
by discourse theories, the goal is thus to find the
most appropriate labels in a new multilingual, em-
pirical approach that makes use of parallel corpora to
annotate and then learn the various senses of connec-
tives. The disambiguation of such connectives in a
source text is crucial for its translation, because each
sense may be translated by a different connective
and/or syntactical construct in the target language.
More specifically, we hypothesize that correctly
labeled connectives are easier to learn and to trans-
late by statistical MT systems than unlabeled ones.
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To support this hypothesis, we set up an experiment
(Meyer, 2011) in which we constrained the transla-
tion of the three senses of the discourse connective
while that were previously annotated as Temporal,
Contrast and Concession. The system was forced to
use predefined French translations known to be cor-
rect, by directly modifying the phrase table of the
trained MT system. This modification noticeably
helped to improve translation quality and rose the
BLEU score by 0.8 for a preliminary test set of 20
sentences.

2.3 Illustration of Mistranslations

Among the connectives that we plan to process in or-
der to improve MT, the three connectives we focus
on in this paper are frequent, ambiguous and there-
fore difficult to translate correctly by MT systems,
as illustrated in the following examples.

A first reason why machine translation of connec-
tives can be difficult is that there may be no direct
lexical correspondence for the explicit source lan-
guage connective in the target language, as shown
in the reference translation of the first example in
Table 1, taken from the Europarl corpus (Koehn,
2005).

EN | [t is also important that we should not leave these indica-
tors floating in the air while congratulating ourselves on
the fact that we have produced them.

FR | Il est également important de ne pas laisser ces indicateurs

flotter, en nous félicitant de les avoir instaurés.

EN | Finally, and in conclusion, Mr President, with the expiry of
the ECSC Treaty, the regulations will have to be reviewed
since [causal] I think that the aid system will have to con-
tinue beyond 2002 . ..

FR | *Enfin, et en conclusion, Monsieur le président, a

Uexpiration du traité ceca, la réglementation devra étre
revu depuis que [temporal] je pense que le systeme d’aides
devront continuer au-dela de 2002 ...

FR | Oui, bien entendu, sauf que le développement ne se négocie
pas, alors que [contrast] le commerce, lui, se négocie.

EN | *Yes, of course, but development cannot be negotiated, so
[causal] that trade can.
EN | Between 1998 and 1999, loyalists assaulted and shot 123

people, while [contrast] republicans assaulted and shot 93
people.

FR | *Entre 1998 et 1999, les loyalistes ont attaqué et abattu
123 personnes, ¢ 93 pour les républicains.

Table 1: Translation examples from Europarl. Discourse
connectives, their translations, and their senses are indi-
cated in bold. The first example is a reference transla-
tion from EN into FR, while the others are wrong transla-
tions generated by MT (EN/FR and respectively FR/EN),
hence marked with an asterisk.



When an ambiguous connective is explicitly
translated by another connective, the incorrect ren-
dering of its sense can lead to erroneous translations,
as in the second and third examples in Table 1, which
are translated by the Moses SMT decoder (Koehn et
al., 2007) trained on the Europarl corpus. The ref-
erence translation for the second example uses the
French connective car with a correct causal sense,
instead of the wrong depuis que generated by SMT,
which expresses a temporal relation. In the third ex-
ample, the French connective alors que, in its con-
trastive usage, is wrongly translated into the English
connective so, which has a causal meaning (the ref-
erence translation uses whereas to express contrast).
It may even occur that the system fails to translate a
connective at all, as in the fourth example where the
discourse information provided by while, namely a
Contrast relation, is lost in the French translation,
which is hardly coherent any longer.

3 Related Work

3.1 Annotated Resources

One of the very few available discourse annotated
corpora is the Penn Discourse Treebank (PDTB) in
English (Prasad et al., 2008). For this resource, one
hundred types of explicit discourse connectives were
manually annotated, as well as implicit relations not
signaled by a connective. The sense hierarchy used
for annotation consists of three levels, from four top-
level senses (Temporal, Contingency, Comparison,
and Expansion), to 16 subsenses on the second level,
and 23 further ones on the third level. The annota-
tors were allowed to assign more than one sense to
each occurrence, so 129 simple or complex labels
are observed, over more than 18,000 explicit con-
nectives. For French, the ANNODIS project (Péry-
Woodley et al., 2009) will provide annotation of dis-
course on an original corpus. Resources for Czech
are also becoming available (Zik4dnova et al., 2010).

For German, a lexicon of discourse markers
named DiMLex exists since the 1990s (Stede and
Umbach, 1998). An equivalent, more recent
database for French is the LexConn lexicon of con-
nectives (Roze et al., 2010) containing a list of 328
explicit connectives. For each of them, LexConn
indicates and exemplifies the possible senses, cho-
sen from a list of 30 labels inspired from Rhetorical
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Structure Theory (Mann and Thompson, 1988).

3.2 Automatic Disambiguation of Connectives

The release of the PDTB had quite an impact on
automatic disambiguation experiments. The state-
of-the-art for recognizing all types of explicit con-
nectives in English is therefore already high, at
97% accuracy for disambiguating discourse vs. non-
discourse uses (Lin et al., 2010) and 94% for disam-
biguating the four main senses from the PDTB hier-
archy (Pitler and Nenkova, 2009). Lin et al. (2010)
recently built the first end-to-end PDTB discourse
parser, which is able to parse unrestricted text with
an F1 score of 38.18% for senses on the second level
of the PDTB hierarchy. Other important contribu-
tions to automatic discourse connective classifica-
tion and feature analysis has been provided by Well-
ner et al. (2006) and Elwell and Baldrige (2008).

Fewer studies focus on the detailed analysis of
specific discourse connectives. In Section 5.3, we
will compare our results to Miltsakaki et al. (2005)
who report classification results for the connectives
since, while and when. In their study, as in the
present one, the goal is to disambiguate senses from
the second level of the PDTB hierarchy, a level
which, as we will show, is appropriate for the trans-
lation of these connectives as well.

4 Connective Annotation in Parallel
Corpora

The resources mentioned above are either monolin-
gual only (PDTB, LexConn) and/or not yet publicly
available (ANNODIS, DiMLex). Moreover, our
overall goal is related to multilingualism and trans-
lation, as explained in Section 2.2 above. There-
fore, we performed manual annotation of connec-
tives in a multilingual, aligned resource: the Eu-
roparl corpus (Koehn, 2005). We extracted from Eu-
roparl two subcorpora for each translation direction,
EN/FR and FR/EN, to take into account the varying
distribution of connectives in translated vs. original
language, as explained in Cartoni et al. (2011).

As the full PDTB hierarchy seemed too fine-
grained given current capabilities for automatic la-
beling and the needs for translating connectives,
we defined a simplified set of labels for the senses
of connectives, by considering their usefulness and



granularity with respect to translation, focusing on
those that may lead to different connectives or syn-
tactical constructs in the target language.

4.1 Method

There are two major ways to annotate explicit dis-
course connectives. The first approach is to label
each occurrence of a connective with a label for
its sense, similar to the PDTB or LexConn hierar-
chies of senses. However, as shown among others
by Zikanova et al. (2010), this is a difficult and time-
consuming task even when the annotators are trained
over a long period of time. This is confirmed by the
rather low kappa scores resulting from the manual
sense annotations as can be seen for each connective
in detail below.

The second approach to annotation, which is the
one put forward in this paper, is based on translation
spotting. In a first step, human annotators work on
bilingual sentence pairs, and annotate the translation
of each connective in the target language. The trans-
lations are either a target language connective (sig-
naling in principle the same sense(s) as the source
one), or a reformulation, or a construct with no con-
nective at all. In a second step of the annotation,
all translations of a connective are manually clus-
tered by the experimenters to derive sense labels, by
grouping together similar translations.

As demonstrated in the following subsections, for
the three connectives under study, the second ap-
proach to connective annotation not only facilitates
the annotation task, but also helps to derive the ap-
propriate level of granularity for the sense labels.

4.2 Annotation of alors que

This first manual annotation involved two experi-
enced annotators who annotated alors que in 423
original French sentences. The two main senses
identified for alors que are Background (labeled B)
Contrast (labeled C), as in the LexConn database.
Annotators were also allowed to use the J label if
they did not know which label to assign, and a
D label for discarded sentences — due to a non-
connective use of the two words which could not be
filtered out automatically (e.g. Alors, que fera-t-on?
). The annotators found 20 sentences labeled with
D, which were removed from the data. 15 sentences
were labeled with J by one annotator (but none by
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both), and it was decided to assign to them the label
(either B or C) provided by the other annotator.

The inter-annotator agreement on the B vs. C la-
bels was quite low, showing the difficulty of the task:
kappa reached 0.43, quite below the 0.7 mark often
considered as indicating reliability. The following
example from Europarl illustrates the difficulty of
choosing between B and C. In particular, the refer-
ence translation into English also uses an ambiguous
connective, namely while.

FR  La monnaie unique va entrer en vigueur au milieu

de la tourmente financiére, alors que de nombreux
compléments, logiques, mais que les Etats ne sem-
blaient pas avoir prévus, n’ont pas encore été ap-
portés.
The single currency is going to come into force in the
midst of financial turmoil, while a great many ad-
ditional factors which were only to be expected, but
which the states do not seem to have anticipated, have
not been taken into consideration.

EN

Two methods were applied to deal with diverg-
ing manual annotations. To prepare the datasets for
the automated disambiguation experiments, one so-
lution (named A1, see Table 2) is to use the double-
sense label B/C for sentences labeled differently by
annotators (B vs. C). This label reflects the diffi-
culty of manual annotation and preserves the am-
biguity which might be genuinely present in each
occurrence. The relevance of the B/C label is also
supported by results from automatic labeling in Sec-
tion 5.3 below.

For comparison purposes, a second dataset named
A2 was derived from translation spotting on the
same French sentences aligned to English ones, as
explained in Section 4.1. Alors que appeared to be
mainly translated by the following English equiv-
alents and constructs: although, whereas, while,
whilst, when, at a time when. Through this opera-
tion, inter-annotator disagreement can sometimes be
solved: when the translation is a clearly contrastive
English connective (whereas or although), then the
C label was assigned instead of B/C. Conversely,
when the English translation was still ambiguous
(while, whilst, or when), the experimenters made a
decision in favor of either B or C by re-examining
source and target sentences.

4.3 Annotation of since

For since, 30 sentences were annotated by four ex-
perimenters in a preliminary round, with a kappa



ID | Connective | Sent. | Labels (nb. of occ.)

Al | alors que 403 B (92), C (191), B/C (120)

A2 | alors que 403 B (126), C (277)

B1 | since 727 T (375), C (341), T/C (11)

B2 | since 727 T (375), C (352)

C1 | while 299 T/C (92), CONC (134), C (43)
T/CAUSAL (19), T/DUR (7)
T/PUNCT (4)

C2 | while 299 T (30), C (135), CONC (134)

Table 2: The six datasets resulting from the manual anno-
tation of the three connectives, with total number of sen-
tences, possible labels and their number of occurrences.
The explanations of the labels are given in Sections 4.2
through 4.4.

score of 0.77, indicating good agreement. Then,
each half of the entire dataset (727 sentences) was
annotated by another person with three possible
sense labels: T for Temporal, C for Causal and
T/C for a simultaneously Temporal/Causal meaning.
Two datasets were again derived from this manual
annotation. To study the effects of a supplementary
label, we kept the label T/C for dataset B1, but con-
densed it under label C in dataset B2, as shown in
Table 2.

4.4 Annotation of while

The English connective while is highly ambiguous.
In the PDTB, occurrences of while are annotated
with no less than 21 possible senses, ranging from
Conjunction to Contrast, Concession, or Synchrony.

We performed a pilot annotation of 30 sentences
containing while with five different experimenters,
resulting in a quite low inter-annotator agreement,
K = 0.56. We therefore decided to perform a
translation spotting task only, with two experienced
annotators fluent in English and French. The ob-
served translations into French confirm the ambigu-
ity of while, as they include several connectives and
constructs, quite evenly distributed in terms of fre-
quency: alors que, gerundive reformulations, other
reformulations, si, tandis que, méme si, bien que,
etc.

The translations were manually clustered to de-
rive senses for while, in an empirical manner.
For example, alors que signals Temporal/Contrast,
which is also true for tandis que. Similarly, méme si
and bien que are clustered under the label Conces-

198

sion, and so forth. The translation spotting shows
that at least Contrast, Concession, and several tem-
poral senses are necessary to account for a correct
translation. These distinctions are comparable to the
semantic granularity of the second PDTB hierarchy
level.

To generate training sets for automated classifica-
tion out of a total of 500 sentences, we discarded 201
sentences labeled by annotators with G (gerundive
constructions), P (reformulations) or Z (no transla-
tion at all) — these cases could be reconsidered in fur-
ther work, as they represent valid translation prob-
lems. For the remaining 299 sentences, we created
the following six labels by clustering the spotted
translations: T/C (Temporal/Contrast), T/PUNCT
(Temporal/Punctual), T/IDUR (Temporal/Duration),
T/CAUSAL (Temporal/Causal), CONC (Conces-
sion) and C (Contrast). These were used to tag the
remaining 299 sentences, forming dataset C1. A
second dataset (C2) with fewer senses was obtained
from C1 by merging T/C to C (Contrast only) and
all T/x to T (Temporal only).

S Disambiguation Experiments

The features for connective classification, the re-
sults obtained and a detailed feature analysis are dis-
cussed in this section. We show that an automated
disambiguation system can be used to determine the
most appropriate set of labels, and thus to corrob-
orate the selection we made using translation spot-
ting.

5.1 Features

For feature extraction, all the datasets described in
Section 4 were processed as follows. The English
texts were parsed and POS-tagged by Charniak and
Johnson’s (2005) reranking parser. The French texts
were POS-tagged with the MEIt tagger (Denis and
Sagot, 2009) and parsed with MaltParser (Nivre,
2003). As the English parser provides constituency
trees, and the parser for French generates depen-
dency trees, the features are slightly different in the
two languages. The other features below were ex-
tracted using elementary pre-processing of the sen-
tences.

For English sentences, we used the following fea-
tures: the sentence-initial character of the connec-



tive (yes/no); the POS tag of the first verb in the
sentence; the type of first auxiliary verb in the sen-
tence (if any); the word preceding the connective;
the word following the connective; the POS tag of
the first verb following the connective; the type of
the first auxiliary verb after the connective (if any).

For French sentences, the features were the fol-
lowing: the sentence-initial character of the connec-
tive (yes/no); the dependency tag of the connective;
the first verb in the sentence; its dependency tag; the
word preceding the connective; its POS tag; its de-
pendency tag; the word following the connective; its
POS tag; its dependency tag; the first verb after the
connective; its dependency tag.

The cased connective word forms from the cor-
pus were not lower-cased, thus keeping the implicit
indication of the sentence-initial character of the oc-
currence, i.e. whether it starts a sentence or not. The
output of the POS taggers was used for neighboring
words, but not for the connectives, which almost al-
ways received the same tag. Charniak’s parser for
English provides POS tags which differentiate the
verb tenses, such as VBD (past), VBG (gerund), and
so on. These were considered for the verb directly
preceding and the one directly following the connec-
tive. Tense was believed to be potentially relevant
because since and while can have temporal mean-
ings.

The occurrence of auxiliary verbs (be, have, do,
or need) may give additional indications about tem-
poral relations in the sentence. We therefore used
the types of auxiliary verbs as features, including
the elementary conjugations, represented for to be
as: be_present, be_past, be_part, be_inf, be_gerund
— and similarly for the other auxiliary verbs, as in
(Miltsakaki et al., 2005).

As shown by Lin et al. (2010), duVerle and
Prendinger (2009) or Wellner et al. (2006), the con-
text of a connective is very important. We there-
fore extracted the words preceding and following
each connective, the verbs and the first and the last
word of the sentences. These may include numbers,
sometimes indicating a numerical comparison, time
expressions, or antonyms, which could indicate con-
trastive relations, such as rise vs. fall (e.g. It is inter-
esting to see the fundamental stock pickers scream
“foul” on program trading when the markets de-
cline, while hailing the great values still abounding
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as the markets rise.).

For French, we likewise extracted the words im-
mediately preceding and following each connective,
supplemented by their POS tags. In contrast to con-
stituents, dependency structures contain information
about the grammatical function of each word (heads)
and link the dependents belonging to the same head.
However, as the dependency parser provides no dif-
ferentiated verb tags, we extracted the verb word
forms themselves and added their dependency tags.
The same applies to the connective itself, and pre-
ceding and following words and their dependency
tags.

The dependency tag of the non-connectives varies
between subj (subject), det (determiner), mod (mod-
ifier) and obj (object). The first verb in the sentence
often belongs to the root dependency while the verb
following the connective most often belongs to the
obj dependency. For alors que, the most frequent
dependency tags were mod_mod and mod_obj, indi-
cating the connective’s main function as a modifier
of its argument.

5.2 Experimental Setting

Our classification experiments made use of the
WEKA machine learning toolkit (Hall et al., 2009)
to run and compare several classification algorithms:
Random Forest (sets of decision trees), Naive Bayes,
and Support Vector Machine. The results are re-
ported with 10-fold cross validation on the entire
data for each connective, using all features.

Table 3 lists for each method — including the ma-
jority classifier as a baseline — the percentage of cor-
rectly classified instances (or accuracy, noted Acc.),
and the kappa values. Significance above the base-
line is computed using paired t-tests at 95% confi-
dence. When a score is significantly above the base-
line, it is shown in ifalics in Table 3. The best scores
for each dataset, across classifiers, are indicated in
boldface. When these scores were not significantly
above the baseline, at least they were never signifi-
cantly below either.

5.3 Results and Discussion

Overall, the SVM classifier performed best, which
may be due to the large number of textual features
(3 for EN data and 5 for FR data), as SVMs are
known to handle them well (Joachims, 1998; du-



ID | Connective | # Labels Baseline | R. Forest | N. Bayes SVM
Acc. Acc. Kk | Acc. K | Acce. K
Al | alors que 403 | B, C, B/C 46.9 531 0.2 |557 03] 542 03
A2 | alors que B, C 68.7 69.2 0.1 683 02647 0.1
B1 | since 727 | T, C, T/C 51.6 79.8 0.6 | 823 0.7 |854 0.7
B2 | since T, C 51.6 80.7 0.6 | 84.0 0.7 | 8.7 0.7
C1 | while 299 | T/C, T/PUNCT, T/DUR, 44.8 432 0.1 1499 02522 02
T/CAUSAL, CONC, C
C2 | while T, C, CONC 43.5 60.5 0.3 599 03609 0.3

Table 3: Disambiguation scores for three connectives (number of occurrences in the training sets), with two sets of
labels each, for various classification algorithms. Accuracy (Acc.) is in percentage (%), and kappa is zero for the
baseline method (majority class). The best scores for each data set are in boldface, and scores significantly above the

baseline (95% t-test) are in italics.

Verle and Prendinger, 2009). The maximum accu-
racy for alors que is 55.7%, for since it is 85.7%, and
for while it is 60.9%. While close to other reported
values, there is still potential for improvement in the
future.

The analysis of results for each data sets leads
to observations that are specific to each connective.
The high improvement of over the baseline for Al,
as opposed to no improvement for A2, confirms the
usefulness of the double-sense B/C label for alors
que, showing that in this case the three-way classi-
fication is probably better adapted to the linguistic
properties of alors que than a two-way classifica-
tion. Indeed, alors que, just as its frequently spot-
ted translation while, is linguistically ambiguous in
some contexts (see for instance the example in Sec-
tion 4.2), in which the temporal and the contrastive
meaning are likely to co-exist. In the case of A2,
where the labels were forced to B or C only, auto-
matic classifiers do not significantly outperform the
baseline. While more elaborate features might help,
these low scores can be related to the difficulties of
human annotators (Section 4.2), and make a strong
case against using a two-label schema for alors que.

The features used so far lead to high scores for
since in datasets B1 and B2. The results are com-
parable to those from Miltsakaki et al. (2005), who
used similar features and labels, though with a Max-
imum Entropy classifier. Moreover, they provide re-
sults for individual connectives, and not, as most of
the related work for the PDTB, on the whole set
of ca. 100 discourse connective types. However,
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Miltsakaki et al. (2005) used their own datasets for
each connective, which are different from the PDTB,
because the PDTB was not available at that time.
Our SVM classifier outperforms considerably the
Maximum Entropy classifier on the three-way clas-
sification task (with T, C, T/C), with an accuracy
of 85.4% vs. 75.5%, obtained however on differ-
ent datasets. For the two-way classification (T, C),
again on different datasets, our accuracy of 85.7% is
slightly lower than the 89.5% given in Miltsakaki et
al. (2005).!

For while, when comparing C1 to C2, it appears
that reducing the number of labels from six to three
increases accuracy by 8-10%. This is probably
due to the small number of training instances for
the labels T/PUNCT and T/DUR in CI1 for exam-
ple. However, even for the larger set of labels, the
scores are significantly above baseline (52.2% vs.
44.8%), which indicates that such a classifier might
still be useful as input to an MT system, possibly
improved thanks to a larger training set. The perfor-
mance obtained by Miltsakaki et al. (2005) on while
is markedly better than ours, with an accuracy of
71.8% compared to ours of 60.9% with three labels.

5.4 Feature Analysis

The relevance of features can be measured using
WEKA by computing the information gain (IG)
brought by each feature to the classification task,

'In another experiment (Meyer, 2011), we also applied our
classifiers to the PDTB data, with less features however. The
results were in the same range as those from Miltsakaki et
al. (2005), i.e. 75.3% accuracy for since and 59.6% for while.



Table 4: Information gain (IG) of features for French con-
nective alors que, ordered by decreasing average ranking
(R) in experiments Al and A2. Features 1-4 are consid-
erably more relevant than the following ones.

R | Feature IG

Bl B2
1 | preceding word 0.83 0.75
2 | following word 0.56 0.52
3 | following verb’s POS tag 024 0.21
4 | type of following aux. verb | 0.13 0.12
5 | type of first aux. verb 0.11 0.11
6 | first verb’s POS tag 0.02 0.01
7 | sentence initial 0.00 0.00

Table 5: Information gain (IG) of features for EN con-
nective since, ordered by decreasing average ranking (R)
in experiments B1 and B2.

i.e. the reduction in entropy with respect to desired
classes (Hall et al., 2009) — the higher the IG, the
more relevant the feature. Features can be ranked
by decreasing IG, as shown in Tables 4, 5 and 6, in
which ranks were averaged over the first and the sec-
ond data set in each series.

The tables show that across all three connectives
and the two languages, the contextual features are
always in the first positions, thus confirming the im-
portance of the context of a connective. Following
these are verbal features, which are, for these con-
nectives, of importance because the temporal mean-
ings are additionally established by verbal tenses.
POS and dependency features seem the least help-
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R | Feature IG R | Feature IG
Al A2 C1 Cc2
1 | preceding word 1.12  0.64 1 | preceding word 1.02  0.65
2 | following verb 0.81 0.51 2 | following word 0.83 0.55
3 | first verb 0.74 042 3 | type of first aux. verb 0.12 0.07
4 | following word 0.68 0.23 4 | following verb’s POS tag 0.16 0.04
5 | preceding word’s POS tag | 0.15  0.05 5 | first verb’s POS tag 0.07 0.09
5 | first verb’s dep. tag 0.14  0.06 5 | type of following aux. verb | 0.12 0.05
5 | following word’s POS tag | 0.19  0.03 7 | sentence initial 0.08 0.07
8 | preceding word’s dep. tag | 0.10  0.03
8 | connective’s dep. tag 0.09 0.04 Table 6: Information gain (IG) of features for EN con-
10 | following word’s dep. tag | 0.13  0.013 nective while, ordered by decreasing average ranking (R)
10 | following verb’s dep. tag | 0.04  0.03 in experiments C1 and C2. The first two features are con-
12 | sentence initial 0.05 0.001 siderably more relevant than the remaining ones.

ful for disambiguation.

6 Conclusion and Future Work

We have described a translation-oriented approach
to the manual and automatic annotation of discourse
connectives, with the goal of identifying their senses
automatically, prior to machine translation. The
manual annotation of the senses of connectives has
been enhanced through parallel corpora and transla-
tion spotting. This has lead to tag sets that improved
both inter-annotator agreement and automatic label-
ing, which reached state-of-the-art scores. The ana-
lysis of relevant features has shown the utility of
contextual information.

To improve over these initial results, we will use
more semantic information, such as relations found
in WordNet between words in the neighborhood of
connectives — e.g. word similarity measures and se-
mantic relations such as antonymy. To generate
more training instances of the labels found, man-
ual annotation will continue in order to see whether
the senses found through translation spotting can im-
prove automatic disambiguation of many more con-
nectives. The annotation of a large parallel corpus
will then help to train disambiguation tools along
with statistical MT systems that use their output.
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Abstract

We propose a method for modelling how dialogue
moves influence and are influenced by the agents’
preferences. We extract constraints on preferences
and dependencies among them, even when they are
expressed indirectly, by exploiting discourse struc-
ture. Our method relies on a study of 20 dia-
logues chosen at random from the Verbmobil cor-
pus. We then test the algorithms predictions against
the judgements of naive annotators on 3 random un-
seen dialogues. The average annotator-algorithm
agreement and the average inter-annotator agree-
ment show that our method is reliable.

1 Introduction

Dialogues are structured by various moves that the
participants make—e.g., answering questions, asking
follow-up questions, elaborating prior claims, and so
on. Such moves come with commitments to certain at-
titudes such as intentions and preferences. While map-
ping utterances to their underlying intentions is well
studied through the application of plan recognition tech-
niques (e.g., Grosz and Sidner (1990), Allen and Litman
(1987)), game-theoretic models of rationality generally
suggest that intentions result from a deliberation to find
the optimal tradeoff between one’s preferences and one’s
beliefs about possible outcomes (Rasmusen, 2007). So
mapping dialogue moves to preferences is an important
task: for instance, they are vital in decisions on how to
re-plan and repair should the agents’ current plan fail, for
they inform the agents about the relative importance of
their various goals. Classical game theory, however, de-
mands a complete and cardinal representation of prefer-
ences for the optimal intention to be defined. This is not
realistic for modelling dialogue because agents often lack
complete information about preferences prior to talking:
they learn about the domain, each other’s preferences and
even their own preferences through dialogue exchange.
For instance, utterance (1) implies that the speaker wants
to go to the mall given that he wants to eat, but we do not
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know his preferences over “go to the mall” if he does not
want to eat.

ey

Existing formal models of dialogue content either do not
formalise a link between utterances and preferences (e.g.,
Ginzburg (to appear)), or they encode such links in a
typed feature structure, where desire is represented as a
feature that takes conjunctions of values as arguments
(e.g., Poesio and Traum (1998)), making the language
too restricted to express dependencies among preferences
of the kind we just described. Existing implemented
dialogue systems likewise typically represent goals as
simple combinations of values on certain information
‘slots” (e.g., He and Young (2005), Lemon and Pietquin
(2007)); thus (1) yields a conjunction of preferences, to
go to the mall and to eat something. But such a system
could lead to suboptimal dialogue moves—e.g., to help
the speaker go to the mall even if he has already received
food.

What’s required, then, is a method for extracting par-
tial information about preferences and the dependencies
among them that are expressed in dialogue, perhaps indi-
rectly, and a method for exploiting that partial informa-
tion to identify the next optimal action. This paper pro-
poses a method for achieving these tasks by exploiting
discourse structure.

We exploited the corpus of Baldridge and Lascarides
(2005a), who annotated 100 randomly chosen sponta-
neous face-to-face dialogues from the Verbmobil cor-
pus (Wahlster, 2000) with their discourse structure ac-
cording to Segmented Discourse Representation Theory
(SDRT, Asher and Lascarides (2003))—these structures
represent the types of (relational) speech acts that the
agents perform. Here’s a typical fragment:

I want to go to the mall to eat something.

2) a. A: Shall we meet sometime in the next
week?
b. A: What days are good for you?

B: Well, I have some free time on almost

every day except Fridays.
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d.  B: In fact, I'm busy on Thursday too.
e. A: So perhaps Monday?

Across the corpus, more than 30% of the discourse units
are either questions or assertions that help to elaborate a
plan to achieve the preferences revealed by a prior part
of the dialogue—these are marked respectively with the
discourse relations Q-Elab and Plan-Elab in SDRT, and
utterances (2b) and (2e) and the segments (2c¢) and (2d)
invoke these relations (see Section 2). Moreover, 10% of
the moves revise or correct prior preferences (like (2d)).
We will model the interaction between dialogue con-
tent and preferences in two steps. The first maps ut-
terances and their rhetorical connections into a partial
description of the agents’ preferences. The mapping is
compositional and monotonic over the dialogue’s logi-
cal form (i.e., the description of preferences for an ex-
tended segment is defined in terms of and always sub-
sumes those for its subsegments): it exploits recursion
over discourse structure. The descriptions partially de-
scribe ceteris paribus preference nets or CP-nets with
Boolean variables (Boutilier et al., 2004). We chose CP-
nets over alternative logics of preferences, because they
provide a compact, computationally efficient, qualitative
and relational representation of preferences and their de-
pendencies, making them compatible with the kind of
partial information about preferences that utterances re-
veal. Our mapping from the logical form of dialogue
to partial descriptions of Boolean CP-nets proceeds in a
purely linguistic or domain independent way (e.g., it ig-
nores information such as Monday and Tuesday cannot
co-refer) and will therefore apply to dialogue generally
and not just Verbmobil.

In a second stage, we “‘compress” and refine our descrip-
tion making use of constraints proper to CP-nets (e.g.,
that preference is transitive) and constraints provided by
the domain—in this case constraints about times and
places, as well as constraints from deep semantics. This
second step reduces the complexity of inferring which
CP-net(s) satisfy the partial description and allows us to
identify the minimal CP-net that satisfies the domain-
dependent description of preferences. We can thus ex-
ploit dependencies between dialogue moves and mental
states in a compact, efficient and intuitive way.

We start by motivating and describing the semantic repre-
sentation of dialogue from which our CP-net descriptions
and then our CP-nets will be constructed.

2 The Logical Form of Dialogue

Our starting point for representing dialogue con-
tent is SDRT. Like Hobbsetal. (1993) and
Mann and Thompson (1987), it structures discourse
into units that are linked together with rhetorical re-
lations such as Explanation, Question Answer Pair
(QAP), Q-Elab, Plan-Elab, and so on. Logical forms
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in SDRT consist of Segmented Discourse Representation
Structures (SDRSs). As defined in Asher and Lascarides
(2003), an SDRS is a set of labels representing discourse
units, and a mapping from each label to an SDRS-formula
representing its content—these formulas are based on
those for representing clauses or elementary discourse
units (EDUs) plus rhetorical relation symbols between
labels. Lascarides and Asher (2009) argue that to make
accurate predictions about acceptance and denial, both
of which can be implicated rather than linguistically
explicit, the logical form of dialogue should track each
agent’s commitments to content, including rhetorical
connections. They represent a dialogue turn (where turn
boundaries occur whenever the speaker changes) as a
set of SDRSs—one for each agent representing all his
current commitments, from the beginning of the dialogue
to the end of that turn. The representation of the dialogue
overall—a Dialogue SDRS or DSDRS—is that of each of
its turns. Each agent constructs the SDRSs for all other
agents as well as his own. For instance, (2) is assigned
the DSDRS in Table 1, with the content of the EDUs
omitted for reasons of space (see Lascarides and Asher
(2009) for details). We adopt a convention of indexing
the root label of the n'" turn, spoken by agent d, as
nd; and 7 : ¢ means that ¢ describes 7’s content (we’ll
sometimes also write ¢y to identify this description).

We now return to our example (2). Intuitively, (2a) com-
mits A to a preference for meeting next week but it does
so indirectly: the preference is not asserted, or equiva-
lently entailed at the level of content from the semantics
of Q-Elab(a,b). Accordingly, responding with "I do too"
(meaning "I want to meet next week too") is correctly pre-
dicted to be highly anomalous. A’s SDRS for turn 1 in Ta-
ble 1 commits him to the questions (2a) and (2b) because
Q-Elab is veridical: i.e. Q-Elab(a,b) entails the dynamic
conjunction ¢, A 0p. Since intuitively (2a) commits A to
the implicature that he prefers next week, our algorithm
for eliciting preferences from dialogue must ascribe this
preference to A on the basis of his move Q-Elab(a,b).
Furthermore, Q-Elab(a,b) entails that any answer to (2b)
must elaborate a plan to achieve the preference revealed
by (2a); this makes ¢, paraphrasable as “What days next
week are good for you?”, which does not add new prefer-
ences.

B’s contribution in the second turn attaches to (2b) with
QAP and also Plan-Elab—he answers with a non-empty
extension for what days. Lascarides and Asher (2009) ar-
gue that this means that B is also committed to the illo-
cutionary contribution of (2b), as shown in Table 1 by
the addition of Q-Elab(a,b) to B’s SDRS. This addition
commits B also to the preference of meeting next week,
with his answer making the preference more precise: (2c)
reveals that B prefers any day except Friday; by linking
(2d) with Plan-Correction he retracts the preference for
Thursday. This compels A to revise his inferences about



| Turn || A’s SDRS | B’s SDRS |
| T4 : Q-Elab(a,b) 0
2 T4 : Q-Elab(a,b) T : Q-Elab(a,b) N QAP(b,w) A Plan-Elab(b, )
7t : Plan-Correction(c,d)
3 T34 : Q-Elab(a,b) N QAP(b,w) A Plan-Elab(b, )\ | Top : Q-Elab(a,b) N QAP(b, 1) A Plan-Elab(b,T)
Plan-Elab(m,e) 7t : Plan-Correction(c,d)

Table 1: The DSDRS for Dialogue (2).

B’s preference for meeting on Thursday. A’s Plan-Elab
move (2e) in the third turn reveals another preference for
Monday. This may not match his preferred day when the
dialogue started: perhaps that was Friday. He may con-
tinue to prefer that day. But engaging in dialogue can
compel agents to revise their commitments to preferences
as they learn about the domain and each other.

The above discussion of (2) exhibits how different types
of rhetorical relations between utterances rather than
Searle-like speech acts like question, construed as a prop-
erty of an utterance, are useful for encoding how pref-
erences evolve in a dialogue and how they relate to
one another. While the Grounding Acts dialogue model
(Poesio and Traum, 1998) and the Question Under Dis-
cussion (QUD) model (Ginzburg, to appear) both have
many attractive features, they do not encode as fine-
grained a taxonomy of types of speech acts and their se-
mantic effects as SDRT: in SDRT each rhetorical relation
is a different kind of (relational) speech act, so that, for
instance, the speech act of questioning is divided into the
distinct types Q-Elab, Plan-Correction, and others. For
the QUD model to encode such relations would require
implicit questions of all sorts of different types to be in-
cluded in the taxonomy, in which case the result may be
equivalent to the SDRT taxonomy of dialogue moves. We
have not explored this eventual equivalence here.

3 CP-nets and CP-net descriptions

A preference is standardly understood as an ordering by
an agent over outcomes; at the very least it entails a com-
parison between one entity and another (outcomes being
one sort of entity among others). As indicated in the in-
troduction, we are interested in an ordinal definition of
preferences, which consists in imposing an ordering over
all (relevant) possible outcomes. Among these outcomes,
some are acceptable for the agent, in the sense that the
agent is ready to act in such a way as to realize them;
and some outcomes are not acceptable. Amongst the ac-
ceptable outcomes, the agent will typically prefer some
to others. Our method does not try to determine the most
preferred outcome of an agent but follows rather the evo-
lution of their commitments to certain preferences as the
dialogue proceeds. To give an example, if an agent pro-
poses to meet on a certain day X and at a certain time Y,
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we infer that among the agent’s acceptable outcomes is a
meeting on X at Y, even if this is not his most preferred
outcome (see earlier discussion of (2e)).

A CP-net (Boutilier et al., 2004) offers a compact rep-
resentation of preferences. It is a graphical model that
exploits conditional preferential independence so as to
structure the decision maker’s preferences under a ceteris
paribus assumption.

Although CP-nets generally consider variables with a fi-
nite range of values, to define the mapping from dialogue
turns to descriptions of CP-nets in a domain indepen-
dent and compositional way, we use Boolean proposi-
tional variables: each variable describes an action that an
agent can choose to perform, or not. We will then refine
the CP-net description by using domain-specific informa-
tion, transforming CP-nets with binary valued variables
to CP-nets with multiple valued variables. This reduces
the complexity of the evaluation of the CP-net by a large
factor.

More formally, let V be a finite set of propositional vari-
ables and Ly the description language built from V via
Boolean connectives and the constants T (true) and L
(false). Formulas of Ly are denoted by ¢, s, etc. 2" is the
set of interpretations for V, and as usual for M € 2V and
x €V, M gives the value true to x if x € M and false other-
wise. Where X C V, let 2% be the set of X -interpretations.
X-interpretations are denoted by listing all variables of
X, with a~ symbol when the variable is set to false: e.g.,
where X = {a,b,d}, the X-interpretation M = {a,d} is
expressed as abd.

A preference relation >~ is a reflexive and transitive bi-
nary relation on 2" with strict preference >~ defined in
the usual way (i.e., M = M’ but M’ ¥ M). Note that
preference orderings are not necessarily complete, since
some candidates may not be comparable by a given agent.
An agent is said to be indifferent between two options
MM €2V, written M ~ M, if M = M and M’ = M.

As we stated earlier, CP-nets exploit conditional pref-
erential independence to compute a preferential ranking
over outcomes:

Definition 1 Let V be a set of propositional variables
and {X,Y,Z} a partition of V. X is conditionally pref-
erentially independent of Y given Z if and only if Vz €
2Z, Wx1,xp € 2X and Vy1,y2 € 2Y we have: X1y1zZ =~



Xoy1Z iff X1y22 = xX2y22.

For each variable X, the agent specifies a set of parent
variables Pa(X) that can affect his preferences over the
values of X. Formally, X is conditionally preferentially
independent of V \ ({X} U Pa(X)). This is then used to
create the CP-net.

Definition 2 Ler V be a set of propositional variables.
N =(G,T) is a CP-net on V, where G is a directed
graph over V, and T is a set of Conditional Preference
Tables (CPTs) with indifference. That is, T = {CPT(X;):
X; € V}, where CPT(X;) specifies for each instantiation
p €280 either x; =, T, Xj = p Xj OF Xj ~p X].

The following simple example illustrates these defini-
tions. Suppose our agent prefers to go from Paris to
Hong Kong by day rather than overnight. If he takes an
overnight trip, he prefers a non stop flight, but if he goes
by day, he prefers a flight with a stop. Figure 1 shows the
associated CP-net. The variable 7' stands for the prefer-
ence over the period of travel. Its values are 7, for a day
trip and 7}, for a night one. The variable St stands for the
preference over stops. Its values are S for a trip with stops
and S without.

CPT(T)= T, T,
1y : S
CPT(SH= 4575
T,:S~S

Figure 1: Travel CP-net

With CP-nets defined, we proceed to a description lan-
guage for them. The description language formula w >
y(CPT) describes a CP-net where a CPT contains an en-
try of the form w >, y for some possibly empty list of
parent variables p. A CP-net description is a set of such
formulas. The CP-net Al |=x1,...x, :w > y(CPT) iff the
CP-net A_’s CPT 7 contains an entry w >; y—also writ-
ten i : w > y—where xy,...x, figure in ii. Satisfaction of a
description formula by a CP-net yields a notion of logical
consequence between a CP-net description 9 A_ and a de-
scription formula in the obvious way. Dialogue turns also
sometimes inform us that certain variables enter into pref-
erence statements. We’ll express the fact that the vari-
ables xp,...,x, are associated with discourse constituent
7 by the formula xi,...,x,(P(®)), where P(m) refers to
the partial description of the preferences expressed by the
discourse unit 7 (see Section 4).

The description language allows us to impose constraints
on the CP-nets that agents commit to without specifying
the CP-net completely, as is required for utterances like
(1). In section 6, we describe how to construct a min-
imal CP-net from a satisfiable CP-net description. One
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can then use the forward sweep procedure for outcome
optimisation (Boutilier et al., 2004). This is a proce-
dure of linear complexity, which consists in instantiating
variables following an order compatible with the graph,
choosing for each variable (one of) its preferred values
given the value of the parents.

4 From EDUSs to Preferences

EDUs are described in SDRT using essentially Boolean
formulas over labels (Asher and Lascarides, 2003); thus
0(m) Ay(m) means that ¢ and y describe aspects of ©’s
content. Not(m;,T) A &(m;) means that the logical form
of the EDU 7 is of the form —m; and that 7t is described
by ¢; so 7 has the content —¢. Our task is to map such
descriptions of content into descriptions of preferences.
Our preference descriptions will use Boolean connectives
and operators over preference entries (e.g., of the form
x > y): namely, &,5/,+—, and a modal operator <. The
rules below explain the semantics of preference opera-
tors (they are in effect defined in terms of the semantics
of buletic attitudes and Boolean connectives) and how
to recursively calculate preference descriptions from the
EDU’s logical structure.

Simple EDUS can provide atomic preference statements
(e.g., I want X or We need X). This means that with this
EDU the speaker commits to a preference for X. X will
typically involve a Boolean variable and a preference en-
try for its CPT. P(m) is the label of the preference descrip-
tion associated with discourse unit . Hence for a sim-
ple EDU m, we have X (P(m)) as its description. Simple
EDUs also sometimes express preferences in an indirect
way (see (2a)).

More generally, P recursively exploits the logical struc-
ture of an EDU’s logical form to produce an EDU pref-
erence representation (EDUPR). For instance, since the
logical form of the EDU [ want fish and wine features
conjunction, likewise so does its preference description:
0&y(P(m)) means that among the preferences included
in T, the agent prefers to have both ¢ and y and prefers ei-
ther one if he can’t have both.! We also have disjunctions
(let’s meet Thursday or Friday), and negations (I don’t
want to meet on Friday), whose preferences we’ll express
respectively as Thurs<; Fri(P(n)) and —Fri(P(m)).
Some EDUs express commitments to dependencies
among preferences. For example, in the sentence What
about Monday, in the afternoon?, there are two prefer-
ences: one for the day Monday, and, given the Monday
preference, one for the time afternoon (of Monday), at
least on one syntactic disambiguation. We represent this
dependency as Mon — Aft(P(r)). Note that — is not
expressible with just Boolean operators. Finally, EDUs
can express commitment to preferences via free choice

I"The full set of rules also includes a stronger conjunction Ay (P())
(the agent prefers both ¢ and , but is indifferent if he can’t have both).



modalities; I am free on Thursday, or GThurs(P(m)), tells
us that Thursday is a possible day to meet. <¢ says that ¢
is an acceptable outcome (as described earlier, this means
the agent is ready to act so as to realize an outcome that
entails ¢). Thus, O¢(m) entails (), and <-embedded
preferences obey reduction axioms permitting < to be
eliminated when combined with other preference oper-
ators. But a & preference statement does affect a prefer-
ence description when is is conjoined in Boolean fashion
with another & preference statement in an EDU or com-
bined via a discourse relation like Continuation. This is
because < is a free choice modality and obeys the equiv-
alence (3) below, which in turn yields a disjunctive pref-
erence 0 57 Y(P(m)) from what appeared to be a conjunc-
tion.

3) (CO(P(m)) A OW(P(m))) = (07 W)(P(m))

The variables introduced by a discourse segment T are
integrated into the CP-net description D A( via the oper-
ation Commit(m, D). The following seven rules cover
the different possible logical structures for the EDU pref-
erence representation. In the following, X,Y,Z, W denote
propositional variables and ¢, Yy propositional formulas
from EDUPR. Var(¢) are the variables in ¢, and >y
the preference relation describing CPT (X). Saz(¢) (or
non-Sat()) is a conjunction of literals from Var(¢) that
satisfy (or do not satisfy) ¢. Sat(¢) — X is the formula that
results from removing the conjunct with X from Saz(¢).

1. Where X (P(m)) (X is a variable of P(m), e.g., I want
X), Commit(n,D N\ ) adds the description DN =
X = X(CPT(X)).3

2. Where 0&Wy(P(m)), Commit(m, D) adds descrip-
tions as follows:

e Foreach X € Var(¢), add Var(y) to Pa(X) and
modify CPT (X) as follows:
If Sat;(y), Sat;(0) - X (resp. X), then Sat;(y),
Satj(9) —X : X = X (resp. X = X), for all sat-
isfiers 7 and j.

e Similarly for each Y € Var(y).

If ¢ and y are literals X and Y we get: DA =Y >
Y(CPT(Y)) and DN = X = X(CPT(X)). Graph-
ically, this yields the following preference relation
(where one way arrows denote preference, two way

2We provide here the reduction axioms over preference descriptions

L O(0&y)(P(m)) < (&) (P(m))

2. 09— y)(P(n) < (¢ — W)(P(m))

3. 0(0vY) < (0v v)(P(m)

4. O09(P(m)) — ©9(P(m))

3Given our description language semantics, this means that any
CP-net which satisfies the description DA contains a preference ta-

ble CPT(X) with an entry X > X with at least one instantiation of the
variables in Pa(X).
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arrows denote indifference or equal preference, and
no arrow means the options are incomparable):

3. Where ¢ 57 y(P(m)) (the agent prefers to have at
least one of ¢ and W satisfied). If ¢ and y are X
and Y, we get:

e Var(X) € Pa(Var(Y)) and DA =X : ¥ ~
Y(CPT(Y)), DN =X :Y = Y(CPT(Y)).

e Var(Y) € Pa(Var(X)) and DN =Y : X ~
X(CPT(X)), DN EY : X = X(CPT(X)).

This corresponds to the following preference rela-
tion:
XY = XY <—=>XY
V.~
Xy
As before, the use of indifference allows us to find
the best outcomes (XY, XY and XY) easily.

4. Where ¢ — y(P(m)) (the agent prefers that ¢ is sat-
isfied and if so that y is also satisfied. If ¢ is not
satisfied, it is not possible to define preferences on
). If ¢ and y are X and Y, we get:

e DN | X = X(CPT(X))
o Var(X) € Pa(Var(Y)) and
DN =X :Y = Y(CPT(Y)).

Note that this description is also produced by
Elab(m;,w;) below where X(P(m;)) and Y (P(x;))
(see rule 8). Thus the implication symbol — is a
"shortcut” in that it represents elaborations whose
arguments are in the same EDU.

5. Where ©¢(P(m)) (the agent prefers a free choice of
0). Given the behaviour of <, this reduces to treating

o(P(m)).

6. Where —0(P(m)). We can apply rules 1-5 by con-
verting —¢ into conjunctive normal form.

7. Where ¢(P(r)) Ay(P(r)), with ¢ and y nonmodal,
we simply apply the rule for ¢ and that for y.

5 From Discourse Structure to Preferences

We must now define how the agents’ preferences, repre-
sented as a partial description of a CP-net, are built com-
positionally from the discourse structure over EDUs. The
constraints are different for different discourse relations,
reflecting the fact that the semantics of connections be-
tween segments influences how their preferences relate
to one another.

We will add rules for defining Commit over la-
bels ® whose content ¢ express rhetorical relations
R(m;,m;)—indeed, we overload the notation and write
Commit(R(m;,7;), DA ). Since Commit applies com-
positionally, starting with the EDUs and working up



the discourse structure towards the unique root la-
bel of the SDRS, we can assume in our definition of
Commit(R(m;,m;), D) that the EDUPRs are already de-
fined. We give rules for all the relations in the Verbmobil
corpus, though we will be very brief with those that are
less prevalent. A complete example using our rules is in
appendix A.

IExplanation, Elab, Plan-Elab, Q-elab
IExplanation(;, T;): i.e., T;’s preferences explain T;’s
(e.g., see (1), where P(m;) would be going to the mall
and P(m;) is eating something). With Elab(m;, w;) a
preference in 7; is elaborated on or developed in T},
as in: [ want wine. I want white wine. That is, a
preference for white wine depends on a preference for
wine. Plan-Elab(m;,7;) means that ; describes a plan
for achieving the preferences expressed by 7;, and with
Q-Elab we have a similar dependence between prefer-
ences, but the second constituent is a question (so often
in practice this means preference commitments from T;
transfer from one agent to another).

Plan-Elab(nj,m;), Elab(w;,®;) and [Explanation(w;, ;)
all follow the same two-step rule, and so from the point
of view of preference updates they are equivalent:

8. 1 Firstly, preference description DAl is up-
dated according to P(m;) by applying
Commit(w;, D), if T; expresses a new
preference. If not go to step (ii).

ii. Secondly, description DA is modified so that
each variable in P(m;) depends on each vari-
able in P(m;): ie., VX € Var(P(w;)), YY €
Var(P(mj)),Y € Pa(X). Then, D\’ is enriched
according to P(m;), if T; expresses a preference.
If it does not, then end.

We now give some details concerning step (ii) above. To
this end, let ¢ denote a formula with SDRS description
predicates, ¢/ its corresponding boolean (preference) for-
mula and ¢/ its negation. Then for ¢ =Y, we define ¢/ =Y
and ¢/ =7; for ¢ =Y +— Z we define ¢/ =Y AZ and
¢ =Y VZ; and for =Y 7 Z and ¢ = Y&Z, we have
O =YVZand ¢/ =Y AZ.

a. X(P(m;)) and ¢(P(m;)). The agent explains his pref-
erences on X by 0. So, if no preferences on X are
already defined, ¢ is a reason to prefer X. That is,
DA E¢: X = X(CPT(X)). However, it is not pos-
sible to define preferences on X if ¢ is false. If, on
the other hand, preferences on X are already defined,
the agent prefers X if ¢ is satisfied, and does not
modify his preferences otherwise—i.e., =x ¢ =X =

X, =y g=rx"

4If we have =x such that Z: X = X, Z: X » X, >x,o Tepresents
preferences defined by Z A ¢’ and Z A¢', whereas =, - represents pref-

X0
erences defined by ZA¢/ and ZA¢.
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For ¢ =7, if > is not already defined, we obtain
the following preference relation (no information on
the preference for X if Y is false makes XY and XY
incomparable):

XY

T

XY XY
+
Y

b. X7 Z(P(w;)) and ¢(P(w;)). The agent explains his
preferences X <7 Z by 0: he wants to satisfy X or Z
if ¢ is satisfied.
First, we set Var(Z) € Pa(Var(X)), Var(X) €
Pa(Var(Z)). If > is not already defined, we have:
DN E O ANZ X ~X(CPT(X)), DN = O ANZ:
X = X(CPT(X)).
Otherwise, >y o 7z= X ~ X, ~xyz= X = X,
>_XVW7Z: >_Xy377: ~X.
CPT(Z) is defined as CPT (X ) by inverting X and Z.
For ¢ =7, if >y and >z are not already defined, we
obtain the following preference relation (again, the
lack of preference information on X and Z when Y
is false yields incomparability among states where Y

is false):
)?YZHX{ZHXYZ
XYZ
XYZ
I T
XYZ XYZ XYZ

¢. X&Z(P(m;)) and ¢(P(m;)). The agent explains his
preferences on X &Z by ¢.

e If >y is not already defined, we have: DA E
o : X = X(CPT(X)).
Otherwise, -x ¢ =X = X, -y 5= >x,

e CPT(Z) is defined as CPT (X) by replacing X
by Z.

d. X — Z(P(m;)) and ¢(P(w;)). The agent explains his
preferences on X — Z by ¢: he wants to satisfy X
and after Z if ¢ is satisfied.

If > is not already defined, we have DAl = ¢’ :
X = X(CPT (X)) and we set Var(X) € Pa(Var(Z)).
If =7 is not yet defined, we have : DN = ¢ AX :
Z=Z(CPT(2)), DN E & AX : Z~Z(CPT(Z)).
Else, >_Z,(¢'/\X): Z > Z, >_Z,(¢'A)?): Z ~ Z,
Tz @A) T T Z,@AX) T L

e. W(P(m;)) and o(P(r))).
decomposing V.

We can apply rules 8 by

5 Otherwise, there is no need to modify >x. This is what we call a
‘partial elaboration’. Variables that were evoked since preferences on
X were introduced are parents of Z but not of X. For example, if an
agent commits to a preference for Monday then Afternoon, and later in
the discourse he commits to 2oclock, then Afternoon is 2oclock’s parent
but not Monday’s.



f. O(y)(P(m;)) and O(¢)(P(wj)). We treat this like a
free choice EDU (see rule 5).

g. O(y)(P(m;)) and ¢(P(m;)), where ¢ is non modal.
We treat this like W(P(m;)) and ¢(P(m;)) (see rule
8.e)

Let’s briefly look at how the rule changes for
Q-elaby(my,my) (where the subscript A identifies the
speaker of m,):

9. Q-Elab,(m,my) implies that we update A’s CP-
net description DA by applying the rule for
Elab(m;,m,), where if T, expresses no preferences
on their own, we simply make the P(m2) description
equal to the P(m;) description. Thus A’s CP-net de-
scription is updated with the preferences expressed
by utterance 7y, regardless of who said 7.

QAP Answers to questions affect preferences in complex
ways:

10. The first case concerns yes/no questions and there
are two cases, depending on whether B replies yes
or no:

Yes QAPy(m;,my) where T, is yes. B’s pref-
erence descriptions are updated by apply-
ing Commit(Elabg(m;,7), D7) (and so B’s
preference description include preferences ex-
pressed by | and 7).

No QAPg(m;,mp) where mp is no. If P(m)
and P(mp) are consistent, then B’s pref-
erence descriptions are updated by ap-
plying Commitg(Elabp(w;,m2), DN );
otherwise, they are updated by applying
Commit(Correction(m;,T2), DN ) (see rule
13).

11. When m; is a wh-question and QAPg(®;,T2), B’s
preferences over variables in ®; and m, are ex-
actly the same as the ones defined for a yes/no
question where the answer is yes. Variables in T
will refine preferences over variables in 7. So,
B’s preference descriptions are updated by applying
CommitB(ElabB(nl,th),.fDﬂ\[).

In previous rules, it is relatively clear how to update the
preference commitments. However, in some cases it’s not
clear what the answer in a QAP targets: in Could we meet
the 25 in the morning? No, I can’t., we do not know if
No is about the 25 and the morning, or only about the
morning. So, we define the following rule for managing
cases where the target is unknown :

12. If we know the target, we can change the description
of the CP-net. Otherwise, we wait to learn more.
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Correction and Plan-Correction allow a speaker to rec-
tify a prior commitment to preferences. Self-corrections
also occur in the corpus: I could do it on the 27th. No I
can not make it on the 27th, sorry I have a seminar. Cor-
rection and Plan-Correction can have several effects on
the preferences. For instance, they can correct preference
entries. That is, given Correction(m;,m; ), some variables
in P(m;) are replaced by variables in P(m;) (in the self-
correction example, every occurrence of 27 in P(m;) is
replaced with 27 and vice versa). We have a set of rules
of the form X « {Yj,...,Y,}, which means that the vari-
able X € Var(P(m)) is replaced by the set of variables
{Y1,...,Ym} C Var(P(m2)). We assume that X can’t de-
pend on {Y1,..., Y, } before the Correction is performed.
Then replacement proceeds as follows:

13. If Pa(X) = 0, we add the description DA, |= Y >
Y«(CPT (Yy)) forall k € {1,...,m} and remove X >~
X(CPT(X)) (or X = X(CPT(X))). Otherwise, we
replace every description of CPT (X ) with an equiv-
alent statement using ¥} (to describe CPT (Y)), for
all ke {1,...m}.

The specific target of the correction behaves similarly to
the target of a QAP. In some cases we don’t know the
target, in which case we apply rule 12.

Plan-Correction can also lead to the modification of an
agent’s own plan because of other agent’s proposals. In
this case it corrects the list of parent variables on which
a preference depends. We call that list of variables the
operative variables. Once the operative variables are
changed, Plan-Correction can elaborate a plan if some
new preferences are expressed. For example, all agents
have agreed to meet next week, so in their CP-net descrip-
tion, there is the entry Weekl - Week1. Then discussion
shows that their availabilities are not compatible and one
of them says "okay, that week is not going to work.". That
does not mean the agent prefers Week1 to Week1 because
both agreed on Weekl as preferable. Rather, Week1 has
been removed as an operative variable in the following
discourse segments. This leads us to the following rule:

14. For  Plan-Correction(m;,m)  which  corrects
the list of parent variables, the operative vari-
able list becomes the intersection of all Pa(X)
where X € Var(P(m;)). We can now apply
Commit(Plan-Elab(m;,m;), DN ), if P(7;) contains
some new preferences ¢. If the CPT affected by a
rule has no entry for the current operative variable
list O, then O : ¢ has to be added to DA .

Continuation, Contrast and Q-Cont pattern with the
rule for Elab. Alternation patterns with rule 8.b.° Expla-
nation, Explanation®, Result, Qclar (clarification ques-
tion), Commentary, Summary and Acknowledgment

The rule for Alternative questions like Do you want fish or chicken?
is a special case yielding ¢ 57 y(P(m)), but we don’t offer details here.



either do nothing or have the same effect on preference
elicitation as Elab. Sometimes, adding these preferences
via the Elab rule may yield an unsatisfiable CP-net de-
scription, because an implicit correction is involved. If an
evaluation of the CP-net (see next section) is performed
after a processing of one of these rules shows that the
CP-net description is not satisfiable, then we apply the
rule 13, associated with Correction.

6 From Descriptions to Models

Each dialogue turn adds constraints monotonically to the
descriptions of the CP-nets to which the dialogue partic-
ipants commit. We have interpreted each new declared
variable in our rules as independent, which allows us to
give a domain independent description of preference elic-
itation. However, when it comes to evaluating a CP-net
description for satisfiability, we need to take into account
various axioms about preference (irreflexivity and transi-
tivity), and axioms for the domain of conversation: in our
case, temporal designations (Wednesdays are not Tues-
days and so on). This typically adds dependencies among
the variables in the description. In the case of the Verb-
mobil domain, since the variable Monday means essen-
tially "to meet on Monday", Monday implies Meet , and
this must be reflected via a dependency in the CP-net: we
must view the variable Meet as filling a hidden slot in
the variable Monday in the preference description, Meet :
Mon = Mon. This likewise allows us to fill in the negative
clauses of the CP-net description: we can now infer that
Meet: Mon = Mon. These axioms also predict certain
preference descriptions to be unsatisfiable. For instance,
if we have Mon = Mon, our axioms imply Mon = Tues,
Mon = Wed, etc. At this point we can calculate, ceteris
paribus, inconsistencies on afternoons and mornings of
particular days.

Domain knowledge also allows us to collapse Boolean
valued variables that all denote, say, days or times of the
day into multiple valued variables. So for instance, our
domain independent algorithm from dialogue moves to
preference descriptions might yield:

“)

Domain knowledge collapses all Boolean variables for
distinct days into one variable with values for days to get:

&)

This leads to a sizeable reduction in the set of variables
that are used in the CP-net.

We can test any CP-net description for satisfiability by
turning the description formulas into CP-net entries. Our
description automatically produces a directed graph over
the parent variables. We have to check that the > state-
ments form an irreflexive and transitive relation and that
each variable introduced into the CP-net has a preference

Meet A31.01 A30.01 A02.02: am = am

Meet A02.02: am > pm
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entry consistent given these constraints. If the description
does not yield a preference entry for a given variable X,
we will add the indifference formula X ~ X as the entry.
If our CP-net description meets these requirements, this
procedure yields a minimal CP-net. Testing for satisfia-
bility is useful in eliciting preferences from several dis-
course moves like Explanation, Qclar or Result, since in
the case of unsatisfiability, we will exploit the Correction
rule 13 with these moves.

7 Evaluation of the proposed method

We evaluate our method by testing it against the judg-
ments of three annotators on three randomly chosen un-
seen test dialogues from the Verbmobil corpus. The
test corpus contains 75 EDUs and the proportion of dis-
course relations is the same as in the corpus overall. The
three annotators were naive in the sense that they were
not familiar with preference representations and prefer-
ence reasoning strategies. For each dialogue segment,
we checked if the judges had the same intuitions that we
did on: (i) how commitments to preferences are extracted
from EDUs, and (ii) how preferences evolve through dia-
logue exchange.

The judges were given a manual with all the instructions
and definitions needed to make the annotations. For ex-
ample, the manual defined preference to be "a notion of
comparison between one thing at least one other". The
manual also instructs annotators to label each EDU with
the following four bits of information: (1) preferences
(if any) expressed in the EDU; (2) dependencies between
preferences expressed in the EDU; (3) dependencies be-
tween preferences in the current EDU and previous ones;
and (4) preference evolution (namely, the appearance of
a new factor that affects preferred outcomes, update to
preferences over values for an existing factor, and so on).
For each of these four components, example dialogues
were given for each type of decision they would need to
make, and instructions were given on the format in which
to code their judgements. Appendix A shows an example
of an annotated dialogue.

Table 2 presents results of the evaluation of (i). For each
EDU, we asked the annotator to list the preferences ex-
pressed in the EDU and we compared the preferences ex-
tracted by each judge with those extracted by our algo-
rithm. The triple (a, b, ¢) respectively indicates the pro-
portion of common preferences (two preference sets I';
and I'; are common if (I =I';) or Gx €,y e ', x —
y)—for example, the preference MeetBefore2 >~ MeetAt2
implies MeetAr2 >~ MeetAt2), the proportion of prefer-
ences that one judge extracts and the other judge or our al-
gorithm misses and the proportion of preferences missed
by one judge and extracted by the other judge or by our
algorithm. The average annotator-algorithm agreement
(AAA) is 75.6% and the average inter-annotator agree-



Our algorithm n 12 I3 % of EDUSs that commit to preferences
Our algorithm (83,4,13) | (91,0,9) | (91,0,9) 76%
J1 (83,13,4) (85,7,8) | (91,4,5) 80%
J2 (91,9,0) (85,8,7) (92,4,4) 86%
J3 91,9,0) (91,5,4) | (92,4,4) 84%

Table 2: Evaluating how preferences are extracted from EDUS.

Our algorithm I 12 I3
Our algorithm (85,71) | (96, 100) | (93, 86)
J1 (85,71) (89,71) | (91, 86)
J2 (96, 100) (89,71) (98, 86)
J3 (93, 86) (91,86) | (98, 86)

Table 3: Evaluating how preferences evolve through dialogue.

ment (IAA) is 77.9%; this shows that our method for ex-
tracting preferences from EDUSs is reliable.

The evaluation (ii) proceeds as follows. For each EDU, we
ask the judge if the segment introduces new preferences
or if it updates, corrects or deletes preferences commited
in previous turns. As in (i), judges have to justify their
choices. Table 3 presents the preliminary results where
the couple (a,b) indicates respectively the proportion of
common elaborations (preference updates or new prefer-
ences) and the proportion of common corrections. Since
elaboration is also applied in case of other discourse re-
lations (e.g., Q-Elab), the measure a evaluates the rules
8,9, 10 (yes) and 11. Similarly, the measure b evalu-
ates the rules 10 (no), 13 and 14. We obtain AAA=91%
IAA=92.7% for elaboration and AAA=85.7% [AA=81%
for correction.

8 Conclusion

We have proposed a compositional method for elicit-
ing preferences from dialogue consisting of a domain-
independent algorithm for constructing a partial CP-net
description of preferences, followed by a domain-specific
method for identifying the minimal CP-net satisfying the
partial description and domain constraints. The method
supports qualitative and partial information about prefer-
ences, with CP-nets benefiting from linear algorithms for
computing the optimal outcome from a set of preferences
and their dependencies. The need to compute intentions
from partially defined preferences is crucial in dialogue,
since preferences are acquired and change through dia-
logue exchange.

Our work partially confirms that CP-nets have a certain
naturalness, as the map from dialogue moves to prefer-
ences using the CP-net formalism is relatively intuitive.
The next step is to implement our method. This depends
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on extracting discourse structure from text, which, though
difficult, is becoming increasingly tractable for simple
domains (Baldridge and Lascarides, 2005b). We plan to
extract CP-net descriptions from EDUs and to evaluate
these descriptions using "multi-valued variables" auto-
matically. We will then evaluate our method on a large
number of dialogues.

Our work here is also and more generally a first step to-
wards modelling the complex interaction between what
agents say, what their preferences are, and what they take
the preferences of other dialogue agents to be. It leads
to a conception of dialogue that’s more general than one
based purely on Gricean cooperative principles (Grice,
1975). On a purely Gricean approach, conversation is
cooperative in at least two ways: a basic level concern-
ing the conventions that govern linguistic meaning (ba-
sic cooperativity); and a level concerning shared attitudes
towards what is said, including shared intentions (con-
tent cooperativity). While basic cooperation is needed
for communication to work at all, content cooperativ-
ity involves strongly cooperative axioms like Coopera-
tivity (interlocutors normally adopt the speaker’s inten-
tions) (Allen and Litman, 1987, Grosz and Sidner, 1990,
Lochbaum, 1998). Our approach allows for divergent
preferences and divergent intentions, i.e. conversations
that aren’t based on content cooperativity. This will al-
low us to exploit information about conflicting agents’
preferences and game-theoretic techniques that are inher-
ent in the logics of CP-nets for computing optimal moves
(Bonzon, 2007). And in contrast to Franke et al. (2009),
who analyse conversations where content cooperativity
doesn’t hold using a game-theoretic framework, our ap-
proach allows for partial and qualitative representations
of preferences rather than demanding complete and quan-
titative representations of them.
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Appendix A : Treatment of an example

We illustrate in this section how our rules work on an
example. Since this dialogue was also evaluated by our
judges (cf section 7), we give where relevant some details
on those annotations. The example is as follows:

(6)

;. A: so, I guess we should have another meet-
ing

. A: how long do you think it should be for.

3. B: well, I think we have quite a bit to talk

about.

4. B: maybe, two hours?

Tis. B: how does that sound.

Te. A: deadly,

7. A: but, let us do it anyways.

mg. B: okay, do you have any time next week?

To. B: I have got, afternoons on Tuesday and
Thursday.

T1o. A: I am out of Tuesday Wednesday Thurs-
day,

T11. A: so, how about Monday or Friday

Table 4 is the DSDRS associated with (6).
Relation(m;,[n; — m;]) indicates that a rhetorical re-
lation holds between the segment m; and a segment
consisting of T, Tj4 1, ..., Tk

7, provides an atomic preference. We apply the rule
1 and so Commita (T, DN 4) adds the description
DN 4 EM = M(CPT(M)) where M means Meet.

T, We have Q-Elab(m, T;). A continues to commit to
M in m; and no new preferences are introduced by
7. We apply rule 9, which makes the P(m;) de-
scription the same as P(71)’s.

73 is linked to m, with QAP. B accepts A’s preference
and we apply the rule 11 since 7, is a wh-question.
Thus Commitg(Elabg(ny,m3), DN ) adds the de-
scription DN g =M = M(CPT (M)). It is interest-
ing to note that some judges consider that agent’s
utterance in T3 indicates a preference towards "talk-
ing a long time" while other judges consider, as our
method predicts, that this segment does not convey
any preference.

T4 is linked to m3 by Q-Elab. B commits to a new
preference. We apply rule 9, rule 8 and then rule
8.a. The preference on the hour is now dependent
on the preference on meeting; ie., DN gz M :
2h = 2h(CPT(2h)), where the variable 21 means
two hours.

75 is related to w4 with the Q-Cont relation. We
then follow the same rule as the continued relation,
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Tie

7

g

T

namely Q-Elab. We apply rule 9 which does not
change the CP-net description of B because 75 does
not convey any preference.

is related to ms with QAP relation. In this case, it’s
not clear what is the QAP target and so we apply
rule 12: we wait to learn more and we do not change
B’s CP-net description.

All the Judges indicated that segments Ts and ¢
are ambiguous and therefore hesitated to say if they
commit to preferences. For example in 7g, do we
have a preference for meeting more than 2 hours
or less than 2 hours? This indecision is compatible
with the predictions of rule 12.

A accepts B’s preference. We apply rule 9 and then
rule 8 to obtain:

DN 4 EM = M(CPT(M)),

DN 4 =M :2h = 2h(CPT (2h)).

is linked to m7 by Q-Elab. B introduces a new pref-
erence for meeting next week.

We apply rule 9 and then 8 to obtain:

DN g =M = M(CPT(M)),

DN g =M :2h = 2h(CPT (2h)),

DN g =M A2h: NW = NW(CPT (NW)) where the
variable NW means next week.

is linked to mg by Plan-Elab. 9 expresses com-
mitments to preference that already involve a
CP-net description. B introduces three prefer-
ences: one for meeting on Tuesday, the other
for meeting on Thursday and given the conjunc-
tion of preferences Tues A Thurs, one for time
afternoon (of Tuesday and Thursday). That is,
((O(Tues) A O(Thurs)) — Aft)(P(my)). We apply
the equivalence (3) and obtain :

(O(Tues 7 Thurs) — Aft)(P(my)).

Then, we apply rules 8.g, 8.b and 8.d. The CP-net
description of B is thus updated as follows:

DNg E M AN 2h AN NW A Tues : Thurs -
Thurs(CPT (T hurs)),

DNg E M AN 2h AN NW A Tues : Thurs ~
Thurs(CPT (T hurs)),

DNg E M AN 2h N NW A Thurs : Tues >
Tues(CPT (Tues)),

DNg FE M A2k AN NW A Thurs : Tues ~
Tues(CPT (Tues)),

DN g = M N2h ANNW A (Thurs V Tues) : Aft -
AfH(CPT (Aff)).

Most judges express here a preference ranking over
outcomes. For instance, if B elaborates by adding
the preference "I have got Monday morning too"
(as it is in the test corpus), some consider the rank-
ing "(Tuesday or Thursday afternoons) > (Monday



‘ Turn H A’S SDRS ‘ B’s SDRS ‘
1 Ti4 : Q-Elab(my,m;) 0
2 T14:1s the same as in turn 1 T : Q-Elab(my, [my — @s)) A QAP(y, [m3 — Ts))A
Q-Elab(m3, )
7 : Q-Cont(Ty,Ts)
3 T34 : Q-Elab(my, [Ra — 7)) A QAP(Ta, [3 — 17 ) A Tp: is the same as in turn 2
Q-Elab(n3, [4,77])) A QAP(m, 1)
7 : Q-Cont(Ty,7s), T : Contrast(Te,T7)
4 T34: is the same as in turn 3 Tp : Q-Elab(my, [y — o)) A QAP(Ty, [t3 — To) ) A
Q-Elab(73, [m4 — o)) A QAP(T, [Tg — T9] ) A
Q-Elab(n',7")
7 : Q-Cont(m4,75), 7 : Contrast(Tg,T7)
7" : Plan-Elab(mg, T9)
5 Ts54 : Q-Elab(?’tl R [7'52 — 7'511]) A\ QAP(TCQ, [TC3 — 7'511])/\ Tt4p: is the same as in turn 4
Q-Elab(m, [7‘54 — 7'511]) A\ QAP(TC, [7‘56 — 7'511])/\
Q-Elab(n,[mg — m11]) A QAP(7" ,w")
7 : Q-Cont(T4,7s), 7 : Contrast(Tg,T7)
7" : Plan-Elab(ng,m9), " : Q-Elab(m, 1)

T1o

T

Table 4: The DSDRS for Dialogue (6).

morning) > (other days)", while others consider the
ranking "(Tuesday or Thursday afternoon) or (Mon-
day morning) > (other days)". We did not treat such
preference ranking.

is related to w9 by QAP where A answers no to B’s
question asked in g. We apply rule 10 (no). Since
Tues&Weds&Thurs(P(Tt1p)) is not consistent with
((O(Tues) N O(Thurs)) — Aft)(P(ng)), we apply
Commita(Correction(mg, 1), DN 4), which adds
the preference Weds to A’s description and then
the rule 13 where Tues and T hurs are respectively
replaced by Tues and Thurs :

DN 4 = MA2RANW : Tues = Tues(CPT (Tues)),
DN, E= M AN 2h AN NW Thurs >
Thurs(CPT (T hurs)),

DN, E M AN 2h AN NW
Weds(CPT (Weds)).

Weds

Finally, this segment is linked to ¢ with Q-Elab
where Mond <7 Fri(P(m11)). We apply rules 9 and
8.b and update A’s CP-net description as follows:
DN o EMA2hANW ATues NThurs \Weds NFri:
Mond > Mond(CPT (Mond)),

DN 4 |EMNA2RANW ATues AT hurs \Weds NFri :
Mond ~ Mond(CPT (Mond)),

DN 4 = M A2h ANNW A Tues A Thurs AN Weds N
Mond : Fri = Fri(CPT (Fri)),

DN 4 = M A2h ANNW A Tues A Thurs AN Weds N
Mond : Fri ~ Fri(CPT (Fri)).
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The evaluation of this dialogue also reveals to what extent
naive annotators reason with binary (Monday preferred
to not Monday) or multi-valued variables (Monday pre-
ferred to Tuesday). Most judges use multi-valued vari-
ables to express the preference extracted from an EDU,
and the way in which our method exploits domain knowl-
edge to yield the minimal CP-net satisfying the descrip-
tion reflects this. In addition, some judges use a small
set of variables (for example the variable time of meeting
that groups together the notion of week, day, hours, etc.)
while others use a distinct variable for each preference.
Finally, we also noticed that judges do not describe the
same preference dependencies. For example, in:

@) We could have lunch together and then have the

meeting from one to three?

some consider that the preference on having lunch is in-
dependent from the preference on the meeting (in this
case, they consider that the preference on the period one
to three is independent from the preference on meeting)
while others consider that the two preferences are depen-
dent.
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Abstract

We present a method of evaluating the imme-
diate performance impact of user state mis-
classifications in spoken dialogue systems.
We illustrate the method with a tutoring sys-
tem that adapts to student uncertainty over and
above correctness. First we define a rank-
ing of user states representing local perfor-
mance. Second, we compare user state trajec-
tories when the first state is accurately clas-
sified versus misclassified. Trajectories are
quantified using a previously proposed met-
ric representing the likelihood of transitioning
from one user state to another. Comparison of
the two sets of trajectories shows whether user
state misclassifications change the likelihood
of subsequent higher or lower ranked states,
relative to accurate classification. Our tutoring
system results illustrate the case where user
state misclassification increases the likelihood
of negative performance trajectories as com-
pared to accurate classification.

1 Introduction

Spoken dialogue systems research has shown that
natural language processing errors can negatively
impact global system performance. For exam-
ple, automatic speech recognition errors have been
shown to negatively correlate with user satisfaction
surveys taken after the system interaction is over
(e.g., (Walker et al., 2000a; Pon-Barry et al., 2004)).

Automatic user state classification errors have
also been shown to negatively impact global per-
formance in spoken dialogue systems (e.g., (Pon-
Barry et al., 2006)). For example, in our prior work

University of Pittsburgh
Pittsburgh, PA 15260
litman@cs.pitt.edu

with an uncertainty-adaptive spoken dialogue com-
puter tutoring system, we found that recognizing and
adapting to the user’s state of uncertainty, over and
above his/her state of correctness, significantly im-
proved global learning over all users (as measured
by tests taken before and after the system interac-
tion). However, this was only true when the user
uncertainty was manually labeled during the inter-
action by an unseen human “wizard of oz” (Forbes-
Riley and Litman, 2011b); it was not true when the
uncertainty was automatically labeled by the system.
Further analysis showed that uncertainty classifica-
tion errors largely accounted for the global perfor-
mance decrease in our fully automated system. In
particular, only a small proportion of users’ actual
uncertainty was being accurately classified by the
system (Forbes-Riley and Litman, 2011a).!

The question we address in this study is how to
analyze the impact of automatic user state classifi-
cation errors when analyzing performance at a local
level. In particular, is there a measurable local per-
formance difference when one compares what hap-
pens in a dialogue after a turn is accurately classi-
fied versus misclassified? We show here how user
state trajectories can be used to answer this ques-
tion. First, a ranking of user states is defined (Sec-
tion 3.1). Second, user state trajectories are com-
puted from two sets of system dialogue: one in

'In natural language processing (NLP) research, the terms
“(in)correct” and ‘““(un)certain” can have multiple interpreta-
tions. To avoid confusion, we reserve these terms in this paper
only to refer to the semantic content and affective/attitudinal ex-
pression of user answers (respectively). When referring to the
NLP performance of our system, we use the terms “accurately
classified” and “misclassified”.
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which the user state of interest is accurately clas-
sified in the first turn in the trajectory, and another
in which it is misclassified (Section 3.2). Trajec-
tories are quantified as the likelihood of transition-
ing from one user state to another (D’Mello et al.,
2007). Comparison of the two sets of trajectories in-
dicates how user state misclassifications change the
relative likelihood of subsequent states. Transitions
to higher ranked states indicate improved local per-
formance while transitions to lower ranked states in-
dicate decreased local performance.

In our research, we are interested in this question
because we hypothesize that accurate and inaccurate
user state classification in our uncertainty-adaptive
system yielded immediate differences in user behav-
ior. We further hypothesize that our uncertainty-
adaptive system had a negative immediate impact
on the user’s state when (un)certainty was misclas-
sified, as compared to when (un)certainty was ac-
curately classified. Our user state trajectory results
support these hypotheses. We find that (un)certainty
misclassifications increased the likelihood of transi-
tioning to the lowest ranked user state in the next
turn. In contrast, accurate (un)certainty classifica-
tion yielded an increased likelihood of more positive
performance trajectories (Section 4).

More generally, this question is relevant to other
automatically classified user states and other types
of dialogue systems, whenever the goal is to un-
derstand the immediate impact of user state classi-
fication errors on user behavior during the dialogue
(Sections 3.1 and Section 5).

2 The System and Dialogues

We apply this local performance analysis to dia-
logues between college students and our fully auto-
mated spoken dialogue tutoring system, ITSPOKE.>

Two sets of dialogues are used here, which come
from two versions of ITSPOKE: the uncertainty-
adaptive and non-adaptive versions. Both ver-
sions automatically classify user (un)certainty and
(in)correctness for each turn. However, the non-
adaptive version’s responses are based only on
(in)correctness, while the uncertainty-adaptive ver-
sion provides an uncertainty adaptation to uncer-

2ITSPOKE(Intelligent Tutoring SPOKEn dialogue) is a
spoken, modified version of Why2-Atlas (VanLehn et al., 2002).
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tain+correct answers. All dialogues were collected
in our prior experiment comparing global learn-
ing across the uncertainty-adaptive and non-adaptive
system versions (see Section 1). The uncertainty-
adaptive system yielded 120 dialogues (1957 student
turns) from 24 subjects. The non-adaptive system
yielded 125 dialogues (2065 student turns) from 25
subjects. Our analysis will focus on the dialogues
from the uncertainty-adaptive system (Section 4.1);
the dialogues from the non-adaptive system will be
used for comparison (Section 4.2).

Briefly, ITSPOKE tutors 5 physics problems (one
per dialogue), in a Tutor Question - Student Answer
- Tutor Response format. The tutor questions seri-
ally present topics needed to solve each problem; ad-
jacent questions concern identical or closely related
topics. After each tutor question, the student answer
is digitized from head-mounted microphone input
and sent to the Sphinx2 recognizer, which yields an
automatic transcript. The answer’s (in)correctness is
then automatically classified based on this transcript,
using the TuTalk semantic analyzer (Jordan et al.,
2007). Simultaneously, the answer’s (un)certainty
is automatically classified by inputting features of
the speech signal, the automatic transcript, and the
dialogue context into a logistic regression model.’
All natural language processing components were
trained using prior ITSPOKE corpora.

The dialogue manager determines the appropriate
tutor response and sends it to the Cepstral text-to-
speech system. The uncertainty-adaptive and non-
adaptive system versions give the same response to
incorrect answers (regardless of (un)certainty): in-
correctness feedback (e.g., “That’s not right”) fol-
lowed by additional remedial content to help stu-
dents understand why their answer was incorrect.
Both versions also give the same response to cer-
tain+correct answers: correctness feedback only
(e.g., “That’s right”). The two versions differ in their
response to uncertain+correct answers. The non-
adaptive version responds with correctness feed-
back only, while the uncertainty-adaptive version re-
sponds with correctness feedback followed by addi-
tional remedial content to help students resolve their
uncertainty. This uncertainty adaptation is based on

3The uncertainty model includes lexical, pitch, temporal,
and energy features as well as tutor question and user gender,
and is described further in (Forbes-Riley and Litman, 2011a).



tutorl: Let’s begin by looking at the motion of the man and his keys while he’s holding them. How does his velocity

compare to that of his keys?

student-automaticl: his also the is the same as that of his keys points force (certain+incorrect)

student-manuall: his velocity is the same as that of his keys while he’s holding them (uncertain+correct)

tutor2: Actually... Their velocities must be the same, because the man’s holding his keys, so they’re not moving with
respect to each other. [...] What are the forces exerted on the man after he releases his keys?

student-automatic2: gravity (uncertain+correct)

student-manual2: gravity?? (uncertain+correct)

non-adaptive-tutor3: Right. So what’s the direction of the force of gravity on the man (e.g., vertically up)?

uncertainty-adaptive-tutor3: Right. Gravity is the only force acting on the man. This force is also called the weight
of the man. It’s always present when an object is in earth’s gravitational field. So what’s the direction of the force of

gravity on the man (e.g., vertically up)?

Figure 1: Annotated Dialogue Example Showing Uncertainty Adaptation and User State Classifications

prior tutoring research, which argues that incorrect-
ness and uncertainty are both signals of a “learn-
ing impasse”, i.e., an opportunity to better learn the
material (VanLehn et al., 2003). Our uncertainty
adaptation only provides additional remedial con-
tent after the uncertain+correct impasse, because in-
correctness impasses (uncertain and certain) already
receive remedial content from the non-adaptive sys-
tem. It is assumed that this content helps resolve
both incorrectness and uncertainty (when present).

After the experiment, each student answer
(turn) was manually transcribed and labeled for
(un)certainty and (in)correctness.  One labeler
performed the annotation based on schemes devel-
oped and evaluated on prior ITSPOKE corpora,
where this labeler and another labeler displayed
interannotator reliability of 0.85 and 0.62 Kappa
on (in)correctness and (un)certainty, respec-
tively (Forbes-Riley and Litman, 2011a).* Com-
parison of the automatic and manual labels yielded
84.7% accuracy for automatic (in)correctness
classification and 80.3% accuracy for auto-
matic (un)certainty classification. However, the
(un)certainty model had an uncertainty recall of
only about 20%, while the (in)correctness model
had a correctness recall of about 80% (Forbes-Riley
and Litman, 2011a).’

*Because these evaluations showed that this trained labeler
could reliably annotate (un)certainty and (in)correctness in IT-
SPOKE dialogues, no further evaluations were performed.

SThe lower recall for predicting uncertainty is neverthe-
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Figure 1 illustrates ITSPOKE’s natural language
processing components and the two system versions.
The first answer is classified as certain+incorrect
(student-automaticl) but manually labeled as un-
certain+correct (student-manuall); the manual and
automatic transcripts are also substantially differ-
ent. Because this answer was misclassified as in-
correct, both versions give the same response (tu-
tor2). The second answer is accurately classified as
uncertain+correct. The non-adaptive system thus ig-
nores the uncertainty and only provides correctness
feedback (non-adaptive-tutor3), while the adaptive
system responds with correctness feedback and ad-
ditional remedial content to help resolve the uncer-
tainty (uncertainty-adaptive-tutor3).

3 Local Performance Evaluation

Here we discuss how to evaluate the local impact of
user state misclassification in dialogue systems.

3.1 Defining a User State Severity Ranking

Building on tutoring research that views both uncer-
tainty and incorrectness as signals of learning im-
passes (Section 2), we previously defined a sever-
ity ranking for the four impasse states correspond-
ing to all combinations of binary (in)correctness

less higher than always predicting no uncertainty (a majority
class baseline has 0% recall), and is on par with prior work in
affect-adaptive tutoring systems, e.g. (Walonoski and Heffer-
nan, 2006); in general affective systems research has found it
difficult to accurately predict positive occurrences of affect.



certain+incorrect
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uncertain+incorrect
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certain+correct
none

uncertain+correct
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Figure 2: User Impasse State Severity Ranking

and (un)certainty (Forbes-Riley and Litman, 201 1a).
This ranking, shown in Figure 2, reflects the as-
sumption that a student must perceive an impasse in
order to resolve it. A state of uncertainty reflects this
awareness. Therefore, the most severe type of learn-
ing impasse occurs when a student is incorrect but
not aware of it. Impasse states of decreasing sever-
ity occur when the student is incorrect but aware that
s/he might be, and correct but believes s/he may not
be, respectively. No impasse exists when a student
is correct and not uncertain about it.

In our prior work, this ranking of user states was
independently validated by showing that average im-
passe state severity negatively correlates with global
learning gain in our system dialogues (Forbes-Riley
and Litman, 2011a). In other words, a higher pro-
portion of user states with less severe or no impasses
directly relates to higher global learning gain.

More generally, the idea of ranking user states in
terms of those that do or do not represent communi-
cation impasses applies to other dialogue system do-
mains and other user state dimensions as well. For
example, in information-seeking domains, frustra-
tion and anger are common affective states whose
occurrence during the dialogue signals severe com-
munication problems (Batliner et al., 2003), while
hang-ups and turns requesting a human operator are
other types of user states whose occurrence dur-
ing the dialogue signals severe communication prob-
lems (Walker et al., 2000b).

Moreover, state trajectories can be used to repre-
sent abstractions over other types of user (or system)
behaviors. In our tutoring system analysis, repre-
senting user states in terms of only (un)certainty and
(in)correctness is an abstraction that we find useful
for analyzing impasse trajectories. However, dur-
ing run-time, a finite-state dialogue manager con-
sisting of 142 states actually controls the system’s
operation, and uses many other features besides user
uncertainty and incorrectness to determine the sys-
tem’s response (e.g. the physics concepts related to
the current system question, the history of prior stu-
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dent answers to similar questions, etc.). Any of these
states could be analyzed as well to understand their
local performance impact, as could their analogs in
other system domains. For example, in a train di-
alogue system, while the actual state representation
used during operation could be quite complex, for
a trajectory analysis a simpler representation could
be suitable, one which tracks whether the system
knows the values of the n attributes needed to query
the database. The state ranking in this case would
be over equivalence classes of states: states with n
attributes known > states with n-1 attributes known
> ... > initial state with O attributes known.

3.2 Computing User State Trajectories

Local trajectories of user states during a dialogue
can be computed as the likelihood of transitioning
from the user state in turn » to the user state in turn
n+1. Here we use D’Mello et al.’s metric, transition
likelihood L (D’Mello et al., 2007).

Transition likelihood L is computed as shown be-
low, where n refers to the impasse state in turn n
and n+1 refers to the impasse state in turn n+17. As
shown, L is computed as the conditional probabil-
ity that the user state in turn n+/ will occur given
that the user state in turn n has occurred, adjusted
for the base rate of occurrence of the user state in
turn n+/. The denominator normalizes the result so
that L ranges from -co to 1. L=1 indicates that n+1
always follows n over and above the probability of
n+1 occurring. L=0 indicates that n+/ follows n at
the chance level. L<0 indicate that the likelihood of
n+1 following n is much lower than the base rate of
n+1 occurring.5

P(n+1|n)—P(n+1)
1-P(n+1)

L(n—n+1) =

Transition likelihood L has previously been used
to compute the likelihood of transitioning from one
affective state to another (e.g., from confusion to

SNote that this metric, which assesses the adjusted probabil-
ity of one user state following another, is equivalent to Kappa
in computing agreement among annotators after adjusting for
chance (D’Mello et al., 2007).



frustration) in a single set of dialogues between
student and computer tutor (D’Mello et al., 2007).
Transition likelihood L has also been used to com-
pare how the likelihoods of transitioning from one
affective state to another vary across two differ-
ent sets of dialogues collected with two different
versions of an affect-adaptive tutoring system (Mc-
Quiggan et al., 2008). Our analysis is based on
this analysis, but extends it in three ways: 1) our
transitions involve complex user states composed of
two dimensions ((un)certainty and (in)correctness),
2) the user states in our transitions are ranked to
enable a local performance analysis, 3) our perfor-
mance analysis is applied to the question of how user
state misclassification impacts local performance,
by comparing transition likelihoods after accurate
and inaccurate user state classifications.

In this prior work and in our work, likelihoods
for each transition are computed for each user (over
all dialogues of a user). ANOVAs with post-hoc
pairwise tests can then determine if there were sig-
nificant differences between all possible transitions
from the current user state in turn 7.

To investigate how user state misclassifications
impact local performance, two user trajectories are
computed per user for each n—n+1 transition: one
when the manual and automatic user state labels
for turn n agreed, and another when they did not
agree. In both cases, using the manual label for turn
n+1 enables the true final user state to be compared
across the two sets of trajectories. Comparison of
the final state in the two sets of trajectories indicates
how user state misclassifications change the relative
likelihood of the subsequent user states. Transitions
to higher ranked states indicate improved local per-
formance while transitions to lower ranked states in-
dicate decreased local performance.

4 Impact of User State Misclassifications
in Uncertainty-Adaptive ITSPOKE

We now apply this analysis to the uncertainty-
adaptive ITSPOKE dialogues, to investigate how
user state misclassification impacts the local perfor-
mance of the uncertainty adaptation.

Since the complex user state of uncertain+correct
triggers the uncertainty adaptation, misclassifying
(un)certainty or (in)correctness can potentially im-
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pact the local performance of the adaptation. How-
ever, as noted in Section 2, we previously found
that uncertainty misclassifications in our system
were more severe than correctness misclassifica-
tions. Thus, to streamline our analysis and avoid
data skew issues, we focus on how (un)certainty
misclassifications in manually labeled correct an-
swers impact our local performance trajectories.
There are 1270 manually labeled correct turns in
the dialogues collected with uncertainty-adaptive
ITSPOKE. In the dialogues collected with non-
adaptive ITSPOKE (which we will use for compari-
son), there are 1353 manually labeled correct turns.

We hypothesize that when (un)certainty misclas-
sification in correct answers causes the uncertainty
adaptation to be erroneously triggered or blocked,
we will see a negative performance impact, in terms
of an increased likelihood of transitioning to a more
severe impasse state when uncertainty is misclassi-
fied as compared to when it is accurately classified.

4.1 Uncertainty-Adaptive ITSPOKE Results

Accurate Uncertainty Classification: Figure 3
presents descriptive statistics for the likelihood (L)
that a manually labeled uncertain+correct answer
accurately classified as uncertain in turn n will tran-
sition to each of the four manually labeled impasse
states in turn n+/. As noted in Section 3.2, L=0 indi-
cates that the transition likelihood is equal to chance,
while L>0 and L<0 indicate likelihoods greater and
less than chance, respectively.

An ANOVA indicated that there were statistically
significant differences among the likelihoods in Fig-
ure 3 (F(3,56)=3.87, p=.02). The most likely transi-
tions are shown with stripes. Specifically, post-hoc
pairwise tests showed that in turn n+/, an uncer-
tain+incorrect answer (p<.01) or uncertain+correct
answer (p=.02) is significantly more likely than a
certain+correct answer (but are themselves equally
likely). In addition, an uncertain+incorrect answer
is significantly more likely than a certain+incorrect
answer (p=.05), in turn n+/. A dialogue example of
the most likely transition after accurately classified
uncertainty is shown in Figure 5, where it is com-
pared with the misclassified minimal pair in Figure 6
(see Appendix).

These results indicate that accurately classifying
(and thus accurately adapting to) uncertain+correct
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Figure 3: Turn n — Turn n+1 Transition Likelihoods (L)
after a manually labeled uncertain+correct answer in turn
n is accurately classified as uncertain and receives the un-
certainty adaptation

answers is most likely to yield continued uncertainty
(regardless of correctness) in turn n+/. Prior re-
search (Craig et al., 2004; Kort et al., 2001) has
shown that uncertainty and questioning are positive
and crucial aspects of the learning process. The
continued uncertainty suggests that the uncertainty
adaptation keeps the student engaged in the learn-
ing process, and the equal likelihood of correctness
or incorrectness accompanying this uncertainty sug-
gests that they have not yet unreservedly adopted ei-
ther the correct or incorrect line of reasoning about
the topic under discussion.

To determine whether any of these transitions are
directly tied to global performance, we computed
Pearson’s correlations over all students between the
percentage of each transition and global learning
gain.” Interestingly, transitioning from an accu-
rately classified correct+uncertain answer to a cor-
rect+certain answer is negatively related to global
learning gain (R=-.458, p=.025). This indicates that
continued uncertainty after the uncertainty adapta-
tion is provided is more beneficial, in the long run,
than no uncertainty. No other trajectories are di-
rectly related to global learning. Although our prior
result, that average impasse severity negatively cor-
relates with global learning gain (Section 3.1), indi-
cates it is better from a global perspective for a stu-
dent to be in a state of no impasse (correct+certain),
it does not tell us the best way for the student to at-

"normalized learning gain = (posttest-pretest)/(1-pretest).
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tain this state. The results of our transition correla-
tions shed light on this - they tell us that transitioning
directly from correct+uncertain is not the best way
to attain the no impasse state. We hypothesize that
looking at wider transition windows (e.g., trigrams)
will shed light on what is the best way to attain this
state. For example, it may be that the best way to
transition to a state of no impasse is to do so after
sustained uncertainty (as in Figure 3).

Uncertainty Misclassification: Considering now
user state misclassifications, our results for accu-
rately classified uncertain+correct answers are in
sharp contrast to those for manually labeled uncer-
tain+correct answers misclassified as certain in turn
n. In particular, an ANOVA indicated that all manu-
ally labeled impasse states are equally likely in n+1
(F(3,88)=1.22, p=.32) after a misclassified uncer-
tain+correct answer.®

These results indicate that misclassifying (and
erroneously not adapting to) uncertain+correct an-
swers is as likely to have an immediate negative im-
pact on learning as it is to have a neutral or positive
impact. In particular, the misclassification is likely
to cause some students to transition from the least
severe impasse about the concept in turn n to the
most severe impasse about the concept in turn n+1.°
When they do not receive the uncertainty adaptation,
these students adopt an incorrect line of reasoning in
turn n+ 1/, without any uncertainty about it at all.

As illustration, compare the example in Figure 5,
where uncertainty is accurately classified, with the
example in Figure 6, where uncertainty is misclas-
sified (see Appendix). As shown, the uncertainty in
student-manuall signals that further explanation is
needed. When received (Figure 5) the student still
makes a math error on the next question, but s/he
appears to understand the task. In contrast, when the
uncertainty adaptation is erroneously not received
(Figure 6), there is no indication that the student’s
understanding has increased; s/he appears to be sim-
ply repeating the number 9.8 (a number which ap-
pears frequently in Newtonian physics). User uncer-
tainty misclassification in other domains could have

8Since the ANOVA results were non-significant, no figure
or correlations are discussed.

% As noted in Section 2, adjacent turns within a dialogue will
either address the same or closely related topics.



similar effects; in general, if a user is uncertain in
turn n about how to perform a task, and the system
moves on without supplying information to resolve
this uncertainty, there may be an immediate negative
impact if that knowledge is required or presupposed
again in turn n+1.

Accurate Certainty Classification: Turning now
to manually labeled certain+correct answers, Fig-
ure 4 presents descriptive statistics for the likelihood
that when accurately classified as certain in turn
n, certain+correct answers will transition to each
of the four manually labeled impasse states in turn
n+1. An ANOVA indicated that there were statisti-
cally significant differences among these likelihoods
(F(3,92)=17.96, p<.01). The most likely transitions
are shown with stripes. More specifically, post-hoc
pairwise tests showed that in turn n+/, a manually
labeled certain+correct answer is significantly more
likely than any other impasse state (p<.01), and all
other impasse states were equally likely. A dialogue
example of the most likely transition after accurately
classified certainty is shown in Figure 7, where it is
compared with the misclassified minimal pair in Fig-
ure 8 (see Appendix).

These results indicate that accurately classifying
and not adapting to certain+correct answers has an
immediate positive impact on the learning process,
by not introducing learning impasses about concepts
already understood. Note however that Pearson’s
correlations for these transitions showed no signif-
icant relation to global performance.

Certainty Misclassification: Again, our results
for accurately classified certain+correct answers are
in sharp contrast with those found for manually la-
beled certain+correct answers misclassified as un-
certain in turn n. An ANOVA indicated that all man-
ually labeled impasse states are equally likely in turn
n+1 (F(3,72)=0.33, p=.80). These results indicate
that misclassifying and erroneously adapting to cer-
tain+correct answers is as likely to have an imme-
diate negative impact on learning as it is to have a
neutral or positive impact. In particular, the misclas-
sification is likely to cause some students to tran-
sition from no impasse to the most severe impasse
state. When they erroneously receive the uncertainty
adaptation, these students go from no impasse at all
in turn 7 to an incorrect line of reasoning in turn n+1,
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Figure 4: Turn n — Turn n+1 Transition Likelihoods (L)
after a manually labeled certain+correct answer in turn n
is accurately classified as certain and does not receive the
uncertainty adaptation

without any uncertainty about it at all.

As illustration, compare the example in Figure 7,
where certainty is accurately classified, with the ex-
ample in in Figure 8, where certainty is misclas-
sified (see Appendix). As shown, the certainty in
student-manuall signals that no further explanation
is needed so the system can move on (Figure 7).
When the uncertainty adaptation is erroneously re-
ceived even though the student is certain (Figure 8),
this appears to have caused the student to stop pay-
ing close attention and thus provide an obviously in-
correct answer to an easy question. User certainty
misclassification in other domains could have simi-
lar effects; in general, if a user is already certain in
turn n about how to perform a task, and the system
“wastes” his/her time by resupplying information
that is already understood, there may be an imme-
diate negative impact in terms of loss of focus, dis-
engagement, or even decreased understanding, that
cause the task in turn n+/ to be performed incor-
rectly.

4.2 Comparing Non-Adaptive ITSPOKE

As a sanity check, we performed the same trajec-
tory analysis on the dialogues from the non-adaptive
version of the system. The purpose here was to con-
firm the presupposition of the above analysis, that
uncertainty-adaptive ITSPOKE was actually pro-
ducing different local behaviors than non-adaptive
ITSPOKE. In other words, since the non-adaptive



system ignores uncertainty, there should be no dif-
ference in transition likelihoods when uncertainty is
accurately classified versus when it is misclassified.

This expectation was borne out. ANOVAs indi-
cated that in the non-adaptive system, a manually
labeled uncertain+correct answer is equally likely
to transition to any of the four manually labeled
impasse states in turn n+1, regardless of whether
it was accurately classified as uncertain in turn n
(F(3,48)=0.25, p=.86) or misclassified as certain in
turn n (F(3,92)=0.07, p=.98). Thus as expected, un-
certain+correct answers in the non-adaptive system
pattern like uncertain+correct answers misclassified
as certain in the uncertainty-adaptive system. In
both cases, we see the same negative immediate per-
formance impact of not giving uncertain+correct an-
swers the uncertainty adaptation.

ANOVAs with post-hoc pairwise tests further in-
dicated that in the non-adaptive system, a manually
labeled certain+correct answer is significantly more
likely to transition to a certain+correct answer than
to any other manually labeled impasse state, regard-
less of whether it was accurately classified as certain
in turn n (ANOVA:(F(3,96)=20.81, p<.001), post-
hoc tests: p<.001) or misclassified as uncertain in
turn n (ANOVA:(F(3,80)=14.00, p<.001), post-hoc
tests: p<.001). Thus as expected, certain+correct
answers in the non-adaptive system pattern like ac-
curately classified certain+correct answers in the
uncertainty-adaptive system. In both cases, we see
the same positive immediate performance impact of
not giving manually labeled certain+correct answers
the uncertainty adaptation.

4.3 Comparing Local and Global Performance
Results

Finally, in analyses such as this one, comparing lo-
cal and global performance results can help pinpoint
specific areas for future system redesign. In our
case, this comparison suggests the most important
aspect to focus on with respect to improving our un-
certainty model.

In particular, as noted in Section 1, we previ-
ously found that the low uncertainty recall of our
system (approximately 20%) had a negative global
performance impact; mistaking so much true uncer-
tainty for certainty substantially reduced the amount
users learned (Forbes-Riley and Litman, 2011a).
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We also showed in this prior work that mistaking
certainty for uncertainty did not negatively impact
the amount users learned. These results suggested
that the system should be less cautious in applying
the uncertainty-adaptive behavior; i.e., applying it
whenever there is some possibility that the user is ac-
tually uncertain, even if it means applying it to some
turns that are actually certain.

On the other hand, our local performance analy-
sis in this paper showed that (un)certainty misclas-
sification increased the likelihood of an immediate
negative impact on learning. These results suggest
that the system should be more cautious in applying
the uncertainty-adaptive behavior; i.e., only apply-
ing it when there is a high probability that the user
is actually uncertain.

Together these local and global results suggest
that we should focus on improving uncertainty re-
call without decreasing uncertainty precision, in our
uncertainty model. With this goal in mind, we are
currently exploring the use of features and methods
from recent INTERSPEECH emotion and paralin-
guistic challenges (Schuller et al., 2009; Schuller et
al., 2010).

5 Conclusion and Future Directions

This paper presents an approach for analyzing the
immediate impact of user state misclassifications in
dialogue systems. A ranking of user states is de-
fined, and then user state trajectories are compared
when the first state is accurately classified versus
misclassified. Trajectories are quantified using a
previously proposed metric representing the likeli-
hood of transitioning between states. Comparison
of the two sets of trajectories shows whether mis-
classifications change the likelihood of subsequent
higher or lower ranked states, relative to accurate
classification. We illustrated the approach with an
adaptive tutoring system that automatically detects
and adapts to student uncertainty.

As our results indicate, the approach can be used
to answer questions which global performance anal-
yses overlook. First, the analysis shows whether
user state misclassifications actually matter locally
- whether these errors have an immediate effect on
user behavior or not. Moreover, the analysis can de-
termine whether this effect is positive or negative or



neutral. In our tutoring system data, we found that
misclassifying user uncertainty had a negative im-
mediate impact on user behavior, relative to accurate
classification.

The analysis can also confirm that a dialogue in-
tervention actually changes user behaviors. In our
tutoring system data, we found that the adaptive sys-
tem yielded significantly different user state trajec-
tories than the non-adaptive system, even though,
as noted in Section 1, our prior global performance
analysis did not show any overall differences among
the global performance metrics that we examined
across the adaptive and non-adaptive systems.

In addition, the analysis can confirm that a dia-
logue intervention shifts user behaviors in the de-
sired direction. In our tutoring system data, we
found that the immediate effect of accurately adapt-
ing to uncertainty was most likely to be continued
uncertainty. Although the adaptation does not yield
an immediate transition to the highest ranked user
state, the outcome is clearly more positive than that
of ignoring uncertainty, which increases the likeli-
hood of transitioning to the lowest ranked user state.

Finally, the local performance results can shed
light on the steps needed to improve global perfor-
mance, by investigating how the two are related. In
our tutoring system data, we found that there is not a
one-to-one relationship between the most beneficial
local and global outcomes. In particular, transition-
ing directly to the highest ranked (no impasse) state
after receiving the uncertainty adaptation was neg-
atively correlated to global learning gain. We hy-
pothesized that looking at wider transition windows
(e.g., trigrams) will shed light on what is the best
local path to the highest ranked state.

We conclude by emphasizing that state trajecto-
ries can be used to represent abstractions over var-
ious types of user (or system) behaviors, in various
domains, whenever their local performance impact
is viewed as important to understand.
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APPENDIX

tutorl: If an object in freefall begins with a velocity of zero, what’ll its velocity be a second later? Please specify the
units too.

student-automaticl: 9.8 meters per second (uncertain+correct)
student-manuall: 9.8 meters per second?? (uncertain+correct)
tutor2: Fine. Because it’s in freefall, its acceleration is 9.8m/s2. This tells us that every second, its velocity increases

by 9.8 m/s. Therefore, at one second its velocity is 0 m/s, and a second later, its velocity is 9.8m/s. So, what’ll its
velocity be a second after that?

student-manual2: 18.6 meters per second?? (uncertain+incorrect)

Figure 5: Annotated Dialogue Example of Most Likely Transition after Accurate Uncertainty Classification

tutorl: If an object in freefall begins with a velocity of zero, what’1l its velocity be a second later? Please specify the
units too.

student-automaticl: 9.8 meters per second (certain+correct)

student-manuall: 9.8 meters per second?? (uncertain+correct)

tutor2: Fine. So, what’ll its velocity be a second after that?

student-manual2: 9.8 meters per second (certain+incorrect)

Figure 6: Annotated Dialogue Example of Negative Impact of Uncertainty Misclassification

tutorl: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?
student-automaticl: impact force (certain+correct)

student-manuall: the impact force (certain+correct)

tutor2: Right. Now let’s find the forces exerted on the truck in the vertical direction during the collision. First, what
vertical force is always exerted on an object near the surface of the earth?

student-manual2: gravity (certain+correct)

Figure 7: Annotated Dialogue Example Showing Most Likely Transition after Accurate Certainty Classification

tutorl: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?
student-automaticl: impact force (uncertain+correct)

student-manuall: the impact force (certain+correct)

tutor2: Right. The problem statement says the car and the truck are both traveling in a straight horizontal line when
they collide. So the impact force of the truck on the truck must be in the horizontal direction. It also says they are
driving on a patch of frictionless ice when they collide. So there is no friction to take into account. This means that

the impact force is the only horizontal force on the truck. Now let’s find the forces exerted on the truck in the vertical
direction during the collision. First, what vertical force is always exerted on an object near the surface of the earth?

student-manual2: normal force (certain+incorrect)

Figure 8: Annotated Dialogue Example Showing Negative Impact of Certainty Misclassification
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Abstract

Instructional efficacy of automated Con-
versational Agents designed to help small
groups of students achieve higher learning
outcomes can be improved by the use of
social interaction strategies. These strate-
gies help the tutor agent manage the atten-
tion of the students while delivering useful
instructional content. Two technical chal-
lenges involving the use of social interac-
tion strategies include determining the
appropriate policy for triggering these
strategies and regulating the amount of so-
cial behavior performed by the tutor. In this
paper, a comparison of six different trigger-
ing policies is presented. We find that a
triggering policy learnt from human beha-
vior in combination with a filter that keeps
the amount of social behavior comparable
to that performed by human tutors offers
the most effective solution to the these
challenges.

1 Introduction

While Conversational Agents have been shown to
be an effective technology for delivering instruc-
tional content to students in a variety of learning
domains and situations (Grasser et. al., 2005; Ku-
mar et. al., 2007; Arnott et. al., 2008), it has been
observed that students are more likely to ignore
and abuse the tutor in a collaborative learning set-
ting (with 2 or more students) compared to the case
of one-on-one tutoring (Bhatt et. al., 2004; Kumar
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et. al., 2007). In our prior work (Kumar et. al.,
2010a), we have addressed this problem by em-
ploying agents that are capable of performing both
instructional behavior as well as social behavior. In
our initial implementation, the social behavior per-
formed by these agents was composed of eleven
social interaction strategies that were triggered by
a set of hand crafted rules (Kumar and Rosé,
2010Db). Section 2 provides additional details about
these strategies.

Comparison between the social behavior trig-
gered by our hand crafted rules and that triggered
by a human tutor revealed significant perception
benefits (more likeable, higher task satisfaction,
etc.) for the human triggering policy. Also, the stu-
dents in a wizard-of-oz condition who interacted
with the tutors whose social behaviors were trig-
gered by humans had better learning outcomes
(0.930) with respect to a No social behavior base-
line. The condition where students interacted with
the rule-based automated tutors was also signifi-
cantly better (0.71c) than the No social behavior
baseline in terms of learning outcomes. While the
learning outcomes of the rule-based tutors was not
significantly worse than the human tutor, in com-
bination with the perception outcomes, we see the
potential for further improvement of conversation-
al agents by employing a better triggering policy.

Building on these prior results, in this paper we
explore a way to improve the effectiveness of so-
cially capable tutor agents that uses a triggering
policy learnt from a corpus of human behavior.
The underlying hypothesis of this approach is that
a human-like triggering policy would lead to im-
provements in the agent’s performance and percep-
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tion ratings compared to a rule-based triggering
policy. As a first step towards verifying this hypo-
thesis, we learnt a collection of triggering policies
from a corpus of human behavior. While the focus
of this paper is to evaluate the most human-like
triggering policy learnt from data in terms of its
perception benefits and learning outcomes, Section
4 summarizes our efforts on learning triggering
policies.

Before we discuss the details of the evaluation
we conducted, Section 3 presents an analysis of
mediating factors that provides insights into the
reasons behind the effectiveness of social behavior.
The design and procedure of the user study we
conducted to evaluate the learnt triggering policies
is described in Section 5. Finally, Section 6 dis-
cusses the results of this evaluation.

2 Social Interaction Strategies

In our prior work (Kumar et. al., 2010; Ai et. al.,
2010; Kumar et. al., 2011), we have developed and
evaluated automated tutors for two different educa-
tional domains equipped with eleven social interac-
tion strategies. These strategies, listed in Table 1,
correspond to three positive socio-emotional inte-
raction categories identified by Bales (1950):
Showing Solidarity, Showing Tension Release and
Agreeing.

Appendix A shows excerpts of an interaction
between three students and a tutor during a college
freshmen mechanical engineering learning activity.
The shaded turns demonstrate realizations of some
of the eleven social interaction strategies.

Turns 7-12 shows the tutor initiating and partic-
ipating in group formation using Strategy la (Do
Introductions) by greeting the students and asking
for their names. In turn 53, the tutor is employing
Strategy 3b (Show Comprehension / Approval) in
response to a student opinion expressed in turn 52.
When one of the students becomes inactive in the
interaction, the tutor uses strategy le (Encourage)
realized as a targeted prompt shown in turn 122 to
elicit a response from the inactive student. Turn
148 demonstrates Strategy 1d (Complement /
Praise) to appreciate student participation in a con-
ceptual tutoring episode that concluded at turn 147.
Finally, turn 152 shows a realization of Strategy 2¢
(Express Enthusiasm, Elation, Satisfaction) which
is tied to either the start or the end of lengthy prob-
lem solving steps in the learning activity such as
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calculating the outcome of certain design choices
made by the students during the learning activity.

1. Showing Solidarity

Raises other's status, gives help, reward
l1a. Do Introductions

Introduce and ask names of all participants
1b. Be Protective & Nurturing

Discourage teasing

1c. Give Re-assurance

When student is discontent, asking for help
1d. Complement / Praise

To acknowledge student contributions

le. Encourage

When group or members are inactive

1f. Conclude Socially

2. Showing Tension Release

Jokes, laughs, shows satisfaction

2a. Expression of feeling better

After periods of tension, work pressure
2b. Be cheerful

2c. Express Enthusiasm, Elation, Satisfaction
On completing significant steps of the task

3. Agreeing

Shows passive acceptance, understands,
concurs, complies

3a. Show Attention

To student ideas as encouragement

3b. Show Comprehension / Approval
To student opinions and orientations

Table 1. Social Interaction Strategies for three
social-emotional interaction categories

3 Effect of Social Behaviors

We have observed the the use of social behavior in
collaborative learning settings can help in improv-
ing learning outcomes (Kumar et. al., 2010a). This
observation is not necessarily consistent with intui-
tion. On the one hand, we could attribute this to the
ability to manage the user’s (student) attention to-
wards the agent (tutor) by displaying the social
behavior. At the same time, we could argue against
the use of social behavior by considering it as a
potential distraction from the task. In an earlier
experiment (Kumar et. al., 2010c), we found that it
is important to keep the amount of social behavior
at an optimal level in order to observe the learning



benefits of the social behavior and to avoid its dis-
traction costs.

1 | Tutor | Are you paying attention to this?
2 | S006 | of course
3 | S001 | yes
What would happen if the stress in
4 | Tutor our Wrench is too high?
5 | S006 | fail
6 | S001 | itd fail
7 | S014 | it would break.
8 | Tutor | That's right. The wrench can break!
A wrench that can break in normal
9 | Tutor .
use is not safe!
10 | S006 | i(
In general, to keep a wrench safe,
11 | Tutor | we want to keep the stress in the
wrench high or low?
12 | S006 | lowwww
131 S001 | low
14 | Tutor | Right, stress should be kept low.
Which material property deter-
19 || Il mines when the stress is too high?
16 | SO01 | yield strength?

Table 2. Excerpt of a Conceptual Tutoring Episode

In this section, we present a corpus analysis to
discover an underlying model of how the social
behavior affects learning outcomes. We used a
corpus of collaborative learning interactions be-
tween teams of three or more students and a tutor.
The interactions involve the teams performing a
learning activity which lasts approximately 40 mi-
nutes. During this time, the tutors provide direc-
tions, hints and conceptual tutoring. Each team
undergoes up to four conceptual tutoring episodes.
An episode is a system-initiated conversation dur-
ing which the tutor leads the students through a
directed line of reasoning to help them reflect upon
a concept related to the learning activity. An ex-
cerpt of a tutoring episode discussing the relation-
ship between stress and safety is shown in Table 2.

3.1 Coding Tutoring Episodes

Each turn in all the tutoring episodes of the 32 inte-
ractions between a team of students and an auto-
mated tutor were annotated using a coding scheme
described here. The tutor turns were categorized as
either Respondable (TR) if the students were ex-
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pected to the respond to that tutor turn or Not Res-
pondable (TU) otherwise. In Table 2, all the
shaded turns are labeled as Respondable.

| Tutor Turns | | Student Turns |
A |
[ | - 1

SG

_s3_[So.

Figure 1. Venn Diagram of Episode Turn Annotations

TU

Student Turns are categorized into one of three
categories. Good turns (SG) identifies turns where
the students are showing attention to a respondable
tutor turn (e.g. Turn 2 & 3 in Table 2) or the stu-
dents are giving a correct or an incorrect response
to a direct question by the tutor (e.g. Turns 5, 6, 7,
12, 13 & 16). Counterproductive (Bad) student
turns (SB) include students abusing the tutor or
ignoring the tutor (e.g. talking to another student
when the students are expected to respond to a tu-
tor turn). Student turns that are not categorized as
Good or Bad are labeled as Other (SO). Turn 10 is
an example of SO because it is a response to a tu-
tor turn (9) where no student response is expected.
Figure 1 shows a Venn diagram of the different
annotations. All five categories are mutually exclu-
sive.

3.2 Structural Equation Modeling

In order to discover an underlying model of how
the use of social behavior affects student learning,
we used a structural equation modeling (SEM)
technique (Scheines et. al., 1994).

Data: To measure learning outcomes, our data
comprised of scores from pre-test and post-test
administered to 88 students who were part of the
32 teams whose data was annotated for this analy-
sis. We normalized the number of Good (SG) and
Bad (SB) student turns by the number of Respond-
able (TR) tutor turns and included normalized SG
(nSG) and normalized SB (nSB) as measures of
interaction characteristics of each student in our
dataset. Total number of social turns performed by
the tutor in each interaction was included as a cha-
racteristic of social behavior displayed by the tutor.
Finally, the total amount of time (in seconds) that



the students spent on the tutoring episodes was
included as a characteristic of the interaction quali-
ty during the tutoring episodes.

Prior Knowledge: The only prior knowledge
input to the model stated that the pre-test occurs
before the post-test.

Discovered Models: We used Tetrad 1V to dis-
cover a structural equation model in the data com-
prising of 6 fields (PreTest, PostTest, nSG, nSB,
SocialTurns, EpisodeDuration) for each of the 88
students. Figure 2 shows the structural equation
model discovered by Tetrad using the dataset de-
scribed above. p-Value of 0.46 for this model con-
firms the hypothesis used by Tetrad for its
statistical analysis i.e. the model was not discov-
ered randomly. Note that unlike other statistical
tests, SEM models built using Tetrad are evaluated
as significant if the p-Value is greater than 0.05.
The numbers on the arrows are correlation coeffi-
cients and the numbers on the boxes indicate mean
values for each variable.

nSB nsG
\ 0.1467 0.zzEs
205.8597
‘ SocialTurns
38508 177045
EpisodeDuratinn
| 5951136
00030 PreTest
11,4545
03454
Ll
PostTest

12,6264

Figure 2. SEM discovered using all 6 variables in our
dataset

Besides the obvious causal effect of PreTest
score on PostTest score, we find that as the dura-
tion of the tutoring episodes (EpisodeDuration)
increases, the learning outcomes deteriorate. We
notice that an increase in the normalized number of
Bad student turns increases EpisodeDuration indi-
cating that students who abuse or ignore the tutor
are likely to not pay attention to the learning con-
tent presented during the tutoring episodes, hence
prolonging the tutoring episode as the tutor tries to
get the students through the instructional content.
Furthermore, we observe that social behavior helps
in counteracting the negative learning effect of Bad
interaction behaviors of the students. Tutors that
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perform social behavior are capable of managing
the student’s attention and get the students through
the tutoring episode faster.

3.3 Discussion

The SEM analysis discussed in the previous sec-
tion helps us better understand the relationship be-
tween the use of social behavior and student
learning in a collaborative learning setting. Let’s
consider the duration of the tutoring episodes as an
indicator of the students’ attention to the tutor
(higher duration= lower attention). We see that
social behavior helps in managing the students’
attention, which may be affected negatively by
counterproductive/bad interaction behavior from
the students.

Besides suggesting that social behavior could be
a useful strategy for directing student attention, it
also suggests that social behavior may not serve
this function where counterproductive student be-
havior is not present or where it does not occur
enough to negatively impact task behavior. This is
because a minimum amount of time needs to be
spent on each tutoring episode to deliver the in-
structional of the concept being discussed. In the
absence of counterproductive student behavior,
episode duration may be close to that minimum.

Also, in an earlier analysis (Hua et. al., 2010) in
a different learning domain where the social beha-
viors described in Section 2 were employed, we
have observed that the number of abusive/negative
comment made by the students about the tutor dur-
ing the interaction were significantly higher in a
condition where the tutors performed a high
amount of social behavior. This suggests that the
relationship between the SocialTurns and Episo-
deDuration variables may not be linear in extreme
cases and emphasizes the importance of perform-
ing an optimal amount of social behavior.

4 Triggering Social Behavior

Aside from designing, implementing and regulat-
ing the amount of social behavior performed by
automated tutors, one of the challenges involved in
the appropriate use of social interaction strategies
is that of triggering these strategies only at the
most appropriate moments during the interaction.
Our initial implementation of these strategies
(Kumar & Rosé, 2010b) achieved this using a set



of hand crafted rules that used features such as re-
cent student turns, state of the tutoring plan, etc.

Here we will summarize our efforts on building
a better triggering policy using a data-driven ap-
proach that models the behavior of human tutors at
triggering the social interaction strategies listed in
Table 1. Using a corpus of 10 interactions between
a group of students and partially automated tutors
whose social behaviors were triggered by human
tutors, we attempt to learn a triggering policy that
predicts when the human tutors will trigger a social
strategies. Currently, we focus on only learning a
triggering policy that determines if a social beha-
vior should be performed. The choice of which
behavior is performed when triggered by the policy
is still based on the rules used in our earlier im-
plementation as discussed in Section 5.3.

In order to compare the triggers generated by a
policy, we use a binary sequence comparison me-
tric called kKappa (Neikrasz & Moore, 2010) de-
veloped for evaluating discourse segmentation
approaches. The metric allows a soft penalty for
misplacing a trigger (or a segment boundary) with-
in a window of k turns.

We developed a large margin learning algo-
rithm following McDonald et. al. (2005) that itera-
tively learns the coefficients of a linear function in
the feature space that separates turns where human
tutors decided to trigger a social behavior from the
rest of the turns. Instead of using an instance-based
objective function (like square-loss), our algorithm
maximizes the kKappa metric over a provided
training set. The function learnt this way can be
used as a triggering policy by using it at every turn
during an interaction to predict if a human tutor
would trigger a social behavior. We used a collec-
tion of automatically extractable features that
represent the lexical and semantic content of recent
student and tutor turns, current discourse state and
activity levels of the students.

While details of the objective evaluation of the
various learnt triggering policies is beyond the
scope of this paper, we found that the best per-
forming strategy (k-x = 0.13) was significantly bet-
ter than a random baseline (k-x = 0.01) as well as
the rule based triggering policy (k-x = -0.09) used
in our initial implementation. Also, the policy
learnt by our algorithm outperformed policies
learnt by algorithms such as Linear Regression (k-
k = 0.00) and Logistic Regression (k-k = 0.05) that
use instance-based loss metrics (Hall et. al., 2009).
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5 User Study

Here we will present an experiment we conducted
to evaluate the effectiveness of various ways to
trigger social behavior discussed in Section 4. This
experiment is a step towards verifying the hypo-
thesis that a human-like triggering policy could
outperform a rule-based triggering policy that was
used in our earlier experiments (Kumar et. al.,
2010a). We use the same interactive situation for
the experiment presented here as in our earlier
work. Freshmen mechanical engineering students
enrolled at an American university participate in a
computer-aided engineering lab that is divided into
three parts, i.e., Computer-Aided Design (CAD),
Computer-Aided Analysis (CAA) and Computer-
Aided Manufacturing (CAM). Students practice
the use of various engineering software packages
for all three parts as they design, analyze and man-
ufacture an Aluminum wrench. Our experiment is
conducted during the second part (CAA) of the lab.

5.1 Procedure & Materials

The Computer-Aided Analysis lab comprises of
two activities. The first activity involves analyzing
a wrench design given to the students by specify-
ing certain loading conditions and simulating the
stresses and deformations in the wrench. Students
are led by a teaching assistant during this activity.
They spend approximately 25 minutes performing
this activity. At the end of the analysis activity, the
students see a simulation of the stress distribution
in the body of the wrench.

After the analysis activity, a pre-test is adminis-
tered. Each student spends 10 minutes working on
the pre-test individually. The pre-test comprises of
11 questions, 8 of which are multiple-choice ques-
tions and the other 3 are short essay type questions.

The second activity of the CAA lab is a colla-
borative design activity. During this activity, stu-
dents work in teams of three. Student in the same
team are seated in separate parts of the lab and can
only communicate using a text-based chatroom
application (Muhlpfordt and Wessner, 2005). The
chatroom application also provides a shared work-
space in the form of a whiteboard.

After the pre-test, students are given written in-
structions describing the collaborative design ac-
tivity. The instructions ask the students to design a
better wrench in terms of ease of use, cost of mate-
rials and safety compared to the wrench they ana-



lyzed earlier. The students are expected to come up
with three new designs in 40 minutes by varying
parameters like dimensions and materials of the
wrench. The instructions also include various for-
mulae and data that the students might need to use
for their designs. Besides course credit, the instruc-
tions mention an additional giftcard for the team
that comes up with the best design ($10 for each
member of the winning team).

Students are asked to log in to their respective
team’s chatroom. They spend the next 40 minutes
working on the collaborative design activity. Be-
sides the three students, the chatroom for each
team includes an automated tutor. The tutor guides
the students through the first two designs suggest-
ing potential choices for dimension and materials
for each design. As the design activity progresses,
the tutor initiates four conceptual tutoring episodes
to help the students reflect upon underlying me-
chanical engineering concepts like stress, force,
moment, safety, etc., that are relevant to the design
activity.

Our experimental manipulation happens during
this 40 minute segment. The tutor in each team’s
chatroom is configured to perform social behavior
using different triggering policies as specified by
the condition assigned to the team. The conditions
are discussed in the next section. Irrespective of
the condition, each team receives the 4 conceptual
tutoring episodes. Every student performs all the
steps of this procedure like all other students.

At the end of the collaborative design activity, a
post-test and a survey are administered. Students
are asked to spend 15 minutes to first complete the
test and then the survey. The post-test is the same
test used for pre-test. The survey comprises of 15
items shown in Appendix B. The students are
asked to rate each item on a 7-point Likert scale
ranging from Strongly Disagree (1) to Strongly
Agree (7). The 15 items on the survey include 11
items eliciting perception of the tutor. 9 of the 11
items state positive aspects of the tutor (e.g. ...tutor
was friendly...). The other 2 items stated negative
aspects about the tutor (e.g. ...tutor’s responses got
in the way...). Besides the items about the tutor, 2
items elicited the student’s rating about the colla-
borative design activity. The last 2 items were
about the student’s satisfaction with their perfor-
mance on the design task.

In total, both the activities that are part of the
CAA lab take approximately 1 hour 40 minutes.
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5.2 Experimental Design

The teams participating in the experiment de-
scribed here were divided into six conditions.
These conditions determined the triggering policy
and the amount of social behavior performed by
the automated tutors. Tutors in the None condition
did not perform any social behavior. Tutors in the
Rules condition used the same hand crafted rule-
based triggering policy employed in our earlier
experiment (Kumar et. al., 2010a). Following the
results from another experiment (Kumar & Rosé,
2010c), the automated tutors in the Rules condition
performed a moderate amount of social behavior
(atmost 20% of all tutor turns). On average, the
Rules policy triggered 25 social turns per interac-
tion.

The RandomLow and RandomHigh condi-
tions used a random triggering policy with a social
ratio filter to regulate the amount of social beha-
vior. In both the random conditions, the tutor
would trigger social behavior using a random
number generator to generate the confidence of
triggering a social behavior after every turn (by a
student or a tutor). In the RandomLow condition, a
behavior would be triggered if the confidence was
above 0.91. In the RandomHigh condition, a beha-
vior would be triggered if the confidence was
above 0.85. On average, the RandomLow condi-
tion had 23 behaviors triggered per interaction.
About 37 behaviors were triggered in the Ran-
domHigh condition.

The LearntLow and LearntHigh conditions
used the best triggering policy learnt from a corpus
of human triggering of social behavior as discussed
in Section 4. The same social ratio filter used in the
random conditions was used in these two condi-
tions also. As in the case with RandomLow and
RandomHigh, different values of a confidence pa-
rameter were used for the LearntLow and Learn-
tHigh conditions to control the number of social
behaviors triggered. On average, the LearntLow
condition had 22 triggers and the LearntHigh con-
dition had 28 triggers.

5.3 Generating Behaviors

The various triggering policies described above for
each of our experimental conditions only deter-
mine when a tutor agent will perform a social be-
havior. In order to perform the social behavior in
actual use, the agent must not only determine when



a behavior should be triggered, but also determine
which behavior should be performed when a trig-
ger is received. Our implementation of the tutor
agent used in this experiment provides a conti-
nuous stream of scores for each of the eleven so-
cial interaction strategies that the tutor can
perform. The scores are computed using hand-
crafted functions that use the same features used in
our rule-based triggering policy (Kumar et. al.,
2010b). When a social behavior is triggered, a rou-
lette wheel selection is used to determine the strat-
egy to be performed. The circumference of the
wheel assigned to each strategy is proportional to
the score of each strategy. If the score of all the
strategies is zero, a generic social prompt is per-
formed.

6 Results

126 students enrolled in an introductory mechani-
cal engineering course at an American university
participated in the experiment described in this
paper. The experiment was conducted on two sepa-
rate days separated by one week. On each day, four
sessions of the Computer-Aided Analysis lab were
conducted, and students attended only one as-
signed session. Session assignment was made
based on an alphabetic split. The 126 students were
divided into 42 teams. 20 teams participated on the
first day of the experiment. They were evenly split
into four conditions (None, Rules, RandomHigh &
LearntHigh). The remaining 22 teams participated
on the second day. Out of these, 5 teams each were
assigned to the None and RandomLow condition. 6
teams each were assigned to the Rules and
LearntLow conditions.

The rest of this section presents detailed results
and analysis of this experiment. To summarize, we
found that out of the six evaluated policies only the
LearntLow policy that uses a triggering model
learnt from human triggering data and generates a
moderate amount of social behavior is consistently
better than the other policies in terms of both per-
formance as well as perception outcomes. Also, the
LearntLow policy is found to be most efficient at
delivering the instructional content as indicated by
the smallest EpisodeDuration in Table 5.

6.1 Learning Outcomes

The learning outcomes analysis presented here
shows the advantage of using a triggering policy
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learnt from a corpus of human triggering behavior
along with a filtering technique that regulates the
amount of social behavior as shown in Table 3.

We first verified that there was no significant
difference between the six conditions on the pre-
test scores. As in the case of previous experiments
using this learning activity, we saw that the learn-
ing activity was pedagogically beneficial to the
students irrespective of the condition. There was a
significant improvement in test scores between
pre-test and post-test { p < 0.0001, F(1,250) =
26.01, effect-size = 0.58c }.

There was no significant effect of the condition
assigned to each team on the total test scores.
However, there was a significant effect on the test
scores of short-essay type questions using the pre-
test score as a covariate and the condition as a fac-
tor { p < 0.05, F(5, 119) = 2.88 }. The adjusted
post test scores for the short essay type questions
and their standard deviations are shown in Table 3.
Post-hoc analysis showed that the LearntLow con-
dition was significantly better than LearntHigh
condition { effect-size = 0.65¢ }. Also, Random-
Low condition was marginally better than Learn-
tHigh condition { p < 0.07, effect-size = 0.62¢ }.

Mean St.Dev.
LearntLow 5.12 0.54
RandomLow 5.06 0.67
None 4.75 1.13
RandomHigh 4.59 1.09
Rules 4.38 0.89
LearntHigh 3.98 1.74

Table 3. Mean and Standard Deviation of Adjusted Post
Test Scores for Short Essay Type Questions

This result further supports the observation
from our earlier experiment (Kumar & Rosé,
2010c) which demonstrated that importance of per-
forming the right amount of social behavior. Both
RandomLow and LearntLow conditions employ
the non-linear social ratio filter which keeps the
amount of allowed social behavior at a level com-
parable to the amount of social behavior performed
by human tutors.

Since the primary objective of the experiment
described here was to evaluate a learnt triggering
policy with respect to a rule-based triggering poli-
cy, we repeated the ANCOVA for the short essay
type question using data from only the Rules,



LearntLow and LearntHigh conditions. We found a
significant effect of condition on the post-test score
using pre-test score as a covariate { p = 0.01,
F(2,62) = 4.98 }. A post-hoc analysis showed that
the LearntLow condition was significantly better
than the LearntHigh condition as above and the
LearntLow condition was marginally better than
the Rules condition { p = 0.08, effect-size = 0.84c¢
}. We observe that a triggering policy learnt from
human triggering behavior can achieve a marginal
improvement on learning outcomes compared to
our existing rule-based triggering policy. This is
consistent with our hypothesis.

6.2 Perception Ratings

We averaged the student’s rating for the 11 items
about the tutor into a single tutor rating measure
used here. Rating on the two negative statements
about the tutor were inverted (7—1, 6—2, and so
on) for this calculation.

Mean St.Dev.
Rules 474 1.45
LearntLow 4.56 1.58
None 4.42 1.49
RandomHigh | 3.74 1.63
LearntHigh 3.55 1.26
RandomLow 3.18 0.91

Table 4. Mean and Standard Deviation of Tutor Ratings

We found a significant effect of condition on
the tutor ratings { p < 0.01, F(5,120) = 3.83 }. Ta-
ble 4 shows the mean and standard deviations of
tutor ratings for each condition. Post-hoc analysis
showed that only the Rules condition was signifi-
cantly better than the RandomLow condition. Also,
we found that Rules was marginally better than
LearntHigh condition { p < 0.08 } and both Learnt-
Low and None conditions was marginally better
than RandomLow condition { p < 0.08 }.

While we did not see a significant improvement
in perception due the use of a learnt triggering pol-
icy when compared to a rule-based triggering poli-
cy, we find an advantage over using a random
triggering policy (RandomLow) which was as
good as a learnt policy on the learning outcomes.
The results from the tutor’s perception ratings fur-
ther support the importance of timing and regulat-
ing the amount of social behavior.
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We did not find any significant effect of condi-
tion on the ratings about the design activity or stu-
dent’s task satisfaction.

6.3 Analysis of Tutoring Episodes

In order to understand the results from the experi-
ment presented in this paper, we applied the struc-
tural equation model discussed earlier (Figure 2) to
the data collected from our current experiment.
Figure 3 shows the model for our current experi-
ment (p=0.4492). Only four variables were used
because the annotations of good and bad student
behavior are not available at this time.

SocialTurns

19,9206
PreTest |
10,4206 0,200z
EpisodeDuratinn
0.3552 = 5100050
-0.0030
PostTest

12.0297

Figure 3. SEM applied to data from this experiment

Mean | St.Dev.
RandomHigh | 540.80 49.50
LearntHigh 534.80 61.00
None 523.88 41.54
Rules 519.80 | 102.70
RandomLow | 519.20 74.40
LearntLow 484.00 69.80

Table 5. Mean and Standard Deviation of Duration
of Tutoring Episodes

We see that most of the model parameters (p-
Value, means & correlations) are similar to para-
meters for the model shown in Figure 2. However,
the correlation between SocialTurns and Episode-
Duration is much smaller. Also, note that the mean
of EpisodeDuration is smaller compared to that in
Figure 2 which indicates that lesser counterproduc-
tive behavior was displayed by the students in this
experiment. The conceptual tutoring episodes are
operating closer to the minimum episode duration
which leaves a smaller room for improvement by



the use of social interaction strategies. As dis-
cussed in Section 3.3, this explains the smaller cor-
relation between SocialTurns and EpisodeDuration
in Figure 3.

Table 5 shows the mean and standard deviations
of the duration of tutoring episodes for each condi-
tion. Even though the differences are not signifi-
cant, the LearntLow policy has the lowest duration
indicating higher student attention than the other
conditions.

7 Discussion

Prior work in the field of human-human interaction
and human-machine interaction in the form of di-
alog systems has emphasized the importance of
timing the display of behavior to achieve natural
and/or productive interactions. In general, timing
of interactive behaviors (verbal as well as non-
verbal) has been studied in the context of joint ac-
tivities being performed by the participants. Beha-
viors are timed to achieve and maintain
coordination between the participants (Clark,
2005). Specifically, among other topics, timing of
low-level (signal) interaction like turn-taking has
been the subject of several investigations (Raux &
Eskenazi, 2008; Takeuchi et. al., 2004).

On the other hand, the use of social behavior by
conversational agents to support students has been
proposed (Veletsianos et. al., 2009; Gulz et. al.,
2010). Work in the area of affective computing and
its application to tutorial dialog has focused on
identification of student’s emotional states and us-
ing those to improve choice of behavior performed
by tutors (D’Mello et. al., 2005). Our prior work
(Kumar et. al., 2010; Kumar et. al., 2007) has
shown that social behavior motivated from empiri-
cal research in small group communication (Bales,
1950) can help in effectively supporting students in
collaborative learning settings. Use of social inte-
raction in other applications of conversational
agents besides education has been investigated
(Bickmore et. al., 2009; Dybala et. al., 2009; Doh-
saka et. al., 2009).

The experiments presented here bridges these
two tracks of research specifically proposing a so-
lution to the challenge of timing social behavior in
the context of a supporting collaborative learning.
Compared to the work on timing signal-level joint
activities like turn-taking, this work focuses on the
timing of joint activities at the conversation level.
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The success of our algorithm at learning a model
of timing conversational behaviors in the context
of an interactive task could potentially offer a gen-
eral approach for realizing such behaviors in other
conversational agents.

8 Conclusion

In this paper, we presented an experiment that
compared the effectiveness of several social beha-
vior triggering policies. Specifically, we compared
a triggering policy learnt from a corpus of human
triggering behavior to a rule-based policy which
has previously been shown to be successful at trig-
gering effective social behavior in a collaborative
learning activity.

The presented experiment provides further evi-
dence in support of the intuition that timing of so-
cial behavior and regulating the amount of social
behavior are critical to improving performance and
perception outcomes. A triggering policy based on
human-like timing in combination with a filter that
attempts to keep amount of social behavior at the
same level as human tutors was shown to be mar-
ginally better than the rule-based policy on learn-
ing outcomes. Also, on perception measures, we
found that the human-like policy is marginally bet-
ter than a random triggering policy which uses the
same filter to control the amount of social beha-
vior. Only the learned model provides a win both
on learning and on perception measures.

In order to better understand the effect of use of
social behavior by automated tutors on student’s
learning outcomes, we presented a structured mod-
el which suggests that social behavior helps in
achieving higher learning outcomes by allowing
the tutor to better manage the student’s attention.
Following this model, we saw that a human-like
triggering policy is able to achieve higher student
attention as indicated by the smaller duration of
tutoring episodes.

We found a significant negative correlation {
coefficient = -0.20, p < 0.05 } between the tutor’s
perception rating and number of social behaviors
triggered when none of the social interaction strat-
egies were applicable. As next steps, our best trig-
gering policy could be potentially further refined
by achieving a closer integration of the triggering
model with the social behavior generation mechan-
ism to prevent triggering when none of the eleven
strategies could be generated.
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Appendix A. Excerpts of an interaction between three students and an automated tutor demonstrating
some of the social interaction strategies listed in Table 1.

7 Tutor | Hi, | am your tutor for today's lab.

8 Tutor | Lets introduce ourselves briefly. | am Avis.

9 S083 |Hey Avis! I'm _namel

10 |S073 |Im _name2_

11 |[S089 |i'm_name3_

12 | Tutor | Its nice to meet you all. :)

13 | Tutor | Let's get started by reviewing the base design in your worksheet.

Strategy 1a: Do Introductions

48 | S083 | R we using the same material?

49 | S073 |Iassume so

50 |S073 |just changing the length

51 | S089 |yeah we have multiple design steps
52 | S089 |so probably for now

53 | Tutor |cool:)

54 |S083 |Ook

Strategy 3b: Show Comprehension / Approval

119 |Tutor |Is this a safe wrench?

120 |S073 |and then is the same for design 2

121 |S073 |so yes the wrench is safe

122 |Tutor | namel ... any thoughts you'd like to contribute?
123 |S083 |its a safer wrench if its in steel

Strategy 1le: Encourage (inactive members)

143 |S073 |high

144 | Tutor |Right, higher yield stress is better.

145 |S089 |so steel or titanium

146 | S089 | but have fun paying for that...

147 | Tutor | All other things being equal, you want to choose a stronger material.
148 | Tutor |It's good to have your contributions to the discussion :-)

149 |S073 |yay

Strategy 1d: Complement / Praise

150 [S073 |)
151 |Tutor |Let'simprove design 1 by using Steel for our 2nd _truncated_
152 | Tutor |1 am happy to be working with our team

153 |S083 |thanks :-)

154 | Tutor |You can start calculating the fields in the worksheet truncated
155 |S089 |woo...

Strategy 2c: Express Enthusiasm, Elation, Satisfaction
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Appendix B. Survey administered to the participants at the end of the Collaborative Design Activity

Using the following scale, Indicate to what extent you agree with each of the following items.

1 2 3 4 5 6 7

Strongly Mostly Somewhat Neutral Somewhat Mostly Strongly

Disagree Disagree Disagree Agree Agree Agree
The tutor was part of my team. 1123 (4]|5]|6
The tutor provided good ideas for the discussion. 1123 (4]|5]|6
The tutor received my contributions positively. 11234 |5]|6
The tutor was friendly during the discussion. 1123 (4]|5]|6
The tutor responded to my contributions. 11234 |5]|6
The tutor helped in lowering the tension in my group. 11234 |5]|6
The tutor was paying attention to our conversation. 1123 (4]|5]|6
Overall, I liked the tutor very much. 11234 |5]|6
I think the tutor was as good as a human tutor. 1123 (4]|5]|6
| often ignored what the tutor was saying. 1123 (4]|5]|6
The tutor's responses got in the way of our conversation. 11234 |5]|6
The design challenge was exciting. 1123 (4]|5]|6
I did my best to come up with good designs. 11234 |5]|6
I am happy with the discussion | had with my group. 11234 |5]|6
Overall, we were successful at meeting our goals during the design challenge. 1123 (4]|5]|6
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Abstract

Mental modeling is crucial for natural human-
robot interactions (HRI). Yet, effective mech-
anisms that enable reasoning about and com-
munication of mental states are not available.
We propose to utilize adverbial cues, routinely
employed by humans, for this goal and present
a novel algorithm that integrates adverbial
modifiers with belief revision and expression,
phrasing utterances based on Gricean conver-
sational maxims. The algorithm is demon-
strated in a simple HRI scenario.

1 Introduction

Advances in robotics and autonomous systems are
paving the way for the development of robots that
can take on increasingly complex tasks without the
need of minute human supervision. As a result
of this greater autonomy, the interaction styles be-
tween humans and robots are slowly shifting from
those of humans micromanaging robot behaviors
(e.g., via remote controls) to more higher-level in-
teractions (e.g., verbal commands) which are re-
quired for many mixed initiative tasks where hu-
mans and robots work together in teams (e.g., in
search and rescue missions). In order for these joint
human-robot interactions to be productive and effi-
cient, robots must have the ability to communicate in
natural and human-like ways (Scheutz et al., 2007).
Natural human-like communication in robots, how-
ever, requires us to tackle several challenges, includ-
ing the development of robust natural language (NL)
competencies and the ability to understand and uti-
lize a variety of affective, gestural, and other non-

linguistic cues that are indicative of the interlocu-
tor’s mental states. Hence, natural human-like in-
teraction also requires the construction and mainte-
nance of mental models of other agents, especially
in the context of collaborative team tasks where ac-
tions among multiple agents must be coordinated,
often through natural language dialogues.

Several recent efforts are aimed at endowing
robots with natural language processing capabilities
to allow for verbal instructions as a first step (e.g.,
(Brenner, 2007; Dzifcak et al., 2009; Kress-Gazit et
al., 2008; Rybski et al., 2007; Kollar et al., 2010)).
Independently, user modeling has been extensively
explored in order to generate more natural and pro-
ductive human-machine interactions (Kobsa, 2001),
including adapting the natural language output of di-
alogue systems based on mental models of human-
users (Wahlster and Kobsa, 1989). However, there
is currently no integrated robotic architecture that
includes explicit mechanisms for efficiently convey-
ing natural language information about the robot’s
“mental states” (i.e., beliefs, goals, intentions) to a
human teammate. Yet, such mechanisms are not
only desirable to make the robot’s behavior more in-
tuitive and predictable to humans, but can also be
crucial for team success (e.g., quick updates on goal
achievement or early corrections of wrong human
assumptions).

We propose a novel integrated belief revision and
expression algorithm that allows robots to track and
update the beliefs of their interlocutors in a way
that respects Gricean maxims about language usage.
The algorithm explicitly models and updates task-
relevant beliefs and intentions of all participating
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agents. Whenever a discrepancy is detected between
a human belief (as implied in a natural language ex-
pression uttered by the human) and the robot’s men-
tal model of the human, the robot generates a natural
language response that corrects the discrepancy in
the most effective way. To achieve effectiveness, the
robot uses linguistic rules about the pragmatic im-
plications of adverbial modifiers like “yet”, “still”,
“already”, and others that are used by humans to ef-
fectively communicate their beliefs and intentions.
The rest of the paper is organized as follows. We
start with a motivation of our approach based on
Gricean maxims. Then, we introduce formalizations
of linguistic devices that humans use to generate ef-
fective task-based dialogue interactions and present
our algorithm for generating appropriate utterances
in response to human queries. Next we use a simple
remote human-robot interaction scenario to demon-
strate the operation of the algorithm, followed by a
discussion and summary of our contributions.

2 Motivation

Joint activity often requires agents to monitor and
keep track of each others’ mental states to ensure ef-
fective team performance. For example, searchers
during rescue operations in disaster zones typically
coordinate their (distributed and remote) activities
through spoken natural language interactions via
wireless audio links to keep team members informed
of discoveries and plans of other team members. Co-
ordination as part of joint activities requires two im-
portant processes in an agent: (1) building and main-
taining a mental model of the other agents’ beliefs
and intentions (based on perceived, communicated,
and inferred information), which is critical for sit-
uational awareness (Lison et al., 2010); and (2) ac-
tively supporting the maintenance of others’ mental
models of oneself (e.g., by proactively communicat-
ing new information to the other agents in ways that
will allow them to update their mental models).
Cohen et al. (1990), for example, discuss the
necessity of various communicative acts that serve
to synchronize agent belief-models. These com-
municative acts include both linguistic and non-
linguistic cues, such as utterances of confirmation
(“okay.”) or signals that indicate intention (putting
on a turn-signal). In addition to utilizing explicit
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cues to synchronize belief-models, humans employ
various other mechanisms to convey information
about one’s own belief-state, in particular, various
linguistic devices. A simple, but very powerful lin-
guistic mechanism is the use of adverbial cues.

Consider a scenario where one agent wants to
know the location of another agent, e.g., whether
the agent is at home. A straightforward way to ob-
tain this information is to simply ask “Are you at
home?” The other agent can then answer “yes” or
“no” accordingly. Now, suppose the first agent knew
that the second agent was planning to be at home at
some point. In that case, the agent might ask “Are
you at home yet?” Note that semantically both ques-
tions have the same meaning, but their pragmatic
implications are different as the second implies that
that agent 1 knows that agent 2 was planning to be
at home, while no such implication can be inferred
from the first query. Conversely, suppose that agent
2 responded “not yet” in the first example (instead
of “no”’). While the semantic meaning is the same as
“no”, “not yet” communicates to agent 1 that agent
2 has the goal to be home. In general, adverbs like
“yet” can be used to convey information about one’s
(or somebody else’s) beliefs concerning mutually-
recognized goals and intentions. Not surprisingly,
humans use them regularly and with ease to aid their
interlocutors with maintaining an accurate model of
their beliefs and goals.

The challenges that need to be addressed to al-
low robots to have the above kinds of linguistic ex-
changes are: (1) how to formalize the functional
roles of adverbial modifiers in different sentence
types, and how to use the formalized principles to
(2) perform belief updates and (3) generate effective
natural language responses that are natural, succinct,
and complete. To tackle these three challenges, we
turn to Gricean principles that have long be used in
pragmatics as guiding principles of human commu-
nicative exchanges.

3 NL Understanding and Generation

Grice (1975) proposed four general principles to aid
in the pragmatic analysis of utterances. Phrased as
rules, it is unsurprising that they have been used
as an inspiration for NL generation systems before.
Dale and Reiter (1995) have enlisted the maxims in



their design of an algorithm to generate referring ex-
pressions, while others have cited Gricean influence
in utterance selection for intelligent tutor systems
(Eugenio et al., 2008). The particular maxims we
considered are the maxims of quality (G1), quantity
(G2), and relevance (G3): (G1) requires one to not
say what one believes is false or for which one lacks
adequate evidence; (G2) requires one to make con-
tributions as informative as necessary for the current
purposes of the exchange, but not more informative;
and (G3) tersely states “be relevant.”

Our approach to belief-model synchronization
and utterance selection is based on the above max-
ims and attempts to select the most appropriate re-
sponse to another agent’s query based on relevance
of semantic content. It uses speech pragmatic mean-
ing postulates for linguistic devices such as adver-
bial modifiers to search for a succinct and natural
linguistic representation that captures the intended
updates. Rather than explicitly communicating each
and every proposition that needs to be communi-
cated to a human to allow the person to update
their mental model of the robot, the algorithm makes
heavy use of “implied meanings”, i.e., propositions
that humans will infer from the way the informa-
tion is phrased linguistically. This allows for much
shorter messages to be communicated than other-
wise possible and addresses the second maxim of
quantity.

3.1 Formalizing pragmatic implications

We start by introducing four types of sentences
as they are found in typical dialogue interac-
tions: statements (expressed through declarative
sentences), questions (expressed through interrog-
ative sentences), commands (expressed through
imperative sentences) and acknowledgments (ex-
pressed through words like “okay”, “yes”, “no”,
etc.). For simplicity, we restrict the discussion to
one predicate at(c, \) which states that agent « is
in location A.

3.1.1 Statements

We will use the form Stmit(a, 3, ¢, n) to ex-
press that agent @ communicates ¢ to agent 5 us-
ing adverbial modifiers in a set p. For exam-
ple, Stmt(Asz, Ay, —at(As, home), yet) means that
agent As tells A; that it is not at home yet. Note
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that we are indifferent about the exact linguistic rep-
resentation of ¢ here as the goal is to capture the
pragmatic implications.

If o informs (3 that it is at A without any adverbial
modifiers or additional contextual information, then
we can assume using (G1) that « is indeed at that
location:

([Stmt(a, B, at(e, A), {P)]]e = at(e, ) (D)

Here we use [[..]]. to denote the “pragmatic mean-
ing” of an expression in context ¢, which includes
task, goal, belief and discourse aspects. Next, we
inductively define the pragmatic meanings for sev-
eral adverbial modifiers “still”, “already”, “now”,
and “not yet” (the meanings of compound expres-
sions such as at(a, A1) A —at(a, A2) are defined re-
cursively in the usual way).

If « states that it is “still” at A, one can infer that
« is at A and that o will not be at A at some point in
the future:

[Stmit(a, B, at(a, A), {still})]]. :=
[Stmit(a, B, at(a, A)), {}]e A Future(—at(a, A))

(@3]

If « states that it is “already” at A, one can infer that
« is at A and that « had a goal (expressed via the
“G” operator) to be at A at some point in the past:

[[Stmt(a, at(a, A), {already})]]. := 3)
[[Stmt(a, B, at(a, A), {}]]ec A Past(G(a, at(a, A)))
If « states that it is “now’ at A, one can infer that «

is at A and that o had not been at A at some point in
the past:

[[Stmt (e, B, at(a, A), {now})]] ==
[Stmt(a, B, at(a, N)), {}]ec A Past(—at(a, X))

“)

If « states that it is “not...yet” at A, one can infer
that « is not at A, but has an intention to be at \.

[Stmt(a, B, mat(a, A), {yet})]]c := 5
—at(o, A) A G(a, at(a, X))

Even in our limited domain, one must be cog-
nizant of the ambiguities that arise from how ad-
verbial cues are deployed. In addition to the simple
presence of an adverbial cue, the location of the ad-
verb in a sentence and prosodic factors may affect
the intended meaning of the utterance. For instance,
consider the statements: (a) I am now at \; (b) I am



at XA now; (c) I am still at \; and (d) I am szill at \.
Statement (a) is a simple situational update utterance
as described above, while (b) could be construed as
a statement akin to “I am already at A. Statement
(d) could be interpreted as additionally signaling the
frustration of the agent, beyond conveying the infor-
mation from (c).

It should also be noted that our analysis of these
adverbial cues is to be understood in the limited
context of these simple task-related predicates (e.g.
at(c, \)). Formal definition of these adverbial cues
in general cases is beyond the scope of this paper.
For instance, “yet” could be used in a context when
the predicate is not intended by the agent to which it
applies (e.g. “Has Bill been fired yet?”). In this case,
it would probably be incorrect to infer that the agent
Bill had a goal to be fired. Instead an inference could
be made regarding the probabilistic judgments of the
interlocutors regarding the topic agent’s future state.
However, in the context of this paper, it is assumed
that “yet” is used in the context of goals intended by
agents.

3.1.2 Questions
Here we will limit the discussion to two question
types, the “where” question (regarding locations)

and simple “Yes-No” questions.

If « asks § about its location in the general sense
(“where are you?”), then one can infer that o has an
intention to know (expressed via the “IK” operator,
see (Perrault and Allen, 1980)) where (3 is located:

([Askioe(er, B, {})]]e = TK(av,at(B,))  (6)

for some .
If « asks 8 whether it is at A, then one can infer
that « has an intention to know whether (3 is at A:

[[Askyn (e, B,at(B,A), {P]lc := IK (v, at(B, X)) (7)
If G is asked by « whether it is “still” at A, 3 can in-
fer that « believes (expressed via the “B” operator)
that [ is currently at A:

[[Askyn(a, B, at(B, N), {still})]]. := 8)

([Askyn(, B, at(8, A), {D]]e A Bla, at(8, 1))

If G is asked by « whether it is at A “yet”, 3 can
infer that «v believes that 3 has a goal to be at \:

[[Askyn (e, B, at(B, A), {yet})]]c := &)
[[Askyn (e, 8, at(B, A), {})]le A Ba, G(8, at(B, A)))
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3.1.3 Question-Answer Pairs

Next, we consider how discourse context as pro-
vided by question-answer pairs can further specify
the pragmatic implications.

If o asks (B whether it is at XA with
any set of adverbial modifiers p (e,
Prior(Askyn (o, B,at(B,\), 1)) € ¢, and 3

responds by stating that it is “still” at ), then one
can infer that « has the belief that 5 was at \ in the
recent past:

[[Stmt (B, o, at (B, ), {still})]]. ==

[Stmt(3, 0,a1(5,X), (1]
AB(a, RecPast(at(3,\)))

10)

where Prior(Asky,(a, 3, at(3, ), 1)) € c. Also,
RecPast(¢) denotes that ¢ was true in the recent
past, as distinct from ¢ holding at some arbitrary
point in the past (i.e. Past(¢)). This distinction is
necessary as it only makes sense to use the adverbial
cue at this point if agent « believed at(3, A) at some
relative and recent point in the past. Formalizing this
would require keeping track of the points in time at
which certain propositions are believed. To avoid
committing to a particular temporal modeling sys-
tem, we make the simplifying assumption that the
RecPast operator is not applied in rules (10) and
(11), which is sufficient for the very simple interac-
tions examined in this paper.

If v asks (8 whether it is at A with any set of ad-
verbial modifiers u, and /3 responds by stating that it
is “now” at A, then one can infer that « has the belief
that /3 is was not at A in the recent past:

[[Stmt(B, o, at(B, A), {now})]]. =
[[Stmt(B, o, at (B8, A), {})]le
AB(a, RecPast(—at(3,))))

(1)

where Prior(Asky, (o, B,at(8,\), 1)) € c.

3.1.4 Commands

We also briefly describe how command process-
ing (which we have studied elsewhere in much
greater detail (Dzifcak et al., 2009)) can be aug-
mented with the inclusion of pragmatic meanings.
If « orders S to travel to A, then one can infer that «
has a goal for 3 to be at A and that « intends to know
whether ( has received its new goal:

[[Cmd(a, B, at(B, A), {}]]c ==
G(a,at(B,N))
N K (o, G(B,at(B,N)))

12)



It would be an oversimplification to assume that
the proposition G(f3, at(3,A)) is immediately un-
derstood by all listening agents. In order to generate
the appropriate goal belief in the target agent, ad-
ditional inference rules need to be considered. The
following rule states that 3 will instantiate the goal
G(f,at(B3, X)) when it believes « has the same goal
and it believes authority(«, ), which denotes that
« has command authority over 3:

G(a, at(B,\)) A authority(a) =
G(B,at(B, )

Other agents would have to wait for an acknowledg-
ment that this inference has indeed taken place (as 3
could have not heard the initial command utterance).
These acknowledgment utterances are described in
the subsequent section.

3.1.5 Acknowledgments

Finally, we consider typical forms of acknowledg-
ment. If o utters an acknowledgment (e.g., “OK.”)
when the previous utterance was a positive statement
of location by (3, then one can infer o no longer has
the intention to know (3’s location:

[[Ack(e, B, {P]lc := "I K (e, at(5,1))  (13)

for some A  where for M
Prior(Stmt(5, o, at(6,1),{M})) € c.

If v utters an acknowledgment (e.g., “OK.”) when
the previous utterance was a command by /3 to be at
A, then one can infer that

any

([Ack(ex, B, {D])e =
G(a, at(a, \)) A G(B, at(a, N))
NIK (B, G(a, at(a, N)

(14)

where Prior(Cmd(83, o, at(co, \),{M})) € ¢ for
any M.

We should note here that the distinction between
explicitly not intending-to-know and the lack of an
intention-to-know has been blurred in the above
rules for the sake of simplicity. As described
in the subsequent section, agent beliefs are re-
moved when contradicted in the current system (i.e.
Remove(¢, By) < (—¢) € B,). A more com-
prehensive belief update system should allow for a
mechanism to remove beliefs without the need for
explicit contradiction.
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3.2 Agent Modeling and Belief Updates

Belief updates occur whenever an agent o receives
an utterance Utt from another agent 3 in context
c. First, [[Utt]]. is computed using the pragmatic
principles and definitions developed in Section 3.1.
For simplicity, we assume that agents adhere to
the Gricean maxim of quality and, therefore, do
not communicate information they do not believe.
Hence, all propositions ¢ € [[Utt]]. are assumed
to be true and to the extent that they are inconsis-
tent with existing beliefs of o as determined by a’s
inference algorithm =2, the conflicting beliefs are
removed from the agent’s sets of beliefs Belyr (b
here denotes some finite bound on the inference al-
gorithm, e.g., resources, computation time, etc.).l

To model other agents hearing the utterance, agent
a derives the set B, B, = {¢|B(v,v) € Belgf}
for all other agents v # «. The agent updates these
belief sets by applying the same rules as it does to
Bel self-

It should be noted that these belief update rules
are indeed simplifications designed to avoid the is-
sue of resolving conflicting information from dif-
ferent sources. These belief update rules would be
problematic, for instance, when agents have incor-
rect beliefs (and proceed to communicate them), as
no method for belief disputation exists. For the pur-
pose of illustrating the implementation and utility of
adverbial cues, however, they should suffice. We
set up our environment and rule sets such that the
autonomous agent has perfect information about it-
self (specifically location), and no utterances exists
to communicate propositions that are not about one-
self.

3.3 Sentence Generation

Depending on the sentence type « received (and the
extent to which meanings can be resolved, an issue
we will not address in this paper), different response
sentence types are appropriate (e.g., a yes-no ques-

"Note that we are not making any assumption about a partic-
ular inference algorithm or its (as it will, in general, depend on
the expressive power of the employed logic to represent mean-
ings), only that if a contradiction can be reached using the in-
ference algorithm, the existing belief needs to be removed (oth-
erwise existing beliefs are taken to be consistent with the impli-
cations of the utterance). In our implemented system, we use a
simplified version of the resolution inference principle.



tion requires a statement answering the question).
The generation of an appropriate response proceeds
in two steps. First, based on the agent’s current set
of beliefs Belg ¢, we determine the set of proposi-
tions @,y that the agent has an interest in con-
veying. Second, we attempt to find the smallest ut-
terance Utt given a set of pragmatic principles (as
specified in Section 3.1) that communicates one or
more of these propositions and implies the rest for
recipient 3.

3.3.1 What to say

In obtaining a set @y, Of propositions to com-
municate, o may obey the Gricean maxim of qual-
ity by adding a proposition ¢ to P,y only if
¢ € Belgep. The maxims of relevance and quan-
tity are heeded by restricting believed propositions
to be conveyed solely to those that either correct a
false belief of 3 or provide 3 some piece of infor-
mation it wants to know. Specifically, we find the
set of all propositions used to correct false beliefs
D, ..., defined as:

Y E Ppey & 33,9
B(B,6) A ¢ € Belgas A (1 =4 =)

The set of all propositions other agents want to
know, ®;, can be defined as:

ﬂ) € (I)IK g 3/67¢ : Q;Z) € Belself/\
IK(B,¢ € Belses) A (v =2 ¢V ip =0 —¢)

The final set of propositions to convey is obtained
by merging these two sets, Pcomm = Prev U Pri.
Note that this set is always consistent because propo-
sitions are added to @, and @ if and only if they
exist in Beler, which is maintained to be consis-
tent.

3.3.2 How to say it

Once ®.,,,m has been obtained, o must select po-
tential utterances to produce. It starts by generating
an initial set Utty of utterances that in the present
context ¢ imply some subset of @ pmm:

(u € Utty) < 3P € Bomm¥d € & : ([[u]]e =2 &)

Currently, this is achieved by searching through
the set of all utterances defined by rules such as those

244

found in Section 3.1. Note that while this approach
is feasible for our quite limited domain, more effi-
cient methods for identifying candidate utterances
must be developed as the number of understood ut-
terances grows.

Applying the maxim of guality, this set can be
pruned of all utterances that are defined by addi-
tional propositions that we either have no evidence
for (“unsupported”) or explicitly believe to be false:

False(¢) & ) : ¢ € Belgey A (Y =5 —6)

NoSupp(¢) < =3I : ¢ € Belger N (Y =0 ¢)

Using these conditions, we can generate a new sub-
set of utterance candidates Uttq:

(u € Utty) < =3¢ : ([[ulle =2 ¢)
N(False(¢) V NoSupp(¢)))

Applying the maxim of quantity, utterances that
revise or add the most beliefs to other agent belief-
spaces ought to be favored:

RevBel(3, ¢) <
W B(B, ) € Baery A (1) =2, —9)

AddBel (8, ¢) < B(3,¢) & Belsey

Using these definitions, we can derive the
“correction-score” of an utterance by counting
the number of propositions ¢ € [[u]]. that revise or
add a belief for .

If multiple candidate utterances still exist at this
point, we can again apply the maxim of guantity to
favor utterances that convey the most (true) informa-
tion. Because all definitions with false propositions
have been eliminated, we can simply count the num-
ber of true propositions derived from the utterance,
thereby favoring semantically richer utterances. At
this point, if multiple candidate utterances are still
available, the difference is of stylistic nature only
and we may choose an arbitrary one. Note that the
correct usage of adverbial modifiers emerges natu-
rally from these rules as utterances that include in-
appropriate adverbs are removed in Utt;, while ut-
terances that include appropriate adverbial cues are
subsequently favored.



4 Case Study

We now demonstrate the operation of the proposed
algorithm in a simple joint activity scenario where
a robot (R) is located at nav-point 1 and correctly
knows its location, having the initial belief-space
Br = {at(R,N1)}. The remote human operator
starts by asking:

O: R,
R updates its beliefs based on this question:

where are you?

u := parse(“O: R, where are you?”)

— u = Askioe (O, R, {})

[[ulle :=={IK(O,at(R,N1)),IK(O,at(R, N2)),
IK(O,at(R,N3))}

Peontra := contradictedTerms([[u]]e,
BR = (BR - Pcont'r‘a) + [[u”c
BRBO = (BRBO - Pcontra) + [[’U,”c

Bself)

which yields a new belief-space:

Bpr := {at(R,N1),IK(O,at(R, N1)),
IK(O,at(R,N2)),IK(O,at(R, N3)),
B(O,IK(0,at(R,N1))), B(O,IK(O,at(R, N2))),
B(O, IK(0,at(R, N3)))}

Next, R proceeds to respond. For compactness, we
refer below to utterance candidates according to the
index of the applicable rules from Section 3.1, so
that u13 denotes Ack(c, 3,{}).

BrBo := {IK(O,at(R, N1)),I1K(0O,at(R, N2))
IK(O,at(R,N3))}

Drey 1= {}, Pri = {at(R, Nl)}

Peomm = {at(R,N1)};

— Utto := {u1,u2,u3, us}

R now has an initial set of candidate utterances,
which it prunes using the rules from Section 3.3.2.

[w1])e = at(R, N1)

[[u2]]e := at(R, N1) A Future(—at(R, N1))
[[us]]e := at(R, N1) A Past(G(R,N1))
[[ua]]e := at(R, N1) A Past(—at(R, N1))
— Utt := {u1}

Thus, R chooses the utterance of the form,
Stmt(R,O,at(R,N1),{}), and responds:

R: I am at NI.
Finally, R processes its own utterance so that it can
update its beliefs according to rule (1):

Bpr = {at(R,N1),IK(O,at(R, N1)),

IK(O, at(R, N2)), IK(O, at(R, N3)),
B(O,IK(O,at(R,N1))), B(O,IK(O,at(R, N2))),
B(O,1K(0, at(R, N3))), B(O, at(R, N1)}

When the operator responds:

O: Okay.
R also processes this acknowledgment to update its
beliefs according to rule (13):
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Bp := {at(R, N1), B(O,at(R, N1)}

R proceeds to respond, but finds that it has nothing

to convey.
BrBo :={at(R,N1)}
q’rev = {} (I)IK {}
s Peomm =
— Uttg := {}

Thus, R generates no utterance. Now let us suppose
that R moves to N2, and enough time elapses such
that the operator forfeits his/her conversational turn.
R then proceeds to generate an utterance.

Bpr := {at(R, N2), Past(at(R,N1))}
BrBo = {at(R,N1)}

Drey :={at(R,N2)}; Prx := {}
Deomm = {at(R,N2)}

— Utto := {u1,u2,u3,us}

[[u1))e := at(R, N?)

[[u2]]e := at(R, N2) A Future(—at(R, N2))
[[us]]ec := at(R, N2) A G(R, N2)

[[ua]]e := at(R, N2) A Past(—at(R, N2))

— Utty == {u1,ua}

So, R must now resolve which of these candidate
utterances to select by choosing the one that revises
the most beliefs of O, or failing that, the one that has
the most true propositions.

at(R,N2) = —at(R, N1)

— NumRev([[u1]]e) := 1; NumRev([[ua]]c) := 1;
NumTrue([[ui]]e) := 1; NumTrue([[ua]]c) := 2;
— Uttfinal = ua

Thus, R chooses the utterance of the form,
Stmt(R, O, at(R, N2),{now}), and responds:

R: I am now at N2.
R again processes its own utterance to update its be-
liefs according to rule (4). If 