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Paraphrase Lattice for Statistical Machine Translation

Takashi Onishi and Masao Utiyama and Eiichiro Sumita
Language Translation Group, MASTAR Project
National Institute of Information and Communications Technology
3-5 Hikaridai, Keihanna Science City, Kyoto, 619-0289, JAPAN
{takashi.onishi,mutiyama,eiichiro.sumita}@nict.go. jp

Abstract

Lattice decoding in statistical machine
translation (SMT) is useful in speech
translation and in the translation of Ger-
man because it can handle input ambigu-
ities such as speech recognition ambigui-
ties and German word segmentation ambi-
guities. We show that lattice decoding is
also useful for handling input variations.
Given an input sentence, we build a lattice
which represents paraphrases of the input
sentence. We call this a paraphrase lattice.
Then, we give the paraphrase lattice as an
input to the lattice decoder. The decoder
selects the best path for decoding. Us-
ing these paraphrase lattices as inputs, we
obtained significant gains in BLEU scores
for IWSLT and Europarl datasets.

1 Introduction

Lattice decoding in SMT is useful in speech trans-
lation and in the translation of German (Bertoldi
et al.,, 2007; Dyer, 2009). In speech translation,
by using lattices that represent not only 1-best re-
sult but also other possibilities of speech recogni-
tion, we can take into account the ambiguities of
speech recognition. Thus, the translation quality
for lattice inputs is better than the quality for 1-
best inputs.

In this paper, we show that lattice decoding is
also useful for handling input variations. “Input
variations” refers to the differences of input texts
with the same meaning. For example, “Is there
a beauty salon?” and “Is there a beauty par-
lor?” have the same meaning with variations in
“beauty salon” and “beauty parlor”. Since these
variations are frequently found in natural language
texts, a mismatch of the expressions in source sen-
tences and the expressions in training corpus leads
to a decrease in translation quality. Therefore,

1

we propose a novel method that can handle in-
put variations using paraphrases and lattice decod-
ing. In the proposed method, we regard a given
source sentence as one of many variations (1-best).
Given an input sentence, we build a paraphrase lat-
tice which represents paraphrases of the input sen-
tence. Then, we give the paraphrase lattice as an
input to the Moses decoder (Koehn et al., 2007).
Moses selects the best path for decoding. By using
paraphrases of source sentences, we can translate
expressions which are not found in a training cor-
pus on the condition that paraphrases of them are
found in the training corpus. Moreover, by using
lattice decoding, we can employ the source-side
language model as a decoding feature. Since this
feature is affected by the source-side context, the
decoder can choose a proper paraphrase and trans-
late correctly.

This paper is organized as follows: Related
works on lattice decoding and paraphrasing are
presented in Section 2. The proposed method is
described in Section 3. Experimental results for
IWSLT and Europarl dataset are presented in Sec-
tion 4. Finally, the paper is concluded with a sum-
mary and a few directions for future work in Sec-
tion 5.

2 Related Work

Lattice decoding has been used to handle ambigu-
ities of preprocessing. Bertoldi et al. (2007) em-
ployed a confusion network, which is a kind of lat-
tice and represents speech recognition hypotheses
in speech translation. Dyer (2009) also employed
a segmentation lattice, which represents ambigui-
ties of compound word segmentation in German,
Hungarian and Turkish translation. However, to
the best of our knowledge, there is no work which
employed a lattice representing paraphrases of an
input sentence.

On the other hand, paraphrasing has been used
to enrich the SMT model. Callison-Burch et
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Figure 1: Overview of the proposed method.

al. (2006) and Marton et al. (2009) augmented
the translation phrase table with paraphrases to
translate unknown phrases. Bond et al. (2008)
and Nakov (2008) augmented the training data by
paraphrasing. However, there is no work which
augments input sentences by paraphrasing and
represents them in lattices.

3 Paraphrase Lattice for SMT

Overview of the proposed method is shown in Fig-
ure 1. In advance, we automatically acquire a
paraphrase list from a parallel corpus. In order to
acquire paraphrases of unknown phrases, this par-
allel corpus is different from the parallel corpus
for training.

Given an input sentence, we build a lattice
which represents paraphrases of the input sentence
using the paraphrase list. We call this lattice a
paraphrase lattice. Then, we give the paraphrase
lattice to the lattice decoder.

3.1 Acquiring the paraphrase list

We acquire a paraphrase list using Bannard and
Callison-Burch (2005)’s method. Their idea is, if
two different phrases e;, e in one language are
aligned to the same phrase c in another language,
they are hypothesized to be paraphrases of each
other. Our paraphrase list is acquired in the same
way.
The procedure is as follows:

1. Build a phrase table.
Build a phrase table from parallel corpus us-
ing standard SMT techniques.

2. Filter the phrase table by the sigtest-filter.

The phrase table built in 1 has many inappro-
priate phrase pairs. Therefore, we filter the

phrase table and keep only appropriate phrase
pairs using the sigtest-filter (Johnson et al.,
2007).

3. Calculate the paraphrase probability.

Calculate the paraphrase probability p(ez|e1)
if eg is hypothesized to be a paraphrase of e;.

ZP cler)P

where P(-|-) is phrase translation probability.

p(ealer) (e2]c)

4. Acquire a paraphrase pair.
Acquire (e, ez) as a paraphrase pair if
p(ezler) > p(eiler). The purpose of this
threshold is to keep highly-accurate para-
phrase pairs. In experiments, more than 80%
of paraphrase pairs were eliminated by this
threshold.

3.2 Building paraphrase lattice

An input sentence is paraphrased using the para-
phrase list and transformed into a paraphrase lat-
tice. The paraphrase lattice is a lattice which rep-
resents paraphrases of the input sentence. An ex-
ample of a paraphrase lattice is shown in Figure 2.
In this example, an input sentence is “is there a
beauty salon ?”. This paraphrase lattice contains
two paraphrase pairs “beauty salon” = “beauty
parlor” and “beauty salon” = “salon”, and rep-
resents following three sentences.

e is there a beauty salon ?
e is there a beauty parlor ?

e s there a salon ?

In the paraphrase lattice, each node consists of
a token, the distance to the next node and features
for lattice decoding. We use following four fea-
tures for lattice decoding.

e Paraphrase probability (p)

A paraphrase probability p(ez|eq) calculated
when acquiring the paraphrase.

hp = plezler)
e Language model score (1)

A ratio between the language model proba-
bility of the paraphrased sentence (para) and
that of the original sentence (orig).

Im(para)
hy = Im(orig)
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Figure 2: An example of a paraphrase lattice, which contains three features of (p, I, d).

e Normalized language model score (L)

A language model score where the language
model probability is normalized by the sen-
tence length. The sentence length is calcu-

lated as the number of tokens.
_ LM(para)
hr = LM orig)’

1
Where LM(S@’)’Lt) — lm(sent) length(sent)

e Paraphrase length (d)

The difference between the original sentence
length and the paraphrased sentence length.

hq = exp(length(para) —length(orig))

The values of these features are calculated only
if the node is the first node of the paraphrase, for
example the second “beauty” and “salon” in line
3 of Figure 2. In other nodes, for example “par-
lor” in line 4 and original nodes, we use 1 as the
values of features.

The features related to the language model, such
as (1) and (L), are affected by the context of source
sentences even if the same paraphrase pair is ap-
plied. As these features can penalize paraphrases
which are not appropriate to the context, appropri-
ate paraphrases are chosen and appropriate trans-
lations are output in lattice decoding. The features
related to the sentence length, such as (L) and (d),
are added to penalize the language model score
in case the paraphrased sentence length is shorter
than the original sentence length and the language
model score is unreasonably low.

In experiments, we use four combinations of
these features, (p), (p, 1), (p, L) and (p, 1, d).

3.3 Lattice decoding

We use Moses (Koehn et al., 2007) as a decoder
for lattice decoding. Moses is an open source

SMT system which allows lattice decoding. In
lattice decoding, Moses selects the best path and
the best translation according to features added in
each node and other SMT features. These weights
are optimized using Minimum Error Rate Training
(MERT) (Och, 2003).

4 Experiments

In order to evaluate the proposed method, we
conducted English-to-Japanese and English-to-
Chinese translation experiments using IWSLT
2007 (Fordyce, 2007) dataset. This dataset con-
tains EJ and EC parallel corpus for the travel
domain and consists of 40k sentences for train-
ing and about 500 sentences sets (devl, dev2
and dev3) for development and testing. We used
the devl set for parameter tuning, the dev2 set
for choosing the setting of the proposed method,
which is described below, and the dev3 set for test-
ing.

The English-English paraphrase list was ac-
quired from the EC corpus for EJ translation and
53K pairs were acquired. Similarly, 47K pairs
were acquired from the EJ corpus for EC trans-
lation.

4.1 Baseline

As baselines, we used Moses and Callison-Burch
et al. (2006)’s method (hereafter CCB). In Moses,
we used default settings without paraphrases. In
CCB, we paraphrased the phrase table using the
automatically acquired paraphrase list. Then,
we augmented the phrase table with paraphrased
phrases which were not found in the original
phrase table. Moreover, we used an additional fea-
ture whose value was the paraphrase probability
(p) if the entry was generated by paraphrasing and



Moses (w/o Paraphrases) ‘ CCB

‘ Proposed Method

EJ | 38.98

39.24 (+0.26)

40.34 (+1.36)

EC | 25.11

26.14 (+1.03)

27.06 (+1.95)

Table 1: Experimental results for IWSLT (%BLEU).

1 if otherwise. Weights of the feature and other
features in SMT were optimized using MERT.

4.2 Proposed method

In the proposed method, we conducted experi-
ments with various settings for paraphrasing and
lattice decoding. Then, we chose the best setting
according to the result of the dev2 set.

4.2.1 Limitation of paraphrasing

As the paraphrase list was automatically ac-
quired, there were many erroneous paraphrase
pairs. Building paraphrase lattices with all erro-
neous paraphrase pairs and decoding these para-
phrase lattices caused high computational com-
plexity. Therefore, we limited the number of para-
phrasing per phrase and per sentence. The number
of paraphrasing per phrase was limited to three and
the number of paraphrasing per sentence was lim-
ited to twice the size of the sentence length.

As a criterion for limiting the number of para-
phrasing, we use three features (p), (I) and (L),
which are same as the features described in Sub-
section 3.2. When building paraphrase lattices, we
apply paraphrases in descending order of the value
of the criterion.

4.2.2 Finding optimal settings

As previously mentioned, we have three choices
for the criterion for building paraphrase lattices
and four combinations of features for lattice de-
coding. Thus, there are 3 X 4 = 12 combinations
of these settings. We conducted parameter tuning
with the devl set for each setting and used as best
the setting which got the highest BLEU score for
the dev?2 set.

4.3 Results

The experimental results are shown in Table 1. We
used the case-insensitive BLEU metric for eval-
vation. In EJ translation, the proposed method
obtained the highest score of 40.34%, which
achieved an absolute improvement of 1.36 BLEU
points over Moses and 1.10 BLEU points over
CCB. In EC translation, the proposed method also
obtained the highest score of 27.06% and achieved

an absolute improvement of 1.95 BLEU points
over Moses and 0.92 BLEU points over CCB. As
the relation of three systems is Moses < CCB <
Proposed Method, paraphrasing is useful for SMT
and using paraphrase lattices and lattice decod-
ing is especially more useful than augmenting the
phrase table. In Proposed Method, the criterion for
building paraphrase lattices and the combination
of features for lattice decoding were (p) and (p, L)
in EJ translation and (L) and (p, 1) in EC transla-
tion. Since features related to the source-side lan-
guage model were chosen in each direction, using
the source-side language model is useful for de-
coding paraphrase lattices.

We also tried a combination of Proposed
Method and CCB, which is a method of decoding
paraphrase lattices with an augmented phrase ta-
ble. However, the result showed no significant im-
provements. This is because the proposed method
includes the effect of augmenting the phrase table.

Moreover, we conducted German-English
translation using the Europarl corpus (Koehn,
2005). We used the WMTOS8 dataset!, which
consists of 1M sentences for training and 2K sen-
tences for development and testing. We acquired
5.3M pairs of German-German paraphrases from
a IM German-Spanish parallel corpus. We con-
ducted experiments with various sizes of training
corpus, using 10K, 20K, 40K, 80K, 160K and 1M.
Figure 3 shows the proposed method consistently
get higher score than Moses and CCB.

5 Conclusion

This paper has proposed a novel method for trans-
forming a source sentence into a paraphrase lattice
and applying lattice decoding. Since our method
can employ source-side language models as a de-
coding feature, the decoder can choose proper
paraphrases and translate properly. The exper-
imental results showed significant gains for the
IWSLT and Europarl dataset. In IWSLT dataset,
we obtained 1.36 BLEU points over Moses in EJ
translation and 1.95 BLEU points over Moses in

"http://www.statmt.org/wmt08/
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Figure 3: Effect of training corpus size.

EC translation. In Europarl dataset, the proposed
method consistently get higher score than base-
lines.

In future work, we plan to apply this method
with paraphrases derived from a massive corpus
such as the Web corpus and apply this method to a
hierarchical phrase based SMT.
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Abstract

In hierarchical phrase-based SMT sys-
tems, statistical models are integrated to
guide the hierarchical rule selection for
better translation performance. Previous
work mainly focused on the selection of
either the source side of a hierarchical rule
or the target side of a hierarchical rule
rather than considering both of them si-
multaneously. This paper presents a joint
model to predict the selection of hierar-
chical rules. The proposed model is esti-
mated based on four sub-models where the
rich context knowledge from both source
and target sides is leveraged. Our method
can be easily incorporated into the prac-
tical SMT systems with the log-linear
model framework. The experimental re-
sults show that our method can yield sig-
nificant improvements in performance.

1 Introduction

Hierarchical phrase-based model has strong ex-
pression capabilities of translation knowledge. It
can not only maintain the strength of phrase trans-
lation in traditional phrase-based models (Koehn
et al., 2003; Xiong et al., 2006), but also char-
acterize the complicated long distance reordering
similar to syntactic based statistical machine trans-
lation (SMT) models (Yamada and Knight, 2001;
Quirk et al., 2005; Galley et al., 2006; Liu et al.,
2006; Marcu et al., 2006; Mi et al., 2008; Shen et
al., 2008).

In hierarchical phrase-based SMT systems, due
to the flexibility of rule matching, a huge number
of hierarchical rules could be automatically learnt
from bilingual training corpus (Chiang, 2005).
SMT decoders are forced to face the challenge of

This work was finished while the first author visited Mi-
crosoft Research Asia as an intern.
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proper rule selection for hypothesis generation, in-
cluding both source-side rule selection and target-
side rule selection where the source-side rule de-
termines what part of source words to be translated
and the target-side rule provides one of the candi-
date translations of the source-side rule. Improper
rule selections may result in poor translations.

There is some related work about the hierarchi-
cal rule selection. In the original work (Chiang,
2005), the target-side rule selection is analogous to
the model in traditional phrase-based SMT system
such as Pharaoh (Koehn et al., 2003). Extending
this work, (He et al., 2008; Liu et al., 2008) in-
tegrate rich context information of non-terminals
to predict the target-side rule selection. Different
from the above work where the probability dis-
tribution of source-side rule selection is uniform,
(Setiawan et al., 2009) proposes to select source-
side rules based on the captured function words
which often play an important role in word re-
ordering. There is also some work considering to
involve more rich contexts to guide the source-side
rule selection. (Marton and Resnik, 2008; Xiong
et al., 2009) explore the source syntactic informa-
tion to reward exact matching structure rules or
punish crossing structure rules.

All the previous work mainly focused on either
source-side rule selection task or target-side rule
selection task rather than both of them together.
The separation of these two tasks, however, weak-
ens the high interrelation between them. In this pa-
per, we propose to integrate both source-side and
target-side rule selection in a unified model. The
intuition is that the joint selection of source-side
and target-side rules is more reliable as it conducts
the search in a larger space than the single selec-
tion task does. It is expected that these two kinds
of selection can help and affect each other, which
may potentially lead to better hierarchical rule se-
lections with a relative global optimum instead of
a local optimum that might be reached in the pre-
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vious methods. Our proposed joint probability
model is factored into four sub-models that can
be further classified into source-side and target-
side rule selection models or context-based and
context-free selection models. The context-based
models explore rich context features from both
source and target sides, including function words,
part-of-speech (POS) tags, syntactic structure in-
formation and so on. Our model can be easily in-
corporated as an independent feature into the prac-
tical hierarchical phrase-based systems with the
log-linear model framework. The experimental re-
sults indicate our method can improve the system
performance significantly.

2 Hierarchical Rule Selection Model

Following (Chiang, 2005), (v, ) is used to repre-
sent a synchronous context free grammar (SCFG)
rule extracted from the training corpus, where o
and v are the source-side and target-side rule re-
spectively. Let C' be the context of («,~). For-
mally, our joint probability model of hierarchical
rule selection is described as follows:

P(a,7|C) = P(a|C)P(y|a,C) (1)

We decompose the joint probability model into
two sub-models based on the Bayes formulation,
where the first sub-model is source-side rule se-
lection model and the second one is the rarget-side
rule selection model.

For the source-side rule selection model, we fur-
ther compute it by the interpolation of two sub-
models:

0P;(a) + (1 = 0)Ps(|C) 2)

where Ps(a) is the context-free source model
(CFSM) and P,(«|C) is the context-based source
model (CBSM), 0 is the interpolation weight that
can be optimized over the development data.

CFSM is the probability of source-side rule se-
lection that can be estimated based on maximum
likelihood estimation (MLE) method:

_ >, Count({a,7))

Fs(a) Count(a)

3)

where the numerator is the total count of bilin-
gual rule pairs with the same source-side rule that
are extracted based on the extraction algorithm in
(Chiang, 2005), and the denominator is the total
amount of source-side rule patterns contained in

the monolingual source side of the training corpus.
CFSM is used to capture how likely the source-
side rule is linguistically motivated or has the cor-
responding target-side counterpart.

For CBSM, it can be naturally viewed as a clas-
sification problem where each distinct source-side
rule is a single class. However, considering the
huge number of classes may cause serious data
sparseness problem and thereby degrade the clas-
sification accuracy, we approximate CBSM by a
binary classification problem which can be solved
by the maximum entropy (ME) approach (Berger
et al., 1996) as follows:

Py(a|C) = Ps(v|a, C)
_ exp[); Aihi(v, o, C')] 4)
>y expyo; Aihi(v', o, O]

where v € {0,1} is the indicator whether the
source-side rule is applied during decoding, v = 1
when the source-side rule is applied, otherwise
v = 0; h; is a feature function, )\; is the weight
of h;. CBSM estimates the probability of the
source-side rule being selected according to the
rich context information coming from the surface
strings and sub-phrases that will be reduced to
non-terminals during decoding.

Analogously, we decompose the target-side rule
selection model by the interpolation approach as
well:

eP(v) + (1 =) P(v]a, C) &)

where Py(v) is the context-free target model
(CFTM) and P,(v|a, C) is the context-based tar-
get model (CBTM), ¢ is the interpolation weight
that can be optimized over the development data.

In the similar way, we compute CFTM by the
MLE approach and estimate CBTM by the ME
approach. CFTM computes how likely the target-
side rule is linguistically motivated, while CBTM
predicts how likely the target-side rule is applied
according to the clues from the rich context infor-
mation.

3 Model Training of CBSM and CBTM

3.1 The acquisition of training instances

CBSM and CBTM are trained by ME approach for
the binary classification, where a training instance
consists of a label and the context related to SCFG
rules. The context is divided into source context
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two sides strengthen cooperation 1 : two sides X

(b) (c)

Figure 1: Example of training instances in CBSM and CBTM.

and target context. CBSM is trained only based
on the source context while CBTM is trained over
both the source and the target context. All the
training instances are automatically constructed
from the bilingual training corpus, which have la-
bels of either positive (i.e., v = 1) or negative (i.e.,
v = 0). This section explains how the training in-
stances are constructed for the training of CBSM
and CBTM.

Let s and t be the source sentence and target
sentence, W be the word alignment between them,
rs be a source-side rule that pattern-matches a
sub-phrase of s, r; be the target-side rule pattern-
matching a sub-phrase of ¢ and being aligned to 7
based on W, and C(r) be the context features re-
lated to the rule r which will be explained in the
following section.

For the training of CBSM, if the SCFG rule
(rs,r) can be extracted based on the rule extrac-
tion algorithm in (Chiang, 2005), (v = 1,C(rs))
is constructed as a positive instance, otherwise
(v = 0,C(rs)) is constructed as a negative in-
stance. For example in Figure 1(a), the context of
source-side rule ” X; hezuo” that pattern-matches
the phrase “youhao hezuo” produces a positive
instance, while the context of ”X; youhao” that
pattern-matches the source phrase ”de youhao” or
”shuangfang de youhao” will produce a negative
instance as there are no corresponding plausible
target-side rules that can be extracted legally'.

For the training of CBTM, given 75, suppose
there is a SCFG rule set {(r,,7F)[1 < k < n}
extracted from multiple distinct sentence pairs in
the bilingual training corpus, among which we as-
sume (rg,7t) is extracted from the sentence pair
(s,t). Then, we construct (v = 1,C(rs), C(r}))

"Because the aligned target words are not contiguous and
“cooperation” is aligned to the word outside the source-side
rule.

as a positive instance, while the elements in {(v =
0,C(rs),C(r))|j #i A1 < j < n} are viewed
as negative instances since they fail to be applied
to the translation from s to ¢. For example in Fig-
ure 1(c), Rule (1) and Rule (2) are two different
SCFG rules extracted from Figure 1(a) and Figure
1(b) respectively, where their source-side rules are
the same. As Rule (1) cannot be applied to Fig-
ure 1(b) for the translation and Rule (2) cannot
be applied to Figure 1(a) for the translation either,
(v =1,0(r2), C(rf)) and (v = 1,C(r1), C(r}))
are constructed as positive instances while (v =
0,C(r2),C(r})) and (v = 0,C(r),C(r#)) are
viewed as negative instances. It is noticed that
this instance construction method may lead to a
large quantity of negative instances and choke the
training procedure. In practice, to limit the size
of the training set, the negative instances con-
structed based on low-frequency target-side rules
are pruned.

3.2 Context-based features for ME training

ME approach has the merit of easily combining
different features to predict the probability of each
class. We incorporate into the ME based model
the following informative context-based features
to train CBSM and CBTM. These features are
carefully designed to reduce the data sparseness
problem and some of them are inspired by pre-
vious work (He et al., 2008; Gimpel and Smith,
2008; Marton and Resnik, 2008; Chiang et al.,
2009; Setiawan et al., 2009; Shen et al., 2009;
Xiong et al., 2009):

1. Function word features, which indicate
whether the hierarchical source-side/target-
side rule strings and sub-phrases covered by
non-terminals contain function words that are
often important clues of predicting syntactic
structures.



2. POS features, which are POS tags of the
boundary source words covered by non-
terminals.

3. Syntactic features, which are the constituent
constraints of hierarchical source-side rules
exactly matching or crossing syntactic sub-
trees.

4. Rule format features, which are non-
terminal positions and orders in source-
side/target-side rules. This feature interacts
between source and target components since
it shows whether the translation ordering is
affected.

5. Length features, which are the length
of sub-phrases covered by source non-
terminals.

4 Experiments

4.1 Experiment setting

We implement a hierarchical phrase-based system
similar to the Hiero (Chiang, 2005) and evaluate
our method on the Chinese-to-English translation
task. Our bilingual training data comes from FBIS
corpus, which consists of around 160K sentence
pairs where the source data is parsed by the Berke-
ley parser (Petrov and Klein, 2007). The ME train-
ing toolkit, developed by (Zhang, 2006), is used to
train our CBSM and CBTM. The training size of
constructed positive instances for both CBSM and
CBTM is 4.68M, while the training size of con-
structed negative instances is 3.74M and 3.03M re-
spectively. Following (Setiawan et al., 2009), we
identify function words as the 128 most frequent
words in the corpus. The interpolation weights are
set to # = 0.75 and ¢ = 0.70. The 5-gram lan-
guage model is trained over the English portion
of FBIS corpus plus Xinhua portion of the Giga-
word corpus. The development data is from NIST
2005 evaluation data and the test data is from
NIST 2006 and NIST 2008 evaluation data. The
evaluation metric is the case-insensitive BLEU4
(Papineni et al., 2002). Statistical significance in
BLEU score differences is tested by paired boot-
strap re-sampling (Koehn, 2004).

4.2 Comparison with related work

Our baseline is the implemented Hiero-like SMT
system where only the standard features are em-
ployed and the performance is state-of-the-art.

We compare our method with the baseline and
some typical approaches listed in Table 1 where
XP+ denotes the approach in (Marton and Resnik,
2008) and TOFW (topological ordering of func-
tion words) stands for the method in (Setiawan et
al., 2009). As (Xiong et al., 2009)’s work is based
on phrasal SMT system with bracketing transduc-
tion grammar rules (Wu, 1997) and (Shen et al.,
2009)’s work is based on the string-to-dependency
SMT model, we do not implement these two re-
lated work due to their different models from ours.
We also do not compare with (He et al., 2008)’s
work due to its less practicability of integrating
numerous sub-models.

[ Methods [ NIST 2006 [ NIST 2008 ]
Baseline 0.3025 0.2200
XP+ 0.3061 0.2254
TOFW 0.3089 0.2253
Our method | 0.3141 0.2318

Table 1: Comparison results, our method is signif-
icantly better than the baseline, as well as the other
two approaches (p < 0.01)

As shown in Table 1, all the methods outper-
form the baseline because they have extra mod-
els to guide the hierarchical rule selection in some
ways which might lead to better translation. Ap-
parently, our method also performs better than the
other two approaches, indicating that our method
is more effective in the hierarchical rule selection
as both source-side and target-side rules are se-
lected together.

4.3 Effect of sub-models

Due to the space limitation, we analyze the ef-
fect of sub-models upon the system performance,
rather than that of ME features, part of which have
been investigated in previous related work.

[ Settings [ NIST 2006 [ NIST 2008 ]
Baseline 0.3025 0.2200
Baseline+CFSM 0.3092* 0.2266*
Baseline+CBSM 0.3077" 0.2247*
Baseline+CFTM 0.3076" 0.2286™
Baseline+CBTM 0.3060 0.2255*
Baseline+CFSM+CFTM | 0.3109* 0.2289*
Baseline+CFSM+CBSM | 0.3104* 0.2282*
Baseline+CFTM+CBTM | 0.3099* 0.2299*
Baseline+all sub-models | 0.3141% 0.2318%

Table 2: Sub-model effect upon the performance,
*: significantly better than baseline (p < 0.01)

As shown in Table 2, when sub-models are inte-



grated as independent features, the performance is
improved compared to the baseline, which shows
that each of the sub-models can improve the hier-
archical rule selection. It is noticeable that the per-
formance of the source-side rule selection model
is comparable with that of the target-side rule se-
lection model. Although CFSM and CFTM per-
form only slightly better than the others among
the individual sub-models, the best performance is
achieved when all the sub-models are integrated.

5 Conclusion

Hierarchical rule selection is an important and
complicated task for hierarchical phrase-based
SMT system. We propose a joint probability
model for the hierarchical rule selection and the
experimental results prove the effectiveness of our
approach.

In the future work, we will explore more useful
features and test our method over the large scale
training corpus. A challenge might exist when
running the ME training toolkit over a big size
of training instances from the large scale training
data.
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Abstract

Lexicalized reordering models play a crucial
role in phrase-based translation systems. They
are usually learned from the word-aligned
bilingual corpus by examining the reordering
relations of adjacent phrases. Instead of just
checking whether there is one phrase adjacent
to a given phrase, we argue that it is important
to take the number of adjacent phrases into
account for better estimations of reordering
models. We propose to use a structure named
reordering graph, which represents all phrase
segmentations of a sentence pair, to learn lex-
icalized reordering models efficiently. Exper-
imental results on the NIST Chinese-English
test sets show that our approach significantly
outperforms the baseline method.

1 Introduction

Phrase-based translation systems (Koehn et al.,
2003; Och and Ney, 2004) prove to be the state-
of-the-art as they have delivered translation perfor-
mance in recent machine translation evaluations.
While excelling at memorizing local translation and
reordering, phrase-based systems have difficulties in
modeling permutations among phrases. As a result,
it is important to develop effective reordering mod-
els to capture such non-local reordering.

The early phrase-based paradigm (Koehn et al.,
2003) applies a simple distance-based distortion
penalty to model the phrase movements. More re-
cently, many researchers have presented lexicalized
reordering models that take advantage of lexical
information to predict reordering (Tillmann, 2004;
Xiong et al., 2006; Zens and Ney, 2006; Koehn et
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Figure 1: Occurrence of a swap with different numbers
of adjacent bilingual phrases: only one phrase in (a) and
three phrases in (b). Black squares denote word align-
ments and gray rectangles denote bilingual phrases. [s,t]
indicates the target-side span of bilingual phrase bp and
[u,v] represents the source-side span of bilingual phrase

bp.

al., 2007; Galley and Manning, 2008). These mod-
els are learned from a word-aligned corpus to pre-
dict three orientations of a phrase pair with respect
to the previous bilingual phrase: monotone (M),
swap (.5), and discontinuous (D). Take the bilingual
phrase bp in Figure 1(a) for example. The word-
based reordering model (Koehn et al., 2007) ana-
lyzes the word alignments at positions (s —1,u — 1)
and (s — 1,v + 1). The orientation of bp is set
to D because the position (s — 1,v + 1) contains
no word alignment. The phrase-based reordering
model (Tillmann, 2004) determines the presence
of the adjacent bilingual phrase located in position
(s —1,v+ 1) and then treats the orientation of bp as
S. Given no constraint on maximum phrase length,
the hierarchical phrase reordering model (Galley and
Manning, 2008) also analyzes the adjacent bilingual
phrases for bp and identifies its orientation as S.
However, given a bilingual phrase, the above-
mentioned models just consider the presence of an
adjacent bilingual phrase rather than the number of
adjacent bilingual phrases. See the examples in Fig-
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Figure 2: (a) A parallel Chinese-English sentence pair and (b) its corresponding reordering graph. In (b), we denote
each bilingual phrase with a rectangle, where the upper and bottom numbers in the brackets represent the source

and target spans of this bilingual phrase respectively. M =

monotone (solid lines), S = swap (dotted line), and D =

discontinuous (segmented lines). The bilingual phrases marked in the gray constitute a reordering example.

ure 1 for illustration. In Figure 1(a), bp is in a swap
order with only one bilingual phrase. In Figure 1(b),
bp swaps with three bilingual phrases. Lexicalized
reordering models do not distinguish different num-
bers of adjacent phrase pairs, and just give bp the
same count in the swap orientation.

In this paper, we propose a novel method to better
estimate the reordering probabilities with the con-
sideration of varying numbers of adjacent bilingual
phrases. Our method uses reordering graphs to rep-
resent all phrase segmentations of parallel sentence
pairs, and then gets the fractional counts of bilin-
gual phrases for orientations from reordering graphs
in an inside-outside fashion. Experimental results
indicate that our method achieves significant im-
provements over the traditional lexicalized reorder-
ing model (Koehn et al., 2007).

This paper is organized as follows: in Section 2,
we first give a brief introduction to the traditional
lexicalized reordering model. Then we introduce
our method to estimate the reordering probabilities
from reordering graphs. The experimental results
are reported in Section 3. Finally, we end with a
conclusion and future work in Section 4.

2 Estimation of Reordering Probabilities
Based on Reordering Graph

In this section, we first describe the traditional lexi-
calized reordering model, and then illustrate how to
construct reordering graphs to estimate the reorder-
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ing probabilities.

2.1 Lexicalized Reordering Model

Given a phrase pair bp = (€;, f,,), where a; de-
fines that the source phrase ?ai is aligned to the
target phrase e;, the traditional lexicalized reorder-
ing model computes the reordering count of bp in
the orientation o based on the word alignments of
boundary words. Specifically, the model collects
bilingual phrases and distinguishes their orientations
with respect to the previous bilingual phrase into
three categories:

M a;—ai_1=1
0 = S a; — Qi1 -1
D |ai — ai,1| 75 1

ey

Using the relative-frequency approach, the re-
ordering probability regarding bp is

_ Count(o,bp)
-~ >, Count(d, bp)

p(olbp) 2

2.2 Reordering Graph

For a parallel sentence pair, its reordering graph in-
dicates all possible translation derivations consisting
of the extracted bilingual phrases. To construct a
reordering graph, we first extract bilingual phrases
using the way of (Och, 2003). Then, the adjacent



bilingual phrases are linked according to the target-
side order. Some bilingual phrases, which have
no adjacent bilingual phrases because of maximum
length limitation, are linked to the nearest bilingual
phrases in the target-side order.

Shown in Figure 2(b), the reordering graph for
the parallel sentence pair (Figure 2(a)) can be rep-
resented as an undirected graph, where each rect-
angle corresponds to a phrase pair, each link is the
orientation relationship between adjacent bilingual
phrases, and two distinguished rectangles bs and b,
indicate the beginning and ending of the parallel sen-
tence pair, respectively. With the reordering graph,
we can obtain all reordering examples containing
the given bilingual phrase. For example, the bilin-
gual phrase (zhengshi huitan, formal meetings) (see
Figure 2(a)), corresponding to the rectangle labeled
with the source span [6,7] and the target span [4,5],
is in a monotone order with one previous phrase
and in a discontinuous order with two subsequent
phrases (see Figure 2(b)).

2.3 Estimation of Reordering Probabilities

We estimate the reordering probabilities from re-
ordering graphs. Given a parallel sentence pair,
there are many translation derivations correspond-
ing to different paths in its reordering graph. As-
suming all derivations have a uniform probability,
the fractional counts of bilingual phrases for orien-
tations can be calculated by utilizing an algorithm in
the inside-outside fashion.

Given a phrase pair bp in the reordering graph,
we denote the number of paths from bg to bp with
a(bp). It can be computed in an iterative way
a(bp) = >,y a(bp'), where bp' is one of the pre-
vious bilingual phrases of bp and a/(bs)=1. In a sim-
ilar way, the number of paths from b, to bp, notated
as ((bp), is simply B(bp) = >_, . B(bp"), where
bp” is one of the subsequent bilingual phrases of bp
and (be)=1. Here, we show the o and [ values of
all bilingual phrases of Figure 2 in Table 1. Espe-
cially, for the reordering example consisting of the
bilingual phrases bp,=(jiang juxing, will hold) and
bpa=(zhengshi huitan, formal meetings), marked in
the gray color in Figure 2, the o and (3 values can be
calculated: «a(bpy) =1, B(bpa) = 1+1 =2, (bs) =
8+1=9.

Inspired by the parsing literature on pruning
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l src span ‘ trg span ‘ « ‘ 8 ‘
[0, 0] [0, 0] 1 9
[, 1] 1, 1] 1 8
[1,7] [1,7] 1 1
[4, 4] [2,2] 1 1
[4, 5] [2,3] 1 3
[4, 6] [2, 4] 1 1
[4, 7] [2, 5] I 2
[2,7] [2,7] 1 1
(5, 5] (3, 3] 1 1
[6, 6] [4, 4] 2 1
[6, 7] [4, 5] 1 2
[7.7] (5, 5] 3 1
[2,2] [6, 6] 5 1
[2,3] [6, 7] 2 1
[3, 3] [7.7] 5 1
8, 8] 8, 8] 9 1

Table 1: The « and (3 values of the bilingual phrases
shown in Figure 2.

(Charniak and Johnson, 2005; Huang, 2008), the
fractional count of (o, bp/, bp) is

a(bp') - B(bp)
B(bs)

where the numerator indicates the number of paths
containing the reordering example (o, bp’, bp) and
the denominator is the total number of paths in the
reordering graph. Continuing with the reordering
example described above, we obtain its fractional
count using the formula (3): Count(M, bp1, bps) =
(1x2)/9=2/9.

Then, the fractional count of bp in the orientation
o is calculated as described below:

Count(o,bp’, bp) = 3)

Count(o,bp) = Z Count(o,bp’, bp)
bp’

“

For example, we compute the fractional count of
bpo in the monotone orientation by the formula (4):
Count(M,bps) = 2/9.

As described in the lexicalized reordering model
(Section 2.1), we apply the formula (2) to calculate
the final reordering probabilities.

3 Experiments

We conduct experiments to investigate the effec-
tiveness of our method on the msd-fe reorder-
ing model and the msd-bidirectional-fe reordering
model. These two models are widely applied in



phrase-based system (Koehn et al., 2007). The msd-
fe reordering model has three features, which rep-
resent the probabilities of bilingual phrases in three
orientations: monotone, swap, or discontinuous. If a
msd-bidirectional-fe model is used, then the number
of features doubles: one for each direction.

3.1 Experiment Setup

Two different sizes of training corpora are used in
our experiments: one is a small-scale corpus that
comes from FBIS corpus consisting of 239K bilin-
gual sentence pairs, the other is a large-scale corpus
that includes 1.55M bilingual sentence pairs from
LDC. The 2002 NIST MT evaluation test data is
used as the development set and the 2003, 2004,
2005 NIST MT test data are the test sets. We
choose the MOSES' (Koehn et al., 2007) as the ex-
perimental decoder. GIZA++ (Och and Ney, 2003)
and the heuristics “grow-diag-final-and” are used to
generate a word-aligned corpus, where we extract
bilingual phrases with maximum length 7. We use
SRILM Toolkits (Stolcke, 2002) to train a 4-gram
language model on the Xinhua portion of Gigaword
corpus.

In exception to the reordering probabilities, we
use the same features in the comparative experi-
ments. During decoding, we set ttable-limit = 20,
stack = 100, and perform minimum-error-rate train-
ing (Och, 2003) to tune various feature weights. The
translation quality is evaluated by case-insensitive
BLEU-4 metric (Papineni et al., 2002). Finally, we
conduct paired bootstrap sampling (Koehn, 2004) to
test the significance in BLEU scores differences.

3.2 Experimental Results

Table 2 shows the results of experiments with the
small training corpus. For the msd-fe model, the
BLEU scores by our method are 30.51 32.78 and
29.50, achieving absolute improvements of (.89,
0.66 and 0.62 on the three test sets, respectively. For
the msd-bidirectional-fe model, our method obtains
BLEU scores of 30.49 32.73 and 29.24, with abso-
lute improvements of 1.11, 0.73 and 0.60 over the
baseline method.

'The phrase-based lexical reordering model (Tillmann,
2004) is also closely related to our model. However, due to
the limit of time and space, we only use Moses-style reordering
model (Koehn et al., 2007) as our baseline.
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| model | method [ MT-03 | MT-04 | MT-05
m-f baseline | 29.62 32.12 28.88
RG 30.51™* | 32.78*" | 29.50"
m-b-f baseline | 29.38 32.00 28.64
RG 30.49"" | 32.73" | 29.24"

Table 2: Experimental results with the small-scale cor-
pus. m-f: msd-fe reordering model. m-b-f: msd-
bidirectional-fe reordering model. RG: probabilities esti-
mation based on Reordering Graph. * or **: significantly
better than baseline (p < 0.05 or p < 0.01).

| model | method [ MT-03 | MT-04 [ MT-05 |
m-f baseline | 31.58 32.39 31.49
RG 32.44* | 33.24™ | 31.64
m-b-f baseline | 32.43 33.07 31.69
RG 33.29" | 34.49"* | 32.79"

Table 3: Experimental results with the large-scale cor-
pus.

Table 3 shows the results of experiments with
the large training corpus. In the experiments of
the msd-fe model, in exception to the MT-05 test
set, our method is superior to the baseline method.
The BLEU scores by our method are 32.44, 33.24
and 31.64, which obtain 0.86, 0.85 and 0.15 gains
on three test set, respectively. For the msd-
bidirectional-fe model, the BLEU scores produced
by our approach are 33.29, 34.49 and 32.79 on the
three test sets, with 0.86, 1.42 and 1.1 points higher
than the baseline method, respectively.

4 Conclusion and Future Work

In this paper, we propose a method to improve the
reordering model by considering the effect of the
number of adjacent bilingual phrases on the reorder-
ing probabilities estimation. Experimental results on
NIST Chinese-to-English tasks demonstrate the ef-
fectiveness of our method.

Our method is also general to other lexicalized
reordering models. We plan to apply our method
to the complex lexicalized reordering models, for
example, the hierarchical reordering model (Galley
and Manning, 2008) and the MEBTG reordering
model (Xiong et al., 2006). In addition, how to fur-
ther improve the reordering model by distinguishing
the derivations with different probabilities will be-
come another study emphasis in further research.
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Abstract

Source language parse trees offer very useful
but imperfect reordering constraints for statis-
tical machine trandlation. A lot of effort has
been made for soft applications of syntactic
congtraints. We alternatively propose the se-
lective use of syntactic constraints. A classifier
is built automatically to decide whether a node
in the parse trees should be used as a reorder-
ing constraint or not. Using this information
yields a 0.8 BLEU point improvement over a
full constraint-based system.

1

In statistical machine trandation (SMT), the
search problem is NP-hard if arbitrary reordering
is alowed (Knight, 1999). Therefore, we need to
restrict the possible reordering in an appropriate
way for both efficiency and trandation quality.
The most widely used reordering constraints are
IBM constraints (Berger et al., 1996), ITG con-
straints (Wu, 1995) and syntactic constraints
(Yamada et al., 2000; Galley et al., 2004; Liu et
a., 2006; Marcu et a., 2006; Zollmann and
Venugopal 2006; and numerous others). Syntac-
tic constraints can be imposed from the source
side or target side. This work will focus on syn-
tactic constraints from source parse trees.
Linguistic parse trees can provide very useful
reordering constraints for SMT. However, they
are far from perfect because of both parsing er-
rors and the crossing of the constituents and for-
mal phrases extracted from parallel training data.
The key challenge is how to take advantage of
the prior knowledge in the linguistic parse trees
without affecting the strengths of formal phrases.
Recent efforts attack this problem by using the
constraints softly (Cherry, 2008; Marton and
Resnik, 2008). In their methods, a candidate

I ntroduction

17

trandlation gets an extra credit if it respects the
parse tree but may incur a cost if it violates a
constituent boundary.

In this paper, we address this challenge from a
less explored direction. Rather than use al con-
straints offered by the parse trees, we propose
using them selectively. Based on parallel training
data, a classifier is built automatically to decide
whether a node in the parse trees should be used
as areordering constraint or not. As a result, we
obtain a 0.8 BLEU point improvement over afull
constraint-based system.

2 Reordering Constraints from Source
Parse Trees

In this section we briefly review a constraint-
based system named IST-ITG (Imposing Source
Tree on Inversion Transduction Grammar, Ya
mamoto et a., 2008) upon which this work
builds.

When using ITG constraints during decoding,
the source-side parse tree structure is not consid-
ered. The reordering process can be more tightly
constrained if constraints from the source parse
tree are integrated with the ITG constraints. | ST-
ITG congtraints directly apply source sentence
tree structure to generate the target with the
following constraint: the target sentence is ob-
tained by rotating any node of the source sen-
tence tree structure.

After parsing the source sentence, a bracketed
sentence is obtained by removing the node
syntactic labels; this bracketed sentence can then
be directly expressed as a tree structure. For
example', the parse tree “(S1 (S (NP (DT This))
(VP (AUX is) (NP (DT a) (NN pen)))))” is
obtained from the source sentence “This is a
pen”, which consists of four words. By removing

! We use English examples for the sake of readability.

Proceedings of the ACL 2010 Conference Short Papers, pages 17-21,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



the node syntactic labels, the bracketed sentence
“((This) ((is) ((& (pen))))” is obtained. Such a
bracketed sentence can be used to produce
constraints.

For example, for the source-side bracketed
tree“((f12) (f3f4)) ", eight target sequences [€l,
€2, €3, e4], [€2, €1, €3, e4], [el, €2, &4, €3], [€2,
el, ed, €3], [e3, &4, €], €2], [€3, e4, €2, €1], [e4,
€3, el, €2], and [e4, €3, €2, el] are possible. For
the source-side bracketed tree “(((f1f2) 3) f4),”
eight sequences [el, €2, €3, e4], [e2, €1, €3, e4],
[€3, €1, €2, e4], [€3, €2, €], &4], [e4, €l, 2, €3],
[e4, €2, el, €3], [e4, €3, €], €2], and [e4, €3, €2,
el] are possible. When the source sentence tree
structure is a binary tree, the number of word
orderings is reduced to 2" where N is the length
of the source sentence.

The parsing results sometimes do not produce
binary trees. In this case, some subtrees have
more than two child nodes. For a non-binary sub-
tree, any reordering of child nodes is allowed.
For example, if a subtree has three child nodes,
six reorderings of the nodes are possible.

3 Learning to Classify Parse Tree
Nodes

In IST-ITG and many other methods which use
syntactic constraints, all of the nodes in the parse
trees are utilized. Though many nodes in the
parse trees are useful, we would argue that some
nodes are not trustworthy. For example, if we
constrain the trandation of “f1 f2 f3 f4” with
node N2 illustrated in Figure 1, then word “el”
will never be put in the middle the other three
words. If we want to obtain the translation “e2 el
e4 e3’, node N3 can offer a good constraint
while node N2 should be filtered out. In real cor-
pora, cases such as node N2 are frequent enough
to be noticeable (see Fox (2002) or section 4.1 in
this paper).

Therefore, we use the definitions in Galley et
al. (2004) to classify the nodes in parse trees into
two types. frontier nodes and interior nodes.
Though the definitions were originally made for
target language parse trees, they can be straight-
forwardly applied to the source side. A node
which satisfies both of the following two condi-
tionsis referred as afrontier node:

All the words covered by the node can be
trandated separately. That is to say, these
words do not share a trandlation with any
word outside the coverage of the node.

18

All the words covered by the node remain
contiguous after trandation.

Otherwise the node is an interior node.

For example, in Figure 1, both node N1 and
node N3 are frontier nodes. Node N2 is an inte-
rior node because the source words f2, f3 and f4
are trandated into €2, €3 and e4, which are not
contiguous in the target side.

Clearly, only frontier nodes should be used as
reordering constraints while interior nodes are
not suitable for this. However, little work has
been done on how to explicitly distinguish these
two kinds of nodes in the source parse trees. In
this section, we will explore building a classifier
which can label the nodes in the parse trees as
frontier nodes or interior nodes.

N1

AN
N2
fNS
N
f1 f2 3 f4
= >
e2 el e e3

Figure 1: An example parse tree and align-
ments

31

Ideally, we would have a human-annotated cor-
pus in which each sentence is parsed and each
node in the parse trees is labeled as a frontier
node or an interior node. But such a target lan-
guage specific corpus is hard to come by, and
never in the quantity we would like.

Instead, we generate such a corpus automati-
cally. We begin with a parallel corpus which will
be used to train our SMT model. In our casg, it is
the FBIS Chinese-English corpus.

Firstly, the Chinese sentences are segmented,
POS tagged and parsed by the tools described in
Kruengkrai et al. (2009) and Cao et a. (2007),
both of which are trained on the Penn Chinese
Treebank 6.0.

Secondly, we use GIZA++ to align the sen-
tences in both the Chinese-English and English-
Chinese directions. We combine the alignments
using the “grow-diag-final-and” procedure pro-
vided with MOSES (Koehn, 2007). Because
there are many errors in the alignment, we re-
move the links if the alignment count is less than
three for the source or the target word. Addition-
aly, we aso remove notoriously bad links in

Training



{de, le} x {the, a, an} following Fossum and
Knight (2008).

Thirdly, given the parse trees and the aign-
ment information, we label each node as a fron-
tier node or an interior node according to the
definition introduced in this section. Using the
labeled nodes as training data, we can build a
classifier. In theory, a broad class of machine
learning tools can be used; however, due to the
scale of the task (see section 4), we utilize the
Pegasos 2 which is a very fast SYM solver
(Shalev-Shwartz et al, 2007).

3.2

For each node in the parse trees, we use the fol-
lowing feature templates:

A context-free grammar rule which rewrites
the current node (In thisand al the following
grammar based features, a mark is used to
indicate which non terminal is the current
node.)

A context-free grammar rule which rewrites
the current node’ s father

The combination of the above two rules

A lexicalized context-free grammar rule
which rewrites the current node

A lexicalized context-free grammar rule
which rewrites the current node’ s father
Syntactic label, head word, and head POS
tag of the current node

Syntactic label, head word, and head POS
tag of the current node’ s left child

Syntactic label, head word, and head POS
tag of the current node’ sright child

Syntactic label, head word, and head POS
tag of the current node' s left brother
Syntactic label, head word, and head POS
tag of the current node’ s right brother
Syntactic label, head word, and head POS
tag of the current node' s father

The leftmost word covered by the current
node and the word before it

The rightmost word covered by the current
node and the word after it

Features

4 Experiments

Our SMT system is based on a fairly typica
phrase-based model (Finch and Sumita, 2008).
For the training of our SMT model, we use a
modified training toolkit adapted from the

2 http://www.cs.huji.ac.il/~shais/codefindex.html

MOSES decoder. Our decoder can operate on the
same principles as the MOSES decoder. Mini-
mum error rate training (MERT) with respect to
BLEU score is used to tune the decoder’'s pa-
rameters, and it is performed using the standard
technique of Och (2003). A lexical reordering
model was used in our experiments.

The trandation model was created from the
FBIS corpus. We used a 5-gram language model
trained with modified Knesser-Ney smoothing.
The language model was trained on the target
side of FBIS corpus and the Xinhua news in GI-
GAWORD corpus. The development and test
sets are from NIST MTO8 evaluation campaign.
Table 1 shows the statistics of the corpora used
in our experiments.

Data Sentences | Chinese English
words words
Training set 243,698 7,933,133 | 10,343,140
Development set 1664 38,779 46,387
Test set 1357 32377 42,444
GIGAWORD 19,049,757 - 306,221,306
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Table 1. Corpora statistics

4.1

We extracted about 3.9 million example nodes
from the training data, i.e. the FBIS corpus.
There were 2.37 million frontier nodes and 1.59
million interior nodes in these examples, give
rise to about 4.4 million features. To test the per-
formance of our classifier, we simply use the last
ten thousand examples as a test set, and the rest
being used as Pegasos training data. All the pa-
rameters in Pegasos were set as default values. In
this way, the accuracy of the classifier was
71.59%.

Then we retrained our classifier by using all of
the examples. The nodes in the automatically
parsed NIST MTO8 test set were labeled by the
classifier. As aresult, 17,240 nodes were labeled
as frontier nodes and 5,736 nodes were labeled
asinterior nodes.

Experiments on Nodes Classification

4.2

In order to confirm that it is advantageous to dis-
tinguish between frontier nodes and interior
nodes, we performed four translation experi-
ments.

The first one was atypical beam search decod-
ing without any syntactic constraints.

All the other three experiments were based on
the IST-ITG method which makes use of syntac-

Experimentson Chinese-English SMT




tic constraints. The difference between these
three experiments lies in what constraints are
used. In detail, the second one used all nodes
recognized by the parser; the third one only used
frontier nodes labeled by the classifier; the fourth
one only used interior nodes labeled by the clas-
sifier.

With the exception of the above differences,
all the other settings were the same in the four
experiments. Table 2 summarizes the SMT per-
formance.

Syntactic Constraints | BLEU
none 17.26

all nodes 16.83
frontier nodes 17.63
interior nodes 16.59

Table 2: Comparison of different constraints by
SMT quality

Clearly, we obtain the best performance if we
constrain the search with only frontier nodes.
Using just frontier yields a 0.8 BLEU point im-
provement over the baseline constraint-based
system which uses all the constraints.

On the other hand, constraints from interior
nodes result in the worst performance. This com-
parison shows it is necessary to explicitly distin-
guish nodes in the source parse trees when they
are used as reordering constraints.

The improvement over the system without
constraints is only modest. It may be too coarse
to use pare trees as hard constraints. We believe
a greater improvement can be expected if we ap-
ply our idea to finer-grained approaches that use
constraints softly (Marton and Resnik (2008) and
Cherry (2008)).

5 Conclusion and Future Work

We propose a selectively approach to syntactic
constraints during decoding. A classifier is built
automaticaly to decide whether a node in the
parse trees should be used as a reordering con-
straint or not. Preliminary results show that it is
not only advantageous but necessary to explicitly
distinguish between frontier nodes and interior
nodes.

The idea of selecting syntactic constraints is
compatible with the idea of using constraints
softly; we plan to combine the two ideas and ob-
tain further improvementsin future work.
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Abstract

We present a novel method to improve
word alignment quality and eventually the
translation performance by producing and
combining complementary word align-
ments for low-resource languages. Instead
of focusing on the improvement of a single
set of word alignments, we generate mul-
tiple sets of diversified alignments based
on different motivations, such as linguis-
tic knowledge, morphology and heuris-
tics. We demonstrate this approach on an
English-to-Pashto translation task by com-
bining the alignments obtained from syn-
tactic reordering, stemming, and partial
words. The combined alignment outper-
forms the baseline alignment, with signif-
icantly higher F-scores and better transla-
tion performance.

Introduction

Most of the research on alignment combination
in the past has focused on how to combine the
alignments from two different directions, source-
to-target and target-to-source. Usually people start
from the intersection of two sets of alignments,
and gradually add links in the union based on
certain heuristics, as in (Koehn et al., 2003), to
achieve a better balance compared to using either
intersection (high precision) or union (high recall).
In (Ayan and Dorr, 2006) a maximum entropy ap-
proach was proposed to combine multiple align-
ments based on a set of linguistic and alignment
features. A different approach was presented in
(Deng and Zhou, 2009), which again concentrated
on the combination of two sets of alignments, but
with a different criterion. It tries to maximize the
number of phrases that can be extracted in the
combined alignments. A greedy search method
was utilized and it achieved higher translation per-
formance than the baseline.

More recently, an alignment selection approach
was proposed in (Huang, 2009), which com-

Word alignment usually serves as the startingoutes confidence scores for each link and prunes
point and foundation for a statistical machinethe links from multiple sets of alignments using
translation (SMT) system. It has received a signif-2 hand-picked threshold. The alignments used
icant amount of research over the years, notably ifn that work were generated from different align-
(Brown et al., 1993; Ittycheriah and Roukos, 2005;ers (HMM, block model, and maximum entropy
Fraser and Marcu, 2007; Hermjakob, 2009). Theynodel). In this work, we use soft voting with
all focused on the improvement of word alignmentweighted confidence scores, where the weights
models. In this work, we leverage existing align-can be tuned with a specific objective function.
ers and generate multiple sets of word alignmentd here is no need for a pre-determined threshold
based on complementary information, then comas used in (Huang, 2009). Also, we utilize var-
bine them to get the final alignment for phraseious knowledge sources to enrich the alignments
training. The resource required for this approactinstead of using different aligners. Our strategy is
is little, compared to what is needed to build a reato diversify and then combine in order to catch any
sonable discriminative alignment model, for ex-complementary information captured in the word
ample. This makes the approach especially apalignments for low-resource languages.

pealing for SMT on low-resource languages. The rest of the paper is organized as follows.
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We present three different sets of alignments in

Section 2 for an English-to-Pashto MT task. In s cc
Section 3, we propose the alignment combination
algorithm. The experimental results are reportedP veP | NP
in Section 4. We conclude the paper in Section 5. PRP$| NS

E: 7 are
2 Diversified Word Alignments o A‘ tALO hon s pame
We take an English-to-Pashto MT task as an exam- 11 your em,mLm ate  atd you thlm mt| Know

ple and create three sets of additional alignments
on top of the baseline alignment.

Figure 1. Alignment before/after VP-based re-

ordering.
Pashto is a subject-object-verb (SOV) language,

which puts verbs after objects. People have pro-

posed different syntactic rules to pre-reorder SOVA980), a widely applied algorithm to remove the
languages, either based on a constituent parse tré@mmon morphological and inflexional endings
(Drabek and Yarowsky, 2004; Wang et al., 2007)from words in English. For Pashto, we utilize

or dependency parse tree (Xu et al., 2009). Irft morphological decompostion algorithm that has
this work, we apply syntactic reordering for verb Peen shown to be effective for Arabic speech
phrases (VP) based on the English constituenf€cognition (Xiang et al., 2006). We start from a
parse. The VP-based reordering rule we apply ifixed set of affixes with 8 prefixes and 21 suffixes.

2.1 Syntactic Reordering

the work is: The prefixes and suffixes are stripped off from
the Pashto words under the two constraints:(1)
e VP(VBx,*) — VP(x, VBx) Longest matched affixes first; (2) Remaining stem

must be at least two characters long.
whereV Bx representy’ B, VBD,V BG, VBN,

VBP andV BZ. 2.3 Partial Word

In Figure 1, we show the reference allgnmentFor low-resource languages, we usually suffer
between an English sentence and the correspong,n, the data sparsity issue. Recently, a simple
ing Pashto translation, whefeis the original En- .04 \was presented in (Chiang et al., 2009),

glish sentencep S the Pashto sentence (in ro-, hich keeps partial English and Urdu words in the
manized text), and” is the English sentence after training data for alignment training. This is similar

reordering. As we can see, after the VP-based 16 yhe stemming method, but is more heuristics-
ordering, the alignment between the two Sentence se and does not rely on a set of available af-
becomes monotone, which makes it easier for thg, oo \ith the same motivation, we keep the first
aligner to get the alignment correct. During they oparacters of each English and Pashto word to

reordering of English sentences, we store the ingenarate one more alternative for the word align-
dex changes for the English words. After getting o

the alignment trained on the reordered English and

original Pashto sentence pairs, we map the EnglisB  Confidence-Based Alignment

words back to the original order, along with the  Combination

learned alignment links. In this way, the align-

ment is ready to be combined with the baselindNow we describe the algorithm to combine mul-

alignment and any other alternatives. tiple sets of word alignments based on weighted
_ confidence scores. Supposgy; is an alignment
2.2 Stemming link in the i-th set of alignments between thieth

Pashto is one of the morphologically rich lan-source word and-th target word in sentence pair
guages. In addition to the linguistic knowledge ap-(S,T). Similar to (Huang, 2009), we define the
plied in the syntactic reordering described aboveconfidence ofi;;; as

we also utilize morphological analysis by applying
stemming on both the English and Pashto sidesc(a;;x|S,T) = \/qsgt(aijk‘s, T)qr2s(aiji|T, S),
For English, we use Porter stemming (Porter, (1)
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where the source-to-target link posterior probabil-apply grow-diagonal-final gdf). The decoding

ity weights are optimized with minimum error rate
training (MERT) (Och, 2003) to maximize BLEU
Gsat(aij] S, T) = Kpi(t“sj) . (2) scores (Papineni et al., 2002). There are 2028 sen-
2i—1piltr|s;) tences in the tuning set and 1019 sentences in the

and the target-to-source link posterior probabilityteSt set, both W'th one reference. We use another
150 sentence pairs as a heldout hand-aligned set

qr2s(aiji|T, S) is defined similarly. p;(tx|s;) is . )
the lexical translation probability between sourcel® Measure the word alignment quality. The three

word s; and target word,, in the i-th set of align- sets of alignments descrlped in Section 2 are gen-
ments. erated on the same training data separately with

Our alignment combination algorithm is as fol- G_IZA++ and enhanceq bgdf as for the baseline
alignment. The English parse tree used for the
syntactic reordering was produced by a maximum
1. Each candidate link;;, gets soft votes from entropy based parser (Ratnaparkhi, 1997).
N sets of alignments via weighted confidence
scores: 4.2 Improvement in Word Alignment

lows.

N
v(ajk|S, T) = Zwi * c(aijk|S, T), (3)

i=1

In Table 1 we show the precision, recall and F-

score of each set of word alignments for the 150-
sentence set. Using partial word provides the high-
where the weightv; for each set of alignment est F-score among all individual alignments. The

can be optimized under various criteria. InF-score is 5% higher than for the baseline align-

this work, we tune it on a hand-aligned de-ment. The VP-based reordering itself does not im-
velopment set to maximize the alignment F-prove the F-score, which could be due to the parse
score. errors on the conversational training data. We ex-
periment with three options, c;, c2) when com-

2. All candidates are sorted by soft votes in de'bining the baseline and reordering-based align-

scending order and evaluated sequentially. A?nents. Incy, the weightaw; and confidence scores
candidate linka,y, is included if one of the c(agielS T),in Eq. (3) are all set to 1 I,
1] ) . : '

following is true: we set confidence scores to 1, while tuning the
e Neithers; nort, is aligned so far; weights with hill climbing to maximize the F-
e 5; is not aligned and its left or right Score on a hand-aligned tuning setchhwe com-
neighboring word is aligned t, so far;  Pute the confidence scores as in Eq. (1) and tune
e #, is not aligned and its left or right theweights asia;. The numbers in Table 1 show
neighboring word is aligned te; so far. the effectiveness of having both weights and con-
fidence scores during the combination.
3. Repeat scanning all candidate links until no Similarly, we combine the baseline with each
more links can be added. of the other sets of alignments using. They
In this way, those alignment links with higher all result in sigpificantly higher F-scores. We.
confidence scores have higher priority to be in-jvlz:) dge&e{r?tia%ll'gnl?:;? s;m\gz'r;eﬂ?fe;(;npdart'al
cluded in the combined alignment. B + V + P. The better results witl? + V + P
4 Experiments show the benefit of keeping the alignments as di-
versified as possible before the combination. Fi-
nally, we compare the proposed alignment combi-
Our training data contains around 70K English-nationc, with the heuristics-based methoghf),
Pashto sentence pairs released under the DARPAhere the latter starts from the intersection of all 4
TRANSTAC project, with about 900K words on sets of alignments and then applies grow-diagonal-
the English side. The baseline is a phrase-basefihal (Koehn et al., 2003) based on the links in
MT system similar to (Koehn et al., 2003). We the union. The proposed combination approach on
use GIZA++ (Och and Ney, 2000) to generateB + V + S + P results in close to 7% higher F-
the baseline alignment for each direction and therscores than the baseline and also 2% higher than

4.1 Baseline
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gdf. We also notice that its higher F-score is| Alignment | Comb | Links | Phrase| BLEU

mainly due to the higher precision, which should| Baseline 963K | 565K | 12.67
result from the consideration of confidence scores. v 965K | 624K | 12.82

_ 15K 2K | 13.04
[Alignment [Comb| P | R [ F ||, 006K | 716K | 13.30
Baseline 0.6923| 0.6414| 0.6659| | x 911K | 689K | 13.00
Vv 0.6934| 0.6388| 0.6650| g1V o 870K | 890K | 13.20
S 0.7376| 0.6495| 0.6907| | g1y o 865K | 899K | 13.32
P 0.7665| 0.6643| 0.7118| | g1y o 874K | 879K | 13.60
X 0.7615)| 0.6641| 0.7095| | g4g o 864K | 948K | 13.41
B+V o 0.7639| 0.6312| 0.6913| | g+p co 863K | 942K | 13.40
B+V c1 0.7645| 0.6373| 0.6951| [ BFx o 871K | 905K | 13.37
B+V Co 0.7895| 0.6505| 0.7133| | g+y+p o 880K | 914K | 13.60
B+S ¢z | 0.79421 0.6553) 0.718 | "Ri7y i P | cat | 3749K | 1258K | 13.01
B+P c | 08006 0.6612| 0.7242| | gy\/4g4p | gdf | 1021K | 653K | 13.14
B+X Co 0.7827| 0.6670| 0.7202| | g+yv+S+p o 907K | 771K | 13.73
B+V+P Co 0.7912| 0.6755| 0.7288

B+V+S+P gdf | 0.7238| 0.7042| 0.7138| Table 2: Improvement in BLEU scores (B: base-
B+V+S+P c2 0.7906| 0.6852| 0.7342| line; V: VP-based reordering; S: stemming; P: par-

. . tial word; X: VP-reordered partial word).
Table 1. Alignment precision, recall and F-score

(B: baseline; V: VP-based reordering; S: stem-

ming; P: partial word; X: VP-reordered partial both higher F-score and higher BLEU score. The
word). combination approach itself is not limited to any

specific alignment. It provides a general frame-
work that can take advantage of as many align-
4.3 Improvement in MT Performance ments as possible, which could differ in prepro-

In Table 2, we show the corresponding BLEU cessing, alignment modeling, or any other aspect.
scores on the test set for the systems built on each

set of word alignment in Table 1. Similar to the Acknowledgments
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Abstract

This paper presents an efficient imple-
mentation of linearised lattice minimum
Bayes-risk decoding using weighted finite
state transducers. We introduce transduc-
ers to efficiently count lattice paths con-
taining n-grams and use these to gather
the required statistics. We show that these
procedures can be implemented exactly
through simple transformations of word
sequences to sequencesnefframs. This
yields a novel implementation of lattice
minimum Bayes-risk decoding which is
fast and exact even for very large lattices.

Introduction

once. It is the efficient computation of these path
posteriorn-gram probabilities that is the primary
focus of this paper. We will show how general
purpose WFST algorithms can be employed to ef-
ficiently computep(u|€) for all u € N.

Tromble et al. (2008) use Equation (1) as an
approximation to the general form of statistical
machine translation MBR decoder (Kumar and
Byrne, 2004):

E = argmin »  L(E, E')P(E|F)
EeE EcE

®3)

The approximation replaces the sum over all paths
in the lattice by a sum over lattioe-grams. Even
though a lattice may have mamygrams, it is
possible to extract and enumerate them exactly

This paper focuses on an exact impIementatioHVhereaS this is often impossible for individual

of the linearised form of lattice minimum Bayes-
risk (LMBR) decoding using general purpose
weighted finite state transducer (WFST) opera
tionst. The LMBR decision rule in Tromble et al.

(2008) has the form

E = argmax{QO\E’| + Z Qu#u(El)p(u|5)}
E'e&

ueN

(1)

wheref is a lattice of translation hypotheses,

is the set of alln-grams in the lattice (typically,

paths. Therefore, while the Tromble et al. (2008)
linearisation of the gain function in the decision

rule is an approximation, Equation (1) can be com-

puted exactly even over very large lattices. The
challenge is to do so efficiently.

If the quantityp(u|€) had the form of a condi-
tional expected count

c(ul€) = 3 #u(B)P(E|F),

Ee&

(4)

it could be computed efficiently using counting

n = 1...4), and the parametedsare constants ansqycers (Allauzen et al., 2003). The statis-
estimated on held-out data. The quaniify|&)

we refer to as the path posterior probability of the
n-gramu. This particular posterior is defined as

where&, = {FE € £ : #,(F) > 0} is the sub-
set of lattice paths containing thegramu at least

p(ul€) = p(&ul€) = > P(EIF), (2)

Ee&y

We omit an introduction to WFSTSs for space reasons.
See Mohri et al. (2008) for details of the general purpose

WEST operations used in this paper.

tic c(u|€) counts the number of times anrgram
occurs on each path, accumulating the weighted
count over all paths. By contrast, what is needed
by the approximation in Equation (1) is to iden-
tify all paths containing an-gram and accumulate
their probabilities. The accumulation of probabil-
ities at the path level, rather than thegram level,
makes the exact computationeffu|£) hard.
Tromble et al. (2008) approach this problem by
building a separate word sequence acceptor for
eachn-gram in A/ and intersecting this acceptor

Proceedings of the ACL 2010 Conference Short Papers, pages 27-32,
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with the lattice to discard all paths that do not con-quences ta.-gram sequences of order ®,, has a
tain then-gram; they then sum the probabilities of similar form to the WFST implementation of an
all paths in the filtered lattice. We refer to this asgram language model (Allauzen et al., 200®),
the sequential methqdsincep(u|€) is calculated includes for each-gramu = w} arcs of the form:
separately for each in sequence.

Allauzen et al. (2010) introduce a transducer @ WY
for simultaneous calculation @f(u|£) for all un-
igramsw € Ny in a lattice. This transducer is  tq,,_gram lattice of orden is calleds,, and is
effective for finding path posterior probabilities of found by composing o ®,,, projecting on the out-
ny

unigrams because there are relatively few uniqu%ut, removinge-arcs, determinizing, and minimis-
unigrams in the lattice. As we will show, however, ing. The construction of,, is fast even for large

itis less efficient for higher-order-grams. lattices and is memory efficient£, itself may
Allauzen et al. (2010) use exact statistics forhave more states thahdue to the association of
the unigram path posterior probabilities in Equa-gjstinct,,-gram histories with states. However, the
tion (1), but use the conditional expected counts,,nting transducer for unigrams is simpler than
of Eguatlon (4) for higher-orden-grams. Their the corresponding counting transducer for higher-
hybrid MBR decoder has the form ordern-grams. As a result, counting unigrams in

J o argmax{eo\E’| &, is easier than counting-grams in€.
E'eg
3 Efficient Path Countin
Y G E ) J

ueN:1<|u|<k Associated with each,, we have a transducdr,,
, which can be used to calculate the path posterior
+ Y. Ou#u(E )C(“|5)}7 ) probabilitiesp(u|€) for all w € N,,. In Figures
ueN:k<|u|<4 1 and 2 we give two possible forfsf U,, that
where k determines the range of-gram orders can be used to compute path posterior probabilities
at which the path posterior probabilitiegu|&)  overn-gramsu, » € N, for somen. No modifica-
of Equation (2) and conditional expected countsion to thep-arc matching mechanism is required
c(u|€) of Equation (4) are used to compute theeven in counting higher-order-grams since ath-
expected gain. Fok < 4, Equation (5) is thus grams are represented as individual symbols after
an approximation to the approximation. In manyapplication of the mapping transducgy,.
cases it will be perfectly fine, depending on how Transducerr. is used by Allauzen et al. (2010)
closelyp(ul€) andc(ul€) agree for higher-order to compute the exact unigram contribution to the
n-grams. Experimentally, Allauzen et al. (2010) conditional expected gain in Equation (5). For ex-
find this approximation works well d = 1 for  ample, in counting paths that contain, ¥~ re-
MBR decoding of statistical machine translationtains thefirst occurrence ofu; and maps every
lattices. However, there may be scenarios in whiclbther symbol tee. This ensures that in any path
p(u|€) andc(u|€) differ so that Equation (5) is no containing a giveny, only the firstu is counted,
longer useful in place of the original Tromble et avoiding multiple counting of paths.
al. (2008) approximation. We introduce an alternative path counting trans-
In the following sections, we present an efficientducer U ? that effectively deletes all symbols ex-
method for simultaneous calculationfu|€) for  cept thelast occurrence of. on any path by en-
n-grams of a fixed order. While other fast MBR suring that any paths in composition which count
approximations are possible (Kumar et al., 2009)earlier instances of; do not end in a final state.
we show how the exact path posterior probabilitiesviultiple counting is avoided by counting only the
can be calculated and applied in the implementagst occurrence of each symhobn a path.
tion of Equation (1) for efficient MBR decoding  We note that initiale:e arcs in ¥ effectively
over lattices. create |\,,| copies of&, in composition while

2 N-gram Mapping Transducer searching for the first occurrence of eachCom-

. . The special composition symbel matches any arcp
We make use of a trick to count higher-order matches any arc other than those with an explicit transition

grams. We build transducdr,, to map word se- See the OpenFst documentation: http://openfst.org
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More than one final state may gather probabilities
for the sameu; to computep(u|€) these proba-
bilities are added. The forward algorithm requires
that&,, o ¥ be topologically sorted; although sort-
ing can be slow, it is still quicker than log semiring
e-removal and determinization.

The statistics gathered by the forward algo-
rithm could also be gathered under the expectation
semiring (Eisner, 2002) with suitably defined fea-
tures. We take the view that the full complexity of
that approach is not needed here, since only one
symbol is introduced per path and per exit state.

Unlike &, o ¥Z, the compositior€,, o UL does
not segregate paths hy such that there is a di-
rect association between final states and symbols.
The forward algorithm does not readily yield the
per-symbol probabilities, although an arc weight
vector indexed by symbols could be used to cor-
rectly aggregate the required statistics (Riley et al.,
2009). For largeV,, this would be memory in-
tensive. The association between final states and
symbols could also be found by label pushing, but
posing withUZ creates a single copy &f, while  we find this slow for large,, o U,,.
searching for the last occurrencewgfwe find this
to be much more efficient for larg¥’,.

Path posterior probabilities are calculated oveln contrast to Equation (5), we use the exact values
each¢,, by composing withd,, in the log semir- of p(u|€) for all w € N,, at ordersn = 1...4to
ing, projecting on the output, removirearcs, de- compute
terminizing, minimising, and pushing weights to
the initial state (Allauzen et al., 2010). Using ei- . { 4 } ©)

Figure 1. Path counting transduc&’ matching
first (left-most) occurrence of eache N,,.

Figure 2: Path counting transducéf® matching
last (right-most) occurrence of eaghe N,.

4 Efficient Decoder Implementation

o . / /
therWZ or w1, the resulting counts acceptoris. E= e bl B[+ gn(E, E)
It has a compact form with one arc from the start n=1

state for each; € N,,: whereg, (B, E') = 3, cx.. Outtu(E')p(ul€) us-
G ui /- log p(us|€ ing the exact path posterior probabilities at each
E order. We make acceptof3,, such that€ o €2,

assigns orden partial gaing,, (E, E’) to all paths

E € &. Q, is derived from®,, directly by assign-
ing arc weigh®,, x p(u|€) to arcs with output label

u and then projecting on the input labels. For each
n-gramu = wf in N, arcs of(2,, have the form:

3.1 Efficient Path Posterior Calculation

Although X, has a convenient and elegant form,
it can be difficult to build for largeV,, because
the compositiong,, o ¥,, results in millions of

states and arcs. The log semiriagemoval and @ Wi /0y X p(ul€) ;< :>
.. . . s wy

determinization required to sum the probabilities

of paths labelled with eaci can be slow.

However, if we use the proposdd?, then each 10 apply 6o we make a copy of, called &,
path in&, o UX has only one nom-output la-  With fixed weightt, on all arcs. The decoder is

bel u and all paths leading to a given final stateformed as the compositiagh o €21 0 23 0 3 0 {2y
share the same. A modified forward algorithm @ndE is extracted as the maximum cost string.

can be used to Calcu'?@u‘g.) without the C.C.JS“Y 5 Lattice Generation for LMBR

e-removal and determinization. The modification

simply requires keeping track of which symbol Lattice MBR decoding performance and effi-
u IS encountered along each path to a final stateciency is evaluated in the context of the NIST
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mt0205tune| mt0205test| mtO8nw | mtO8ng

ML 54.2 53.8 51.4 36.3
0 52.6 52.3 49.8 34.5

I 1 54.8 54.4 52.2 36.6
2 54.9 54.5 52.4 36.8

3 54.9 54.5 52.4 36.8
LMBR 55.0 54.6 52.4 36.8

Table 1: BLEU scores for Arabie English maximum likelihood translation (ML), MBR decodinging
the hybrid decision rule of Equation (5) @ & < 3, and regular linearised lattice MBR (LMBR).

mt0205tune| mt0205test| mtO8nw | mt08ng

sequential 3160 3306 2090 3791
Posteriors| Wk 6880 7387| 4201| 8796
V2 1746 1789 1182 2787

Decoding sequential 4340 4530 2225 4104
v, 284 319 118 197

sequential 7711 8065 4437 8085

Total 22 7458 8075 4495 9199
28 2321 2348 1468 3149

Table 2: Time in seconds required for path posterigram probability calculation and LMBR decoding
using sequential method and left-m@$t>) or right-most(¥ %) counting transducer implementations.

Arabic—English machine translation task The p = 0.85 and average recall ratio = 0.74. Our
development set mt0205tune is formed from thdranslation decoder and MBR procedures are im-
odd numbered sentences of the NIST MTO02-plemented using OpenFst (Allauzen et al., 2007).
MTO5 testsets; the even numbered sentences form
the validation set mt0205test. Performance org LMBR Speed and Performance
NIST MTO08 newswire (mt0O8nw) and newsgroup
(mt08ng) data is also reported. Lattice MBR decoding performance is shown in
First-pass translation is performed using HiFSTTable 1. Compared to the maximum likelihood
(Iglesias et al., 2009), a hierarchical phrase-basetianslation hypotheses (row ML), LMBR gives
decoder. Word alignments are generated usingains of +0.8 to +1.0 BLEU for newswire data and
MTTK (Deng and Byrne, 2008) over 150M words +0.5 BLEU for newsgroup data (row LMBR).
of parallel text for the constrained NIST MTO8 The other rows of Table 1 show the performance
Arabic—English track. In decoding, a Shallow- of LMBR decoding using the hybrid decision rule
1 grammar with a single level of rule nesting is of Equation (5) for0 < k& < 3. When the condi-
used and no pruning is performed in generatingional expected countgu|&) are used at all orders
first-pass lattices (lglesias et al., 2009). (i.e. k = 0), the hybrid decoder BLEU scores are
The first-pass language model is a modifiedconsiderably lower than even the ML scores. This
Kneser-Ney (Kneser and Ney, 1995) 4-gram estipoor performance is because there are many un-
mated over the English parallel text and an 881Mgrams« for which c(u|€) is much greater than
word subset of the GigaWord Third Edition (Graff p(u|€). The consensus translation maximising the
et al.,, 2007). Prior to LMBR, the lattices are conditional expected gain is then dominated by
rescored with large stupid-backoff 5-gram lan-unigram matches, significantly degrading LMBR
guage models (Brants et al., 2007) estimated ovetecoding performance. Table 1 shows that for
more than 6 billion words of English text. these lattices the hybrid decision rule is an ac-
Then-gram factord,, . . . , 6, are set according curate approximation to Equation (1) only when

to Tromble et al. (2008) using unigram precisionk = 2 and the exact contribution to the gain func-
tion is computed using the path posterior probabil-
Shttp:/ivww.itl.nist.gov/iad/mig/tests/mt ities at orders: = 1 andn = 2.
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We now analyse the efficiency of lattice MBR
decoding using the exact path posterior probabil | | | | | s
ities of Equation (2) at all orders. We note that o sequential
the sequential method and both simultaneous im - simultaneouspy,
plementations using path counting transducets
and U7 yield the same hypotheses (allowing for
numerical accuracy); they differ only in speed and
memory usage.

o
3
o°8

o
=)
T

total time (seconds)
o @

Posteriors Efficiency Computation times for
the steps in LMBR are given in Table 2. In calcu- 10}
lating path posterion-gram probabilitieg(u|E),

we find that the use oftZ is more than twice
as slow as the sequential method. This is due tu
the difficulty of counting higher-ordeti-grams in
large lattices. UL is effective for counting uni-
grams, however, since there are far fewer of them.
Using ¥ is almost twice as fast as the sequentiakriteria should be implemented exactly where pos-
method. This speed difference is due to the simsible, so that it is clear exactly what the system is
ple forward algorithm. We also observe that fordoing. For machine translation lattices, conflat-
higher-ordem, the compositiort,, o ¥ requires  ing the values ofp(u|€) and c(u|&) for higher-

less memory and produces a smaller machine thaordern-grams might not be a serious problem, but
£, o UL 1t is easier to count paths by the final in other scenarios — especially where symbol se-
occurrence of a symbol than by the first. guences are repeated multiple times on the same

] o o __ path —it may be a poor approximation.
Decoding Efficiency Decoding times are signif- ~ \va note that since much of the time in calcula-

icantly fazter uds,'n@ff thap the sec:juennal metr&od; tion is spent dealing witk-arcs that are ultimately
average decoding tlme IS aroyn 0.1 se_con S p‘?Emoved, an optimised composition algorithm that
sentence. The total time required for lattice MBRSkiIOS over such redundant structure may lead to

is dominated by the calculation of the path POS+ rther improvements in time efficiency.
terior n-gram probabilities, and this is a func-

tion of the number of:-grams in the latticé\'|.  Acknowledgments

For each sentence in mt0205tune, Figure 3 plots

the total LMBR time for the sequential method This work was supported in part under the
(marked ‘0’) and for probabilities computed using GALE program of the Defense Advanced Re-
U2 (marked ‘+’). This compares the two tech- search Projects Agency, Contract No. HR0011-
niques on a sentence-by-sentence basis.|Mjs 06-C-0022.

grows, the simultaneous path counting transducer

is found to be much more efficient.

2001 . 30‘00 40‘00 50‘00 6000
Yatticén-grams

Figure 3: Total time in seconds versug|.
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Abstract

We investigate coreference relationships
between NPs with the same head noun.
It is relatively common in unsupervised
work to assume that such pairs are
coreferent— but this is not always true, es-
pecially if realistic mention detection is
used. We describe the distribution of non-
coreferent same-head pairs in news text,
and present an unsupervised generative
model which learns not to link some same-
head NPs using syntactic features, improv-
ing precision.

1 Introduction

Full NP coreference, the task of discovering which
non-pronominal NPs in a discourse refer to the
same entity, is widely known to be challenging.
In practice, however, most work focuses on the
subtask of linking NPs with different head words.
Decisions involving NPs with the same head word
have not attracted nearly as much attention, and
many systems, especially unsupervised ones, op-
erate under the assumption that all same-head
pairs corefer. This is by no means always the case—
there are several systematic exceptions to the rule.
In this paper, we show that these exceptions are
fairly common, and describe an unsupervised sys-
tem which learns to distinguish them from coref-
erent same-head pairs.

There are several reasons why relatively little
attention has been paid to same-head pairs. Pri-
marily, this is because they are a comparatively
easy subtask in a notoriously difficult area; Stoy-
anov et al. (2009) shows that, among NPs headed
by common nouns, those which have an exact
match earlier in the document are the easiest to
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resolve (variant MUC score .82 on MUC-6) and
while those with partial matches are quite a bit
harder (.53), by far the worst performance is on
those without any match at all (.27). This effect
is magnified by most popular metrics for coref-
erence, which reward finding links within large
clusters more than they punish proposing spu-
rious links, making it hard to improve perfor-
mance by linking conservatively. Systems that
use gold mention boundaries (the locations of NPs
marked by annotators)' have even less need to
worry about same-head relationships, since most
NPs which disobey the conventional assumption
are not marked as mentions.

In this paper, we count how often same-head
pairs fail to corefer in the MUC-6 corpus, show-
ing that gold mention detection hides most such
pairs, but more realistic detection finds large num-
bers. We also present an unsupervised genera-
tive model which learns to make certain same-
head pairs non-coreferent. The model is based
on the idea that pronoun referents are likely to
be salient noun phrases in the discourse, so we
can learn about NP antecedents using pronom-
inal antecedents as a starting point. Pronoun
anaphora, in turn, is learnable from raw data
(Cherry and Bergsma, 2005; Charniak and Elsner,
2009). Since our model links fewer NPs than the
baseline, it improves precision but decreases re-
call. This tradeoff is favorable for CEAF, but not
for b3.

2 Related work

Unsupervised systems specify the assumption of
same-head coreference in several ways: by as-
'Gold mention detection means something slightly differ-

ent in the ACE corpus, where the system input contains every
NP annotated with an entity type.

Proceedings of the ACL 2010 Conference Short Papers, pages 33-37,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



sumption (Haghighi and Klein, 2009), using
a head-prediction clause (Poon and Domingos,
2008), and using a sparse Dirichlet prior on word
emissions (Haghighi and Klein, 2007). (These
three systems, perhaps not coincidentally, use gold
mentions.) An exception is Ng (2008), who points
out that head identity is not an entirely reliable cue
and instead uses exact string match (minus deter-
miners) for common NPs and an alias detection
system for proper NPs. This work uses mentions
extracted with an NP chunker. No specific results
are reported for same-head NPs. However, while
using exact string match raises precision, many
non-matching phrases are still coreferent, so this
approach cannot be considered a full solution to
the problem.

Supervised systems do better on the task, but
not perfectly. Recent work (Stoyanov et al., 2009)
attempts to determine the contributions of various
categories of NP to coreference scores, and shows
(as stated above) that common NPs which partially
match an earlier mention are not well resolved by
the state-of-the-art RECONCILE system, which
uses pairwise classification. They also show that
using gold mention boundaries makes the corefer-
ence task substantially easier, and argue that this
experimental setting is “rather unrealistic”.

3 Descriptive study: MUC-6

We begin by examining how often non-same-head
pairs appear in the MUC-6 coreference dataset.
To do so, we compare two artificial coreference
systems: the link-all strategy links all, and only,
full (non-pronominal) NP pairs with the same head
which occur within 10 sentences of one another.
The oracle strategy links NP pairs with the same
head which occur within 10 sentences, but only if
they are actually coreferent (according to the gold
annotation)? The link-all system, in other words,
does what most existing unsupervised systems do
on the same-head subset of NPs, while the oracle
system performs perfectly.

We compare our results to the gold standard us-
ing two metrics. b3(Bagga and Baldwin, 1998)
is a standard metric which calculates a precision
and recall for each mention. The mention CEAF
(Luo, 2005) constructs a maximum-weight bipar-

2The choice of 10 sentences as the window size captures
most, but not all, of the available recall. Using nouns mention
detection, it misses 117 possible same-head links, or about
10%. However, precision drops further as the window size
increases.
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tite matching between gold and proposed clusters,
then gives the percentage of entities whose gold
label and proposed label match. b gives more
weight to errors involving larger clusters (since
these lower scores for several mentions at once);
for mention CEAF, all mentions are weighted
equally.

We annotate the data with the self-trained Char-
niak parser (McClosky et al., 2006), then extract
mentions using three different methods. The gold
mentions method takes only mentions marked by
annotators. The nps method takes all base noun
phrases detected by the parser. Finally, the nouns
method takes all nouns, even those that do not
head NPs; this method maximizes recall, since it
does not exclude prenominals in phrases like “a
Bush spokesman”. (High-precision models of the
internal structure of flat Penn Treebank-style NPs
were investigated by Vadas and Curran (2007).)
For each experimental setting, we show the num-
ber of mentions detected, and how many of them
are linked to some antecedent by the system.

The data is shown in Table 1. b shows a large
drop in precision when all same-head pairs are
linked; in fact, in the nps and nouns settings, only
about half the same-headed NPs are actually coref-
erent (864 real links, 1592 pairs for nps). This
demonstrates that non-coreferent same-head pairs
not only occur, but are actually rather common in
the dataset. The drop in precision is much less
obvious in the gold mentions setting, however;
most unlinked same-head pairs are not annotated
as mentions in the gold data, which is one reason
why systems run in this experimental setting can
afford to ignore them.

Improperly linking same-head pairs causes a
loss in precision, but scores are dominated by re-
call®. Thus, reporting b> helps to mask the impact
of these pairs when examining the final f-score.

We roughly characterize what sort of same-
headed NPs are non-coreferent by hand-
examining 100 randomly selected pairs. 39
pairs denoted different entities (“recent employ-
ees” vs “employees who have worked for longer™)
disambiguated by modifiers or sometimes by
discourse position. The next largest group (24)
consists of time and measure phrases like “ten
miles”. 12 pairs refer to parts or quantities

3This bias is exaggerated for systems which only link
same-head pairs, but continues to apply to real systems; for
instance (Haghighi and Klein, 2009) has a b precision of 84
and recall of 67.



Mentions Linked | b3 pr  rec F | mention CEAF
Gold mentions
Oracle 1929 1164 100 32.3 48.8 54.4
Link all 1929 1182 | 80.6 31.7 45.5 53.8
Alignment 1929 495 93.7 22.1 358 40.5
NPs
Oracle 3993 864 100 30.6 46.9 73.4
Link all 3993 1592 | 67.2 295 41.0 62.2
Alignment 3993 518 87.2 247 385 67.0
Nouns
Oracle 5435 1127 100 41.5 58.6 83.5
Link all 5435 2541 | 56.6 409 45.7 67.0
Alignment 5435 935 83.0 32.8 47.1 74.4

Table 1: Oracle, system and baseline scores on MUC-6 test data. Gold mentions leave little room
for improvement between baseline and oracle; detecting more mentions widens the gap between
them. With realistic mention detection, precision and CEAF scores improve over baselines, while recall

and f-scores drop.

(“members of...”), and 12 contained a generic
(“In a corporate campaign, a union tries...”). 9
contained an annotator error. The remaining 4
were mistakes involving proper noun phrases
headed by Inc. and other abbreviations; this case
is easy to handle, but apparently not the primary
cause of errors.

4 System

Our system is a version of the popular IBM model
2 for machine translation. To define our generative
model, we assume that the parse trees for the en-
tire document D are given, except for the subtrees
with root nonterminal NP, denoted n;, which our
system will generate. These subtrees are related
by a hidden set of alignments, a;, which link each
NP to another NP (which we call a generator) ap-
pearing somewhere before it in the document, or
to a null antecedent. The set of potential genera-
tors G (which plays the same role as the source-
language text in MT) is taken to be all the NPs
occurring within 10 sentences of the target, plus a
special null antecedent which plays the same role
as the null word in machine translation— it serves
as a dummy generator for NPs which are unrelated
to any real NP in G.

The generative process fills in all the NP nodes
in order, from left to right. This process ensures
that, when generating node n;, we have already
filled in all the NPs in the set GG (since these all
precede n;). When deciding on a generator for
NP n;, we can extract features characterizing its
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relationship to a potential generator g;. These fea-
tures, which we denote f(n;, gj, D), may depend
on their relative position in the document D, and
on any features of g;, since we have already gener-
ated its tree. However, we cannot extract features
from the subtree under n;, since we have yet to
generate it!

As usual for IBM models, we learn using EM,
and we need to start our alignment function off
with a good initial set of parameters. Since an-
tecedents of NPs and pronouns (both salient NPs)
often occur in similar syntactic environments, we
use an alignment function for pronoun corefer-
ence as a starting point. This alignment can be
learned from raw data, making our approach un-
supervised.

We take the pronoun model of Charniak and El-
sner (2009)* as our starting point. We re-express
it in the IBM framework, using a log-linear model
for our alignment. Then our alignment (parame-
terized by feature weights w) is:

plai = j|G, D) o« exp(f(ni, gj, D) o w)

The weights w are learned by gradient descent
on the log-likelihood. To use this model within
EM, we alternate an E-step where we calculate
the expected alignments E[a; = j], then an M-
step where we run gradient descent. (We have also
had some success with stepwise EM as in (Liang
and Klein, 2009), but this requires some tuning to
work properly.)

“Downloaded from http://bllip.cs.brown.edu.



As features, we take the same features as Char-
niak and Elsner (2009): sentence and word-count
distance between n; and g;, sentence position of
each, syntactic role of each, and head type of g;
(proper, common or pronoun). We add binary fea-
tures for the nonterminal directly over g; (NP, VP,
PP, any S type, or other), the type of phrases mod-
ifying g; (proper nouns, phrasals (except QP and
PP), QP, PP-of, PP-other, other modifiers, or noth-
ing), and the type of determiner of g; (possessive,
definite, indefinite, deictic, other, or nothing). We
designed this feature set to distinguish prominent
NPs in the discourse, and also to be able to detect
abstract or partitive phrases by examining modi-
fiers and determiners.

To produce full NPs and learn same-head coref-
erence, we focus on learning a good alignment
using the pronoun model as a starting point. For
translation, we use a trivial model, p(n;|gq,) = 1
if the two have the same head, and 0 otherwise,
except for the null antecedent, which draws heads
from a multinomial distribution over words.

While we could learn an alignment and then
treat all generators as antecedents, so that only
NPs aligned to the null antecedent were not la-
beled coreferent, in practice this model would
align nearly all the same-head pairs. This is
true because many words are “bursty”; the prob-
ability of a second occurrence given the first is
higher than the a priori probability of occurrence
(Church, 2000). Therefore, our model is actually a
mixture of two IBM models, pc and py, where po
produces NPs with antecedents and py produces
pairs that share a head, but are not coreferent. To
break the symmetry, we allow pc to use any pa-
rameters w, while py uses a uniform alignment,
w=0. We interpolate between these two models
with a constant ), the single manually set parame-
ter of our system, which we fixed at .9.

The full model, therefore, is:

p(ni|G, D) =\pr(n;|G, D)
+ (1= XNpn(ns|G, D)
pr(niG.D) = 3" cap(f(ni.g;. D) o w)

JEG
X ]I{head(nz-) =

7(n;|G, D) Z

jeaG

head(j)}

|G‘]I{head n;) = head(g;)}

NPs for which the maximum-likelihood gener-
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ator (the largest term in either of the sums) is from
pr and is not the null antecedent are marked as
coreferent to the generator. Other NPs are marked
not coreferent.

5 Results

Our results on the MUC-6 formal test set are
shown in Table 1. In all experimental settings,
the model improves precision over the baseline
while decreasing recall— that is, it misses some le-
gitimate coreferent pairs while correctly exclud-
ing many of the spurious ones. Because of the
precision-recall tradeoff at which the systems op-
erate, this results in reduced b® and link F. How-
ever, for the nps and nouns settings, where the
parser is responsible for finding mentions, the
tradeoff is positive for the CEAF metrics. For in-
stance, in the nps setting, it improves over baseline
by 57%.

As expected, the model does poorly in the gold
mentions setting, doing worse than baseline on
both metrics. Although it is possible to get very
high precision in this setting, the model is far too
conservative, linking less than half of the available
mentions to anything, when in fact about 60% of
them are coreferent. As we explain above, this ex-
perimental setting makes it mostly unnecessary to
worry about non-coreferent same-head pairs be-
cause the MUC-6 annotators don’t often mark
them.

6 Conclusions

While same-head pairs are easier to resolve than
same-other pairs, they are still non-trivial and de-
serve further attention in coreference research. To
effectively measure their effect on performance,
researchers should report multiple metrics, since
under b the link-all heuristic is extremely diffi-
cult to beat. It is also important to report results
using a realistic mention detector as well as gold
mentions.

Acknowledgements

We thank Jean Carletta for the SWITCHBOARD
annotations, and Dan Jurafsky and eight anony-
mous reviewers for their comments and sugges-
tions. This work was funded by a Google graduate
fellowship.



References

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In LREC Workshop on
Linguistics Coreference, pages 563-566.

Eugene Charniak and Micha Elsner. 2009. EM works
for pronoun anaphora resolution. In Proceedings of
FEACL, Athens, Greece.

Colin Cherry and Shane Bergsma. 2005. An Expecta-
tion Maximization approach to pronoun resolution.
In Proceedings of CoNLL, pages 88-95, Ann Arbor,
Michigan.

Kenneth W. Church. 2000. Empirical estimates of
adaptation: the chance of two Noriegas is closer to
p/2 than p?. In Proceedings of ACL, pages 180-186.

Aria Haghighi and Dan Klein. 2007. Unsupervised
coreference resolution in a nonparametric Bayesian
model. In Proceedings of ACL, pages 848—855.

Aria Haghighi and Dan Klein. 2009. Simple corefer-
ence resolution with rich syntactic and semantic fea-
tures. In Proceedings of EMNLP, pages 1152-1161.

Percy Liang and Dan Klein. 2009. Online EM for un-
supervised models. In HLT-NAACL.

Xiaoqgiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of HLI-EMNLP,
pages 25-32, Morristown, NJ, USA. Association for
Computational Linguistics.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of HLT-NAACL, pages 152—-159.

Vincent Ng. 2008. Unsupervised models for corefer-
ence resolution. In Proceedings of EMNLP, pages
640-649, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Hoifung Poon and Pedro Domingos. 2008. Joint unsu-
pervised coreference resolution with Markov Logic.
In Proceedings of EMNLP, pages 650-659, Hon-
olulu, Hawaii, October. Association for Computa-
tional Linguistics.

Veselin Stoyanov, Nathan Gilbert, Claire Cardie, and
Ellen Riloff. 2009. Conundrums in noun phrase
coreference resolution: Making sense of the state-
of-the-art. In Proceedings of ACL-IJCNLP, pages
656-664, Suntec, Singapore, August. Association
for Computational Linguistics.

David Vadas and James Curran. 2007. Adding noun
phrase structure to the penn treebank. In Proceed-
ings of ACL, pages 240-247, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

37



Authorship Attribution Using Probabilistic Context-Free Grammars

Sindhu Raghavan Adriana Kovashka Raymond Mooney
Department of Computer Science
The University of Texas at Austin
1 University Station C0500
Austin, TX 78712-0233, USA
{sindhu,adriana,mooney}@cs.utexas.edu

Abstract

In this paper, we present a novel approach
for authorship attribution, the task of iden-
tifying the author of a document, using
probabilistic context-free grammars. Our
approach involves building a probabilistic
context-free grammar for each author and
using this grammar as a language model
for classification. We evaluate the perfor-
mance of our method on a wide range of
datasets to demonstrate its efficacy.

1 Introduction

Natural language processing allows us to build
language models, and these models can be used
to distinguish between languages. In the con-
text of written text, such as newspaper articles or
short stories, the author’s style could be consid-
ered a distinct “language.” Authorship attribution,
also referred to as authorship identification or pre-
diction, studies strategies for discriminating be-
tween the styles of different authors. These strate-
gies have numerous applications, including set-
tling disputes regarding the authorship of old and
historically important documents (Mosteller and
Wallace, 1984), automatic plagiarism detection,
determination of document authenticity in court
(Juola and Sofko, 2004), cyber crime investiga-
tion (Zheng et al., 2009), and forensics (Luyckx
and Daelemans, 2008).

The general approach to authorship attribution
is to extract a number of style markers from the
text and use these style markers as features to train
a classifier (Burrows, 1987; Binongo and Smith,
1999; Diederich et al., 2000; Holmes and Forsyth,
1995; Joachims, 1998; Mosteller and Wallace,
1984). These style markers could include the
frequencies of certain characters, function words,
phrases or sentences. Peng et al. (2003) build a
character-level n-gram model for each author. Sta-
matatos et al. (1999) and Luyckx and Daelemans
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(2008) use a combination of word-level statistics
and part-of-speech counts or n-grams. Baayen et
al. (1996) demonstrate that the use of syntactic
features from parse trees can improve the accu-
racy of authorship attribution. While there have
been several approaches proposed for authorship
attribution, it is not clear if the performance of one
is better than the other. Further, it is difficult to
compare the performance of these algorithms be-
cause they were primarily evaluated on different
datasets. For more information on the current state
of the art for authorship attribution, we refer the
reader to a detailed survey by Stamatatos (2009).

We further investigate the use of syntactic infor-
mation by building complete models of each au-
thor’s syntax to distinguish between authors. Our
approach involves building a probabilistic context-
free grammar (PCFG) for each author and using
this grammar as a language model for classifica-
tion. Experiments on a variety of corpora includ-
ing poetry and newspaper articles on a number of
topics demonstrate that our PCFG approach per-
forms fairly well, but it only outperforms a bi-
gram language model on a couple of datasets (e.g.
poetry). However, combining our approach with
other methods results in an ensemble that performs
the best on most datasets.

2 Authorship Attribution using PCFG

We now describe our approach to authorship at-
tribution. Given a training set of documents from
different authors, we build a PCFG for each author
based on the documents they have written. Given
a test document, we parse it using each author’s
grammar and assign it to the author whose PCFG
produced the highest likelihood for the document.

In order to build a PCFG, a standard statistical
parser takes a corpus of parse trees of sentences
as training input. Since we do not have access to
authors’ documents annotated with parse trees,
we use a statistical parser trained on a generic
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corpus like the Wall Street Journal (WSJ) or
Brown corpus from the Penn Treebank (http:
//www.cis.upenn.edu/ treebank/)

to automatically annotate (i.e. treebank) the
training documents for each author. In our
experiments, we used the Stanford Parser (Klein
and Manning, 2003b; Klein and Manning,
2003a) and the OpenNLP sentence segmenter
(http://opennlp.sourceforge.net/).
Our approach is summarized below:

Input — A training set of documents labeled
with author names and a test set of documents with
unknown authors.

1. Train a statistical parser on a generic corpus
like the WSJ or Brown corpus.

Treebank each training document using the
parser trained in Step 1.

Train a PCFG G for each author A; using the
treebanked documents for that author.

For each test document, compute its likeli-
hood for each grammar G; by multiplying the
probability of the top PCFG parse for each
sentence.

. For each test document, find the author A;
whose grammar G; results in the highest like-
lihood score.

Output — A label (author name) for each docu-
ment in the test set.

3 Experimental Comparison

This section describes experiments evaluating our
approach on several real-world datasets.

3.1 Data

We collected a variety of documents with known
authors including news articles on a wide range of
topics and literary works like poetry. We down-
loaded all texts from the Internet and manually re-
moved extraneous information as well as titles, au-
thor names, and chapter headings. We collected
several news articles from the New York Times
online journal (http://global.nytimes.
com/) on topics related to business, travel, and
football. We also collected news articles on
cricket from the ESPN cricinfo website (http:
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//www.cricinfo.com). In addition, we col-
lected poems from the Project Gutenberg web-
site (http://www.gutenberg.org/wiki/
Main_Page). We attempted to collect sets of
documents on a shared topic written by multiple
authors. This was done to ensure that the datasets
truly tested authorship attribution as opposed to
topic identification. However, since it is very dif-
ficult to find authors that write literary works on
the same topic, the Poetry dataset exhibits higher
topic variability than our news datasets. We had
5 different datasets in total — Football, Business,
Travel, Cricket, and Poetry. The number of au-
thors in our datasets ranged from 3 to 6.

For each dataset, we split the documents into
training and test sets. Previous studies (Stamatatos
et al., 1999) have observed that having unequal
number of words per author in the training set
leads to poor performance for the authors with
fewer words. Therefore, we ensured that, in the
training set, the total number of words per author
was roughly the same. We would like to note that
we could have also selected the training set such
that the total number of sentences per author was
roughly the same. However, since we would like
to compare the performance of the PCFG-based
approach with a bag-of-words baseline, we de-
cided to normalize the training set based on the
number of words, rather than sentences. For test-
ing, we used 15 documents per author for datasets
with news articles and 5 or 10 documents per au-
thor for the Poetry dataset. More details about the
datasets can be found in Table 1.

Dataset # authors # words/auth # docs/auth # sent/auth
Football 3 14374.67 | 17.3 | 786.3
Business 6 112155 | 14.16 | 543.6

Travel 4 23765.75 28 1086
Cricket 4 23357.25 | 245 | 1189.5
Poetry 6 7261.83 | 24.16 329

Table 1: Statistics for the training datasets used in
our experiments. The numbers in columns 3, 4 and
5 are averages.

3.2 Methodology

We evaluated our approach to authorship predic-
tion on the five datasets described above. For news
articles, we used the first 10 sections of the WSJ
corpus, which consists of annotated news articles
on finance, to build the initial statistical parser in



Step 1. For Poetry, we used 7 sections of the
Brown corpus which consists of annotated docu-
ments from different areas of literature.

In the basic approach, we trained a PCFG model
for each author based solely on the documents
written by that author. However, since the num-
ber of documents per author is relatively low, this
leads to very sparse training data. Therefore, we
also augmented the training data by adding one,
two or three sections of the WSJ or Brown corpus
to each training set, and up-sampling (replicating)
the data from the original author. We refer to this
model as “PCFG-I”, where I stands for interpo-
lation since this effectively exploits linear interpo-
lation with the base corpus to smooth parameters.
Based on our preliminary experiments, we repli-
cated the original data three or four times.

We compared the performance of our approach
to bag-of-words classification and n-gram lan-
guage models. When using bag-of-words, one
generally removes commonly occurring ‘“stop
words.” However, for the task of authorship pre-
diction, we hypothesized that the frequency of
specific stop words could provide useful infor-
mation about the author’s writing style. Prelim-
inary experiments verified that eliminating stop
words degraded performance; therefore, we did
not remove them. We used the Maximum Entropy
(MaxEnt) and Naive Bayes classifiers in the MAL-
LET software package (McCallum, 2002) as ini-
tial baselines. We surmised that a discriminative
classifier like MaxEnt might perform better than
a generative classifier like Naive Bayes. How-
ever, when sufficient training data is not available,
generative models are known to perform better
than discriminative models (Ng and Jordan, 2001).
Hence, we chose to compare our method to both
Naive Bayes and MaxEnt.

We also compared the performance of the
PCFG approach against n-gram language models.
Specifically, we tried unigram, bigram and trigram
models. We used the same background corpus
mixing method used for the PCFG-I model to ef-
fectively smooth the n-gram models. Since a gen-
erative model like Naive Bayes that uses n-gram
frequencies is equivalent to an n-gram language
model, we also used the Naive Bayes classifier in
MALLET to implement the n-gram models. Note
that a Naive-Bayes bag-of-words model is equiva-
lent to a unigram language model.

While the PCFG model captures the author’s
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writing style at the syntactic level, it may not accu-
rately capture lexical information. Since both syn-
tactic and lexical information is presumably useful
in capturing the author’s overall writing style, we
also developed an ensemble using a PCFG model,
the bag-of-words MaxEnt classifier, and an n-
gram language model. We linearly combined the
confidence scores assigned by each model to each
author, and used the combined score for the final
classification. We refer to this model as “PCFG-
E”, where E stands for ensemble. We also de-
veloped another ensemble based on MaxEnt and
n-gram language models to demonstrate the con-
tribution of the PCFG model to the overall per-
formance of PCFG-E. For each dataset, we report
accuracy, the fraction of the test documents whose
authors were correctly identified.

3.3 Results and Discussion

Table 2 shows the accuracy of authorship predic-
tion on different datasets. For the n-gram mod-
els, we only report the results for the bigram
model with smoothing (Bigram-/) as it was the
best performing model for most datasets (except
for Cricket and Poetry). For the Cricket dataset,
the trigram-I model was the best performing n-
gram model with an accuracy of 98.34%. Gener-
ally, a higher order n-gram model (n = 3 or higher)
performs poorly as it requires a fair amount of
smoothing due to the exponential increase in all
possible n-gram combinations. Hence, the supe-
rior performance of the trigram-I model on the
Cricket dataset was a surprising result. For the
Poetry dataset, the unigram-/ model performed
best among the smoothed n-gram models at 81.8%
accuracy. This is unsurprising because as men-
tioned above, topic information is strongest in
the Poetry dataset, and it is captured well in the
unigram model. For bag-of-words methods, we
find that the generatively trained Naive Bayes
model (unigram language model) performs bet-
ter than or equal to the discriminatively trained
MaxEnt model on most datasets (except for Busi-
ness). This result is not suprising since our
datasets are limited in size, and generative models
tend to perform better than discriminative meth-
ods when there is very little training data available.
Amongst the different baseline models (MaxEnt,
Naive Bayes, Bigram-I), we find Bigram-/ to be
the best performing model (except for Cricket and
Poetry). For both Cricket and Poetry, Naive Bayes



Dataset MaxEnt | Naive Bayes | Bigram-/ | PCFG | PCFG-I | PCFG-E | MaxEnt+Bigram-/
Football | 84.45 86.67 86.67 | 93.34 80 91.11 86.67
Business | 83.34 77.78 90.00 | 77.78 | 85.56 | 91.11 92.22

Travel 83.34 83.34 91.67 | 81.67 | 86.67 91.67 90.00

Cricket | 91.67 95.00 91.67 | 86.67 | 91.67 95.00 93.34

Poetry 56.36 78.18 7090 | 78.18 | 83.63 87.27 76.36

Table 2: Accuracy in % for authorship prediction on different datasets. Bigram-I refers to the bigram
language model with smoothing. PCFG-FE refers to the ensemble based on MaxEnt, Bigram-/, and
PCFG-1. MaxEnt+Bigram-I refers to the ensemble based on MaxEnt and Bigram-I.

is the best performing baseline model. While dis-
cussing the performance of the PCFG model and
its variants, we consider the best performing base-
line model.

We observe that the basic PCFG model and the
PCFG-I model do not usually outperform the best
baseline method (except for Football and Poetry,
as discussed below). For Football, the basic PCFG
model outperforms the best baseline, while for
Poetry, the PCFG-I model outperforms the best
baseline. Further, the performance of the basic
PCFG model is inferior to that of PCFG-I for most
datasets, likely due to the insufficient training data
used in the basic model. Ideally one would use
more training documents, but in many domains
it is impossible to obtain a large corpus of doc-
uments written by a single author. For example,
as Luyckx and Daelemans (2008) argue, in foren-
sics one would like to identify the authorship of
documents based on a limited number of docu-
ments written by the author. Hence, we investi-
gated smoothing techniques to improve the perfor-
mance of the basic PCFG model. We found that
the interpolation approach resulted in a substan-
tial improvement in the performance of the PCFG
model for all but the Football dataset (discussed
below). However, for some datasets, even this
improvement was not sufficient to outperform the
best baseline.

The results for PCFG and PCFG-I demon-
strate that syntactic information alone is gener-
ally a bit less accurate than using n-grams. In or-
der to utilize both syntactic and lexical informa-
tion, we developed PCFG-FE as described above.
We combined the best n-gram model (Bigram-1I)
and PCFG model (PCFG-I) with MaxEnt to build
PCFG-E. For the Travel dataset, we find that the
performance of the PCFG-E model is equal to that
of the best constituent model (Bigram-I). For the
remaining datasets, the performance of PCFG-E

is better than the best constituent model. Further-
more, for the Football, Cricket and Poetry datasets
this improvement is quite substantial. We now
find that the performance of some variant of PCFG
is always better than or equal to that of the best
baseline. While the basic PCFG model outper-
forms the baseline for the Football dataset, PCFG-
FE outperforms the best baseline for the Poetry
and Business datasets. For the Cricket and Travel
datasets, the performance of the PCFG-E model
equals that of the best baseline. In order to as-
sess the statistical significance of any performance
difference between the best PCFG model and the
best baseline, we performed the McNemar’s test,
a non-parametric test for binomial variables (Ros-
ner, 2005). We found that the difference in the
performance of the two methods was not statisti-
cally significant at .05 significance level for any of
the datasets, probably due to the small number of
test samples.

The performance of PCFG and PCFG-1 is par-
ticularly impressive on the Football and Poetry
datasets. For the Football dataset, the basic PCFG
model is the best performing PCFG model and it
performs much better than other methods. It is sur-
prising that smoothing using PCFG-I actually re-
sults in a drop in performance on this dataset. We
hypothesize that the authors in the Football dataset
may have very different syntactic writing styles
that are effectively captured by the basic PCFG
model. Smoothing the data apparently weakens
this signal, hence causing a drop in performance.
For Poetry, PCFG-I achieves much higher accu-
racy than the baselines. This is impressive given
the much looser syntactic structure of poetry com-
pared to news articles, and it indicates the value of
syntactic information for distinguishing between
literary authors.

Finally, we consider the specific contribution of
the PCFG-I model towards the performance of
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the PCFG-FE ensemble. Based on comparing the
results for PCFG-E and MaxEnt+Bigram-1, we
find that there is a drop in performance for most
datasets when removing PCFG-I from the ensem-
ble. This drop is quite substantial for the Football
and Poetry datasets. This indicates that PCFG-1
is contributing substantially to the performance of
PCFG-E. Thus, it further illustrates the impor-
tance of broader syntactic information for the task
of authorship attribution.

4 Future Work and Conclusions

In this paper, we have presented our ongoing work
on authorship attribution, describing a novel ap-
proach that uses probabilistic context-free gram-
mars. We have demonstrated that both syntac-
tic and lexical information are useful in effec-
tively capturing authors’ overall writing style. To
this end, we have developed an ensemble ap-
proach that performs better than the baseline mod-
els on several datasets. An interesting extension
of our current approach is to consider discrimina-
tive training of PCFGs for each author. Finally,
we would like to compare the performance of our
method to other state-of-the-art approaches to au-
thorship prediction.
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Abstract

Supporting natural language input may
improve learning in intelligent tutoring
systems. However, interpretation errors
are unavoidable and require an effective
recovery policy. We describe an evaluation
of an error recovery policy in the BEE-
TLE II tutorial dialogue system and dis-
cuss how different types of interpretation
problems affect learning gain and user sat-
isfaction. In particular, the problems aris-
ing from student use of non-standard ter-
minology appear to have negative conse-
quences. We argue that existing strategies
for dealing with terminology problems are
insufficient and that improving such strate-
gies is important in future ITS research.

1 Introduction

There is a mounting body of evidence that student
self-explanation and contentful talk in human-
human tutorial dialogue are correlated with in-
creased learning gain (Chi et al., 1994; Purandare
and Litman, 2008; Litman et al., 2009). Thus,
computer tutors that understand student explana-
tions have the potential to improve student learn-
ing (Graesser et al., 1999; Jordan et al., 2006;
Aleven et al., 2001; Dzikovska et al., 2008). How-
ever, understanding and correctly assessing the
student’s contributions is a difficult problem due
to the wide range of variation observed in student
input, and especially due to students’ sometimes
vague and incorrect use of domain terminology.
Many tutorial dialogue systems limit the range
of student input by asking short-answer questions.
This provides a measure of robustness, and previ-
ous evaluations of ASR in spoken tutorial dialogue
systems indicate that neither word error rate nor
concept error rate in such systems affect learning
gain (Litman and Forbes-Riley, 2005; Pon-Barry
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et al., 2004). However, limiting the range of pos-
sible input limits the contentful talk that the stu-
dents are expected to produce, and therefore may
limit the overall effectiveness of the system.

Most of the existing tutoring systems that accept
unrestricted language input use classifiers based
on statistical text similarity measures to match
student answers to open-ended questions with
pre-authored anticipated answers (Graesser et al.,
1999; Jordan et al., 2004; McCarthy et al., 2008).
While such systems are robust to unexpected ter-
minology, they provide only a very coarse-grained
assessment of student answers. Recent research
aims to develop methods that produce detailed
analyses of student input, including correct, in-
correct and missing parts (Nielsen et al., 2008;
Dzikovska et al., 2008), because the more detailed
assessments can help tailor tutoring to the needs of
individual students.

While the detailed assessments of answers to
open-ended questions are intended to improve po-
tential learning, they also increase the probabil-
ity of misunderstandings, which negatively impact
tutoring and therefore negatively impact student
learning (Jordan et al., 2009). Thus, appropri-
ate error recovery strategies are crucially impor-
tant for tutorial dialogue applications. We describe
an evaluation of an implemented tutorial dialogue
system which aims to accept unrestricted student
input and limit misunderstandings by rejecting low
confidence interpretations and employing a range
of error recovery strategies depending on the cause
of interpretation failure.

By comparing two different system policies, we
demonstrate that with less restricted language in-
put the rate of non-understanding errors impacts
both learning gain and user satisfaction, and that
problems arising from incorrect use of terminol-
ogy have a particularly negative impact. A more
detailed analysis of the results indicates that, even
though we based our policy on an approach ef-
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fective in task-oriented dialogue (Hockey et al.,
2003), many of our strategies were not success-
ful in improving learning gain. At the same time,
students appear to be aware that the system does
not fully understand them even if it accepts their
input without indicating that it is having interpre-
tation problems, and this is reflected in decreased
user satisfaction. We argue that this indicates that
we need better strategies for dealing with termi-
nology problems, and that accepting non-standard
terminology without explicitly addressing the dif-
ference in acceptable phrasing may not be suffi-
cient for effective tutoring.

In Section 2 we describe our tutoring system,
and the two tutoring policies implemented for the
experiment. In Section 3 we present experimen-
tal results and an analysis of correlations between
different types of interpretation problems, learning
gain and user satisfaction. Finally, in Section 4 we
discuss the implications of our results for error re-
covery policies in tutorial dialogue systems.

2 Tutorial Dialogue System and Error
Recovery Policies

This work is based on evaluation of BEETLE II
(Dzikovska et al., 2010), a tutorial dialogue sys-
tem which provides tutoring in basic electricity
and electronics. Students read pre-authored mate-
rials, experiment with a circuit simulator, and then
are asked to explain their observations. BEETLE 11
uses a deep parser together with a domain-specific
diagnoser to process student input, and a deep gen-
erator to produce tutorial feedback automatically
depending on the current tutorial policy. It also
implements an error recovery policy to deal with
interpretation problems.

Students currently communicate with the sys-
tem via a typed chat interface. While typing
removes the uncertainty and errors involved in
speech recognition, expected student answers are
considerably more complex and varied than in
a typical spoken dialogue system. Therefore, a
significant number of interpretation errors arise,
primarily during the semantic interpretation pro-
cess. These errors can lead to non-understandings,
when the system cannot produce a syntactic parse
(or a reasonable fragmentary parse), or when it
does not know how to interpret an out-of-domain
word; and misunderstandings, where a system ar-
rives at an incorrect interpretation, due to either
an incorrect attachment in the parse, an incorrect
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word sense assigned to an ambiguous word, or an
incorrectly resolved referential expression.

Our approach to selecting an error recovery pol-
icy is to prefer non-understandings to misunder-
standings. There is a known trade-off in spoken di-
alogue systems between allowing misunderstand-
ings, i.e., cases in which a system accepts and
acts on an incorrect interpretation of an utterance,
and non-understandings, i.e., cases in which a sys-
tem rejects an utterance as uninterpretable (Bo-
hus and Rudnicky, 2005). Since misunderstand-
ings on the part of a computer tutor are known
to negatively impact student learning, and since
in human-human tutorial dialogue the majority of
student responses using unexpected terminology
are classified as incorrect (Jordan et al., 2009),
it would be a reasonable approach for a tutorial
dialogue system to deal with potential interpreta-
tion problems by treating low-confidence interpre-
tations as non-understandings and focusing on an
effective non-understanding recovery policy.!

We implemented two different policies for com-
parison. Our baseline policy does not attempt any
remediation or error recovery. All student utter-
ances are passed through the standard interpreta-
tion pipeline, so that the results can be analyzed
later. However, the system does not attempt to ad-
dress the student content. Instead, regardless of
the answer analysis, the system always uses a neu-
tral acceptance and bottom out strategy, giving the
student the correct answer every time, e.g., “OK.
One way to phrase the correct answer is: the open
switch creates a gap in the circuit”. Thus, the stu-
dents are never given any indication of whether
they have been understood or not.

The full policy acts differently depending on the
analysis of the student answer. For correct an-
swers, it acknowledges the answer as correct and
optionally restates it (see (Dzikovska et al., 2008)
for details). For incorrect answers, it restates the
correct portion of the answer (if any) and provides
a hint to guide the student towards the completely
correct answer. If the student’s utterance cannot be
interpreted, the system responds with a help mes-
sage indicating the cause of the problem together
with a hint. In both cases, after 3 unsuccessful at-
tempts to address the problem the system uses the
bottom out strategy and gives away the answer.

"While there is no confidence score from a speech recog-
nizer, our system uses a combination of a parse quality score
assigned by the parser and a set of consistency checks to de-
termine whether an interpretation is sufficiently reliable.



The content of the bottom out is the same as in
the baseline, except that the full system indicates
clearly that the answer was incorrect or was not
understood, e.g., “Not quite. Here is the answer:
the open switch creates a gap in the circuit”.

The help messages are based on the Targeted-
Help approach successfully used in spoken dia-
logue (Hockey et al., 2003), together with the error
classification we developed for tutorial dialogue
(Dzikovska et al., 2009). There are 9 different er-
ror types, each associated with a different targeted
help message. The goal of the help messages is to
give the student as much information as possible
as to why the system failed to understand them but
without giving away the answer.

In comparing the two policies, we would expect
that the students in both conditions would learn
something, but that the learning gain and user sat-
isfaction would be affected by the difference in
policies. We hypothesized that students who re-
ceive feedback on their errors in the full condition
would learn more compared to those in the base-
line condition.

3 Evaluation

We collected data from 76 subjects interacting
with the system. The subjects were randomly as-
signed to either the baseline (BASE) or the full
(FULL) policy condition. Each subject took a pre-
test, then worked through a lesson with the system,
and then took a post-test and filled in a user satis-
faction survey. Each session lasted approximately
4 hours, with 232 student language turns in FULL
(SD = 25.6) and 156 in BASE (SD = 2.02). Ad-
ditional time was taken by reading and interact-
ing with the simulation environment. The students
had little prior knowledge of the domain. The sur-
vey consisted of 63 questions on the 5-point Lik-
ert scale covering the lesson content, the graphical
user interface, and tutor’s understanding and feed-
back. For purposes of this study, we are using an
averaged tutor score.

The average learning gain was 0.57 (SD
0.23) in FULL, and 0.63 (SD = 0.26) in BASE.
There was no significant difference in learning
gain between conditions. Students liked BASE bet-
ter: the average tutor evaluation score for FULL
was 2.56 out of 5 (SD = 0.65), compared to 3.32
(SD = 0.65) in BASE. These results are signif-
icantly different (¢-test, p < 0.05). In informal
comments after the session many students said that
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they were frustrated when the system said that it
did not understand them. However, some students
in BASE also mentioned that they sometimes were
not sure if the system’s answer was correcting a
problem with their answer, or simply phrasing it
in a different way.

We used mean frequency of non-interpretable
utterances (out of all student utterances in
each session) to evaluate the effectiveness of
the two different policies. On average, 14%
of utterances in both conditions resulted in
non-understandings.>  The frequency of non-
understandings was negatively correlated with
learning gain in FULL: r —0.47,p < 0.005,
but not significantly correlated with learning gain
in BASE: r = —0.09, p = 0.59. However, in both
conditions the frequency of non-understandings
was negatively correlated with user satisfaction:
FULL r = —0.36,p = 0.03, BASEr = —0.4,p =
0.01. Thus, even though in BASE the system
did not indicate non-understanding, students were
negatively affected. That is, they were not satis-
fied with the policy that did not directly address
the interpretation problems. We discuss possible
reasons for this below.

We investigated the effect of different types of
interpretation errors using two criteria. First, we
checked whether the mean frequency of errors was
reduced between BASE and FULL for each individ-
ual strategy. The reduced frequency means that
the recovery strategy for this particular error type
is effective in reducing the error frequency. Sec-
ond, we looked for the cases where the frequency
of a given error type is negatively correlated with
either learning gain or user satisfaction. This is
provides evidence that such errors are negatively
impacting the learning process, and therefore im-
proving recovery strategies for those error types is
likely to improve overall system effectiveness,

The results, shown in Table 1, indicate that the
majority of interpretation problems are not sig-
nificantly correlated with learning gain. How-
ever, several types of problems appear to be
particularly significant, and are all related to
improper use of domain terminology. These
were irrelevant_answer, no_appr_terms, selec-
tional_restriction_failure and program_error.

An irrelevant_answer error occurs when the stu-
dent makes a statement that uses domain termi-
2We do not know the percentage of misunderstandings or

concept error rate as yet. We are currently annotating the data
with the goal to evaluate interpretation correctness.



full baseline
error type mean freq. satisfac- gain mean freq satisfac- gain
(std. dev) tion r r (std. dev) tion r r

irrelevant_answer 0.008 (0.01) | -0.08 -0.19 0.012 (0.01) | -0.07 -0.47%*
no_appr- terms 0.005 (0.01) | -0.57** -0.42** | 0.003 (0.01) | -0.38** -0.01
selectional _restr_failure | 0.032 (0.02) | -0.12 -0.55**% | 0.040 (0.03) | 0.13 0.26%*
program_error 0.002 (0.003) | 0.02 0.26 0.003 (0.003) | O -0.35%*
unknown_word 0.023 (0.01) | 0.05 -0.21 0.024 (0.02) | -0.15 -0.09
disambiguation_failure | 0.013 (0.01) | -0.04 0.02 0.007 (0.01) | -0.18 0.19
no_parse 0.019 (0.01) | -0.14 -0.08 0.022(0.02) -0.3%* 0.01
partial _interpretation 0.004 (0.004) | -0.11 -0.01 0.004 (0.005) | -0.19 0.22
reference_failure 0.012 (0.02) | -0.31* -0.09 0.017 (0.01) | -0.15 -0.23
Overall 0.134 (0.05) | -0.36** -0.47*%* | 0.139 (0.04) | -0.4%* -0.09

Table 1: Correlations between frequency of different error types and student learning gain and satisfac-
tion. ** - correlation is significant with p < 0.05, * - with p <= 0.1.

nology but does not appear to answer the system’s
question directly. For example, the expected an-
swer to “In circuit 1, which components are in a
closed path?” is “the bulb”. Some students mis-
read the question and say “Circuit 1 is closed.” If
that happens, in FULL the system says “Sorry, this
isn’t the form of answer that I expected. I am look-
ing for a component”, pointing out to the student
the kind of information it is looking for. The BASE
system for this error, and for all other errors dis-
cussed below, gives away the correct answer with-
out indicating that there was a problem with in-
terpreting the student’s utterance, e.g., “OK, the
correct answer is the bulb.”

The no_appr_terms error happens when the stu-
dent is using terminology inappropriate for the les-
son in general. Students are expected to learn to
explain everything in terms of connections and ter-
minal states. For example, the expected answer to
“What is voltage?” is “the difference in states be-
tween two terminals”. If instead the student says
“Voltage is electricity”, FULL responds with “I am
sorry, I am having trouble understanding. I see no
domain concepts in your answer. Here’s a hint:
your answer should mention a terminal.” The mo-
tivation behind this strategy is that in general, it is
very difficult to reason about vaguely used domain
terminology. We had hoped that by telling the stu-
dent that the content of their utterance is outside
the domain as understood by the system, and hint-
ing at the correct terms to use, the system would
guide students towards a better answer.

Selectional _restr_failure errors are typically due
to incorrect terminology, when the students
phrased answers in a way that contradicted the sys-
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tem’s domain knowledge. For example, the sys-
tem can reason about damaged bulbs and batter-
ies, and open and closed paths. So if the stu-
dent says “The path is damaged”, the FULL sys-
tem would respond with “I am sorry, I am having
trouble understanding. Paths cannot be damaged.
Only bulbs and batteries can be damaged.”

Program _error were caused by faults in the un-
derlying network software, but usually occurred
when the student was using extremely long and
complicated utterances.

Out of the four important error types described
above, only the strategy for irrelevant_answer was
effective: the frequency of irrelevant_answer er-
rors is significantly higher in BASE (¢-test, p <
0.05), and it is negatively correlated with learning
gain in BASE. The frequencies of other error types
did not significantly differ between conditions.

However, one other finding is particularly in-
teresting: the frequency of no_appr_terms errors
is negatively correlated with user satisfaction in
BASE. This indicates that simply accepting the stu-
dent’s answer when they are using incorrect termi-
nology and exposing them to the correct answer is
not the best strategy, possibly because the students
are noticing the unexplained lack of alignment be-
tween their utterance and the system’s answer.

4 Discussion and Future Work

As discussed in Section 1, previous studies of
short-answer tutorial dialogue systems produced a
counter-intuitive result: measures of interpretation
accuracy were not correlated with learning gain.
With less restricted language, misunderstandings




negatively affected learning. Our study provides
further evidence that interpretation quality signif-
icantly affects learning gain in tutorial dialogue.
Moreover, while it has long been known that user
satisfaction is negatively correlated with interpre-
tation error rates in spoken dialogue, this is the
first attempt to evaluate the impact of different
types of interpretation errors on task success and
usability of a tutoring system.

Our results demonstrate that different types of
errors may matter to a different degree. In our
system, all of the error types negatively correlated
with learning gain stem from the same underlying
problem: the use of incorrect or vague terminol-
ogy by the student. With the exception of the ir-
relevant_answer strategy, the targeted help strate-
gies we implemented were not effective in reduc-
ing error frequency or improving learning gain.
Additional research is needed to understand why.
One possibility is that irrelevant_answer was eas-
ier to remediate compared to other error types. It
usually happened in situations where there was a
clear expectation of the answer type (e.g., a list of
component names, a yes/no answer). Therefore,
it was easier to design an effective prompt. Help
messages for other error types were more frequent
when the expected answer was a complex sen-
tence, and multiple possible ways of phrasing the
correct answer were acceptable. Therefore, it was
more difficult to formulate a prompt that would
clearly describe the problem in all contexts.

One way to improve the help messages may be
to have the system indicate more clearly when user
terminology is a problem. Our system apologized
each time there was a non-understanding, leading
students to believe that they may be answering cor-
rectly but the answer is not being understood. A
different approach would be to say something like
“I am sorry, you are not using the correct termi-
nology in your answer. Here’s a hint: your answer
should mention a terminal”. Together with an ap-
propriate mechanism to detect paraphrases of cor-
rect answers (as opposed to vague answers whose
correctness is difficult to determine), this approach
could be more beneficial in helping students learn.
We are considering implementing and evaluating
this as part of our future work.

Some of the errors, in particular instances of
no_appr_terms and selectional_restr_failure, also
stemmed from unrecognized paraphrases with
non-standard terminology. Those answers could
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conceivably be accepted by a system using seman-
tic similarity as a metric (e.g., using LSA with pre-
authored answers). However, our results also indi-
cate that simply accepting the incorrect terminol-
ogy may not be the best strategy. Users appear to
be sensitive when the system’s language does not
align with their terminology, as reflected in the de-
creased satisfaction ratings associated with higher
rates of incorrect terminology problems in BASE.
Moreover, prior analysis of human-human data
indicates that tutors use different restate strate-
gies depending on the “quality” of the student an-
swers, even if they are accepting them as correct
(Dzikovska et al., 2008). Together, these point at
an important unaddressed issue: existing systems
are often built on the assumption that only incor-
rect and missing parts of the student answer should
be remediated, and a wide range of terminology
should be accepted (Graesser et al., 1999; Jordan
et al., 2006). While it is obviously important for
the system to accept a range of different phrasings,
our analysis indicates that this may not be suffi-
cient by itself, and students could potentially ben-
efit from addressing the terminology issues with a
specifically devised strategy.

Finally, it could also be possible that some
differences between strategy effectiveness were
caused by incorrect error type classification. Man-
ual examination of several dialogues suggests that
most of the errors are assigned to the appropri-
ate type, though in some cases incorrect syntac-
tic parses resulted in unexpected interpretation er-
rors, causing the system to give a confusing help
message. These misclassifications appear to be
evenly split between different error types, though
a more formal evaluation is planned in the fu-
ture. However from our initial examination, we
believe that the differences in strategy effective-
ness that we observed are due to the actual differ-
ences in the help messages. Therefore, designing
better prompts would be the key factor in improv-
ing learning and user satisfaction.
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Abstract

Generating referring expressions is a key
step in Natural Language Generation. Re-
searchers have focused almost exclusively
on generatinglistinctivereferring expres-
sions, that is, referring expressions that
uniquely identify their intended referent.
While undoubtedly one of their most im-
portant functions, referring expressions
can be more than distinctive. In particular,
descriptivereferring expressions — those
that provide additional information not re-
quired for distinction — are critical to flu-
ent, efficient, well-written text. We present
a corpus analysis in which approximately
one-fifth of 7,207 referring expressions in
24,422 words of news and narrative are de-
scriptive. These data show that if we are
ever to fully master natural language gen-
eration, especially for the genres of news
and narrative, researchers will need to de-
vote more attention to understanding how
to generate descriptive, and not just dis-
tinctive, referring expressions.

1 A Distinctive Focus

Cambridge, MA, 02139 USA
mar kaf @ri t . edu

tify their intended referent. Referring expres-
sions, however, may be more than distinctive. It
is widely acknowledged that they can be used to
achieve multiple goals, above and beyond distinc-
tion. Here we focus omlescriptivereferring ex-
pressions, that is, referring expressions that are not
only distinctive, but provide additional informa-
tion not required for identifying their intended ref-
erent. Consider the following text, in which some
of the referring expressions have been underlined:

Once upon a time there wasman, who had
three daughters. They lived @ house and
their dresses were made fafbric.

While a bit strange, the text is perfectly well-
formed. All the referring expressions are distinc-
tive, in that we can properly identify the referents
of each expression. But the real text, the opening
lines to the folktaleThe Beauty and the Beass
actually much more lyrical:

Once upon a time there wagich merchant,
who had three daughters. They lived an
very fine house and theigownswere made
of the richestfabric sewn with jewels

All the boldfaced portions — namely, the choice

Generating referring expressions is a key step imf head nouns, the addition of adjectives, the use
Natural Language Generation (NLG). From earlyof appositive phrases — serve to perform a descrip-
treatments in seminal papers by Appelt (1985}ive function, and, importantly, are all unneces-
and Reiter and Dale (1992) to the recent sesary for distinction! In all of these cases, the au-
of Referring Expression Generation (REG) Chal-thor is using the referring expressions as a vehi-
lenges (Gatt et al., 2009) through different corporacle for communicating information about the ref-
available for the community (Eugenio et al., 1998;erents. This descriptive information is sometimes
van Deemter et al., 2006; Viethen and Dale, 2008)new, sometimes necessary for understanding the
generating referring expressions has become ortext, and sometimes just for added flavor. But
of the most studied areas of NLG. when the expression @escriptive as opposed to

Researchers studying this area have, almodgtistinctive this additional information is not re-
without exception, focused exclusively on howquired for identifying the referent of the expres-
to generatdlistinctivereferring expressions, that sion, and it is these sorts of referring expressions
is, referring expressions that unambiguously identhat we will be concerned with here.
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Although these sorts of referring expressionmuseum labels, Cheng et al. (2001) noted that de-
have been mostly ignored by researchers in thiscriptive information is often integrated into refer-
ared, we show in this corpus study that descrip-ring expressions using modifiers to the head noun.
tive expressions are in fact quite prevalent: nearlyfo study this, and to allow our results to be more
one-fifth of referring expressions in news and nar<losely compared with Cheng’s, we had our an-
rative are descriptive. In particular, our data,notators split referring expressions into their con-
the trained judgments of native English speakersstituents, portions called eitheucleior modifiers
show that 18% of all distinctive referring expres- The nuclei were the portions of the referring ex-
sions in news and 17% of those in narrative folk-pression that performed the ‘core’ referring func-
tales are descriptive. With this as motivation, wetion; the modifiers were those portions that could
argue that descriptive referring expressions musgbe varied, syntactically speaking, independently of
be studied more carefully, especially as the fieldhe nuclei. Annotators then assigned a distinctive
progresses from referring in a physical, immedi-or descriptive function to each constituent, rather
ate context (like that in the REG Challenges) tothan the referring expression as a whole.

generating more literary forms of text. Normally, the nuclei corresponded to the head
_ of the noun phrase. In (1), the nucleus is the token
2 Corpus Annotation king, which we have here surrounded with square

This is a corpus study: our procedure was therel_)rackets. The modifiers, surrounded by parenthe-

fore to define our annotation guidelines (Sec-ses’ ardheandold.
tion 2.1), select texts to annotate (2.2), create af) (The)(old)[
annotation tool for our annotators (2.3), and, fi-
nally, train annotators, have them annotate refer- Phrasal modifiers were marked as single modi-
ring expressions’ constituents and function, andiers, for example, in (2).

then adjudicate the double-annotated texts into a

gold standard (2.4). (2) (The)[roof] (of the house) collapsed.

king] was wise.

2.1 Definitions It is significant that we had our annotators mark
We wrote an annotation guide explaining the dif—ancI tag the nuclei of refer_rlng EXpressions. _Cheng
and colleagues only mentioned the possibility that

ference between distinctive and descriptive refer-

. . . ._additional information could be introduced in the
ring expressions. We used the guide when train-

ing annotators, and it was available to them whilemOd'f'erS' However, O’Donnell et al. (1998) ob-

. e served that often the choice of head noun can also
annotating. With limited space here we can only]

give an outline of what is contained in the guide;ggﬁgir;?r gg)e I?]JC:;'I(;E t?]feiv;er]:;ﬁg?ngis);zf;féon'
for full details see (Finlayson and Héxs, 2010a). ;

Referring Expressions We defined referring refer to the King.
expressions as referential noun phrases and the(ig) The King assumed the throne today.
coreferential expressions, e.gJphn kissed/ary. | don't trust (that) [villain] one bit
She blushed.”. This included referring expressions —t— '
to generics (e.g.,lions are fierce”), dates, times,  Tp¢ speaker could have merely uggdh to re-
and numbers, as well as events if they were refer 1o the King—the choice of that particular head
ferred to using a noun phrase. We included in eacfioynyillain gives us additional information about

referring expression all the determiners, quansne disposition of the speaker. Thuilain is de-
tifiers, adjectives, appositives, and prepositionajscriptive_

phrases that syntactically attached to that expres- g nction: Distinctive vs. Descriptive As al-
sion. When referring expressions were nested, a”eady noted, instead of tagging the whole re-
the nested referring expressions were also markq@mng expression, annotators tagged each con-

separately. 3 . stituent (nuclei and modifiers) as distinctive or de-
Nuclei vs. Modifiers In the only previous cor-  g¢riptive.

pus study of descriptive referring expressions, on The two main tests for determining descriptive-

'With the exception of a small amount of work, discussed/1€SS Were (@) if .prese.zn.ce of the constituent W_as
in Section 4. unnecessary for identifying the referent, or (b) if
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the constituent was expressed using unusual or oprogram that, among other things, includes the
tentatious word choice. If either was true, the con-ability to annotate referring expressions and coref-
stituent was considered descriptive; otherwise, ierential relationships. We added the ability to an-
was tagged as distinctive. In cases where the comotate nuclei, modifiers, and their functions by
stituent was completely irrelevant to identifying writing a workbench “plugin” in Java that could
the referent, it was tagged as descriptive. For exbe installed in the application.
ample, in the folktaleThe Princess and the Pea  The Story Workbench is not yet available to the
from which (1) was extracted, there is only onepublic at large, being in a limited distribution beta
king in the entire story. Thus, in that sto)e  testing phase. The developers plan to release it as
king is sufficient for identification, and therefore free software within the next year. At that time,
the modifierold is descriptive. This points out the we also plan to release our plugin as free, down-
importance of context in determining distinctive- |oadable software.
ness or descriptiveness; if there had been a room-
ful of kings, the tags on those modifiers would2 4 Annotation & Adjudication
have been reversed.

There is some question as to whether copul
predicates, such dse plumbeiin (4), are actually
referring expressions.

a}'he main task of the study was the annotation of
the constituents of each referring expression, as
well as the function (distinctive or descriptive) of
each constituent. The system generated a first pass
(4) John isthe plumber of constituent analysis, but did not mark functions.
We hired two native English annotators, neither of
Our annotators marked and tagged these construgfhom had any linguistics background, who cor-
tions as normal referring expressions, but theyected these automatically-generated constituent
added an additional flag to identify them as cop-analyses, and tagged each constituent as descrip-
ular predicates. We then excluded these construdive or distinctive. Every text was annotated by
tions from our final analysis. Note that copularboth annotators. Adjudication of the differences
predicates were treated differently from apposiwas conducted by discussion between the two an-
tives: in appositives the predicate was included immotators; the second author moderated these dis-
the referring expression, and in most cases (agaigussions and settled irreconcilable disagreements.
depending on context) was marked descriptivé\Ve followed a “train-as-you-go” paradigm, where

(e.g.,Johntheplumber, slept.). there was no distinct training period, but rather
_ adjudication proceeded in step with annotation,
2.2 Text Selection and annotators received feedback during those ses-

Our corpus comprised 62 texts, all originally writ- Sions.
ten in English, from two different genres, news We calculated two measures of inter-annotator
and folktales. We began with 30 folktales of dif- agreement: a kappa statistic and an f-measure,
ferent sizes, totaling 12,050 words. These textshown in Table 1. All of our f-measures indicated
were used in a previous work on the influence ofthat annotators agreed almost perfectly on the lo-
dialogues on anaphora resolution algorithms (Ag<ation of referring expressions and their break-
garwal et al., 2009); they were assembled with arlown into constituents. These agreement calcu-
eye toward including different styles, different au- lations were performed on the annotators’ original
thors, and different time periods. Following this, corrected texts.
we matched, approximately, the number of words All the kappa statistics were calculated for two
in the folktales by selecting 32 texts from Wall tags (nuclei vs. modifier for the constituents, and
Street Journal section of the Penn Treebank (Mardistinctive vs. descriptive for the functions) over
cus et al., 1993). These texts were selected at ratoth each token assigned to a nucleus or modifier
dom from the first 200 texts in the corpus. and each referring expression pair. Our kappas in-
dicate moderate to good agreement, especially for
2.3 The Story Workbench the folktales. These results are expected because
We used the Story Workbench application (Fin-of the inherent subjectivity of language. During
layson, 2008) to actually perform the annotationthe adjudication sessions it became clear that dif-
The Story Workbench is a semantic annotatiorferent people do not consider the same information
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as obvious or descriptive for the same concepts, Tales Articles Total
and even the contexts deduced by each annotators Nuclei 3,666 3,502 7,168
from the texts were sometimes substantially dif- Max. Nuc/Ref 1 1 1
ferent. Dist. Nuc. 95% 97% 96%
] Desc. Nuc. 5% 3% 4%
Tales Aricles Total Modifiers 2277 3,627 5,904
Constituents £7) 0.99 0.98 0.98 Max. Mod/Ref| 4 6 6
Const. Func;-() 0.61 0.48 0.54 Desc. Mod. 2204 19% 20%
Ref. Exp. Func.£) | 0.65 0.54 0.59

Table 3: Breakdown of Constituent Tags
Table 1: Inter-annotator agreement measures

are three. First is the general studyagfgregation
3 Results in the process of referring expression generation.
Table 2 lists the primary results of the study. weSecond and third are corpus studies by Cheng et al.
considered a referring expression descriptive if2001) and Jordan (2000a) that bear on the preva-
any of its constituents were descriptive. Thus|€nce of descriptive referring expressions.
18% of the referring expressions in the corpus The NLG subtask of aggregation can be used
added additional information beyond what was ref0 imbue referring expressions with a descriptive
quired to unambiguously identify their referent. function (Reiter and Dale, 20005.3). There is a

The results were similar in both genres. specific kind of aggregation calleinbeddinghat
moves information from one clause to another in-
Tales Articles Total side the structure of a separate noun phrase. This
Texts 30 32 62 type of aggregation can be used to transform two
Words 12,050 12,372 24,422 sentences such &8he princess lived in a castle.
Sentences 904 571 1,475 She was prettyinto “The pretty princess lived in
Ref. Exp. 3,681 3,526 7,207  acastle” The adjectivepretty, previously a cop-
Dist. Ref. Exp. | 3,057 2,830 5,887 ular predicate, becomes a descriptive modifier of
Desc. Ref. Exp| 609 672 1,281 the reference to the princess, making the second
% Dist. Ref. 83% 81% 82% text more natural and fluent. This kind of ag-
% Desc. Ref. 17% 19% 18% gregation is widely used by humans for making

the discourse more compact and efficient. In or-
der to create NLG systems with this ability, we
must take into account the caveat, noted by Cheng
Table 3 contains the percentages of descriptivg1998), that any non-distinctive information in a
and distinctive tags broken down by constituentreferring expression must not lead to confusion
Like Cheng's results, our analysis shows that deapout the distinctive function of the referring ex-
scriptive referring expressions make up a signifpression. This is by no means a trivial problem
icant fraction of all referring expressions. Al- _ this sort of aggregation interferes with refer-
though Cheng did not examine nuclei, our resultging and coherence planning at both a local and
show that the use of descriptive nuclei is small builobal level (Cheng and Mellish, 2000; Cheng et
not negligible. al., 2001). It is clear, from the current state of the
: , art of NLG, that we have not yet obtained a dee

4 Relation to the Field enough understanding of agg>rlegation to enable Es
Researchers working on generating referring exto handle these interactions. More research on the
pressions typically acknowledge that referring extopic is needed.

pressions can perform functions other than distinc- Two previous corpus studies have looked at
tion. Despite this widespread acknowledgmentthe use of descriptive referring expressions. The
researchers have, for the most part, explicitly igfirst showed explicitly that people craft descrip-
nored these functions. Exceptions to this trendive referring expressions to accomplish different

Table 2: Primary results.
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goals. Jordan and colleagues (Jordan, 2000b; Jgudicated into a gold-standard a corpus of 24,422
dan, 2000a) examined the use of referring expresvords.  We marked all referring expressions,
sions using the COCONUT corpus (Eugenio etcoreferential relations, and referring expression
al., 1998). They tested how domain and discourseonstituents, and tagged each constituent as hav-
goals can influence the content of non-pronominaing a descriptive or distinctive function. We wrote
referring expressions in a dialogue context, checkan annotation guide and created software that al-
ing whether or not a subject’s goals led them to in{ows the annotation of this information in free text.
clude non-referring information in a referring ex- The corpus and the guide are available on-line in a
pression. Their results are intriguing because thepermanent digital archive (Finlayson and Hasy
point toward heretofore unexamined constraints2010a; Finlayson and Heag, 2010b). The soft-
utilities and expectations (possibly genre- or styleware will also be released in the same archive
dependent) that may underlie the use of descriptivethen the Story Workbench annotation application
information to perform different functions, and are is released to the public. This corpus will be useful
not yet captured by aggregation modules in particfor the automatic generation and analysis of both
ular or NLG systems in general. descriptive and distinctive referring expressions.
In the other corpus study, which partially in- Any kind of system intended to generate text as
spired this work, Cheng and colleagues analyzeilumans do must take into account that identifica-
a set of museum descriptions, the GNOME cordion is not the only function of referring expres-
pus (Poesio, 2004), for the pragmatic functions ofions. Many analysis applications would benefit
referring expressions. They had three functiongrom the automatic recognition of descriptive re-
in their study, in contrast to our two. Their first ferring expressions.
function (marked by theiuni q tag) was equiv- Second, we demonstrated that descriptive refer-
alent to our distinctive function. The other two ring expressions comprise a substantial fraction
were specializations of our descriptive tag, wherg18%) of the referring expressions in news and
they differentiated between additional informationnarrative. Along with museum descriptions, stud-
that helped to understand the tekin¢ ), or ad- ied by Cheng, it seems that news and narrative are
ditional information not necessary for understand-genres where authors naturally use a large num-
ing (att r). Despite their annotators seeming tober of descriptive referring expressions. Given that
have trouble distinguishing between the latter twaoso little work has been done on descriptive refer-
tags, they did achieve good overall inter-annotatoring expressions, this indicates that the field would
agreement. They identified 1,863 modifiers tobe well served by focusing more attention on this
referring expressions in their corpus, of whichphenomenon.
47.3% fulfilled a descriptiveat t r ori nt ) func-
tion. This is supportive of our main assertion, Acknowledgments
namely, that descriptive referring expressions, not
only crucial for efficient and fluent text, are ac- This work was supported in part by the Air
tually a significant phenomenon. It is interest-Force Office of Scientific Research under grant
ing, though, that Cheng’s fraction of descriptiveNumber A9550-05-1-0321, as well as by the
referring expression was so much higher than our®ffice of Naval Research under award number
(47.3% versus our 18%). We attribute this sub-N00014091059. Any opinions, findings, and con-
stantial difference to genre, in that Cheng studclusions or recommendations expressed in this pa-
ied museum labels, in which the writer is spaceer are those of the authors and do not necessarily
constrained, having to pack a lot of information reflect the views of the Office of Naval Research.
into a small label. The issue bears further study] his research is also partially funded the Span-
and perhaps will lead to insights into differencesish Ministry of Education and Science (TIN2009-
in writing style that may be attributed to author or 14659-C03-01) and Universidad Complutense de

genre. Madrid (GR58/08). We also thank Whitman
Richards, Ozlem Uzuner, Peter Szolovits, Patrick

5 Contributions Winston, Pablo Geids, and Mark Seifter for their
helpful comments and discussion, and thank our

We make two contributions in this paper. annotators Saam Batmanghelidj and Geneva Trot-

First, we assembled, double-annotated, and ader.
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Preferences versus Adaptation during Referring Expression Generation
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Abstract

Current Referring Expression Generation
algorithms rely on domain dependent pref-
erences for both content selection and lin-
guistic realization. We present two exper-
iments showing that human speakers may
opt for dispreferred properties and dispre-
ferred modifier orderings when these were
salient in a preceding interaction (without
speakers being consciously aware of this).
We discuss the impact of these findings for
current generation algorithms.

1 Introduction

The generation of referring expressions is a core
ingredient of most Natural Language Generation
(NLG) systems (Reiter and Dale, 2000; Mellish et
al., 2006). These systems usually approach Refer-
ring Expression Generation (REG) as a two-step
procedure, where first it is decided which prop-
erties to include (content selection), after which
the selected properties are turned into a natural
language referring expression (linguistic realiza-
tion). The basic problem in both stages is one of
choice; there are many ways in which one could
refer to a target object and there are multiple ways
in which these could be realized in natural lan-
guage. Typically, these choice problems are tack-
led by giving preference to some solutions over
others. For example, the Incremental Algorithm
(Dale and Reiter, 1995), one of the most widely
used REG algorithms, assumes that certain at-
tributes are preferred over others, partly based on
evidence provided by Pechmann (1989); a chair
would first be described in terms of its color, and
only if this does not result in a unique charac-
terization, other, less preferred attributes such as
orientation are tried. The Incremental Algorithm
is arguably unique in assuming a complete pref-
erence order of attributes, but other REG algo-
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rithms rely on similar distinctions. The Graph-
based algorithm (Krahmer et al., 2003), for ex-
ample, searches for the cheapest description for
a target, and distinguishes cheap attributes (such
as color) from more expensive ones (orientation).
Realization of referring expressions has received
less attention, yet recent studies on the ordering of
modifiers (Shaw and Hatzivassiloglou, 1999; Mal-
ouf, 2000; Mitchell, 2009) also work from the as-
sumption that some orderings (large red) are pre-
ferred over others (red large).

We argue that such preferences are less stable
when referring expressions are generated in inter-
active settings, as would be required for applica-
tions such as spoken dialogue systems or interac-
tive virtual characters. In these cases, we hypothe-
size that, besides domain preferences, also the re-
ferring expressions that were produced earlier in
the interaction are important. It has been shown
that if one dialogue participant refers to a couch as
a sofa, the next speaker is more likely to use the
word sofa as well (Branigan et al., in press). This
kind of micro-planning or “lexical entrainment”
(Brennan and Clark, 1996) can be seen as a spe-
cific form of “alignment” (Pickering and Garrod,
2004) between speaker and addressee. Pickering
and Garrod argue that alignment may take place
on all levels of interaction, and indeed it has been
shown that participants also align their intonation
patterns and syntactic structures. However, as far
as we know, experimental evidence for alignment
on the level of content planning has never been
given, and neither have alignment effects in modi-
fier orderings during realization been shown. With
a few notable exceptions, such as Buschmeier et
al. (2009) who study alignment in micro-planning,
and Janarthanam and Lemon (2009) who study
alignment in expertise levels, alignment has re-
ceived little attention in NLG so far.

This paper is organized as follows. Experi-
ment [ studies the trade-off between adaptation

Proceedings of the ACL 2010 Conference Short Papers, pages 55-59,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



and preferences during content selection while Ex-
periment II looks at this trade-off for modifier
orderings during realization. Both studies use a
novel interactive reference production paradigm,
applied to two domains — the Furniture and People
domains of the TUNA data-set (Gatt et al., 2007,
Koolen et al., 2009) — to see whether adaptation
may be domain dependent. Finally, we contrast
our findings with the performance of state-of-the-
art REG algorithms, discussing how they could be
adapted so as to account for the new data, effec-
tively adding plasticity to the generation process.

2 Experiment I

Experiment I studies what speakers do when re-
ferring to a target that can be distinguished in a
preferred (the blue fan) or a dispreferred way (the
left-facing fan), when in the prior context either
the first or the second variant was made salient.

Method

Participants 26 students (2 male, mean age = 20
years, 11 months), all native speakers of Dutch
without hearing or speech problems, participated
for course credits.

Materials Target pictures were taken from the
TUNA corpus (Gatt et al., 2007) that has been
extensively used for REG evaluation. This cor-
pus consists of two domains: one containing pic-
tures of people (famous mathematicians), the other
containing furniture items in different colors de-
picted from different orientations. From previous
studies (Gatt et al., 2007; Koolen et al., 2009) it
is known that participants show a preference for
certain attributes: color in the Furniture domain
and glasses in the People domain, and disprefer
other attributes (orientation of a furniture piece
and wearing a tie, respectively).

Procedure Trials consisted of four turns in an in-
teractive reference understanding and production
experiment: a prime, two fillers and the experi-
mental description (see Figure 1). First, partici-
pants listened to a pre-recorded female voice re-
ferring to one of three objects and had to indi-
cate which one was being referenced. In this sub-
task, references either used a preferred or a dis-
preferred attribute; both were distinguishing. Sec-
ond, participants themselves described a filler pic-
ture, after which, third, they had to indicate which
filler picture was being described. The two filler
turns always concerned stimuli from the alterna-
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Task | (prime): \
Indlcate which picture is being described”

R fe

Preferred descrlptlon Dlspreferred descrlptlon
(color) (orientation)

K “The red chair” “the front facing chair "

Task Il (filler)
Describe the picture in the middle

\ “the man with the beard”

Task Il (filler)
Indicate which picture is being described

Task IV (target) \
Describe the picture in the middle

=

alignment with ~ alignment with
preferred property dispreferred property

“The blue fan” “The left facing fan”

Figure 1: The 4 tasks per trial. A furniture trial is
shown; people trials have an identical structure.

tive domain and were intended to prevent a too
direct connection between the prime and the tar-
get. Fourth, participants described the target ob-
ject, which could always be distinguished from its
distractors in a preferred (The blue fan) or a dis-
preferred (The left facing fan) way. Note that at-
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Figure 2: Proportions of preferred and dispre-
ferred attributes in the Furniture domain.

tributes are primed, not values; a participant may
have heard front facing in the prime turn, while
the target has a different value for this attribute (cf.
Fig. 1).

For the two domains, there were 20 preferred
and 20 dispreferred trials, giving rise to 2 x (20 +
20) = 80 critical trials. These were presented in
counter-balanced blocks, and within blocks each
participant received a different random order. In
addition, there were 80 filler trials (each following
the same structure as outlined in Figure 1). During
debriefing, none of the participants indicated they
had been aware of the experiment’s purpose.

Results

We use the proportion of attribute alignment as
our dependent measure. Alignment occurs when
a participant uses the same attribute in the target
as occurred in the prime. This includes overspeci-
fied descriptions (Engelhardt et al., 2006; Arnold,
2008), where both the preferred and dispreferred
attributes were mentioned by participants. Over-
specification occurred in 13% of the critical trials
(and these were evenly distributed over the exper-
imental conditions).

The use of the preferred and dispreferred at-
tribute as a function of prime and domain is shown
in Figure 2 and Figure 3. In both domains, the
preferred attribute is used much more frequently
than the dispreferred attribute with the preferred
primes, which serves as a manipulation check. As
a test of our hypothesis that adaptation processes
play an important role in attribute selection for
referring expressions, we need to look at partic-
ipants’ expressions with the dispreferred primes
(with the preferred primes, effects of adaptation
and of preferences cannot be teased apart). Cur-
rent REG algorithms such as the Incremental Al-
gorithm and the Graph-based algorithm predict
that participants will always opt for the preferred
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Figure 3: Proportions of preferred and dispre-
ferred attributes in the People domain.

attribute, and hence will not use the dispreferred
attribute. This is not what we observe: our par-
ticipants used the dispreferred attribute at a rate
significantly larger than zero when they had been
exposed to it three turns earlier (t ¢y niture [25] =
6.64, p < 0.01; tpeopie [25]1 =4.78 p < 0.01). Ad-
ditionally, they used the dispreferred attribute sig-
nificantly more when they had previously heard
the dispreferred attribute rather than the preferred
attribute. This difference is especially marked
and significant in the Furniture domain (tfyrniture
[25] = 2.63, p < 0.01, tpeopie [25] = 0.98, p <
0.34), where participants opt for the dispreferred
attribute in 54% of the trials, more frequently than
they do for the preferred attribute (Fig. 2).

3 Experiment IT

Experiment II uses the same paradigm used for
Experiment I to study whether speaker’s prefer-
ences for modifier orderings can be changed by
exposing them to dispreferred orderings.

Method

Farticipants 28 Students (ten males, mean age =
23 years and two months) participated for course
credits. All were native speakers of Dutch, without
hearing and speech problems. None participated
in Experiment L.

Materials The materials were identical to those
used in Experiment I, except for their arrangement
in the critical trials. In these trials, the participants
could only identify the target picture using two at-
tributes. In the Furniture domain these were color
and size, in the People domain these were having a
beard and wearing glasses. In the prime turn (Task
I, Fig. 1), these attributes were realized in a pre-
ferred way (“size first”: e.g., the big red sofa, or
“glasses first”: the bespectacled and bearded man)
or in a dispreferred way (“color first”: the red big
sofa or “beard first” the bespectacled and bearded
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Figure 4: Proportions of preferred and dispre-
ferred modifier orderings in the Furniture domain.

man). Google counts for the original Dutch mod-
ifier orderings reveal that the ratio of preferred to
dispreferred is in the order of 40:1 in the Furniture
domain and 3:1 in the People domain.

Procedure As above.

Results

We use the proportion of modifier ordering align-
ments as our dependent measure, where alignment
occurs when the participant’s ordering coincides
with the primed ordering. Figure 4 and 5 show the
use of the preferred and dispreferred modifier or-
dering per prime and domain. It can be seen that
in the preferred prime conditions, participants pro-
duce the expected orderings, more or less in accor-
dance with the Google counts.

State-of-the-art realizers would always opt for
the most frequent ordering of a given pair of mod-
ifiers and hence would never predict the dispre-
ferred orderings to occur. Still, the use of the dis-
preferred modifier ordering occurred significantly
more often than one would expect given this pre-
diction, t ¢y niture [27] = 6.56, p < 0.01 and tpeopie
[27] =9.55, p < 0.01. To test our hypotheses con-
cerning adaptation, we looked at the dispreferred
realizations when speakers were exposed to dis-
preferred primes (compared to preferred primes).
In both domains this resulted in an increase of the
anount of dispreferred realizations, which was sig-
nificant in the People domain (tpeopre [27] = 1.99,
p < 0.05, trurniture [25]=2.63, p < 0.01).

4 Discussion

Current state-of-the-art REG algorithms often rest
upon the assumption that some attributes and some
realizations are preferred over others. The two ex-
periments described in this paper show that this
assumption is incorrect, when references are pro-
duced in an interactive setting. In both experi-
ments, speakers were more likely to select a dis-
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1.00 M Preferred ordering used

O Dispreferred ordering used
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Figure 5: Proportions of preferred and dispre-
ferred modifier orderings in the People domain.

preferred attribute or produce a dispreferred mod-
ifier ordering when they had previously been ex-
posed to these attributes or orderings, without be-
ing aware of this. These findings fit in well with
the adaptation and alignment models proposed by
psycholinguists, but ours, as far as we know, is
the first experimental evidence of alignment in at-
tribute selection and in modifier ordering. Inter-
estingly, we found that effect sizes differ for the
different domains, indicating that the trade-off be-
tween preferences and adaptions is a gradual one,
also influenced by the a priori differences in pref-
erence (it is more difficult to make people say
something truly dispreferred than something more
marginally dispreferred).

To account for these findings, GRE algorithms
that function in an interactive setting should be
made sensitive to the production of dialogue part-
ners. For the Incremental Algorithm (Dale and Re-
iter, 1995), this could be achieved by augmenting
the list of preferred attributes with a list of “previ-
ously mentioned” attributes. The relative weight-
ing of these two lists will be corpus dependent,
and can be estimated in a data-driven way. Alter-
natively, in the Graph-based algorithm (Krahmer
et al., 2003), costs of properties could be based
on two components: a relatively fixed domain
component (preferred is cheaper) and a flexible
interactive component (recently used is cheaper).
Which approach would work best is an open, em-
pirical question, but either way this would consti-
tute an important step towards interactive REG.
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Abstract

We pose the development of cognitively
plausible models of human language pro-
cessing as a challenge for computational
linguistics. Existing models can only deal
with isolated phenomena (e.g., garden
paths) on small, specifically selected data
sets. The challenge is to build models that
integrate multiple aspects of human lan-
guage processing at the syntactic, seman-
tic, and discourse level. Like human lan-
guage processing, these models should be
incremental, predictive, broad coverage,
and robust to noise. This challenge can
only be met if standardized data sets and
evaluation measures are developed.

1 Introduction

In many respects, human language processing is
the ultimate goldstandard for computational lin-
guistics. Humans understand and generate lan-
guage with amazing speed and accuracy, they are
able to deal with ambiguity and noise effortlessly
and can adapt to new speakers, domains, and reg-
isters. Most surprisingly, they achieve this compe-
tency on the basis of limited training data (Hart
and Risley, 1995), using learning algorithms that
are largely unsupervised.

Given the impressive performance of humans
as language processors, it seems natural to turn
to psycholinguistics, the discipline that studies hu-
man language processing, as a source of informa-
tion about the design of efficient language pro-
cessing systems. Indeed, psycholinguists have un-
covered an impressive array of relevant facts (re-
viewed in Section 2), but computational linguists
are often not aware of this literature, and results
about human language processing rarely inform
the design, implementation, or evaluation of artifi-
cial language processing systems.

At the same time, research in psycholinguis-
tics is often oblivious of work in computational
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linguistics (CL). To test their theories, psycholin-
guists construct computational models of hu-
man language processing, but these models of-
ten fall short of the engineering standards that
are generally accepted in the CL community
(e.g., broad coverage, robustness, efficiency): typ-
ical psycholinguistic models only deal with iso-
lated phenomena and fail to scale to realistic data
sets. A particular issue is evaluation, which is typ-
ically anecdotal, performed on a small set of hand-
crafted examples (see Sections 3).

In this paper, we propose a challenge that re-
quires the combination of research efforts in com-
putational linguistics and psycholinguistics: the
development of cognitively plausible models of
human language processing. This task can be de-
composed into a modeling challenge (building
models that instantiate known properties of hu-
man language processing) and a data and evalu-
ation challenge (accounting for experimental find-
ings and evaluating against standardized data sets),
which we will discuss in turn.

2 Modeling Challenge

2.1 Key Properties

The first part of the challenge is to develop a model
that instantiates key properties of human language
processing, as established by psycholinguistic ex-
perimentation (see Table 1 for an overview and
representative references).! A striking property of
the human language processor is its efficiency and
robustness. For the vast majority of sentences, it
will effortlessly and rapidly deliver the correct
analysis, even in the face of noise and ungrammat-
icalities. There is considerable experimental evi-

'Here an in the following, we will focus on sentence
processing, which is often regarded as a central aspect of
human language processing. A more comprehensive answer
to our modeling challenge should also include phonological
and morphological processing, semantic inference, discourse
processing, and other non-syntactic aspects of language pro-
cessing. Furthermore, established results regarding the inter-
face between language processing and non-linguistic cogni-
tion (e.g., the sensorimotor system) should ultimately be ac-
counted for in a fully comprehensive model.
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Property Evidence

Model

Rank Surp Pred Stack

Efficiency and robustness

Broad coverage

Incrementality and connectedness
Prediction

Memory cost

Ferreira et al. (2001); Sanford and Sturt (2002)
Crocker and Brants (2000)

Tanenhaus et al. (1995); Sturt and Lombardo (2005)
Kamide et al. (2003); Staub and Clifton (2006)
Gibson (1998); Vasishth and Lewis (2006)
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| W+ +
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Table 1: Key properties of human language processing and their instantiation in various models of sentence processing (see

Section 2 for details)

dence that shallow processing strategies are used
to achieve this. The processor also achieves broad
coverage: it can deal with a wide variety of syntac-
tic constructions, and is not restricted by the do-
main, register, or modality of the input.

Human language processing is also word-by-
word incremental. There is strong evidence that
a new word is integrated as soon as it is avail-
able into the representation of the sentence thus
far. Readers and listeners experience differential
processing difficulty during this integration pro-
cess, depending on the properties of the new word
and its relationship to the preceding context. There
is evidence that the processor instantiates a strict
form of incrementality by building only fully con-
nected trees. Furthermore, the processor is able
to make predictions about upcoming material on
the basis of sentence prefixes. For instance, listen-
ers can predict an upcoming post-verbal element
based on the semantics of the preceding verb. Or
they can make syntactic predictions, e.g., if they
encounter the word either, they predict an upcom-
ing or and the type of complement that follows it.

Another key property of human language pro-
cessing is the fact that it operates with limited
memory, and that structures in memory are subject
to decay and interference. In particular, the pro-
cessor is known to incur a distance-based memory
cost: combining the head of a phrase with its syn-
tactic dependents is more difficult the more depen-
dents have to be integrated and the further away
they are. This integration process is also subject
to interference from similar items that have to be
held in memory at the same time.

2.2 Current Models

The challenge is to develop a computational model
that captures the key properties of human language
processing outlined in the previous section. A
number of relevant models have been developed,
mostly based on probabilistic parsing techniques,
but none of them instantiates all the key proper-
ties discussed above (Table 1 gives an overview of
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model properties).”

The earliest approaches were ranking-based
models (Rank), which make psycholinguistic pre-
dictions based on the ranking of the syntactic
analyses produced by a probabilistic parser. Ju-
rafsky (1996) assumes that processing difficulty
is triggered if the correct analysis falls below a
certain probability threshold (i.e., is pruned by
the parser). Similarly, Crocker and Brants (2000)
assume that processing difficulty ensures if the
highest-ranked analysis changes from one word to
the next. Both approaches have been shown to suc-
cessfully model garden path effects. Being based
on probabilistic parsing techniques, ranking-based
models generally achieve a broad coverage, but
their efficiency and robustness has not been evalu-
ated. Also, they are not designed to capture syntac-
tic prediction or memory effects (other than search
with a narrow beam in Brants and Crocker 2000).

The ranking-based approach has been gener-
alized by surprisal models (Surp), which pre-
dict processing difficulty based on the change in
the probability distribution over possible analy-
ses from one word to the next (Hale, 2001; Levy,
2008; Demberg and Keller, 2008a; Ferrara Boston
et al., 2008; Roark et al., 2009). These models
have been successful in accounting for a range of
experimental data, and they achieve broad cover-
age. They also instantiate a limited form of predic-
tion, viz., they build up expectations about the next
word in the input. On the other hand, the efficiency
and robustness of these models has largely not
been evaluated, and memory costs are not mod-
eled (again except for restrictions in beam size).

The prediction model (Pred) explicitly predicts
syntactic structure for upcoming words (Demberg
and Keller, 2008b, 2009), thus accounting for ex-
perimental results on predictive language process-
ing. It also implements a strict form of incre-

2We will not distinguish between model and linking the-
ory, i.e., the set of assumptions that links model quantities
to behavioral data (e.g., more probably structures are easier
to process). It is conceivable, for instance, that a stack-based
model is combined with a linking theory based on surprisal.



Evidence
Roland and Jurafsky (2002)
Garnsey et al. (1997); Pickering and

Factor
Word senses
Selectional re-

strictions Traxler (1998)

Thematic roles McRae et al. (1998); Pickering et al.
(2000)

Discourse ref-  Altmann and Steedman (1988); Grod-

erence ner and Gibson (2005)

Discourse Stewart et al. (2000); Kehler et al.

coherence (2008)

Table 2: Semantic factors in human language processing

mentality by building fully connected trees. Mem-
ory costs are modeled directly as a distance-based
penalty that is incurred when a prediction has to be
verified later in the sentence. However, the current
implementation of the prediction model is neither
robust and efficient nor offers broad coverage.

Recently, a stack-based model (Stack) has been
proposed that imposes explicit, cognitively mo-
tivated memory constraints on the parser, in ef-
fect limiting the stack size available to the parser
(Schuler et al., 2010). This delivers robustness, ef-
ficiency, and broad coverage, but does not model
syntactic prediction. Unlike the other models dis-
cussed here, no psycholinguistic evaluation has
been conducted on the stack-based model, so its
cognitive plausibility is preliminary.

2.3 Beyond Parsing

There is strong evidence that human language pro-
cessing is driven by an interaction of syntactic, se-
mantic, and discourse processes (see Table 2 for
an overview and references). Considerable exper-
imental work has focused on the semantic prop-
erties of the verb of the sentence, and verb sense,
selectional restrictions, and thematic roles have all
been shown to interact with syntactic ambiguity
resolution. Another large body of research has elu-
cidated the interaction of discourse processing and
syntactic processing. The most-well known effect
is probably that of referential context: syntactic
ambiguities can be resolved if a discourse con-
text is provided that makes one of the syntactic
alternatives more plausible. For instance, in a con-
text that provides two possible antecedents for a
noun phrase, the processor will prefer attaching a
PP or a relative clause such that it disambiguates
between the two antecedents; garden paths are re-
duced or disappear. Other results point to the im-
portance of discourse coherence for sentence pro-
cessing, an example being implicit causality.

The challenge facing researchers in compu-
tational and psycholinguistics therefore includes
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the development of language processing models
that combine syntactic processing with semantic
and discourse processing. So far, this challenge is
largely unmet: there are some examples of models
that integrate semantic processes such as thematic
role assignment into a parsing model (Narayanan
and Jurafsky, 2002; Padé et al., 2009). However,
other semantic factors are not accounted for by
these models, and incorporating non-lexical as-
pects of semantics into models of sentence pro-
cessing is a challenge for ongoing research. Re-
cently, Dubey (2010) has proposed an approach
that combines a probabilistic parser with a model
of co-reference and discourse inference based on
probabilistic logic. An alternative approach has
been taken by Pynte et al. (2008) and Mitchell
et al. (2010), who combine a vector-space model
of semantics (Landauer and Dumais, 1997) with a
syntactic parser and show that this results in pre-
dictions of processing difficulty that can be vali-
dated against an eye-tracking corpus.

2.4 Acquisition and Crosslinguistics

All models of human language processing dis-
cussed so far rely on supervised training data. This
raises another aspect of the modeling challenge:
the human language processor is the product of
an acquisition process that is largely unsupervised
and has access to only limited training data: chil-
dren aged 12-36 months are exposed to between
10 and 35 million words of input (Hart and Ris-
ley, 1995). The challenge therefore is to develop
a model of language acquisition that works with
such small training sets, while also giving rise to
a language processor that meets the key criteria
in Table 1. The CL community is in a good posi-
tion to rise to this challenge, given the significant
progress in unsupervised parsing in recent years
(starting from Klein and Manning 2002). How-
ever, none of the existing unsupervised models has
been evaluated against psycholinguistic data sets,
and they are not designed to meet even basic psy-
cholinguistic criteria such as incrementality.

A related modeling challenge is the develop-
ment of processing models for languages other
than English. There is a growing body of ex-
perimental research investigating human language
processing in other languages, but virtually all ex-
isting psycholinguistic models only work for En-
glish (the only exceptions we are aware of are
Dubey et al.’s (2008) and Ferrara Boston et al.’s



(2008) parsing models for German). Again, the
CL community has made significant progress in
crosslinguistic parsing, especially using depen-
dency grammar (Haji¢, 2009), and psycholinguis-
tic modeling could benefit from this in order to
meet the challenge of developing crosslinguisti-
cally valid models of human language processing.

3 Data and Evaluation Challenge

3.1 Test Sets

The second key challenge that needs to be ad-
dressed in order to develop cognitively plausible
models of human language processing concerns
test data and model evaluation. Here, the state of
the art in psycholinguistic modeling lags signif-
icantly behind standards in the CL community.
Most of the models discussed in Section 2 have not
been evaluated rigorously. The authors typically
describe their performance on a small set of hand-
picked examples; no attempts are made to test on
a range of items from the experimental literature
and determine model fit directly against behavioral
measures (e.g., reading times). This makes it very
hard to obtain a realistic estimate of how well the
models achieve their aim of capturing human lan-
guage processing behavior.

We therefore suggest the development of stan-
dard test sets for psycholinguistic modeling, simi-
lar to what is commonplace for tasks in computa-
tional linguistics: parsers are evaluated against the
Penn Treebank, word sense disambiguation sys-
tems against the SemEval data sets, co-reference
systems against the Tipster or ACE corpora, etc.
Two types of test data are required for psycholin-
guistic modeling. The first type of test data con-
sists of a collection of representative experimental
results. This collection should contain the actual
experimental materials (sentences or discourse
fragments) used in the experiments, together with
the behavioral measurements obtained (reading
times, eye-movement records, rating judgments,
etc.). The experiments included in this test set
would be chosen to cover a wide range of ex-
perimental phenomena, e.g., garden paths, syntac-
tic complexity, memory effects, semantic and dis-
course factors. Such a test set will enable the stan-
dardized evaluation of psycholinguistic models by
comparing the model predictions (rankings, sur-
prisal values, memory costs, etc.) against behav-
ioral measures on a large set of items. This way
both the coverage of a model (how many phenom-
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ena can it account for) and its accuracy (how well
does it fit the behavioral data) can be assessed.

Experimental test sets should be complemented
by test sets based on corpus data. In order to as-
sess the efficiency, robustness, and broad cover-
age of a model, a corpus of unrestricted, naturally
occurring text is required. The use of contextual-
ized language data makes it possible to assess not
only syntactic models, but also models that capture
discourse effects. These corpora need to be anno-
tated with behavioral measures, e.g., eye-tracking
or reading time data. Some relevant corpora have
already been constructed, see the overview in Ta-
ble 3, and various authors have used them for
model evaluation (Demberg and Keller, 2008a;
Pynte et al., 2008; Frank, 2009; Ferrara Boston
et al., 2008; Patil et al., 2009; Roark et al., 2009;
Mitchell et al., 2010).

However, the usefulness of the psycholinguis-
tic corpora in Table 3 is restricted by the absence
of gold-standard linguistic annotation (though the
French part of the Dundee corpus, which is syn-
tactically annotated). This makes it difficult to test
the accuracy of the linguistic structures computed
by a model, and restricts evaluation to behavioral
predictions. The challenge is therefore to collect
a standardized test set of naturally occurring text
or speech enriched not only with behavioral vari-
ables, but also with syntactic and semantic anno-
tation. Such a data set could for example be con-
structed by eye-tracking section 23 of the Penn
Treebank (which is also part of Propbank, and thus
has both syntactic and thematic role annotation).

In computational linguistics, the development
of new data sets is often stimulated by competi-
tions in which systems are compared on a stan-
dardized task, using a data set specifically de-
signed for the competition. Examples include the
CoNLL shared task, SemEval, or TREC in com-
putational syntax, semantics, and discourse, re-
spectively. A similar competition could be devel-
oped for computational psycholinguistics — maybe
along the lines of the model comparison chal-
lenges that held at the International Conference
on Cognitive Modeling. These challenges provide
standardized task descriptions and data sets; par-
ticipants can enter their cognitive models, which
were then compared using a pre-defined evalua-
tion metric.>

3The ICCM 2009 challenge was the Dynamic Stock and

Flows Task, for more information see http://www.hss.
cmu.edu/departments/sds/ddmlab/modeldsf/.



Corpus Language Words  Participants ~ Method Reference

Dundee Corpus  English, French 50,000 10 Eye-tracking Kennedy and Pynte (2005)
Potsdam Corpus ~ German 1,138 222 Eye-tracking Kliegl et al. (2006)

MIT Corpus English 3,534 23 Self-paced reading  Bachrach (2008)

Table 3: Test corpora that have been used for psycholinguistic modeling of sentence processing; note that the Potsdam Corpus

consists of isolated sentences, rather than of continuous text

3.2 Behavioral and Neural Data

As outlined in the previous section, a number of
authors have evaluated psycholinguistic models
against eye-tracking or reading time corpora. Part
of the data and evaluation challenge is to extend
this evaluation to neural data as provided by event-
related potential (ERP) or brain imaging studies
(e.g., using functional magnetic resonance imag-
ing, fMRI). Neural data sets are considerably more
complex than behavioral ones, and modeling them
is an important new task that the community is
only beginning to address. Some recent work has
evaluated models of word semantics against ERP
(Murphy et al., 2009) or fMRI data (Mitchell et al.,
2008).* This is a very promising direction, and the
challenge is to extend this approach to the sentence
and discourse level (see Bachrach 2008). Again,
it will again be necessary to develop standardized
test sets of both experimental data and corpus data.

3.3 Evaluation Measures

We also anticipate that the availability of new test
data sets will facilitate the development of new
evaluation measures that specifically test the va-
lidity of psycholinguistic models. Established CL
evaluation measures such as Parseval are of lim-
ited use, as they can only test the linguistic, but not
the behavioral or neural predictions of a model.

So far, many authors have relied on qualita-
tive evaluation: if a model predicts a difference
in (for instance) reading time between two types
of sentences where such a difference was also
found experimentally, then that counts as a suc-
cessful test. In most cases, no quantitative evalu-
ation is performed, as this would require model-
ing the reading times for individual item and in-
dividual participants. Suitable procedures for per-
forming such tests do not currently exist; linear
mixed effects models (Baayen et al., 2008) pro-
vide a way of dealing with item and participant
variation, but crucially do not enable direct com-
parisons between models in terms of goodness of
fit.

4These data sets were released as part of the NAACL-
2010 Workshop on Computational Neurolinguistics.
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Further issues arise from the fact that we of-
ten want to compare model fit for multiple experi-
ments (ideally without reparametrizing the mod-
els), and that various mutually dependent mea-
sures are used for evaluation, e.g., processing ef-
fort at the sentence, word, and character level. An
important open challenge is there to develop eval-
uation measures and associated statistical proce-
dures that can deal with these problems.

4 Conclusions

In this paper, we discussed the modeling and
data/evaluation challenges involved in developing
cognitively plausible models of human language
processing. Developing computational models is
of scientific importance in so far as models are im-
plemented theories: models of language process-
ing allow us to test scientific hypothesis about the
cognitive processes that underpin language pro-
cessing. This type of precise, formalized hypoth-
esis testing is only possible if standardized data
sets and uniform evaluation procedures are avail-
able, as outlined in the present paper. Ultimately,
this approach enables qualitative and quantitative
comparisons between theories, and thus enhances
our understanding of a key aspect of human cog-
nition, language processing.

There is also an applied side to the proposed
challenge. Once computational models of human
language processing are available, they can be
used to predict the difficulty that humans experi-
ence when processing text or speech. This is use-
ful for a number applications: for instance, nat-
ural language generation would benefit from be-
ing able to assess whether machine-generated text
or speech is easy to process. For text simplifica-
tion (e.g., for children or impaired readers), such a
model is even more essential. It could also be used
to assess the readability of text, which is of interest
in educational applications (e.g., essay scoring). In
machine translation, evaluating the fluency of sys-
tem output is crucial, and a model that predicts
processing difficulty could be used for this, or to
guide the choice between alternative translations,
and maybe even to inform human post-editing.
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Abstract

The Manually Annotated Sub-Corpus
(MASC) project provides data and annota-
tions to serve as the base for a community-
wide annotation effort of a subset of the
American National Corpus. The MASC
infrastructure enables the incorporation of
contributed annotations into a single, us-
able format that can then be analyzed as
it is or ported to any of a variety of other
formats. MASC includes data from a
much wider variety of genres than exist-
ing multiply-annotated corpora of English,
and the project is committed to a fully
open model of distribution, without re-
striction, for all data and annotations pro-
duced or contributed. As such, MASC
is the first large-scale, open, community-
based effort to create much needed lan-
guage resources for NLP. This paper de-
scribes the MASC project, its corpus and
annotations, and serves as a call for con-
tributions of data and annotations from the
language processing community.

1 Introduction

The need for corpora annotated for multiple phe-
nomena across a variety of linguistic layers is
keenly recognized in the computational linguistics
community. Several multiply-annotated corpora
exist, especially for Western European languages
and for spoken data, but, interestingly, broad-
based English language corpora with robust anno-
tation for diverse linguistic phenomena are rela-
tively rare. The most widely-used corpus of En-
glish, the British National Corpus, contains only
part-of-speech annotation; and although it con-
tains a wider range of annotation types, the fif-
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teen million word Open American National Cor-
pus annotations are largely unvalidated. The most
well-known multiply-annotated and validated cor-
pus of English is the one million word Wall Street
Journal corpus known as the Penn Treebank (Mar-
cus et al., 1993), which over the years has been
fully or partially annotated for several phenomena
over and above the original part-of-speech tagging
and phrase structure annotation. The usability of
these annotations is limited, however, by the fact
that many of them were produced by independent
projects using their own tools and formats, mak-
ing it difficult to combine them in order to study
their inter-relations. More recently, the OntoNotes
project (Pradhan et al., 2007) released a one mil-
lion word English corpus of newswire, broadcast
news, and broadcast conversation that is annotated
for Penn Treebank syntax, PropBank predicate ar-
gument structures, coreference, and named enti-
ties. OntoNotes comes closest to providing a cor-
pus with multiple layers of annotation that can be
analyzed as a unit via its representation of the an-
notations in a “normal form”. However, like the
Wall Street Journal corpus, OntoNotes is limited
in the range of genres it includes. It is also limited
to only those annotations that may be produced by
members of the OntoNotes project. In addition,
use of the data and annotations with software other
than the OntoNotes database API is not necessar-
ily straightforward.

The sparseness of reliable multiply-annotated
corpora can be attributed to several factors. The
greatest obstacle is the high cost of manual pro-
duction and validation of linguistic annotations.
Furthermore, the production and annotation of
corpora, even when they involve significant scien-
tific research, often do not, per se, lead to publish-
able research results. It is therefore understand-
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able that many research groups are unwilling to
get involved in such a massive undertaking for rel-
atively little reward.

The  Manually  Annotated  Sub-Corpus
(MASC) (Ide et al., 2008) project has been
established to address many of these obstacles
to the creation of large-scale, robust, multiply-
annotated corpora. The project is providing
appropriate data and annotations to serve as the
base for a community-wide annotation effort,
together with an infrastructure that enables the
representation of internally-produced and con-
tributed annotations in a single, usable format
that can then be analyzed as it is or ported to any
of a variety of other formats, thus enabling its
immediate use with many common annotation
platforms as well as off-the-shelf concordance
and analysis software. The MASC project’s aim is
to offset some of the high costs of producing high
quality linguistic annotations via a distribution of
effort, and to solve some of the usability problems
for annotations produced at different sites by
harmonizing their representation formats.

The MASC project provides a resource that is
significantly different from OntoNotes and simi-
lar corpora. It provides data from a much wider
variety of genres than existing multiply-annotated
corpora of English, and all of the data in the cor-
pus are drawn from current American English so
as to be most useful for NLP applications. Per-
haps most importantly, the MASC project is com-
mitted to a fully open model of distribution, with-
out restriction, for all data and annotations. It is
also committed to incorporating diverse annota-
tions contributed by the community, regardless of
format, into the corpus. As such, MASC is the
first large-scale, open, community-based effort to
create a much-needed language resource for NLP.
This paper describes the MASC project, its corpus
and annotations, and serves as a call for contribu-
tions of data and annotations from the language
processing community.

2 MASC: The Corpus

MASC is a balanced subset of 500K words of
written texts and transcribed speech drawn pri-
marily from the Open American National Corpus
(OANC)!. The OANC is a 15 million word (and
growing) corpus of American English produced
since 1990, all of which is in the public domain

'http://www.anc.org
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Genre No. texts  Total words
Email 2 468
Essay 4 17516
Fiction 4 20413
Gov’t documents 1 6064
Journal 10 25635
Letters 31 10518
Newspaper/newswire 41 17951
Non-fiction 4 17118
Spoken 11 25783
Debate transcript 2 32325
Court transcript 1 20817
Technical 3 15417
Travel guides 4 12463
Total 118 222488

Table 1: MASC Composition (first 220K)

or otherwise free of usage and redistribution re-
strictions.

Where licensing permits, data for inclusion in
MASC is drawn from sources that have already
been heavily annotated by others. So far, the
first 80K increment of MASC data includes a
40K subset consisting of OANC data that has
been previously annotated for PropBank predi-
cate argument structures, Pittsburgh Opinion an-
notation (opinions, evaluations, sentiments, etc.),
TimeML time and events2, and several other lin-
guistic phenomena. It also includes a handful of
small texts from the so-called Language Under-
standing (LU) Corpus’ that has been annotated by
multiple groups for a wide variety of phenomena,
including events and committed belief. All of the
first 80K increment is annotated for Penn Tree-
bank syntax. The second 120K increment includes
5.5K words of Wall Street Journal texts that have
been annotated by several projects, including Penn
Treebank, PropBank, Penn Discourse Treebank,
TimeML, and the Pittsburgh Opinion project. The
composition of the 220K portion of the corpus an-
notated so far is shown in Table 1. The remain-
ing 280K of the corpus fills out the genres that are
under-represented in the first portion and includes
a few additional genres such as blogs and tweets.

3 MASC Annotations

Annotations for a variety of linguistic phenomena,
either manually produced or corrected from output
of automatic annotation systems, are being added

2The TimeML annotations of the data are not yet com-
pleted.

*MASC contains about 2K words of the 10K LU corpus,
eliminating non-English and translated LU texts as well as
texts that are not free of usage and redistribution restrictions.



Annotation type Method No. texts  No. words
Token Validated 118 222472
Sentence Validated 118 222472
POS/lemma Validated 118 222472
Noun chunks Validated 118 222472
Verb chunks Validated 118 222472
Named entities Validated 118 222472
FrameNet frames  Manual 21 17829
HSPG Validated 40* 30106
Discourse Manual 40* 30106
Penn Treebank Validated 97 87383
PropBank Validated 92 50165
Opinion Manual 97 47583
TimeBank Validated 34 5434
Committed belief Manual 13 4614
Event Manual 13 4614
Coreference Manual 2 1877

Table 2: Current MASC Annotations (* projected)

to MASC data in increments of roughly 100K
words. To date, validated or manually produced
annotations for 222K words have been made avail-
able.

The MASC project is itself producing annota-
tions for portions of the corpus for WordNet senses
and FrameNet frames and frame elements. To de-
rive maximal benefit from the semantic informa-
tion provided by these resources, the entire cor-
pus is also annotated and manually validated for
shallow parses (noun and verb chunks) and named
entities (person, location, organization, date and
time). Several additional types of annotation have
either been contracted by the MASC project or
contributed from other sources. The 220K words
of MASC I and Il include seventeen different types
of linguistic annotation*, shown in Table 2.

All MASC annotations, whether contributed or
produced in-house, are transduced to the Graph
Annotation Framework (GrAF) (Ide and Suder-
man, 2007) defined by ISO TC37 SC4’s Linguistic
Annotation Framework (LAF) (Ide and Romary,
2004). GrAF is an XML serialization of the LAF
abstract model of annotations, which consists of
a directed graph decorated with feature structures
providing the annotation content. GrAF’s primary
role is to serve as a “pivot” format for transducing
among annotations represented in different for-
mats. However, because the underlying data struc-
ture is a graph, the GrAF representation itself can
serve as the basis for analysis via application of

“This includes WordNet sense annotations, which are not
listed in Table 2 because they are not applied to full texts; see
Section 3.1 for a description of the WordNet sense annota-
tions in MASC.
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graph-analytic algorithms such as common sub-
tree detection.

The layering of annotations over MASC texts
dictates the use of a stand-off annotation repre-
sentation format, in which each annotation is con-
tained in a separate document linked to the pri-
mary data. Each text in the corpus is provided in
UTF-8 character encoding in a separate file, which
includes no annotation or markup of any kind.
Each file is associated with a set of GrAF standoff
files, one for each annotation type, containing the
annotations for that text. In addition to the anno-
tation types listed in Table 2, a document contain-
ing annotation for logical structure (titles, head-
ings, sections, etc. down to the level of paragraph)
is included. Each text is also associated with
(1) a header document that provides appropriate
metadata together with machine-processable in-
formation about associated annotations and inter-
relations among the annotation layers; and (2) a
segmentation of the primary data into minimal re-
gions, which enables the definition of different to-
kenizations over the text. Contributed annotations
are also included in their original format, where
available.

3.1 WordNet Sense Annotations

A focus of the MASC project is to provide corpus
evidence to support an effort to harmonize sense
distinctions in WordNet and FrameNet (Baker and
Fellbaum, 2009), (Fellbaum and Baker, to appear).
The WordNet and FrameNet teams have selected
for this purpose 100 common polysemous words
whose senses they will study in detail, and the
MASC team is annotating occurrences of these
words in the MASC. As a first step, fifty oc-
currences of each word are annotated using the
WordNet 3.0 inventory and analyzed for prob-
lems in sense assignment, after which the Word-
Net team may make modifications to the inven-
tory if needed. The revised inventory (which will
be released as part of WordNet 3.1) is then used to
annotate 1000 occurrences. Because of its small
size, MASC typically contains less than 1000 oc-
currences of a given word; the remaining occur-
rences are therefore drawn from the 15 million
words of the OANC. Furthermore, the FrameNet
team is also annotating one hundred of the 1000
sentences for each word with FrameNet frames
and frame elements, providing direct comparisons
of WordNet and FrameNet sense assignments in



attested sentences.’

For convenience, the annotated sentences are
provided as a stand-alone corpus, with the Word-
Net and FrameNet annotations represented in
standoff files. Each sentence in this corpus is
linked to its occurrence in the original text, so that
the context and other annotations associated with
the sentence may be retrieved.

3.2 Validation

Automatically-produced annotations for sentence,
token, part of speech, shallow parses (noun and
verb chunks), and named entities (person, lo-
cation, organization, date and time) are hand-
validated by a team of students. Each annotation
set is first corrected by one student, after which it
is checked (and corrected where necessary) by a
second student, and finally checked by both auto-
matic extraction of the annotated data and a third
pass over the annotations by a graduate student
or senior researcher. We have performed inter-
annotator agreement studies for shallow parses in
order to establish the number of passes required to
achieve near-100% accuracy.

Annotations produced by other projects and
the FrameNet and Penn Treebank annotations
produced specifically for MASC are semi-
automatically and/or manually produced by those
projects and subjected to their internal quality con-
trols. No additional validation is performed by the
ANC project.

The WordNet sense annotations are being used
as a base for an extensive inter-annotator agree-
ment study, which is described in detail in (Pas-
sonneau et al., 2009), (Passonneau et al., 2010).
All inter-annotator agreement data and statistics
are published along with the sense tags. The re-
lease also includes documentation on the words
annotated in each round, the sense labels for each
word, the sentences for each word, and the anno-
tator or annotators for each sense assignment to
each word in context. For the multiply annotated
data in rounds 2-4, we include raw tables for each
word in the form expected by Ron Artstein’s cal-
culate_alpha.pl perl script®, so that the agreement
numbers can be regenerated.

SNote that several MASC texts have been fully annotated
for FrameNet frames and frame elements, in addition to the
WordNet-tagged sentences.

Shttp://ron.artstein.org/resources/calculate-alpha.perl
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4 MASC Availability and Distribution

Like the OANC, MASC is distributed without
license or other restrictions from the American
National Corpus website’. It is also available
from the Linguistic Data Consortium (LDC)? for
a nominal processing fee.

In addition to enabling download of the entire
MASC, we provide a web application that allows
users to select some or all parts of the corpus and
choose among the available annotations via a web
interface (Ide et al., 2010). Once generated, the
corpus and annotation bundle is made available to
the user for download. Thus, the MASC user need
never deal directly with or see the underlying rep-
resentation of the stand-off annotations, but gains
all the advantages that representation offers. The
following output formats are currently available:

1. in-line XML (XCES?), suitable for use with

the BNCs XAIRA search and access inter-

face and other XML-aware software;

token / part of speech, a common input for-

mat for general-purpose concordance soft-

ware such as MonoConc!?, as well as the

Natural Language Toolkit (NLTK) (Bird et

al., 2009);

. CONLL IOB format, used in the Confer-
ence on Natural Language Learning shared
tasks.!!

5 Tools

The ANC project provides an API for GrAF an-
notations that can be used to access and manip-
ulate GrAF annotations directly from Java pro-
grams and render GrAF annotations in a format
suitable for input to the open source GraphViz'?
graph visualization application.'® Beyond this, the
ANC project does not provide specific tools for
use of the corpus, but rather provides the data in
formats suitable for use with a variety of available
applications, as described in section 4, together
with means to import GrAF annotations into ma-
jor annotation software platforms. In particular,
the ANC project provides plugins for the General

"http://www.anc.org

8http://www.ldc.upenn.edu

XML Corpus Encoding Standard, http://www.xces.org
http://www.athel.com/mono.html
"http://ifarm.nl/signll/conll

Phttp://www.graphviz.org/
Bhttp://www.anc.org/graf-api



Architecture for Text Engineering (GATE) (Cun-
ningham et al., 2002) to input and/or output an-
notations in GrAF format; a “CAS Consumer”
to enable using GrAF annotations in the Un-
structured Information Management Architecture
(UIMA) (Ferrucci and Lally, 2004); and a corpus
reader for importing MASC data and annotations
into NLTK'.

Because the GrAF format is isomorphic to in-
put to many graph-analytic tools, existing graph-
analytic software can also be exploited to search
and manipulate MASC annotations. Trivial merg-
ing of GrAF-based annotations involves simply
combining the graphs for each annotation, after
which graph minimization algorithms'> can be ap-
plied to collapse nodes with edges to common
subgraphs to identify commonly annotated com-
ponents. Graph-traversal and graph-coloring al-
gorithms can also be applied in order to iden-
tify and generate statistics that could reveal in-
teractions among linguistic phenomena that may
have previously been difficult to observe. Other
graph-analytic algorithms — including common
sub-graph analysis, shortest paths, minimum span-
ning trees, connectedness, identification of artic-
ulation vertices, topological sort, graph partition-
ing, etc. — may also prove to be useful for mining
information from a graph of annotations at multi-
ple linguistic levels.

6 Community Contributions

The ANC project solicits contributions of anno-
tations of any kind, applied to any part or all of
the MASC data. Annotations may be contributed
in any format, either inline or standoff. All con-
tributed annotations are ported to GrAF standoff
format so that they may be used with other MASC
annotations and rendered in the various formats
the ANC tools generate. To accomplish this, the
ANC project has developed a suite of internal tools
and methods for automatically transducing other
annotation formats to GrAF and for rapid adapta-
tion of previously unseen formats.

Contributions may be  emailed to
anc@cs.vassar.edu or uploaded via the
ANC website'®.  The validity of annotations
and supplemental documentation (if appropriate)
are the responsibility of the contributor. MASC

14 Available in September, 2010.

SEfficient algorithms for graph merging exist; see,

e.g., (Habib et al., 2000).
"®http://www.anc.org/contributions.html
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users may contribute evaluations and error reports
for the various annotations on the ANC/MASC
wikil7.

Contributions of unvalidated annotations for
MASC and OANC data are also welcomed and are
distributed separately. Contributions of unencum-
bered texts in any genre, including stories, papers,
student essays, poetry, blogs, and email, are also
solicited via the ANC web site and the ANC Face-
Book page'®, and may be uploaded at the contri-
bution page cited above.

7 Conclusion

MASC is already the most richly annotated corpus
of English available for widespread use. Because
the MASC is an open resource that the commu-
nity can continually enhance with additional an-
notations and modifications, the project serves as a
model for community-wide resource development
in the future. Past experience with corpora such
as the Wall Street Journal shows that the commu-
nity is eager to annotate available language data,
and we anticipate even greater interest in MASC,
which includes language data covering a range of
genres that no existing resource provides. There-
fore, we expect that as MASC evolves, more and
more annotations will be contributed, thus creat-
ing a massive, inter-linked linguistic infrastructure
for the study and processing of current American
English in its many genres and varieties. In addi-
tion, by virtue of its WordNet and FrameNet anno-
tations, MASC will be linked to parallel WordNets
and FrameNets in languages other than English,
thus creating a global resource for multi-lingual
technologies, including machine translation.
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Abstract

This paper proposes a method of correct-
ing annotation errors in a treebank. By us-
ing a synchronous grammar, the method
transforms parse trees containing annota-
tion errors into the ones whose errors are
corrected. The synchronous grammar is
automatically induced from the treebank.
We report an experimental result of apply-
ing our method to the Penn Treebank. The
result demonstrates that our method cor-
rects syntactic annotation errors with high
precision.

1 Introduction

Annotated corpora play an important role in the
fields such as theoretical linguistic researches or
the development of NLP systems. However, they
often contain annotation errors which are caused
by a manual or semi-manual mark-up process.
These errors are problematic for corpus-based re-
searches.

To solve this problem, several error detection
and correction methods have been proposed so far
(Eskin, 2000; Nakagawa and Matsumoto, 2002;
Dickinson and Meurers, 2003a; Dickinson and
Meurers, 2003b; Ule and Simov, 2004; Murata
et al., 2005; Dickinson and Meurers, 2005; Boyd
et al., 2008). These methods detect corpus posi-
tions which are marked up incorrectly, and find
the correct labels (e.g. pos-tags) for those posi-
tions. However, the methods cannot correct errors
in structural annotation. This means that they are
insufficient to correct annotation errors in a tree-
bank.

This paper proposes a method of correcting er-
rors in structural annotation. Our method is based
on a synchronous grammar formalism, called syn-
chronous tree substitution grammar (STSG) (Eis-
ner, 2003), which defines a tree-to-tree transfor-
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mation. By using an STSG, our method trans-
forms parse trees containing errors into the ones
whose errors are corrected. The grammar is au-
tomatically induced from the treebank. To select
STSG rules which are useful for error correction,
we define a score function based on the occurrence
frequencies of the rules. An experimental result
shows that the selected rules archive high preci-
sion.

This paper is organized as follows: Section 2
gives an overview of previous work. Section 3 ex-
plains our method of correcting errors in a tree-
bank. Section 4 reports an experimental result us-
ing the Penn Treebank.

2 Previous Work

This section summarizes previous methods for
correcting errors in corpus annotation and dis-
cusses their problem.

Some research addresses the detection of er-
rors in pos-annotation (Nakagawa and Matsumoto,
2002; Dickinson and Meurers, 2003a), syntactic
annotation (Dickinson and Meurers, 2003b; Ule
and Simov, 2004; Dickinson and Meurers, 2005),
and dependency annotation (Boyd et al., 2008).
These methods only detect corpus positions where
errors occur. It is unclear how we can correct the
erTors.

Several methods can correct annotation errors
(Eskin, 2000; Murata et al., 2005). These meth-
ods are to correct tag-annotation errors, that is,
they simply suggest a candidate tag for each po-
sition where an error is detected. The methods
cannot correct syntactic annotation errors, because
syntactic annotation is structural. There is no ap-
proach to correct structural annotation errors.

To clarify the problem, let us consider an exam-
ple. Figure 1 depicts two parse trees annotated ac-
cording to the Penn Treebank annotation '. The

10 and * T« are null elements.
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(a) incorrect parse tree
S

— —
NP PRN VP .
1 1 —_— 1
DT S MD VP
1 = — 1 _—
That , NP VP , wil VB ADIP
1 1 — 1 1 —_—
, PRP VBP SBAR be 1 PP
1 1 - 1 —
they say -NONE- S good IN NP
1 1 1 1
0 -NONE- for NNS
1 1
*T* bonds
(b) correct parse tree
— —
NP PRN VP .
l ee—T —— 1
DT | s MD VP
! 1 —_— |’ 1 -—
That , NP VP will VB ADJP
PRP  VBP SBAR be 1 PP
1 1 - 1 ——
they say -NONE- S good IN NP
1 1 1 1
0 -NONE- for NNS
1 1
*T* bonds

Figure 1: An example of a treebank error

parse tree (a) contains errors and the parse tree
(b) is the corrected version. In the parse tree (a),
the positions of the two subtrees (, ,) are erro-
neous. To correct the errors, we need to move the
subtrees to the positions which are directly dom-
inated by the node PRN. This example demon-
strates that we need a framework of transforming
tree structures to correct structural annotation er-
rors.

3 Correcting Errors by Using
Synchronous Grammar

To solve the problem described in Section 2, this
section proposes a method of correcting structural
annotation errors by using a synchronous tree sub-
stitution grammar (STSG) (Eisner, 2003). An
STSG defines a tree-to-tree transformation. Our
method induces an STSG which transforms parse
trees containing errors into the ones whose errors
are corrected.

3.1 Synchronous Tree Substitution Grammar

First of all, we describe the STSG formalism. An
STSG defines a set of tree pairs. An STSG can be
treated as a tree transducer which takes a tree as
input and produces a tree as output. Each grammar
rule consists of the following elements:

e a pair of trees called elementary trees
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source target
PRN PRN
1 e —
S ”n S 14
/\ /\
71 N PZ VP3 1’4 N P2 VP3

Figure 2: An example of an STSG rule

e a one-to-one alignment between nodes in the
elementary trees

For a tree pair (t,t'), the tree ¢ and ¢’ are
called source and target, respectively. The non-
terminal leaves of elementary trees are called fron-
tier nodes. There exists a one-to-one alignment
between the frontier nodes in ¢ and ¢’. The rule
means that the structure which matches the source
elementary tree is transformed into the structure
which is represented by the target elementary tree.
Figure 2 shows an example of an STSG rule. The
subscripts indicate the alignment. This rule can
correct the errors in the parse tree (a) depicted in
Figure 1.

An STSG derives tree pairs. Any derivation
process starts with the pair of nodes labeled with
special symbols called start symbols. A derivation
proceeds in the following steps:

1. Choose a pair of frontier nodes (n,n’) for
which there exists an alignment.

. Choose a rule (t,t') s.t. label(n) = root(t)
and label(n') = root(t") where label(n) is
the label of 7 and root(t) is the root label of
t.

3. Substitute ¢ and ¢’ into 1) and 7/, respectively.

Figure 3 shows a derivation process in an STSG.

In the rest of the paper, we focus on the rules
in which the source elementary tree is not identi-
cal to its target, since such identical rules cannot
contribute to error correction.

3.2 Inducing an STSG for Error Correction

This section describes a method of inducing an
STSG for error correction. The basic idea of
our method is similar to the method presented by
Dickinson and Meurers (2003b). Their method de-
tects errors by seeking word sequences satisfying
the following conditions:

e The word sequence occurs more than once in
the corpus.



(a) S S
(b) S S
—_—T —_—T
NP PRN VP . NP PRN VP .
DT DT
1 1
That That
(c) S S
—_— —_—7
NP PRN VP . NP PRN VP .
/‘\
DT S DT S
1 —_— [ as ’
That, NP VP That NP VP
(d) S S
—T —T ———
NP PRN VP . NP PRN VP .
/I\
DT S DT S
1 1 ; as ’
That, NP VP That = NP VP
1 ’
' pRP PRP
r 1
they they
v

Figure 3: A derivation process of tree pairs in an
STSG

¢ Different syntactic labels are assigned to the
occurrences of the word sequence.

Unlike their method, our method seeks word se-
quences whose occurrences have different partial
parse trees. We call a collection of these word
sequences with partial parse trees pseudo paral-
lel corpus. Moreover, our method extracts STSG
rules which transform the one partial tree into the
other.

3.2.1 Constructing a Pseudo Parallel Corpus

Our method firstly constructs a pseudo parallel
corpus which represents a correspondence be-
tween parse trees containing errors and the ones
whose errors are corrected. The procedure is as
follows: Let T' be the set of the parse trees oc-
curring in the corpus. We write Sub(c) for the
set which consists of the partial parse trees in-
cluded in the parse tree . A pseudo parallel cor-
pus Para(T) is constructed as follows:

Para(T) = {{(r,7)| 7,7 € U Sub(o)
o€eT
AT #£T
A yield(t) = yield(T")

Aroot(t) = root(t')}
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they say -NONE-;, Sg they say -NONE-;, Sg
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Figure 4: An example of a partial parse tree pair
in a pseudo parallel corpus

S

—
NP PRN VP .
1 e ———— _—— 1
DT , S , VBD ADJP
1 1 — 1 1 —
That , NP VP , o will W PP
1 —_— 1 S~
PRP  VBP SBAR proud IN NP
1 1 —_—— 1 —
they say -NONE- S of PRPS NNS
1 1 1 1
0 -NONE- his abilities
*-||—*

Figure 5: Another example of a parse tree contain-
ing a word sequence “, they say ,”

where yield(T) is the word sequence dominated
by 7.

Let us consider an example. If the parse trees
depicted in Figure 1 exist in the treebank 7', the
pair of partial parse trees depicted in Figure 4 is
an element of Para(T). We also obtain this pair
in the case where there exists not the parse tree
(b) depicted in Figure 1 but the parse tree depicted
in Figure 5, which contains the word sequence *,
they say ,”.

3.2.2 Inducing a Grammar from a Pseudo
Parallel Corpus

Our method induces an STSG from the pseudo
parallel corpus according to the method proposed
by Cohn and Lapata (2009). Cohn and Lapata’s
method can induce an STSG which represents a
correspondence in a parallel corpus. Their method
firstly determine an alignment of nodes between
pairs of trees in the parallel corpus and extracts
STSG rules according to the alignments.

For partial parse trees 7 and 7/, we define a node
alignment C'(7, 7") as follows:

C(r, ) {(n.n) In € Node(r)
A1 € Node(T')

A 1 is not the root of 7



A 1 is not the root of 7/
A label(n) = label(n')
Ayield(n) = yield(r)}

where Node(T) is the set of the nodes in 7, and
yield(n) is the word sequence dominated by 7.
Figure 4 shows an example of a node alignment.
The subscripts indicate the alignment.

An STSG rule is extracted by deleting nodes in
a partial parse tree pair (1,7') € Para(T). The
procedure is as follows:

e For each (n,n) € C(r,7'), delete the de-
scendants of 1 and 7.

For example, the rule shown in Figure 2 is ex-
tracted from the pair shown in Figure 4.

3.3 Rule Selection

Some rules extracted by the procedure in Section
3.2 are not useful for error correction, since the
pseudo parallel corpus contains tree pairs whose
source tree is correct or whose target tree is incor-
rect. The rules which are extracted from such pairs
can be harmful. To select rules which are use-
ful for error correction, we define a score function
which is based on the occurrence frequencies of
elementary trees in the treebank. The score func-
tion is defined as follows:

f({t)

Score((t,t')) = 0+ F)

where f(-) is the occurrence frequency in the tree-
bank. The score function ranges from 0 to 1. We
assume that the occurrence frequency of an ele-
mentary tree matching incorrect parse trees is very
low. According to this assumption, the score func-
tion Score((t,t')) is high when the source ele-
mentary tree ¢ matches incorrect parse trees and
the target elementary tree ¢’ matches correct parse
trees. Therefore, STSG rules with high scores are
regarded to be useful for error correction.

4 An Experiment

To evaluate the effectiveness of our method, we
conducted an experiment using the Penn Treebank
(Marcus et al., 1993).

We used 49208 sentences in Wall Street Journal
sections. We induced STSG rules by applying our
method to the corpus. We obtained 8776 rules. We
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source = target

Figure 6: Examples of error correction rules in-
duced from the Penn Treebank

measured the precision of the rules. The precision
is defined as follows:

# of the positions where an error is corrected

precision =
# of the positions to which some rule is applied

We manually checked whether each rule appli-
cation corrected an error, because the corrected
treebank does not exist?. Furthermore, we only
evaluated the first 100 rules which are ordered by
the score function described in Section 3.3, since
it is time-consuming and expensive to evaluate all
of the rules. These 100 rules were applied at 331
positions. The precision of the rules is 71.9%. For
each rule, we measured the precision of it. 70 rules
achieved 100% precision. These results demon-
strate that our method can correct syntactic anno-
tation errors with high precision. Moreover, 30
rules of the 70 rules transformed bracketed struc-
tures. This fact shows that the treebank contains
structural errors which cannot be dealt with by the
previous methods.

Figure 6 depicts examples of error correction
rules which achieved 100% precision. Rule (1),
(2) and (3) are rules which transform bracketed
structures. Rule (4) simply replaces a node la-
bel. Rule (1) corrects an erroneous position of a
comma (see Figure 7 (a)). Rule (2) deletes a use-
less node NP in a subject position (see Figure 7
(b)). Rule (3) inserts a node NP (see Figure 7 (c)).
Rule (4) replaces a node label NP with the cor-
rect label PP (see Figure 7 (d)). These examples
demonstrate that our method can correct syntactic
annotation errors.

Figure 8 depicts an example where our method
detected an annotation error but could not correct
it. To correct the error, we need to attach the node

2This also means that we cannot measure the recall of the
rules.
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Figure 8: An example where our method detected
an annotation error but could not correct it

SBAR under the node NP. We found that 22 of the
rule applications were of this type.

Figure 9 depicts a false positive example
where our method mistakenly transformed a cor-
rect syntactic structure. The score of the rule
is very high, since the source elementary tree
(TOP (NP NP VP .)) is less frequent. This
example shows that our method has a risk of
changing correct annotations of less frequent syn-
tactic structures.

5 Conclusion

This paper proposes a method of correcting er-
rors in a treebank by using a synchronous tree
substitution grammar. Our method constructs a
pseudo parallel corpus from the treebank and ex-
tracts STSG rules from the parallel corpus. The
experimental result demonstrates that we can ob-
tain error correction rules with high precision.
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The average of interbank offered rates based on quotations at
five major banks

.

The average of interbank offered rates based on quotations at
five major banks

Figure 9: A false positive example where a correct
syntactic structure was mistakenly transformed

In future work, we will explore a method of in-
creasing the recall of error correction by construct-
ing a wide-coverage STSG.
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Abstract

This paper introduces mNCD, a method
for automatic evaluation of machine trans-
lations. The measure is based on nor-
malized compression distance (NCD), a
general information theoretic measure of
string similarity, and flexible word match-
ing provided by stemming and synonyms.
The mNCD measure outperforms NCD in
system-level correlation to human judg-
ments in English.

1 Introduction

Automatic evaluation of machine translation (MT)
systems requires automated procedures to en-
sure consistency and efficient handling of large
amounts of data. In statistical MT systems, au-
tomatic evaluation of translations is essential for
parameter optimization and system development.
Human evaluation is too labor intensive, time con-
suming and expensive for daily evaluations. How-
ever, manual evaluation is important in the com-
parison of different MT systems and for the valida-
tion and development of automatic MT evaluation
measures, which try to model human assessments
of translations as closely as possible. Furthermore,
the ideal evaluation method would be language in-
dependent, fast to compute and simple.

Recently, normalized compression distance
(NCD) has been applied to the evaluation of
machine translations. NCD is a general in-
formation theoretic measure of string similar-
ity, whereas most MT evaluation measures, e.g.,
BLEU and METEOR, are specifically constructed
for the task. Parker (2008) introduced BAD-
GER, an MT evaluation measure that uses NCD
and a language independent word normalization
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method. BADGER scores were directly compared
against the scores of METEOR and word error
rate (WER). The correlation between BADGER
and METEOR were low and correlations between
BADGER and WER high. Kettunen (2009) uses
the NCD directly as an MT evaluation measure.
He showed with a small corpus of three language
pairs that NCD and METEOR 0.6 correlated for
translations of 10-12 MT systems. NCD was not
compared to human assessments of translations,
but correlations of NCD and METEOR scores
were very high for all the three language pairs.

Viyrynen et al. (2010) have extended the work
by including NCD in the ACL WMTOS evaluation
framework and showing that NCD is correlated
to human judgments. The NCD measure did not
match the performance of the state-of-the-art MT
evaluation measures in English, but it presented a
viable alternative to de facto standard BLEU (Pa-
pineni et al., 2001), which is simple and effective
but has been shown to have a number of drawbacks
(Callison-Burch et al., 2006).

Some recent advances in automatic MT evalu-
ation have included non-binary matching between
compared items (Banerjee and Lavie, 2005; Agar-
wal and Lavie, 2008; Chan and Ng, 2009), which
is implicitly present in the string-based NCD mea-
sure. Our motivation is to investigate whether in-
cluding additional language dependent resources
would improve the NCD measure. We experiment
with relaxed word matching using stemming and
a lexical database to allow lexical changes. These
additional modules attempt to make the reference
sentences more similar to the evaluated transla-
tions on the string level. We report an experiment
showing that document-level NCD and aggregated
NCD scores for individual sentences produce very
similar correlations to human judgments.

Proceedings of the ACL 2010 Conference Short Papers, pages 80-85,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



C(x) = 38 Cly) = 45

lC(That song is about much more.) | C(In this song it is a question of more.)

C(x+y) = 64

[C(That song is about much more.In this song it is a question of more.)

Figure 1: An example showing the compressed
sizes of two strings separately and concatenated.

2 Normalized Compression Distance

Normalized compression distance (NCD) is a sim-
ilarity measure based on the idea that a string x is
similar to another string y¥ when both share sub-
strings. The description of y can reference shared
substrings in the known = without repetition, in-
dicating shared information. Figure 1 shows an
example in which the compression of the concate-
nation of x and y results in a shorter output than
individual compressions of = and .

The normalized compression distance, as de-
fined by Cilibrasi and Vitanyi (2005), is given in
Equation 1, with C'(z) as length of the compres-
sion of x and C(x,y) as the length of the com-
pression of the concatenation of x and y.

C(z,y) —min {C(z),C(y)}

NCD(z,y) = —— — {C(z),C(y)}

NCD computes the distance as a score closer to
one for very different strings and closer to zero for
more similar strings.

NCD is an approximation of the uncomputable
normalized information distance (NID), a general
measure for the similarity of two objects. NID
is based on the notion of Kolmogorov complex-
ity K(x), a theoretical measure for the informa-
tion content of a string x, defined as the shortest
universal Turing machine that prints = and stops
(Solomonoft, 1964). NCD approximates NID by
the use of a compressor C(x) that is an upper
bound of the Kolmogorov complexity K (z).

3 mNCD

Normalized compression distance was not con-
ceived with MT evaluation in mind, but rather it
is a general measure of string similarity. Implicit
non-binary matching with NCD is indicated by
preliminary experiments which show that NCD is
less sensitive to random changes on the character
level than, for instance, BLEU, which only counts
the exact matches between word n-grams. Thus
comparison of sentences at the character level
could account better for morphological changes.
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Variation in language leads to several accept-
able translations for each source sentence, which
is why multiple reference translations are pre-
ferred in evaluation. Unfortunately, it is typical
to have only one reference translation. Paraphras-
ing techniques can produce additional translation
variants (Russo-Lassner et al., 2005; Kauchak and
Barzilay, 2006). These can be seen as new refer-
ence translations, similar to pseudo references (Ma
et al., 2007).

The proposed method, mNCD, works analo-
gously to M-BLEU and M-TER, which use the
flexible word matching modules from METEOR
to find relaxed word-to-word alignments (Agar-
wal and Lavie, 2008). The modules are able to
align words even if they do not share the same
surface form, but instead have a common stem or
are synonyms of each other. A similarized transla-
tion reference is generated by replacing words in
the reference with their aligned counterparts from
the translation hypothesis. The NCD score is com-
puted between the translations and the similarized
references to get the mNCD score.

Table 1 shows some hand-picked German—
English candidate translations along with a) the
reference translations including the 1-NCD score
to easily compare with METEOR and b) the simi-
larized references including the mNCD score. For
comparison, the corresponding METEOR scores
without implicit relaxed matching are shown.

4 Experiments

The proposed mNCD and the basic NCD measure
were evaluated by computing correlation to hu-
man judgments of translations. A high correlation
value between an MT evaluation measure and hu-
man judgments indicates that the measure is able
to evaluate translations in a more similar way to
humans.

Relaxed alignments with the METEOR mod-
ules exact, stem and synonym were created
for English for the computation of the mNCD
score. The synonym module was not available
with other target languages.

4.1 Evaluation Data

The 2008 ACL Workshop on Statistical Machine
Translation (Callison-Burch et al., 2008) shared
task data includes translations from a total of 30
MT systems between English and five European
languages, as well as automatic and human trans-



Candidate C/ Reference R/ Similarized Reference S 1-NCD METEOR
C  There is no effective means to stop a Tratsch, which was already included in the world.
R There is no good way to halt gossip that has already begun to spread. 41 31
S Thereisnoeffective means to stop gossip that has already begun to spread. .56 .55
C  Cirisis, not only in America
R ACrisisNot OnlyintheU.S. Sl 44
S ACCrisis not only inthe America 12 .56
C Influence on the whole economy should not have this crisis.
R Nevertheless, the crisis should not have influenced the entire economy. .60 37
S Nevertheless, the crisis should not have Influence the entire economy. .62 44
C  Or the lost tight meeting will be discovered at the hands of a gentlemen?
R Perhaps you see the pen you thought you lost lying on your colleague’s desk. 42 .09
S Perhaps you meet ing the pen you thought you lost lying on your colleague’s desk. 40 13

Table 1: Example German—English translations showing the effect of relaxed matching in the 1-mNCD
score (for rows S) compared with METEOR using the exact module only, since the modules stem
and synonym are already used in the similarized reference. Replaced words are emphasized.

lation evaluations for the translations. There are
several tasks, defined by the language pair and the
domain of translated text.

The human judgments include three different
categories. The RANK category has human quality
rankings of five translations for one sentence from
different MT systems. The CONST category con-
tains rankings for short phrases (constituents), and
the YES/NO category contains binary answers if a
short phrase is an acceptable translation or not.

For the translation tasks into English, the re-
laxed alignment using a stem module and the
synonym module affected 7.5% of all words,
whereas only 5.1 % of the words were changed in
the tasks from English into the other languages.

The data was preprocessed in two different
ways. For NCD we kept the data as is, which we
called real casing (rc). Since the used METEOR
align module lowercases all text, we restored the
case information in mNCD by copying the correct
case from the reference translation to the similar-
ized reference, based on METEOR’s alignment.
The other way was to lowercase all data (Ic).

4.2 System-level correlation

We follow the same evaluation methodology as in
Callison-Burch et al. (2008), which allows us to
measure how well MT evaluation measures corre-
late with human judgments on the system level.

Spearman’s rank correlation coefficient p was
calculated between each MT evaluation measure
and human judgment category using the simplified
equation

6>;di

n(n? —1)

p=1- 2)
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where for each system i, d; is the difference be-
tween the rank derived from annotators’ input and
the rank obtained from the measure. From the an-
notators’ input, the n systems were ranked based
on the number of times each system’s output was
selected as the best translation divided by the num-
ber of times each system was part of a judgment.

We computed system-level correlations for
tasks with English, French, Spanish and German
as the target language'.

5 Results

We compare mNCD against NCD and relate their
performance to other MT evaluation measures.

5.1 Block size effect on NCD scores

Viyrynen et al. (2010) computed NCD between a
set of candidate translations and references at the
same time regardless of the sentence alignments,
analogously to document comparison. We experi-
mented with segmentation of the candidate trans-
lations into smaller blocks, which were individ-
ually evaluated with NCD and aggregated into a
single value with arithmetic mean. The resulting
system-level correlations between NCD and hu-
man judgments are shown in Figure 2 as a function
of the block size. The correlations are very simi-
lar with all block sizes, except for Spanish, where
smaller block size produces higher correlation. An
experiment with geometric mean produced similar
results. The reported results with mNCD use max-
imum block size, similar to Vayrynen et al. (2010).

!The English-Spanish news task was left out as most mea-
sures had negative correlation with human judgments.
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Figure 2: The block size has very little effect on
the correlation between NCD and human judg-
ments. The right side corresponds to document
comparison and the left side to aggregated NCD
scores for sentences.

5.2 mNCD against NCD

Table 2 shows the average system level correlation
of different NCD and mNCD variants for trans-
lations into English. The two compressors that
worked best in our experiments were PPMZ and
bz2. PPMZ is slower to compute but performs
slightly better compared to bz2, except for the

o

v 5 2

Z, 4 %) <

2 5o @ 9°

Method Parameters ¥ O > =
mNCD PPMZ rc 69 74 80 .74
NCD PPMZ rc 60 .66 .71 .66
mNCD bz2 rc 64 73 73 .70
NCD bz2 rc S7T 64 69 .64
mNCD PPMZ Ic .66 .80 .79 .75
NCD PPMZ 1Ic S56 .79 75 70
mNCD bz2 Ic S9 8 .74 .73
NCD bz2 Ic S54 82 71 .69

Table 2: Mean system level correlations over
all translation tasks into English for variants of
mNCD and NCD. Higher values are emphasized.
Parameters are the compressor PPMZ or bz2 and
the preprocessing choice lowercasing (Ic) or real
casing (rc).
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Target Lang Corr

Method Parameters EN DE Fr ES
mNCD PPMZ rc .69 .37 .82 .38
NCD PPMZ rc .60 .37 .84 .39
mNCD bz2 rc .64 32 75 .25
NCD bz2 rc 57 34 85 42
mNCD PPMZ 1c .66 33 .79 .23
NCD PPMZ 1Ic .56 37 .77 21
mNCD bz2 Ic 59 25 .78 .16
NCD bz2 Ic 54 26 .77 .15

Table 3: mNCD versus NCD system correlation
RANK results with different parameters (the same
as in Table 2) for each target language. Higher
values are emphasized. Target languages DE, FR
and ES use only the st em module.

lowercased CONST category.

Table 2 shows that real casing improves RANK
correlation slightly throughout NCD and mNCD
variants, whereas it reduces correlation in the cat-
egories CONST, YES/NO as well as the mean.

The best mNCD (PPMZ rc) improves the best
NCD (PPMZ rc) method by 15% in the RANK
category. In the CONST category the best mNCD
(bz2 Ic) improves the best NCD (bz2 Ic) by 3.7%.
For the total average, the best mNCD (PPMZ rc)
improves the the best NCD (bz2 Ic) by 7.2%.

Table 3 shows the correlation results for the
RANK category by target language. As shown al-
ready in Table 2, mNCD clearly outperforms NCD
for English. Correlations for other languages show
mixed results and on average, mNCD gives lower
correlations than NCD.

5.3 mNCD versus other methods

Table 4 presents the results for the selected mNCD
(PPMZ rc) and NCD (bz2 rc) variants along with
the correlations for other MT evaluation methods
from the WMT’ 08 data, based on the results in
Callison-Burch et al. (2008). The results are av-
erages over language pairs into English, sorted
by RANK, which we consider the most signifi-
cant category. Although mNCD correlation with
human evaluations improved over NCD, the rank-
ing among other measures was not affected. Lan-
guage and task specific results not shown here, re-
veal very low mNCD and NCD correlations in the
Spanish-English news task, which significantly
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DP 81 .66 .74 .73
ULCh .80 .68 .78 .75
DR .79 53 .65 .66
meteor-ranking .78 .55 .63 .65
ULC 77 .72 81 .76
posbleu .75 .69 .78 .74
SR .75 .66 .76 .72
posF4gram-gm .74 .60 .71 .68
meteor-baseline .74 .60 .63 .66
posF4gram-am .74 .58 .69 .67
mNCD (PPMZrc) .69 .74 .80 .74
NCD (PPMZrc) .60 .66 .71 .66
mbleu .50 .76 .70 .65
bleu .50 .72 .74 .65
mter .38 .74 .68 .60
svm-rank .37 .10 .23 .23
Mean .67 .62 .69 .66

Table 4: Average system-level correlations over
translation tasks into English for NCD, mNCD
and other MT evaluations measures

degrades the averages. Considering the mean of
the categories instead, mNCD’s correlation of .74
is third best together with *posbleu’.

Table 5 shows the results from English. The ta-
ble is shorter since many of the better MT mea-
sures use language specific linguistic resources
that are not easily available for languages other
than English. mNCD performs competitively only
for French, otherwise it falls behind NCD and
other methods as already shown earlier.

6 Discussion

We have introduced a new MT evaluation mea-
sure, mNCD, which is based on normalized com-
pression distance and METEOR’s relaxed align-
ment modules. The mNCD measure outperforms
NCD in English with all tested parameter com-
binations, whereas results with other target lan-
guages are unclear. The improved correlations
with mNCD did not change the position in the
RANK category of the MT evaluation measures in
the 2008 ACL WMT shared task.

The improvement in English was expected on
the grounds of the synonym module, and indicated
also by the larger number of affected words in the
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Method Target Lang Corr
DE FrR ES Mean

posbleu .75 .80 .75 .75

posF4gram-am .74 .82 .79 .74

posF4gram-gm .74 82 .79 .74

bleu .47 .83 .80 .68

NCD (bz2rc) .34 .85 .42 .66

svm-rank .44 .80 .80 .66

mbleu .39 77 .83 .63

mNCD (PPMZrc) .37 .82 .38 .63

meteor-baseline .43 .61 .84 .58

meteor-ranking .26 .70 .83 .55

mter .26 .69 .73 .52

Mean 47 77 72 .65

Table 5: Average system-level correlations for the
RANK category from English for NCD, mNCD
and other MT evaluation measures.

similarized references. We believe there is poten-
tial for improvement in other languages as well if
synonym lexicons are available.

We have also extended the basic NCD measure
to scale between a document comparison mea-
sure and aggregated sentence-level measure. The
rather surprising result is that NCD produces quite
similar scores with all block sizes. The different
result with Spanish may be caused by differences
in the data or problems in the calculations.

After using the same evaluation methodology as
in Callison-Burch et al. (2008), we have doubts
whether it presents the most effective method ex-
ploiting all the given human evaluations in the best
way. The system-level correlation measure only
awards the winner of the ranking of five differ-
ent systems. If a system always scored second,
it would never be awarded and therefore be overly
penalized. In addition, the human knowledge that
gave the lower rankings is not exploited.

In future work with mNCD as an MT evalu-
ation measure, we are planning to evaluate syn-
onym dictionaries for other languages than En-
glish. The synonym module for English does
not distinguish between different senses of words.
Therefore, synonym lexicons found with statis-
tical methods might provide a viable alternative
for manually constructed lexicons (Kauchak and
Barzilay, 20006).
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Tackling Sparse Data Issue in Machine Translation Evaluation *
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Abstract

We illustrate and explain problems of
n-grams-based machine translation (MT)
metrics (e.g. BLEU) when applied to
morphologically rich languages such as
Czech. A novel metric SemPOS based
on the deep-syntactic representation of the
sentence tackles the issue and retains the
performance for translation to English as
well.

1 Introduction

Automatic metrics of machine translation (MT)
quality are vital for research progress at a fast
pace. Many automatic metrics of MT quality have
been proposed and evaluated in terms of correla-
tion with human judgments while various tech-
niques of manual judging are being examined as
well, see e.g. MetricsMATRO8 (Przybocki et al.,
2008)', WMTO08 and WMTO09 (Callison-Burch et
al., 2008; Callison-Burch et al., 2009)2.

The contribution of this paper is twofold. Sec-
tion 2 illustrates and explains severe problems of a
widely used BLEU metric (Papineni et al., 2002)
when applied to Czech as a representative of lan-
guages with rich morphology. We see this as an
instance of the sparse data problem well known
for MT itself: too much detail in the formal repre-
sentation leading to low coverage of e.g. a transla-
tion dictionary. In MT evaluation, too much detail
leads to the lack of comparable parts of the hy-
pothesis and the reference.

* This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003
of the Czech Republic), FP7-ICT-2009-4-247762 (Faust),
GA201/09/H057, GAUK 1163/2010, and MSM 0021620838.
We are grateful to the anonymous reviewers for further re-
search suggestions.

"http://nist.gov/speech/tests
/metricsmatr/2008/results/
http://www.statmt.org/wmt08 and wmt 09
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Figure 1: BLEU and human ranks of systems par-
ticipating in the English-to-Czech WMTO09 shared
task.

Section 3 introduces and evaluates some new
variations of SemPOS (Kos and Bojar, 2009), a
metric based on the deep syntactic representation
of the sentence performing very well for Czech as
the target language. Aside from including depen-
dency and n-gram relations in the scoring, we also
apply and evaluate SemPOS for English.

2 Problems of BLEU

BLEU (Papineni et al., 2002) is an established
language-independent MT metric. Its correlation
to human judgments was originally deemed high
(for English) but better correlating metrics (esp.
for other languages) were found later, usually em-
ploying language-specific tools, see e.g. Przy-
bocki et al. (2008) or Callison-Burch et al. (2009).
The unbeaten advantage of BLEU is its simplicity.

Figure 1 illustrates a very low correlation to hu-
man judgments when translating to Czech. We
plot the official BLEU score against the rank es-
tablished as the percentage of sentences where a
system ranked no worse than all its competitors
(Callison-Burch et al., 2009). The systems devel-
oped at Charles University (cu-) are described in
Bojar et al. (2009), uedin is a vanilla configuration
of Moses (Koehn et al., 2007) and the remaining
ones are commercial MT systems.

In a manual analysis, we identified the reasons
for the low correlation: BLEU is overly sensitive
to sequences and forms in the hypothesis matching

Proceedings of the ACL 2010 Conference Short Papers, pages 86-91,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



Con- Error

firmed Flags 1-grams 2-grams 3-grams 4-grams
Yes Yes 6.34% 1.58% 0.55% 0.29%
Yes No 3693% 13.68% 5.87% 2.69%
No Yes 2233% 41.83% 54.64%  63.88%
No No 3440% 4291% 38.94% 33.14%
Total n-grams 35,531 33,891 32,251 30,611

Table 1: n-grams confirmed by the reference and
containing error flags.

the reference translation. This focus goes directly
against the properties of Czech: relatively free
word order allows many permutations of words
and rich morphology renders many valid word
forms not confirmed by the reference.®> These
problems are to some extent mitigated if several
reference translations are available, but this is of-
ten not the case.

Figure 2 illustrates the problem of “sparse data”
in the reference. Due to the lexical and morpho-
logical variance of Czech, only a single word in
each hypothesis matches a word in the reference.
In the case of pctrans, the match is even a false
positive, “do” (to) is a preposition that should be
used for the “minus” phrase and not for the “end
of the day” phrase. In terms of BLEU, both hy-
potheses are equally poor but 90% of their tokens
were not evaluated.

Table 1 estimates the overall magnitude of this
issue: For 1-grams to 4-grams in 1640 instances
(different MT outputs and different annotators) of
200 sentences with manually flagged errors*, we
count how often the n-gram is confirmed by the
reference and how often it contains an error flag.
The suspicious cases are n-grams confirmed by
the reference but still containing a flag (false posi-
tives) and n-grams not confirmed despite contain-
ing no error flag (false negatives).

Fortunately, there are relatively few false posi-
tives in n-gram based metrics: 6.3% of unigrams
and far fewer higher n-grams.

The issue of false negatives is more serious and
confirms the problem of sparse data if only one
reference is available. 30 to 40% of n-grams do
not contain any error and yet they are not con-

3Condon et al. (2009) identify similar issues when eval-
uating translation to Arabic and employ rule-based normal-
ization of MT output to improve the correlation. It is beyond
the scope of this paper to describe the rather different nature
of morphological richness in Czech, Arabic and also other
languages, e.g. German or Finnish.

“The dataset with manually flagged errors is available at
http://ufal.mff.cuni.cz/euromatrixplus/
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firmed by the reference. This amounts to 34% of
running unigrams, giving enough space to differ in
human judgments and still remain unscored.

Figure 3 documents the issue across languages:
the lower the BLEU score itself (i.e. fewer con-
firmed n-grams), the lower the correlation to hu-
man judgments regardless of the target language
(WMTO09 shared task, 2025 sentences per lan-
guage).

Figure 4 illustrates the overestimation of scores
caused by too much attention to sequences of to-
kens. A phrase-based system like Moses (cu-
bojar) can sometimes produce a long sequence of
tokens exactly as required by the reference, lead-
ing to a high BLEU score. The framed words
in the illustration are not confirmed by the refer-
ence, but the actual error in these words is very
severe for comprehension: nouns were used twice
instead of finite verbs, and a misleading transla-
tion of a preposition was chosen. The output by
pctrans preserves the meaning much better despite
not scoring in either of the finite verbs and produc-
ing far shorter confirmed sequences.

3 Extensions of SemPOS

SemPOS (Kos and Bojar, 2009) is inspired by met-
rics based on overlapping of linguistic features in
the reference and in the translation (Giménez and
Marquez, 2007). It operates on so-called “tec-
togrammatical” (deep syntactic) representation of
the sentence (Sgall et al., 1986; Hajic et al., 2006),
formally a dependency tree that includes only au-
tosemantic (content-bearing) words.” SemPOS as
defined in Kos and Bojar (2009) disregards the
syntactic structure and uses the semantic part of
speech of the words (noun, verb, etc.). There are
19 fine-grained parts of speech. For each semantic
part of speech ¢, the overlapping O(t) is set to zero
if the part of speech does not occur in the reference
or the candidate set and otherwise it is computed
as given in Equation 1 below.

SWe use TectoMT (Zabokrtsky and Bojar, 2008),
http://ufal.mff.cuni.cz/tectomt/, for the lin-
guistic pre-processing. While both our implementation of
SemPOS as well as TectoMT are in principle freely avail-
able, a stable public version has yet to be released. Our plans
include experiments with approximating the deep syntactic
analysis with a simple tagger, which would also decrease the
installation burden and computation costs, at the expense of
accuracy.



SRC Prague Stock Market falls to minus by the end of the trading day

REF prazska burza se ke konci obchodovani propadla do minusu
cu-bojar  praha stock market klesne k minus na konci obchodniho dne
pctrans  praha trh cennych papird padd minus do konce obchodniho dne

Figure 2: Sparse data in BLEU evaluation: Large chunks of hypotheses are not compared at all.

Only a

single unigram in each hypothesis is confirmed in the reference.
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Figure 3: BLEU correlates with its correlation to human judgments. BLEU scores around 0.1 predict

little about translation quality.

Z Z min(cnt(w, t,r;), ent(w, t, ¢;))

el wer;Ne;

O(t) =

i€l wer;Uc;
(1
The semantic part of speech is denoted t; c;
and r; are the candidate and reference translations
of sentence i, and cnt(w, ¢, rc) is the number of
words w with type ¢ in rc (the reference or the can-
didate). The matching is performed on the level of
lemmas, i.e. no morphological information is pre-
served in ws. See Figure 5 for an example; the
sentence is the same as in Figure 4.
The final SemPOS score is obtained by macro-
averaging over all parts of speech:

‘;,Zou)

teT

SemPOS = 2)

where T is the set of all possible semantic parts
of speech types. (The degenerate case of blank
candidate and reference has SemPOS zero.)

3.1 Variations of SemPOS

This section describes our modifications of Sem-
POS. All methods are evaluated in Section 3.2.
Different Classification of Autosemantic
Words. SemPOS uses semantic parts of speech
to classify autosemantic words. The tectogram-
matical layer offers also a feature called Functor
describing the relation of a word to its governor
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72 Z max(cnt(w, t,7;), cnt(w, t, ¢;))

similarly as semantic roles do. There are 67
functor types in total.

Using Functor instead of SemPOS increases the
number of word classes that independently require
a high overlap. For a contrast we also completely
remove the classification and use only one global
class (Void).

Deep Syntactic Relations in SemPOS. In
SemPOS, an autosemantic word of a class is con-
firmed if its lemma matches the reference. We uti-
lize the dependency relations at the tectogrammat-
ical layer to validate valence by refining the over-
lap and requiring also the lemma of 1) the parent
(denoted “par”), or 2) all the children regardless of
their order (denoted “sons’’) to match.

Combining BLEU and SemPOS. One of the
major drawbacks of SemPOS is that it completely
ignores word order. This is too coarse even for
languages with relatively free word order like
Czech. Another issue is that it operates on lemmas
and it completely disregards correct word forms.
Thus, a weighted linear combination of SemPOS
and BLEU (computed on the surface representa-
tion of the sentence) should compensate for this.
For the purposes of the combination, we compute
BLEU only on unigrams up to fourgrams (denoted
BLEU,, ..., BLEU,;) but including the brevity
penalty as usual. Here we try only a few weight
settings in the linear combination but given a held-
out dataset, one could optimize the weights for the
best performance.



SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vlada usa miiZze do bank napumpovat 700 miliard dolarti

cu-bojar  kongres | vynosy |: vlada usa muzZe | erpadlo | 700 miliard dolart | v | bankédch

pctrans kongres vynasi : us vldda muze Cerpat 700 miliardu dolart do bank

Figure 4: Too much focus on sequences in BLEU: pctrans’ output is better but does not score well.
BLEU gave credit to cu-bojar for 1, 3, 5 and 8 fourgrams, trigrams, bigrams and unigrams, resp., but
only for 0, 0, 1 and 8 n-grams produced by pctrans. Confirmed sequences of tokens are underlined and
important errors (not considered by BLEU) are framed.

REF kongres/n ustoupit/v :/n vlada/n usa/n banka/n napumpovat/v 700/n miliarda/n dolar/n
cu-bojar  kongres/n vynos/n :/n vlada/n usa/n moci/v ¢erpadlo/n 700/n miliarda/n dolar/n banka/n

pctrans kongres/n vynaset/v :/n us/n vlada/n Eerpat/v 700/n miliarda/n dolar/n banka/n

Figure 5: SemPOS evaluates the overlap of lemmas of autosemantic words given their semantic part of
speech (n, v, ...). Underlined words are confirmed by the reference.

SemPOS for English. The tectogrammatical = To English: MetricsMATROS8 (cn+ar:  1652),

layer is being adapted for English (Cinkov4 et al., WMTO08 News Articles (de: 199, fr: 251),
2004; Hajic et al., 2009) and we are able to use the WMTOS8 Europarl (es: 190, fr: 183), WMT09
available tools to obtain all SemPOS features for (cz: 320, de: 749, es: 484, fr: 786, hu: 287)

English sentences as well. .
To Czech: WMT08 News Articles (en: 267),

3.2 Evaluation of SemPOS and Friends WMTO08 Commentary (en: 243), WMT09

(en: 1425)
We measured the metric performance on data used

in MetricsMATRO08, WMTO09 and WMTO0S8. For The MetricsMATROS testset contained 4 refer-
the evaluation of metric correlation with human  ence translations for each sentence whereas the re-
judgments at the system level, we used the Pearson ~ maining testsets only one reference.
correlation coefficient p applied to ranks. In case Correlation coefficients for English are shown
of a tie, the systems were assigned the average po-  in Table 2. The best metric is Voidp,, closely fol-
sition. For example if three systems achieved the  lowed by Voids,,s. The explanation is that Void
same highest score (thus occupying the positions  compared to SemPOS or Functor does not lose
1, 2 and 3 when sorted by score), each of them  points by an erroneous assignment of the POS or
would obtain the average rank of 2 = # the functor, and that Void,,, profits from check-
When correlating ranks (instead of exact scores)  ing the dependency relations between autoseman-
and with this handling of ties, the Pearson coeffi-  tic words. The combination of BLEU and Sem-
cient is equivalent to Spearman’s rank correlation ~ POS® outperforms both individual metrics, but in
coefficient. case of SemPOS only by a minimal difference.
The MetricsMATRO8 human judgments include ~ Additionally, we confirm that 4-grams alone have
preferences for pairs of MT systems saying which  little discriminative power both when used as a
one of the two systems is better, while the WMTO08  metric of their own (BLEUy) as well as in a lin-
and WMTO9 data contain system scores (for up to  ear combination with SemPOS.
5 systems) on the scale 1 to 5 for a given sentence. The best metric for Czech (see Table 3) is a lin-
We assigned a human ranking to the systems based ~ ear combination of SemPOS and 4-gram BLEU
on the percent of time that their translations were  closely followed by other SemPOS and BLEU,
judged to be better than or equal to the translations ~ combinations. We assume this is because BLEU4
of any other system in the manual evaluation. We  can capture correctly translated fixed phrases,
converted automatic metric scores to ranks. which is positively reflected in human judgments.
Metrics’ performance for translation to English ~ Including BLEU; in the combination favors trans-
and Czech was measured on the following test-  lations with word forms as expected by the refer-
sets (the number of human judgments for a given — ~ 6g cachn e {1,2,3,4}, we show only the best weight
source language in brackets): setting for SemPOS and BLEU,,.

&9



Metric Avg Best Worst
Voidpar 0.75 0.89  0.60
Voidsons 075 090 0.54
Void 0.72 091 059
Functorsons 072 1.00 043
GTM 0.71 090 054
4.SemPOS+1-BLEU2, 0.70 093 043
SemPOSpar 070 093 0.30
1-SemPOS+4-BLEUs  0.70 091  0.26
4.SemPOS+1-BLEU; 0.69 093 0.43
NIST 0.69 090 0.3
SemPOS;ons 0.69 094 040
SemPOS 0.69 095 0.30
2-SemPOS+1-BLEU; 0.68 091  0.09
BLEU; 0.68 0.87 043
BLEU, 0.68 090 0.26
BLEU; 0.66 090 0.14
BLEU 066 091 0.20
TER 0.63 0.87 0.29
PER 0.63 0.88 0.32
BLEU, 0.61 090 -0.31
Functorp, 0.57 083 -0.03
Functor 0.55 0.82 -0.09

Table 2: Average, best and worst system-level cor-
relation coefficients for translation to English from
various source languages evaluated on 10 different
testsets.

ence, thus allowing to spot bad word forms. In
all cases, the linear combination puts more weight
on SemPOS. Given the negligible difference be-
tween SemPOS alone and the linear combinations,
we see that word forms are not the major issue for
humans interpreting the translation—most likely
because the systems so far often make more im-
portant errors. This is also confirmed by the obser-
vation that using BLEU alone is rather unreliable
for Czech and BLEU-1 (which judges unigrams
only) is even worse. Surprisingly BLEU-2 per-
formed better than any other n-grams for reasons
that have yet to be examined. The error metrics
PER and TER showed the lowest correlation with
human judgments for translation to Czech.

4 Conclusion

This paper documented problems of single-
reference BLEU when applied to morphologically
rich languages such as Czech. BLEU suffers from
a sparse data problem, unable to judge the quality
of tokens not confirmed by the reference. This is
confirmed for other languages as well: the lower
the BLEU score the lower the correlation to hu-
man judgments.

We introduced a refinement of SemPOS, an
automatic metric of MT quality based on deep-
syntactic representation of the sentence tackling
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Metric Avg Best Worst
3.SemPOS+1-BLEU, 0.55 0.83 0.14
2-SemPOS+1-BLEU, 0.55 0.83 0.14
2-SemPOS+1-BLEU; 053 0.83  0.09
4.SemPOS+1-BLEU; 0.53 0.83  0.09
SemPOS 0.53 0.83 0.09
BLEU, 043 0.83 0.09
SemPOSp 037 053 0.14
Functorsons 036 053 0.14
GTM 035 053 0.14
BLEU, 033 053  0.09
Void 033 053  0.09
NIST 033 053  0.09
Voidsons 033 053  0.09
BLEU 033 053  0.09
BLEU; 033 053  0.09
BLEU, 029 0.53 -0.03
SemPOS;ons 028 042 0.03
Functorpg, 023 040 0.14
Functor 021 040 0.09
Voidpar 0.16 0.53 -0.08
PER 0.12 053  -0.09
TER 0.07 053 -0.23

Table 3: System-level correlation coefficients for
English-to-Czech translation evaluated on 3 differ-
ent testsets.

the sparse data issue. SemPOS was evaluated on
translation to Czech and to English, scoring better
than or comparable to many established metrics.
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Abstract

This paper describes ongoing work on dis-
tributional models for word meaning in
context. We abandon the usual one-vector-
per-word paradigm in favor of an exemplar
model that activates only relevant occur-
rences. On a paraphrasing task, we find
that a simple exemplar model outperforms
more complex state-of-the-art models.

1 Introduction

Distributional models are a popular framework
for representing word meaning. They describe
a lemma through a high-dimensional vector that
records co-occurrence with context features over a
large corpus. Distributional models have been used
in many NLP analysis tasks (Salton et al., 1975;
McCarthy and Carroll, 2003; Salton et al., 1975), as
well as for cognitive modeling (Baroni and Lenci,
2009; Landauer and Dumais, 1997; McDonald and
Ramscar, 2001). Among their attractive properties
are their simplicity and versatility, as well as the
fact that they can be acquired from corpora in an
unsupervised manner.

Distributional models are also attractive as a
model of word meaning in context, since they do
not have to rely on fixed sets of dictionary sense
with their well-known problems (Kilgarriff, 1997;
McCarthy and Navigli, 2009). Also, they can
be used directly for testing paraphrase applicabil-
ity (Szpektor et al., 2008), a task that has recently
become prominent in the context of textual entail-
ment (Bar-Haim et al., 2007). However, polysemy
is a fundamental problem for distributional models.
Typically, distributional models compute a single
“type” vector for a target word, which contains co-
occurrence counts for all the occurrences of the
target in a large corpus. If the target is polyse-
mous, this vector mixes contextual features for all
the senses of the target. For example, among the
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top 20 features for coach, we get match and team
(for the “trainer” sense) as well as driver and car
(for the “bus” sense). This problem has typically
been approached by modifying the type vector for
a target to better match a given context (Mitchell
and Lapata, 2008; Erk and Padd, 2008; Thater et
al., 2009).

In the terms of research on human concept rep-
resentation, which often employs feature vector
representations, the use of type vectors can be un-
derstood as a prototype-based approach, which uses
a single vector per category. From this angle, com-
puting prototypes throws away much interesting
distributional information. A rival class of mod-
els is that of exemplar models, which memorize
each seen instance of a category and perform cat-
egorization by comparing a new stimulus to each
remembered exemplar vector.

We can address the polysemy issue through an
exemplar model by simply removing all exem-
plars that are “not relevant” for the present con-
text, or conversely activating only the relevant
ones. For the coach example, in the context of
a text about motorways, presumably an instance
like “The coach drove a steady 45 mph” would be
activated, while “The team lost all games since the
new coach arrived” would not.

In this paper, we present an exemplar-based dis-
tributional model for modeling word meaning in
context, applying the model to the task of decid-
ing paraphrase applicability. With a very simple
vector representation and just using activation, we
outperform the state-of-the-art prototype models.
We perform an in-depth error analysis to identify
stable parameters for this class of models.

2 Related Work

Among distributional models of word, there are
some approaches that address polysemy, either
by inducing a fixed clustering of contexts into
senses (Schiitze, 1998) or by dynamically modi-
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fying a word’s type vector according to each given
sentence context (Landauer and Dumais, 1997;
Mitchell and Lapata, 2008; Erk and Pad6, 2008;
Thater et al., 2009). Polysemy-aware approaches
also differ in their notion of context. Some use a
bag-of-words representation of words in the cur-
rent sentence (Schiitze, 1998; Landauer and Du-
mais, 1997), some make use of syntactic con-
text (Mitchell and Lapata, 2008; Erk and Pad¢,
2008; Thater et al., 2009). The approach that we
present in the current paper computes a representa-
tion dynamically for each sentence context, using
a simple bag-of-words representation of context.

In cognitive science, prototype models predict
degree of category membership through similar-
ity to a single prototype, while exemplar theory
represents a concept as a collection of all previ-
ously seen exemplars (Murphy, 2002). Griffiths et
al. (2007) found that the benefit of exemplars over
prototypes grows with the number of available ex-
emplars. The problem of representing meaning in
context, which we consider in this paper, is closely
related to the problem of concept combination in
cognitive science, i.e., the derivation of representa-
tions for complex concepts (such as “metal spoon”)
given the representations of base concepts (“metal”
and “spoon”). While most approaches to concept
combination are based on prototype models, Voor-
spoels et al. (2009) show superior results for an
exemplar model based on exemplar activation.

In NLP, exemplar-based (memory-based) mod-
els have been applied to many problems (Daele-
mans et al., 1999). In the current paper, we use an
exemplar model for computing distributional repre-
sentations for word meaning in context, using the
context to activate relevant exemplars. Comparing
representations of context, bag-of-words (BOW)
representations are more informative and noisier,
while syntax-based representations deliver sparser
and less noisy information. Following the hypothe-
sis that richer, topical information is more suitable
for exemplar activation, we use BOW representa-
tions of sentential context in the current paper.

3 Exemplar Activation Models

We now present an exemplar-based model for
meaning in context. It assumes that each target
lemma is represented by a set of exemplars, where
an exemplar is a sentence in which the target occurs,
represented as a vector. We use lowercase letters
for individual exemplars (vectors), and uppercase
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Sentential context Paraphrase

After a fire extinguisher is used, it must
always be returned for recharging and
its use recorded.

bring back (3),
take back (2),
send back (1),
give back (1)

come back (3),
revert (1), revisit
(1), go (1)

We return to the young woman who is
reading the Wrigley’s wrapping paper.

Table 1: The Lexical Substitution (LexSub) dataset.

letters for sets of exemplars.

We model polysemy by activating relevant ex-
emplars of a lemma E in a given sentence context
s. (Note that we use E to refer to both a lemma
and its exemplar set, and that s can be viewed as
just another exemplar vector.) In general, we define
activation of a set E' by exemplar s as

act(E,s) = {e € E|sim(e,s) > 0(F,s)}

where F is an exemplar set, s is the “point of com-
parison”, sim is some similarity measure such as
Cosine or Jaccard, and §(F, s) is a threshold. Ex-
emplars belong to the activated set if their similarity
to s exceeds §(E, s).! We explore two variants of
activation. In kNN activation, the £ most simi-
lar exemplars to s are activated by setting 6 to the
similarity of the k-th most similar exemplar. In
g-percentage activation, we activate the top ¢%
of E by setting 6 to the (100-¢)-th percentile of the
sim(e, s) distribution. Note that, while in the KNN
activation scheme the number of activated exem-
plars is the same for every lemma, this is not the
case for percentage activation: There, a more fre-
quent lemma (i.e., a lemma with more exemplars)
will have more exemplars activated.

Exemplar activation for paraphrasing. A para-
phrases is typically only applicable to a particular
sense of a target word. Table 1 illustrates this on
two examples from the Lexical Substitution (Lex-
Sub) dataset (McCarthy and Navigli, 2009), both
featuring the target return. The right column lists
appropriate paraphrases of return in each context
(given by human annotators). > We apply the ex-
emplar activation model to the task of predicting
paraphrase felicity: Given a target lemma 7" in a
particular sentential context s, and given a list of

'In principle, activation could be treated not just as binary
inclusion/exclusion, but also as a graded weighting scheme.
However, weighting schemes introduce a large number of
parameters, which we wanted to avoid.

2Each annotator was allowed to give up to three para-
phrases per target in context. As a consequence, the number
of gold paraphrases per target sentence varies.



potential paraphrases of 7', the task is to predict
which of the paraphrases are applicable in s.

Previous approaches (Mitchell and Lapata, 2008;
Erk and Padé, 2008; Erk and Padd, 2009; Thater
et al., 2009) have performed this task by modify-
ing the type vector for T' to the context s and then
comparing the resulting vector 7" to the type vec-
tor of a paraphrase candidate P. In our exemplar
setting, we select a contextually adequate subset
of contexts in which 7" has been observed, using
T" = act(T, s) as a generalized representation of
meaning of target T in the context of s.

Previous approaches used all of P as a repre-
sentation for a paraphrase candidate P. However,
P includes also irrelevant exemplars, while for a
paraphrase to be judged as good, it is sufficient that
one plausible reading exists. Therefore, we use
P’ = act(P, s) to represent the paraphrase.

4 Experimental Evaluation

Data. We evaluate our model on predicting para-
phrases from the Lexical Substitution (LexSub)
dataset (McCarthy and Navigli, 2009). This dataset
consists of 2000 instances of 200 target words in
sentential contexts, with paraphrases for each tar-
get word instance generated by up to 6 participants.
Paraphrases are ranked by the number of annota-
tors that chose them (cf. Table 1). Following Erk
and Padé (2008), we take the list of paraphrase can-
didates for a target as given (computed by pooling
all paraphrases that LexSub annotators proposed
for the target) and use the models to rank them for
any given sentence context.

As exemplars, we create bag-of-words co-
occurrence vectors from the BNC. These vectors
represent instances of a target word by the other
words in the same sentence, lemmatized and POS-
tagged, minus stop words. E.g., if the lemma
gnurge occurs twice in the BNC, once in the sen-
tence “The dog will gnurge the other dog”, and
once in “The old windows gnurged”, the exemplar
set for gnurge contains the vectors [dog-n: 2, other-
a:1] and [old-a: 1, window-n: 1]. For exemplar
similarity, we use the standard Cosine similarity,
and for the similarity of two exemplar sets, the
Cosine of their centroids.

Evaluation. The model’s prediction for an item
is a list of paraphrases ranked by their predicted
goodness of fit. To evaluate them against a
weighted list of gold paraphrases, we follow Thater
et al. (2009) in using Generalized Average Preci-
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para- actT actP
meter kNN | perc. || kNN | perc.
10 36.1 | 355 || 36.5 | 38.6
20 36.2 | 352 || 36.2 | 379
30 36.1 | 353 || 35.8 | 37.8
40 36.0 | 353 || 35.8 | 37.7
50 359 | 351 || 359 | 375
60 36.0 | 35.0 || 36.1 | 37.5
70 359 | 348 || 36.1 | 375
80 36.0 | 347 || 36.0 | 374
90 359 | 345 || 359 | 373
no act. 34.6 35.7
random BL 28.5

Table 2: Activation of T" or P individually on the
full LexSub dataset (GAP evaluation)

sion (GAP), which interpolates the precision values
of top-n prediction lists for increasing n. Let G =
(q1, - .., qm) be the list of gold paraphrases with
gold weights (y1,...,ym). Let P = (p1,...,pn)
be the list of model predictions as ranked by the
model, and let (z1,...,z,) be the gold weights
associated with them (assume x; = 0 if p; € G),
where G C P. Let I(x;) = 1if p; € G, and zero
otherwise. We write 7; = 1 371 _, x;, for the av-
erage gold weight of the first ¢ model predictions,
and analogously 7;. Then

1 n
GAP(P,G) = =7——— I(x)7;
2311 I(y;)y; ; v
Since the model may rank multiple paraphrases the
same, we average over 10 random permutations of
equally ranked paraphrases. We report mean GAP
over all items in the dataset.

Results and Discussion. We first computed two
models that activate either the paraphrase or the
target, but not both. Model 1, actT, activates only
the target, using the complete P as paraphrase, and
ranking paraphrases by sim(P, act(T, s)). Model
2, actP, activates only the paraphrase, using s as
the target word, ranking by sim/(act(P, s), s).
The results for these models are shown in Ta-
ble 2, with both kNN and percentage activation:
kNN activation with a parameter of 10 means that
the 10 closest neighbors were activated, while per-
centage with a parameter of 10 means that the clos-
est 10% of the exemplars were used. Note first
that we computed a random baseline (last row)
with a GAP of 28.5. The second-to-last row (‘“no
activation”) shows two more informed baselines.



The actT “no act” result (34.6) corresponds to a
prototype-based model that ranks paraphrase can-
didates by the distance between their type vectors
and the target’s type vector. Virtually all exem-
plar models outperform this prototype model. Note
also that both actT and actP show the best results
for small values of the activation parameter. This
indicates paraphrases can be judged on the basis
of a rather small number of exemplars. Neverthe-
less, actT and actP differ with regard to the details
of their optimal activation. For actT, a small ab-
solute number of activated exemplars (here, 20)
works best , while actP yields the best results for
a small percentage of paraphrase exemplars. This
can be explained by the different functions played
by actT and actP (cf. Section 3): Activation of the
paraphrase must allow a guess about whether there
is reasonable interpretation of P in the context s.
This appears to require a reasonably-sized sample
from P. In contrast, target activation merely has to
counteract the sparsity of s, and activation of too
many exemplars from 7' leads to oversmoothing.

We obtained significances by computing 95%
and 99% confidence intervals with bootstrap re-
sampling. As a rule of thumb, we find that 0.4%
difference in GAP corresponds to a significant dif-
ference at the 95% level, and 0.7% difference in
GAP to significance at the 99% level. The four
activation methods (i.e., columns in Table 2) are
significantly different from each other, with the ex-
ception of the pair actT/KNN and actP/kNN (n.s.),
so that we get the following order:

actP/perc > actP/KNN ~ actT/kNN > actT/perc

where > means “significantly outperforms”. In par-
ticular, the best method (actT/kNN) outperforms
all other methods at p<0.01. Here, the best param-
eter setting (10% activation) is also significantly
better than the next-one one (20% activation). With
the exception of actT/perc, all activation methods
significantly outperform the best baseline (actP, no
activation).

Based on these observations, we computed a
third model, actTP, that activates both 1" (by kNN)
and P (by percentage), ranking paraphrases by
sim(act(P, s),act(T,s)). Table 3 shows the re-
sults. We find the overall best model at a similar
location in parameter space as for actT" and actP
(cf. Table 2), namely by setting the activation pa-
rameters to small values. The sensitivity of the
parameters changes considerably, though. When
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P activation (%) = | 10 20 30
T activation (KNN) |}
5 38.2 38.1 38.1
10 37.6 378 37.7
20 373 374 373
40 372 372 36.1

Table 3: Joint activation of P and T on the full
LexSub dataset (GAP evaluation)

we fix the actP activation level, we find compara-
tively large performance differences between the
T activation settings k=5 and k=10 (highly signif-
icant for 10% actP, and significant for 20% and
30% actP). On the other hand, when we fix the
actT activation level, changes in actP activation
generally have an insignificant impact.

Somewhat disappointingly, we are not able to
surpass the best result for actP alone. This indicates
that — at least in the current vector space — the
sparsity of s is less of a problem than the “dilution’
of s that we face when we representing the target
word by exemplars of 7" close to s. Note, however,
that the numerically worse performance of the best
actTP model is still not significantly different from
the best actP model.

’

Influence of POS and frequency. An analysis
of the results by target part-of-speech showed that
the globally optimal parameters also yield the best
results for individual POS, even though there are
substantial differences among POS. For actT, the
best results emerge for all POS with kNN activation
with k£ between 10 and 30. For k=20, we obtain a
GAP of 35.3 (verbs), 38.2 (nouns), and 35.1 (adjec-
tives). For actP, the best parameter for all POS was
activation of 10%, with GAPs of 36.9 (verbs), 41.4
(nouns), and 37.5 (adjectives). Interestingly, the
results for actTP (verbs: 38.4, nouns: 40.6, adjec-
tives: 36.9) are better than actP for verbs, but worse
for nouns and adjectives, which indicates that the
sparsity problem might be more prominent than for
the other POS. In all three models, we found a clear
effect of target and paraphrase frequency, with de-
teriorating performance for the highest-frequency
targets as well as for the lemmas with the highest
average paraphrase frequency.

Comparison to other models. Many of the
other models are syntax-based and are therefore
only applicable to a subset of the LexSub data.
We have re-evaluated our exemplar models on the
subsets we used in Erk and Padé (2008, EPOS, 367



Models
EPO8 EP09 TDP09
EPOS8 dataset | 27.4 NA NA
EPQ9 dataset | NA 322  36.5
actT  actP  actTP
EPOS8 dataset | 36.5 38.0 39.9
EPQ9 dataset | 39.1 39.9 39.6

Table 4: Comparison to other models on two sub-
sets of LexSub (GAP evaluation)

datapoints) and Erk and Padé (2009, EP09, 100 dat-
apoints). The second set was also used by Thater et
al. (2009, TDP09). The results in Table 4 compare
these models against our best previous exemplar
models and show that our models outperform these
models across the board. 3 Due to the small sizes
of these datasets, statistical significance is more
difficult to attain. On EPQ9, the differences among
our models are not significant, but the difference
between them and the original EP09 model is.* On
EPO8, all differences are significant except for actP
vs. actTP.

We note that both the EPO8 and the EP09
datasets appear to be simpler to model than the
complete Lexical Substitution dataset, at least by
our exemplar-based models. This underscores an
old insight: namely, that direct syntactic neighbors,
such as arguments and modifiers, provide strong
clues as to word sense.

5 Conclusions and Outlook

This paper reports on work in progress on an ex-
emplar activation model as an alternative to one-
vector-per-word approaches to word meaning in
context. Exemplar activation is very effective in
handling polysemy, even with a very simple (and
sparse) bag-of-words vector representation. On
both the EPO8 and EP09 datasets, our models sur-
pass more complex prototype-based approaches
(Tab. 4). It is also noteworthy that the exemplar
activation models work best when few exemplars
are used, which bodes well for their efficiency.
We found that the best target representations re-

3Since our models had the advantage of being tuned on
the dataset, we also report the range of results across the
parameters we tested. On the EPO8 dataset, we obtained 33.1-
36.5 for actT; 33.3-38.0 for actP; 37.7-39.9 for actTP. On the
EP09 dataset, the numbers were 35.8-39.1 for actT; 38.1-39.9
for actP; 37.2-39.8 for actTP.

“We did not have access to the TDP09 predictions to do
significance testing.
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sult from activating a low absolute number of exem-
plars. Paraphrase representations are best activated
with a percentage-based threshold. Overall, we
found that paraphrase activation had a much larger
impact on performance than target activation, and
that drawing on target exemplars other than s to
represent the target meaning in context improved
over using s itself only for verbs (Tab. 3). This sug-
gests the possibility of considering T"s activated
paraphrase candidates as the representation of 7" in
the context s, rather than some vector of T itself,
in the spirit of Kintsch (2001).

While it is encouraging that the best parameter
settings involved the activation of only few exem-
plars, computation with exemplar models still re-
quires the management of large numbers of vectors.
The computational overhead can be reduced by us-
ing data structures that cut down on the number
of vector comparisons, or by decreasing vector di-
mensionality (Gorman and Curran, 2006). We will
experiment with those methods to determine the
tradeoff of runtime and accuracy for this task.

Another area of future work is to move beyond
bag-of-words context: It is known from WSD
that syntactic and bag-of-words contexts provide
complementary information (Florian et al., 2002;
Szpektor et al., 2008), and we hope that they can be
integrated in a more sophisticated exemplar model.

Finally, we will to explore task-based evalua-
tions. Relation extraction and textual entailment
in particular are tasks where similar models have
been used before (Szpektor et al., 2008).
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Abstract

In predicate-argument structure analysis,
it is important to capture non-local de-
pendencies among arguments and inter-
dependencies between the sense of a pred-
icate and the semantic roles of its argu-
ments. However, no existing approach ex-
plicitly handles both non-local dependen-
cies and semantic dependencies between
predicates and arguments. In this pa-
per we propose a structured model that
overcomes the limitation of existing ap-
proaches; the model captures both types of
dependencies simultaneously by introduc-
ing four types of factors including a global
factor type capturing non-local dependen-
cies among arguments and a pairwise fac-
tor type capturing local dependencies be-
tween a predicate and an argument. In
experiments the proposed model achieved
competitive results compared to the state-
of-the-art systems without applying any
feature selection procedure.

1 Introduction

Predicate-argument structure analysis is a process
of assigning who does what to whom, where,
when, etc. for each predicate. Arguments of a
predicate are assigned particular semantic roles,
such as Agent, Theme, Patient, etc. Lately,
predicate-argument structure analysis has been re-
garded as a task of assigning semantic roles of
arguments as well as word senses of a predicate
(Surdeanu et al., 2008; Hajic et al., 2009).

Several researchers have paid much attention to
predicate-argument structure analysis, and the fol-
lowing two important factors have been shown.
Toutanova et al. (2008), Johansson and Nugues
(2008), and Bjorkelund et al. (2009) presented
importance of capturing non-local dependencies
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of core arguments in predicate-argument structure
analysis. They used argument sequences tied with
a predicate sense (e.g. AGENT-buy.01/Active-
PATIENT) as a feature for the re-ranker of the
system where predicate sense and argument role
candidates are generated by their pipelined archi-
tecture. They reported that incorporating this type
of features provides substantial gain of the system
performance.

The other factor is inter-dependencies between
a predicate sense and argument roles, which re-
late to selectional preference, and motivated us
to jointly identify a predicate sense and its argu-
ment roles. This type of dependencies has been
explored by Riedel and Meza-Ruiz (2008; 2009b;
2009a), all of which use Markov Logic Networks
(MLN). The work uses the global formulae that
have atoms in terms of both a predicate sense and
each of its argument roles, and the system identi-
fies predicate senses and argument roles simulta-
neously.

Ideally, we want to capture both types of depen-
dencies simultaneously. The former approaches
can not explicitly include features that capture
inter-dependencies between a predicate sense and
its argument roles. Though these are implicitly in-
corporated by re-ranking where the most plausi-
ble assignment is selected from a small subset of
predicate and argument candidates, which are gen-
erated independently. On the other hand, it is dif-
ficult to deal with core argument features in MLN.
Because the number of core arguments varies with
the role assignments, this type of features cannot
be expressed by a single formula.

Thompson et al. (2010) proposed a gener-
ative model that captures both predicate senses
and its argument roles. However, the first-order
markov assumption of the model eliminates abil-
ity to capture non-local dependencies among ar-
guments. Also, generative models are in general
inferior to discriminatively trained linear or log-

Proceedings of the ACL 2010 Conference Short Papers, pages 98—102,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



Figure 1: Undirected graphical model representa-
tion of the structured model

linear models.

In this paper we propose a structured model
that overcomes limitations of the previous ap-
proaches. For the model, we introduce several
types of features including those that capture both
non-local dependencies of core arguments, and
inter-dependencies between a predicate sense and
its argument roles. By doing this, both tasks are
mutually influenced, and the model determines
the most plausible set of assignments of a predi-
cate sense and its argument roles simultaneously.
We present an exact inference algorithm for the
model, and a large-margin learning algorithm that
can handle both local and global features.

2 Model

Figure 1 shows the graphical representation of our
proposed model. The node p corresponds to a
predicate, and the nodes aq, ..., ay to arguments
of the predicate. Each node is assigned a particu-
lar predicate sense or an argument role label. The
black squares are factors which provide scores of
label assignments. In the model, the nodes for ar-
guments depend on the predicate sense, and by in-
fluencing labels of a predicate sense and its argu-
ment roles, the most plausible label assignment of
the nodes is determined considering all factors.

In this work, we use linear models. Let x be
words in a sentence, p be a sense of a predicate in
x, and A = {a,}}’ be a set of possible role label
assignments for x. A predicate-argument structure
is represented by a pair of p and A. We define
the score function for predicate-argument struc-
tures as s(p, A) = > p cr Fu(x,p, A). Fisa
set of all the factors, Fj(x, p,.A) corresponds to a
particular factor in Figure 1, and gives a score to a
predicate or argument label assignments. Since we
use linear models, Fi(x,p, A) = w - ®(x,p, A).
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2.1 Factors of the Model
We define four types of factors for the model.

Predicate Factor Fp scores a sense of p, and
does not depend on any arguments. The score
function is defined by F'ip(x,p, A) = w-®p(x,p).

Argument Factor F'y scores a label assignment
of a particular argument a € A. The score is deter-
mined independently from a predicate sense, and
is given by Fa(x,p,a) = w - ®4(x, a).

Predicate-Argument Pairwise Factor
Fps captures inter-dependencies  between
a predicate sense and one of its argument
roles. The score function is defined as
Fpa(x,p,a) w - ®py(x,p,a). The dif-
ference from F4 is that Fp, influences both
the predicate sense and the argument role. By
introducing this factor, the role label can be
influenced by the predicate sense, and vise versa.

Global Factor F; is introduced to capture plau-
sibility of the whole predicate-argument structure.
Like the other factors, the score function is de-
fined as Fg(x,p, A) = w - Pg(x,p, A). A pos-
sible feature that can be considered by this fac-
tor is the mutual dependencies among core argu-
ments. For instance, if a predicate-argument struc-
ture has an agent (AO) followed by the predicate
and a patient (Al), we encode the structure as a
string AO-PRED-A1 and use it as a feature. This
type of features provide plausibility of predicate-
argument structures. Even if the highest scoring
predicate-argument structure with the other factors
misses some core arguments, the global feature
demands the model to fill the missing arguments.

The numbers of factors for each factor type are:
Fp and Fg are 1, F4 and Fpy are |A|. By inte-
grating the all factors, the score function becomes
s(p,A) =w - Pp(x,p) + w- Pg(x,p, A) + W -
ZaeA{q)A(X’ CL) + (I)PA(X’pa a)}

2.2 Inference

The crucial point of the model is how to deal
with the global factor Fz, because enumerating
possible assignments is too costly. A number of
methods have been proposed for the use of global
features for linear models such as (Daumé III
and Marcu, 2005; Kazama and Torisawa, 2007).
In this work, we use the approach proposed in
(Kazama and Torisawa, 2007). Although the ap-
proach is proposed for sequence labeling tasks, it



can be easily extended to our structured model.
That is, for each possible predicate sense p of the
predicate, we provide N-best argument role as-
signments using three local factors F'p, F'4 and
F'p4, and then add scores of the global factor Fi,
finally select the argmax from them. In this case,
the argmax is selected from |P;| N candidates.

2.3 Learning the Model

For learning of the model, we borrow a funda-
mental idea of Kazama and Torisawa’s perceptron
learning algorithm. However, we use a more so-
phisticated online-learning algorithm based on the
Passive-Aggressive Algorithm (PA) (Crammer et
al., 20006).

For the sake of simplicity, we introduce some
notations. We denote a predicate-argument struc-
ture y (p, A), a local feature vector as
(I>L(Xa Y) (I)P(X’p) + ZaEA{(I)A(Xv a) +
®pa(x,p,a)}0a feature vector coupling both
local and global features as ®riq(x,y)
¢y (x,y) + Pg(x,p, A), the argmax using Y7 ¢
as yL+C, the argmax using @7, as y~. Also, we
use a loss function p(y,y’), which is a cost func-
tion associated with y and y’.

The margin perceptron learning proposed by
Kazama and Torisawa can be seen as an optimiza-
tion with the following two constrains.

(A) W'CDL+G(X3y)iw'q)L‘FG(XayIA»G) Z p(y’yL+G)

B) w-DL(x,y) —w-Dr(x,9%) > ply,97)

(A) is the constraint that ensures a sufficient
margin p(y,y5t¢) between y and 35+, (B)
is the constraint that ensures a sufficient margin
p(y,¥") between y and y*. The necessity of
this constraint is that if we apply only (A), the al-
gorithm does not guarantee a sufficient margin in
terms of local features, and it leads to poor quality
in the N-best assignments. The Kazama and Tori-
sawa’s perceptron algorithm uses constant values
for the cost function p(y, y**t%) and p(y, y%).

The proposed model is trained using the follow-
ing optimization problem.

1

min ~||w’ —w||® + C¢

Wnew = al'g
w/eRrn 2

{s.t. lhya <& E>0 if y9T8 4y

1
st.lo<&e>0  ifghtGoyzgt D

lira=w-®ric(xy"")
—w Pria(xy) +oy, 7779 @
IL=w-.(x,3") —w-®L(x,y) +py,5") 3
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lr+q is the loss function for the case of using
both local and global features, corresponding to
the constraint (A), and [, is the loss function for
the case of using only local features, correspond-
ing to the constraints (B) provided that (A) is sat-
isfied.

2.4 The Role-less Argument Bias Problem

The fact that an argument candidate is not as-
signed any role (namely it is assigned the la-
bel “NONE”) is unlikely to contribute pred-
icate sense disambiguation. However, it re-
mains possible that “NONE” arguments is bi-
ased toward a particular predicate sense by Fpg
(i.e. w- Ppy(x,sense;,ar= “NONE") > w -
Ppa(x,sensej, ap= “NONE").

In order to avoid this bias, we define a spe-
cial sense label, senseqyy, that is used to cal-
culate the score for a predicate and a roll-less
argument, regardless of the predicate’s sense.
We use the feature vector ® p4(x, senseqny, ak)
if ap= “NONE" and ®p(x, sense;, ay) other-
wise.

3 Experiment

3.1 Experimental Settings

We use the CoNLL-2009 Shared Task dataset
(Hajic et al., 2009) for experiments. It is a
dataset for multi-lingual syntactic and semantic
dependency parsing !. In the SRL-only challenge
of the task, participants are required to identify
predicate-argument structures of only the specified
predicates. Therefore the problems to be solved
are predicate sense disambiguation and argument
role labeling. We use Semantic Labeled F1 for
evaluation.

For generating N-bests, we used the beam-
search algorithm, and the number of N-bests was
set to N = 64. For learning of the joint model, the
loss function p(y¢,y’) of the Passive-Aggressive
Algorithm was set to the number of incorrect as-
signments of a predicate sense and its argument
roles. Also, the number of iterations of the model
used for testing was selected based on the perfor-
mance on the development data.

Table 1 shows the features used for the struc-
tured model. The global features used for F; are
based on those used in (Toutanova et al., 2008;
Johansson and Nugues, 2008), and the features

!The dataset consists of seven languages: Catalan, Chi-
nese, Czech, English, German, Japanese and Spanish.



Fp Plemma of the predicate and predicate’s head, and ppos of the predicate

Dependency label between the predicate and predicate’s head
The concatenation of the dependency labels of the predicate’s dependents

Fa Plemma and ppos of the predicate, the predicate’s head, the argument candidate, and the argument’s head

Plemma and ppos of the leftmost/rightmost dependent and leftmost/rightmost sibling

The dependency label of predicate, argument candidate and argument candidate’s dependent

The position of the argument candidate with respect to the predicate position in the dep. tree (e.g. CHILD)
The position of the head of the dependency relation with respect to the predicate position in the sentence
The left-to-right chain of the deplabels of the predicate’s dependents

Plemma, ppos and dependency label paths between the predicate and the argument candidates

The number of dependency edges between the predicate and the argument candidate

Fpa || Plemma and plemma&ppos of the argument candidate
Dependency label path between the predicate and the argument candidates
Fa The sequence of the predicate and the argument labels in the predicate-argument structure (e.g. AO-PRED-A10

Whether the semantic roles defined in frames exist in the structure, (e.g. CONTAINS:Al)
The conjunction of the predicate sense and the frame information (e.g. wear.01 & CONTAINS:Al)

Table 1: Features for the Structured Model

Avg. Ca Ch Cz En Ge Jp Sp
Fp+Fy 79.17 | 78.00 | 76.02 | 85.24 | 83.09 | 76.76 | 77.27 | 77.83
Fp+Fa+Fpa || 79.58 | 78.38 | 76.23 | 85.14 | 83.36 | 78.31 | 77.72 | 77.92
Fp+Fa+Fg 80.42 | 79.50 | 76.96 | 85.88 | 84.49 | 78.64 | 78.32 | 79.21
ALL 80.75 | 79.55 | 77.20 | 85.94 | 84.97 | 79.62 | 78.69 | 79.29
Bjorkelund 80.80 | 80.01 | 78.60 | 85.41 | 85.63 | 79.71 | 76.30 | 79.91
Zhao 80.47 | 80.32 | 77.72 | 85.19 | 85.44 | 75.99 | 78.15 | 80.46
Meza-Ruiz 77.46 | 78.00 | 77.73 | 75.75 | 83.34 | 73.52 | 76.00 | 77.91

Table 2: Results on the CoNLL-2009 Shared Task dataset (Semantic Labeled F1).

SENSE | ARG
Fp+Fy 89.65 72.20
Fp+Fa+Fpy 89.78 72.74
FP+FA+FG 89.83 74.11
ALL 90.15 74.46

Table 3: Predicate sense disambiguation and argu-
ment role labeling results (average).

used for Fp4 are inspired by formulae used in
the MLN-based SRL systems, such as (Meza-Ruiz
and Riedel, 2009b). We used the same feature
templates for all languages.

3.2 Results

Table 2 shows the results of the experiments, and
also shows the results of the top 3 systems in the
CoNLL-2009 Shared Task participants of the SRL-
only system.

By incorporating Fps, we achieved perfor-
mance improvement for all languages. This results
suggest that it is effective to capture local inter-
dependencies between a predicate sense and one
of its argument roles. Comparing the results with
Fp+F4 and Fp+F4+Fq, incorporating Fg also
contributed performance improvements for all lan-
guages, especially the substantial F1 improvement
of +1.88 is obtained in German.

Next, we compare our system with top 3 sys-
tems in the CoNLL-2009 Shared Task. By in-
corporating both Fpy and Fi, our joint model
achieved competitive results compared to the top 2
systems (Bjorkelund and Zhao), and achieved the
better results than the Meza-Ruiz’s system 2. The
systems by Bjorkelund and Zhao applied feature
selection algorithms in order to select the best set
of feature templates for each language, requiring
about 1 to 2 months to obtain the best feature set.
On the other hand, our system achieved the com-
petitive results with the top two systems, despite
the fact that we used the same feature templates
for all languages without applying any feature en-
gineering procedure.

Table 3 shows the performances of predicate
sense disambiguation and argument role labeling
separately. In terms of sense disambiguation re-
sults, incorporating F'p 4 and Fz worked well. Al-
though incorporating either of Fp4 and Fg pro-
vided improvements of 40.13 and +0.18 on av-
erage, adding both factors provided improvements
of +0.50. We compared the predicate sense dis-

The result of Meza-Ruiz for Czech is substantially worse
than the other systems because of inappropriate preprocess-
ing for predicate sense disambiguation. Excepting Czech, the
average F1 value of the Meza-Ruiz is 77.75, where as our
system is 79.89.
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ambiguation results of Fp + F4 and ALL with the
McNemar test, and the difference was statistically
significant (p < 0.01). This result suggests that
combination of these factors is effective for sense
disambiguation.

As for argument role labeling results, incorpo-
rating Fp4 and F contributed positively for all
languages. Especially, we obtained a substan-
tial gain (44.18) in German. By incorporating
Fpy, the system achieved the F1 improvements
of 40.54 on average. This result shows that cap-
turing inter-dependencies between a predicate and
its arguments contributes to argument role label-
ing. By incorporating F, the system achieved the
substantial improvement of F1 (+1.91).

Since both tasks improved by using all factors,
we can say that the proposed joint model suc-
ceeded in joint learning of predicate senses and
its argument roles.

4 Conclusion

In this paper, we proposed a structured model that
captures both non-local dependencies between ar-
guments, and inter-dependencies between a pred-
icate sense and its argument roles. We designed
a linear model-based structured model, and de-
fined four types of factors: predicate factor, ar-
gument factor, predicate-argument pairwise fac-
tor and global factor for the model. In the ex-
periments, the proposed model achieved compet-
itive results compared to the state-of-the-art sys-
tems without any feature engineering.

A further research direction we are investi-
gating is exploitation of unlabeled texts. Semi-
supervised semantic role labeling methods have
been explored by (Collobert and Weston, 2008;
Deschacht and Moens, 2009; Fiirstenau and La-
pata, 2009), and they have achieved successful
outcomes. However, we believe that there is still
room for further improvement.
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Abstract

One deficiency of current shallow pars-
ing based Semantic Role Labeling (SRL)
methods is that syntactic chunks are too
small to effectively group words. To par-
tially resolve this problem, we propose
semantics-driven shallow parsing, which
takes into account both syntactic struc-
tures and predicate-argument structures.
We also introduce several new “path” fea-
tures to improve shallow parsing based
SRL method. Experiments indicate that
our new method obtains a significant im-
provement over the best reported Chinese
SRL result.

1 Introduction

In the last few years, there has been an increas-
ing interest in Semantic Role Labeling (SRL) on
several languages, which consists of recognizing
arguments involved by predicates of a given sen-
tence and labeling their semantic types. Both
full parsing based and shallow parsing based SRL
methods have been discussed for English and Chi-
nese. In Chinese SRL, shallow parsing based
methods that cast SRL as the classification of
syntactic chunks into semantic labels has gained
promising results. The performance reported in
(Sun et al., 2009) outperforms the best published
performance of full parsing based SRL systems.
Previously proposed shallow parsing takes into
account only syntactic information and basic
chunks are usually too small to group words into
argument candidates. This causes one main defi-
ciency of Chinese SRL. To partially resolve this
problem, we propose a new shallow parsing. The
new chunk definition takes into account both syn-
tactic structure and predicate-argument structures
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of a given sentence. Because of the semantic in-
formation it contains, we call it semantics-driven
shallow parsing. The key idea is to make basic
chunks as large as possible but not overlap with ar-
guments. Additionally, we introduce several new
“path” features to express more structural infor-
mation, which is important for SRL.

We present encouraging SRL results on Chinese
PropBank (CPB) data. With semantics-driven
shallow parsing, our SRL system achieves 76.10
F-measure, with gold segmentation and POS tag-
ging. The performance further achieves 76.46
with the help of new “path” features. These re-
sults obtain significant improvements over the best
reported SRL performance (74.12) in the literature
(Sun et al., 2009).

2 Related Work

CPB is a project to add predicate-argument rela-
tions to the syntactic trees of the Chinese Tree-
Bank (CTB). Similar to English PropBank, the ar-
guments of a predicate are labeled with a contigu-
ous sequence of integers, in the form of AN (N is
a natural number); the adjuncts are annotated as
such with the label AM followed by a secondary
tag that represents the semantic classification of
the adjunct. The assignment of argument labels
is illustrated in Figure 1, where the predicate is the
verb “$¢fit/provide” For example, the noun phrase
“fR[%; /A 7] /the insurance company” is labeled as
A0, meaning that it is the proto-Agent of “$Efit”.
Sun et al. (2009) explore the Chinese SRL prob-
lem on the basis of shallow syntactic information
at the level of phrase chunks. They present a se-
mantic chunking method to resolve SRL on basis
of shallow parsing. Their method casts SRL as
the classification of syntactic chunks with IOB2
representation for semantic roles (i.e. semantic

Proceedings of the ACL 2010 Conference Short Papers, pages 103—108,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



WORD: | 2l = A =k TR Rt DRBS 55
insurance company already for  Sanxia Project provide insurance service
POS: [NN NN] [AD] [P] [NR] [NN] [VV] [NN NN]
SYN CH: [NP] [ADVP] [PP NP NP ] [VP] [NP]
SEM CH: B-A0 B-AM-ADV B-A2 I-A2 I-A2 B-V B-Al
The insurance company has provided insurance services for the Sanxia Project.

Figure 1: An example from Chinese PropBank.

chunks). Two labeling strategies are presented: 1)
directly tagging semantic chunks in one-stage, and
2) identifying argument boundaries as a chunking
task and labeling their semantic types as a clas-
sification task. On the basis of syntactic chunks,
they define semantic chunks which do not overlap
nor embed using I0OB2 representation. Syntactic
chunks outside a chunk receive the tag O (Out-
side). For syntactic chunks forming a chunk of
type A*, the first chunk receives the B-A* tag (Be-
gin), and the remaining ones receive the tag I-A*
(Inside). Then a SRL system can work directly
by using sequence tagging technique. Shallow
chunk definition presented in (Chen et al., 2006)
is used in their experiments. The definition of syn-
tactic and semantic chunks is illustrated Figure 1.
For example, “fi [ /A 7 /the insurance company”,
consisting of two nouns, is a noun phrase; in the
syntactic chunking stage, its two components “{
[ and “/A 7™ should be labeled as B-NP and
I-NP. Because this phrase is the Agent of the pred-
icate “#¢fit/provide”, it takes a semantic chunk
label B-A0. In the semantic chunking stage, this
phrase should be labeled as B-A0.

Their experiments on CPB indicate that accord-
ing to current state-of-the-art of Chinese parsing,
SRL systems on basis of full parsing do not per-
form better than systems based on shallow parsing.
They report the best SRL performance with gold
segmentation and POS tagging as inputs. This is
very different from English SRL. In English SRL,
previous work shows that full parsing, both con-
stituency parsing and dependency parsing, is nec-
essary.

Ding and Chang (2009) discuss semantic
chunking methods without any parsing informa-
tion. Different from (Sun et al.,, 2009), their
method formulates SRL as the classification of
words with semantic chunks. Comparison of ex-
perimental results in their work shows that parsing
is necessary for Chinese SRL, and the semantic
chunking methods on the basis of shallow parsing
outperform the ones without any parsing.
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Joint learning of syntactic and semantic struc-
tures is another hot topic in dependency parsing
research. Some models have been well evalu-
ated in CoNLL 2008 and 2009 shared tasks (Sur-
deanu et al., 2008; Haji¢ et al., 2009). The
CoNLL 2008/2009 shared tasks propose a unified
dependency-based formalism to model both syn-
tactic dependencies and semantic roles for multi-
ple languages. Several joint parsing models are
presented in the shared tasks. Our focus is differ-
ent from the shared tasks. In this paper, we hope
to find better syntactic representation for semantic
role labeling.

3 Semantics-Driven Shallow Parsing
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There are two main jobs of semantic chunking: 1)
grouping words as argument candidate and 2) clas-
sifying semantic types of possible arguments. Pre-
viously proposed shallow parsing only considers
syntactic information and basic chunks are usu-
ally too small to effectively group words. This
causes one main deficiency of semantic chunking.
E.g. the argument “’& — U T F/for the Sanxia
Project” consists of three chunks, each of which
only consists of one word. To rightly recognize
this A2, Semantic chunker should rightly predict
three chunk labels. Small chunks also make the
important “path” feature sparse, since there are
more chunks between a target chunk and the pred-
icate in focus. In this section, we introduce a new
chunk definition to improve shallow parsing based
SRL, which takes both syntactic and predicate-
argument structures into account. The key idea
is to make syntactic chunks as large as possible
for semantic chunking. The formal definition is as
follows.

Motivation

3.2 Chunk Bracketing

Given a sentence s = wi,...,wy, let cfi : j]
denote a constituent that is made up of words
between w; and w; (including w; and w;); let
pv = {c[i : jlle[i : j] is an argument of v}



WORD POS TARGET PROPOSITION CHUNK 1 | CHUNK 2
China | NR - (AO* * * * | B-NP B-NP"S
tax | Fis% NN - * * * * 1 I-NP I-NP"S
department | B[] NN - *) * * * | I-NP I-NP"S
stipulate | M5 Vv HE (V¥) * * 10 o
I PU - * * * 10 (6]
owing | K44 \'AY R4 (A1* (V#H) * (AO* | O (0]
tax payment | Fizk NN - * O (AL¥) * * | B-NP B-NP"VP
company | {Mb NN - * (A0%) * * | B-NP B-NP"NP
Function Word | ] DEG - * * * *10 0
leaders | 3 AN NN - * * * *) | B-NP B-NP"NP
not | A AD - * * *  (AM-ADV#*) | B-ADVP B-ADVP"VP
can | 15 vv % * * o (VF) *10 (e}
leave the country | Hi5% VvV o O *) * * (V*) | B-VP B-VP"VP

Figure 2: An example for definition of semantics-driven chunks with IOB2 representation.

denote one predicate-argument structure where v
is the predicate in focus. Given a syntactic tree
Ts = {c[i : j]|e[i : j] is a constituent of s}, and
its all argument structures Ps = {p,| v is a verbal
predicate in s}, there is one and only one chunk
set C = {c[i : j]} s.t.

1. Veli:jleC,cli:j| €T

2. Vefi : j] € C,Ve[i¥ : j¥] € UPs, j < ¥ or
P> jori® <i<j< v

3. Vc[i @ j] € C, the parent of c[i : j] does not
satisfy the condition 2.

4. V(' satisfies above conditions, C' C C.

The first condition guarantees that every chunk
is a constituent. The second condition means that
chunks do not overlap with arguments, and further
guarantees that semantic chunking can recover all
arguments with the last condition. The third condi-
tion makes new chunks as big as possible. The last
one makes sure that C contains all sub-components
of all arguments. Figure 2 is an example to illus-
trate our new chunk definition. For example, “H
[H]/Chinese #i 5%/tax i )/department” is a con-
stituent of current sentence, and is also an argu-
ment of “F %€ /stipulate”. If we take it as a chunk,
it does not conflict with any other arguments, so
it is a reasonable syntactic chunk. For the phrase
“R #4/owing Hizk/tax payment”, though it does
not overlap with the first, third and fourth proposi-
tions, it is bigger than the argument “F{3X” (con-
flicting with condition 2) while labeling the pred-
icate “K 44", so it has to be separated into two
chunks. Note that the third condition also guar-
antees the constituents in C does not overlap with
each other since each one is as large as possible.
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So we can still formulate our new shallow parsing
as an “IOB” sequence labeling problem.

3.3 Chunk Type

We introduce two types of chunks. The first is
simply the phrase type, such as NP, PP, of cur-
rent chunk. The column CHUNK 1 illustrates
this kind of chunk type definition. The second is
more complicated. Inspired by (Klein and Man-
ning, 2003), we split one phrase type into several
subsymbols, which contain category information
of current constituent’s parent. For example, an
NP immediately dominated by a S, will be sub-
stituted by NP”S. This strategy severely increases
the number of chunk types and make it hard to
train chunking models. To shrink this number, we
linguistically use a cluster of CTB phrasal types,
which was introduced in (Sun and Sui, 2009). The
column CHUNK 2 illustrates this definition. E.g.,
NP’S implicitly represents Subject while NP"VP
represents Object.

3.4 New Path Features

The Path feature is defined as a chain of base
phrases between the token and the predicate. At
both ends, the chain is terminated with the POS
tags of the predicate and the headword of the to-
ken. For example, the path feature of “ff [ 2
7] in Figure 1 is “/& #]-ADVP-PP-NP-NP-VV”.
Among all features, the “path” feature contains
more structural information, which is very impor-
tant for SRL. To better capture structural infor-
mation, we introduce several new “path” features.
They include:

e NP|PP|VP path: only syntactic chunks
that takes tag NP, PP or VP are kept.



When labeling the predicate ““H$%/leave the
country” in Figure 2, this feature of “H
i 2% 6 [']/Chinese tax departments” is
NP+NP+NP+NP+VP.

V|[f] path: a sequential container of POS tags
of verbal words and “[{J”’; This feature of “}1
FEIBLS5 1] is NP+VV+VV+[+VV+VP.

O2POS path: if a word occupies a chunk
label O, use its POS in the path fea-
ture. This feature of “H [ Bi 55 #1717 is
NP+VV+PU+VV+NP+NP+DEG+ADVP+
VV+VP.

4 Experiments and Analysis

4.1 Experimental Setting

Experiments in previous work are mainly based
on CPB 1.0 and CTB 5.0. We use CoNLL-2005
shared task software to process CPB and CTB. To
facilitate comparison with previous work, we use
the same data setting with (Xue, 2008). Nearly
all previous research on Chinese SRL evalua-
tion use this setting, also including (Ding and
Chang, 2008, 2009; Sun et al., 2009; Sun, 2010).
The data is divided into three parts: files from
chtb_081 to chtb_899 are used as training set; files
from chtb_041 to chtb_080 as development set;
files from chtb_001 to chtb_040, and chtb_900 to
chtb_931 as test set. Both syntactic chunkers and
semantic chunkers are trained and evaluated by us-
ing the same data set. By using CPB and CTB, we
can extract gold standard semantics-driven shal-
low chunks according to our definition. We use
this kind of gold chunks automatically generated
from training data to train syntactic chunkers.

For both syntactic and semantic chunking, we
used conditional random field model. Crfsgd', is
used for experiments. Crfsgd provides a feature
template that defines a set of strong word and POS
features to do syntactic chunking. We use this
feature template to resolve shallow parsing. For
semantic chunking, we implement a similar one-
stage shallow parsing based SRL system described
in (Sun et al., 2009). There are two differences be-
tween our system and Sun et al.’s system. First,
our system uses Start/End method to represent se-
mantic chunks (Kudo and Matsumoto, 2001). Sec-
ond, word formation features are not used.
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| Test | P(%) | R(%) | Fp—1 |
| (Chen etal., 2006) | 93.51 | 92.81 | 93.16 |

Overall (C1) 91.66 | 89.13 | 90.38
Bracketing (C1) 92.31 | 89.72 | 91.00
Overall (C2) 88.77 | 86.71 | 87.73
Bracketing (C2) 92.71 | 90.55 | 91.62

Table 1: Shallow parsing performance.

4.2 Syntactic Chunking Performance

Table 1 shows the performance of shallow syntac-
tic parsing. Line Chen et al., 2006 is the chunk-
ing performance evaluated on syntactic chunk def-
inition proposed in (Chen et al., 2006). The sec-
ond and third blocks present the chunking perfor-
mance with new semantics-driven shallow pars-
ing. The second block shows the overall perfor-
mance when the first kind of chunks type is used,
while the last block shows the performance when
the more complex chunk type definition is used.
For the semantic-driven parsing experiments, we
add the path from current word to the first verb be-
fore or after as two new features. Line Bracketing
evaluates the word grouping ability of these two
kinds of chunks. In other words, detailed phrase
types are not considered. Because the two new
chunk definitions use the same chunk boundaries,
the fourth and sixth lines are comparable. There
is a clear decrease between the traditional shallow
parsing (Chen et al., 2006) and ours. We think one
main reason is that syntactic chunks in our new
definition are larger than the traditional ones. An
interesting phenomenon is that though the second
kind of chunk type definition increases the com-
plexity of the parsing job, it achieves better brack-
eting performance.

4.3 SRL Performance

Table 2 summarizes the SRL performance. Line
Sun et al., 2009 is the SRL performance reported
in (Sun et al., 2009). To the author’s knowledge,
this is the best published SRL result in the liter-
ature. Line SRL (Chen et al., 2006) is the SRL
performance of our system. These two systems
are both evaluated by using syntactic chunking de-
fined in (Chen et al., 2006). From the first block
we can see that our semantic chunking system
reaches the state-of-the-art. The second and third
blocks in Table 2 present the performance with

Ihttp://leon.bottou.org/projects/sqd



new shallow parsing. Line SRL (CI) and SRL (C2)
show the overall performances with the first and
second chunk definition. The lines following are
the SRL performance when new “path” features
are added. We can see that new “path” features
are useful for semantic chunking.

| Test | P(%) [ R(%) | Fs1 |
(Sun et al., 2009) 79.25 | 69.61 | 74.12
SRL [(Chen et al., 2006)] | 80.87 | 68.74 | 74.31
SRL [C1] 80.23 | 71.00 | 75.33
+ NP|PP|VP path 80.25 | 71.19 | 75.45
+ V|[#] path 80.78 | 71.67 | 75.96
+ O2POS path 80.44 | 71.59 | 75.76
+ All new path 80.73 | 72.08 | 76.16
SRL [C2] 80.87 | 71.86 | 76.10
+ All new path 81.03 | 72.38 | 76.46

Table 2: SRL performance on the test data. Items
in the first column SRL [(Chen et al., 2006)], SRL
[C1] and SRL [C2] respetively denote the SRL
systems based on shallow parsing defined in (Chen
et al., 2006) and Section 3.

5 Conclusion

In this paper we propose a new syntactic shal-
low parsing for Chinese SRL. The new chunk
definition contains both syntactic structure and
predicate-argument structure information. To im-
prove SRL, we also introduce several new “path”
features. Experimental results show that our new
chunk definition is more suitable for Chinese SRL.
It is still an open question what kinds of syntactic
information is most important for Chinese SRL.
We suggest that our attempt at semantics-driven
shallow parsing is a possible way to better exploit
this problem.
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Abstract

In this paper we start to explore two-part
collocation extraction association measures
that do not estimate expected probabili-
ties on the basis of the independence as-
sumption. We propose two new measures
based upon the well-known measures of
mutual information and pointwise mutual
information. Expected probabilities are de-
rived from automatically trained Aggregate
Markov Models. On three collocation gold
standards, we find the new association mea-
sures vary in their effectiveness.

1 Introduction

Collocation extraction typically proceeds by scor-
ing collocation candidates with an association mea-
sure, where high scores are taken to indicate likely
collocationhood. Two well-known such measures
are pointwise mutual information (PMI) and mu-
tual information (MI). In terms of observing a com-
bination of words w1, wo, these are:

, A p(wr, wa)
ilwn,wz) =log e ws)’ M
I(wi,wy) = > plz,y)ilx,y). Q)

ze{wi,~w1}
ye{wz,~w2}

PMI (1) is the logged ratio of the observed bi-
gramme probability and the expected bigramme
probability under independence of the two words
in the combination. MI (2) is the expected outcome
of PMI, and measures how much information of the
distribution of one word is contained in the distribu-
tion of the other. PMI was introduced into the collo-
cation extraction field by Church and Hanks (1990).
Dunning (1993) proposed the use of the likelihood-
ratio test statistic, which is equivalent to MI up to
a constant factor.
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Two aspects of (P)MI are worth highlighting.
First, the observed occurrence probability pops is
compared to the expected occurrence probability
Dexp- Secondly, the independence assumption un-
derlies the estimation of pexp.

The first aspect is motivated by the observa-
tion that interesting combinations are often those
that are unexpectedly frequent. For instance, the
bigramme of the is uninteresting from a colloca-
tion extraction perspective, although it probably is
amongst the most frequent bigrammes for any En-
glish corpus. However, we can expect to frequently
observe the combination by mere chance, simply
because its parts are so frequent. Looking at pops
and pexp together allows us to recognize these cases
(Manning and Schiitze (1999) and Evert (2007) for
more discussion).

The second aspect, the independence assump-
tion in the estimation of peyp,, is more problem-
atic, however, even in the context of collocation
extraction. As Evert (2007, p42) notes, the assump-
tion of “independence is extremely unrealistic,” be-
cause it ignores “a variety of syntactic, semantic
and lexical restrictions.” Consider an estimate for
Pexp (the the). Under independence, this estimate
will be high, as the itself is very frequent. However,
with our knowledge of English syntax, we would
say Pexp (the the) is low. The independence assump-
tion leads to overestimated expectation and the the
will need to be very frequent for it to show up as a
likely collocation. A less contrived example of how
the independence assumption might mislead collo-
cation extraction is when bigramme distribution is
influenced by compositional, non-collocational, se-
mantic dependencies. Investigating adjective-noun
combinations in a corpus, we might find that beige
cloth gets a high PMI, whereas beige thought does
not. This does not make the former a collocation or
multiword unit. Rather, what we would measure is
the tendency to use colours with visible things and
not with abstract objects. Syntactic and semantic

Proceedings of the ACL 2010 Conference Short Papers, pages 109-114,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



associations between words are real dependencies,
but they need not be collocational in nature. Be-
cause of the independence assumption, PMI and
MI measure these syntactic and semantic associa-
tions just as much as they measure collocational
association. In this paper, we therefore experimen-
tally investigate the use of a more informed peyp, in
the context of collocation extraction.

2 Aggregate Markov Models

To replace peyp under independence, one might
consider models with explicit linguistic infor-
mation, such as a POS-tag bigramme model.
This would for instance give us a more realistic
Pexp (the the). However, lexical semantic informa-
tion is harder to incorporate. We might not know
exactly what factors are needed to estimate peyy,
and even if we do, we might lack the resources
to train the resulting models. The only thing we
know about estimating peyp, is that we need more
information than a unigramme model but less than
a bigramme model (as this would make pobs/Pexp
uninformative). Therefore, we propose to use Ag-
gregate Markov Models (Saul and Pereira, 1997;
Hofmann and Puzicha, 1998; Rooth et al., 1999;
Blitzer et al., 2005)! for the task of estimating pexp.
In an AMM, bigramme probability is not directly
modeled, but mediated by a hidden class variable c:

Parnm (w2l w1) = p(clwn)p(wsle).  (3)

The number of classes in an AMM determines the
amount of dependency that can be captured. In the
case of just one class, AMM is equivalent to a uni-
gramme model. AMMs become equivalent to the
full bigramme model when the number of classes
equals the size of the smallest of the vocabular-
ies of the parts of the combination. Between these
two extremes, AMMs can capture syntactic, lexical,
semantic and even pragmatic dependencies.
AMMs can be trained with EM, using no more
information than one would need for ML bigramme
probability estimates. Specifications of the E- and
M-steps can be found in any of the four papers cited
above — here we follow Saul and Pereira (1997). At
each iteration, the model components are updated

!These authors use very similar models, but with differing
terminology and with different goals. The term AMM is used
in the first and fourth paper. In the second paper, the models
are referred to as Separable Mixture Models. Their use in
collocation extraction is to our knowledge novel.

according to:

> (w1, w)p(clwr, w)
D Mw1, w)p(cw, w)’
- Zw n(w, wa)p(clw, wa)
D MW, w)p(efw, w')’

4

p(cfwr)

p(wzlc) (5)

where n(wp, wy) are bigramme counts and the pos-
terior probability of a hidden category c is esti-
mated by:
p(clwi)p(ws|c)
p(clwi, wz) = . (6)
2o p(c|wr)p(wa|c)

Successive updates converge to a local maximum
of the AMM’s log-likelihood.

The definition of the counterparts to (P)MI with-
out the independence assumption, the AMM-ratio
and AMM-divergence, is now straightforward:

p(wi, w2)
p(wl) Pamm (w2 ‘wl)

Qo (w1, w2) =~ p(2, ) Famm (2, 9)- (8)

ze{wi,~w1}
ye{wa,~w2}

)

ramm(wlv w2) = log

The free parameter in these association measures is
the number of hidden classes in the AMM, that is,
the amount of dependency between the bigramme
parts used to estimate peyp,. Note that AMM-ratio
and AMM-divergence with one hidden class are
equivalent to PMI and MI, respectively. It can be
expected that in different corpora and for differ-
ent types of collocation, different settings of this
parameter are suitable.

3 Evaluation

3.1 Data and procedure

We apply AMM-ratio and AMM-divergence to
three collocation gold standards. The effectiveness
of association measures in collocation extraction is
measured by ranking collocation candidates after
the scores defined by the measures, and calculat-
ing average precision of these lists against the gold
standard annotation. We consider the newly pro-
posed AMM-based measures for a varying number
of hidden categories. The new measures are com-
pared against two baselines: ranking by frequency
(pobs) and random ordering. Because AMM-ratio
and -divergence with one hidden class boil down
to PMI and MI (and thus log-likelihood ratio), the
evaluation contains an implicit comparison with
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these canonical measures, too. However, the re-
sults will not be state-of-the-art: for the datasets
investigated below, there are more effective extrac-
tion methods based on supervised machine learning
(Pecina, 2008).

The first gold standard used is the German
adjective-noun dataset (Evert, 2008). It contains
1212 A-N pairs taken from a German newspaper
corpus. We consider three subtasks, depending on
how strict we define true positives. We used the
bigramme frequency data included in the resource.
We assigned all types with a token count <5 to one
type, resulting in AMM training data of 10k As,
20k Ns and 446k A-N pair types.

The second gold standard consists of 5102 Ger-
man PP-verb combinations, also sampled from
newspaper texts (Krenn, 2008). The data con-
tains annotation for support verb constructions
(FVGs) and figurative expressions. This resource
also comes with its own frequency data. After fre-
quency thresholding, AMMs are trained on 46k
PPs, 7.6k Vs, and 890k PP-V pair types.

Third and last is the English verb-particle con-
struction (VPC) gold standard (Baldwin, 2008),
consisting of 3078 verb-particle pairs and annota-
tion for transitive and intransitive idiomatic VPCs.
We extract frequency data from the BNC, follow-
ing the methods described in Baldwin (2005). This
results in two slightly different datasets for the two
types of VPC. For the intransitive VPCs, we train
AMMs on 4.5k Vs, 35 particles, and 43k pair types.
For the transitive VPCs, we have 5k Vs, 35 parti-
cles and 54k pair types.

All our EM runs start with randomly initialized
model vectors. In Section 3.3 we discuss the impact
of model variation due to this random factor.

3.2 Results

German A-N collocations The top slice in Ta-
ble 1 shows results for the three subtasks of the
A-N dataset. We see that using AMM-based pexp
initially improves average precision, for each task
and for both the ratio and the divergence measure.
At their maxima, the informed measures outper-
form both baselines as well as PMI and Ml/log-
likelihood ratio (# classes=1). The AMM-ratio per-
forms best for 16-class AMMs, the optimum for
AMM-divergence varies slightly.

It is likely that the drop in performance for the
larger AMM-based measures is due to the AMMs
learning the collocations themselves. That is, the
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AMMs become rich enough to not only capture
the broadly applicative distributional influences of
syntax and semantics, but also provide accurate
Dexps$ for individual, distributionally deviant combi-
nations — like collocations. An accurate pex;, results
in a low association score.

One way of inspecting what kind of dependen-
cies the AMMs pick up is to cluster the data with
them. Following Blitzer et al. (2005), we take the
200 most frequent adjectives and assign them to
the category that maximizes p(c|w ); likewise for
nouns and p(ws|c). Four selected clusters (out of
16) are given in Table 2.2 The esoteric class 1 con-
tains ordinal numbers and nouns that one typically
uses those with, including references to temporal
concepts. Class 2 and 3 appear more semantically
motivated, roughly containing human and collec-
tive denoting nouns, respectively. Class 4 shows
a group of adjectives denoting colours and/or po-
litical affiliations and a less coherent set of nouns,
although the noun cluster can be understood if we
consider individual adjectives that are associated
with this class. Our informal impression from look-
ing at clusters is that this is a common situation: as
a whole, a cluster cannot be easily characterized,
although for subsets or individual pairs, one can
get an intuition for why they are in the same class.
Unfortunately, we also see that some actual collo-
cations are clustered in class 4, such as gelbe Karte
‘warning’ (lit.: ‘yellow card’) and dickes Auto ‘big
(lit.: fat) car’.

German PP-Verb collocations The second slice
in Table 1 shows that, for both subtypes of PP-V
collocation, better pexp-estimates lead to decreased
average precision. The most effective AMM-ratio
and -distance measures are those equivalent to
(P)MI. Apparently, the better peyp,s are unfortunate
for the extraction of the type of collocations in this
dataset.

The poor performance of PMI on these data —
clearly below frequency — has been noticed before
by Krenn and Evert (2001). A possible explanation
for the lack of improvement in the AMMs lies in
the relatively high performing frequency baselines.
The frequency baseline for FVGs is five times the

2 An anonymous reviewer rightly warns against sketching
an overly positive picture of the knowledge captured in the
AMMs by only presenting a few clusters. However, the clus-
tering performed here is only secondary to our main goal
of improving collocation extraction. The model inspection
should thus not be taken as an evaluation of the quality of the
models as clustering models.



# classes

1 2 4 8 16 32 64 128 256 512 Rnd Frq
A-N
category 1 Tamm 456 464 476 473 483 48.0 470 46.1 447 419 30.1 302
damm 42.3 429 444 452  46.1 46.5 450 463 455 455 ’ ’
category 1-2 7ramm 557 56.3 574 575 581  58.1 577 569 557 52.8 43.1 47.0
damm 56.3 57.0 58.1 584 59.8 60.1 593 60.6 592 593 ’ ’
category 1-3 Tamm 62.3 62.8 639 640 644 622 622 627 624 600 507 56.4
damm 64.3 647 659 66.6 667 663 66.3 654 660 64.7 ’ ’
PP-V
figurative Tamm 7.5 6.1 6.4 6.0 5.6 5.4 4.5 4.2 3.8 3.5 33 105
amm 14.4 13.0 13.3 13.1 12.2 11.2 9.0 7.7 6.9 5.7 ’ ’
FVG Tamm 4.1 34 34 3.0 2.9 2.7 2.2 2.1 2.0 2.0 30 147
damm 15.3 12.7 12.6 10.7 9.0 7.7 34 32 2.5 2.3 ’ ’
VPC
intransitive Tamm 9.3 9.2 9.0 8.3 5.5 5.3 4.8 147
damm 12.2 12.2 14.0 16.3 6.9 5.8 ’ ’
transitive Tamm 16.4 14.8 15.2 14.5 11.3 10.0 10.1 20.1
amm 19.6 17.3 20.7 238 12.8 10.1

Table 1: Average precision for AMM-based association measures and baselines on three datasets.

Cl Adjective

Noun

1 dritt ‘third’, erst “first’, fiinft ‘fifth’, halb ‘half’, kommend
‘next’, laufend ‘current’, letzt ‘last’, nah ‘near’, paar ‘pair’,
vergangen ‘last’, viert ‘fourth’, wenig ‘few’, zweit ‘sec-
ond’

2 aktiv ‘active’, alt ‘old’, ausldndisch ‘foreign’, betroffen
‘concerned’, jung ‘young’, lebend ‘alive’, meist ‘most’,
unbekannt ‘unknown’, viel ‘many’

3 deutsch ‘German’, europdisch ‘European’, ganz ‘whole’,
gesamt ‘whole’, international ‘international’, national ‘na-
tional’, ortlich ‘local’, ostdeutsch ‘East-German’, privat
‘private’, rein ‘pure’, sogenannt ‘so-called’, sonstig ‘other’,
westlich ‘western’

4 blau ‘blue’, dick ‘fat’, gelb ‘yellow’, griin ‘green’, linke
‘left’, recht ‘right’, rot ‘red’, schwarz ‘black’, white ‘weily’

Jahr ‘year’, Klasse ‘class’, Linie ‘line’, Mal ‘time’, Monat
‘month’, Platz ‘place’, Rang ‘grade’, Runde ‘round’, Saison
‘season’, Satz ‘sentence’, Schritt ‘step’, Sitzung ‘session’, Son-
ntag ‘Sunday’, Spiel ‘game’, Stunde ‘hour’, Tag ‘day’, Woche
‘week’, Wochenende ‘weekend’

Besucher ‘visitor’, Biirger ‘citizens’, Deutsche ‘German’, Frau
‘woman’, Gast ‘guest’, Jugendliche ‘youth’, Kind ‘child’, Leute
‘people’, Mddchen ‘girl’, Mann ‘man’, Mensch ‘human’, Mitz-
glied ‘member’

Betrieb ‘company’, Familie ‘family’, Firma ‘firm’, Gebiet
‘area’, Gesellschaft ‘society’, Land ‘country’, Mannschaft
‘team’, Markt ‘market’, Organisation ‘organisation’, Staat
‘state’, Stadtteil ‘city district’, System ‘system’, Team ‘team’,
Unternehmen ‘enterprise’, Verein ‘club’, Welt ‘world’

Auge ‘eye’, Auto ‘car’, Haar ‘hair’, Hand ‘hand’, Karte ‘card’,
Stimme ‘voice/vote’

Table 2: Selected adjective-noun clusters from a 16-class AMM.

random baseline, and MI does not outperform it by
much. Since the AMMs provide a better fit for the
more frequent pairs in the training data, they might
end up providing too good peyp-estimates for the
true collocations from the beginning.

Further investigation is needed to find out
whether this situation can be ameliorated and, if
not, whether we can systematically identify for
what kind of collocation extraction tasks using bet-
ter Pexps is simply not a good idea.

English Verb-Particle constructions The last
gold standard is the English VPC dataset, shown
in the bottom slice of Table 1. We have only used
class-sizes up to 32, as there are only 35 particle
types. We can clearly see the effect of the largest
AMMs approaching the full bigramme model as

average precision here approaches the random base-
line. The VPC extraction task shows a difference
between the two AMM-based measures: AMM-
ratio does not improve at all, remaining below the
frequency baseline. AMM-divergence, however,
shows a slight decrease in precision first, but ends
up performing above the frequency baseline for the
8-class AMMs in both subtasks.

Table 3 shows four clusters of verbs and par-
ticles. The large first cluster contains verbs that
involve motion/displacement of the subject or ob-
ject and associated particles, for instance walk
about or push away. Interestingly, the description
of the gold standard gives exactly such cases as
negatives, since they constitute compositional verb-
particle constructions (Baldwin, 2008). Classes 2
and 3 show syntactic dependencies, which helps
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Cl Verb

Particle

1 break, bring, come, cut, drive, fall, get, go, lay, look, move, pass, push,

put, run, sit, throw, turn, voice, walk

2 accord, add, apply, give, happen, lead, listen, offer, pay, present, refer,

relate, return, rise, say, sell, send, speak, write
3 know, talk, tell, think

across, ahead, along, around, away, back, back-
ward, down, forward, into, over, through, together

astray, to

about

accompany, achieve, affect, cause, create, follow, hit, increase, issue, by

mean, produce, replace, require, sign, support

Table 3: Selected verb-particle clusters from an 8-class AMM on transitive data.

collocation extraction by decreasing the impact of
verb-preposition associations that are due to PP-
selecting verbs. Class 4 shows a third type of distri-
butional generalization: the verbs in this class are
all frequently used in the passive.

3.3 Variation due to local optima

We start each EM run with a random initializa-
tion of the model parameters. Since EM finds local
rather than global optima, each run may lead to
different AMMSs, which in turn will affect AMM-
based collocation extraction. To gain insight into
this variation, we have trained 40 16-class AMMs
on the A-N dataset. Table 4 gives five point sum-
maries of the average precision of the resulting
40 ‘association measures’. Performance varies con-
siderably, spanning 2—3 percentage points in each
case. The models consistently outperform (P)MI in
Table 1, though.

Several techniques might help to address this
variation. One might try to find a good fixed way of
initializing EM or to use EM variants that reduce
the impact of the initial state (Smith and Eisner,
2004, a.o.), so that a run with the same data and
the same number of classes will always learn (al-
most) the same model. On the assumption that an
average over several runs will vary less than indi-
vidual runs, we have also constructed a combined
Pexp Dy averaging over 40 peyps. The last column

Variation in avg precision

min ql med g3 max Comb

A-N
cat 1 Tamm  46.5 47.3 47.9 484 49.1 48.4
damm 444 454 458 46.1 47.1 46.4
cat 1-2  ramm  56.7 57.2 579 582 59.0 58.2
damm  58.1 58.8 59.2 59.4 60.4 60.0
cat 1-3  ramm  63.0 63.7 64.2 64.6 653 64.6
damm 652 66.0 66.4 66.6 67.6 66.9

Table 4: Variation on A-N data over 40 EM runs
and result of combining pess.
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in Table 4 shows this combined estimator leads to
good extraction results.

4 Conclusions

In this paper, we have started to explore collocation
extraction beyond the assumption of independence.
We have introduced two new association measures
that do away with this assumption in the estima-
tion of expected probabilities. The success of using
these association measures varies. It remains to be
investigated whether they can be improved more.

A possible obstacle in the adoption of AMMs in
collocation extraction is that we have not provided
any heuristic for setting the number of classes for
the AMMs. We hope to be able to look into this
question in future research. Luckily, for the AN and
VPC data, the best models are not that large (in the
order of 8-32 classes), which means that model fit-
ting is fast enough to experiment with different set-
tings. In general, considering these smaller models
might suffice for tasks that have a fairly restricted
definition of collocation candidate, like the tasks
in our evaluation do. Because AMM fitting is un-
supervised, selecting a class size is in this respect
no different from selecting a suitable association
measure from the canon of existing measures.

Future research into association measures that
are not based on the independence assumption will
also include considering different EM variants and
other automatically learnable models besides the
AMMs used in this paper. Finally, the idea of us-
ing an informed estimate of expected probability
in an association measure need not be confined
to (P)MI, as there are many other measures that
employ expected probabilities.
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Abstract

In recent years, collocation has been
widely acknowledged as an essential
characteristic to distinguish native speak-
ers from non-native speakers. Research
on academic writing has also shown that
collocations are not only common but
serve a particularly important discourse
function within the academic community.
In our study, we propose a machine
learning approach to implementing an
online collocation writing assistant. We
use a data-driven classifier to provide
collocation suggestions to improve word
choices, based on the result of classifica-
tion. The system generates and ranks
suggestions to assist learners’ collocation
usages in their academic writing with sat-
isfactory results.

1 Introduction

The notion of collocation has been widely dis-
cussed in the field of language teaching for dec-
ades. It has been shown that collocation, a suc-
cessive common usage of words in a chain, is
important in helping language learners achieve
native-like fluency. In the field of English for
Academic Purpose, more and more researchers
are also recognizing this important feature in
academic writing. It is often argued that colloca-
tion can influence the effectiveness of a piece of
writing and the lack of such knowledge might
cause cumulative loss of precision (Howarth,
1998).

Many researchers have discussed the function
of collocations in the highly conventionalized
and specialized writing used within academia.
Research also identified noticeable increases in
the quantity and quality of collocational usage by
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native speakers (Howarth, 1998). Granger (1998)
reported that learners underuse native-like collo-
cations and overuse atypical word combinations.
This disparity in collocation usage between na-
tive and non-native speakers is clear and should
receive more attention from the language tech-
nology community.

To tackle such word usage problems, tradi-
tional language technology often employs a da-
tabase of the learners' common errors that are
manually tagged by teachers or specialists (e.g.
Shei and Pain, 2000; Liu, 2002). Such system
then identifies errors via string or pattern match-
ing and offer only pre-stored suggestions. Com-
piling the database is time-consuming and not
easily maintainable, and the usefulness is limited
by the manual collection of pre-stored sugges-
tions. Therefore, it is beneficial if a system can
mainly use untagged data from a corpus contain-
ing correct language usages rather than the error-
tagged data from a learner corpus. A large corpus
of correct language usages is more readily avail-
able and useful than a small labeled corpus of
incorrect language usages.

For this suggestion task, the large corpus not
only provides us with a rich set of common col-
locations but also provides the context within
which these collocations appear. Intuitively, we
can take account of such context of collocation to
generate more suitable suggestions. Contextual
information in this sense often entails more lin-
guistic clues to provide suggestions within sen-
tences or paragraph. However, the contextual
information is messy and complex and thus has
long been overlooked or ignored. To date, most
fashionable suggestion methods still rely upon
the linguistic components within collocations as
well as the linguistic relationship between mis-
used words and their correct counterparts (Chang
et al., 2008; Liu, 2009).

In contrast to other research, we employ con-
textual information to automate suggestions for
verb-noun lexical collocation. Verb-noun collo-
cations are recognized as presenting the most
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challenge to students (Howarth, 1996; Liu,
2002). More specifically, in this preliminary
study we start by focusing on the word choice of
verbs in collocations which are considered as the
most difficult ones for learners to master (Liu,
2002; Chang, 2008). The experiment confirms
that our collocation writing assistant proves the
feasibility of using machine learning methods to
automatically prompt learners with collocation
suggestions in academic writing.

2 Collocation Checking and Suggestion

This study aims to develop a web service, Collo-
cation Inspector (shown in Figure 1) that accepts
sentences as input and generates the related can-
didates for learners.

In this paper, we focus on automatically pro-
viding academic collocation suggestions when
users are writing up their abstracts. After an ab-
stract is submitted, the system extracts linguistic
features from the user’s text for machine learning
model. By using a corpus of published academic
texts, we hope to match contextual linguistic
clues from users’ text to help elicit the most rele-
vant suggestions. We now formally state the
problem that we are addressing:

Problem Statement: Given a sentence S writ-
ten by a learner and a reference corpus RC, our
goal is to output a set of most probable sugges-
tion candidates ci, ¢y, ... , cm. For this, we train a
classifier MC to map the context (represented as
feature set fi, f, ..., fu) of each sentence in RC to
the collocations. At run-time, we predict these
collocations for S as suggestions.

2.1 Academic Collocation Checker Train-
ing Procedures

Sentence Parsing and Collocation Extraction:
We start by collecting a large number of ab-
stracts from the Web to develop a reference cor-
pus for collocation suggestion. And we continue
to identify collocations in each sentence for the
subsequent processing.

Collocation extraction is an essential step in
preprocessing data. We only expect to extract the
collocation which comprises components having
a syntactic relationship with one another. How-
ever, this extraction task can be complicated.
Take the following scholarly sentence from the
reference corpus as an example (example (1)):

(1) We introduce a novel method
for learning to find documents
on the web.

Collocation
Inspector™

In this paper, we introduce an method that provides different
bandwidth to each large amount of users. There are many
investigations about wireless network communication,
especially it is important to add Internet transfer calculation
speeds.

Collocation Inspector

SUGGESTION
an method
ndwidth to
ers . There

n this paper we
tha different bar
y f US

Correction

maintain
estimate
kee
reduce
reach
contro!
build

( Check!)

Figure 1. The interface for the collocation suggestion

nsubj (introduce-2, We-1)

det (method-5, a-3)

amod (method-5, novel-4)

dobj (introduce-2, method-5)
prepc_for (introduce-2, learning-7)
aux (find-9, to-8)

Figure 2. Dependency parsing of Example (1)

Traditionally, through part-of-speech tagging,
we can obtain a tagged sentence as follows (ex-
ample (2)). We can observe that the desired col-
location “introduce method”, conforming to
“VERB+NOUN?” relationship, exists within the
sentence. However, the distance between these
two words is often flexible, not necessarily rigid.
Heuristically writing patterns to extract such verb
and noun might not be effective. The patterns
between them can be tremendously varied. In
addition, some verbs and nouns are adjacent, but
they might be intervened by clause and thus have
no syntactic relation with one another (e.g. “pro-
pose model” in example (3)).

(2) We/PRP introduce/VB a/DT
novel/JJ method/NN for/IN
learning/VBG to/TO find/VB
documents/NNS on/IN the/DT
web/NN ./.

(3) We proposed that the web-
based model would be more ef-
fective than corpus-based one.

A natural language parser can facilitate the ex-
traction of the target type of collocations. Such
parser is a program that works out the grammati-
cal structure of sentences, for instance, by identi-
fying which group of words go together or which
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word is the subject or object of a verb. In our
study, we take advantage of a dependency parser,
Stanford Parser, which extracts typed dependen-
cies for certain grammatical relations (shown in
Figure 2). Within the parsed sentence of example
(1), we can notice that the extracted dependency
“dobj (introduce-2, method-4)” meets the crite-
rion.

Using a Classifier for the Suggestion task: A
classifier is a function generally to take a set of
attributes as an input and to provide a tagged
class as an output. The basic way to build a clas-
sifier is to derive a regression formula from a set
of tagged examples. And this trained classifier
can thus make predication and assign a tag to any
input data.

The suggestion task in this study will be seen
as a classification problem. We treat the colloca-
tion extracted from each sentence as the class tag
(see examples in Table 1). Hopefully, the system
can learn the rules between tagged classes (i.e.
collocations) and example sentences (i.e. schol-
arly sentences) and can predict which collocation
is the most appropriate one given attributes ex-
tracted from the sentences.

Another advantage of using a classifier to
automate suggestion is to provide alternatives
with regard to the similar attributes shared by
sentences. In Table 1, we can observe that these
collocations exhibit a similar discourse function
and can thus become interchangeable in these
sentences. Therefore, based on the outputs along
with the probability from the classifier, we can
provide more than one adequate suggestions.

Feature Selection for Machine Learning: In
the final stage of training, we build a statistical
machine-learning model. For our task, we can
use a supervised method to automatically learn
the relationship between collocations and exam-
ple sentences.
We choose Maximum Entropy (ME) as our train-
ing algorithm to build a collocation suggestion
classifier. One advantage of an ME classifier is
that in addition to assigning a classification it can
provide the probability of each assignment. The
ME framework estimates probabilities based on
the principle of making as few assumptions as
possible. Such constraints are derived from the
training data, expressing relationships between
features and outcomes.

Moreover, an effective feature selection can
increase the precision of machine learning. In our
study, we employ the contextual features which

Table 1. Example sentences and class tags (colloca-
tions)

Example Sentence Class tag
We introduce a novel method for learning introduce
to find documents on the web.
We presented a method of improving Japa-
nese dependency parsing by using large-  present
scale statistical information.
In this paper, we will describe a method of
identifying the syntactic role of antece- describe
dents, which consists of two phases
In this paper, we suggest a method that
automatically constructs an NE tagged cor-

suggest

pus from the web to be used for learning of
NER systems.

consist of two elements, the head and the ngram
of context words:

Head: Each collocation comprises two parts,
collocate and head. For example, in a given verb-
noun collocation, the verb is the collocate as well
as the target for which we provide suggestions;
the noun serves as the head of collocation and
convey the essential meaning of the collocation.
We use the head as a feature to condition the
classifier to generate candidates relevant to a
given head.

Ngram: We use the context words around the
target collocation by considering the correspond-
ing unigrams and bigrams words within the sen-
tence. Moreover, to ensure the relevance, those
context words, before and after the punctuation
marks enclosing the collocation in question, will
be excluded. We use the parsed sentence from
previous step (example (2)) to show the extracted
context features' (example (4)):

(4) CN=method UniV_L=we
UniV_R=a UniV_R=novel UniN_ L=a
UniN L=novel UniN R=for

UniN R=learn BiV_R=a novel

BiN L=a novel BiN R=for learn
BiV_I=we a BiN_ I=novel for

! CN refers to the head within collocation. Uni and Bi indi-
cate the unigram and bigram context words of window size
two respectively. V and N differentiate the contexts related
to verb or noun. The ending alphabets L, R, I show the posi-
tion of the words in context, L = left, R = right, and [ = in
between.
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2.2 Automatic Collocation Suggestion at
Run-time

After the ME classifier is automatically trained,
the model is used to find out the best collocation
suggestion. Figure 3 shows the algorithm of pro-
ducing suggestions for a given sentence. The
input is a learner’s sentence in an abstract, along
with an ME model trained from the reference
corpus.

In Step (1) of the algorithm, we parse the sen-
tence for data preprocessing. Based on the parser
output, we extract the collocation from a given
sentence as well as generate features sets in Step
(2) and (3). After that in Step (4), with the
trained machine-learning model, we obtain a set
of likely collocates with probability as predicted
by the ME model. In Step (5), SuggestionFilter
singles out the valid collocation and returns the
best collocation suggestion as output in Step (6).
For example, if a learner inputs the sentence like
Example (5), the features and output candidates
are shown in Table 2.

(5) There are many investiga-
tions about wireless network
communication, especially it is
important to add Internet
transfer calculation speeds.

3 Experiment

From an online research database, CiteSeer, we
have collected a corpus of 20,306 unique ab-
stracts, which contained 95,650 sentences. To
train a Maximum Entropy classifier, 46,255 col-
locations are extracted and 790 verbal collocates
are identified as tagged classes for collocation
suggestions. We tested the classifier on scholarly
sentences in place of authentic student writings
which were not available at the time of this pilot
study. We extracted 364 collocations among 600
randomly selected sentences as the held out test
data not overlapping with the training set. To
automate the evaluation, we blank out the verb
collocates within these sentences and treat these
verbs directly as the only correct suggestions in
question, although two or more suggestions may
be interchangeable or at least appropriate. In this
sense, our evaluation is an underestimate of the
performance of the proposed method.

While evaluating the quality of the suggestions
provided by our system, we used the mean recip-
rocal rank (MRR) of the first relevant sugges-
tions returned so as to assess whether the sugges-
tion list contains an answer and how far up the
answer is in the list as a quality metric of the sys-

Procedure CollocationSuggestion(sent, MEmodel)

(1) parsedSen = Parsing(sent)

(2) extractedColl = CollocationExtraction(parsedSent)
(3) features = AssignFeature(ParsedSent)

(4) probCollection = MEprob(features, MEmodel)
(5) candidate = SuggestionFilter(probCollection)

(6) Return candidate

Figure 3. Collocation Suggestion at Run-time

Table 2. An example from learner’s sentence

Extracted Features Ranked
Collocation Candidates
CN=speed
UniV_L=important
UniV_L=to
UniV_R=internet .
UniV_R=transfer ;nmc]zg;\s/:
UniN L=transfer .
add speed UniN_L=calculation frfatie;gilge
BiV_L=important to
BiV_R=internet transfer "~
BiN_L=transfer calcula-
tion
BiV_I=to_intenet
Table 3. MRR for different feature sets
Feature Sets Included In Classifier MRR
Features of HEAD 0.407
Features of CONTEXT 0.469
Features of HEAD+CONTEXT 0.518

tem output. Table 3 shows that the best MRR of
our prototype system is 0.518. The results indi-
cate that on average users could easily find an-
swers (exactly reproduction of the blanked out
collocates) in the first two to three ranking of
suggestions. It is very likely that we get a much
higher MMR value if we would go through the
lists and evaluate each suggestion by hand.
Moreover, in Table 3, we can further notice that
contextual features are quite informative in com-
parison with the baseline feature set containing
merely the feature of HEAD. Also the integrated
feature set of HEAD and CONTEXT together
achieves a more satisfactory suggestion result.

4 Conclusion

Many avenues exist for future research that are
important for improving the proposed method.
For example, we need to carry out the experi-
ment on authentic learners’ texts. We will con-
duct a user study to investigate whether our sys-
tem would improve a learner’s writing in a real
setting. Additionally, adding classifier features
based on the translation of misused words in
learners’ text could be beneficial (Chang et al.,
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2008). The translation can help to resolve preva-
lent collocation misuses influenced by a learner's
native language. Yet another direction of this
research is to investigate if our methodology is
applicable to other types of collocations, such as
AN and PN in addition to VN dealt with in this
paper.

In summary, we have presented an unsuper-
vised method for suggesting collocations based
on a corpus of abstracts collected from the Web.
The method involves selecting features from the
reference corpus of the scholarly texts. Then a
classifier is automatically trained to determine
the most probable collocation candidates with
regard to the given context. The preliminary re-
sults show that it is beneficial to use classifiers
for identifying and ranking collocation sugges-
tions based on the context features.
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Abstract

Bag-of-words approaches to information
retrieval (IR) are effective but assume in-
dependence between words. The Hy-
perspace Analogue to Language (HAL)
is a cognitively motivated and validated
semantic space model that captures sta-
tistical dependencies between words by
considering their co-occurrences in a sur-
rounding window of text. HAL has been
successfully applied to query expansion in
IR, but has several limitations, including
high processing cost and use of distribu-
tional statistics that do not exploit syn-
tax. In this paper, we pursue two methods
for incorporating syntactic-semantic infor-
mation from textual ‘events’ into HAL.
We build the HAL space directly from
events to investigate whether processing
costs can be reduced through more careful
definition of word co-occurrence, and im-
prove the quality of the pseudo-relevance
feedback by applying event information
as a constraint during HAL construction.
Both methods significantly improve per-
formance results in comparison with orig-
inal HAL, and interpolation of HAL and
relevance model expansion outperforms
either method alone.

1 Introduction

Despite its intuitive appeal, the incorporation of
linguistic and semantic word dependencies in IR
has not been shown to significantly improve over
a bigram language modeling approach (Song and
Croft, 1999) that encodes word dependencies as-
sumed from mere syntactic adjacency. Both the
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dependence language model for IR (Gao et al.,
2004), which incorporates linguistic relations be-
tween non-adjacent words while limiting the gen-
eration of meaningless phrases, and the Markov
Random Field (MRF) model, which captures short
and long range term dependencies (Metzler and
Croft, 2005; Metzler and Croft, 2007), con-
sistently outperform a unigram language mod-
elling approach but are closely approximated by
a bigram language model that uses no linguis-
tic knowledge. Improving retrieval performance
through application of semantic and syntactic in-
formation beyond proximity and co-occurrence
features is a difficult task but remains a tantalising
prospect.

Our approach is like that of Gao et al. (2004)
in that it considers semantic-syntactically deter-
mined relationships between words at the sentence
level, but allows words to have more than one
role, such as predicate and argument for differ-
ent events, while link grammar (Sleator and Tem-
perley, 1991) dictates that a word can only sat-
isfy one connector in a disjunctive set. Compared
to the MRF model, our approach is unsupervised
where MRFs require the training of parameters us-
ing relevance judgments that are often unavailable
in practical conditions.

Other work incorporating syntactic and linguis-
tic information into IR includes early research by
(Smeaton, O’Donnell and Kelledy, 1995), who
employed tree structured analytics (TSAs) resem-
bling dependency trees, the use of syntax to de-
tect paraphrases for question answering (QA) (Lin
and Pantel, 2001), and semantic role labelling in
QA (Shen and Lapata, 2007).

Independent from IR, Pado and Lapata (2007)
proposed a general framework for the construc-
tion of a semantic space endowed with syntactic
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information. This was represented by an undi-
rected graph, where nodes stood for words, de-
pendency edges stood for syntactical relations, and
sequences of dependency edges formed paths that
were weighted for each target word. Our work is
in line with Pado and Lapata (2007) in construct-
ing a semantic space with syntactic information,
but builds our space from events, states and attri-
butions as defined linguistically by Bach (1986).
We call these simply events, and extract them auto-
matically from predicate-argument structures and
a dependency parse. We will use this space to per-
form query expansion in IR, a task that aims to find
additional words related to original query terms,
such that an expanded query including these words
better expresses the information need. To our
knowledge, the notion of events has not been ap-
plied to query expansion before.

This paper will outline the original HAL al-
gorithm which serves as our baseline, and the
event extraction process. We then propose two
methods to arm HAL with event information: di-
rect construction of HAL from events (eHAL-1),
and treating events as constraints on HAL con-
struction from the corpus (eHAL-2). Evaluation
will compare results using original HAL, eHAL-
1 and eHAL-2 with a widely used unigram lan-
guage model (LM) for IR and a state of the art
query expansion method, namely the Relevance
Model (RM) (Lavrenko and Croft, 2001). We also
explore whether a complementary effect can be
achieved by combining HAL-based dependency
modelling with the unigram-based RM.

2 HAL Construction

Semantic space models aim to capture the mean-
ings of words using co-occurrence information
in a text corpus. Two examples are the Hyper-
space Analogue to Language (HAL) (Lund and
Burgess, 1996), in which a word is represented
by a vector of other words co-occurring with it
in a sliding window, and Latent Semantic Anal-
ysis (LSA) (Deerwester, Dumais, Furnas, Lan-
dauer and Harshman, 1990; Landauer, Foltz and
Laham, 1998), in which a word is expressed as
a vector of documents (or any other syntacti-
cal units such as sentences) containing the word.
In these semantic spaces, vector-based represen-
tations facilitate measurement of similarities be-
tween words. Semantic space models have been
validated through various studies and demonstrate
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compatibility with human information processing.
Recently, they have also been applied in IR, such
as LSA for latent semantic indexing, and HAL for
query expansion. For the purpose of this paper, we
focus on HAL, which encodes word co-occurrence
information explicitly and thus can be applied to
query expansion in a straightforward way.

HAL is premised on context surrounding a word
providing important information about its mean-
ing (Harris, 1968). To be specific, an L-size
sliding window moves across a large text corpus
word-by-word. Any two words in the same win-
dow are treated as co-occurring with each other
with a weight that is inversely proportional to their
separation distance in the text. By accumulating
co-occurrence information over a corpus, a word-
by-word matrix is constructed, a simple illustra-
tion of which is given in Table 1. A single word is
represented by a row vector and a column vector
that capture the information before and after the
word, respectively. In some applications, direc-
tion sensitivity is ignored to obtain a single vector
representation of a word by adding corresponding
row and column vectors (Bai et al., 2005).

W] | W2 | W3 | Wq | W5 | We
w1
wy | 5
ws | 4 5
wy | 3 4 5
We 2 3 4 5
Table 1: A HAL space for the text “w; wa w3 wy

ws wg” using a 5-word sliding window (L = 5).

HAL has been successfully applied to query ex-
pansion and can be incorporated into this task di-
rectly (Bai et al., 2005) or indirectly, as with the
Information Flow method based on HAL (Bruza
and Song, 2002). However, to date it has used
only statistical information from co-occurrence
patterns. We extend HAL to incorporate syntactic-
semantic information.

3 Event Extraction

Prior to event extraction, predicates, arguments,
part of speech (POS) information and syntac-
tic dependencies are annotated using the best-
performing joint syntactic-semantic parser from
the CoNNL 2008 Shared Task (Johansson and



Nugues, 2008), trained on PropBank and Nom-
Bank data. The event extraction algorithm then
instantiates the template REL [modREL] Arg0O
[modArg0] ...ArgN [modArgN], where REL is the
predicate relation (or root verb if no predicates
are identified), and Arg0...ArgN are its arguments.
Modifiers (mod) are identified by tracing from
predicate and argument heads along the depen-
dency tree. All predicates are associated with at
least one event unless both Arg0 and Argl are not
identified, or the only argument is not a noun.

The algorithm checks for modifiers based on
POS tag!, tracing up and down the dependency
tree, skipping over prepositions, coordinating con-
junctions and words indicating apportionment,
such as ‘sample (of)’. However, to constrain out-
put the search is limited to a depth of one (with
the exception of skipping). For example, given
the phrase ‘apples from the store nearby’ and an
argument head apples, the first dependent, store,
will be extracted but not nearby, which is the de-
pendent of store. This can be detrimental when
encountering compound nouns but does focus on
core information. For verbs, modal dependents are
not included in output.

Available paths up and down the dependency
tree are followed until all branches are exhausted,
given the rules outlined above. Tracing can re-
sult in multiple extracted events for one predicate
and predicates may also appear as arguments in
a different event, or be part of argument phrases.
For this reason, events are constrained to cover
only detail appearing above subsequent predicates
in the tree, which simplifies the event structure.
For example, the sentence “Baghdad already has
the facilities to continue producing massive quan-
tities of its own biological and chemical weapons”
results in the event output: (1) has Baghdad al-
ready facilities continue producing; (2) continue
quantities producing massive; (3) producing quan-
tities massive weapons biological; (4) quantities
weapons biological massive.

4 HAL With Events
4.1 eHAL-1: Construction From Events

Since events are extracted from documents, they
form a reduced text corpus from which HAL can

'To be specific, the modifiers include negation, as well as
adverbs or particles for verbal heads, adjectives and nominal
modifiers for nominal heads, and verbal or nominal depen-
dents of modifiers, provided modifiers are not also identified
as arguments elsewhere in the event.
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be built in a similar manner to the original HAL.
We ignore the parameter of window length (L)
and treat every event as a single window of length
equal to the number of words in the event. Every
pair of words in an event is considered to be co-
occurrent with each other. The weight assigned to
the association between each pair is simply set to
one. With this scheme, all the events are traversed
and the event-based HAL is constructed.

The advantage of this method is that it sub-
stantially reduces the processing time during HAL
construction because only events are involved and
there is no need to calculate weights per occur-
rence. Additional processing time is incurred in
semantic role labelling (SRL) during event iden-
tification. However, the naive approach to extrac-
tion might be simulated with a combination of less
costly chunking and dependency parsing, given
that the word ordering information available with
SRL is not utilised.

eHAL-1 combines syntactical and statistical in-
formation, but has a potential drawback in that
only events are used during construction so some
information existing in the co-occurrence patterns
of the original text may be lost. This motivates the
second method.

4.2 eHAL-2: Event-Based Filtering

This method attempts to include more statistical
information in eHAL construction. The key idea
is to decide whether a text segment in a corpus
should be used for the HAL construction, based
on how much event information it covers. Given a
corpus of text and the events extracted from it, the
eHAL-2 method runs as follows:

1. Select the events of length M or more and
discard the others for efficiency;

. Set an “inclusion criterion”, which decides if
a text segment, defined as a word sequence
within an L-size sliding window, contains an
event. For example, if 80% of the words in an
event are contained in a text segment, it could
be considered to “include” the event;

. Move across the whole corpus word-by-word
with an L-size sliding window. For each win-
dow, complete Steps 4-7;

For the current L-size text segment, check
whether it includes an event according to the
“inclusion criterion” (Step 2);



5. If an event is included in the current text
segment, check the following segments for
a consecutive sequence of segments that also
include this event. If the current segment in-
cludes more than one event, find the longest
sequence of related text segments. An illus-
tration is given in Figure 1 in which dark
nodes stand for the words in a specific event
and an 80% inclusion criterion is used.

Text OO OdOe0d00OeEmEEOCOOOO
Segment K [ ]
Segment K+1 [ ]
Segment K+2 [ ]
Segment K+3 [ ]

Figure 1: Consecutive segments for an event

6. Extract the full span of consecutive segments
just identified and go to the next available text
segment. Repeat Step 3;

7. When the scanning is done, construct HAL
using the original HAL method over all ex-
tracted sequences.

With the guidance of event information, the pro-
cedure above keeps only those segments of text
that include at least one event and discards the rest.
It makes use of more statistical co-occurrence in-
formation than eHAL-1 by applying weights that
are proportional to word separation distance. It
also alleviates the identified drawback of eHAL-1
by using the full text surrounding events. A trade-
off is that not all the events are included by the
selected text segments, and thus some syntactical
information may be lost. In addition, the paramet-
ric complexity and computational complexity are
also higher than eHAL-1.

5 Evaluation

We empirically test whether our event-based
HALSs perform better than the original HAL, and
standard LM and RM, using three TREC? col-
lections: AP89 with Topics 1-50 (title field),
AP8889 with Topics 101-150 (title field) and
WSJ9092 with Topics 201-250 (description field).
All the collections are stemmed, and stop words
are removed, prior to retrieval using the Lemur
Toolkit Version 4.113. Initial retrieval is iden-
tical for all models evaluated: KL-divergence

2TREC stands for the Text REtrieval Conference series

run by NIST. Please refer to http://trec.nist.gov/ for details.
3 Available at http://www.lemurproject.org/
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based LM smoothed using Dirichlet prior with p
set to 1000 as appropriate for TREC style title
queries (Lavrenko, 2004). The top 50 returned
documents form the basis for all pseudo-relevance
feedback, with other parameters tuned separately
for the RM and HAL methods.

For each dataset, the number of feedback terms
for each method is selected optimally among 20,
40, 60, 80* and the interpolation and smoothing
coefficient is set to be optimal in [0,1] with in-
terval 0.1. For RM, we choose the first relevance
model in Lavrenko and Croft (2001) with the doc-
ument model smoothing parameter optimally set
at 0.8. The number of feedback terms is fixed at
60 (for AP89 and WSJ9092) and 80 (for AP8889),
and interpolation between the query and relevance
models is set at 0.7 (for WSJ9092) and 0.9 (for
AP89 and AP8889). The HAL-based query ex-
pansion methods add the top 80 expansion terms
to the query with interpolation coefficient 0.9 for
WSJ9092 and 1 (that is, no interpolation) for AP89
and AP8889. The other HAL-based parameters
are set as follows: shortest event length M = 5,
for eHAL-2 the “inclusion criterion” is 75% of
words in an event, and for HAL and eHAL-2, win-
dow size L = 8. Top expansion terms are selected
according to the formula:

_ HAL(t| 9 q)
S HAL(t;| @ q)
t;

Pyar(tj| @)

where H AL(t;|®q) is the weight of ¢; in the com-
bined HAL vector ©q (Bruza and Song, 2002)
of original query terms. Mean Average Precision
(MAP) is the performance indicator, and t-test (at
the level of 0.05) is performed to measure the sta-
tistical significance of results.

Table 2 lists the experimental results®. It can
be observed that all the three HAL-based query
expansion methods improve performance over the
LM and both eHALs achieve better performance
than original HAL, indicating that the incorpora-
tion of event information is beneficial. In addition,
eHAL-2 leads to better performance than eHAL-
1, suggesting that use of linguistic information as
a constraint on statistical processing, rather than
the focus of extraction, is a more effective strat-
egy. The results are still short of those achieved

“For RM, feedback terms were also tested on larger num-
bers up to 1000 but only comparable result was observed.

SIn Table 2, brackets show percent improvement of

eHALSs / RM over HAL / eHAL-2 respectively and * and #
indicate the corresponding statistical significance.



Method |  AP89 AP8889 | WSJ9092 | | Method | AP89 | AP8389 | WSJ9092 |

LM 0.2015 0.2290 0.2242 RM 0.2611 0.3178 0.2676
HAL 0.2299 0.2738 0.2346 eRM-1 0.2554 0.3150 0.2555

eHAL-1 0.2364 0.2829 0.2409 (-2.18%) | (-0.88%) | (-4.52%)
(+2.83%) | (+3.32%%) | (+2.69%) eRM-2 0.2605 0.3167 0.2626

eHAL-2 0.2427 0.2850 0.2460 (-0.23%) | (-0.35%) | (-1.87%)
(+5.57%%) | (+4.09%%*) | (+4.86%%*) HAL 0.2640 0.3186 0.2727

RM 0.2611 0.3178 0.2676 +RM (+1.11%) | (+0.25%) | (+1.19%)
(+7.58%#) | (+11.5%%#) | (+8.78%#) eHAL-1 0.2600 0.3210 0.2734

+RM (-0.42%) | (+1.01%) | (+2.17%)
Table 2: Performance (MAP) comparison of query cHAL-2 | 0.2636 03191 0.2735

expansion using different HALs +RM (+0.96%) | (+0.41%) | (+2.20%)

with RM, but the gap is significantly reduced by
incorporating event information here, suggesting
this is a promising line of work. In addition, as
shown in (Bai et al., 2005), the Information Flow
method built upon the original HAL largely out-
performed RM. We expect that eHAL would pro-
vide an even better basis for Information Flow, but
this possibility is yet to be explored.

As is known, RM is a pure unigram model while
HAL methods are dependency-based. They cap-
ture different information, hence it is natural to
consider if their strengths might complement each
other in a combined model. For this purpose, we
design the following two schemes:

1. Apply RM to the feedback documents (orig-
inal RM), the events extracted from these
documents (eRM-1), and the text segments
around each event (eRM-2), where the three
sources are the same as used to produce HAL,
eHAL-1 and eHAL-2 respectively;

2. Interpolate the expanded query model by
RM with the ones generated by each HAL,
represented by HAL+RM, eHAL-1+RM and
eHAL-2+RM. The interpolation coefficient is
again selected to achieve the optimal MAP.

The MAP comparison between the original RM
and these new models are demonstrated in Ta-
ble 3°. From the first three lines (Scheme 1), we
can observe that in most cases the performance
generally deteriorates when RM is directly run
over the events and the text segments. The event
information is more effective to express the infor-
mation about the term dependencies while the un-
igram RM ignores this information and only takes

®For rows in Table 3, brackets show percent difference
from original RM.
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Table 3: Performance (MAP) comparison of query
expansion using the combination of RM and term
dependencies

the occurrence frequencies of individual words
into account, which is not well-captured by the
events. In contrast, the performance of Scheme 2
is more promising. The three methods outperform
the original RM in most cases, but the improve-
ment is not significant and it is also observed that
there is little difference shown between RM with
HAL and eHALs. The phenomenon implies more
effective methods may be invented to complement
the unigram models with the syntactical and sta-
tistical dependency information.

6 Conclusions

The application of original HAL to query expan-
sion attempted to incorporate statistical word as-
sociation information, but did not take into ac-
count the syntactical dependencies and had a
high processing cost. By utilising syntactic-
semantic knowledge from event modelling of
pseudo-relevance feedback documents prior to
computing the HAL space, we showed that pro-
cessing costs might be reduced through more care-
ful selection of word co-occurrences and that per-
formance may be enhanced by effectively improv-
ing the quality of pseudo-relevance feedback doc-
uments. Both methods improved over original
HAL query expansion. In addition, interpolation
of HAL and RM expansion improved results over
those achieved by either method alone.
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Abstract

We propose a novel method to automati-
cally acquire a term-frequency-based tax-
onomy from a corpus using an unsuper-
vised method. A term-frequency-based
taxonomy is useful for application do-
mains where the frequency with which
terms occur on their own and in combi-
nation with other terms imposes a natural
term hierarchy. We highlight an applica-
tion for our approach and demonstrate its
effectiveness and robustness in extracting
knowledge from real-world data.

1 Introduction

Taxonomy deduction is an important task to under-
stand and manage information. However, building
taxonomies manually for specific domains or data
sources is time consuming and expensive. Tech-
niques to automatically deduce a taxonomy in an
unsupervised manner are thus indispensable. Au-
tomatic deduction of taxonomies consist of two
tasks: extracting relevant terms to represent con-
cepts of the taxonomy and discovering relation-
ships between concepts. For unstructured text, the
extraction of relevant terms relies on information
extraction methods (Etzioni et al., 2005).

The relationship extraction task can be classi-
fied into two categories. Approaches in the first
category use lexical-syntactic formulation to de-
fine patterns, either manually (Kozareva et al.,
2008) or automatically (Girju et al., 2006), and
apply those patterns to mine instances of the pat-
terns. Though producing accurate results, these
approaches usually have low coverage for many
domains and suffer from the problem of incon-
sistency between terms when connecting the in-
stances as chains to form a taxonomy. The second
category of approaches uses clustering to discover
terms and the relationships between them (Roy
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and Subramaniam, 2006), even if those relation-
ships do not explicitly appear in the text. Though
these methods tackle inconsistency by addressing
taxonomy deduction globally, the relationships ex-
tracted are often difficult to interpret by humans.

We show that for certain domains, the frequency
with which terms appear in a corpus on their own
and in conjunction with other terms induces a nat-
ural taxonomy. We formally define the concept
of a term-frequency-based taxonomy and show
its applicability for an example application. We
present an unsupervised method to generate such
a taxonomy from scratch and outline how domain-
specific constraints can easily be integrated into
the generation process. An advantage of the new
method is that it can also be used to extend an ex-
isting taxonomy.

We evaluated our method on a large corpus of
real-life addresses. For addresses from emerging
geographies no standard postal address scheme
exists and our objective was to produce a postal
taxonomy that is useful in standardizing addresses
(Kothari et al., 2010). Specifically, the experi-
ments were designed to investigate the effective-
ness of our approach on noisy terms with lots of
variations. The results show that our method is
able to induce a taxonomy without using any kind
of lexical-semantic patterns.

2 Related Work

One approach for taxonomy deduction is to use
explicit expressions (Iwaska et al., 2000) or lexi-
cal and semantic patterns such as is a (Snow et al.,
2004), similar usage (Kozareva et al., 2008), syn-
onyms and antonyms (Lin et al., 2003), purpose
(Cimiano and Wenderoth, 2007), and employed by
(Bunescu and Mooney, 2007) to extract and orga-
nize terms. The quality of extraction is often con-
trolled using statistical measures (Pantel and Pen-
nacchiotti, 2006) and external resources such as
wordnet (Girju et al., 2006). However, there are
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domains (such as the one introduced in Section
3.2) where the text does not allow the derivation
of linguistic relations.

Supervised methods for taxonomy induction
provide training instances with global seman-
tic information about concepts (Fleischman and
Hovy, 2002) and use bootstrapping to induce new
seeds to extract further patterns (Cimiano et al.,
2005). Semi-supervised approaches start with
known terms belonging to a category, construct
context vectors of classified terms, and associate
categories to previously unclassified terms de-
pending on the similarity of their context (Tanev
and Magnini, 2006). However, providing train-
ing data and hand-crafted patterns can be tedious.
Moreover in some domains (such as the one pre-
sented in Section 3.2) it is not possible to construct
a context vector or determine the replacement fit.

Unsupervised methods use clustering of word-
context vectors (Lin, 1998), co-occurrence (Yang
and Callan, 2008), and conjunction features (Cara-
ballo, 1999) to discover implicit relationships.
However, these approaches do not perform well
for small corpora. Also, it is difficult to label the
obtained clusters which poses challenges for eval-
uation. To avoid these problems, incremental clus-
tering approaches have been proposed (Yang and
Callan, 2009). Recently, lexical entailment has
been used where the term is assigned to a cate-
gory if its occurrence in the corpus can be replaced
by the lexicalization of the category (Giuliano and
Gliozzo, 2008). In our method, terms are incre-
mentally added to the taxonomy based on their
support and context.

Association rule mining (Agrawal and Srikant,
1994) discovers interesting relations between
terms, based on the frequency with which terms
appear together. However, the amount of patterns
generated is often huge and constructing a tax-
onomy from all the patterns can be challenging.
In our approach, we employ similar concepts but
make taxonomy construction part of the relation-
ship discovery process.

3 Term-frequency-induced Taxonomies

For some application domains, a taxonomy is in-
duced by the frequency in which terms appear in a
corpus on their own and in combination with other
terms. We first introduce the problem formally and
then motivate it with an example application.
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India
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Dhankawadi Karve Nagar

Kothrud

Figure 1: Part of an address taxonomy

3.1 Definition

Let C be a corpus of records r. Each record is
represented as a set of terms ¢. Let T = {t |t €
r A r € C} be the set of all terms of C. Let f(t)
denote the frequency of term ¢, that is the number
of records in C that contain t. Let F/(¢,T%,T")
denote the frequency of term ¢ given a set of must-
also-appear terms 7" and a set of cannot-also-
appear terms T~. F'(t,TT,T~) = |{r e C|

terAnVt eTT ' er AV €Tt/ ér}].

A term-frequency-induced taxonomy (TFIT), is
an ordered tree over terms in 7". For a node n in
the tree, n.t is the term at n, A(n) the ancestors of
n, and P(n) the predecessors of 7.

A TFIT has a root node with the special term L
and the conditional frequency oco. The following
condition is true for any other node n:
vVt € T, F(n.t, A(n), P(n)) > F(t, A(n), P(n)).
That is, each node’s term has the highest condi-
tional frequency in the context of the node’s an-
cestors and predecessors. Only terms with a con-
ditional frequency above zero are added to a TFIT.

We show in Section 4 how a TFIT taxonomy
can be automatically induced from a given corpus.
But before that, we show that TFITs are useful in
practice and reflect a natural ordering of terms for
application domains where the concept hierarchy
is expressed through the frequency in which terms
appear.

3.2 Example Domain: Address Data

An address taxonomy is a key enabler for address
standardization. Figure 1 shows part of such an ad-
dress taxonomy where the root contains the most
generic term and leaf-level nodes contain the most
specific terms. For emerging economies building
a standardized address taxonomy is a huge chal-



[ Row [ Term | Part of address | Category ]
1 D-15 house number | alphanumerical
2 Rawal building name | proper noun
3 Complex building name | proper noun
4 Behind landmark marker
5 Hotel landmark marker
6 Ruchira landmark proper noun
7 Katre street proper noun
8 Road street marker
9 Jeevan area proper noun
10 | Nagar area marker
11 Andheri city (taluk) proper noun
12 East city (taluk) direction
13 Mumbai district proper noun
14 Maharashtra | state proper noun
15 | 400069 ZIP code 6 digit string

Table 1: Example of a tokenized address

lenge. First, new areas and with it new addresses
constantly emerge. Second, there are very limited
conventions for specifying an address (Faruquie et
al., 2010). However, while many developing coun-
tries do not have a postal taxonomy, there is often
no lack of address data to learn a taxonomy from.

Column 2 of Table 1 shows an example of an
Indian address. Although Indian addresses tend to
follow the general principal that more specific in-
formation is mentioned earlier, there is no fixed or-
der for different elements of an address. For exam-
ple, the ZIP code of an address may be mentioned
before or after the state information and, although
ZIP code information is more specific than city in-
formation, it is generally mentioned later in the
address. Also, while ZIP codes often exist, their
use by people is very limited. Instead, people tend
to mention copious amounts of landmark informa-
tion (see for example rows 4-6 in Table 1).

Taking all this into account, there is often not
enough structure available to automatically infer a
taxonomy purely based on the structural or seman-
tic aspects of an address. However, for address
data, the general-to-specific concept hierarchy is
reflected in the frequency with which terms appear
on their own and together with other terms.

It mostly holds that f(s) > f(d) > f(c) >
f(2) where s is a state name, d is a district name,
c is a city name, and z is a ZIP code. How-
ever, sometimes the name of a large city may be
more frequent than the name of a small state. For
example, in a given corpus, the term ’Houston’
(a populous US city) may appear more frequent
than the term ’Vermont’ (a small US state). To
avoid that "Houston’ is picked as a node at the first
level of the taxonomy (which should only contain
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states), the conditional-frequency constraint intro-
duced in Section 3.1 is enforced for each node in a
TFIT. "Houston’s state *Texas’ (which is more fre-
quent) is picked before "Houston’. After *Texas’ is
picked it appears in the “cannot-also-appear’”’ list
for all further siblings on the first level, thus giving
"Houston’ has a conditional frequency of zero.
We show in Section 5 that an address taxonomy
can be inferred by generating a TFIT taxonomy.

4 Automatically Generating TFITs

We describe a basic algorithm to generate a TFIT
and then show extensions to adapt to different ap-
plication domains.

4.1 Base Algorithm

Algorithm 1 Algorithm for generating a TFIT.

// For initialization TV, T~ are empty
// For initialization l,w are zero
genTFIT(T", T, C, 1, w)
// select most frequent term
tnewt = t; with F(t;, T, T7) is maximal amongst all
t; € C,
fnezt = F(tnezt7 T+7 Tﬁ)s
if frezt > support then
//Output node (t;,1,w)

// Generate child node

genTFIT(T" U {tnest}, T, C, 1+ 1, w)

// Generate sibling node

genTFIT(T", T~ U {tnest}, C, 1w + 1)
end if

To generate a TFIT taxonomy as defined in Sec-
tion 3.1 we recursively pick the most frequent term
given previously chosen terms. The basic algo-
rithm genT'F'IT is sketched out in Algorithm 1.
When genT FIT is called the first time, 7' and
T~ are empty and both level [ and width w are
zero. With each call of genT FIT a new node
n in the taxonomy is created with (¢, [, w) where
t is the most frequent term given 7" and T~
and [ and w capture the position in the taxonomy.
genT FIT is recursively called to generate a child
of n and a sibling for n.

The only input parameter required by our al-
gorithm is support. Instead of adding all terms
with a conditional frequency above zero, we only
add terms with a conditional frequency equal to or
higher than support. The support parameter con-
trols the precision of the resulting TFIT and also
the runtime of the algorithm. Increasing support
increases the precision but also lowers the recall.



4.2 Integrating Constraints

Structural as well as semantic constraints can eas-
ily be integrated into the TFIT generation.

We distinguish between taxonomy-level and
node-level structural constraints. For example,
limiting the depth of the taxonomy by introduc-
ing a max Level constraint and checking before
each recursive call if maxLevel is reached, is
a taxonomy-level constraint. A node-level con-
straint applies to each node and affects the way
the frequency of terms is determined.

For our example application, we introduce the
following node-level constraint: at each node we
only count terms that appear at specific positions
in records with respect to the current level of the
node. Specifically, we slide (or incrementally in-
crease) a window over the address records start-
ing from the end. For example, when picking the
term *Washington’ as a state name, occurrences of
"Washington’ as city or street name are ignored.
Using a window instead of an exact position ac-
counts for positional variability. Also, to accom-
modate varying amounts of landmark information
we length-normalize the position of terms. That is,
we divide all positions in an address by the average
length of an address (which is 10 for our 40 Mil-
lion addresses). Accordingly, we adjust the size of
the window and use increments of 0.1 for sliding
(or increasing) the window.

In addition to syntactical constraints, semantic
constraints can be integrated by classifying terms
for use when picking the next frequent term. In our
example application, markers tend to appear much
more often than any proper noun. For example,
the term Road’ appears in almost all addresses,
and might be picked up as the most frequent term
very early in the process. Thus, it is beneficial to
ignore marker terms during taxonomy generation
and adding them as a post-processing step.

4.3 Handling Noise

The approach we propose naturally handles noise
by ignoring it, unless the noise level exceeds the
support threshold. Misspelled terms are generally
infrequent and will as such not become part of
the taxonomy. The same applies to incorrect ad-
dresses. Incomplete addresses partially contribute
to the taxonomy and only cause a problem if the
same information is missing too often. For ex-
ample, if more than support addresses with the
city "Houston’ are missing the state *Texas’, then
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’Houston’ may become a node at the first level and
appear to be a state. Generally, such cases only ap-
pear at the far right of the taxonomy.

5 Evaluation

We present an evaluation of our approach for ad-
dress data from an emerging economy. We imple-
mented our algorithm in Java and store the records
in a DB2 database. We rely on the DB2 optimizer
to efficiently retrieve the next frequent term.

5.1 Dataset

The results are based on 40 Million Indian ad-
dresses. Each address record was given to us as
a single string and was first tokenized into a se-
quence of terms as shown in Table 1. In a second
step, we addressed spelling variations. There is no
fixed way of transliterating Indian alphabets to En-
glish and most Indian proper nouns have various
spellings in English. We used tools to detect syn-
onyms with the same context to generate a list of
rules to map terms to a standard form (Lin, 1998).
For example, in Table 1 "Maharashtra’ can also be
spelled "Maharastra’. We also used a list of key-
words to classify some terms as markers such as
’Road’ and *Nagar’ shown in Table 1.

Our evaluation consists of two parts. First, we
show results for constructing a TFIT from scratch.
To evaluate the precision and recall we also re-
trieved post office addresses from India Post,
cleaned them, and organized them in a tree.

Second, we use our approach to enrich the ex-
isting hierarchy created from post office addresses
with additional area terms. To validate the result,
we also retrieved data about which area names ap-
pear within a ZIP code.”> We also verified whether
Google Maps shows an area on its map.’

5.2 Taxonomy Generation

We generated a taxonomy O using all 40 million
addresses. We compare the terms assigned to
category levels district and taluk* in O with the
tree P constructed from post office addresses.
Each district and taluk has at least one post office.
Thus P covers all districts and taluks and allows
us to test coverage and precision. We compute the
precision and recall for each category level C'L as

"http://www.indiapost.gov.in/Pin/pinsearch.aspx
Zhttp://www.whereincity.com/india/pincode/search
3maps.google.com

* Administrative division in some South-Asian countries.



Support Recall % | Precision %
100 || District | 93.9 57.4
Taluk 50.9 60.5
200 || District | 87.9 64.4
Taluk 49.6 66.1

Table 2: Precision and recall for categorizing
terms belonging to the state Maharashtra

__ # correct paths from root to CL in O
Recallcr = # paths from root to CL in P
Precisioncy, = # correct paths from root to CL in O

# paths from root to CL in O

Table 2 shows precision and recall for district
and taluk for the large state Maharashtra. Recall
is good for district. For taluk it is lower because a
major part of the data belongs to urban areas where
taluk information is missing. The precision seems
to be low but it has to be noted that in almost 75%
of the addresses either district or taluk informa-
tion is missing or noisy. Given that, we were able
to recover a significant portion of the knowledge
structure.

We also examined a branch for a smaller state
(Kerala). Again, both districts and taluks appear
at the next level of the taxonomy. For a support
of 200 there are 19 entries in O of which all but
two appear in P as district or taluk. One entry is a
taluk that actually belongs to Maharashtra and one
entry is a name variation of a taluk in P. There
were not enough addresses to get a good coverage
of all districts and taluks.

5.3 Taxonomy Augmentation

We used P and ran our algorithm for each branch
in P to include area information. We focus our
evaluation on the city Mumbai. The recall is low
because many addresses do not mention a ZIP
code or use an incorrect ZIP code. However,
the precision is good implying that our approach
works even in the presence of large amounts of
noise.

Table 3 shows the results for ZIP code 400002
and 400004 for a support of 100. We get simi-
lar results for other ZIP codes. For each detected
area we compared whether the area is also listed
on whereincity.com, part of a post office name
(PO), or shown on google maps. All but four
areas found are confirmed by at least one of the
three external sources. Out of the unconfirmed
terms Fanaswadi and MarineDrive seem to
be genuine area names but we could not confirm
Dhakurdwar Road. The term th is due to our
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[ Area | Whereincity [ PO [ Google ]
Bhuleshwar yes no | yes
Chira Bazar yes no | yes
Dhobi Talao no no | yes
Fanaswadi no no | no
Kalbadevi Road yes yes | yes
Marine Drive no no | no
Marine Lines yes yes | yes
Princess Street no no | yes
th no no | no
Thakurdwar Road | no no | no
Zaveri Bazar yes no | yes
Charni Road no yes | no
Girgaon yes yes | yes
Khadilkar Road yes no | yes
Khetwadi Road yes no | no
Kumbharwada no no | yes
Opera House no yes | no
Prathna Samaj yes no | no

Table 3: Areas found for ZIP code 400002 (top)
and 400004 (bottom)

tokenization process. 16 correct terms out of 18
terms results in a precision of 89%.

We also ran experiments to measure the cov-
erage of area detection for Mumbai without us-
ing ZIP codes. Initializing our algorithm with
Maharshtra and Mumbai yielded over 100 ar-
eas with a support of 300 and more. However,
again the precision is low because quite a few of
those areas are actually taluk names.

Using a large number of addresses is necessary
to achieve good recall and precision.

6 Conclusion

In this paper, we presented a novel approach to
generate a taxonomy for data where terms ex-
hibit an inherent frequency-based hierarchy. We
showed that term frequency can be used to gener-
ate a meaningful taxonomy from address records.
The presented approach can also be used to extend
an existing taxonomy which is a big advantage
for emerging countries where geographical areas
evolve continuously.

While we have evaluated our approach on ad-
dress data, it is applicable to all data sources where
the inherent hierarchical structure is encoded in
the frequency with which terms appear on their
own and together with other terms. Preliminary
experiments on real-time analyst’s stock market
tips > produced a taxonomy of (TV station, An-
alyst, Affiliation) with decent precision and recall.

>See Live Market voices at:
http://money.rediff.com/money/jsp/markets_home.jsp



References

Rakesh Agrawal and Ramakrishnan Srikant. 1994.
Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487—
499.

Razvan C. Bunescu and Raymond J. Mooney. 2007.
Learning to extract relations from the web using
minimal supervision. In Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics, pages 576-583.

Sharon A. Caraballo. 1999. Automatic construction
of a hypernym-labeled noun hierarchy from text. In
Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics on Compu-
tational Linguistics, pages 120—126.

Philipp Cimiano and Johanna Wenderoth. 2007. Au-
tomatic acquisition of ranked qualia structures from
the web. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 888-895.

Philipp Cimiano, Giinter Ladwig, and Steffen Staab.
2005. Gimme’ the context: context-driven auto-
matic semantic annotation with c-pankow. In Pro-
ceedings of the 14th International Conference on
World Wide Web, pages 332-341.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. 2005. Un-
supervised named-entity extraction from the web:
an experimental study.  Artificial Intelligence,
165(1):91-134.

Tanveer A. Faruquie, K. Hima Prasad, L. Venkata
Subramaniam, Mukesh K. Mohania, Girish Venkat-
achaliah, Shrinivas Kulkarni, and Pramit Basu.
2010. Data cleansing as a transient service. In
Proceedings of the 26th International Conference on
Data Engineering, pages 1025-1036.

Michael Fleischman and Eduard Hovy. 2002. Fine
grained classification of named entities. In Proceed-
ings of the 19th International Conference on Com-
putational Linguistics, pages 1-7.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2006. Automatic discovery of part-whole relations.
Computational Linguistics, 32(1):83—-135.

Claudio Giuliano and Alfio Gliozzo. 2008. Instance-
based ontology population exploiting named-entity
substitution. In Proceedings of the 22nd Inter-
national Conference on Computational Linguistics,
pages 265-272.

Lucja M. Iwaska, Naveen Mata, and Kellyn Kruger.
2000. Fully automatic acquisition of taxonomic
knowledge from large corpora of texts. In Lucja M.
Iwaska and Stuart C. Shapiro, editors, Natural Lan-
guage Processing and Knowledge Representation:

131

Language for Knowledge and Knowledge for Lan-
guage, pages 335-345.

Govind Kothari, Tanveer A Faruquie, L V Subrama-
niam, K H Prasad, and Mukesh Mohania. 2010.
Transfer of supervision for improved address stan-
dardization. In Proceedings of the 20th Interna-
tional Conference on Pattern Recognition.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy.
2008. Semantic class learning from the web with
hyponym pattern linkage graphs. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1048-1056.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming
Zhou. 2003. Identifying synonyms among distri-
butionally similar words. In Proceedings of the 18th
International Joint Conference on Artificial Intelli-
gence, pages 1492—-1493.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th Inter-
national Conference on Computational Linguistics,
pages 768-774.

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: leveraging generic patterns for automat-
ically harvesting semantic relations. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 113-120.

Shourya Roy and L Venkata Subramaniam. 2006. Au-
tomatic generation of domain models for call cen-
ters from noisy transcriptions. In Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the As-
sociation for Computational Linguistics, pages 737—
744.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems, pages 1297-1304.

Hristo Tanev and Bernardo Magnini. 2006. Weakly
supervised approaches for ontology population. In
Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3—7.

Hui Yang and Jamie Callan. 2008. Learning the dis-
tance metric in a personal ontology. In Proceed-
ing of the 2nd International Workshop on Ontolo-
gies and Information Systems for the Semantic Web,
pages 17-24.

Hui Yang and Jamie Callan. 2009. A metric-based
framework for automatic taxonomy induction. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 271-279.



Complexity assumptions in ontology verbalisation
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Abstract

We describe the strategy currently pur-
sued for verbalising OWL ontologies by
sentences in Controlled Natural Language
(i.e., combining generic rules for realising
logical patterns with ontology-specific lex-
icons for realising atomic terms for indi-
viduals, classes, and properties) and argue
that its success depends on assumptions
about the complexity of terms and axioms
in the ontology. We then show, through
analysis of a corpus of ontologies, that al-
though these assumptions could in princi-
ple be violated, they are overwhelmingly
respected in practice by ontology develop-
ers.

1 Introduction

Since OWL (Web Ontology Language) was
adopted as a standard in 2004, researchers have
sought ways of mediating between the (decidedly
cumbersome) raw code and the human users who
aspire to view or edit it. Among the solutions
that have been proposed are more readable coding
formats such as Manchester OWL Syntax (Hor-
ridge et al., 2006), and graphical interfaces such
as Protégé (Knublauch et al., 2004); more specula-
tively, several research groups have explored ways
of mapping between OWL and controlled English,
with the aim of presenting ontologies (both for
viewing and editing) in natural language (Schwit-
ter and Tilbrook, 2004; Sun and Mellish, 2006;
Kaljurand and Fuchs, 2007; Hart et al., 2008). In
this paper we uncover and test some assumptions
on which this latter approach is based.
Historically, ontology verbalisation evolved
from a more general tradition (predating OWL
and the Semantic Web) that aimed to support
knowledge formation by automatic interpretation
of texts authored in Controlled Natural Languages
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(Fuchs and Schwitter, 1995). The idea is to es-
tablish a mapping from a formal language to a
natural subset of English, so that any sentence
conforming to the Controlled Natural Language
(CNL) can be assigned a single interpretation in
the formal language — and conversely, any well-
formed statement in the formal language can be
realised in the CNL. With the advent of OWL,
some of these CNLs were rapidly adapted to the
new opportunity: part of Attempto Controlled En-
glish (ACE) was mapped to OWL (Kaljurand and
Fuchs, 2007), and Processable English (PENG)
evolved to Sydney OWL Syntax (SOS) (Cregan et
al., 2007). In addition, new CNLs were developed
specifically for editing OWL ontologies, such as
Rabbit (Hart et al., 2008) and Controlled Lan-
guage for Ontology Editing (CLOnE) (Funk et al.,
2007).

In detail, these CNLs display some variations:
thus an inclusion relationship between the classes
Admiral and sailor would be expressed by the
pattern ‘Admirals are a type of sailor’ in CLOnE,
‘Every admiral is a kind of sailor’ in Rabbit, and
‘Every admiral is a sailor’ in ACE and SOS. How-
ever, at the level of general strategy, all the CNLs
rely on the same set of assumptions concerning the
mapping from natural to formal language; for con-
venience we will refer to these assumptions as the
consensus model. In brief, the consensus model
assumes that when an ontology is verbalised in
natural language, axioms are expressed by sen-
tences, and atomic terms are expressed by en-
tries from the lexicon. Such a model may fail in
two ways: (1) an ontology might contain axioms
that cannot be described transparently by a sen-
tence (for instance, because they contain complex
Boolean expressions that lead to structural ambi-
guity); (2) it might contain atomic terms for which
no suitable lexical entry can be found. In the re-
mainder of this paper we first describe the consen-
sus model in more detail, then show that although
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Logic OWL

cnbD IntersectionOf (C D)

3P.C SomeValuesFrom (P C)
cCD SubClassOf (C D)

aeC ClassAssertion(C a)
[a,b] € P | PropertyAssertion(P a b)

Table 1: Common OWL expressions

in principle it is vulnerable to both the problems
just mentioned, in practice these problems almost
never arise.

2 Consensus model

Atomic terms in OWL (or any other language im-
plementing description logic) are principally of
three kinds, denoting either individuals, classes
or properties!. Individuals denote entities in the
domain, such as Horatio Nelson or the Battle of
Trafalgar; classes denote sets of entities, such as
people or battles; and properties denote relations
between individuals, such as the relation victor of
between a person and a battle.

From these basic terms, a wide range of com-
plex expressions may be constructed for classes,
properties and axioms, of which some common
examples are shown in table 1. The upper part of
the table presents two class constructors (C' and
D denote any classes; P denotes any property);
by combining them we could build the following
expression denoting the class of persons that com-
mand fleets?:

Person M 3 CommanderOf.Fleet

The lower half of the table presents three axiom
patterns for making statements about classes and
individuals (a, b denote individuals); examples of
their usage are as follows:

1. Admiral © 3 CommanderOf.Fleet
2. Nelson € Admiral
3. [Nelson, Trafalgar] € VictorOf

Note that since class expressions contain classes
as constituents, they can become indefinitely com-
plex. For instance, given the intersection A M B

'If data properties are used, there will also be terms for
data types and literals (e.g., numbers and strings), but for sim-
plicity these are not considered here.

’In description logic notation, the constructor C' M D
forms the intersection of two classes and corresponds to
Boolean conjunction, while the existential restriction 3P.C’
forms the class of individuals having the relation P to
one or more members of class C. Thus Person M 3
CommanderOf.F'leet denotes the set of individuals x such
that x is a person and z commands one or more fleets.
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we could replace atomic class A by a constructed
class, thus obtaining perhaps (A; M Ay) M B, and
so on ad infinitum. Moreover, since most axiom
patterns contain classes as constituents, they too
can become indefinitely complex.

This sketch of knowledge representation in
OWL illustrates the central distinction be-
tween logical functors (e.g., IntersectionOf,
SsubClass0Of), which belong to the W3C standard
(Motik et al., 2010), and atomic terms for in-
dividuals, classes and properties (e.g., Nelson,
Admiral, Victorof). Perhaps the fundamental de-
sign decision of the Semantic Web is that all do-
main terms remain unstandardised, leaving ontol-
ogy developers free to conceptualise the domain
in any way they see fit. In the consensus verbali-
sation model, this distinction is reflected by divid-
ing linguistic resources into a generic grammar for
realising logical patterns, and an ontology-specific
lexicon for realising atomic terms.

Consider for instance C' T D, the axiom pat-
tern for class inclusion. This purely logical pattern
can often be mapped (following ACE and SOS) to
the sentence pattern ‘Every [C] is a [D]’, where C'
and D will be realised by count nouns from the
lexicon if they are atomic, or further grammatical
rules if they are complex. The more specific pat-
tern C' C 3P.D can be expressed better by a sen-
tence pattern based on a verb frame (‘Every [C]
[P]s a [D]’). All these mappings depend entirely
on the OWL logical functors, and will work with
any lexicalisation of atomic terms that respects the
syntactic constraints of the grammar, to yield ver-
balisations such as the following (for axioms 1-3
above):

1. Every admiral commands a fleet.
2. Nelson is an admiral.

3. Nelson is the victor of Trafalgar.

The CNLs we have cited are more sophisticated
than this, allowing a wider range of linguistic pat-
terns (e.g., adjectives for classes), but the basic
assumptions are the same. The model provides
satisfactory verbalisations for the simple examples
considered so far, but what happens when the ax-
ioms and atomic terms become more complex?

3 Complex terms and axioms

The distribution of content among axioms depends
to some extent on stylistic decisions by ontol-
ogy developers, in particular with regard to ax-



iom size. This freedom is possible because de-
scription logics (including OWL) allow equiva-
lent formulations using a large number of short
axioms at one extreme, and a small number of
long ones at the other. For many logical patterns,
rules can be stated for amalgamating or splitting
axioms while leaving overall content unchanged
(thus ensuring that exactly the same inferences are
drawn by a reasoning engine); such rules are often
used in reasoning algorithms. For instance, any set
of subClassOf axioms can be amalgamated into
a single ‘metaconstraint’ (Horrocks, 1997) of the
form T C M, where T is the class containing
all individuals in the domain, and M is a class
to which any individual respecting the axiom set
must belong®. Applying this transformation even
to only two axioms (verbalised by 1 and 2 below)
will yield an outcome (verbalised by 3) that strains
human comprehension:

1. Every admiral is a sailor.

2. Every admiral commands a fleet.

3. Everything is (a) either a non-admiral or a sailor, and

(b) either a non-admiral or something that commands a
fleet.

An example of axiom-splitting rules is found in
a computational complexity proof for the descrip-
tion logic £L£+ (Baader et al., 2005), which re-
quires class inclusion axioms to be rewritten to a
maximally simple ‘normal form’ permitting only
four patterns: A1 C Ay, A1 M Ay E Az, A; C
dP.A,, and dP.A; C A,, where P and all Ay
are atomic terms. However, this simplification of
axiom structure can be achieved only by introduc-
ing new atomic terms. For example, to simplify
an axiom of the form A; T 3P.(A2 M A3), the
rewriting rules must introduce a new term Aoz =
Ao M As, through which the axiom may be rewrit-
ten as A; C dP. Aosg (along with some further ax-
ioms expressing the definition of As3); depending
on the expressions that they replace, the content of
such terms may become indefinitely complex.

A trade-off therefore results. We can often find
rules for refactoring an overcomplex axiom by a
number of simpler ones, but only at the cost of in-
troducing atomic terms for which no satisfactory
lexical realisation may exist. In principle, there-
fore, there is no guarantee that OWL ontologies

*For an axiom set C1 T D;,Cy T Ds..., M will be
(—=C1 U D1) M (=C> U Ds) ..., where the class construc-
tors =C' (complement of C') and C' LI D (union of C' and D)
correspond to Boolean negation and disjunction.

134

) 60
S 50 - Individual
g -#-Class
o 40
o -4 Property
e 30
o
8 20
c
8 10
g2 z
1 2 3 4 5 6 7

Words per identifier

Figure 1: Identifier content

can be verbalised transparently within the assump-
tions of the consensus model.

4 Empirical studies of usage

We have shown that OWL syntax will permit
atomic terms that cannot be lexicalised, and ax-
ioms that cannot be expressed clearly in a sen-
tence. However, it remains possible that in prac-
tice, ontology developers use OWL in a con-
strained manner that favours verbalisation by the
consensus model. This could happen either be-
cause the relevant constraints are psychologically
intuitive to developers, or because they are some-
how built into the editing tools that they use
(e.g., Protégé). To investigate this possibility,
we have carried out an exploratory study using a
corpus of 48 ontologies mostly downloaded from
the University of Manchester TONES repository
(TONES, 2010). The corpus covers ontologies of
varying expressivity and subject-matter, including
some well-known tutorial examples (pets, pizzas)
and topics of general interest (photography, travel,
heraldry, wine), as well as some highly technical
scientific material (mosquito anatomy, worm on-
togeny, periodic table). Overall, our sample con-
tains around 45,000 axioms and 25,000 atomic
terms.

Our first analysis concerns identifier length,
which we measure simply by counting the num-
ber of words in the identifying phrase. The pro-
gram recovers the phrase by the following steps:
(1) read an identifier (or label if one is provided4);
(2) strip off the namespace prefix; (3) segment the
resulting string into words. For the third step we

“Some ontology developers use ‘non-semantic’ identifiers
such as #00012 3, in which case the meaning of the identifier
is indicated in an annotation assertion linking the identifier to
a label.



Pattern Frequency | Percentage
CaCCy 18961 42.3%
CanCaC L 8225 18.3%
Ca EdPs.Cay 6211 13.9%
[I,I] € Pa 4383 9.8%
[I,L] € Da 1851 4.1%
IeCy 1786 4.0%
Ca=CaM3IPA.Cy 500 1.1%
Other 2869 6.4%
Total 44786 100%

Table 2: Axiom pattern frequencies

assume that word boundaries are marked either
by underline characters or by capital letters (e.g.,
battle_of_trafalgar, BattleOfTrafalgar), a
rule that holds (in our corpus) almost without ex-
ception. The analysis (figure 1) reveals that phrase
lengths are typically between one and four words
(this was true of over 95% of individuals, over
90% of classes, and over 98% of properties), as
in the following random selections:

Individuals: beaujolais region, beringer, blue
mountains, bondi beach

Classes: abi graph plot, amps block format, abat-
toir, abbey church

Properties: has activity, has address, has amino
acid, has aunt in law

Our second analysis concerns axiom patterns,
which we obtain by replacing all atomic terms
with a symbol meaning either individual, class,
property, datatype or literal. Thus for example the
axioms Admiral C Sailor and Dog C Animal
are both reduced to the form C'y T Cj4, where
the symbol C'4 means ‘any atomic class term’. In
this way we can count the frequencies of all the
logical patterns in the corpus, abstracting from the
domain-specific identifier names. The results (ta-
ble 2) show an overwhelming focus on a small
number of simple logical patterns®. Concern-
ing class constructors, the most common by far
were intersection (C' M C) and existential restric-
tion (3P.C'); universal restriction (VP.C) was rel-
atively rare, so that for example the pattern C4 C
VP4.C 4 occurred only 54 times (0.1%)°.

SMost of these patterns have been explained already; the
others are disjoint classes (C'aMC4 £ 1), equivalent classes
(Ca = CaM3P4.CY) and data property assertion ([, L] €
D 4). In the latter pattern, D 4 denotes a data property, which
differs from an object property (P4) in that it ranges over
literals (L) rather than individuals ().

°If C C 3P.D means ‘Every admiral commands a fleet’,
C C VP.D will mean ‘Every admiral commands only fleets’
(this will remain true if some admirals do not command any-
thing at all).

The preference for simple patterns was con-
firmed by an analysis of argument struc-
ture for the OWL functors (e.g., SubClassOf,
Intersectionof) that take classes as arguments.
Overall, 85% of arguments were atomic terms
rather than complex class expressions. Interest-
ingly, there was also a clear effect of argument po-
sition, with the first argument of a functor being
atomic rather than complex in as many as 99.4%

of cases’.

5 Discussion

Our results indicate that although in principle the
consensus model cannot guarantee transparent re-
alisations, in practice these are almost always at-
tainable, since ontology developers overwhelm-
ingly favour terms and axioms with relatively sim-
ple content. In an analysis of around 50 ontologies
we have found that over 90% of axioms fit a mere
seven patterns (table 2); the following examples
show that each of these patterns can be verbalised
by a clear unambiguous sentence — provided, of
course, that no problems arise in lexicalising the
atomic terms:

1. Every admiral is a sailor

2. No sailor is a landlubber

3. Every admiral commands a fleet
4. Nelson is the victor of Trafalgar
5. Trafalgar is dated 1805

6. Nelson is an admiral

7. An admiral is defined as a person that com-
mands a fleet

However, since identifiers containing 3-4 words
are fairly common (figure 1), we need to consider
whether these formulations will remain transpar-
ent when combined with more complex lexical en-
tries. For instance, a travel ontology in our cor-
pus contains an axiom (fitting pattern 4) which our
prototype verbalises as follows:

4’. West Yorkshire has as boundary the West
Yorkshire Greater Manchester Boundary Frag-
ment

The lexical entries here are far from ideal: ‘has
as boundary’ is clumsy, and ‘the West Yorkshire
Greater Manchester Boundary Fragment’ has as

"One explanation for this result could be that develop-
ers (or development tools) treat axioms as having a topic-
comment structure, where the topic is usually the first ar-
gument; we intend to investigate this possibility in a further
study.
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many as six content words (and would benefit
from hyphens). We assess the sentence as ugly but
understandable, but to draw more definite conclu-
sions one would need to perform a different kind
of empirical study using human readers.

6 Conclusion

We conclude (a) that existing ontologies can be
mostly verbalised using the consensus model, and
(b) that an editing tool based on relatively simple
linguistic patterns would not inconvenience on-
tology developers, but merely enforce constraints
that they almost always respect anyway. These
conclusions are based on analysis of identifier and
axiom patterns in a corpus of ontologies; they need
to be complemented by studies showing that the
resulting verbalisations are understood by ontol-
ogy developers and other users.
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Abstract information works as a constraint in word align-
ment models and improves word alignment qual-
We present a novel framework for word ity.
alignment  that incorporates synonym A large number of monolingudéxical seman-
knowledge collected from monolingual ¢ resources such as WordNet (Miller, 1995) have
linguistic resources in a bilingual proba-  peen constructed in more than fifty languages
bilistic model. Synonym information is (Sagot and Fiser, 2008). They include word-
helpful for word alignment because we  |eyg relations such as synonyms, hypernyms and
can expect a synonym to correspond 10 pynonyms. Synonym information is particularly
the same word in a different language.  nelpful for word alignment because we can ex-
We design a generative model for word  pect a synonym to correspond to the same word
alignment that uses synonym information jy, g different language. In this paper, we explore a
as a regularization term. The experimental  ethod for using synonym information effectively
rt_asu_lt_s show_that our proposec_i method ¢4 improve word alignment quality.
significantly improves word alignment In general, synonym relations are defined in
quality. terms of word sense, not in terms of word form. In
other words, synonym relations are usually con-
text or domain dependent. For instance, ‘head’
Word alignment is an essential step in most phrasand ‘chief’ are synonyms in contexts referring to
and syntax based statistical machine translatioworking environment, while ‘head’ and ‘forefront’
(SMT). It is an inference problem of word cor- are synonyms in contexts referring to physical po-
respondences between different languages givesitions. It is difficult, however, to imagine a con-
parallel sentence pairs. Accurate word alignmentext where ‘chief’ and ‘forefront’ are synonyms.
can induce high quality phrase detection and transFherefore, it is easy to imagine that simply replac-
lation probability, which leads to a significant im- ing all occurrences of ‘chief’ and ‘forefront” with
provement in SMT performance. Many word ‘head’ do sometimes harm with word alignment
alignment approaches based on generative mogéccuracy, and we have to model either the context
els have been proposed and they learn from biliner senses of words.
gual sentences in an unsupervised manner (Vo- We propose a novel method that incorporates
gel et al., 1996; Och and Ney, 2003; Fraser angynonyms from monolingual resources in a bilin-
Marcu, 2007). gual word alignment model. We formulate a syn-
One way to improve word alignment quality onym pair generative model with a topic variable
is to add linguistic knowledge derived from a and use this model as a regularization term with a
monolingual corpus. This monolingual knowl- bilingual word alignment model. The topic vari-
edge makes it easier to determine correspondingble in our synonym model is helpful for disam-
words correctly. For instance, functional wordsbiguating the meanings of synonyms. We extend
in one language tend to correspond to functionaHM-BiTAM, which is a HMM-based word align-
words in another language (Deng and Gao, 2007nent model with a latent topic, with a novel syn-
and the syntactic dependency of words in each lamenym pair generative model. We applied the pro-
guage can help the alignment process (Ma et alposed method to an English-French word align-
2008). It has been shown that sugfammatical ment task and successfully improved the word

1 Introduction
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translation probability frone to f under thekth
topic: p (f e,z =k). T = {T;} is a state tran-
sition probability of a first order Markov process.
Fig. 1 shows a graphical model of HM-BITAM.
—~*® B The total likelihood of bilingual sentence pairs
K {E, F} can be obtained by marginalizing out la-
tent variables, a andg,

p(F,E;\I/):ZZ/p(F,E,Z,a,@;\II)dQ, 1)

. Ty

_ _ _ whereV = {«, 3,T, B} is a parameter set. In
Figurel: Graphical model of HM-BITAM this model, we can infer word alignmenby max-
imizing the likelihood above.

alignment quality. 3 Proposed Method
2 Bilingual Word Alignment Model 3.1 Synonym Pair Generative Model

In this section, we review a conventional gener-We design a generative model for synonym pairs
ative word alignment model, HM-BIiTAM (Zhao {f, f'} in languageF, which assumes that the
and Xing, 2008). synonyms are collected from monolingual linguis-
HM-BIiTAM is a bilingual generative model tic resources. We assume that each synonym pair
with topic z, alignmenta and topic weight vec- (f, f’) is generated independently given the same
tor 6 as latent variables. Topic variables such'sense’s. Under this assumption, the probability
as ‘science’ or ‘economy’ assigned to individual of synonym pair f, f') can be formulated as,
sentences help to disambiguate the meanings of , ,
words. HM-BiE)I'AM assumegs that theth bilin-g p{f 1) o Zszp(ﬂs)p(f #)p(s)- @
gual sentence paifE,,, F,,), is generated under a
given latent topicz, € {1,...,k,..., K}, where
K is the number of latent topics. L&t be the
number of sentence pairs, atg and J, be the
lengths ofFE,, and F},, respectively. In this frame-
work, all of the bilingual sentence paif&, F'} =
{(E,, F,)})_, are generated as follows.

We define a pair(e, k) as a representation of
the senses, wheree and k are a word in a dif-
ferent languageér and a latent topic, respectively.
It has been shown that a wokdin a different
language is an appropriate representation of
synonym modeling (Bannard and Callison-Burch,
2005). We assume that adding a latent tdpfor
1. 6 ~ Dirichlet (a): sample topic-weight vector the sense is very useful for disambiguating word
meaning, and thus that, k) gives us a good ap-
proximation ofs. Under this assumption, the syn-

(@) 2n ~ Multinomial (9): sample the topic onym pair generative model can be defined as fol-

(b) eniir, |20 ~ p(Enl|2a;B8): sample English  |gws.
words from a monolingual unigram model given

2. For each sentence pdiE,,, F»,)

topic z,,
(© For each positio, = 1,..., Jn _ » ({ﬁ £} ;@)
I. a;, ~ p(aj, |aj,—1;T): sample an align- _ _ _
ment linka;, from a first order Markov pro- o< [T D p(fle, ks ®)p(f'|e, ks W)p(e, k; ¥),(3)
Ccess (f:£) ek

. fi. ~ p(fjn|Bn;aj,,2n; B): sample a
target word f;, given an aligned source

word and topic whereV is the parameter set of our model.

3.2 Word Alignment with Synonym

where alignment;;, = ¢ denotes source wore} R
Regularization

and target wordf;, are aligned.« is a parame-
ter over the topic weight vectdl, 5 = {fr .} is In this section, we extend the bilingual genera-
the source word probability given thgh topic:  tive model (HM-BiTAM) with our synonym pair

ple|lz=k). B = {By.x} represents the word model. Our expectation is that synonym pairs
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Y 4 Experiments

4.1 Experimental Setting

y
—»@—»@ For an empirical evaluation of the proposed
@ 8, method, we used a hilingual parallel corpus of
o
2

K English-French Hansards (Mihalcea and Pedersen,
2003). The corpus consists of over 1 million sen-
tence pairs, which include 447 manually word-

M aligned sentences. We selected 100 sentence pairs

randomly from the manually word-aligned sen-

tences as development data for tuning the regu-
larization weight(, and used the 347 remaining
sentence pairs as evaluation data. We also ran-
correspond to the same word in a different lan-domly selected 10k, 50k, and 100k sized sentence
guage, thus they make it easy to infer accurat®airs from the corpus as additional training data.
word alignment. HM-BiTAM and the synonym We ran the unsupervised training of our proposed
model share parameters in order to incorporat&/ord alignment model on the additional training
monolingual synonym information into the bilin- data and the 347 sentence pairs of the evaluation
gual word alignment model. This can be achievedlata. Note that manual word alignment of the
via reparameterizin@ in eq. 3 as, 347 sentence pairs was nhot used for the unsuper-
vised training. After the unsupervised training, we
~ evaluated the word alignment performance of our
P (f e’k;q’) = p(flekB), ) proposed method by comparing the manual word
P (67143;@) = plelk;8)pka). 5) alignment of the 347 sentence pairs with the pre-
diction provided by the trained model.
Overall, we re-define the synonym pair model We collected English and French synonym pairs

Figure2: Graphical model of synonym pair gen-
erative process

with the HM-BIiTAM parameter se¥, from WordNet 2.1 (Miller, 1995) and WOLF 0.1.4
(Sagot and Fiser, 2008), respectively. WOLF is a
n. semantic resource constructed from the Princeton
p({f: '} ®) : o
1 WordNet and various multilingual resources. We
> e aw [T > cwbBreBrerByer 6)  selected synonym pairs where both words were in-

(£:F7) ke cluded in the bilingual training set.

Fig. 2 shows a graphical model of the synonym We compared the word alignment performance
pair generative process. We estimate the paran@f our model with that of GIZA++ 1.03 (Vo-
eter values to maximize the likelihood of HM- gel et al., 1996; Och and Ney, 2003), and HM-
BiTAM with respect to bilingual sentences and BITAM (Zhao and Xing, 2008) implemented by
that of the synonym model with respect to syn-Uus. GIZA++ is an implementation of IBM-model
onym pairs collected from monolingual resources4 and HMM, and HM-BiTAM corresponds 0 =
Namely, the parameter estimat, is computed 0 ineq. 7. We adopted’ = 3 topics, following
as the setting in (Zhao and Xing, 2006).

We trained the word alignment in two direc-
tions: English to French, and French to English.
The alignment results for both directions were re-
) o ) fined with ‘'GROW’ heuristics to yield high preci-

whereg is a regularization weight that should gjqn and high recall in accordance with previous
be set for training. We can expect that the secong| (Och and Ney, 2003; Zhao and Xing, 2006).
term of eq._ _7 to constre_u_n parameter %Ieta”d We evaluated these results for precision, recall, F-
avoid overfitting for the bilingual word alignment measure and alignment error rate (AER), which

model. We resort to the variational EM approachy e standard metrics for word alignment accuracy
(Bernardo et al., 2003) to infeb following HM- (Och and Ney, 2000)

BiTAM. We omit the parameter update equation
due to lack of space. Yhttp://fioch.com/GIZA++.html

= arg max {log p(F, E;¥) + Clogp({f, f'}; ¥)},
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10k [[PrecisiofiRecal[F-measurpAER] l #vocabularies [ 10k | 50k [ 100k |
GIZA++ | standard| 0.856 |0.718] 0.781 |0.207 English | standard || 8578 | 16924 | 22817
with SRH| 0.874 |0.720, 0.789 [0.198 with SRH || 5435 | 7235 | 13978
HM-BITAM| standard| 0.869 |0.788] 0.826 |0.169 French s.‘?]”g;ﬁ 190773971 gég;? g%%
with SRH|| 0.884 |0.790, 0.834 |0.160 wit

Proposed 0.941 [0.808] 0.870 |0.123
@) Table 2: The number of vocabularies in the 10k,
50k and 100k data sets.
| 50k [[PrecisiofiRecal[F-measurAER]|

GIZA++ | standard| 0.905 [0.770, 0.832 |0.156
with SRH| 0.903 |0.759] 0.825 |0.164  were replaced with the word ‘sick’. As shown in

HM-BITAM S_t";‘]”dard 0.901 10.814) 0.855 10.140  Tagple 2, the number of vocabularies in the English
with SRH| 0.899 |0.808) 0.853 |0.143 and French data sets decreased as a result of em-

P d 0.947 [0.824/ 0.881 [0.112
TOROSE ©) ploying the SRH.
We show the performance of GIZA++ and HM-
| 100k [PrecisiofRecal[F-measurpAER] ~ BIiTAM with the SRH in the lines entitled “with

GIZA++ | standard] 0.925 [0.791] 0.853 ]0.13§ SRH”in Table 1. The GIZA++ and HM-BiTAM
with SRH| 0.934 10.803] 0.864 |0.126§  with the SRH slightly outperformed th&tandard
HM-BIiTAM s_tandard 0.898 |0.851] 0.874 [0.124 GIZA++ and HM-BiTAM for the 10k and 100k
Propovsvgg SRH 8:32? 8:222 8:2;2 8:133 data sets, but underperformed V\./iFh the 50k data
© s_e_t. We assume that thg SRH mitigated the over-
fitting of these models into low-frequency word
pairs in bilingual sentences, and then improved the

Table 1: Comparison of word alignment accuracy, - alignment performance. The SRH regards

The. pest results are indicated in bold type. The Il of the different words coupled with the same
additional data set sizes are (a) 10k, (b) 50k, (c . . .
ord in the synonym pairs as synonyms. For in-

100k. stance, the words ‘head’, ‘chief’ and ‘forefront’ in
the bilingual sentences are replaced with ‘chief’,
since (‘head’, ‘chief’) and (‘head’, ‘forefront’) are
synonyms. Obviously, (‘chief’, ‘forefront’) are
Table 1 shows the word alignment accuracy of thenot synonyms, which is detrimented to word align-
three methods trained with 10k, 50k, and 100k adment.
ditional sentence pairs. For all settings, our pro- The proposed method consistently outper-
posed method outperformed other conventionajormed GIZA++ and HM-BiTAM with the SRH
methods. This result shows that synonym inforin 10k, 50k and 100k data sets in F-measure.
mation is effective for improving word alignment The synonym pair model in our proposed method
quality as we expected. can automatically learn that (‘head’, ‘chief’) and
As mentioned in Sections 1 and 3.1, the main(‘head’, ‘forefront’) are individual synonyms with
idea of our proposed method is to introddee different meanings by assigning these pairs to dif-
tent topicsfor modeling synonym pairs, and then ferent topics. By sharing latent topics between
to utilize the synonym pair model for the regu- the synonym pair model and the word alignment
larization of word alignment models. We expectmodel, the synonym information incorporated in
the latent topics to be useful for modeling poly-the synonym pair model is used directly for train-
semous words included in synonym pairs and tang word alignment model. The experimental re-
enable us to incorporate synonym information ef-sults show that our proposed method was effec-
fectively into word alignment models. To con- tive in improving the performance of the word
firm the effect of the synonym pair model with alignment model by using synonym pairs includ-
latent topics, we also tested GIZA++ and HM- ing suchambiguoussynonym words.
BiTAM with what we call Synonym Replacement  Finally, we discuss the data set size used for un-
Heuristics (SRH), where all of the synonym pairssupervised training. As shown in Table 1, using
in the bilingual training sentences were simply re-a large number of additional sentence pairs im-
placed with a representative word. For instanceproved the performance of all the models. In all
the words ‘sick’ and ‘ill" in the bilingual sentences our experimental settings, all the additional sen-

4.2 Results and Discussion
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tencepairs and the evaluation data were selected. Deng and Y. Gao. 2007. Guiding statistical word
from the Hansards data set. These experimental alignment models with prior knowledge. ro-

results show that a larger number of sentence pairs

was more effective in improving word alignment

ceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 1-8,
Prague, Czech Republic, June. Association for Com-

performance when the sentence pairs were col- putational Linguistics.

lected from ehomogeneoudata source. However,
in practice, it might be difficult to collect a large

A. Fraser and D. Marcu.

2007. Getting the struc-
ture right for word alignment: LEAF. IrPro-

number of such homogeneous sentence pairs for ceedings of the 2007 Joint Conference on Empirical
a specific target domain and language pair. One Methods in Natural Language Processing and Com-

direction for future work is to confirm the effect

of the proposed method when training the word
alignment model by using a large number of sen-

putational Natural Language Learning (EMNLP-
CoNLL), pages 51-60, Prague, Czech Republic,
June. Association for Computational Linguistics.

tence pairs collected from various data sources inY- Ma, S. Ozdowska, Y. Sun, and A. Way. 2008.

cluding many topics for a specific language pair.

5 Conclusions and Future Work

We proposed a novel framework that incorpo-
rates synonyms from monolingual linguistic re-

This approach utilizes both bilingual and mono-
lingual synonym resources effectively for word

. i : R. Mihalcea and T. Pedersen.
sources in a word alignment generative model.

Improving word alignment using syntactic depen-
dencies. InProceedings of the ACL-08: HLT Sec-
ond Workshop on Syntax and Structure in Statisti-
cal Translation (SSST-2pages 69-77, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

2003. An evaluation
exercise for word alignment. IRroceedings of the
HLT-NAACL 2003 Workshop on building and using
parallel texts: data driven machine translation and

beyond-Volume 3, page 10. Association for Compu-

alignment. Our proposed method uses a latent tational Linguistics.

topic for bilingual sentences and monolingual syn-

onym pairs, which is helpful in terms of word G. A. Miller. 1995. WordNet: a lexical database for

sense disambiguation. Our proposed method im- ENglish. Communications of the ACN38(11):41.

proved word alignment quality with both small F 3. Och and H. Ney. 2000. Improved statistical align-

and large data sets. Future work will involve ex- ment models. IrProceedings of the 38th Annual

amining the proposed method for different lan- Meeting O”QSOSOXE'? for co_mplljtatg”a' ng_ws-l
: i .1, tics, pages 440-447. Association for Computationa

guage pairs such as Er?gllsh Chlnese and English Linguistics Morristown, NJ, USA.

Japanese and evaluating the impact of our pro-

posed method on SMT performance. We will alsoF- J-fOCh and H. Ney. |20|Q3- A SySteﬁ;atllgc: comparison

of various statistical alignment model<Computa-

apply our propos_ed method to a larger data sets tional Linguistics, 29(1):19-51.

of multiple domains since we can expect a fur-

ther improvement in word alignment accuracy if B. Sagot and D. Fiser. 2008. Building a free French

we use more bilingual sentences and more mono- Word”]?gm’l“ multilingual resources. IRroceed-

lingual knowledge. Ings of Ontolex

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM-
based word alignment in statistical translation. In
Proceedings of the 16th Conference on Computa-
tional Linguistics-Volume ,2pages 836-841. Asso-
ciation for Computational Linguistics Morristown,
NJ, USA.

References

C. Bannard and C. Callison-Burch. 2005. Paraphras-
ing with bilingual parallel corpora. IrProceed-
ings of the 43rd Annual Meeting on Association for . . -
Computational Linguistics, pages 597—-604. Asso-B' Zh_ao anq E. P. Xing. 2006. BITAM: Bilingual

topic admixture models for word alignment. Bro-

ciation for Computational Linguistics Morristown, ceedings of the COLING/ACL on Main Conference
NJ, USA. : e
Poster Sessions, page 976. Association for Compu-

) tational Linguistics.
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P.

Dawid, D. Heckerman, A. F. M. Smith, and M. West. B. Zhao and E. P. Xing. 2008. HM-BiTAM: Bilingual

2003. The variational bayesian EM algorithm for in-
complete data: with application to scoring graphical
model structures. IBayesian Statistics 7: Proceed-

ings of the 7th Valencia International Meeting, June
2-6, 2002, page 453. Oxford University Press, USA.

141

topic exploration, word alignment, and translation.
In Advances in Neural Information Processing Sys-
tems 20, pages 1689-1696, Cambridge, MA. MIT
Press.



Better Filtration and Augmentation for Hierarchical Phras e-Based
Translation Rules

Zhiyang Wang Yajuan LU Qun Liu f Young-Sook Hwang?

fKey Lab. of Intelligent Information Processing *HILab Convergence Technology Center

Institute of Computing Technology C&l Business
Chinese Academy of Sciences SKTelecom
P.O. Box 2704, Beijing 100190, China 11, Euljiro2-ga, Jgng-Seoul 100-999, Korea
wangzhi yang@ct . ac. cn yshwang@kt el ecom com

Abstract B f_/\_ C o

This paper presents a novel filtration cri-
terion to restrict the rule extraction for
the hierarchical phrase-based translation

model, where a bilingual but relaxed well-  gigyre 1: Solid wire reveals the dependency rela-
formed dependency restriction is used 0 on pointing from the child to the parent. Target

filter out bad rules. Furthermore, a new o ¢ is triggered by the source worgland it's
feature which describes the regularity that  peaq wordy’ plelf — f).

the source/target dependency edge trig-
gers the target/source word is also pro-

Target

posed. Experimental results show that, the Based on theelaxed-well-formed dependency
new criteria weeds out about 40% rules  Structure, we also introduce a new linguistic fea-
while with translation performance im- ture to enhance translation performance. In the

provement, and the new feature brings an- traditional phrase-based SMT model, there are
other improvement to the baseline system, always lexical translation probabilities based on

especially on larger corpus. IBM model 1 (Brown et al., 1993), i.ep(e|f),
namely, the target worelis triggered by the source
1 Introduction word f. Intuitively, however, the generation ef

. . .___is not only involved withf, sometimes may also
Hierarchical phrase-based (HPB) model (Ch'angbe triggered by other context words in the source

2005) is the state-of-the-art statistical machineSi de. Here we assume that the dependency edae
translation (SMT) model. By looking for phrases ' P y edd

. . f— f") of word f generates target word (we
that contain other phrases and replacing the SUtgcall it head word trigger in Section 4). Therefore,

phrases with nonterminal symbols, it gets hierar- . ) .
: . ) two words in one language trigger one word in
chical rules. Hierarchical rules are more powerful . . -
: . another, which provides a more sophisticated and
than conventional phrases since they have better : . )
o . etter choice for the target word, i.e. Figure 1.
generalization capability and could capture long.. . .

. : . “Similarly, the dependency feature works well in
distance reordering. However, when the train-~, . . . .
. Chinese-to-English translation task, especially on
ing corpus becomes larger, the number of rule?

. . S arge corpus.
will grow exponentially, which inevitably results
in slow' and memory-consuming decoding. 2  Related Work

In this paper, we address the problem of reduc-
ing the hierarchical translation rule table resortingin the past, a significant number of techniques
to the dependency information of bilingual lan- have been presented to reduce the hierarchical rule
guages. We only keep rules that both sides artable. He et al. (2009) just used the key phrases
relaxed-well-formed (RWF) dependency structure of source side to filter the rule table without taking
(see the definition in Section 3), and discard othersdvantage of any linguistic information. Iglesias
which do not satisfy this constraint. In this way, et al. (2009) put rules into syntactic classes based
about 40% bad rules are weeded out from the origen the number of non-terminals and patterns, and
inal rule table. However, the performance is everapplied various filtration strategies to improve the

better than the traditional HPB translation systemrule table quality. Shen et al. (2008) discarded
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found ure 2 shows an example of a dependency tree. In
this example, the worfibund is the root of the tree.
Shen et al. (2008) propose the well-formed de-
pendency structure to filter the hierarchical rule ta-
ble. A well-formed dependency structure could be
The fovely a bedutiful either a single-rooted dependency tree or a set of
sibling trees. Although most rules are discarded
Figure 2: An example of dependency tree. Thewith the constraint that the target side should be
corresponding plain sentence The lovely girl  well-formed, this filtration leads to degradation in
found a beautiful house. translation performance.
As an extension of the work of (Shen et
al.,, 2008), we introduce the so-calledaxed-

most entries of the rule table by using the con- . :
straint that rules of the target-side are weII—formedweu'formed dependency structure to filter the hi-

(WF) dependency structure, but this filtering led toerarchlcal rule table. =~ Given a sentense =

degradation in translation performance. They ob-"1"2%n: Letd:d;...d, represent the position of

tained improvements by adding an additional de_parent word for each word. For ex'amplg, =4
eans thatvs depends onwy. If w; is a root, we

pendency language model. The basic differt—:'nc%n fined: — —1
of our method from (Shen et al., 2008) is that we elined; = —1. .
keep rules that both sides shouldetexed-well- _ Definition A dependency structure;...w; is

formed dependency structure, not just the targef rela>§ec'|—well—formed structure, wher_e there is
h ¢ i, j], all the wordsw;...w; are directly or

side. Besides, our system complexity is not in-" ’ )

creased because no additional language model ﬁgdlrectly depended O_m’_h or _—1_(here we def_lne

introduced. h = i1). If and only if it satisfies the following
The feature of head word trigger which we ap—Condltlons

ply to the log-linear model is motivated by the dy & li, ]]

trigger-based approach (Hasan and Ney, 2009).

Hasan and Ney (2009) introduced a second word e Vi ¢ [i, j], dy € [i,] or di = h

to trigger the target word without considering any

linguistic information. Furthermore, since the sec- From the definition above, we can see that

ond word can come from any part of the sentencethe relaxed-well-formed structure obviously cov-

there may be a prohibitively large number of pa-ers the well-formed one. In this structure, we

rameters involved. Besides, He et al. (2008) builtdon’t constrain that all the children of the sub-root

a maximum entropy model which combines richshould be complete. Let’s review the dependency

context information for selecting translation rulestree in Figure 2 as an example. Except for the well-

during decoding. However, as the size of the corformed structure, we could also extragt! found

pus increases, the maximum entropy model willa beautiful house. Therefore, if the modifiemThe

become larger. Similarly, In (Shen et al., 2009),lovely changes tdhe cute, this rule also works.

context language model is proposed for better rule .

selection. Taking the dependency edge as condft Head Word Trigger

tion, our approach is very different from previous

approaches of exploring context information.

irl house

(Koehn et al., 2003) introduced the concept of
lexical weighting to check how well words of
the phrase translate to each other. Source word
f aligns with target worde, according to the
IBM model 1, the lexical translation probability
Dependency models have recently gained consids p(e|f). However, in the sense of dependency
erable interest in SMT (Ding and Palmer, 2005;relationship, we believe that the generation of the
Quirk et al.,, 2005; Shen et al., 2008). Depen-target worde, is not only triggered by the aligned
dency tree can represent richer structural inforsource wordf, but also associated with’s head
mation. It reveals long-distance relation betweerword f’. Therefore, the lexical translation prob-
words and directly models the semantic structureability becomesp(e|f — f’), which of course

of a sentence without any constituent labels. Figallows for a more fine-grained lexical choice of

3 Relaxed-well-formed Dependency
Structure
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the target word. More specifically, the probabil- For language model, we use the SRI Language
ity could be estimated by the maximum likelihood Modeling Toolkit (Stolcke, 2002) to train a 4-
(MLE) approach, gram model on the first 1/3 of the Xinhua portion
of GIGAWORD corpus. And we use the NIST
2002 MT evaluation test set as our development
(1) set, and NIST 2004, 2005 test sets as our blind
e count(e!, f — f) test sets. We evaluate the translation quality us-
) _ ) ing case-insensitive BLEU metric (Papineni et
Given a phrase paif , e and word alignment ;" 5002) without dropping OOV words, and the

a, and the erendent relation of the source S€Yeature weights are tuned by minimum error rate
tenced{ (J is the length of the source Sentence’training (Och, 2003).

| is the length of the target sentence). Therefore

count(e, f — ')

plelf — f) =

k h ) % o ' In order to get the dependency relation of the
given the lexical translation probability distribu- training corpus, we re-implement a beam-search
tionp(e|f — ), we compute the feature score of g0 monolingual dependency parser according
aphrase pairf(, €) as to (Nivre and Scholz, 2004). Then we use the
same method suggested in (Chiang, 2005) to
SIF ) extract SCFG grammar rules within dependency
p(elf.dy,a) . ) :
1 2) constraint on both sides except that unaligned
Z pleilf; — fa;) (@) words are allowed at the edge of phrases. Pa-
V(j,i)€a rameters of head word trigger are estimated as de-
scribed in Section 4. As a default, the maximum
Now we getp(e|f,d{,a), we could obtain initial phrase length is set to 10 and the maximum
p(fle,d!,a) (d! represents dependent relation ofrule length of the source side is set to 5. Besides,
the target side) in the similar way. This new fea-we also re-implement the decoder of Hiero (Chi-
ture can be easily integrated into the log-linearang, 2007) as our baseline. In fact, we just exploit

lel

1G9 € a}l

model as lexical weighting does. the dependency structure during the rule extrac-
_ tion phase. Therefore, we don’'t need to change
5 Experiments the main decoding algorithm of the SMT system.

In this section, we describe the experimental sets 2  Results on FBIS Corpus
ting used in this work, and verify the effect of
the relaxed-well-formed structure filtering and the
new feature, head word trigger.

A series of experiments was done on the FBIS cor-
pus. We first parse the bilingual languages with
monolingual dependency parser respectively, and
5.1 Experimental Setup then only retain the rules that both sides are in line
with the constraint of dependency structure. In
Table 1, therelaxed-well-formed structure filtered
out 35% of the rule table and the well-formed dis-
carded 74%.RWF extracts additional 39% com-

e FBIS: We use the FBIS corpus as the firstp"’lrec.j toWF, which can be seen as some kind
training corpus, which contains 239K sen-Of ewdenge that the rules' we _ao_ldltlonal get seem
tence pairs with 6.9M Chinese words angcommon in the sense of I_mgwstlcs. Compared to
8.9M English words. (Shen et al., 2008), we just use the dependency

structure to constrain rules, not to maintain the tree

e GQ: This is manually selected from the Structures to guide decoding.

LDC?2 corpora. GQ contains 1.5M sentence Table 2 shows the translation result on FBIS.
pairs with 41M Chinese words and 48M En- We can see that theWF structure constraint can
glish words. In fact, FBIS is the subset of improve translation quality substantially both at
GQ. development set and different test sets. On the
T Test04 task, it gains +0.86% BLEU, and +0.84%
ngi'::-sgg]}’fif‘iet)cg/;?scfgt_ on Test05. Besides, we also used Shen et al.

LDC2002E18, LDC2003E07, LDC2003E14, Hansards part{2008)'s WF structure to filter both sides. Al-
of LDC2004T07, LDC2004T08, LDC2005T06. though it discard about 74% of the rule table, the

Experiments are carried out on the NIST
Chinese-English translation task with two differ-
ent size of training corpora.
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System | Rule table size feature works well on two different test sets. The
HPB 30,152,090 gain is +2.21% BLEU on Test04, and +1.33% on
RWF 19,610,255 Test05. Compared to the result of the baseline,
WF 7,742,031 only using theRWF structure to filter performs the

same as the baseline on Test05, and +0.99% gains
Table 1: Rule table size with different con- on Test04.
straint on FBIS. HereHPB refers to the base-
line hierarchal phrase-based systd®dyF means
relaxed-well-formed constraint and\VF represents
the well-formed structure.

6 Conclusions

This paper proposes a simple strategy to filter the
hierarchal rule table, and introduces a new feature

S/sem | Dev02 | Test04 | TestO5 to enhance the translation performance. We em-
HPB 03285 0.3284 | 0.2965 ploy the relaxed-well-formed dependency struc-
WE 03125 0.3218 | 0.2887 ture to constrain both sides of the rule, and about
RWE 0.3326| 0.3370 | 0.3050 40% of rules are discarded with improvement of

RWE+Tr 1 03281 i 0.2965 the translation performance. In order to make full

use of the dependency information, we assume
Table 2: Results of FBIS corpus. Hefd means that the target word is triggered by dependency

the feature of head word trigger on both sides. And dge of the corresponding source wafd And

we don'’t test the new feature on Test04 because (;[E)lsrspzesature works well on large parallel training

C
the bad performance on development set. * or ** . .
P P How to estimate the probability of head word

= significantly better than baseling « 0.05 or . . .

. trigger is very important. Here we only get the pa-

0.01, respectively). . .
rameters in a generative way. In the future, we we
_ are plan to exploit some discriminative approach
over-all BLEU is decreased by 0.66%-0.78% onto train parameters of this feature, such as EM al-
the test sets. gorithm (Hasan et al., 2008) or maximum entropy

As for the feature of head word trigger, it seems(He et al., 2008).

not work on the FBIS corpus. On Test05, it gets  Besides, the quality of the parser is another ef-
the same score with the baseline, but lower thafect for this method. As the next step, we will
RWF filtering. This may be caused by the datatry to exploit bilingual knowledge to improve the

sparseness problem, which results in inaccuratghonolingual parser, i.e. (Huang et al., 2009).
parameter estimation of the new feature.
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Abstract

Factored Statistical Machine Translation ex-
tends the Phrase Based SMT model by al-
lowing each word to be a vector of factors.
Experiments have shown effectiveness of
many factors, including the Part of Speech
tags in improving the grammaticality of the
output. However, high quality part of
speech taggers are not available in open
domain for many languages. In this paper
we used fixed length word suffix as a new
factor in the Factored SMT, and were able
to achieve significant improvements in three
set of experiments: large NIST Arabic to
English system, medium WMT Spanish to
English system, and small TRANSTAC
English to Iragi system.

1 Introduction

Statistical Machine Translation(SMT) is current-
ly the state of the art solution to the machine
translation. Phrase based SMT is also among the
top performing approaches available as of today.
This approach is a purely lexical approach, using
surface forms of the words in the parallel corpus
to generate the translations and estimate proba-
bilities. It is possible to incorporate syntactical
information into this framework through differ-
ent ways. Source side syntax based re-ordering
as preprocessing step, dependency based reorder-
ing models, cohesive decoding features are
among many available successful attempts for
the integration of syntax into the translation
model. Factored translation modeling is another
way to achieve this goal. These models allow
each word to be represented as a vector of factors
rather than a single surface form. Factors can
represent richer expression power on each word.
Any factors such as word stems, gender, part of
speech, tense, etc. can be easily used in this
framework.

Stephan Vogel
School of Computer Science
Carnegie Mellon Universiy
Pittsburgh, USA
stephan.vogel@cs.cmu.edu

Previous work in factored translation modeling
have reported consistent improvements from Part
of Speech(POS) tags, morphology, gender, and
case factors (Koehn et. a. 2007). In another work,
Birch et. al. 2007 have achieved improvement
using Combinational Categorial Grammar (CCG)
super-tag factors. Creating the factors is done as
a preprocessing step, and so far, most of the ex-
periments have assumed existence of external
tools for the creation of these factors (i. e. Part of
speech taggers, CCG parsers, etc.). Unfortunately
high quality language processing tools, especial-
ly for the open domain, are not available for most
languages.

While linguistically identifiable representations
(i.e. POS tags, CCG supertags, etc) have been
very frequently used as factors in many applica-
tions including MT, simpler representations have
also been effective in achieving the same result
in other application areas. Grzymala-Busse and
Old 1997, DINCER et.al. 2008, were able to use
fixed length suffixes as features for training a
POS tagging. In another work Saberi and Perrot
1999 showed that reversing middle chunks of the
words while keeping the first and last part intact,
does not decrease listeners’ recognition ability.
This result is very relevant to Machine Transla-
tion, suggesting that inaccurate context which is
usually modeled with n-gram language models,
can still be as effective as accurate surface forms.
Another research (Rawlinson 1997) confirms this
finding; this time in textual domain, observing
that randomization of letters in the middle of
words has little or no effect on the ability of
skilled readers to understand the text. These re-
sults suggest that the inexpensive representation-
al factors which do not need unavailable tools
might also be worth investigating.

These results encouraged us to introduce lan-
guage independent simple factors for machine
translation. In this paper, following the work of
Grzymala-Busse et. al. we used fixed length suf-
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fix as word factor, to lower the perplexity of the
language model, and have the factors roughly
function as part of speech tags, thus increasing
the grammaticality of the translation results. We
were able to obtain consistent, significant im-
provements over our baseline in 3 different expe-
riments, large NIST Arabic to English system,
medium WMT Spanish to English system, and
small TRANSTAC English to Iraqi system.

The rest of this paper is as follows. Section 2
briefly reviews the Factored Translation Models.
In section 3 we will introduce our model, and
section 4 will contain the experiments and the
analysis of the results, and finally, we will con-
clude this paper in section 5.

2 Factored Translation Model

Statistical Machine Translation uses the log li-
near combination of a number of features, to
compute the highest probable hypothesis as the
translation.

e = argmax. p(e[f) = argmax. p exp Zi=;" 4; hi(e,f)

In phrase based SMT, assuming the source and
target phrase segmentation as {(f;,e;)}, the most
important features include: the Language Model
feature hy,(e,f) = pm(e); the phrase translation
feature hy(e,f) defined as product of translation
probabilities, lexical probabilities and phrase pe-
nalty; and the reordering probability, hy(e,f),
usually defined as m-," d(start;,end;.;) over the
source phrase reordering events.

Factored Translation Model, recently intro-
duced by (Koehn et. al. 2007), allow words to
have a vector representation. The model can then
extend the definition of each of the features from
a uni-dimensional value to an arbitrary joint and
conditional combination of features. Phrase
based SMT s in fact a special case of Factored
SMT.

The factored features are defined as an exten-
sion of phrase translation features. The function
1(fj,e;), which was defined for a phrase pair be-
fore, can now be extended as a log linear combi-
nation ¢ t¢(fjr,jr). The model also allows for a
generation feature, defining the relationship be-
tween final surface form and target factors. Other
features include additional language model fea-
tures over individual factors, and factored reor-
dering features.

Figure 1 shows an example of a possible fac-
tored model.

Input Output

>

Figure 1: An example of a Factored Translation and
Generation Model

word ward

lermma lemma

part-of-speech part-of-speech

marphology morphology

In this particular model, words on both source
and target side are represented as a vector of four
factors: surface form, lemma, part of speech
(POS) and the morphology. The target phrase is
generated as follows: Source word lemma gene-
rates target word lemma. Source word's Part of
speech and morphology together generate the
target word's part of speech and morphology, and
from its lemma, part of speech and morphology
the surface form of the target word is finally gen-
erated. This model has been able to result in
higher translation BLEU score as well as gram-
matical coherency for English to German, Eng-
lish to Spanish, English to Czech, English to
Chinese, Chinese to English and German to Eng-
lish.

3 Fixed Length Suffix Factors for Fac-
tored Translation Modeling

Part of speech tagging, constituent and depen-
dency parsing, combinatory categorical grammar
super tagging are used extensively in most appli-
cations when syntactic representations are
needed. However training these tools require
medium size treebanks and tagged data, which
for most languages will not be available for a
while. On the other hand, many simple words
features, such as their character n-grams, have in
fact proven to be comparably as effective in
many applications.

(Keikha et. al. 2008) did an experiment on text
classification on noisy data, and compared sever-
al word representations. They compared surface
form, stemmed words, character n-grams, and
semantic relationships, and found that for noisy
and open domain text, character-ngrams outper-
form other representations when used for text
classification. In another work (Dincer et al
2009) showed that using fixed length word end-
ing outperforms whole word representation for
training a part of speech tagger for Turkish lan-
guage.
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Based on this result, we proposed a suffix fac-
tored model for translation, which is shown in
Figure 2.

Target LM

Word > D Word Language Model

Source

Word

1
1
1
]
|
)
| Suffix 9@ Suffix Language Model
1

1

Figure 2: Suffix Factored model: Source word de-
termines factor vectors (target word, target word suf-
fix) and each factor will be associated with its
language model.

Based on this model, the final probability of
the translation hypothesis will be the log linear
combination of phrase probabilities, reordering
model probabilities, and each of the language
models’ probabilities.

P(elf) = plm—word(eword)* plm—suffix(esuffix)
* izt P(eword & Csufixlf)
* 2ict" P | Bwordj & Esuffix-j)

Where Pimword 1S the n-gram language model
probability over the word surface sequence, with
the language model built from the surface forms.
Similarly, pinsuric(€suriic) i the language model
probability over suffix sequences. p(eworaj &
esufiixj|f)) and p(f | ewora-j & Esutiixj) are translation
probabilities for each phrase pair i, used in by
the decoder. This probability is estimated after
the phrase extraction step which is based on
grow-diag heuristic at this stage.

4  Experiments and Results

We used Moses implementation of the factored
model for training the feature weights, and SRI
toolkit for building n-gram language models. The
baseline for all systems included the moses sys-
tem with lexicalized re-ordering, SRI 5-gram
language models.

4.1 Small System from Dialog Domain:
English to Iraqi

This system was TRANSTAC system, which
was built on about 650K sentence pairs with the
average sentence length of 5.9 words. After
choosing length 3 for suffixes, we built a new
parallel corpus, and SRI 5-gram language models
for each factor. Vocabulary size for the surface
form was 110K whereas the word suffixes had

about 8K distinct words. Table 1 shows the result
(BLEU Score) of the system compared to the
baseline.

System Tuneon | Teston Test on
Set- Set- Set-
July07 June08 Nov08
Baseline 27.74 21.73 15.62
Factored 28.83 22.84 16.41
Improvement | 1.09 111 0.79

Table 1: BLEU score, English to Iragi Transtac sys-
tem, comparing Factored and Baseline systems.

As you can see, this improvement is consistent
over multiple unseen datasets. Arabic cases and
numbers show up as the word suffix. Also, verb
numbers usually appear partly as word suffix and
in some cases as word prefix. Defining a lan-
guage model over the word endings increases the
probability of sequences which have this case
and number agreement, favoring correct agree-
ments over the incorrect ones.

4.2  Medium System on Travel Domain:
Spanish to English

This system is the WMTO08 system, on a corpus
of 1.2 million sentence pairs with average sen-
tence length 27.9 words. Like the previous expe-
riment, we defined the 3 character suffix of the
words as the second factor, and built the lan-
guage model and reordering model on the joint
event of (surface, suffix) pairs. We built 5-gram
language models for each factor. The system had
about 97K distinct vocabulary in the surface lan-
guage model, which was reduced to 8K using the
suffix corpus. Having defined the baseline, the
system results are as follows.

System Tune- Test set-
WMTO06 WMTO08
Baseline 33.34 32.53
Factored 33.60 32.84
Improvement | 0.26 0.32

Table 2: BLEU score, Spanish to English WMT sys-
tem, comparing Factored and Baseline systems.

Here, we see improvement with the suffix fac-
tors compared to the baseline system. Word end-
ings in English language are major indicators of
word’s part of speech in the sentence. In fact
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most common stemming algorithm, Porter’s
Stemmer, works by removing word’s suffix.
Having a language model on these suffixes push-
es the common patterns of these suffixes to the
top, making the more grammatically coherent
sentences to achieve a better probability.

4.3 Large NIST 2009 System: Arabic to
English

We used NIST2009 system as our baseline in
this experiment. The corpus had about 3.8 Mil-
lion sentence pairs, with average sentence length
of 33.4 words. The baseline defined the lexica-
lized reordering model. As before we defined 3
character long word endings, and built 5-gram
SRI language models for each factor. The result
of this experiment is shown in table 3.

System Tune Teston | Teston | Test
on Dev07 | DevO7 on
MTO06 | News Weblog | MTO08

Wire

Baseline | 43.06 | 48.87 37.84 41.70

Factored | 44.20 | 50.39 39.93 42.74

Improve | 1.14 1.52 2.09 1.04

ment

Table 3: BLEU score, Arabic to English NIST 2009
system, comparing Factored and Baseline systems.

This result confirms the positive effect of the
suffix factors even on large systems. As men-
tioned before we believe that this result is due to
the ability of the suffix to reduce the word into a
very simple but rough grammatical representa-
tion. Defining language models for this factor
forces the decoder to prefer sentences with more
probable suffix sequences, which is believed to
increase the grammaticality of the result. Future
error analysis will show us more insight of the
exact effect of this factor on the outcome.

5 Conclusion

In this paper we introduced a simple yet very
effective factor: fixed length word suffix, to use
in Factored Translation Models. This simple fac-
tor has been shown to be effective as a rough
replacement for part of speech. We tested our
factors in three experiments in a small, English to
Iragi system, a medium sized system of Spanish
to English, and a large system, NIST09 Arabic to
English. We observed consistent and significant

improvements over the baseline. This result, ob-
tained from the language independent and inex-
pensive  factor, shows promising new
opportunities for all language pairs.
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Abstract

Documents often have inherently parallel
structure: they may consist of a text and
commentaries, or an abstract and a body,
or parts presenting alternative views on
the same problem. Revealing relations be-
tween the parts by jointly segmenting and
predicting links between the segments,
would help to visualize such documents
and construct friendlier user interfaces. To
address this problem, we propose an un-
supervised Bayesian model for joint dis-
course segmentation and alignment. We
apply our method to the “English as a sec-
ond language” podcast dataset where each
episode is composed of two parallel parts:
a story and an explanatory lecture. The
predicted topical links uncover hidden re-
lations between the stories and the lec-
tures. In this domain, our method achieves
competitive results, rivaling those of a pre-
viously proposed supervised technique.

1 Introduction

Many documents consist of parts exhibiting a high
degree of parallelism: e.g., abstract and body of
academic publications, summaries and detailed
news stories, etc. This is especially common with
the emergence of the Web 2.0 technologies: many
texts on the web are now accompanied with com-
ments and discussions. Segmentation of these par-
allel parts into coherent fragments and discovery
of hidden relations between them would facilitate
the development of better user interfaces and im-
prove the performance of summarization and in-
formation retrieval systems.

Discourse segmentation of the documents com-
posed of parallel parts is a novel and challeng-
ing problem, as previous research has mostly fo-
cused on the linear segmentation of isolated texts
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(e.g., (Hearst, 1994)). The most straightforward
approach would be to use a pipeline strategy,
where an existing segmentation algorithm finds
discourse boundaries of each part independently,
and then the segments are aligned. Or, conversely,
a sentence-alignment stage can be followed by a
segmentation stage. However, as we will see in our
experiments, these strategies may result in poor
segmentation and alignment quality.

To address this problem, we construct a non-
parametric Bayesian model for joint segmenta-
tion and alignment of parallel parts. In com-
parison with the discussed pipeline approaches,
our method has two important advantages: (1) it
leverages the lexical cohesion phenomenon (Hal-
liday and Hasan, 1976) in modeling the paral-
lel parts of documents, and (2) ensures that the
effective number of segments can grow adap-
tively. Lexical cohesion is an idea that topically-
coherent segments display compact lexical distri-
butions (Hearst, 1994; Utiyama and Isahara, 2001;
Eisenstein and Barzilay, 2008). We hypothesize
that not only isolated fragments but also each
group of linked fragments displays a compact and
consistent lexical distribution, and our generative
model leverages this inter-part cohesion assump-
tion.

In this paper, we consider the dataset of “En-
glish as a second language” (ESL) podcast!, where
each episode consists of two parallel parts: a story
(an example monologue or dialogue) and an ex-
planatory lecture discussing the meaning and us-
age of English expressions appearing in the story.
Fig. 1 presents an example episode, consisting of
two parallel parts, and their hidden topical rela-
tions.? From the figure we may conclude that there
is a tendency of word repetition between each pair
of aligned segments, illustrating our hypothesis of
compactness of their joint distribution. Our goal is

"http://www.eslpod.com/
*Episode no. 232 post on Jan. 08, 2007.
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Story

| have a day job, but | recently started a
small business on the side.

| didn't know anything about accounting example.

and my friend, Roland, said that he would
give me some advice.

Lecture transcript

This podcast is all about business vocabulary related to accounting.

The title of the podcast is Business Bookkeeping. ...

The story begins by Magdalena saying that she has a day job.

A day job is your regular job that you work at from nine in the morning il five in the afternoon, for

_ She also has_a small business on the side. ...

Magdalena continues by saying that she didn't know anything about accounting and her friend,

Roland, said he would give her some advice.

Roland: So, the reason that you need to

do_your bookkeeping is _so you can
manage your cash flow.

... Accounting is the job of keeping correct records of the money you spend; it's very similar to
bookkeeping. .

Roland begins by saying that the reason that you need to do your bookkeeping is so you can
manage your cash flow.

Cash flow, flow, means having enough money to run your business - to pay your bills. ...

Figure 1: An example episode of ESL podcast. Co-occurred words are represented in italic and underline.

to divide the lecture transcript into discourse units
and to align each unit to the related segment of the
story. Predicting these structures for the ESL pod-
cast could be the first step in development of an
e-learning system and a podcast search engine for
ESL learners.

2 Related Work

Discourse segmentation has been an active area
of research (Hearst, 1994; Utiyama and Isahara,
2001; Galley et al., 2003; Malioutov and Barzilay,
2006). Our work extends the Bayesian segmenta-
tion model (Eisenstein and Barzilay, 2008) for iso-
lated texts, to the problem of segmenting parallel
parts of documents.

The task of aligning each sentence of an abstract
to one or more sentences of the body has been
studied in the context of summarization (Marcu,
1999; Jing, 2002; Daumé and Marcu, 2004). Our
work is different in that we do not try to extract
the most relevant sentence but rather aim to find
coherent fragments with maximally overlapping
lexical distributions. Similarly, the query-focused
summarization (e.g., (Daumé and Marcu, 2006))
is also related but it focuses on sentence extraction
rather than on joint segmentation.

We are aware of only one previous work on joint
segmentation and alignment of multiple texts (Sun
et al., 2007) but their approach is based on similar-
ity functions rather than on modeling lexical cohe-
sion in the generative framework. Our application,
the analysis of the ESL podcast, was previously
studied in (Noh et al., 2010). They proposed a su-
pervised method which is driven by pairwise clas-
sification decisions. The main drawback of their
approach is that it neglects the discourse structure
and the lexical cohesion phenomenon.
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3 Model

In this section we describe our model for discourse
segmentation of documents with inherently paral-
lel structure. We start by clarifying our assump-
tions about their structure.

We assume that a document x consists of K
parallel parts, that is, * = {:B(k)}k:LK, and
each part of the document consists of segments,
z®) = {sgk)}izl;]. Note that the effective num-
ber of fragments I is unknown. Each segment can
either be specific to this part (drawn from a part-
specific language model qﬁgk)) or correspond to
the entire document (drawn from a document-level
language model q[)z(doc)). For example, the first
and the second sentences of the lecture transcript
in Fig. 1 are part-specific, whereas other linked
sentences belong to the document-level segments.
The document-level language models define top-
ical links between segments in different parts of
the document, whereas the part-specific language
models define the linear segmentation of the re-
maining unaligned text.

Each document-level language model corre-
sponds to the set of aligned segments, at most one
segment per part. Similarly, each part-specific lan-
guage model corresponds to a single segment of
the single corresponding part. Note that all the
documents are modeled independently, as we aim
not to discover collection-level topics (as e.g. in
(Blei et al., 2003)), but to perform joint discourse
segmentation and alignment.

Unlike (Eisenstein and Barzilay, 2008), we can-
not make an assumption that the number of seg-
ments is known a-priori, as the effective number of
part-specific segments can vary significantly from
document to document, depending on their size
and structure. To tackle this problem, we use
Dirichlet processes (DP) (Ferguson, 1973) to de-



fine priors on the number of segments. We incor-
porate them in our model in a similar way as it
is done for the Latent Dirichlet Allocation (LDA)
by Yu et al. (2005). Unlike the standard LDA, the
topic proportions are chosen not from a Dirichlet
prior but from the marginal distribution GEM («)
defined by the stick breaking construction (Sethu-
raman, 1994), where « is the concentration param-
eter of the underlying DP distribution. GEM («)
defines a distribution of partitions of the unit inter-
val into a countable number of parts.

The formal definition of our model is as follows:

Draw the document-level topic proportions 3(%°® ~
GEM (%),

Choose the document-level language model ¢{*°* ~
Dir(y%9)) fori € {1,2,...}.

Draw the part-specific topic proportions 3
GEM(a™™)fork € {1,...,K}.

2

Choose the part-specific language models gzbz(k)
Dir(y"®) fork € {1,...,K}andi € {1,2,...}.
For each part k and each sentence n:
- Draw type t4) ~ Unif(Doc, Part).
- I (t%) = Doc); draw topic 2\ ~ B(%°); gen-
erate words ') ~ Mult(¢(%0)

2
_ e o (k) (k).
Otherwise; draw topic z ' ~ B'%/; generate

words @) ~ Mult(¢(1§,1)).

The priors v(4°¢), () o(do¢) and o(¥) can be
estimated at learning time using non-informative
hyperpriors (as we do in our experiments), or set
manually to indicate preferences of segmentation
granularity.

At inference time, we enforce each latent topic
zék) to be assigned to a contiguous span of text,
assuming that coherent topics are not recurring
across the document (Halliday and Hasan, 1976).
It also reduces the search space and, consequently,
speeds up our sampling-based inference by reduc-
ing the time needed for Monte Carlo chains to
mix. In fact, this constraint can be integrated in the
model definition but it would significantly compli-
cate the model description.

4 Inference

As exact inference is intractable, we follow Eisen-
stein and Barzilay (2008) and instead use a
Metropolis-Hastings (MH) algorithm. At each
iteration of the MH algorithm, a new potential
alignment-segmentation pair (z’, ') is drawn from
a proposal distribution Q(2', |z, t), where (z,t)
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(a)% (b)% (C) %

Figure 2: Three types of moves: (a) shift, (b) split
and (c) merge.

is the current segmentation and its type. The new
pair (2/,t') is accepted with the probability

win (1 )

In order to implement the MH algorithm for our
model, we need to define the set of potential moves
(i.e. admissible changes from (z,t) to (2/,t)),
and the proposal distribution () over these moves.
If the actual number of segments is known and
only a linear discourse structure is acceptable, then
a single move, shift of the segment border (Fig.
2(a)), is sufficient (Eisenstein and Barzilay, 2008).
In our case, however, a more complex set of moves
is required.

We make two assumptions which are moti-
vated by the problem considered in Section 5:
we assume that (1) we are given the number of
document-level segments and also that (2) the
aligned segments appear in the same order in each
part of the document. With these assumptions in
mind, we introduce two additional moves (Fig.
2(b) and (c)):

e Split move: select a segment, and split it at
one of the spanned sentences; if the segment
was a document-level segment then one of
the fragments becomes the same document-
level segment.

P(2,#,2)Q(2, ]2, 1)
P(z,t,x)Q(z,t|z',t)

e Merge move: select a pair of adjacent seg-
ments where at least one of the segments is
part-specific, and merge them; if one of them
was a document-level segment then the new
segment has the same document-level topic.

All the moves are selected with the uniform prob-
ability, and the distance ¢ for the shift move is
drawn from the proposal distribution proportional
to ¢ 1/¢mez . The moves are selected indepen-
dently for each part.

Although the above two assumptions are not
crucial as a simple modification to the set of moves
would support both introduction and deletion of
document-level fragments, this modification was
not necessary for our experiments.



S Experiment

5.1 Dataset and setup

Dataset We apply our model to the ESL podcast
dataset (Noh et al., 2010) of 200 episodes, with
an average of 17 sentences per story and 80 sen-
tences per lecture transcript. The gold standard
alignments assign each fragment of the story to a
segment of the lecture transcript. We can induce
segmentations at different levels of granularity on
both the story and the lecture side. However, given
that the segmentation of the story was obtained by
an automatic sentence splitter, there is no reason
to attempt to reproduce this segmentation. There-
fore, for quantitative evaluation purposes we fol-
low Noh et al. (2010) and restrict our model to
alignment structures which agree with the given
segmentation of the story. For all evaluations, we
apply standard stemming algorithm and remove
common stop words.

Evaluation metrics To measure the quality of seg-
mentation of the lecture transcript, we use two
standard metrics, P, (Beeferman et al., 1999) and
WindowDiff (WD) (Pevzner and Hearst, 2002),
but both metrics disregard the alignment links (i.e.
the topic labels). Consequently, we also use the
macro-averaged F score on pairs of aligned span,
which measures both the segmentation and align-
ment quality.

Baseline Since there has been little previous re-
search on this problem, we compare our results
against two straightforward unsupervised base-
lines. For the first baseline, we consider the
pairwise sentence alignment (SentAlign) based
on the unigram and bigram overlap. The sec-
ond baseline is a pipeline approach (Pipeline),
where we first segment the lecture transcript with
BayesSeg (Fisenstein and Barzilay, 2008) and
then use the pairwise alignment to find their best
alignment to the segments of the story.

Our model We evaluate our joint model of seg-
mentation and alignment both with and without
the split/merge moves. For the model without
these moves, we set the desired number of seg-
ments in the lecture to be equal to the actual num-
ber of segments in the story I. In this setting,
the moves can only adjust positions of the seg-
ment borders. For the model with the split/merge
moves, we start with the same number of segments
I but it can be increased or decreased during in-
ference. For evaluation of our model, we run our
inference algorithm from five random states, and
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Method | P WD 1-F
Uniform 0.453 0.458 0.682
SentAlign 0446 0.547 0.313
Pipeline (/) 0.250 0.249 0.443
Pipeline (27+1) | 0.268 0.289 0.318
Our model (/) | 0.193 0.204 0.254
+split/merge 0.181 0.193 0.239

Table 1: Results on the ESL podcast dataset. For
all metrics, lower values are better.

take the 100,000th iteration of each chain as a sam-
ple. Results are the average over these five runs.
Also we perform L-BFGS optimization to auto-
matically adjust the non-informative hyperpriors
after each 1,000 iterations of sampling.

5.2 Result

Table 1 summarizes the obtained results. ‘Uni-
form’ denotes the minimal baseline which uni-
formly draws a random set of I spans for each lec-
ture, and then aligns them to the segments of the
story preserving the linear order. Also, we con-
sider two variants of the pipeline approach: seg-
menting the lecture on I and 27 + 1 segments, re-
spectively.® Our joint model substantially outper-
forms the baselines. The difference is statistically
significant with the level p < .01 measured with
the paired t-test. The significant improvement over
the pipeline results demonstrates benefits of joint
modeling for the considered problem. Moreover,
additional benefits are obtained by using the DP
priors and the split/merge moves (the last line in
Table 1). Finally, our model significantly outper-
forms the previously proposed supervised model
(Noh et al., 2010): they report micro-averaged F}
score 0.698 while our best model achieves 0.778
with the same metric. This observation confirms
that lexical cohesion modeling is crucial for suc-
cessful discourse analysis.

6 Conclusions

We studied the problem of joint discourse segmen-
tation and alignment of documents with inherently
parallel structure and achieved favorable results on
the ESL podcast dataset outperforming the cas-
caded baselines. Accurate prediction of these hid-
den relations would open interesting possibilities

3The use of the DP priors and the split/merge moves on
the first stage of the pipeline did not result in any improve-
ment in accuracy.



for construction of friendlier user interfaces. One
example being an application which, given a user-
selected fragment of the abstract, produces a sum-
mary from the aligned segment of the document
body.
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Abstract

Despite the existence of several noun phrase coref-
erence resolution data sets as well as several for-
mal evaluations on the task, it remains frustratingly
difficult to compare results across different corefer-
ence resolution systems. This is due to the high cost
of implementing a complete end-to-end coreference
resolution system, which often forces researchers
to substitute available gold-standard information in
lieu of implementing a module that would compute
that information. Unfortunately, this leads to incon-
sistent and often unrealistic evaluation scenarios.

With the aim to facilitate consistent and realis-
tic experimental evaluations in coreference resolu-
tion, we present Reconcile, an infrastructure for the
development of learning-based noun phrase (NP)
coreference resolution systems. Reconcile is de-
signed to facilitate the rapid creation of corefer-
ence resolution systems, easy implementation of
new feature sets and approaches to coreference res-
olution, and empirical evaluation of coreference re-
solvers across a variety of benchmark data sets and
standard scoring metrics. We describe Reconcile
and present experimental results showing that Rec-
oncile can be used to create a coreference resolver
that achieves performance comparable to state-of-
the-art systems on six benchmark data sets.

1 Introduction

Noun phrase coreference resolution (or simply
coreference resolution) is the problem of identi-
fying all noun phrases (NPs) that refer to the same
entity in a text. The problem of coreference res-
olution is fundamental in the field of natural lan-
guage processing (NLP) because of its usefulness
for other NLP tasks, as well as the theoretical in-
terest in understanding the computational mech-
anisms involved in government, binding and lin-
guistic reference.

Several formal evaluations have been conducted
for the coreference resolution task (e.g., MUC-6
(1995), ACE NIST (2004)), and the data sets cre-
ated for these evaluations have become standard
benchmarks in the field (e.g., MUC and ACE data
sets). However, it is still frustratingly difficult to
compare results across different coreference res-
olution systems. Reported coreference resolu-
tion scores vary wildly across data sets, evaluation
metrics, and system configurations.

cardie@cs.cornell.edu
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We believe that one root cause of these dispar-
ities is the high cost of implementing an end-to-
end coreference resolution system. Coreference
resolution is a complex problem, and successful
systems must tackle a variety of non-trivial sub-
problems that are central to the coreference task —
e.g., mention/markable detection, anaphor identi-
fication — and that require substantial implemen-
tation efforts. As a result, many researchers ex-
ploit gold-standard annotations, when available, as
a substitute for component technologies to solve
these subproblems. For example, many published
research results use gold standard annotations to
identify NPs (substituting for mention/markable
detection), to distinguish anaphoric NPs from non-
anaphoric NPs (substituting for anaphoricity de-
termination), to identify named entities (substitut-
ing for named entity recognition), and to identify
the semantic types of NPs (substituting for seman-
tic class identification). Unfortunately, the use of
gold standard annotations for key/critical compo-
nent technologies leads to an unrealistic evalua-
tion setting, and makes it impossible to directly
compare results against coreference resolvers that
solve all of these subproblems from scratch.

Comparison of coreference resolvers is further
hindered by the use of several competing (and
non-trivial) evaluation measures, and data sets that
have substantially different task definitions and
annotation formats. Additionally, coreference res-
olution is a pervasive problem in NLP and many
NLP applications could benefit from an effective
coreference resolver that can be easily configured
and customized.

To address these issues, we have created a plat-
form for coreference resolution, called Reconcile,
that can serve as a software infrastructure to sup-
port the creation of, experimentation with, and
evaluation of coreference resolvers. Reconcile
was designed with the following seven desiderata
in mind:

e implement the basic underlying software ar-
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chitecture of contemporary state-of-the-art
learning-based coreference resolution sys-
tems;

support experimentation on most of the stan-
dard coreference resolution data sets;

implement most popular coreference resolu-
tion scoring metrics;

exhibit state-of-the-art coreference resolution
performance (i.e., it can be configured to cre-
ate a resolver that achieves performance close
to the best reported results);

can be easily extended with new methods and
features;

is relatively fast and easy to configure and
run;

has a set of pre-built resolvers that can be
used as black-box coreference resolution sys-
tems.

While several other coreference resolution sys-
tems are publicly available (e.g., Poesio and
Kabadjov (2004), Qiu et al. (2004) and Versley et
al. (2008)), none meets all seven of these desider-
ata (see Related Work). Reconcile is a modular
software platform that abstracts the basic archi-
tecture of most contemporary supervised learning-
based coreference resolution systems (e.g., Soon
et al. (2001), Ng and Cardie (2002), Bengtson and
Roth (2008)) and achieves performance compara-
ble to the state-of-the-art on several benchmark
data sets. Additionally, Reconcile can be eas-
ily reconfigured to use different algorithms, fea-
tures, preprocessing elements, evaluation settings
and metrics.

In the rest of this paper, we review related work
(Section 2), describe Reconcile’s organization and
components (Section 3) and show experimental re-
sults for Reconcile on six data sets and two evalu-
ation metrics (Section 4).

2 Related Work

Several coreference resolution systems are cur-
rently publicly available. JavaRap (Qiu et al.,
2004) is an implementation of the Lappin and
Leass’ (1994) Resolution of Anaphora Procedure
(RAP). JavaRap resolves only pronouns and, thus,
it is not directly comparable to Reconcile. GuiTaR
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(Poesio and Kabadjov, 2004) and BART (Versley
et al., 2008) (which can be considered a succes-
sor of GuiTaR) are both modular systems that tar-
get the full coreference resolution task. As such,
both systems come close to meeting the majority
of the desiderata set forth in Section 1. BART,
in particular, can be considered an alternative to
Reconcile, although we believe that Reconcile’s
approach is more flexible than BART’s. In addi-
tion, the architecture and system components of
Reconcile (including a comprehensive set of fea-
tures that draw on the expertise of state-of-the-art
supervised learning approaches, such as Bengtson
and Roth (2008)) result in performance closer to
the state-of-the-art.

Coreference resolution has received much re-
search attention, resulting in an array of ap-
proaches, algorithms and features. Reconcile
is modeled after typical supervised learning ap-
proaches to coreference resolution (e.g. the archi-
tecture introduced by Soon et al. (2001)) because
of the popularity and relatively good performance
of these systems.

However, there have been other approaches
to coreference resolution, including unsupervised
and semi-supervised approaches (e.g. Haghighi
and Klein (2007)), structured approaches (e.g.
McCallum and Wellner (2004) and Finley and
Joachims (2005)), competition approaches (e.g.
Yang et al. (2003)) and a bell-tree search approach
(Luo et al. (2004)). Most of these approaches rely
on some notion of pairwise feature-based similar-
ity and can be directly implemented in Reconcile.

3 System Description

Reconcile was designed to be a research testbed
capable of implementing most current approaches
to coreference resolution. Reconcile is written in
Java, to be portable across platforms, and was de-
signed to be easily reconfigurable with respect to
subcomponents, feature sets, parameter settings,
etc.

Reconcile’s architecture is illustrated in Figure
1. For simplicity, Figure 1 shows Reconcile’s op-
eration during the classification phase (i.e., assum-
ing that a trained classifier is present).

The basic architecture of the system includes
five major steps. Starting with a corpus of docu-
ments together with a manually annotated corefer-
ence resolution answer key!, Reconcile performs

'Only required during training.
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Figure 1: The Reconcile classification architecture.

the following steps, in order:

1. Preprocessing. All documents are passed

through a series of (external) linguistic pro-
cessors such as tokenizers, part-of-speech
taggers, syntactic parsers, etc. These com-
ponents produce annotations of the text. Ta-
ble 1 lists the preprocessors currently inter-
faced in Reconcile. Note that Reconcile in-
cludes several in-house NP detectors, that
conform to the different data sets’ defini-
tions of what constitutes a NP (e.g., MUC
vs. ACE). All of the extractors utilize a syn-
tactic parse of the text and the output of a
Named Entity (NE) extractor, but extract dif-
ferent constructs as specialized in the corre-
sponding definition. The NP extractors suc-
cessfully recognize about 95% of the NPs in
the MUC and ACE gold standards.

. Feature generation. Using annotations pro-
duced during preprocessing, Reconcile pro-
duces feature vectors for pairs of NPs. For
example, a feature might denote whether the
two NPs agree in number, or whether they
have any words in common. Reconcile in-
cludes over 80 features, inspired by other suc-
cessful coreference resolution systems such
as Soon et al. (2001) and Ng and Cardie
(2002).

. Classification. Reconcile learns a classifier
that operates on feature vectors representing
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Task Systems

Sentence UIUC (CC Group, 2009)

splitter OpenNLP (Baldridge, J., 2005)
Tokenizer OpenNLP (Baldridge, J., 2005)
POS OpenNLP (Baldridge, J., 2005)
Tagger + the two parsers below

Parser Stanford (Klein and Manning, 2003)

Berkeley (Petrov and Klein, 2007)
Dep. parser | Stanford (Klein and Manning, 2003)
NE OpenNLP (Baldridge, J., 2005)
Recognizer | Stanford (Finkel et al., 2005)

NP Detector | In-house

Table 1: Preprocessing components available in
Reconcile.

pairs of NPs and it is trained to assign a score
indicating the likelihood that the NPs in the
pair are coreferent.

4. Clustering. A clustering algorithm consoli-
dates the predictions output by the classifier
and forms the final set of coreference clusters
(chains).?

5. Scoring. Finally, during testing Reconcile
runs scoring algorithms that compare the
chains produced by the system to the gold-
standard chains in the answer key.

Each of the five steps above can invoke differ-
ent components. Reconcile’s modularity makes it

2Some structured coreference resolution algorithms (e.g.,
McCallum and Wellner (2004) and Finley and Joachims
(2005)) combine the classification and clustering steps above.
Reconcile can easily accommodate this modification.



Available modules

various learners in the Weka toolkit
1ibSVM (Chang and Lin, 2001)
SVM;;ign: (Joachims, 2002)
Single-link

Best-First

Most Recent First

MUC score (Vilain et al., 1995)

B? score (Bagga and Baldwin, 1998)
CEAF score (Luo, 2005)

Step
Classification

Clustering

Scoring

Table 2: Available implementations for different
modules available in Reconcile.

easy for new components to be implemented and
existing ones to be removed or replaced. Recon-
cile’s standard distribution comes with a compre-
hensive set of implemented components — those
available for steps 2—5 are shown in Table 2. Rec-
oncile contains over 38,000 lines of original Java
code. Only about 15% of the code is concerned
with running existing components in the prepro-
cessing step, while the rest deals with NP extrac-
tion, implementations of features, clustering algo-
rithms and scorers. More details about Recon-
cile’s architecture and available components and
features can be found in Stoyanov et al. (2010).

4 Evaluation

4.1 Data Sets

Reconcile incorporates the six most commonly
used coreference resolution data sets, two from the
MUC conferences (MUC-6, 1995; MUC-7, 1997)
and four from the ACE Program (NIST, 2004).
For ACE, we incorporate only the newswire por-
tion. When available, Reconcile employs the stan-
dard test/train split. Otherwise, we randomly split
the data into a training and test set following a
70/30 ratio. Performance is evaluated according
to the B3 and MUC scoring metrics.

4.2 The Reconcilesgry Configuration

Reconcile can be easily configured with differ-
ent algorithms for markable detection, anaphoric-
ity determination, feature extraction, etc., and run
against several scoring metrics. For the purpose of
this sample evaluation, we create only one partic-
ular instantiation of Reconcile, which we will call
Reconcilegpig to differentiate it from the general
platform. Reconcilesgig is configured using the
following components:

1. Preprocessing
(a) Sentence Splitter: OpenNLP
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(b) Tokenizer: OpenNLP

(¢) POS Tagger: OpenNLP

(d) Parser: Berkeley

(e) Named Entity Recognizer: Stanford

Feature Set - A hand-selected subset of 60 out of the
more than 80 features available. The features were se-
lected to include most of the features from Soon et al.
Soon et al. (2001), Ng and Cardie (2002) and Bengtson
and Roth (2008).

Classifier - Averaged Perceptron

Clustering - Single-link - Positive decision threshold
was tuned by cross validation of the training set.

4.3 Experimental Results

The first two rows of Table 3 show the perfor-
mance of Reconcilesgio. For all data sets, B3
scores are higher than MUC scores. The MUC
score is highest for the MUC6 data set, while B3
scores are higher for the ACE data sets as com-
pared to the MUC data sets.

Due to the difficulties outlined in Section 1,
results for Reconcile presented here are directly
comparable only to a limited number of scores
reported in the literature. The bottom three
rows of Table 3 list these comparable scores,
which show that Reconcilesgo exhibits state-of-
the-art performance for supervised learning-based
coreference resolvers. A more detailed study of
Reconcile-based coreference resolution systems
in different evaluation scenarios can be found in
Stoyanov et al. (2009).

S Conclusions

Reconcile is a general architecture for coreference
resolution that can be used to easily create various
coreference resolvers. Reconcile provides broad
support for experimentation in coreference reso-
lution, including implementation of the basic ar-
chitecture of contemporary state-of-the-art coref-
erence systems and a variety of individual mod-
ules employed in these systems. Additionally,
Reconcile handles all of the formatting and scor-
ing peculiarities of the most widely used coref-
erence resolution data sets (those created as part
of the MUC and ACE conferences) and, thus,
allows for easy implementation and evaluation
across these data sets. We hope that Reconcile
will support experimental research in coreference
resolution and provide a state-of-the-art corefer-
ence resolver for both researchers and application
developers. We believe that in this way Recon-
cile will facilitate meaningful and consistent com-
parisons of coreference resolution systems. The
full Reconcile release is available for download at
http://www.cs.utah.edu/nlp/reconcile/.



System Score Data sets
MUC6 | MUC7 | ACE-2 | ACEO3 | ACE0O4 | ACEO5
Reconcilesoro MUC | 68.50 62.80 65.99 67.87 62.03 67.41
B? 70.88 65.86 78.29 79.39 76.50 73.71
Soon et al. (2001) MUC 62.6 60.4 — - — —
Ng and Cardie (2002) | MUC 70.4 63.4 - - - -
Yang et al. (2003) MUC | 713 60.2 - - - —

Table 3: Scores for Reconcile on six data sets and scores for comparable coreference systems.
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Abstract

Maintaining high annotation consistency
in large corpora is crucial for statistical
learning; however, such work is hard,
especially for tasks containing semantic
elements. This paper describes predi-
cate argument structure analysis using [J
transformation-based learning. An advan-
tage of transformation-based learning is
the readability of learned rules. A dis-
advantage is that the rule extraction pro-
cedure is time-consuming. We present
incremental-based, transformation-based
learning for semantic processing tasks. As
an example, we deal with Japanese pred-
icate argument analysis and show some
tendencies of annotators for constructing
a corpus with our method.

1 Introduction

Automatic predicate argument structure analysis
(PAS) provides information of “who did what
to whom” and is an important base tool for
such various text processing tasks as machine
translation information extraction (Hirschman et
al., 1999), question answering (Narayanan and
Harabagiu, 2004; Shen and Lapata, 2007), and
summarization (Melli et al., 2005). Most re-
cent approaches to predicate argument structure
analysis are statistical machine learning methods
such as support vector machines (SVMs)(Pradhan
et al., 2004). For predicate argument struc-
ture analysis, we have the following represen-
tative large corpora: FrameNet (Fillmore et al.,
2001), PropBank (Palmer et al., 2005), and Nom-
Bank (Meyers et al., 2004) in English, the Chi-
nese PropBank (Xue, 2008) in Chinese, the
GDA Corpus (Hashida, 2005), Kyoto Text Corpus
Ver.4.0 (Kawahara et al., 2002), and the NAIST
Text Corpus (Iida et al., 2007) in Japanese.
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The construction of such large corpora is strenu-
ous and time-consuming. Additionally, maintain-
ing high annotation consistency in such corpora
is crucial for statistical learning; however, such
work is hard, especially for tasks containing se-
mantic elements. For example, in Japanese cor-
pora, distinguishing true dative (or indirect object)
arguments from time-type argument is difficult be-
cause the arguments of both types are often ac-
companied with the ‘ni’ case marker.

A problem with such statistical learners as SVM
is the lack of interpretability; if accuracy is low, we
cannot identify the problems in the annotations.

We are focusing on transformation-based learn-
ing (TBL). An advantage for such learning meth-
ods is that we can easily interpret the learned
model. The tasks in most previous research are
such simple tagging tasks as part-of-speech tag-
ging, insertion and deletion of parentheses in syn-
tactic parsing, and chunking (Brill, 1995; Brill,
1993; Ramshaw and Marcus, 1995). Here we ex-
periment with a complex task: Japanese PASs.
TBL can be slow, so we proposed an incremen-
tal training method to speed up the training. We
experimented with a Japanese PAS corpus with a
graph-based TBL. From the experiments, we in-
terrelated the annotation tendency on the dataset.

The rest of this paper is organized as follows.
Section 2 describes Japanese predicate structure,
our graph expression of it, and our improved
method. The results of experiments using the
NAIST Text Corpus, which is our target corpus,
are reported in Section 3, and our conclusion is
provided in Section 4.

2 Predicate argument structure and
graph transformation learning

First, we illustrate the structure of a Japanese sen-
tence in Fig. 1. In Japanese, we can divide a sen-
tence into bunsetsu phrases (BP). A BP usually
consists of one or more content words and zero,

Proceedings of the ACL 2010 Conference Short Papers, pages 162—167,
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Sentence

BP BP BP BP BP BP
Kare no || tabe ta okashi  wa || kinou mise de kat ita
He 's eat PAST |snack TOP || yesterday|| shop at buy PAST]|

@ @ @@
e ST

Kareno tabeta okashiwa kinou misede katta.
The snack he ate is one | bought at the store yesterday.

Argument Types

PRED: Predicate Lo Nominative

Acc: Accusative
ARG: Argument Dat: Dative

Time: Time
Loc: Location

BP: Bunsetsu phrase
CW: Content Word
FW: Functional Word

Figure 1: Graph expression for PAS

one, or more than one functional words. Syn-
tactic dependency between bunsetsu phrases can
be defined. Japanese dependency parsers such as
Cabocha (Kudo and Matsumoto, 2002) can extract
BPs and their dependencies with about 90% accu-
racy.

Since predicates and arguments in Japanese are
mainly annotated on the head content word in
each BP, we can deal with BPs as candidates of
predicates or arguments. In our experiments, we
mapped each BP to an argument candidate node
of graphs. We also mapped each predicate to a
predicate node. Each predicate-argument relation
is identified by an edge between a predicate and an
argument, and the argument type is mapped to the
edge label. In our experiments below, we defined
five argument types: nominative (subjective), ac-
cusative (direct objective), dative (indirect objec-
tive), time, and location. We use five transforma-
tion types: a) add or b) delete a predicate node, c)
add or d) delete an edge between an predicate and
an argument node, e) change a label (= an argu-
ment type) to another label (Fig. 2). We explain
the existence of an edge between a predicate and
an argument labeled ¢ candidate node as that the
predicate and the argument have a ¢ type relation-
ship.

Transformation-based learning was proposed
by (Brill, 1995). Below we explain our learn-
ing strategy when we directly adapt the learning
method to our graph expression of PASs. First, un-
structured texts from the training data are inputted.
After pre-processing, each text is mapped to an
initial graph. In our experiments, the initial graph
has argument candidate nodes with corresponding
BPs and no predicate nodes or edges. Next, com-
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Figure 2: Transform types

paring the current graphs with the gold standard
graph structure in the training data, we find the dif-
ferent statuses of the nodes and edges among the
graphs. We extract such transformation rule candi-
dates as ‘add node’ and ‘change edge label’ with
constraints, including ‘the corresponding BP in-
cludes a verb’ and ‘the argument candidate and the
predicate node have a syntactic dependency.” The
extractions are executed based on the rule tem-
plates given in advance. Each extracted rule is
evaluated for the current graphs, and error reduc-
tion is calculated. The best rule for the reduction
is selected as a new rule and inserted at the bottom
of the current rule list. The new rule is applied to
the current graphs, which are transferred to other
graph structures. This procedure is iterated until
the total errors for the gold standard graphs be-
come zero. When the process is completed, the
rule list is the final model. In the test phase, we it-
eratively transform nodes and edges in the graphs
mapped from the test data, based on rules in the
model like decision lists. The last graph after all
rule adaptations is the system output of the PAS.

In this procedure, the calculation of error reduc-
tion is very time-consuming, because we have to
check many constraints from the candidate rules
for all training samples. The calculation order is
O(MN), where M is the number of articles and
N is the number of candidate rules. Additionally,
an edge rule usually has three types of constraints:
‘pred node constraint,” ‘argument candidate node
constraint,” and ‘relation constraint” The num-
ber of combinations and extracted rules are much
larger than one of the rules for the node rules.
Ramshaw et al. proposed an index-based efficient
reduction method for the calculation of error re-
duction (Ramshaw and Marcus, 1994). However,
in PAS tasks, we need to check the exclusiveness
of the argument types (for example, a predicate ar-
gument structure does not have two nominative ar-



guments), and we cannot directly use the method.
Jijkoun et al. only used candidate rules that hap-
pen in the current and gold standard graphs and
used SVM learning for constraint checks (Jijkoun
and de Rijke, 2007). This method is effective
for achieving high accuracy; however, it loses the
readability of the rules. This is contrary to our aim
to extract readable rules.

To reduce the calculations while maintaining
readability, we propose an incremental method
and describe its procedure below. In this proce-
dure, we first have PAS graphs for only one arti-
cle. After the total errors among the current and
gold standard graphs become zero in the article,
we proceed to the next article. For the next article,
we first adapt the rules learned from the previous
article. After that, we extract new rules from the
two articles until the total errors for the articles be-
come zero. We continue these processes until the
last article. Additionally, we count the number of
rule occurrences and only use the rule candidates
that happen more than once, because most such
rules harm the accuracy. We save and use these
rules again if the occurrence increases.

3 Experiments

3.1 Experimental Settings

We used the articles in the NAIST Text Cor-
pus version 1.43 (Iida et al., 2007) based on the
Mainichi Shinbun Corpus (Mainichi, 1995), which
were taken from news articles published in the
Japanese Mainichi Shinbun newspaper. We used
articles published on January 1st for training ex-
amples and on January 3rd for test examples.
Three original argument types are defined in the
NAIST Text Corpus: nominative (or subjective),
accusative (or direct object), and dative (or indi-
rect object). For evaluation of the difficult anno-
tation cases, we also added annotations for ‘time’
and ‘location’ types by ourselves. We show the
dataset distribution in Table 1. We extracted the
BP units and dependencies among these BPs from
the dataset using Cabocha, a Japanese dependency
parser, as pre-processing. After that, we adapted
our incremental learning to the training data. We
used two constraint templates in Tables 2 and 3
for predicate nodes and edges when extracting the
rule candidates.
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Table 1: Data distribution

Training Test

# of Articles 95 74
# of Sentences 1,129 687
# of Predicates 3,261 2,038
# of Arguments 3,877 2,468
Nom. 1,717 971
Acc. 1,012 701

Dat. 632 376
Time 371 295

Loc. 145 125

Table 4: Total performances (F1-measure (%))

Type System P R F1

Pred. Baseline 894 851 872
Our system | 91.8 85.3 88.4

Arg. Baseline 79.3 595 68.0
Our system | 81.9 624 70.8

3.2 Results

Our incremental method takes an hour. In com-
parison, the original TBL cannot even extract one
rule in a day. The results of predicate and argu-
ment type predictions are shown in Table 4. Here,
‘Baseline’ is the baseline system that predicts the
BSs that contain verbs, adjectives, and da form
nouns (‘to be’ in English) as predicates and pre-
dicts argument types for BSs having syntactical
dependency with a predicted predicate BS, based
on the following rules: 1) BSs containing nomina-
tive (ga) / accusative (wo) / dative (ni) case mark-
ers are predicted to be nominative, accusative, and
dative, respectively. 2) BSs containing a topic case
marker (wa) are predicted to be nominative. 3)
When a word sense category from a Japanese on-
tology of the head word in BS belongs to a ‘time’
or ‘location’ category, the BS is predicted to be a
‘time’ and ‘location’ type argument. In all preci-
sion, recall, and F1-measure, our system outper-
formed the baseline system.

Next, we show our system’s learning curve in
Fig. 3. The number of final rules was 68. This
indicates that the first twenty rules are mainly ef-
fective rules for the performance. The curve also
shows that no overfitting happened. Next, we
show the performance for every argument type in
Table 5. ‘TBL,” which stands for ‘transformation-
based learning,” is our system. In this table,
the performance of the dative and time types im-
proved, even though they are difficult to distin-
guish. On the other hand, the performance of the
location type argument in our system is very low.
Our method learns rules as decreasing errors of



Table 2: Predicate node constraint templates

Pred. Node Constraint Template Rule Example
Constraint | Description Pred. Node Constraint Operation
posl noun, verb, adjective, etc. pos1="ADJECTIVE’ add pred node
pos2 independent, attached word, etc. pos2=‘DEPENDENT WORD’ del pred node
posl & pos2 | above two features combination || posl="VERB’ & pos2="ANCILLARY WORD’ | add pred node
‘da’ da form (copula) ‘da form’ add pred node
lemma word base form lemma=‘%’ add pred node
Table 3: Edge constraint templates
Edge Constraint Template Rule Example
Arg. Cand. | Pred. Node Relation . .
Const. Const. Const. Edge Constraint Operation
FW (=func. | = dep(arg — pred) || FW of Arg. =‘'wa(TOP)’ & dep(arg — pred) add NOM edge
word)
* FwW dep(arg < pred) || FW of Pred. =‘na(ADNOMINAL)’ & dep(arg | add NOM edge
«— pred)
SemCat * dep(arg — pred) || SemCat of Arg. = ‘TIME’ & dep(arg — pred) add TIME edge
(=semantic
category)
FW passive form dep(arg — pred) || FW of Arg. =‘ga(NOM) & Pred.: passive form | chg edge label
NOM — ACC
* kform (= type | * kform of Pred. = continuative ‘ta’ form add NOM edge
of inflected
form)
SemCat Pred. SemCat | * SemCat of Arg. = ‘HUMAN’ & Pred. SemCat | add NOM edge
= ‘PHYSICAL MOVE’

F1-measure (%)
80

70

60 //\/
50 /4

40
30

20
10

0 . . . . .
20 30 40 50 60 70
rules

Figure 3: Learning curves: Xx-axis = number of
rules; y-axis: Fl1-measure (%)
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all arguments, and the performance of the location
type argument is probably sacrificed for total error
reduction because the number of location type ar-
guments is much smaller than the number of other
argument types (Table 1), and the improvement of
the performance-based learning for location type
arguments is relatively low. To confirm this, we
performed an experiment in which we gave the
rules of the baseline system to our system as initial
rules and subsequently performed our incremen-
tal learning. ‘Base + TBL’ shows the experiment.
The performance for the location type argument
improved drastically. However, the total perfor-
mance of the arguments was below the original
TBL. Moreover, the ‘Base + TBL' performance
surpassed the baseline system. This indicates that
our system learned a reasonable model.

Finally, we show some interesting extracted
rules in Fig. 4. The first rule stands for an ex-
pression where the sentence ends with the per-
formance of something, which is often seen in
Japanese newspaper articles. The second and third
rules represent that annotators of this dataset tend
to annotate time types for which the semantic cate-
gory of the argument is time, even if the argument
looks like the dat. type, and annotators tend to an-
notate dat. type for arguments that have an dat.



BP

Ccw
o

if BP contains the word "%’ ,
Add Pred. Node

Rule No.20

Example

“People who answered are 87%’

CWir CWirW Wi
EX A X 87% T
kotae-ta hito-wa 87%-de

answer-ed people-TOP 87%-be

..

Rule No.15
SemCat is "Time’
@ Dat. / Time
Change Edge Label Dat. —Time

Rule No.16
if func. wd. is "DAT’ case,

Care

Change Edge Label

Table 5: Results for every arg. type (F-measure

(%))
System Args. | Nom. Acc. Dat. Time Loc.
Base 68.0 | 658 79.6 705 515 38.0
TBL 708 | 649 864 748 596 1.7
Base+TBL | 69.5 | 63.9 858 678 558 374

type case marker.

4 Conclusion

We performed experiments for Japanese predicate
argument structure analysis using transformation-
based learning and extracted rules that indicate the
tendencies annotators have. We presented an in-
cremental procedure to speed up rule extraction.
The performance of PAS analysis improved, espe-
cially, the dative and time types, which are difficult
to distinguish. Moreover, when time expressions
are attached to the ‘ni’ case, the learned model
showed a tendency to annotate them as dative ar-
guments in the used corpus. Our method has po-
tential for dative predictions and interpreting the
tendencies of annotator inconsistencies.
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Example

“will start on the 7th’

7H I R4—+TFB
7ka-ni staato-suru

7th DAT start will

Time @

. B

@ Rule No.16 is applied

Figure 4: Examples of extracted rules
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Abstract

Developing features has been shown cru-
cial to advancing the state-of-the-art in Se-
mantic Role Labeling (SRL). To improve
Chinese SRL, we propose a set of ad-
ditional features, some of which are de-
signed to better capture structural infor-
mation. Our system achieves 93.49 F-
measure, a significant improvement over
the best reported performance 92.0. We
are further concerned with the effect
of parsing in Chinese SRL. We empiri-
cally analyze the two-fold effect, grouping
words into constituents and providing syn-
tactic information. We also give some pre-
liminary linguistic explanations.

1 Introduction

Previous work on Chinese Semantic Role La-
beling (SRL) mainly focused on how to imple-
ment SRL methods which are successful on En-
glish. Similar to English, parsing is a standard
pre-processing for Chinese SRL. Many features
are extracted to represent constituents in the input
parses (Sun and Jurafsky, 2004; Xue, 2008; Ding
and Chang, 2008). By using these features, se-
mantic classifiers are trained to predict whether a
constituent fills a semantic role. Developing fea-
tures that capture the right kind of information en-
coded in the input parses has been shown crucial
to advancing the state-of-the-art. Though there
has been some work on feature design in Chinese
SRL, information encoded in the syntactic trees is
not fully exploited and requires more research ef-
fort. In this paper, we propose a set of additional

The work was partially completed while this author was
at Peking University.
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features, some of which are designed to better cap-
ture structural information of sub-trees in a given
parse. With help of these new features, our sys-
tem achieves 93.49 F-measure with hand-crafted
parses. Comparison with the best reported results,
92.0 (Xue, 2008), shows that these features yield a
significant improvement of the state-of-the-art.

We further analyze the effect of syntactic pars-
ing in Chinese SRL. The main effect of parsing
in SRL is two-fold. First, grouping words into
constituents, parsing helps to find argument candi-
dates. Second, parsers provide semantic classifiers
plenty of syntactic information, not to only recog-
nize arguments from all candidate constituents but
also to classify their detailed semantic types. We
empirically analyze each effect in turn. We also
give some preliminary linguistic explanations for
the phenomena.

2 Chinese SRL

The Chinese PropBank (CPB) is a semantic anno-
tation for the syntactic trees of the Chinese Tree-
Bank (CTB). The arguments of a predicate are la-
beled with a contiguous sequence of integers, in
the form of AN (N is a natural number); the ad-
juncts are annotated as such with the label AM
followed by a secondary tag that represents the se-
mantic classification of the adjunct. The assign-
ment of semantic roles is illustrated in Figure 1,
where the predicate is the verb “if £¥/investigate™.
E.g., the NP “Zi#{Jiii [F/the cause of the accident”
is labeled as A7, meaning that it is the Patient.

In previous research, SRL methods that are suc-
cessful on English are adopted to resolve Chinese
SRL (Sun and Jurafsky, 2004; Xue, 2008; Ding
and Chang, 2008, 2009; Sun et al., 2009; Sun,
2010). Xue (2008) produced complete and sys-
tematic research on full parsing based methods.

Proceedings of the ACL 2010 Conference Short Papers, pages 168—172,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



1P

1

A0 VP
NP  AM-TMP AM-MNR VP
NN ADVP ADVP Rel Al
=5 AD AD \'a% NP
police ‘ ‘ ‘ /‘
IETE TEA W NN NN
now thoroughly investigate ‘ ‘
L JR A
accident cause
Figure 1: An example sentence: The police are

thoroughly investigating the cause of the accident.

Their method divided SRL into three sub-tasks: 1)
pruning with a heuristic rule, 2) Argument Identi-
fication (Al) to recognize arguments, and 3) Se-
mantic Role Classification (SRC) to predict se-
mantic types. The main two sub-tasks, Al and
SRC, are formulated as two classification prob-
lems. Ding and Chang (2008) divided SRC into
two sub-tasks in sequence: Each argument should
first be determined whether it is a core argument or
an adjunct, and then be classified into fine-grained
categories. However, delicately designed features
are more important and our experiments suggest
that by using rich features, a better SRC solver
can be directly trained without using hierarchical
architecture. There are also some attempts at re-
laxing the necessity of using full syntactic parses,
and semantic chunking methods have been intro-
duced by (Sun et al., 2009; Sun, 2010; Ding and
Chang, 2009).

2.1 Our System

We implement a three-stage (i.e. pruning, Al and
SRC) SRL system. In the pruning step, our sys-
tem keeps all constituents (except punctuations)
that c-command' current predicate in focus as ar-
gument candidates. In the Al step, a lot of syntac-
tic features are extracted to distinguish argument
and non-argument. In other words, a binary classi-
fier is trained to classify each argument candidate
as either an argument or not. Finally, a multi-class
classifier is trained to label each argument recog-
nized in the former stage with a specific semantic
role label. In both Al and SRC, the main job is to
select strong syntactic features.

"See (Sun et al., 2008) for detailed definition.
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3 Features

A majority of features used in our system are a
combination of features described in (Xue, 2008;
Ding and Chang, 2008) as well as the word for-
mation and coarse frame features introduced in
(Sun et al., 2009), the c-command thread fea-
tures proposed in (Sun et al., 2008). We give
a brief description of features used in previous
work, but explain new features in details. For
more information, readers can refer to relevant
papers and our source codes® that are well com-
mented. To conveniently illustrate, we denote
a candidate constituent ¢; with a fixed context
Wi—1 [ Wi-..Wh,...wj5)wj41, where wy, is the head
word of ¢, and denote predicate in focus with
a context w?w” ywwywYy, where w" is the
predicate in focus.

3.1 Baseline Features

The following features are introduced in previous
Chinese SRL systems. We use them as baseline.

Word content of w’, wp, w;, w; and w;+w;;
POS tag of w", wy,. subcategorization frame, verb
class of w; position, phrase type cy, path from cy,
to w" (from (Xue, 2008; Ding and Chang, 2008))

First character, last character and word length
of w", first character+length, last character+word
length, first character+position,
ter+position, coarse frame, frame+w", frame+left
character, frame+verb class, frame+cy, (from (Sun
et al., 2009)).

Head word POS, head word of PP phrases, cat-
egory of ¢;’s lift and right siblings, CFG rewrite
rule that expands c; and ci’s parent (from (Ding
and Chang, 2008)).

last charac-

3.2 New Word Features

We introduce some new features which can be
extracted without syntactic structure. We denote
them as word features. They include:

Word content of w”y, w{,, w;—1 and wji1;
POS tag of w? , wiq, wy, wiy, wi—1, w;, wj,
Wj41, Wi42 and Wj—2.

Length of ci.: how many words are there in ¢

Word before “LC”: If the POS of w; is “LC”
(localizer), we use w;_1 and its POS tag as two
new features.

NT: Does ¢y, contain a word with POS “NT”
(temporal noun)?

k

2 Available
csrler/.

at http://code.google.com/p/



Combination features: w;’s POS+w;’s POS,
wy+Position

3.3 New Syntactic Features

Taking complex syntax trees as inputs, the clas-
sifiers should characterize their structural proper-
ties. We put forward a number of new features to
encode the structural information.

Category of cy’s parent; head word and POS of
head word of parent, left sibling and right sibling
of ¢.

Lexicalized Rewrite rules:  Conjuction of
rewrite rule and head word of its corresponding
RHS. These features of candidate (Irw-c) and its
parent (Irw-p) are used. For example, this lrw-
c feature of the NP “ZH i Jii [X” in Figure 1 is
NP — NN + NN(JEH).

Partial Path: Path from the ¢ or w? to the low-
est common ancestor of ¢, and w”. One path fea-
ture, hence, is divided into left path and right path.

Clustered Path: We use the manually created
clusters (see (Sun and Sui, 2009)) of categories of
all nodes in the path (cpath) and right path.

C-commander thread between ¢, and wv (cct):
(proposed by (Sun et al., 2008)). For example, this
feature of the NP “* ;> in Figure 1 is NP +
ADVP+ ADVP+VV.

Head Trace: The sequential container of the
head down upon the phrase (from (Sun and Sui,
2009)). We design two kinds of traces (htr-p, htr-
w): one uses POS of the head word; the other uses
the head word word itself. E.g., the head word of
HJE A is “JE A therefore these feature of this
NP are NP|NN and NP| Jii[A].

Combination features: verb class+cy, wp+w",
wyp+Position, wp+w +Position, path+w",
wptright path, w +left path, frame+w"+wy,
and w"+cct.

4 Experiments and Analysis

4.1 Experimental Setting

To facilitate comparison with previous work, we
use CPB 1.0 and CTB 5.0, the same data set-
ting with (Xue, 2008). The data is divided into
three parts: files from 081 to 899 are used as
training set; files from 041 to 080 as develop-
ment set; files from 001 to 040, and 900 to 931
as test set. Nearly all previous research on con-
stituency based SRL evaluation use this setting,
also including (Ding and Chang, 2008, 2009; Sun
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et al., 2009; Sun, 2010). All parsing and SRL ex-
periments use this data setting. To resolve clas-
sification problems, we use a linear SVM classi-
fier SVMj;,,3, along with One-Vs-All approach for
multi-class classification. To evaluate SRL with
automatic parsing, we use a state-of-the-art parser,
Bikel parser* (Bikel, 2004). We use gold segmen-
tation and POS as input to the Bikel parser and
use it parsing results as input to our SRL system.
The overall LP/LR/F performance of Bikel parser
15 79.98%/82.95%/81.43.

4.2 Overall Performance

Table 1 summarizes precision, recall and F-
measure of Al, SRC and the whole task (AI+SRC)
of our system respectively. The forth line is
the best published SRC performance reported in
(Ding and Chang, 2008), and the sixth line is the
best SRL performance reported in (Xue, 2008).
Other lines show the performance of our system.
These results indicate a significant improvement
over previous systems due to the new features.

| Test | P(%) [ R(%) | FIA |
Al 98.56 | 97.91 | 98.24
SRC -- -- | 95.04
(Ding and Chang, 2008) -- -- 94.68
Al + SRC 93.80 | 93.18 | 93.49
(Xue, 2008) 93.0 | 91.0 | 92.0

Table 1: SRL performance on the test data with
gold standard parses.

4.3 Two-fold Effect of Parsing in SRL

The effect of parsing in SRL is two-fold. On the
one hand, SRL systems should group words as ar-
gument candidates, which are also constituents in
a given sentence. Full parsing provides bound-
ary information of all constituents. As arguments
should c-command the predicate, a full parser can
further prune a majority of useless constituents. In
other words, parsing can effectively supply SRL
with argument candidates. Unfortunately, it is
very hard to rightly produce full parses for Chi-
nese text. On the other hand, given a constituent,
SRL systems should identify whether it is an argu-
ment and further predict detailed semantic types if

*http://people.cs.uchicago.edu/
~vikass/svmlin.html

*http://www.cis.upenn.edu/~dbikel/
software.html



| Task [ Parser | Bracket | Feat | P(%) | R(%) [ F/A |

Al -- Gold \ 82.44 | 86.78 | 84.55
CTB | Gold W+S | 98.69 | 98.11 | 98.40
Bikel | Bikel W+S | 77.54 | 71.62 | 74.46
SRC | -- Gold w -- -- 19393
CTB | Gold W+S | -- -- 195.80
Bikel | Gold W+S | -- -- 19262

Table 2: Classification perfromance on develop-
ment data. In the Feat column, W means word
features; W+S means word and syntactic feautres.

it is an argument. For the two classification prob-
lems, parsing can provide complex syntactic infor-
mation such as path features.

4.3.1 The Effect of Parsing in AI

In Al, full parsing is very important for both
grouping words and classification. Table 2 sum-
marizes relative experimental results. Line 2 is the
Al performance when gold candidate boundaries
and word features are used; Line 3 is the perfor-
mance with additional syntactic features. Line 4
shows the performance by using automatic parses
generated by Bikel parser. We can see that: 1)
word features only cannot train good classifiers to
identify arguments; 2) it is very easy to recognize
arguments with good enough syntactic parses; 3)
there is a severe performance decline when auto-
matic parses are used. The third observation is a
similar conclusion in English SRL. However this
problem in Chinese is much more serious due to
the state-of-the-art of Chinese parsing.
Information theoretic criteria are popular cri-
teria in variable selection (Guyon and Elisse-
eff, 2003). This paper uses empirical mutual
information between each variable and the tar-

get, I(X,Y) = 3" cx yey P(2,y) log pfff,f@,), to
roughly rank the importance of features. Table 3
shows the ten most useful features in AI. We can
see that the most important features all based on
full parsing information. Nine of these top 10 use-

ful features are our new features.

Rank Feature Rank Feature

1 w? _cct 2 T wp+w+Position
3 htr-w 4 htr-p

5 path 6 Ywp+w?

7 cpath 8 cct

9 path+w" || 10 Irw-p

Table 3: Top 10 useful features for Al. { means
word features.

171

4.3.2 The Effect of Parsing in SRC

The second block in Table 2 summarizes the SRC
performance with gold argument boundaries. Line
5 is the accuracy when word features are used;
Line 6 is the accuracy when additional syntactic
features are added; The last row is the accuracy
when syntactic features used are extracted from
automatic parses (Bikel+Gold). We can see that
different from Al, word features only can train
reasonable good semantic classifiers. The com-
parison between Line 5 and 7 suggests that with
parsing errors, automatic parsed syntactic features
cause noise to the semantic role classifiers.

4.4 Why Word Features Are Effective for

SRC?
Rank Feature Rank Feature
1 Hframe+wy,+w® || 2 Twp+w+position
3 fwp+w? 4 w+cct
5 Irw-p 6 fwi+w,
7 Irw-c 8 fawy,+Postion
9 tframe+w"” 10 htr-p

Table 4: Top 10 useful features for SRC.

Table 4 shows the ten most useful features in
SRC. We can see that two of these ten features
are word features (denoted by t). Namely, word
features play a more important role in SRC than
in AL. Though the other eight features are based
on full parsing, four of them (denoted by I) use
the head word which can be well approximated
by word features, according to some language spe-
cific properties. The head rules described in (Sun
and Jurafsky, 2004) are very popular in Chinese
parsing research, such as in (Duan et al., 2007;
Zhang and Clark, 2008). From these head rules,
we can see that head words of most phrases in
Chinese are located at the first or the last position.
We implement these rules on Chinese Tree Bank
and find that 84.12% > nodes realize their heads as
either their first or last word. Head position sug-
gests that boundary words are good approximation
of head word features. If head words have good
approximation word features, then it is not strange
that the four features denoted by I can be effec-
tively represented by word features. Similar with
feature effect in AL, most of most useful features
in SRC are our new features.

SThis statistics excludes all empty categories in CTB.



5 Conclusion

This paper proposes an additional set of features
to improve Chinese SRL. These new features yield
a significant improvement over the best published
performance. We further analyze the effect of
parsing in Chinese SRL, and linguistically explain
some phenomena. We found that (1) full syntactic
information playes an essential role only in Al and
that (2) due to the head word position distribution,
SRC is easy to resolve in Chinese SRL.
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Abstract An implementation of the IMT famework was
performed in the TransType project (Foster et al.,
1997; Langlais et al., 2002) and further improved
within the TransType2 project (Esteban et al.,
2004; Barrachina et al., 2009).

IMT aims at reducing the effort and increas-
ing the productivity of translators, while preserv-
ing high-quality translation. In this work, we inte-
grateConfidence Measurd€Ms) within the IMT
framework to further reduce the user effort. As
will be shown, our proposal allows to balance the
ratio between user effort and final translation error.

This work deals with the application of
confidence measures within an interactive-
predictive machine translation system in
order to reduce human effort. If a small
loss in translation quality can be tolerated
for the sake of efficiency, user effort can
be saved by interactively translating only
those initial translations which the confi-
dence measure classifies as incorrect. We
apply confidence estimation as a way to
achieve a balance between user effort sav-
ings and final translation error. Empiri- 11 Confidence Measures
cal results show that our proposal allows
to obtain almost perfect translations while
significantly reducing user effort.

Confidence estimation have been extensively stud-
ied for speech recognition. Only recently have re-
) searchers started to investigate CMs for MT (Gan-
1 Introduction drabur and Foster, 2003; Blatz et al., 2004; Ueffing

In Statistical Machine Translation(SMT), the and Ney, 2007).
translation is modelled as a decission process. For Different TransType-style MT systems use con-
a given source stringy = fi...f;... fs, we fidence information to improve translation predic-

seek for the target string{ = e1...e5...e] _tion accuracy (Gandrabu_r and Foster, 2003; Ueff-
which maximises posterior probability: ing and Ney, 2005). In this work, we propose a fo-
. cus shift in which CMs are used to modify the in-
é1 = argmaxPr(ei| ) . (1)  teraction between the user and the system instead
Leg of modify the IMT translation predictions.

Within the Interactive-predictive Machine  To compute CMs we have to select suitable con-
Translation (IMT) framework, a state-of-the-art fidence features and define a binary classifier. Typ-
SMT system is employed in the following way: ically, the classification is carried out depending
For a given source sentence, the SMT systeran whether the confidence value exceeds a given
fully automatically generates an initial translation.threshold or not.

A human translator checks this translation from

left to right, correcting the first error. The SMT 2 IMT with Sentence CMs

system theq Proposes a new extension, taking thl% the conventional IMT scenario a human trans-

correct prefixe; = ex . - € INto account. These |ator and a SMT system collaborate in order to

steps are repeated until the whole input Sentencgy,i i the translation the user has in mind. Once

has been correctly translated. In the resultingy,q ,ser has interactively translated the source sen-

demsm_n ruIIe, we maximise over all pOSSIbIetences, the output translations are error-free. We

extensiong; ,, of ej: propose an alternative scenario where not all the
I source sentences are interactively translated by the

Iel user. Specifically, only those source sentences

el = argmaxPr(ef, lel, /). (2)
i+1
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whose initial fully automatic translation are incor- Spanish \ English
rect, according to some quality criterion, are in- - | Sentences 214.5K
teractively translated. We propose to use CMs as @ | Running words 5.8M 5.2M
the quality criterion to classify those initial trans- = Vocabulary 97.4K| 83.7K
lations. - | Sentences 400

Our approach implies a modification of the| & | Running words 115K | 10.1K
user-machine interaction protocol. For a given Perplexity (trigrams) 46.1 59.4
source sentence, the SMT system generates an iniz, | Sentences 800
tial translation. Then, if the CM classifies this § Running words 22.6K | 19.9K
translation as correct, we output it as our fina Perplexity (trigrams) 45.2 60.8

translation. On the contrary, if the initial trans-
lation is classified as incorrect, we perform a con-Table 1. Statistics of the Spanish—English EU cor-
ventional IMT procedure, validating correct pre-Pora. K and M denote thousands and millions of
fixes and generating new suffixes, until the sen&léments respectively.

tence that the user has in mind is reached.

In our scenario, we allow the final translations SCOres:w (e;) are combined:

to be different from the ones the user has in mind
This implies that the output may contain errors.
If a small loss in translation can be tolerated for
the sake of efficiency, user effort can be saved by

interactively translating only those sentences that T
the CMs classify as incorrect. cn(el)y =1 I cwle) - 4)
=1

It is worth of notice that our proposal can be
seen as a generalisation of the conventional IMT
approach. Varying the value of the CM classifi-RATIO CM ( cr(el)) is computed as the percent-

MEAN CM ( cjs(el)) is computed as the geo-
metric mean of the confidence scores of the
words in the sentence:

cation threshold, we can range from a fully auto- age of words classified as correct in the sen-
matic SMT system where all sentences are clas- tence. A word is classified as correct if
sified as correct to a conventional IMT system its confidence exceeds a word classification
where all sentences are classified as incorrect. thresholdr,,.

2.1 Selecting a CM for IMT cn(el) = {ei / cw(ei) > T}l
We compute sentence CMs by combining the ! I
scores given by a word CM based on the IBM
model 1 (Brown et al., 1993), similar to the one i - ) )
described in (Blatz et al., 2004). We modified thistence_ is classified as glther cprrector incorrect, de-
word CM by replacing theaverageby the max- pending on whether its .cpnflfjence value exceeds
imal lexicon probability, because the average i not a sentence clasiffication threshoig h_c_
dominated by this maximum (Ueffing and Ney, ™ = 0.0 then all the_ sentences will be classified
2005). We choose this word CM because it can b&S correct V\_/hereas_vfs = 1.0 all the sentences
calculated very fast during search, which is cru—WIII be classified as incorrect.
cial given the time constraints of the IMT sys-
tems. Moreover, its performance is similar to that
of other word CMs as results presented in (BlatzThe aim of the experimentation was to study the
et al., 2003; Blatz et al., 2004) show. The wordpossibly trade-off between saved user effort and
confidence value of word;, ¢, (¢;), is given by translation error obtained when using sentence
CMs within the IMT framework.

()

After computing the confidence value, each sen-

Experimentation

cw(ei) = max p(eilfj) , 3)
0sj<7 ’ 3.1 System evaluation

wherep(e;| f;) is the IBM model 1 lexicon proba- In this paper, we report our results as measured

bility, and f; is the empty source word. by Word Stroke RatidWSR) (Barrachina et al.,
From this word CM, we compute two sentence2009). WSR is used in the context of IMT to mea-

CMs which differ in the way the word confidence sure the effort required by the user to generate her
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Figure 1: BLEU translation scores versus WSRFigure 2: BLEU translation scores versus WSR
for different values of the sentence classificatiorfor different values of the sentence classification
threshold using the MEAN CM. threshold using the RATIO CM with,, = 0.4.

translations. WSR is computed as the ratio bedure, optimising the BLEU score on the develop-
tween the number of word-strokes a user wouldnent set.
need to achieve the translation she has in mind and The IMT system which we have implemented
the total number of words in the sentence. In thigelies on the use of word graphs (Ueffing et al.,
context, a word-stroke is interpreted as a single ac2002) to efficiently compute the suffix for a given
tion, in which the user types a complete word, andorefix. A word graph has to be generated for each
is assumed to have constant cost. sentence to be interactively translated. For this

Additionally, and because our proposal allowspurpose, we used a multi-stack phrase-based de-
differences between its output and the referenceoder which will be distributed in the near future
translation, we will also present translation qual-together with the Thot toolkit. We discarded to
ity results in terms oBiLingual Evaluation Un- use the state-of-the-art Moses toolkit (Koehn et
derstudy(BLEU) (Papineni et al., 2002). BLEU al., 2007) because preliminary experiments per-
computes a geometric mean of the precision-of formed with it revealed that the decoder by Ortiz-
grams multiplied by a factor to penalise short senMartinez et al. (2005) performs better in terms of
tences. WSR when used to generate word graphs for their
use in IMT (Sanchis-Trilles et al., 2008). More-
over, the performance difference in regular SMT is
Our experiments were carried out on the EU cornegligible. The decoder was set to only consider
pora (Barrachina et al., 2009). The EU corporamonotonic translation, since in real IMT scenar-
were extracted from the Bulletin of the Europeanios considering non-monotonic translation leads to
Union. The EU corpora is composed of sentenceexcessive response time for the user.
given in three different language pairs. Here, we Finally, the obtained word graphs were used
will focus on the Spanish—English part of the EUwithin the IMT procedure to produce the refer-
corpora. The corpus is divided into training, de-ence translations in the test set, measuring WSR
velopment and test sets. The main figures of thand BLEU.
corpus can be seen in Table 1.

As a first step, be built a SMT system to trans-3-3 Results
late from Spanish into English. This was doneWe carried out a series of experiments ranging the
by means of the Thot toolkit (Ortiz et al., 2005), value of the sentence classification threshald
which is a complete system for building phrase-betweerD.0 (equivalent to a fully automatic SMT
based SMT models. This toolkit involves the esti-system) and .0 (equivalent to a conventional IMT
mation, from the training set, of different statisti- system), for both the MEAN and RATIO CMs.
cal models, which are in turn combined in a log-For each threshold value, we calculated the effort
linear fashion by adjusting a weight for each ofof the user in terms of WSR, and the translation
them by means of the MERT (Och, 2003) proce-quality of the final output as measured by BLEU.

3.2 Experimental Setup
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src-1 DECLARACION (No 17) relativa al derecho de acceso a la inforioaci
ref-1 DECLARATION (No 17) on the right of access to information
tra-1 DECLARATION (No 17) on the right of access to information

src-2 Conclusiones del Consejo sobre el comercio ebeitio y los impuestos indirectos.
ref-2 Council conclusions on electronic commerce and indirect taxation.
tra-2 Council conclusions on e-commerce and indirect taxation.

src-3 participacon de los peses candidatos en los programas comunitarios.
ref-3  participation of the applicant countries in Community programmes.
tra-3 countries’ involvement in Community programmes.

Example 1: Examples of initial fully automatically generated sentences classified agtyrthe CMs.

Figure 1 shows WSR (WSR IMT-CM) and (ref) and the final translation (tra) for three of the
BLEU (BLEU IMT-CM) scores obtained varying initial fully automatically generated translations
7 for the MEAN CM. Additionally, we also show that were classified as correct by our CMs, and
the BLEU score (BLEU SMT) obtained by a fully thus, were not interactively translated by the user.
automatic SMT system as translation quality baseThe first translation (tra-1) is identical to the corre-
line, and the WSR score (WSR IMT) obtained bysponding reference translation (ref-1). The second
a conventional IMT system as user effort baselinetranslation (tra-2) corresponds to a correct trans-
This figure shows a continuous transition betweetation of the source sentence (src-2) that is differ-
the fully automatic SMT system and the conven-ent from the corresponding reference (ref-2). Fi-
tional IMT system. This transition occurs when nally, the third translation (tra-3) is an example of
rangingr,; betweern0.0 and0.6. This is an unde- a slightly incorrect translation.
sired effect, since for almost a half of the possible .
values forr, there is no change in the behaviour# Concluding Remarks

of our proposed IMT system. In this paper, we have presented a novel proposal
The RATIO CM confidence values depend onthat introduces sentence CMs into an IMT system
a word classification threshold,. We have car- to reduce user effort. Our proposal entails a mod-
ried out experimentation ranging, between0.0 ification of the user-machine interaction protocol
and1.0 and found that this value can be used tathat allows to achieve a balance between the user
solve the above mentioned undesired effect foeffort and the final translation error.
the MEAN CM. Specifically, varying the value of  We have carried out experimentation using two
Tw We can stretch the interval in which the tran-different sentence CMs. Varying the value of
sition between the fully automatic SMT systemthe sentence classification threshold, we can range
and the conventional IMT system is produced, alfrom a fully automatic SMT system to a conven-
lowing us to obtain smother transitions. Figure 2tional IMT system. Empirical results show that
shows WSR and BLEU scores for different val- our proposal allows to obtain almost perfect trans-
ues of the sentence classification threshqlds- lations while significantly reducing user effort.
ing 7, = 0.4. We show results only for this value  Future research aims at the investigation of im-
of 7, due to paper space limitations and becausproved CMs to be integrated in our IMT system.
7w = 0.4 produced the smoothest transition. Ac-
cording to Figure 2, using a sentence classificatio
threshold value 0.6 we obtain a WSR reduction \ork supported by the EC (FEDER/FSE) and
of 20% relative and an almost perfect translationthe Spanish MEC/MICINN under the MIPRCV
quality of 87 BLEU points. “Consolider Ingenio 2010” program (CSD2007-
It is worth of notice that the final translations 00018), the iTransDoc (TIN2006-15694-C0O2-01)
are compared with only one reference, thereforeand iTrans2 (TIN2009-14511) projects and the
the reported translation quality scores are clearly-PU scholarship AP2006-00691. Also supported
pessimistic. Better results are expected using Ay the Spanish MITyC under the erudito.com
multi-reference corpus. Example 1 shows thgTSI-020110-2009-439) project and by the Gener-
source sentence (src), the reference translatioalitat Valenciana under grant Prometeo/2009/014.
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Abstract

We study the challenges raised by Ara-
bic verb and subject detection and re-
ordering in Statistical Machine Transla-
tion (SMT). We show that post-verbal sub-
ject (VS) constructions are hard to trans-
late because they have highly ambiguous
reordering patterns when translated to En-
glish. In addition, implementing reorder-
ing is difficult because the boundaries of
VS constructions are hard to detect accu-
rately, even with a state-of-the-art Arabic
dependency parser. We therefore propose
to reorder VS constructions into SV or-
der for SMT word alignment only. This
strategy significantly improves BLEU and
TER scores, even on a strong large-scale
baseline and despite noisy parses.

1 Introduction

Modern Standard Arabic (MSA) is a morpho-
syntactically complex language, with different
phenomena from English, a fact that raises many
interesting issues for natural language processing
and Arabic-to-English statistical machine transla-
tion (SMT). While comprehensive Arabic prepro-
cessing schemes have been widely adopted for
handling Arabic morphology in SMT (e.g., Sa-
dat and Habash (2006), Zollmann et al. (2006),
Lee (2004)), syntactic issues have not received
as much attention by comparison (Green et
al. (2009), Crego and Habash (2008), Habash
(2007)).  Arabic verbal constructions are par-
ticularly challenging since subjects can occur in
pre-verbal (SV), post-verbal (VS) or pro-dropped
(“null subject”) constructions. As a result, training
data for learning verbal construction translations
is split between the different constructions and
their patterns; and complex reordering schemas
are needed in order to translate them into primarily
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pre-verbal subject languages (SVO) such as En-
glish.

These issues are particularly problematic in
phrase-based SMT (Koehn et al., 2003). Standard
phrase-based SMT systems memorize phrasal
translation of verb and subject constructions as ob-
served in the training bitext. They do not cap-
ture any generalizations between occurrences in
VS and SV orders, even for the same verbs. In
addition, their distance-based reordering models
are not well suited to handling complex reorder-
ing operations which can include long distance
dependencies, and may vary by context. Despite
these limitations, phrase-based SMT systems have
achieved competitive results in Arabic-to-English
benchmark evaluations.! However, error analysis
shows that verbs are still often dropped or incor-
rectly translated, and subjects are split or garbled
in translation. This suggests that better syntactic
modeling should further improve SMT.

We attempt to get a better understanding of
translation patterns for Arabic verb constructions,
particularly VS constructions, by studying their
occurrence and reordering patterns in a hand-
aligned Arabic-English parallel treebank. Our
analysis shows that VS reordering rules are not
straightforward and that SMT should therefore
benefit from direct modeling of Arabic verb sub-
ject translation. In order to detect VS construc-
tions, we use our state-of-the-art Arabic depen-
dency parser, which is essentially the CATIBEX
baseline in our subsequent parsing work in Mar-
ton et al. (2010), and is further described there. We
show that VS subjects and their exact boundaries
are hard to identify accurately. Given the noise
in VS detection, existing strategies for source-side
reordering (e.g., Xia and McCord (2004), Collins
et al. (2005), Wang et al. (2007)) or using de-

"http://www.itl.nist.gov/iad/
mig/tests/mt/2009/ResultsRelease/
currentArabic.html

Proceedings of the ACL 2010 Conference Short Papers, pages 178—183,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



Table 1: How are Arabic SV and VS translated in
the manually word-aligned Arabic-English paral-
lel treebank? We check whether V and S are trans-
lated in a “monotone” or “inverted” order for all
VS and SV constructions. “Overlap” represents
instances where translations of the Arabic verb
and subject have some English words in common,
and are not monotone nor inverted.

gold reordering | all verbs %
SV | monotone 2588 | 98.2
SV | inverted 15| 0.5
SV | overlap 35| 1.3
SV | total 2638 | 100
VS | monotone 1700 | 27.3
VS | inverted 4033 | 64.7
VS | overlap 502 | 8.0
VS | total 6235 | 100

pendency parses as cohesion constraints in decod-
ing (e.g., Cherry (2008); Bach et al. (2009)) are
not effective at this stage. While these approaches
have been successful for language pairs such as
German-English for which syntactic parsers are
more developed and relevant reordering patterns
might be less ambiguous, their impact potential on
Arabic-English translation is still unclear.

In this work, we focus on VS constructions
only, and propose a new strategy in order to bene-
fit from their noisy detection: for the word align-
ment stage only, we reorder phrases detected as
VS constructions into an SV order. Then, for
phrase extraction, weight optimization and decod-
ing, we use the original (non-reordered) text. This
approach significantly improves both BLEU and
TER on top of strong medium and large-scale
phrase-based SMT baselines.

2 VSreordering in gold Arabic-English
translation

We use the manually word-aligned parallel
Arabic-English Treebank (LDC2009ES82) to study
how Arabic VS constructions are translated into
English by humans. Given the gold Arabic syn-
tactic parses and the manual Arabic-English word
alignments, we can determine the gold reorder-
ings for SV and VS constructions. We extract VS
representations from the gold constituent parses
by deterministic conversion to a simplified depen-
dency structure, CATiB (Habash and Roth, 2009)
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(see Section 3). We then check whether the En-
glish translations of the Arabic verb and the Ara-
bic subject occur in the same order as in Arabic
(monotone) or not (inverted). Table 1 summa-
rizes the reordering patterns for each category. As
expected, 98% of Arabic SV are translated in a
monotone order in English. For VS constructions,
the picture is surprisingly more complex. The
monotone VS translations are mostly explained
by changes to passive voice or to non-verbal con-
structions (such as nominalization) in the English
translation.

In addition, Table 1 shows that verb subjects oc-
cur more frequently in VS order (70%) than in SV
order (30%). These numbers do not include pro-
dropped (“null subject”) constructions.

3 Arabic VS construction detection

Even if the SMT system had perfect knowledge
of VS reordering, it has to accurately detect VS
constructions and their spans in order to apply
the reordering correctly. For that purpose, we
use our state-of-ther-art parsing model, which is
essentially the CATIBEX baseline model in Mar-
ton et al. (2010), and whose details we summa-
rize next. We train a syntactic dependency parser,
MaltParser v1.3 with the Nivre “eager” algorithm
(Nivre, 2003; Nivre et al., 2006; Nivre, 2008) on
the training portion of the Penn Arabic Treebank
part 3 v3.1, hereafter PATB3 (Maamouri et al.,
2008; Maamouri et al., 2009). The training / de-
velopment split is the same as in Zitouni et al.
(2006). We convert the PATB3 representation into
the succinct CATiB format, with 8 dependency
relations and 6 POS tags, which we then extend
to a set of 44 tags using regular expressions of
the basic POS and the normalized surface word
form, similarly to Marton et al. (2010), following
Habash and Roth (2009). We normalize Alif Magq-
sura to Ya, and Hamzated Alifs to bare Alif, as is
commonly done in Arabic SMT.

For analysis purposes, we evaluate our subject
and verb detection on the development part of
PATB3 using gold POS tags. There are various
ways to go about it. We argue that combined de-
tection statistics of constructions of verbs and their
subjects (VATS), for which we achieve an F-score
of 74%, are more telling for the task at hand.”

2We divert from the CATiB representation in that a non-
matrix subject of a pseudo verb (An and her sisters) is treated
as a subject of the verb that is under the same pseudo verb.
This treatment of said subjects is comparable to the PATB’s.



These scores take into account the spans of both
the subject and the specific verb it belongs to, and
potentially reorder with. We also provide statistics
of VS detection separately (F-score 63%), since
we only handle VS here. This low score can be
explained by the difficulty in detecting the post-
verbal subject’s end boundary, and the correct verb
the subject belongs to. The SV construction scores
are higher, presumably since the pre-verbal sub-
ject’s end is bounded by the verb it belongs to. See
Table 2.

Although not directly comparable, our VS
scores are similar to those of Green et al. (2009).
Their VS detection technique with conditional
random fields (CRF) is different from ours in by-
passing full syntactic parsing, and in only detect-
ing maximal (non-nested) subjects of verb-initial
clauses. Additionally, they use a different train-
ing / test split of the PATB data (parts 1, 2 and 3).
They report 65.9% precision and 61.3% F-score.
Note that a closer score comparison should take
into account their reported verb detection accuracy
of 98.1%.

Table 2: Precision, Recall and F-scores for con-
structions of Arabic verbs and their subjects, eval-
uated on our development part of PATB3.

construction P R F

VATS (verbs & their subj.) | 73.84 | 74.37 | 74.11
VS 66.62 | 59.41 | 62.81
SV 86.75 | 61.07 | 71.68
VNS (verbs w/ null subj.) | 76.32 | 92.04 | 83.45
verbal subj. exc. null subj. | 72.46 | 60.18 | 65.75
verbal subj. inc. null subj. | 73.97 | 74.50 | 74.23
verbs with non-null subj. 91.94 | 76.17 | 83.31
SV or VS 72.19 | 59.95 | 65.50

4 Reordering Arabic VS for SMT word
alignment

Based on these analyses, we propose a new
method to help phrase-based SMT systems deal
with Arabic-English word order differences due to
VS constructions. As in related work on syntactic
reordering by preprocessing, our method attempts
to make Arabic and English word order closer to
each other by reordering Arabic VS constructions
into SV. However, unlike in previous work, the re-
ordered Arabic sentences are used only for word
alignment. Phrase translation extraction and de-
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coding are performed on the original Arabic word
order. Preliminary experiments on an earlier ver-
sion of the large-scale SMT system described in
Section 6 showed that forcing reordering of all
VS constructions at training and test time does
not have a consistent impact on translation qual-
ity: for instance, on the NIST MTO8-NW test set,
TER slightly improved from 44.34 to 44.03, while
BLEU score decreased from 49.21 to 49.09.

Limiting reordering to alignment allows the sys-
tem to be more robust and recover from incorrect
changes introduced either by incorrect VS detec-
tion, or by incorrect reordering of a correctly de-
tected VS. Given a parallel sentence (a,e), we
proceed as follows:

1. automatically tag VS constructions in a

2. generate new sentence a' = reorder(a) by

reordering Arabic VS into SV

. get word alignment wa’ on new sentence pair
(@)

. using mapping from a to a’, get correspond-
ing word alignment wa = unreorder(wa’)
for the original sentence pair (a, €)

S Experiment set-up

We use the open-source Moses toolkit (Koehn et
al., 2007) to build two phrase-based SMT systems
trained on two different data conditions:

o medium-scale the bitext consists of 12M
words on the Arabic side (LDC2007E103).
The language model is trained on the English
side of the large bitext.

large-scale the bitext consists of several
newswire LDC corpora, and has 64M words
on the Arabic side. The language model is
trained on the English side of the bitext aug-
mented with Gigaword data.

Except from this difference in training data, the
two systems are identical. They use a standard
phrase-based architecture. The parallel corpus is
word-aligned using the GIZA++ (Och and Ney,
2003), which sequentially learns word alignments
for the IBM1, HMM, IBM3 and IBM4 models.
The resulting alignments in both translation di-
rections are intersected and augmented using the
grow-diag-final-and heuristic (Koehn et al., 2007).
Phrase translations of up to 10 words are extracted
in the Moses phrase-table. We apply statistical
significance tests to prune unreliable phrase-pairs



and score remaining phrase-table entries (Chen et
al., 2009). We use a 5-gram language model with
modified Kneser-Ney smoothing. Feature weights
are tuned to maximize BLEU on the NIST MTO06
test set.

For all systems, the English data is tokenized
using simple punctuation-based rules. The Arabic
side is segmented according to the Arabic Tree-
bank (PATB3) tokenization scheme (Maamouri et
al., 2009) using the MADA+TOKAN morpholog-
ical analyzer and tokenizer (Habash and Rambow,
2005). MADA-produced Arabic lemmas are used
for word alignment.

6 Results

We evaluate translation quality using both BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006) scores on three standard evaluation test
sets from the NIST evaluations, which yield more
than 4400 test sentences with 4 reference transla-
tions. On this large data set, our VS reordering
method remarkably yields statistically significant
improvements in BLEU and TER on the medium
and large SMT systems at the 99% confidence
level (Table 3).

Results per test set are reported in Table 4. TER
scores are improved in all 10 test configurations,
and BLEU scores are improved in 8 out of the 10
configurations. Results on the MTOS test set show
that improvements are obtained both on newswire
and on web text as measured by TER (but not
BLEU score on the web section.) It is worth noting
that consistent improvements are obtained even on
the large-scale system, and that both baselines are
full-fledged systems, which include lexicalized re-
ordering and large 5-gram language models.

Analysis shows that our VS reordering tech-
nique improves word alignment coverage (yield-
ing 48k and 330k additional links on the medium
and large scale systems respectively). This results
in larger phrase-tables which improve translation
quality.

7 Related work

To the best of our knowledge, the only other ap-
proach to detecting and using Arabic verb-subject
constructions for SMT is that of Green et al.
(2009) (see Section 3), which failed to improve
Arabic-English SMT. In contrast with our reorder-
ing approach, they integrate subject span informa-
tion as a log-linear model feature which encour-
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Table 3: Evaluation on all test sets: on the total
of 4432 test sentences, improvements are statisti-
cally significant at the 99% level using bootstrap
resampling (Koehn, 2004)

system BLEU r4n4 (%)|TER (%)
medium baseline |44.35 48.34
+ VS reordering |44.65 (+0.30) |47.78 (-0.56)
large baseline |51.45 42.45
+ VS reordering |51.70 (+0.25) |42.21 (-0.24)

ages a phrase-based SMT decoder to use phrasal
translations that do not break subject boundaries.

Syntactically motivated reordering for phrase-
based SMT has been more successful on language
pairs other than Arabic-English, perhaps due to
more accurate parsers and less ambiguous reorder-
ing patterns than for Arabic VS. For instance,
Collins et al. (2005) apply six manually defined
transformations to German parse trees which im-
prove German-English translation by 0.4 BLEU
on the Europarl task. Xia and McCord (2004)
learn reordering rules for French to English trans-
lations, which arguably presents less syntactic dis-
tortion than Arabic-English. Zhang et al. (2007)
limit reordering to decoding for Chinese-English
SMT using a lattice representation. Cherry (2008)
uses dependency parses as cohesion constraints in
decoding for French-English SMT.

For Arabic-English phrase-based SMT, the im-
pact of syntactic reordering as preprocessing is
less clear. Habash (2007) proposes to learn syntac-
tic reordering rules targeting Arabic-English word
order differences and integrates them as deter-
ministic preprocessing. He reports improvements
in BLEU compared to phrase-based SMT limited
to monotonic decoding, but these improvements
do not hold with distortion. Instead of apply-
ing reordering rules deterministically, Crego and
Habash (2008) use a lattice input to represent alter-
nate word orders which improves a ngram-based
SMT system. But they do not model VS construc-
tions explicitly.

Most previous syntax-aware word alignment
models were specifically designed for syntax-
based SMT systems. These models are often
bootstrapped from existing word alignments, and
could therefore benefit from our VS reordering ap-
proach. For instance, Fossum et al. (2008) report
improvements ranging from 0.1 to 0.5 BLEU on
Arabic translation by learning to delete alignment



Table 4: VS reordering improves BLEU and TER scores in almost all test conditions

metrics, and 2 MT systems

on 5 test sets, 2

BLEU r4n4 (%) \
test set MTO03 MT04 MTO05 MTO8nw MTO08wb
medium baseline | 45.95 44.94 48.05 44.86 32.05
+ VS reordering | 46.33 (+0.38) | 45.03 (+0.09) | 48.69 (+0.64) | 45.06 (+0.20) | 31.96 (-0.09)
large baseline | 52.3 52.45 54.66 52.60 39.22
+ VS reordering | 52.63 (+0.33) | 52.34 (-0.11) | 55.29 (+0.63) | 52.85 (+0.25) | 39.87 (+0.65)
TER (%) \
test set MTO03 MTO04 MTO05 MTO08nw MTO08wb
medium baseline | 48.77 46.45 45.00 47.74 58.02
+ VS reordering | 48.31 (-0.46) | 46.10 (-0.35) | 44.29 (-0.71) | 47.11 (-0.63) | 57.30 (-0.72)
large baseline | 43.33 40.42 39.15 41.81 52.05
+ VS reordering | 42.95 (-0.38) | 40.40 (-0.02) | 38.75(-0.40) | 41.51 (-0.30) | 51.86 (-0.19)

links if they degrade their syntax-based translation
system. Departing from commonly-used align-
ment models, Hermjakob (2009) aligns Arabic and
English content words using pointwise mutual in-
formation, and in this process indirectly uses En-
glish sentences reordered into VS order to collect
cooccurrence counts. The approach outperforms
GIZA++ on a small-scale translation task, but the
impact of reordering alone is not evaluated.

8 Conclusion and future work

We presented a novel method for improving over-
all SMT quality using a noisy syntactic parser: we
use these parses to reorder VS constructions into
SV for word alignment only. This approach in-
creases word alignment coverage and significantly
improves BLEU and TER scores on two strong
SMT baselines.

In subsequent work, we show that matrix (main-
clause) VS constructions are reordered much more
frequently than non-matrix VS, and that limit-
ing reordering to matrix VS constructions for
word alignment further improves translation qual-
ity (Carpuat et al., 2010). In the future, we plan to
improve robustness to parsing errors by using not
just one, but multiple subject boundary hypothe-
ses. We will also investigate the integration of VS
reordering in SMT decoding.
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Abstract

We propose a corpus-based probabilis-
tic framework to extract hidden common
syntax across languages from non-parallel
multilingual corpora in an unsupervised
fashion. For this purpose, we assume a
generative model for multilingual corpora,
where each sentence is generated from a
language dependent probabilistic context-
free grammar (PCFG), and these PCFGs
are generated from a prior grammar that
is common across languages. We also de-
velop a variational method for efficient in-
ference. Experiments on a non-parallel
multilingual corpus of eleven languages
demonstrate the feasibility of the proposed
method.

1 Introduction

Languages share certain common proper-
ties (Pinker, 1994). For example, the word order
in most European languages is subject-verb-object
(SVO), and some words with similar forms are
used with similar meanings in different languages.
The reasons for these common properties can be
attributed to: 1) a common ancestor language,
2) borrowing from nearby languages, and 3) the
innate abilities of humans (Chomsky, 1965).

We assume hidden commonalities in syntax
across languages, and try to extract a common
grammar from non-parallel multilingual corpora.
For this purpose, we propose a generative model
for multilingual grammars that is learned in an
unsupervised fashion. There are some computa-
tional models for capturing commonalities at the
phoneme and word level (Oakes, 2000; Bouchard-
Coté et al., 2008), but, as far as we know, no at-
tempt has been made to extract commonalities in
syntax level from non-parallel and non-annotated
multilingual corpora.
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In our scenario, we use probabilistic context-
free grammars (PCFGs) as our monolingual gram-
mar model. We assume that a PCFG for each
language is generated from a general model that
are common across languages, and each sentence
in multilingual corpora is generated from the lan-
guage dependent PCFG. The inference of the gen-
eral model as well as the multilingual PCFGs can
be performed by using a variational method for
efficiency. Our approach is based on a Bayesian
multitask learning framework (Yu et al., 2005;
Daumé 111, 2009). Hierarchical Bayesian model-
ing provides a natural way of obtaining a joint reg-
ularization for individual models by assuming that
the model parameters are drawn from a common
prior distribution (Yu et al., 2005).

2 Related work

The unsupervised grammar induction task has
been extensively studied (Carroll and Charniak,
1992; Stolcke and Omohundro, 1994; Klein and
Manning, 2002; Klein and Manning, 2004; Liang
et al., 2007). Recently, models have been pro-
posed that outperform PCFG in the grammar in-
duction task (Klein and Manning, 2002; Klein and
Manning, 2004). We used PCFG as a first step
for capturing commonalities in syntax across lan-
guages because of its simplicity. The proposed
framework can be used for probabilistic grammar
models other than PCFG.

Grammar induction using bilingual parallel cor-
pora has been studied mainly in machine transla-
tion research (Wu, 1997; Melamed, 2003; Eisner,
2003; Chiang, 2005; Blunsom et al., 2009; Sny-
der et al., 2009). These methods require sentence-
aligned parallel data, which can be costly to obtain
and difficult to scale to many languages. On the
other hand, our model does not require sentences
to be aligned. Moreover, since the complexity of
our model increases linearly with the number of
languages, our model is easily applicable to cor-
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pora of more than two languages, as we will show
in the experiments. To our knowledge, the only
grammar induction work on non-parallel corpora
is (Cohen and Smith, 2009), but their method does
not model a common grammar, and requires prior
information such as part-of-speech tags. In con-
trast, our method does not require any such prior
information.

3 Proposed Method

3.1 Model

Let X = {X},.1, be a non-parallel and non-
annotated multilingual corpus, where X is a set
of sentences in language [, and L is a set of lan-
guages. The task is to learn multilingual PCFGs
G = {Gi},., and a common grammar that gen-
erates these PCFGs. Here, G| (K, W, ®)
represents a PCFG of language [, where K is a
set of nonterminals, W is a set of terminals, and
®, is a set of rule probabilities. Note that a set of
nonterminals K is shared among languages, but
a set of terminals W, and rule probabilities ®;
are specific to the language. For simplicity, we
consider Chomsky normal form grammars, which
have two types of rules: emissions rewrite a non-
terminal as a terminal A — w, and binary pro-
ductions rewrite a nonterminal as two nontermi-
nals A — BC,where A, B,C € K andw € W.

The rule probabilities for each nonterminal
A of PCFG @) in language [ consist of: 1)
041 = {014t }1e10,13> Where 040 and 0,4 repre-
sent probabilities of choosing the emission rule
and the binary production rule, respectively, 2)
$ia = {dBclp ek, Where ¢rapc repre-
sents the probability of nonterminal production
A — BC, and 3) ¥4 = {wlAw}wer’ where
11 A Tepresents the probability of terminal emis-
sion A — w. Note that ;40 + 0141 = 1, O14¢ > 0,
d>pcPiapc = 1, dapc = 0, 32, Yiaw = 1,
and 14, > 0. In the proposed model, multino-
mial parameters 0;4 and ¢;4 are generated from
Dirichlet distributions that are common across lan-
guages: 04 ~ Dir(a) and ¢4 ~ Dir(aﬁ),
since we assume that languages share a common
syntax structure. o and aﬁ represent the param-
eters of a common grammar. We use the Dirichlet
prior because it is the conjugate prior for the multi-
nomial distribution. In summary, the proposed
model assumes the following generative process
for a multilingual corpus,

1. For each nonterminal A € K:
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Figure 1: Graphical model.

(a) For each rule type t € {0,1}:
i. Draw common rule type parameters
al, ~ Gam(a’,b%)
(b) For each nonterminal pair (B, C):
i. Draw common production parameters
% po ~ Gam(a?,b%)

2. For each language [ € L:

(a) For each nonterminal A € K:

i. Draw rule type parameters
01 A Dir(a%)
ii. Draw binary production parameters
Pra ~ Dir(aﬁ)
iii. Draw emission parameters
¥4 ~ Dir(a?)
(b) For each node ¢ in the parse tree:

i. Choose rule type
ty; ~ Mult((hzi)
ii. Ift;; = 0:
A. Emit terminal
Lii ~ Mult(/lplzl)
iii. Otherwise:
A. Generate children nonterminals
(ziL()» 2ir(s)) ~ Mult(,,.),

where L(i) and R(7) represent the left and right
children of node ¢. Figure 1 shows a graphi-
cal model representation of the proposed model,
where the shaded and unshaded nodes indicate ob-
served and latent variables, respectively.

3.2 Inference

The inference of the proposed model can be ef-
ficiently computed using a variational Bayesian
method. We extend the variational method to
the monolingual PCFG learning of Kurihara and
Sato (2004) for multilingual corpora. The goal
is to estimate posterior p(Z, ®, a|X), where Z
is a set of parse trees, ® = {®;}, 7 is a
set of language dependent parameters, ®;
{01A7¢ZA7¢IA}AGK’ and o {ail’az}AeK
is a set of common parameters. In the variational
method, posterior p(Z, ®, a| X) is approximated
by a tractable variational distribution ¢(Z, ®, ).



We use the following variational distribution,
1(2,®,0) = [Ja@ha@y) [[a(zu)
A ld

< [T a@)a(éra)a(wa), (1)

1,A

where we assume that hyperparameters ¢(a% ) and

q(a‘f‘) are degenerated, or () = (), and

infer them by point estimation instead of distribu-
tion estimation. We find an approximate posterior
distribution that minimizes the Kullback-Leibler
divergence from the true posterior. The variational
distribution of the parse tree of the dth sentence in
language [ is obtained as follows,

9 d) C(AHBCEZZdvlvd)
9(zi) < ][] (ﬁANﬁABC)
A—BC

6 v
X H (WlAOWlAw

A—w

C(A—w;Z4,l,d)
) e

where C(r; 2z,1,d) is the count of rule r that oc-
curs in the dth sentence of language [ with parse
tree z. The multinomial weights are calculated as
follows,

g = exp(E g, ) logbiar]), (3
T Ape = XD By, ) [logdranc]), @)
Tiw = eP(Eyqp ) [l0gtiau]). )

The variational Dirichlet parameters for ¢(6;4) =

Dir(v}4), a(¢ra) = Dir(vfs), and q(3bra) =
Dir(’yﬁl), are obtained as follows,

Viar = &+ Y 0(210)C(A t; z1a,1,d), (6)

d,214

PYI(%‘XBC - aﬁBC—i_ Z q(Zld)C(A—)BC7 Zld;s l7 d)7

d,Z21q
(7
Tw = 0%+ 3 q(212)C(A — w; 24,1, d),
d, 214
(8)

where C(A,t;z,1,d) is the count of rule type ¢
that is selected in nonterminal A in the dth sen-
tence of language [ with parse tree z.

The common rule type parameter ait that min-
imizes the KL divergence between the true pos-
terior and the approximate posterior can be ob-
tained by using the fixed-point iteration method
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described in (Minka, 2000). The update rule is as
follows,

aG(neW) - a’—1 —I—Oz?th (\P(Zt’ a%t’) B \I’(a%t))
A O+ 3 (T Waw) — \P(VleAt))(%’

where L is the number of languages, and ¥ (z) =
OdlogI'(x)

ox
common production parameter aﬁ e can be up-

dated as follows,

is the digamma function. Similarly, the

a® — 1+ aﬁBcLJABC'

$(new) 10

“apc b+ 3 Jape 1o

where JABC = \:[1(231701 O‘ZB’C’) - \I](OéﬁBC),
and Jjype = V(X pr o 71%43/0/) - ‘I’(V&Bc)'

Since factored variational distributions depend
on each other, an optimal approximated posterior
can be obtained by updating parameters by (2) -
(10) alternatively until convergence. The updat-
ing of language dependent distributions by (2) -
(8) is also described in (Kurihara and Sato, 2004,
Liang et al., 2007) while the updating of common
grammar parameters by (9) and (10) is new. The
inference can be carried out efficiently using the
inside-outside algorithm based on dynamic pro-
gramming (Lari and Young, 1990).

After the inference, the probability of a com-
mon grammar rule A — BC is calculated by
$a_pc = 1éapo, where 0 = af/(af + o)
and dapc = afipe/ > BI.CY ) on Tepresent
the mean values of 05 and ¢;4 g, respectively.

4 Experimental results

We evaluated our method by employing the Eu-
roParl corpus (Koehn, 2005). The corpus con-
sists of the proceedings of the European Parlia-
ment in eleven western European languages: Dan-
ish (da), German (de), Greek (el), English (en),
Spanish (es), Finnish (fi), French (fr), Italian (it),
Dutch (nl), Portuguese (pt), and Swedish (sv), and
it contains roughly 1,500,000 sentences in each
language. We set the number of nonterminals at
| K| = 20, and omitted sentences with more than
ten words for tractability. We randomly sampled
100,000 sentences for each language, and ana-
lyzed them using our method. It should be noted
that our random samples are not sentence-aligned.

Figure 2 shows the most probable terminals of
emission for each language and nonterminal with
a high probability of selecting the emission rule.



2: verb and auxiliary verb (V)

[da] det jeg vi der de derfor dette forhandlingen hvad

[de] ist sind haben wird hat miissen méchte meine werden kann
[el] , elvot yio vo Tpémel Bev Kou ouTd pe OTL

[en] is are , will have has must was should you

[es] es hay gracias mafiana qué tiene tenemos trata lugar son
[fi] on ei ovat olisi oli toimitetaan eivat voi koskee voidaan
[fr] " ne est n' en a lieu aura vous avons

[it] , & che non si discussione svolgera presidente ' sono
[nl] is zijn moeten heeft hebben moet kan zal wil wordt

[pt] , que é ndo senhor parlamento de aprova amanhd com

[sv] det jag vi detta vad dérfor de debatten ni den

5: noun (N)

[da] det dem her dette sig dag os noget betznkningen over

[de] abstimmung aussprache kommission bericht frage parlament
[el] Gépa éxkBeon Tpomoloy(a k. EmTpom YAgLouo mpdToon

[en] vote debate president commission much like council minutes
[es] debate presidente informe parlamento ello comisario sr

[fi] unionin " yhteisén hetkelld enemmdn uudelleen kerran heidén
[fr] vote débat parlement rapport commission question président
[it] votazione parlamento commissione relazione risoluzione

[n1] debat stemming commissie parlement verslag voorzitter

[pt] votagdo comissdo questdo relatério situacdo sessdo proposta
[sv] det rum damer héar detta oss sig frdgan forsta dem

7: subject (SBJ)

[da] er har vil skal kan md var finder ber ville

[de] ich wir das , es sie - dies vielen (

[el] , Bx Bev Yngogopia 6TL Ty MOAD ouTd Mpoebpe To
[en] we i that it this there what ( thank they

[es] no se ¢ esto por lo me pero muchas tendré

[fi] , ettd puhemies kiitoksia mietintd joka parlamentin mita
[fr] nous je il c¢' cela j' ce 1 mais vous

[it] non ( la e questo ma si vorrei signor mi

[n1] dat ik wij het er we dit u daar wat

[pt] o , que encerrado presidente terd obrigado lugar isso ndo
[sv] &r har mdste kommer kan vill skall finns skulle var
9: preposition (PR)

[da] , af for i og til pd med om fra

[de] und , in fiir auf von zu mit an auch

[el] kou / ( o , ™oL omd elval Tw yL&

[en] to of in , for not and on with take

[es] , de que a en por con y para sobre

[fi] ja euroopan , on kuin / : tai ovat eika

[fr] , de a que pour sur dans d' et par

[it] di e della del in a ( dell' dei da

[n1] van in , voor en op met aan over maar

[pt] de da do e para em dos / é com

[sv] i och fér av till pd om med som :

11: punctuation (.)

[da] . ? ) ! : f.eks. ... sessionen vedtoges bl.a.
[de] . ! ? ) : protokolls ... sitzungsperiode "
[el] . ) ! ; : K. TPOKTLKGV ... T.H. K.K.

[en] . ?2) Lam :pm ... " ;

[es] . ?2) ! : . 5 » " anterior

[fi] . 2 ) v ... " -; Gantd

[fr] . ?2)Vt1la: ...»;

[it] . ? ) ! : sessione ... " ; precedente

[nl] . ?) ! : zitting ... gesloten " onderbroken
[pt] . 2 ) ! " anterior ; urgentes

[sv] . 1) ? : protokoll ... sessionen t.ex. "

13: determiner (DT)

[da] ikke at en den ogsd de et gerne det vare

[de] die der eine den das ein diese im des dieser
[el] va To TNV n TN TLg elval T otV pLa

[en] the a be mr very an been not no in

[es] el ha este sefior un se hemos debemos han debe
[fi] ole myés kuitenkin vield hyvin siis erittain nyt jo vain
[fr] le la les 1' une cette un ce ces des

[it] 1la il 1" un una le in i a gli

[nl] de het een deze dit geen die onze mijn mijnheer
[pt] a o uma um os de as esta este em

[sv] att inte en mycket ocksd ett foér vara om &ga

Figure 2: Probable terminals of emission for each
language and nonterminal.

01611 (R—S.) 0.11
1676 (S— SBJ VP) 0.06
6212 (VP—V NP) 0.04
12135 (NP—DT N) 0.19

15— 17 19 (NP — NP N) 0.07
17—59 (NP—N PR) 0.07
15— 135 (NP—DT N) 0.06

Figure 3: Examples of inferred common gram-
mar rules in eleven languages, and their proba-
bilities. Hand-provided annotations have the fol-
lowing meanings, R: root, S: sentence, NP: noun
phrase, VP: verb phrase, and others appear in Fig-
ure 2.

We named nonterminals by using grammatical cat-
egories after the inference. We can see that words
in the same grammatical category clustered across
languages as well as within a language. Fig-
ure 3 shows examples of inferred common gram-
mar rules with high probabilities. Grammar rules
that seem to be common to European languages
have been extracted.

5 Discussion

We have proposed a Bayesian hierarchical PCFG
model for capturing commonalities at the syntax
level for non-parallel multilingual corpora. Al-
though our results have been encouraging, a num-
ber of directions remain in which we must extend
our approach. First, we need to evaluate our model
quantitatively using corpora with a greater diver-
sity of languages. Measurement examples include
the perplexity, and machine translation score. Sec-
ond, we need to improve our model. For ex-
ample, we can infer the number of nonterminals
with a nonparametric Bayesian model (Liang et
al., 2007), infer the model more robustly based
on a Markov chain Monte Carlo inference (John-
son et al., 2007), and use probabilistic grammar
models other than PCFGs. In our model, all the
multilingual grammars are generated from a gen-
eral model. We can extend it hierarchically using
the coalescent (Kingman, 1982). That model may
help to infer an evolutionary tree of languages in
terms of grammatical structure without the etymo-
logical information that is generally used (Gray
and Atkinson, 2003). Finally, the proposed ap-
proach may help to indicate the presence of a uni-
versal grammar (Chomsky, 1965), or to find it.
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Deterministic parsing methods achieve both effec
tive time complexity and accuracy not far from
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Abstract

Nivre's method was improved by en-
hancing deterministic dependency parsing
through application of a tree-based model.
The model considers all words necessary
for selection of parsing actions by includ-
ing words in the form of trees. It chooses
the most probable head candidate from
among the trees and uses this candidate to
select a parsing action.

In an evaluation experiment using the

Penn Treebank (WSJ section), the pro-
posed model achieved higher accuracy
than did previous deterministic models.

Although the proposed model’s worst-case
time complexity isO(n?), the experimen-

tal results demonstrated an average pars-
ing time not much slower thaf(n).

Introduction

idea. Instead of selecting a parsing action for

two words, as in Nivre’s model, our tree-based

model first chooses the most probable head can-
didate from among the trees through a tournament
and then decides the parsing action between two
trees.

Global-optimization parsing methods are an-
other common approach (Eisner, 1996; McDon-
ald et al.,, 2005). Koo et al. (2008) studied
semi-supervised learning with this approach. Hy-
brid systems have improved parsing by integrat-
ing outputs obtained from different parsing mod-
els (Zhang and Clark, 2008).

Our proposal can be situated among global-
optimization parsing methods as follows. The pro-
posed tree-based model is deterministic but takes a
step towards global optimization by widening the
search space to include all necessary words con-
nected by previously judged head-dependent rela-
tions, thus achieving a higher accuracy yet largely
retaining the speed of deterministic parsing.

2 Deterministic Dependency Parsing

those of the most accurate methods. One suckl Dependency Parsing
deterministic method is Nivre’s method, an incre-A dependency parser receives an input sentence

mental parsing method whose time complexity isy = wy, ws, .
linear in the number of words (Nivre, 2003). Still, graph G =
deterministic methods can be improved. As a spefwy, w, .

.., w, and computes a dependency
(W, A). The set of node$V =
.., wy} corresponds to the words of a

cific example, Nivre’s model greedily decides thesentence, and the node is the root ofG. A is
parsing action only from two words and their lo- the set of arc$w;, w;), each of which represents a
cally relational words, which can lead to errors.
In the field of Japanese dependency parsings thedependent

Iwatate et al. (2008) proposed a tournament model In this paper, we assume that the resulting de-
that takes all head candidates into account in judgpendency graph for a sentence is well-formed and
ing dependency relations. This method assumesrojective (Nivre, 2008) (G is well-formed if and
backward parsing because the Japanese depeamnly if it satisfies the following three conditions of
dency structure has a head-final constraint, so thafeingsingle-headegacyclic, androoted.

any word’s head is located to its right. _
Here, we propose a tree-based model, applicg2 Nivre’s Method

ble to any projective language, which can be conAn incremental dependency parsing algorithm
sidered as a kind of generalization of lwatate’swas first proposed by (Covington, 2001). After

dependency relation whete; is theheadandw;
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Table 1: Transitions for Nivre’s method and the proposed method.

Transition Precondition

Left-Arc | (o|ws, w;|B, A) = (o, w;|6, AU {(w;,w;)}) 1 £ 0A - Jwy (wg,w;) € A
Nivre’s | Right-Arc | (o|w;, w;|3, A) = (o|w;lw;, B, AU {(w;,w;)})
Method | Reduce | (o|wi,3,4) = (0,3,4) Jwy (wg, w;) € A

Shift (o,wj|8,A) = (o|w;, B, A)
Proposed Left-Arc | (olt;, t;]8,A) = (0,t;]8, AU {(w;,w;)}) 1#£0
Method | RIGht-Arc | (olts, t;]8, A) = (olts, 8, AU {(mphc(ti, t;),w;)})

Shift (0,18, 4) = (alt;, 3, A)

studies taking data-driven approaches, by (Kudd-eatures Used for Selecting Reduce

and Matsumoto, 2002), (Yamada and Matsumotorhe features used in (Nivre and Scholz, 2004) to
2003), and (Nivre, 2003), the deterministic incre-gefine a state transition are basically obtained from
mental parser was generalized to a state transitioge two target wordsy; andw;, and their related
system in (Nivre, 2008)_- _words. These words are not sufficient to select Re-
Nivre’s method applying an arc-eager algorithmgce, pecause this action means thahas no de-

works by using a stack of words denoted:asor  pendency relation with any word in the stack.
a bufferg initially containing the sentence Pars-

ing is formulated as a quadrupl, T, sinit, S;),  Freconditions
where each component is defined as follows: When the classifier selects a transition, the result-
ing graph satisfies well-formedness and projectiv-
e Sis a set of states, each of which is denotedty only under the preconditions listed in Table 1.

as(o,3,4) € 5. Even though the parsing seems to be formulated as
e T is a set of transitions, and each element of, four-class classifier problem, it is in fact formed
T; is afunctiont, : 5 — 5. of two types of three-class classifiers.
o sinit = ([wol, [wi,...,wy],¢) is the initial Solving these problems and selecting a more
state. suitable dependency relation requires a parser that
e S is a set of terminal states. considers more global dependency relations.

Syntactic analysis generates a sequence of optimgl - Tree-Based Parsing Applied to Nivre’s
transitionst, provided by an oracle : S — T, Method

applied to a target consisting of the stack’s top ele-

mentw; and the first element; in the buffer. The 3.1 Overall Procedure

oracle is constructed as a classifier trained on treéfree-based parsing uses trees as the procedural el-

bank data. Each transition is defined in the uppeements instead of words. This allows enhance-

block of Table 1 and explained as follows: ment of previously proposed deterministic mod-

els such as (Covington, 2001; Yamada and Mat-

Left-Arc Make w; the head ofw; and popw;,  sumoto, 2003). In this paper, we show the applica-
wherew; is located at the stack top (denotedtjon of tree-based parsing to Nivre’s method. The
aso|w;), when the buffer head is; (denoted parser is formulated as a state transition system

asw;|f). (S, Ts, Sinit, St), similarly to Nivre’s parser, but
Right-Arc Makew; the head ofv;, and pushv;.  andg for a states = (0, 3, A) € S denote a stack
Reduce Popuw;, located at the stack top. of trees and a buffer of trees, respectively. A tree
Shift Pushthe Worduj, located at the buffer head, t; € T is defined as the tree rooted by the warg

onto the stack top. and the initial state i8;,,;; = ([to], [t1, - . -, tn], @),

) . which is formed from the input sentenge
The method explained thus far has the following The state transitior, are decided through the

drawbacks. following two steps.

Locality of Parsing Action Selection 1. Select the most probable head candidate
The dependency relations are greedily determined, (MPHC): For the tree; located at the stack
so when the transition Right-Arc adds a depen-  top, search for and select the MPHC foy,
dency arc(w;,w;), a more probable head af; which is the root word oft; located at the
located in the stack is disregarded as a candidate.  buffer head. This procedure is denoted as a
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I; Ij
most probable
head candidate }vas T
robot mphc (t,,t ;)
' "
watched' The biped separately| by his company
4 B Right-Arc
[ i g 3
across . was
head candidates W] robé \ Id
the telescope so P
with P SO
the The biped separately | i | by | his company

Figure 1: Example of a tournament. . - .
g P Figure 2: Example of the transition Right.

function mphc(t;, t;), and its details are ex- _
plained in§3.2. 2008). Since the Japanese language has the head-

final property, the tournament model itself consti-
2. Select a transition: Choose a transition, tutes parsing, whereas for parsing a general pro-
by using an oracle, from among the follow- jective language, the tournament model can only
ing three possibilities (explained in detail in be used as part of a parsing algorithm.

§3.3): Figure 1 shows a tournament for the example
of “with,” where the word “watched” finally wins.
Although only the words on the left-hand side of
treet; are searched, this does not mean that the
tree-based method considers only one side of a de-
pendency relation. For example, when we apply
the tree-based parsing to Yamada’'s method, the
search problems on both sides are solved.

To implementmphc(t;, t;), a binary classifier
is built to judge which of two given words is more
These transitions correspond to three possibilitie@PPropriate as the head for another input word.
for the relation betweet) andt;: (1) a word oft,; This classifier concerns t_hree yvords, namely, the
is a dependent of a word of; (2) aword oft;jisa WO words! (left) andr (right) in #;, whose ap-
dependent of a word df; or (3) the two trees are propriateness as the hea_td is compare_d for the de-
not related. pendentw;. All word pairs of [ andr in t; are

The formulations of these transitions in theCOMpared repeatedly in a “tournament,” and the
lower block of Table 1 correspond to Nivre’s tran- SUTVivor is regarded as the MPHC @f.
sitions of the same name, except that here a tran- The classifier is generated through learning of
sition is applied to a tree. This enhancement froniraining examples for alt; and w; pairs, each
words to trees allows removal of both the Reducéf Which generates examples comparing the true

Left-Arc Make w; the head ofw; and pop
t;, wheret; is at the stack top (denoted
asolt;, with the tail beings), when the
buffer head ig; (denoted as;|5).

Right-Arc Make the MPHC the head af;,
and pop the MPHC.

Shift Push the tree; located at the buffer
head onto the stack top.

transition and certain preconditions. head and other (inappropriate) headstin Ta-
ble 2 lists the features used in the classifier. Here,
3.2 Selection of Most Probable Head lex(X) and posk) mean the surface form and part
Candidate of speech ofX, respectively. X'*/* means the

By usingmphc(t;, t;), a word located far fron; dependents AOX located on the left-hand side of
(the head of ;) can be selected as the head canX, while X"*9"" means those on the right. Also,
didate int;. This selection process decreases thel "/ means the head of. The feature design
number of errors resulting from greedy decisionconcerns three additional words occurring after
considering only a few candidates. wj, as well, denoted a®; 1, wj42, wj43.

Various procedures can be considered for im- o ]
plementingmphc(t;, t;). One way is to apply the 3.3 Transition Selection
tournament procedure to the wordginThe tour- A transition is selected by a three-class classifier
nament procedure was originally introduced forafter deciding the MPHC, as explained §8.1.
parsing methods in Japanese by (lwatate et alTable 1 lists the three transitions and one precon-
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Table 2: Features used for a tournament. Table 3: Features used for a state transition.

pos(), lex(l) pos(w;), lex(w;)
pos("*%), pos{*/"), pos{"'s") pos(u;’"), posto;™*™), lex(u;’"), lex(w]™")

pos(), lex(r) pos(MPHC), lex(MPHC)

posg-ced) posgie/t), posgrioht) pos(MPH(< ) pos(MPHC:/!), pos(MPHC9"t)

pos(;), lex(w;), posg ") lex(MPHC %4, lex(MPHC*/?), lex(MPHC /9"t

POSw;+1), 1eX(w;+1), POS;+2), lex(w;+2) pos(w;), lex@w;), pos@ué"ft), Iex(wé.eft)

POS(;+3), lex(w;+3) POS(w;+1), 1€X(wj 1), POS;12), IEX(w;+2), POS(;3), lex(w;3)

dition. The transition Shift indicates that the tar-was used in several other previous works, enabling
get treest; andt; have no dependency relations. mutual comparison with the methods reported in
The transition Right-Arc indicates generation ofthose works.
the dependent-head relation betweenand the The SVM¥"* packagé was used to build the
result ofmphc(t;, t;), i.e., the MPHC forw;. Fig-  support vector machine classifiers. The binary
ure 2 shows an example of this transition. Theclassifier for MPHC selection and the three-class
transition Left-Arc indicates generation of the de-classifier for transition selection were built using a
pendency relation in whichy; is the head ofv;.  cubic polynomial kernel. The parsing speed was
While Right-Arc requires searching for the MPHC evaluated on a Core2Duo (2.53 GHz) machine.
in ¢;, this is not the case for Left-Atc _

The key to obtaining an accurate tree-based-2 Parsing Accuracy
parsing model is to extend the search space whilé/e measured the ratio of words assigned correct
at the same time providing ways to narrow downheads to all words (accuracy), and the ratio of sen-
the space and find important information, such asences with completely correct dependency graphs
the MPHC, for proper judgment of transitions.  to all sentences (complete match). In the evalua-

The three-class classifier is constructed as foltion, we consistently excluded punctuation marks.
lows. The dependency relation between the target Table 4 compares our results for the proposed
trees is represented by the three wargsMPHC, method with those reported in some previous
andw;. Therefore, the features are designed to inworks using equivalent training and test data.
corporate these words, their relational words, and'he first column lists the four previous methods
the three words next te;. Table 3 lists the exact and our method, while the second through fourth
set of features used in this work. Since this transieolumns list the accuracy, complete match accu-
tion selection procedure presumes selection of theacy, and time complexity, respectively, for each
MPHC, the result ofnphc(t;, t;) is also incorpo- method. Here, we obtained the scores for the pre-

rated among the features. vious works from the corresponding articles listed
_ in the first column. Note that every method used
4 Evaluation different features, which depend on the method.

The proposed method achieved higher accuracy
than did the previous deterministic models. Al-
In our experimental evaluation, we used Yamada’ghough the accuracy of our method did not reach
head rule to extract unlabeled dependencies frofhat of (McDonald and Pereira, 2006), the scores
the Wall Street Journal section of a Penn Treebankyqa e competitive even though our method is de-
Sections 2-21 were used as the training data, angdministic. These results show the capability of
section 23 was used as the test data. This test da§ge tree-based approach in effectively extending

The head word ofv; can only bew; without searching  the search space.
within ¢;, because the relations between the other words in
andw; have already been inferred from the decisions madeq 3 Parsing Time
within previous transitions. If; has a childw; that could
become the head af; under projectivity, thisv, must be ~ Such extension of the search space also concerns

located betweemw; andw;. The fact thatwi’s head isw; the speed of the method. Here, we compare its
means that there were two phases befgrandt; (i.e., w; '

andw;) became the target: computational time with that of Nivre’s method.
e t; andt, became the target, and Shift was selected. We re-implemented Nivre’s method to use SVMs

e ¢, andt; became the target, and Left-Arc was seIected.With cubic polynomial kernel, similarly to our
The first phase precisely indicates thatandwy are unre-
lated. 2http://svmlight.joachims.org/

4.1 Data and Experimental Setting
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Table 4: Dependency parsing performance.

Accuracy| Complete Time Global vs. Learning
match | complexity | deterministic method
McDonald & Pereira (2006)| 91.5 421 O(n?) global MIRA
McDonald et al. (2005) 90.9 375 O(n?) global MIRA
Yamada & Matsumoto (2003) 90.4 38.4 0(n?) deterministic| support vector machine
Goldberg & Elhadad (2010), 89.7 37.5 O(nlogn) | deterministic| structured perceptron
Nivre (2004) 87.1 30.4 O(n) deterministic/ memory based learning
Proposed method 91.3 41.7 0(n?) deterministic| support vector machine
Nivre's Method Proposed Method
81 8 +

50
|
50
|

40

30

20
parsing time [sec]

parsing time [sec]

length of input sentence length of input sentence

Figure 3: Parsing time for sentences.

method. Figure 3 shows plots of the parsing timeSason M. Eisner. 1996. Three new probabilistic models
for all sentences in the test data. The average pars- for dependency parsing: An exploratioRroceedings of

L COLIN . 340-345.
ing time for our method was 8.9 sec, whereas that |d(t3: PP i Michael Elhadad « |

PR Yoav Goldberg and Michael Elhadad. 2010. An Efficient Al-
for Nivre’'s method was 7.9 Se,c' . gorithm for Easy-First Non-Directional Dependency Pars-
Although the worst-case time complexity for ing. Proceedings of NAACL

Nivre's method I@(n) an_d that for our method is  \asakazu Iwatate, Masayuki Asahara, and Yuji Matsumoto.
O(n?), worst-case situations (e.g., all words hav- 2008. Japanese dependency parsing using a tournament
ing heads on their left) did not appear frequently. Model-Proceedings of COLINGDp. 361-368.

This can be seen from the sparse appearance of therry Koo, Xavier Carreras, and Michael Collins. 2008.

. . Simple semi-supervised dependency parsirigroceed-
upper bound in the second figure. ings of ACL pp. 595-603.

5 Conclusion Taku Kudo and Yuji Matsumoto. 2002. Japanese depen-
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Abstract

A strong inductive bias is essential in un-
supervised grammar induction. We ex-
plore a particular sparsity bias in de-
pendency grammars that encourages a
small number of unique dependency
types. Specifically, we investigate
sparsity-inducing penalties on the poste-
rior distributions of parent-child POS tag
pairs in the posterior regularization (PR)
framework of Graca et al. (2007). In ex-
periments with 12 languages, we achieve
substantial gains over the standard expec-
tation maximization (EM) baseline, with
average improvement in attachment ac-
curacy of 6.3%. Further, our method
outperforms models based on a standard
Bayesian sparsity-inducing prior by an av-
erage of 4.9%. On English in particular,
we show that our approach improves on
several other state-of-the-art techniques.

1 Introduction

We investigate an unsupervised learning method
for dependency parsing models that imposes spar-
sity biases on the dependency types. We assume
a corpus annotated with POS tags, where the task
is to induce a dependency model from the tags for
corpus sentences. In this setting, the fype of a de-
pendency is defined as a pair: tag of the dependent
(also known as the child), and tag of the head (also
known as the parent). Given that POS tags are de-
signed to convey information about grammatical
relations, it is reasonable to assume that only some
of the possible dependency types will be realized

Joao Graca
L*F INESC-ID
Lisboa, Portugal
joao.graca@l2f.inesc—-id.pt

Ben Taskar
University of Pennsylvania
Philadelphia, PA, USA
taskar@cis.upenn.edu

for a given language. For instance, in English it
is ungrammatical for nouns to dominate verbs, ad-
jectives to dominate adverbs, and determiners to
dominate almost any part of speech. Thus, the re-
alized dependency types should be a sparse subset
of all possible types.

Previous work in unsupervised grammar induc-
tion has tried to achieve sparsity through priors.
Liang et al. (2007), Finkel et al. (2007) and John-
son et al. (2007) proposed hierarchical Dirichlet
process priors. Cohen et al. (2008) experimented
with a discounting Dirichlet prior, which encour-
ages a standard dependency parsing model (see
Section 2) to limit the number of dependent types
for each head type.

Our experiments show a more effective sparsity
pattern is one that limits the total number of unique
head-dependent tag pairs. This kind of sparsity
bias avoids inducing competition between depen-
dent types for each head type. We can achieve the
desired bias with a constraint on model posteri-
ors during learning, using the posterior regulariza-
tion (PR) framework (Graca et al., 2007). Specifi-
cally, to implement PR we augment the maximum
marginal likelihood objective of the dependency
model with a term that penalizes head-dependent
tag distributions that are too permissive.

Although not focused on sparsity, several other
studies use soft parameter sharing to couple dif-
ferent types of dependencies. To this end, Cohen
et al. (2008) and Cohen and Smith (2009) inves-
tigated logistic normal priors, and Headden III et
al. (2009) used a backoff scheme. We compare to
their results in Section 5.

The remainder of this paper is organized as fol-
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lows. Section 2 and 3 review the models and sev-
eral previous approaches for learning them. Sec-
tion 4 describes learning with PR. Section 5 de-
scribes experiments across 12 languages and Sec-
tion 6 analyzes the results. For additional details
on this work see Gillenwater et al. (2010).

2 Parsing Model

The models we use are based on the generative de-
pendency model with valence (DMV) (Klein and
Manning, 2004). For a sentence with tags x, the
root POS r(x) is generated first. Then the model
decides whether to generate a right dependent con-
ditioned on the POS of the root and whether other
right dependents have already been generated for
this head. Upon deciding to generate a right de-
pendent, the POS of the dependent is selected by
conditioning on the head POS and the direction-
ality. After stopping on the right, the root gener-
ates left dependents using the mirror reversal of
this process. Once the root has generated all its
dependents, the dependents generate their own de-
pendents in the same manner.

2.1 Model Extensions

For better comparison with previous work we
implemented three model extensions, borrowed
from Headden III et al. (2009). The first exten-
sion alters the stopping probability by condition-
ing it not only on whether there are any depen-
dents in a particular direction already, but also on
how many such dependents there are. When we
talk about models with maximum stop valency Vj
= S, this means it distinguishes S different cases:
0,1,...,5—2,and > S —1 dependents in a given
direction. The basic DMV has V, = 2.

The second model extension we implement is
analogous to the first, but applies to dependent tag
probabilities instead of stop probabilities. Again,
we expand the conditioning such that the model
considers how many other dependents were al-
ready generated in the same direction. When we
talk about a model with maximum child valency
V. = (, this means we distinguish C different
cases. The basic DMV has V. = 1. Since this
extension to the dependent probabilities dramati-
cally increases model complexity, the third model
extension we implement is to add a backoff for the
dependent probabilities that does not condition on
the identity of the parent POS (see Equation 2).

More formally, under the extended DMV the
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probability of a sentence with POS tags x and de-
pendency tree y is given by:

Po(X,¥) = Proot (1(x)) X

H Pstop(false | yp, ya, Yo, )penita(Ye | Yp, Yd, Yo, ) X
yEY

H Pstop(true | z,left, xv,) pstop (true | x, right, z,,.)

TEX
M

where y is the dependency of y. on head y,, in di-
rection y4, and Y., Yu,, Tv,, and x,, indicate va-
lence. For the third model extension, the backoff
to a probability not dependent on parent POS can
be formally expressed as:

Apehitd(Ye | Yps Ydy Yoo ) + (1 — N)penita(Ye | Yds Yo.) (2)

for A € [0,1]. We fix A = 1/3, which is a crude
approximation to the value learned by Headden III
et al. (2009).

3 Previous Learning Approaches

In our experiments, we compare PR learning
to standard expectation maximization (EM) and
to Bayesian learning with a sparsity-inducing
prior. The EM algorithm optimizes marginal like-
lihood L£(#) = log) v pe(X,Y), where X =
{x! ...,x"} denotes the entire unlabeled corpus
and Y = {y!,...,y"} denotes a set of corre-
sponding parses for each sentence. Neal and Hin-
ton (1998) view EM as block coordinate ascent on
a function that lower-bounds £(¢). Starting from
an initial parameter estimate #°, the algorithm it-
erates two steps:

E: ¢ =argmin KL(q(Y) || po: (Y | X)) (3)
q

M: 6t = arg;nax E, i+1[logpe(X,Y)] D

Note that the E-step just sets ¢'T!(Y)
pet (Y |X), since it is an unconstrained minimiza-
tion of a KL-divergence. The PR method we
present modifies the E-step by adding constraints.

Besides EM, we also compare to learning with
several Bayesian priors that have been applied to
the DMV. One such prior is the Dirichlet, whose
hyperparameter we will denote by .. For o < 0.5,
this prior encourages parameter sparsity. Cohen
et al. (2008) use this method with o = 0.25 for
training the DMV and achieve improvements over
basic EM. In this paper we will refer to our own
implementation of the Dirichlet prior as the “dis-
counting Dirichlet” (DD) method. In addition to



the Dirichlet, other types of priors have been ap-
plied, in particular logistic normal priors (LN) and
shared logistic normal priors (SLN) (Cohen et al.,
2008; Cohen and Smith, 2009). LN and SLN aim
to tie parameters together. Essentially, this has a
similar goal to sparsity-inducing methods in that it
posits a more concise explanation for the grammar
of a language. Headden III et al. (2009) also im-
plement a sort of parameter tying for the E-DMV
through a learning a backoff distribution on child
probabilities. We compare against results from all
these methods.

4 Learning with Sparse Posteriors

We would like to penalize models that predict a
large number of distinct dependency types. To en-
force this penalty, we use the posterior regular-
ization (PR) framework (Graga et al., 2007). PR
is closely related to generalized expectation con-
straints (Mann and McCallum, 2007; Mann and
McCallum, 2008; Bellare et al., 2009), and is also
indirectly related to a Bayesian view of learning
with constraints on posteriors (Liang et al., 2009).
The PR framework uses constraints on posterior
expectations to guide parameter estimation. Here,
PR allows a natural and tractable representation of
sparsity constraints based on edge type counts that
cannot easily be encoded in model parameters. We
use a version of PR where the desired bias is a
penalty on the log likelihood (see Ganchev et al.
(2010) for more details). For a distribution py, we
define a penalty as the (generic) 3-norm of expec-
tations of some features ¢:

[Epy [¢(X, Y]l 5 )
For computational tractability, rather than penaliz-
ing the model’s posteriors directly, we use an aux-
iliary distribution ¢, and penalize the marginal log-
likelihood of a model by the KL-divergence of pg
from ¢, plus the penalty term with respect to q.
For a fixed set of model parameters ¢ the full PR
penalty term is:

min KL(g(Y) [| po(Y[X)) + o [[Eq[6(X, Y)]ll5 (©)

where o is the strength of the regularization. PR
seeks to maximize £(#) minus this penalty term.
The resulting objective can be optimized by a vari-
ant of the EM (Dempster et al., 1977) algorithm
used to optimize L£(0).
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4.1 ¢/l Regularization

We now define precisely how to count dependency
types. For each child tag c, let ¢ range over an enu-
meration of all occurrences of ¢ in the corpus, and
let p be another tag. Let the indicator ¢ (X,Y)
have value 1 if p is the parent tag of the ith occur-
rence of ¢, and value 0 otherwise. The number of
unique dependency types is then:

Zm?x bepi(X,Y) (7
cp
Note there is an asymmetry in this count: occur-
rences of child type ¢ are enumerated with 7, but
all occurrences of parent type p are or-ed in @cp;.
That is, ¢, = 1 if any occurrence of p is the par-
ent of the ith occurrence of c. We will refer to PR
training with this constraint as PR-AS. Instead of
counting pairs of a child token and a parent type,
we can alternatively count pairs of a child token
and a parent token by letting p range over all to-
kens rather than types. Then each potential depen-
dency corresponds to a different indicator ¢cp;;,
and the penalty is symmetric with respect to par-
ents and children. We will refer to PR training
with this constraint as PR-S. Both approaches per-
form very well, so we report results for both.
Equation 7 can be viewed as a mixed-norm
penalty on the features ¢cp; or ¢pi;: the sum cor-
responds to an ¢; norm and the max to an (.
norm. Thus, the quantity we want to minimize
fits precisely into the PR penalty framework. For-
mally, to optimize the PR objective, we complete
the following E-step:

arg min KL(g(Y)|lpo(¥ /X)) + 0 > maxEq[¢(X, Y)),

cp
®
which can equivalently be written as:

KL(q(Y) || po(Y|X)) + Y Eep

cp

€ep < Eq[o(X,Y)]

min
a(Y),écp

)
s. t.

where &, corresponds to the maximum expecta-
tion of ¢ over all instances of ¢ and p. Note that
the projection problem can be solved efficiently in
the dual (Gancheyv et al., 2010).

5 Experiments

We evaluate on 12 languages. Following the ex-
ample of Smith and Eisner (2006), we strip punc-
tuation from the sentences and keep only sen-
tences of length < 10. For simplicity, for all mod-
els we use the “harmonic” initializer from Klein



Model | EM PR Type o

DMV | 458 | 62.1 | PR-S 140
2-1 45.1 || 62.7 | PR-S 100
2-2 544 || 629 | PR-S 80
3-3 553 || 643 | PR-S 140
4-4 55.1 || 64.4 | PR-AS | 140

Table 1: Attachment accuracy results. Column 1: V-
Vs used for the E-DMV models. Column 3: Best PR re-
sult for each model, which is chosen by applying each of
the two types of constraints (PR-S and PR-AS) and trying
o € {80,100, 120, 140,160, 180}. Columns 4 & 5: Con-
straint type and o that produced the values in column 3.

and Manning (2004), which we refer to as K&M.
We always train for 100 iterations and evaluate
on the test set using Viterbi parses. Before eval-
uating, we smooth the resulting models by adding
e~ 19 to each learned parameter, merely to remove
the chance of zero probabilities for unseen events.
(We did not tune this as it should make very little
difference for final parses.) We score models by
their attachment accuracy — the fraction of words
assigned the correct parent.

5.1 Results on English

We start by comparing English performance for
EM, PR, and DD. To find « for DD we searched
over five values: {0.01,0.1,0.25,1}. We found
0.25 to be the best setting for the DMV, the same
as found by Cohen et al. (2008). DD achieves ac-
curacy 46.4% with this . For the E-DMV we
tested four model complexities with valencies V.-
Vs of 2-1, 2-2, 3-3, and 4-4. DD’s best accuracy
was 53.6% with the 4-4 model at « = 0.1. A
comparison between EM and PR is shown in Ta-
ble 1. PR-S generally performs better than the PR-
AS for English. Comparing PR-S to EM, we also
found PR-S is always better, independent of the
particular o, with improvements ranging from 2%
to 17%. Note that in this work we do not perform
the PR projection at test time; we found it detri-
mental, probably due to a need to set the (corpus-
size-dependent) o differently for the test set. We
also note that development likelihood and the best
setting for o are not well-correlated, which un-
fortunately makes it hard to pick these parameters
without some supervision.

5.2 Comparison with Previous Work

In this section we compare to previously published
unsupervised dependency parsing results for En-
glish. It might be argued that the comparison is
unfair since we do supervised selection of model
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Learning Method Accuracy

<10 <20 | all
PR-S (o = 140) 62.1 53.8 | 49.1
LN families 59.3 45.1 | 39.0
SLN TieV & N 61.3 474 | 414
PR-AS (0 = 140) 64.4 55.2 | 50.5
DD (o = 1, Alearned) | 65.0 (£5.7)

Table 2: Comparison with previous published results. Rows
2 and 3 are taken from Cohen et al. (2008) and Cohen and
Smith (2009), and row 5 from Headden III et al. (2009).

complexity and regularization strength. However,
we feel the comparison is not so unfair as we per-
form only a very limited search of the model-o
space. Specifically, the only values of o we search
over are {80, 100, 120, 140, 160, 180}.

First, we consider the top three entries in Ta-
ble 2, which are for the basic DMV. The first en-
try was generated using our implementation of
PR-S. The second two entries are logistic nor-
mal and shared logistic normal parameter tying re-
sults (Cohen et al., 2008; Cohen and Smith, 2009).
The PR-S result is the clear winner, especially as
length of test sentences increases. For the bot-
tom two entries in the table, which are for the E-
DMY, the last entry is best, corresponding to us-
ing a DD prior with a = 1 (non-sparsifying), but
with a special “random pools” initialization and a
learned weight A for the child backoff probabil-
ity. The result for PR-AS is well within the vari-
ance range of this last entry, and thus we conjec-
ture that combining PR-AS with random pools ini-
tialization and learned A would likely produce the
best-performing model of all.

5.3 Results on Other Languages

Here we describe experiments on 11 additional
languages. For each we set o and model complex-
ity (DMV versus one of the four E-DMV exper-
imented with previously) based on the best con-
figuration found for English. This likely will not
result in the ideal parameters for all languages, but
provides a realistic test setting: a user has avail-
able a labeled corpus in one language, and would
like to induce grammars for many other languages.
Table 3 shows the performance for all models and
training procedures. We see that the sparsifying
methods tend to improve over EM most of the
time. For the basic DMV, average improvements
are 1.6% for DD, 6.0% for PR-S, and 7.5% for
PR-AS. PR-AS beats PR-S in 8 out of 12 cases,



Bg Cz De Dk En Es Jp NI Pt Se Si Tr
DMYV Model
EM 37.8 29.6 357 472 458 403 528 37.1 357 394 423 4638
DD 0.25 393 30.0 386 431 464 475 578 351 387 402 488 438
PR-S 140 537 315 396 440 621 61.1 588 31.0 470 422 399 514
PR-AS 140 540 320 396 424 619 624 602 379 478 387 503 534
Extended Model
EM (3,3) 41.7 489 40.1 464 553 443 485 475 359 486 475 462
DD 0.1 (4,4) 476 485 420 444 536 489 576 452 483 476 356 489
PR-S 140 (3,3) 590 547 474 458 0643 579 608 339 543 456 49.1 563
PR-AS 140 (4,4) | 59.8 546 457 466 644 579 594 388 495 414 512 56.9

Table 3: Attachment accuracy results. The parameters used are the best settings found for English. Values for hyperparameters
(v or o) are given after the method name. For the extended model (V¢, V;) are indicated in parentheses. En is the English Penn
Treebank (Marcus et al., 1993) and the other 11 languages are from the CoNLL X shared task: Bulgarian [Bg] (Simov et al.,
2002), Czech [Cz] (Bohomova et al., 2001), German [De] (Brants et al., 2002), Danish [Dk] (Kromann et al., 2003), Spanish
[Es] (Civit and Marti, 2004), Japanese [Jp] (Kawata and Bartels, 2000), Dutch [N1] (Van der Beek et al., 2002), Portuguese
[Pt] (Afonso et al., 2002), Swedish [Se] (Nilsson et al., 2005), Slovene [S1] (DZeroski et al., 2006), and Turkish [Tr] (Oflazer et

al., 2003).

Una papelera es un objeto civilizado

d nc Vs d nc aq
1.00
160

Una papelera es un objeto civilizado
d nc Vs d nc aq

Una papelera es un objeto civilizado
d nc Vs d nc aq

Figure 1: Posterior edge probabilities for an example sen-
tence from the Spanish test corpus. At the top are the gold
dependencies, the middle are EM posteriors, and bottom are
PR posteriors. Green indicates correct dependencies and red
indicates incorrect dependencies. The numbers on the edges
are the values of the posterior probabilities.

though the average increase is only 1.5%. PR-S
is also better than DD for 10 out of 12 languages.
If we instead consider these methods for the E-
DMV, DD performs worse, just 1.4% better than
the E-DMYV EM, while both PR-S and PR-AS con-
tinue to show substantial average improvements
over EM, 6.5% and 6.3%, respectively.

6 Analysis

One common EM error that PR fixes in many lan-
guages is the directionality of the noun-determiner
relation. Figure 1 shows an example of a Span-
ish sentence where PR significantly outperforms
EM because of this. Sentences such as “Lleva
tiempo entenderlos” which has tags “main-verb
common-noun main-verb” (no determiner tag)
provide an explanation for PR’s improvement—
when PR sees that sometimes nouns can appear
without determiners but that the opposite situation
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does not occur, it shifts the model parameters to
make nouns the parent of determiners instead of
the reverse. Then it does not have to pay the cost
of assigning a parent with a new tag to cover each
noun that doesn’t come with a determiner.

7 Conclusion

In this paper we presented a new method for unsu-
pervised learning of dependency parsers. In con-
trast to previous approaches that constrain model
parameters, we constrain model posteriors. Our
approach consistently outperforms the standard
EM algorithm and a discounting Dirichlet prior.

We have several ideas for further improving our
constraints, such as: taking into account the direc-
tionality of the edges, using different regulariza-
tion strengths for the root probabilities than for the
child probabilities, and working directly on word
types rather than on POS tags. In the future, we
would also like to try applying similar constraints
to the more complex task of joint induction of POS
tags and dependency parses.
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Top-Down K-Best A* Parsing
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Abstract

We propose a top-down algorithm for ex-
tracting k-best lists from a parser. Our
algorithm, TKA* is a variant of the k-
best A* (KA*) algorithm of Pauls and
Klein (2009). In contrast to KA*, which
performs an inside and outside pass be-
fore performing k-best extraction bottom
up, TKA* performs only the inside pass
before extracting k-best lists top down.
TKA* maintains the same optimality and
efficiency guarantees of KA*, but is sim-
pler to both specify and implement.

1 Introduction

Many situations call for a parser to return a k-
best list of parses instead of a single best hypothe-
sis.! Currently, there are two efficient approaches
known in the literature. The k-best algorithm of
Jiménez and Marzal (2000) and Huang and Chi-
ang (2005), referred to hereafter as LAZY, oper-
ates by first performing an exhaustive Viterbi in-
side pass and then lazily extracting k-best lists in
top-down manner. The k-best A* algorithm of
Pauls and Klein (2009), hereafter KA*, computes
Viterbi inside and outside scores before extracting
k-best lists bottom up.

Because these additional passes are only partial,
KA* can be significantly faster than LAZY, espe-
cially when a heuristic is used (Pauls and Klein,
2009). In this paper, we propose TKA*, a top-
down variant of KA* that, like LAZY, performs
only an inside pass before extracting k-best lists
top-down, but maintains the same optimality and
efficiency guarantees as KA*. This algorithm can
be seen as a generalization of the lattice k-best al-
gorithm of Soong and Huang (1991) to parsing.
Because TKA* eliminates the outside pass from
KA*, TKA* is simpler both in implementation and
specification.

"See Huang and Chiang (2005) for a review.
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2 Review

Because our algorithm is very similar to KA*,
which is in turn an extension of the (1-best) A*
parsing algorithm of Klein and Manning (2003),
we first introduce notation and review those two
algorithms before presenting our new algorithm.

2.1 Notation

Assume we have a PCFG? G and an input sen-
tence g . . . Sp—1 of length n. The grammar G has
a set of symbols denoted by capital letters, includ-
ing a distinguished goal (root) symbol G. With-
out loss of generality, we assume Chomsky nor-
mal form: each non-terminal rule r in G has the
form r = A — B C with weight w,. Edges
are labeled spans e = (A,4,j). Inside deriva-
tions of an edge (A, 1i,7) are trees with root non-
terminal A, spanning s; ... s;_1. The weight (neg-
ative log-probability) of the best (minimum) inside
derivation for an edge e is called the Viterbi in-
side score [3(e), and the weight of the best deriva-
tion of G — sp...8-1 A sj...5,-1 is called
the Viterbi outside score «(e). The goal of a k-
best parsing algorithm is to compute the & best
(minimum weight) inside derivations of the edge
(G,0,n).

We formulate the algorithms in this paper
in terms of prioritized weighted deduction rules
(Shieber et al., 1995; Nederhof, 2003). A prior-
itized weighted deduction rule has the form

@1 Wiy, Gn Wy quo sg(wiy ..., wp)
where ¢1, ..., ¢, are the antecedent items of the

deduction rule and ¢q is the conclusion item. A
deduction rule states that, given the antecedents
o1, ..., 0, with weights wy, ..., wy, the conclu-
sion ¢ can be formed with weight g(wy, ..., wy,)
and priority p(w1, ..., wy).

“While we present the algorithm specialized to parsing
with a PCFG, this algorithm generalizes to a wide range of

Proceedings of the ACL 2010 Conference Short Papers, pages 200-204,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



(a) (b) G

VP
§2 83 84 §0...82 S5...8n-1
© @ G
VP PN
NP VP
DT NN | A
§2 83 S4 S0 S1I S2 Sn-l

Figure 1: Representations of the different types of items
used in parsing. (a) An inside edge item I(VP,2,5). (b)
An outside edge item O(VP,2,5). (c) An inside deriva-
tion item: D(TVP,2,5). (d) An outside derivation item:
Q(T$,1,2,{(NP,2,n)}. The edges in boldface are fron-
tier edges.

These deduction rules are “executed” within
a generic agenda-driven algorithm, which con-
structs items in a prioritized fashion. The algo-
rithm maintains an agenda (a priority queue of
items), as well as a chart of items already pro-
cessed. The fundamental operation of the algo-
rithm is to pop the highest priority item ¢ from the
agenda, put it into the chart with its current weight,
and apply deduction rules to form any items which
can be built by combining ¢ with items already
in the chart. When the resulting items are either
new or have a weight smaller than an item’s best
score so far, they are put on the agenda with pri-
ority given by p(-). Because all antecedents must
be constructed before a deduction rule is executed,
we sometimes refer to particular conclusion item
as “waiting” on another item before it can be built.

22 A*

A* parsing (Klein and Manning, 2003) is an al-
gorithm for computing the 1-best parse of a sen-
tence. A* operates on items called inside edge
items I1(A,1,j), which represent the many pos-
sible inside derivations of an edge (A,%,7). In-
side edge items are constructed according to the
IN deduction rule of Table 1. This deduction rule
constructs inside edge items in a bottom-up fash-
ion, combining items representing smaller edges
I(B,i,k) and I(C, k, j) with a grammar rule r =
A — B C to form a larger item I(A,4,j). The
weight of a newly constructed item is given by the
sum of the weights of the antecedent items and
the grammar rule r, and its priority is given by

hypergraph search problems as shown in Klein and Manning
(2001).
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NP VP NP VP
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VP NP NN }7{ NP
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So S1 82 83 S4 S5 So S1 S2 §3 S4 S5

(a) (b)

Figure 2: (a) An outside derivation item before expansion at
the edge (VP, 1,4). (b) A possible expansion of the item in
(a) using the rule VP— VP NN. Frontier edges are marked in
boldface.

its weight plus a heuristic h(A, 1, j). For consis-
tent and admissible heuristics A(-), this deduction
rule guarantees that when an inside edge item is
removed from the agenda, its current weight is its
true Viterbi inside score.

The heuristic h controls the speed of the algo-
rithm. It can be shown that an edge e satisfying
B(e) + h(A,i,j) > B(G,0,n) will never be re-
moved from the agenda, allowing some edges to
be safely pruned during parsing. The more closely
h(e) approximates the Viterbi outside cost «a(e),
the more items are pruned.

2.3 KA*

The use of inside edge items in A* exploits the op-
timal substructure property of derivations — since
a best derivation of a larger edge is always com-
posed of best derivations of smaller edges, it is
only necessary to compute the best way of build-
ing a particular inside edge item. When finding
k-best lists, this is no longer possible, since we are
interested in suboptimal derivations.

Thus, KA*, the k-best extension of A*, must
search not in the space of inside edge items,
but rather in the space of inside derivation items
D(T4, i, j), which represent specific derivations
of the edge (A, i, j) using tree T”. However, the
number of inside derivation items is exponential
in the length of the input sentence, and even with
a very accurate heuristic, running A* directly in
this space is not feasible.

Fortunately, Pauls and Klein (2009) show that
with a perfect heuristic, that is, h(e) = a(e) Ve,
A* search on inside derivation items will only
remove items from the agenda that participate
in the true k-best lists (up to ties). In order
to compute this perfect heuristic, KA* makes
use of outside edge items O(A,1i,7) which rep-
resent the many possible derivations of G —
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OUT-L': O(A,i,7) : wn I(B,i,l) : wa 1(C,l,j5
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Table 1: The deduction rules used in this paper. Here, r is the rule A — B C. A superscript * indicates that the rule is used
in TKA*, and a superscript t indicates that the rule is used in KA*. In IN-D, the tree T'4 is rooted at (A, 7, ) and has children
T5 and TC. In OUT-D, the tree TS is the tree T extended at (A, i, j) with rule r, Fc is the list F with (C, [, j) prepended,

and B(F) is

removed from F and is used as the new point of expansion.

51...8; Asjy1...5, (see Figure 1(b)).

Outside items are built using the OUT-L and
OUT-R deduction rules shown in Table 1. OUT-
L and OUT-R combine, in a top-down fashion, an
outside edge over a larger span and inside edge
over a smaller span to form a new outside edge
over a smaller span. Because these rules make ref-
erence to inside edge items I(A, i, j), these items
must also be built using the IN deduction rules
from 1-best A*. Outside edge items must thus wait
until the necessary inside edge items have been
built. The outside pass is initialized with the item
O(G,0,n) when the inside edge item I (G, 0, n) is
popped from the agenda.

Once we have started populating outside scores
using the outside deductions, we can initiate a
search on inside derivation items.> These items
are built bottom-up using the IN-D deduction rule.
The crucial element of this rule is that derivation
items for a particular edge wait until the exact out-
side score of that edge has been computed. The al-
gorithm terminates when & derivation items rooted
at (G, 0,n) have been popped from the agenda.

3 TKA*®

KA* efficiently explores the space of inside
derivation items because it waits for the exact
Viterbi outside cost before building each deriva-
tion item. However, these outside costs and asso-
ciated deduction items are only auxiliary quanti-
ties used to guide the exploration of inside deriva-
tions: they allow KA* to prioritize currently con-
structed inside derivation items (i.e., constructed
derivations of the goal) by their optimal comple-
tion costs. Outside costs are thus only necessary
because we construct partial derivations bottom-
up; if we constructed partial derivations in a top-
down fashion, all we would need to compute opti-

3We stress that the order of computation is entirely speci-

fied by the deduction rules — we only speak about e.g. “initi-
ating a search” as an appeal to intuition.

> ecr B(e). Whenever the left child I(B, i, 1) of an application of OUT-D represents a terminal, the next edge is

mal completion costs are Viterbi inside scores, and
we could forget the outside pass.

TKA* does exactly that. Inside edge items are
constructed in the same way as KA*, but once the
inside edge item I(G,0,n) has been discovered,
TKA* begins building partial derivations from the
goal outwards. We replace the inside derivation
items of KA* with outside derivation items, which
represent trees rooted at the goal and expanding
downwards. These items bottom out in a list of
edges called the frontier edges. See Figure 1(d)
for a graphical representation. When a frontier
edge represents a single word in the input, i.e. is
of the form (s;, 4,7 + 1), we say that edge is com-
plete. An outside derivation can be expanded by
applying a rule to one of its incomplete frontier
edges; see Figure 2. In the same way that inside
derivation items wait on exact outside scores be-
fore being built, outside derivation items wait on
the inside edge items of all frontier edges before
they can be constructed.

Although building derivations top-down obvi-
ates the need for a 1-best outside pass, it raises a
new issue. When building derivations bottom-up,
the only way to expand a particular partial inside
derivation is to combine it with another partial in-
side derivation to build a bigger tree. In contrast,
an outside derivation item can be expanded any-
where along its frontier. Naively building deriva-
tions top-down would lead to a prohibitively large
number of expansion choices.

We solve this issue by always expanding the
left-most incomplete frontier edge of an outside
derivation item. We show the deduction rule
OUT-D which performs this deduction in Fig-
ure 1(d). We denote an outside derivation item as
Q(Tf, i,7,F), where TAG is a tree rooted at the
goal with left-most incomplete edge (A4, 1, j), and
F 1is the list of incomplete frontier edges exclud-
ing (A, 1, j), ordered from left to right. Whenever
the application of this rule “completes” the left-
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most edge, the next edge is removed from F and
is used as the new point of expansion. Once all
frontier edges are complete, the item represents a
correctly scored derivation of the goal, explored in
a pre-order traversal.

3.1 Correctness

It should be clear that expanding the left-most in-
complete frontier edge first eventually explores the
same set of derivations as expanding all frontier
edges simultaneously. The only worry in fixing
this canonical order is that we will somehow ex-
plore the () items in an incorrect order, possibly
building some complete derivation Q. before a
more optimal complete derivation (). However,
note that all items () along the left-most construc-
tion of ()¢ have priority equal to or better than any
less optimal complete derivation (). Therefore,
when Q¢ is enqueued, it will have lower priority
than all Q; Q} will therefore not be dequeued un-
til all () — and hence ()~ — have been built.

Furthermore, it can be shown that the top-down
expansion strategy maintains the same efficiency
and optimality guarantees as KA*™ for all item
types: for consistent heuristics h, the first k£ en-
tirely complete outside derivation items are the
true k-best derivations (modulo ties), and that only
derivation items which participate in those k-best
derivations will be removed from the queue (up to
ties).

3.2 Implementation Details

Building derivations bottom-up is convenient from
an indexing point of view: since larger derivations
are built from smaller ones, it is not necessary to
construct the larger derivation from scratch. In-
stead, one can simply construct a new tree whose
children point to the old trees, saving both mem-
ory and CPU time.

In order keep the same efficiency when build-
ing trees top-down, a slightly different data struc-
ture is necessary. We represent top-down deriva-
tions as a lazy list of expansions. The top node
Tg is an empty list, and whenever we expand an
outside derivation item Q(TAG, i,j,F) with a rule
r = A — B C and split point [, the resulting
derivation TS is a new list item with (r,[) as the
head data, and Tf as its tail. The tree can be re-
constructed later by recursively reconstructing the
parent, and adding the edges (B, ,[) and (C, 1, j)
as children of (A, 1, j).
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3.3 Advantages

Although our algorithm eliminates the 1-best out-
side pass of KA*, in practice, even for k = 104,
the 1-best inside pass remains the overwhelming
bottleneck (Pauls and Klein, 2009), and our modi-
fications leave that pass unchanged.

However, we argue that our implementation is
simpler to specify and implement. In terms of de-
duction rules, our algorithm eliminates the 2 out-
side deduction rules and replaces the IN-D rule
with the OUT-D rule, bringing the total number
of rules from four to two.

The ease of specification translates directly into
ease of implementation. In particular, if high-
quality heuristics are not available, it is often more
efficient to implement the 1-best inside pass as
an exhaustive dynamic program, as in Huang and
Chiang (2005). In this case, one would only need
to implement a single, agenda-based k-best extrac-
tion phase, instead of the 2 needed for KA*.

3.4 Performance

The contribution of this paper is theoretical, not
empirical. We have argued that TKA* is simpler
than TKA*, but we do not expect it to do any more
or less work than KA*, modulo grammar specific
optimizations. Therefore, we simply verify, like
KA*, that the additional work of extracting k-best
lists with TKA™ is negligible compared to the time
spent building 1-best inside edges.

We examined the time spent building 100-best
lists for the same experimental setup as Pauls and
Klein (2009).* On 100 sentences, our implemen-
tation of TKA™* constructed 3.46 billion items, of
which about 2% were outside derivation items.
Our implementation of KA* constructed 3.41 bil-
lion edges, of which about 0.1% were outside edge
items or inside derivation items. In other words,
the cost of k-best extraction is dwarfed by the
the 1-best inside edge computation in both cases.
The reason for the slight performance advantage
of KA* is that our implementation of KA* uses
lazy optimizations discussed in Pauls and Klein
(2009), and while such optimizations could easily
be incorporated in TKA*, we have not yet done so
in our implementation.

*This setup used 3- and 6-round state-split grammars from
Petrov et al. (2006), the former used to compute a heuristic
for the latter, tested on sentences of length up to 25.



4 Conclusion

We have presented TKA*, a simplification to the
KA* algorithm. Our algorithm collapses the 1-
best outside and bottom-up derivation passes of
KA™ into a single, top-down pass without sacri-
ficing efficiency or optimality. This reduces the
number of non base-case deduction rules, making
TKA* easier both to specify and implement.
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Abstract

Most attempts to train part-of-speech tag-
gers on a mixture of labeled and unlabeled
data have failed. In this work stacked
learning is used to reduce tagging to a
classification task. This simplifies semi-
supervised training considerably.  Our
prefered semi-supervised method com-
bines tri-training (Li and Zhou, 2005) and
disagreement-based co-training. On the
Wall Street Journal, we obtain an error re-
duction of 4.2% with SVMTool (Gimenez
and Marquez, 2004).

1 Introduction

Semi-supervised part-of-speech (POS) tagging is
relatively rare, and the main reason seems to be
that results have mostly been negative. Meri-
aldo (1994), in a now famous negative result, at-
tempted to improve HMM POS tagging by expec-
tation maximization with unlabeled data. Clark
et al. (2003) reported positive results with little
labeled training data but negative results when
the amount of labeled training data increased; the
same seems to be the case in Wang et al. (2007)
who use co-training of two diverse POS taggers.
Huang et al. (2009) present positive results for
self-training a simple bigram POS tagger, but re-
sults are considerably below state-of-the-art.
Recently researchers have explored alternative
methods. Suzuki and Isozaki (2008) introduce
a semi-supervised extension of conditional ran-
dom fields that combines supervised and unsuper-
vised probability models by so-called MDF pa-
rameter estimation, which reduces error on Wall
Street Journal (WSJ) standard splits by about 7%
relative to their supervised baseline. Spoustova
et al. (2009) use a new pool of unlabeled data
tagged by an ensemble of state-of-the-art taggers
in every training step of an averaged perceptron

205

POS tagger with 4-5% error reduction. Finally,
Segaard (2009) stacks a POS tagger on an un-
supervised clustering algorithm trained on large
amounts of unlabeled data with mixed results.
This work combines a new semi-supervised
learning method to POS tagging, namely tri-
training (Li and Zhou, 2005), with stacking on un-
supervised clustering. It is shown that this method
can be used to improve a state-of-the-art POS tag-
ger, SVMTool (Gimenez and Marquez, 2004). Fi-
nally, we introduce a variant of tri-training called
tri-training with disagreement, which seems to
perform equally well, but which imports much less
unlabeled data and is therefore more efficient.

2 Tagging as classification

This section describes our dataset and our input
tagger. We also describe how stacking is used to
reduce POS tagging to a classification task. Fi-
nally, we introduce the supervised learning algo-
rithms used in our experiments.

2.1 Data

We use the POS-tagged WSJ from the Penn Tree-
bank Release 3 (Marcus et al., 1993) with the
standard split: Sect. 0—18 is used for training,
Sect. 19-21 for development, and Sect. 22-24 for
testing. Since we need to train our classifiers on
material distinct from the training material for our
input POS tagger, we save Sect. 19 for training our
classifiers. Finally, we use the (untagged) Brown
corpus as our unlabeled data. The number of to-
kens we use for training, developing and testing
the classifiers, and the amount of unlabeled data
available to it, are thus:

tokens
train 44,472
development 103,686
test 129,281
unlabeled 1,170,811

Proceedings of the ACL 2010 Conference Short Papers, pages 205-208,
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The amount of unlabeled data available to our
classifiers is thus a bit more than 25 times the
amount of labeled data.

2.2 Input tagger

In our experiments we use SVMTool (Gimenez
and Marquez, 2004) with model type 4 run incre-
mentally in both directions. SVMTool has an ac-
curacy of 97.15% on WSJ Sect. 22-24 with this
parameter setting. Gimenez and Marquez (2004)
report that SVMTool has an accuracy of 97.16%
with an optimized parameter setting.

2.3 Classifier input

The way classifiers are constructed in our experi-
ments is very simple. We train SVMTool and an
unsupervised tagger, Unsupos (Biemann, 2006),
on our training sections and apply them to the de-
velopment, test and unlabeled sections. The re-
sults are combined in tables that will be the input
of our classifiers. Here is an excerpt:!

Gold standard SVMTool Unsupos
DT DT 17

NNP NNP 27

NNP NNS 17*
NNP NNP 17
VBD VBD 26

Each row represents a word and lists the gold
standard POS tag, the predicted POS tag and the
word cluster selected by Unsupos. For example,
the first word is labeled "DT’, which SVMTool
correctly predicts, and it belongs to cluster 17 of
about 500 word clusters. The first column is blank
in the table for the unlabeled section.

Generally, the idea is that a classifier will learn
to trust SVMTool in some cases, but that it may
also learn that if SVMTool predicts a certain tag
for some word cluster the correct label is another
tag. This way of combining taggers into a single
end classifier can be seen as a form of stacking
(Wolpert, 1992). It has the advantage that it re-
duces POS tagging to a classification task. This
may simplify semi-supervised learning consider-
ably.

2.4 Learning algorithms

We assume some knowledge of supervised learn-
ing algorithms. Most of our experiments are im-
plementations of wrapper methods that call off-

"The numbers provided by Unsupos refer to clusters; **”
marks out-of-vocabulary words.

the-shelf implementations of supervised learning
algorithms. Specifically we have experimented
with support vector machines (SVMs), decision
trees, bagging and random forests. Tri-training,
explained below, is a semi-supervised learning
method which requires large amounts of data.
Consequently, we only used very fast learning al-
gorithms in the context of tri-training. On the de-
velopment section, decisions trees performed bet-
ter than bagging and random forests. The de-
cision tree algorithm is the C4.5 algorithm first
introduced in Quinlan (1993). We used SVMs
with polynomial kernels of degree 2 to provide a
stronger stacking-only baseline.

3 Tri-training

This section first presents the tri-training algo-
rithm originally proposed by Li and Zhou (2005)
and then considers a novel variant: tri-training
with disagreement.

Let L denote the labeled data and U the unla-
beled data. Assume that three classifiers cq, co, c3
(same learning algorithm) have been trained on
three bootstrap samples of L. In tri-training, an
unlabeled datapoint in U is now labeled for a clas-
sifier, say cy, if the other two classifiers agree on
its label, i.e. co and c3. Two classifiers inform
the third. If the two classifiers agree on a label-
ing, there is a good chance that they are right.
The algorithm stops when the classifiers no longer
change. The three classifiers are combined by ma-
jority voting. Li and Zhou (2005) show that un-
der certain conditions the increase in classification
noise rate is compensated by the amount of newly
labeled data points.

The most important condition is that the three
classifiers are diverse. If the three classifiers are
identical, tri-training degenerates to self-training.
Diversity is obtained in Li and Zhou (2005) by
training classifiers on bootstrap samples. In their
experiments, they consider classifiers based on the
C4.5 algorithm, BP neural networks and naive
Bayes classifiers. The algorithm is sketched
in a simplified form in Figure 1; see Li and
Zhou (2005) for all the details.

Tri-training has to the best of our knowledge not
been applied to POS tagging before, but it has been
applied to other NLP classification tasks, incl. Chi-
nese chunking (Chen et al., 2006) and question
classification (Nguyen et al., 2008).

206



1: fori € {1..3} do

2:S; < bootstrap_sample(L)
3: ¢« train_classifier(S;)
4: end for

5: repeat

6: foric {1..3} do

7
8
9

for x € U do
if cj(z) = cx(2)(j, k # i) then
10: Li— L U{(z,cj(x)}
11: end if
12: end for
13: ¢; «— train_classifier(L U L;)

14:  end for
15: until none of ¢; changes
16: apply majority vote over c¢;

Figure 1: Tri-training (Li and Zhou, 2005).

3.1 Tri-training with disagreement

We introduce a possible improvement of the tri-
training algorithm: If we change lines 9-10 in the
algorithm in Figure 1 with the lines:

if ¢;(z) = cx(x) # ¢i(2)(j, k # i) then
Li — LiU{(z,cj(x)}
end if

two classifiers, say c; and cg, only label a data-
point for the third classifier, cs, if ¢; and ¢y agree
on its label, but c3 disagrees. The intuition is
that we only want to strengthen a classifier in its
weak points, and we want to avoid skewing our
labeled data by easy data points. Finally, since tri-
training with disagreement imports less unlabeled
data, it is much more efficient than tri-training. No
one has to the best of our knowledge applied tri-
training with disagreement to real-life classifica-
tion tasks before.

4 Results

Our results are presented in Figure 2. The stacking
result was obtained by training a SVM on top of
the predictions of SVMTool and the word clusters
of Unsupos. SVMs performed better than deci-
sion trees, bagging and random forests on our de-
velopment section, but improvements on test data
were modest. Tri-training refers to the original al-
gorithm sketched in Figure 1 with C4.5 as learn-
ing algorithm. Since tri-training degenerates to
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self-training if the three classifiers are trained on
the same sample, we used our implementation of
tri-training to obtain self-training results and vali-
dated our results by a simpler implementation. We
varied poolsize to optimize self-training. Finally,
we list results for a technique called co-forests (Li
and Zhou, 2007), which is a recent alternative to
tri-training presented by the same authors, and for
tri-training with disagreement (tri-disagr). The p-
values are computed using 10,000 stratified shuf-
fles.

Tri-training and tri-training with disagreement
gave the best results. Note that since tri-training
leads to much better results than stacking alone,
it is unlabeled data that gives us most of the im-
provement, not the stacking itself. The differ-
ence between tri-training and self-training is near-
significant (p <0.0150). It seems that tri-training
with disagreement is a competitive technique in
terms of accuracy. The main advantage of tri-
training with disagreement compared to ordinary
tri-training, however, is that it is very efficient.
This is reflected by the average number of tokens
in L; over the three learners in the worst round of
learning:

‘ av. tokens in L;
tri-training 1,170,811
tri-disagr 173

Note also that self-training gave very good re-
sults. Self-training was, again, much slower than
tri-training with disagreement since we had to
train on a large pool of unlabeled data (but only
once). Of course this is not a standard self-training
set-up, but self-training informed by unsupervised
word clusters.

4.1 Follow-up experiments

SVMTool is one of the most accurate POS tag-
gers available. This means that the predictions
that are added to the labeled data are of very
high quality. To test if our semi-supervised learn-
ing methods were sensitive to the quality of the
input taggers we repeated the self-training and
tri-training experiments with a less competitive
POS tagger, namely the maximum entropy-based
POS tagger first described in (Ratnaparkhi, 1998)
that comes with the maximum entropy library in
(Zhang, 2004). Results are presented as the sec-
ond line in Figure 2. Note that error reduction is
much lower in this case.



BL stacking tri-tr.  self-tr. co-forests tri-disagr | errorred.  p-value
SVMTool | 97.15% 97.19% | 97.27% 97.26% 97.13%  97.27% 421% <0.0001
MaxEnt | 96.31% -1 96.36% 96.36% 96.28%  96.36% 1.36% <0.0001

Figure 2: Results on Wall Street Journal Sect. 22-24 with different semi-supervised methods.

5 Conclusion

This paper first shows how stacking can be used to
reduce POS tagging to a classification task. This
reduction seems to enable robust semi-supervised
learning. The technique was used to improve the
accuracy of a state-of-the-art POS tagger, namely
SVMTool. Four semi-supervised learning meth-
ods were tested, incl. self-training, tri-training, co-
forests and tri-training with disagreement. All
methods increased the accuracy of SVMTool sig-
nificantly. Error reduction on Wall Street Jour-
nal Sect. 22-24 was 4.2%, which is comparable
to related work in the literature, e.g. Suzuki and
Isozaki (2008) (7%) and Spoustova et al. (2009)
(4-5%).
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Abstract

The Minimum Description Length (MDL)
principle is a method for model selection
that trades off between the explanation of
the data by the model and the complexity
of the model itself. Inspired by the MDL
principle, we develop an objective func-
tion for generative models that captures
the description of the data by the model
(log-likelihood) and the description of the
model (model size). We also develop a ef-
ficient general search algorithm based on
the MAP-EM framework to optimize this
function. Since recent work has shown that
minimizing the model size in a Hidden
Markov Model for part-of-speech (POS)
tagging leads to higher accuracies, we test
our approach by applying it to this prob-
lem. The search algorithm involves a sim-
ple change to EM and achieves high POS
tagging accuracies on both English and
Italian data sets.

1 Introduction

The Minimum Description Length (MDL) princi-
ple is a method for model selection that provides a
generic solution to the overfitting problem (Barron
et al., 1998). A formalization of Ockham’s Razor,
it says that the parameters are to be chosen that
minimize the description length of the data given
the model plus the description length of the model
itself.

It has been successfully shown that minimizing
the model size in a Hidden Markov Model (HMM)
for part-of-speech (POS) tagging leads to higher
accuracies than simply running the Expectation-
Maximization (EM) algorithm (Dempster et al.,
1977). Goldwater and Griffiths (2007) employ a
Bayesian approach to POS tagging and use sparse
Dirichlet priors to minimize model size. More re-
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cently, Ravi and Knight (2009) alternately mini-
mize the model using an integer linear program
and maximize likelihood using EM to achieve the
highest accuracies on the task so far. However, in
the latter approach, because there is no single ob-
jective function to optimize, it is not entirely clear
how to generalize this technique to other prob-
lems. In this paper, inspired by the MDL princi-
ple, we develop an objective function for genera-
tive models that captures both the description of
the data by the model (log-likelihood) and the de-
scription of the model (model size). By using a
simple prior that encourages sparsity, we cast our
problem as a search for the maximum a poste-
riori (MAP) hypothesis and present a variant of
EM to approximately search for the minimum-
description-length model. Applying our approach
to the POS tagging problem, we obtain higher ac-
curacies than both EM and Bayesian inference as
reported by Goldwater and Griffiths (2007). On a
Italian POS tagging task, we obtain even larger
improvements. We find that our objective function
correlates well with accuracy, suggesting that this
technique might be useful for other problems.

2 MAP EM with Sparse Priors

2.1 Objective function

In the unsupervised POS tagging task, we are
given a word sequence W = wi,...,wy and want
to find the best tagging t = 1,...,fy, Where
t; € T, the tag vocabulary. We adopt the problem
formulation of Merialdo (1994), in which we are
given a dictionary of possible tags for each word
type.
We define a bigram HMM

N

Pov,t|0) =] | Pw.t10)- Pailei) (1)

i=1

In maximum likelihood estimation, the goal is to
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find parameter estimates
0= arg max log P(w | 6) 2)
0

= arg max lo P(w,t|0) 3)
g ; g Zt:

The EM algorithm can be used to find a solution.
However, we would like to maximize likelihood
and minimize the size of the model simultane-
ously. We define the size of a model as the number
of non-zero probabilities in its parameter vector.
Let 64,...,6, be the components of 6. We would
like to find

6 = arg min (- log P(w | 6) + allfllo)  (4)
0

where [|6]|o, called the LO norm of 6, simply counts
the number of non-zero parameters in 6. The
hyperparameter a controls the tradeoff between
likelihood maximization and model minimization.
Note the similarity of this objective function with
MDL’s, where @ would be the space (measured
in nats) needed to describe one parameter of the
model.

Unfortunately, minimization of the LO norm
is known to be NP-hard (Hyder and Mahata,
2009). It is not smooth, making it unamenable
to gradient-based optimization algorithms. There-
fore, we use a smoothed approximation,

ot = " (1-¢7) 5)

i
where 0 < 8 < 1 (Mohimani et al., 2007). For
smaller values of §, this closely approximates the
desired function (Figure 1). Inverting signs and ig-

noring constant terms, our objective function is
now:

~ i
6 = arg max logP(w|9)+a/Zeﬁ (6)
o i

We can think of the approximate model size as
a kind of prior:

—0;

e B
P = % (7

-6;
log P(6) = a - ZJ ~logZ (8)
i
—6;

where Z = fde expa ;e ? is a normalization

constant. Then our goal is to find the maximum
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Figure 1: Ideal model-size term and its approxima-
tions.

a posterior parameter estimate, which we find us-
ing MAP-EM (Bishop, 2006):

N

6 = arg max log P(w, 0) 9)
0

= arg max (log P(w | 6) + log P(6)) (10)
6
Substituting (8) into (10) and ignoring the constant
term log Z, we get our objective function (6) again.
We can exercise finer control over the sparsity
of the tag-bigram and channel probability distri-
butions by using a different « for each:

arg max (log P(w|6)+
6

—P(wlt) P11
acZe 5 +a/,Ze 7 ) (11)

w,t .t

In our experiments, we set @, = 0 since previ-
ous work has shown that minimizing the number
of tag n-gram parameters is more important (Ravi
and Knight, 2009; Goldwater and Griffiths, 2007).

A common method for preferring smaller mod-
els is minimizing the L1 norm, };|6;|. However,
for a model which is a product of multinomial dis-
tributions, the L1 norm is a constant.

2.\l = )6
=X | D Pwin+ > P |1
t w v

=271

Therefore, we cannot use the L1 norm as part of
the size term as the result will be the same as the
EM algorithm.



2.2 Parameter optimization

To optimize (11), we use MAP EM, which is an it-
erative search procedure. The E step is the same as
in standard EM, which is to calculate P(t | w, "),
where the §' are the parameters in the current iter-
ation ¢. The M step in iteration (¢ + 1) looks like

6! = arg max (E P(tiw.e) [log P(W, t | 0)] +
0

oy )

Lt
Let C(t,w;t,w) count the number of times the
word w is tagged as z in t, and C(¢, t’; t) the number
of times the tag bigram (7, t") appears in t. We can
rewrite the M step as

=PI (1 2)
B

gt = ( E[C(t,w)]log P(w | ¢
arg max ZZ [C(t, w)]log P(w | 1)+

ZZ( [C(t, )] log P(f' | 1) + aye % ))] (13)

subject to the constraints ), P(w | r) = 1 and
> Pt | t) = 1. Note that we can optimize each
term of both summations over ¢ separately. For
each 1, the term

D" E[C(t,w)]log P(w | 1) (14)

is easily optimized as in EM: just let P(w | 1) «
E[C(t,w)]. But the term

> (E[C(t, )] log P | £) + a,e%""’) (15)

t

is trickier. This is a non-convex optimization prob-
lem for which we invoke a publicly available
constrained optimization tool, ALGENCAN (An-
dreani et al., 2007). To carry out its optimization,
ALGENCAN requires computation of the follow-
ing in every iteration:

e Objective function, defined in equation (15).
This is calculated in polynomial time using
dynamic programming.

e Constraints: g, = >, Pt | ) — 1 = 0 for
each tag r € 7. Also, we constrain P(#’' | t) to
the interval [e, 1].!

"We must have € > 0 because of the log P(#' | 1) term
in equation (15). It seems reasonable to set € < +; in our

N
experiments, we set € = 1077,
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Gradient of objective function:

oF E[C(1,1)] _

ay Pl

= 16
Pl Pl B 1o
e Gradient of equality constraints:
0 1 ift=¢
R (17)
oP(" | 1) 0 otherwise

Hessian of objective function, which is not
required but greatly speeds up the optimiza-

tion:
P’
9*F _ _EICGt,)] ek
OP( | OP( | 1) P |t: | B2
(18)

The other second-order partial derivatives are
all zero, as are those of the equality con-
straints.

We perform this optimization for each instance
of (15). These optimizations could easily be per-
formed in parallel for greater scalability.

3 Experiments

We carried out POS tagging experiments on En-
glish and Italian.

3.1 English POS tagging

To set the hyperparameters a; and 5, we prepared
three held-out sets Hy, H,, and H3 from the Penn
Treebank. Each H; comprised about 24, 000 words
annotated with POS tags. We ran MAP-EM for
100 iterations, with uniform probability initializa-
tion, for a suite of hyperparameters and averaged
their tagging accuracies over the three held-out
sets. The results are presented in Table 2. We then
picked the hyperparameter setting with the highest
average accuracy. These were a; = 80,5 = 0.05.
We then ran MAP-EM again on the test data with
these hyperparameters and achieved a tagging ac-
curacy of 87.4% (see Table 1). This is higher than
the 85.2% that Goldwater and Griffiths (2007) ob-
tain using Bayesian methods for inferring both
POS tags and hyperparameters. It is much higher
than the 82.4% that standard EM achieves on the
test set when run for 100 iterations.

Using @, = 80,8 = 0.05, we ran multiple ran-
dom restarts on the test set (see Figure 2). We find
that the objective function correlates well with ac-
curacy, and picking the point with the highest ob-
jective function value achieves 87.1% accuracy.



B

075 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 | 82.81 8278 83.10 83.50 83.76 83.70 84.07 8395 83.75
20 | 82.78 82.82 8326 83.60 83.890 84.88 83.74 84.12 83.46
30 | 82.78 83.06 83.26 8329 8450 84.82 84.54 83.93 8347
40 | 82.81 83.13 8350 83.98 8423 8531 85.05 83.84 83.46
50 | 82.84 83.24 83.15 84.08 82.53 8490 84.73 83.69 82.70
60 | 83.05 83.14 8326 8330 82.08 8523 85.06 83.26 82.96
70 | 83.09 83.10 8297 8237 8330 8632 83.98 83.55 8297
80 | 83.13 83.15 8271 83.00 86.47 86.24 83.94 83.26 82.93
90 | 8320 83.18 8253 8420 86.32 84.87 83.49 83.62 82.03
100 | 83.19 8351 82.84 84.60 86.13 8594 83.26 83.67 82.06
110 | 83.18 83.53 8329 8440 86.19 85.18 80.76 8332 82.05
120 | 83.08 83.65 83.71 84.11 86.03 8539 80.66 82.98 82.20
130 | 83.10 83.19 8352 84.02 8579 8565 80.08 82.04 81.76
140 | 83.11 83.17 8334 8526 8586 8584 79.09 8251 81.64
150 | 83.14 8320 8340 8533 8554 85.18 78.90 81.99 81.88

Table 2: Average accuracies over three held-out sets for English.

system accuracy (%)
Standard EM 82.4

+ random restarts 84.5
(Goldwater and Griffiths, 2007) 85.2
our approach 87.4

+ random restarts 87.1

Table 1: MAP-EM with a LO norm achieves higher
tagging accuracy on English than (2007) and much
higher than standard EM.

system zero parameters  bigram types
maximum possible 1389 -

EM, 100 iterations 444 924
MAP-EM, 100 iterations 695 648

Table 3: MAP-EM with a smoothed LO norm
yields much smaller models than standard EM.

We also carried out the same experiment with stan-
dard EM (Figure 3), where picking the point with
the highest corpus probability achieves 84.5% ac-
curacy.

We also measured the minimization effect of the
sparse prior against that of standard EM. Since our
method lower-bounds all the parameters by €, we
consider a parameter 6; as a zero if 6; < €. We
also measured the number of unique tag bigram
types in the Viterbi tagging of the word sequence.
Table 3 shows that our method produces much
smaller models than EM, and produces Viterbi
taggings with many fewer tag-bigram types.

3.2 Italian POS tagging

We also carried out POS tagging experiments on
an Italian corpus from the Italian Turin Univer-
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0,=80,3=0.05,Test Set 24115 Words
0.89 T T T T T T
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Tagging accuracy
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objective function value

Figure 2: Tagging accuracy vs. objective func-
tion for 1152 random restarts of MAP-EM with
smoothed LO norm.

sity Treebank (Bos et al., 2009). This test set com-
prises 21, 878 words annotated with POS tags and
a dictionary for each word type. Since this is all
the available data, we could not tune the hyperpa-
rameters on a held-out data set. Using the hyper-
parameters tuned on English (o, = 80,8 = 0.05),
we obtained 89.7% tagging accuracy (see Table 4),
which was a large improvement over 81.2% that
standard EM achieved. When we tuned the hyper-
parameters on the test set, the best setting (a; =
120, 8 = 0.05 gave an accuracy of 90.28%.

4 Conclusion

A variety of other techniques in the literature have
been applied to this unsupervised POS tagging
task. Smith and Eisner (2005) use conditional ran-
dom fields with contrastive estimation to achieve



B
075 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 | 81.62 81.67 81.63 8247 82770 84.64 84.82 84.96 84.90
20 | 81.67 81.63 81.76 8275 84.28 8479 85.85 88.49  85.30
30 | 81.66 81.63 8229 83.43 8508 88.10 86.16 88.70  88.34
40 | 81.64 81.79 8230 8500 86.10 88.86 89.28 88.76  88.80
50 | 81.71 81.71 7886 8593 86.16 8898 88.98 89.11 88.01
60 | 81.65 8222 7895 86.11 87.16 8935 88.97 88.59 88.00
70 | 81.69 8225 7955 8632 89.79 8937 8891 85.63 87.89
80 | 81.74 8223 80.78 86.34 89.70 89.58 88.87 88.32 88.56
90 | 81.70 81.85 81.00 86.35 90.08 89.40 89.09 88.09 88.50
100 | 81.70 82.27 8224 86.53 90.07 88.93 89.09 88.30 88.72
110 | 82.19 8249 8222 86.77 90.12 89.22 88.87 88.48 8791
120 | 82.23 78.60 82.76 86.77 90.28 89.05 88.75 88.83  88.53
130 | 82.20 78.60 8333 8748 90.12 89.15 89.30 87.81 88.66
140 | 82.24 78.64 8334 8748 90.12 89.01 88.87 88.99 88.85
150 | 82.28 78.69 8332 87.75 90.25 87.81 88.50 89.07 88.41

Table 4: Accuracies on test set for Italian.

EM, Test Set 24115 Words

09
0.88 [
0.86 [

084

Tagging accuracy

076 \ . . . . . . . . .
-147500 -147400 -147300 -147200 -147100 -147000 -146900 -146800 -146700 -146600 -146500 -146400
objective function value

Figure 3: Tagging accuracy vs. likelihood for 1152
random restarts of standard EM.

88.6% accuracy. Goldberg et al. (2008) provide
a linguistically-informed starting point for EM to
achieve 91.4% accuracy. More recently, Chiang et
al. (2010) use Glbbs sampling for Bayesian in-
ference along with automatic run selection and
achieve 90.7%.

In this paper, our goal has been to investi-
gate whether EM can be extended in a generic
way to use an MDL-like objective function that
simultaneously maximizes likelihood and mini-
mizes model size. We have presented an efficient
search procedure that optimizes this function for
generative models and demonstrated that maxi-
mizing this function leads to improvement in tag-
ging accuracy over standard EM. We infer the hy-
perparameters of our model using held out data
and achieve better accuracies than (Goldwater and
Griffiths, 2007). We have also shown that the ob-
jective function correlates well with tagging accu-
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racy supporting the MDL principle. Our approach
performs quite well on POS tagging for both En-
glish and Italian. We believe that, like EM, our
method can benefit from more unlabeled data, and
there is reason to hope that the success of these
experiments will carry over to other tasks as well.
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Abstract

We revisit the algorithm of Schiitze
(1995) for unsupervised part-of-speech
tagging. The algorithm uses reduced-rank
singular value decomposition followed
by clustering to extract latent features
from context distributions. As imple-
mented here, it achieves state-of-the-art
tagging accuracy at considerably less cost
than more recent methods. It can also
produce a range of finer-grained tag-
gings, with potential applications to vari-
ous tasks.

1 Introduction

While supervised approaches are able to solve
the part-of-speech (POS) tagging problem with
over 97% accuracy (Collins 2002; Toutanova et
al. 2003), unsupervised algorithms perform con-
siderably less well. These models attempt to tag
text without resources such as an annotated cor-
pus, a dictionary, etc. The use of singular value
decomposition (SVD) for this problem was in-
troduced in Schiitze (1995). Subsequently, a
number of methods for POS tagging without a
dictionary were examined, e.g., by Clark (2000),
Clark (2003), Haghighi and Klein (2006), John-
son (2007), Goldwater and Griffiths (2007), Gao
and Johnson (2008), and Graga et al. (2009).
The latter two, using Hidden Markov Models
(HMMs), exhibit the highest performances to
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Bar-Ilan University
Ramat-Gan, Israel

syarivm@yahoo.com

Elie Bienenstock
Division of Applied Mathematics
and Department of Neuroscience

Brown University

Providence, RI, USA

elie@brown.edu

date for fully unsupervised POS tagging.

The revisited SVD-based approach presented
here, which we call “two-step SVD” or SVD2,
has four important characteristics. First, it
achieves state-of-the-art tagging accuracy.
Second, it requires drastically less computational
effort than the best currently available models.
Third, it demonstrates that state-of-the-art accu-
racy can be realized without disambiguation, i.e.,
without attempting to assign different tags to dif-
ferent tokens of the same type. Finally, with no
significant increase in computational cost, SVD2
can create much finer-grained labelings than typ-
ically produced by other algorithms. When com-
bined with some minimal supervision in post-
processing, this makes the approach useful for
tagging languages that lack the resources re-
quired by fully supervised models.

2 Methods

Following the original work of Schiitze (1995),
we begin by constructing a right context matrix,
R, and a left context matrix, L. R; counts the
number of times in the corpus a token of word
type i is immediately followed by a token of
word type j. Similarly, L; counts the number of
times a token of type i is preceded by a token of
type j. We truncate these matrices, including, in
the right and left contexts, only the w; most fre-
quent word types. The resulting L and R are of
dimension Nypesxwy, Where Ny,es is the number
of word types (spelling forms) in the corpus, and
wy is set to 1000. (The full Nypesx Nigpes cOntext
matrices satisfy R = L")
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Next, both context matrices are factored using

singular value decomposition:
L=US '
R= UR SR VRT.

The diagonal matrices S; and Sk (each of rank
1000) are reduced down to rank », = 100 by re-
placing the 900 smallest singular values in each
matrix with zeros, yielding S."and Sg". We then
form a pair of latent-descriptor matrices defined
by:

L* = UL SL*
R=Ur S

Row i in matrix L~ (resp. R") is the left (resp.
right) latent descriptor for word type i. We next
include a normalization step in which each row
in each of L" and R" is scaled to unit length,
yielding matrices L™ and R"". Finally, we form a
single descriptor matrix D by concatenating these
matrices into D =[L" R"]. Row i in matrix D is
the complete latent descriptor for word type i;
this latent descriptor sits on the Cartesian product
of two 100-dimensional unit spheres, hereafter
the 2-sphere.

We next categorize these descriptors into
k1= 500 groups, using a k-means clustering algo-
rithm. Centroid initialization is done by placing
the £ initial centroids on the descriptors of the &
most frequent words in the corpus. As the de-
scriptors sit on the 2-sphere, we measure the
proximity of a descriptor to a centroid by the dot
product between them; this is equal to the sum of
the cosines of the angles—computed on the left
and right parts—between them. We update each
cluster’s centroid as the weighted average of its
constituents, the weight being the frequency of
the word type; the centroids are then scaled, so
they sit on the 2-sphere. Typically, only a few
dozen iterations are required for full convergence
of the clustering algorithm.

We then apply a second pass of this entire
SVD-and-clustering procedure. In this second
pass, we use the k; =500 clusters from the first
iteration to assemble a new pair of context ma-
trices. Now, R;; counts all the cluster-j (j=1... k)
words to the right of word 7, and L; counts all the
cluster-j words to the left of word i. The new ma-
trices L and R have dimension Nygpes % k.

As in the first pass, we perform reduced-rank
SVD, this time down to rank », = 300, and we
again normalize the descriptors to unit length,
yielding a new pair of latent descriptor matrices
L™ and R”. Finally, we concatenate L™ and R
into a single matrix of descriptors, and cluster
these descriptors into k, groups, where k, is the
desired number of induced tags. We use the same

weighted k-means algorithm as in the first pass,
again placing the £ initial centroids on the de-
scriptors of the & most frequent words in the cor-
pus. The final tag of any token in the corpus is
the cluster number of its type.

3 Data and Evaluation

We ran the SVD2 algorithm described above on
the full Wall Street Journal part of the Penn
Treebank (1,173,766 tokens). Capitalization was
ignored, resulting in Nypes = 43,766, with only a
minor effect on accuracy. Evaluation was done
against the POS-tag annotations of the 45-tag
PTB tagset (hereafter PTB45), and against the
Smith and Eisner (2005) coarse version of the
PTB tagset (hereafter PTB17). We selected the
three evaluation criteria of Gao and Johnson
(2008): M-to-1, 1-to-1, and VI. M-to-1 and 1-to-
1 are the tagging accuracies under the best many-
to-one map and the greedy one-to-one map re-
spectively; VI is a map-free information-
theoretic criterion—see Gao and Johnson (2008)
for details. Although we find M-to-1 to be the
most reliable criterion of the three, we include
the other two criteria for completeness.

In addition to the best M-to-1 map, we also
employ here, for large values of k,, a prototype-
based M-to-1 map. To construct this map, we
first find, for each induced tag ¢, the word type
with which it co-occurs most frequently; we call
this word type the prototype of t. We then query
the annotated data for the most common gold tag
for each prototype, and we map induced tag ¢ to
this gold tag. This prototype-based M-to-1 map
produces accuracy scores no greater—typically
lower—than the best M-to-1 map. We discuss
the value of this approach as a minimally-
supervised post-processing step in Section 5.

4 Results

Low-k performance. Here we present the per-
formance of the SVD2 model when k,, the num-
ber of induced tags, is the same or roughly the
same as the number of tags in the gold stan-
dard—hence small. Table 1 compares the per-
formance of SVD2 to other leading models. Fol-
lowing Gao and Johnson (2008), the number of
induced tags is 17 for PTB17 evaluation and 50
for PTB45 evaluation. Thus, with the exception
of Graga et al. (2009) who use 45 induced tags
for PTB45, the number of induced tags is the
same across each column of Table 1.
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M-to-1 1-to-1 V1
Model PTB17 PTB45 PTB17 PTB45 PTB17 PTB45
SVD2 0.730 0.660 0.513 0.467 3.02 3.84
HMM-EM 0.647 0.621 0.431 0.405 3.86 448
HMM-VB 0.637 0.605 0.514 0.461 3.44 428
HMM-GS 0.674 0.660 0.466 0.499 3.46 4.04
HMM-Sparse(32) 0.702(2.2) | 0.654(1.0) 0.495 0.445

VEM (107,10 0.682(0.8) 0.546(1.7) 0.528 0.460

Table 1. Tagging accuracy under the best M-to-1 map, the greedy 1-to-1 map, and
VI, for the full PTB45 tagset and the reduced PTB17 tagset. HMM-EM, HMM-VB
and HMM-GS show the best results from Gao and Johnson (2008); HMM-Sparse(32)
and VEM (107,10™") show the best results from Graga et al. (2009).

The performance of SVD2 compares favora-
bly to the HMM models. Note that SVD2 is a
deterministic algorithm. The table shows, in pa-
rentheses, the standard deviations reported in
Gragca et al. (2009). For the sake of comparison
with Graga et al. (2009), we also note that, with
ky, = 45, SVD2 scores 0.659 on PTB45. The NVI
scores (Reichart and Rappoport 2009) corres-
ponding to the VI scores for SVD2 are 0.938 for
PTBI17 and 0.885 for PTB45. To examine the
sensitivity of the algorithm to its four parameters,
wy, 11, ki, and 7, we changed each of these para-
meters separately by a multiplicative factor of
either 0.5 or 2; in neither case did M-to-1 accura-
cy drop by more than 0.014.

This performance was achieved despite the
fact that the SVD2 tagger is mathematically
much simpler than the other models. Our MAT-
LAB implementation of SVD2 takes only a few
minutes to run on a desktop computer, in contrast
to HMM training times of several hours or days
(Gao and Johnson 2008; Johnson 2007).

High-k performance. Not suffering from the
same computational limitations as other models,
SVD2 can easily accommodate high numbers of
induced tags, resulting in fine-grained labelings.
The value of this flexibility is discussed in the
next section. Figure 1 shows, as a function of 4,
the tagging accuracy of SVD2 under both the
best and the prototype-based M-to-1 maps (see
Section 3), for both the PTB45 and the PTB17
tagsets. The horizontal one-tag-per-word-type
line in each panel is the theoretical upper limit
for tagging accuracy in non-disambiguating
models (such as SVD?2). This limit is the fraction
of all tokens in the corpus whose gold tag is the
most frequent for their type.

5 Discussion

At the heart of the algorithm presented here is
the reduced-rank SVD method of Schiitze
(1995), which transforms bigram counts into la-
tent descriptors. In view of the present work,
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Figure 1. Performance of the SVD2 algo-

rithm as a function of the number of induced

tags. Top: PTB45; bottom: PTB17. Each

plot shows the tagging accuracy under the

best and the prototype-based M-to-1 maps, as

well as the wupper Ilimit for non-
disambiguating taggers.
which achieves state-of-the-art performance

when evaluation is done with the criteria now in
common use, Schiitze's original work should
rightly be praised as ahead of its time. The SVD2
model presented here differs from Schiitze's
work in many details of implementation—not all
of which are explicitly specified in Schiitze
(1995). In what follows, we discuss the features
of SVD2 that are most critical to its performance.
Failure to incorporate any one of them signifi-
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cantly reduces the performance of the algorithm
(M-to-1 reduced by 0.04 to 0.08).

First, the reduced-rank left-singular vectors
(for the right and left context matrices) are
scaled, i.e., multiplied, by the singular values.
While the resulting descriptors, the rows of L’
and R", live in a much lower-dimensional space
than the original context vectors, they are
mapped by an angle-preserving map (defined by
the matrices of right-singular vectors Vi and Vy)
into vectors in the original space. These mapped
vectors best approximate (in the least-squares
sense) the original context vectors; they have the
same geometric relationships as their equivalent
high-dimensional images, making them good
candidates for the role of word-type descriptors.

A second important feature of the SVD2 algo-
rithm is the unit-length normalization of the la-
tent descriptors, along with the computation of
cluster centroids as the weighted averages of
their constituent vectors. Thanks to this com-
bined device, rare words are treated equally to
frequent words regarding the length of their de-
scriptor vectors, yet contribute less to the place-
ment of centroids.

Finally, while the usual drawback of k-means-
clustering algorithms is the dependency of the
outcome on the initial—usually random—
placement of centroids, our initialization of the k&
centroids as the descriptors of the & most fre-
quent word types in the corpus makes the algo-
rithm fully deterministic, and improves its per-
formance substantially: M-to-1 PTB45 by 0.043,
M-to-1 PTB17 by 0.063.

As noted in the Results section, SVD?2 is fairly
robust to changes in all four parameters wy, r, ki,
and r,. The values used here were obtained by a
coarse, greedy strategy, where each parameter
was optimized independently. It is worth noting
that dispensing with the second pass altogether,
i.e., clustering directly the latent descriptor vec-
tors obtained in the first pass into the desired
number of induced tags, results in a drop of
Many-to-1 score of only 0.021 for the PTB45
tagset and 0.009 for the PTB17 tagset.

Disambiguation. An obvious limitation of
SVD?2 is that it is a non-disambiguating tagger,
assigning the same label to all tokens of a type.
However, this limitation per se is unlikely to be
the main obstacle to the improvement of low-k
performance, since, as is well known, the theo-
retical upper limit for the tagging accuracy of
non-disambiguating models (shown in Fig. 1) is
much higher than the current state-of-the-art for

unsupervised taggers, whether disambiguating or
not.

To further gain insight into how successful
current models are at disambiguating when they
have the power to do so, we examined a collec-
tion of HMM-VB runs (Gao and Johnson 2008)
and asked how the accuracy scores would change
if, after training was completed, the model were
forced to assign the same label to all tokens of
the same type. To answer this question, we de-
termined, for each word type, the modal HMM
state, i.e., the state most frequently assigned by
the HMM to tokens of that type. We then re-
labeled all words with their modal label. The ef-
fect of thus eliminating the disambiguation ca-
pacity of the model was to slightly increase the
tagging accuracy under the best M-to-1 map for
every HMM-VB run (the average increase was
0.026 for PTB17, and 0.015 for PTB45). We
view this as a further indication that, in the cur-
rent state of the art and with regards to tagging
accuracy, limiting oneself to non-disambiguating
models may not adversely affect performance.

To the contrary, this limitation may actually
benefit an approach such as SVD2. Indeed, on
difficult learning tasks, simpler models often be-
have better than more powerful ones (Geman et
al. 1992). HMMs are powerful since they can, in
theory, induce both a system of tags and a system
of contextual patterns that allow them to disam-
biguate word types in terms of these tags. How-
ever, carrying out both of these unsupervised
learning tasks at once is problematic in view of
the very large number of parameters to be esti-
mated compared to the size of the training data
set.

The POS-tagging subtask of disambiguation
may then be construed as a challenge in its own
right: demonstrate effective disambiguation in an
unsupervised model. Specifically, show that tag-
ging accuracy decreases when the model's dis-
ambiguation capacity is removed, by re-labeling
all tokens with their modal label, defined above.

We believe that the SVD2 algorithm presented
here could provide a launching pad for an ap-
proach that would successfully address the dis-
ambiguation challenge. It would do so by allow-
ing a gradual and carefully controlled amount of
ambiguity into an initially non-disambiguating
model. This is left for future work.

Fine-grained labeling. An important feature of
the SVD2 algorithm is its ability to produce a
fine-grained labeling of the data, using a number
of clusters much larger than the number of tags
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in a syntax-motivated POS-tag system. Such
fine-grained labelings can capture additional lin-
guistic features. To achieve a fine-grained labe-
ling, only the final clustering step in the SVD2
algorithm needs to be changed; the computation-
al cost this entails is negligible. A high-quality
fine-grained labeling, such as achieved by the
SVD2 approach, may be of practical interest as
an input to various types of unsupervised gram-
mar-induction algorithms (Headden et al. 2008).
This application is left for future work.

Prototype-based tagging. One potentially im-
portant practical application of a high-quality
fine-grained labeling is its use for languages
which lack any kind of annotated data. By first
applying the SVD2 algorithm, word types are
grouped together into a few hundred clusters.
Then, a prototype word is automatically ex-
tracted from each cluster. This produces, in a
completely unsupervised way, a list of only a
few hundred words that need to be hand-tagged
by an expert. The results shown in Fig. 1 indicate
that these prototype tags can then be used to tag
the entire corpus with only a minor decrease in
accuracy compared to the best M-to-1 map—the
construction of which requires a fully annotated
corpus. Fig. 1 also indicates that, with only a few
hundred prototypes, the gap left between the ac-
curacy thus achieved and the upper bound for
non-disambiguating models is fairly small.
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Abstract

We address the problem of selecting non-
domain-specific language model training
data to build auxiliary language models
for use in tasks such as machine transla-
tion. Our approach is based on comparing
the cross-entropy, according to domain-
specific and non-domain-specifc language
models, for each sentence of the text
source used to produce the latter language
model. We show that this produces better
language models, trained on less data, than
both random data selection and two other
previously proposed methods.

@microsoft.com

The normal practice when using multiple lan-
guages models in machine translation seems to be
to train models on as much data as feasible from
each source, and to depend on feature weight opti-
mization to down-weight the impact of data that is
less well-matched to the translation application. In
this paper, however, we show that for a data source
that is not entirely in-domain, we can improve the
match between the language model from that data
source and the desired application output by intel-
ligently selecting a subset of the available data as
language model training data. This not only pro-
duces a language model better matched to the do-
main of interest (as measured in terms of perplex-

_ ity on held-out in-domain data), but it reduces the
1 Introduction computational resources needed to exploit a large

Statistical N-gram language models are widely@mount of non-domain-specific data, since the re-
used in applications that produce natural-languag80urces needed to filter a large amount of data are
text as output, particularly speech recognition andnuch less (especially in terms of memory) than
machine translation. It seems to be a univerihose required to build a language model from all
sal truth that output quality can always be im-the data.
proved by using more language model trainin
data, but only if the training data is reasonabl
well-matched to the desired output. This present©ur approach to the problem assumes that we have
a problem, because in virtually any particular ap-enough in-domain data to train a reasonable in-
plication the amount of in-domain data is limited. domain language model, which we then use to
Thus it has become standard practice to comhelp score text segments from other data sources,
bine in-domain data with other data, either byand we select segments based on a score cutoff op-
combining N-gram counts from in-domain andtimized on held-out in-domain data.
other data (usually weighting the counts in some We are aware of two comparable previous ap-
way), or building separate language models fronproaches. Lin et al. (1997) and Gao et al. (2002)
different data sources, interpolating the languagéoth used a method similar to ours, in which the
model probabilities either linearly or log-linearly. metric used to score text segments is their perplex-
Log-linear interpolation is particularly popular ity according to the in-domain language model.
in statistical machine translation (e.g., Brants efThe candidate text segments with perplexity less
al., 2007), because the interpolation weights cathan some threshold are selected.
easily be discriminatively trained to optimize an The second previous approach does not explic-
end-to-end translation objective function (such astly make use of an in-domain language model, but
BLEU) by making the log probability according to is still applicable to our scenario. Klakow (2000)
each language model a separate feature function estimates a unigram language model from the
the overall translation model. entire non-domain-specific corpus to be selected

32 Approaches to the Problem
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from, and scores each candidate text segment from
that corpus by the change in the log likelihood
of the ir?—dom)allin data acgcording to t?]e unigram P(Npg|s,N) = P(sINt, N)P(N7|)
model, if that segment were removed from the cor- P(s|N)

pus used to estimate the unigram model. Those gjnce Ny is a subset ofN, P(s|Ny, N)
s_egr_nents whose_ removql would decrease the IO§(5|N1), and by our assumption about the rela-
likelihood of the in-domain data more than SOMEionship ofI and Ny, P(s|Ny) = P(s|I). Hence,
threshold are selected.

Our method is a fairly simple variant of scoring P(Ny|s, N) = P(s|I)P(Ny|N)
by perplexity according to an in-domain language ’ P(s|N)
model. First, note that selecting segments baseﬁj we could estimate all the probabilities in the

on a perplexity threshold is equivalent to SeIeCtingr'ght-hand side of this equation, we could use it

based on a cross-entropy threshold. Perplexity and

cross-entropy are monotonically related, since thé[zO select text segments that have a high probability

perplexity of a strings according to a model/ is Of\t/)\;?ing inN,t._ o
simply b"v () whereH ,(s) is the cross-entropy . Ie can es lmad I(sclm) arcllI (s] )I (})/Nram-
of s according toM andb is the base with re- "9 'anguage modeis ohand a sample ofv, re-

spect to which the cross-entropy is measured (e.ggpectlvely. That leaves us only(N;|N), to es-

bits or nats). However, instead of scoring text seg;['mate’ but we really don't care what(N;|N)

ments by perplexity or cross-entropy according ta>" because knowing that would still leave us won-

the in-domain language model, we score them b)(/jerlng what threshold to set aR(Ny|s, V). We

the difference of the cross-entropy of a text seg don’t care about classification accuracy; we care

ment according to the in-domain language mode?nIy about the quality of the resulting language

and the cross-entropy of the text segment accord- ?hdel,hscl) dweerIgIh t ?DS Wﬁ” ':ESE atttgz m'pt totr]:md
ing to a language model trained on a random sarrEil reshold oP(s|I)/P(s| V) that optimizes the

ple of the data source from which the text segmen It of the resuilting language model to held-out in-
is drawn domain data.

. _ _ Equivalently, we can work in the log domain
To state this formally, lef be an in-domaindata jith the quantitylog(P(s|I)) — log(P(s|N)).

setandV be a non-domain-specific (or otherwise Thjs gets us very close to working with the differ-
not entirely in-domain) data set. Léf;(s) bethe  gncein cross-entropies, becatte s) — Hy (s) is
per-word cross-entropy, according to a Ianguagieus»[a length-normalized version bifg(P(s|I)) —
model trained o, of a text segmentdrawn from log(P(s|N)), with the sign reversed. The rea-
N. Let Hy(s) be the per-word cross-entropy of 5o that we need to normalize for length is that
according to a language model trained on a range yalue oflog(P(s|I)) — log(P(s|N)) tends to
dom sample ofV. We partitionV into text seg-  cqrrelate very strongly with text segment length.

ments (e.g,, sentences), and score the segments §Cthe candidate text segments vary greatly in
cording toH; (s) — HN(S)’ selecting all text seg- |ength—e.g., if we partitionV into sentences—
ments whose score is less than a thresfiold this correlation can be a serious problem.

This method can be justified by reasoning sim- We estimated this effect on a 1000-sentence
liar to that used to derive methods for trainingsample of our experimental data described be-
binary text classifiers without labeled negativelow, and found the correlation between sentence
examples (Denis et al., 2002; Elkin and Noto,log probability difference and sentence length to
2008). Let us imagine that our non-domain-be r = —0.92, while the cross-entropy differ-
specific corpugV contains an in-domain subcor- ence was almost uncorrelated with sentence length
pus Ny, drawn from the same distribution as our (r = 0.04). Hence, using sentence probability ra-
in-domain corpud. SinceNy is statistically just tios or log probability differences as our scoring
like our in-domain datd, it would seem to be a function would result in selecting disproportion-
good candidate for the data that we want to extracately very short sentences. We tested this in an
from N. By a simple variant of Bayes rule, the experiment not described here in detail, and found
probability P(N;|s, N') of a text segmerd, drawn it not to be significantly better as a selection crite-
randomly fromN, being inN; is given by rion than random selection.
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Corpus Sentence count Token count| discounted probability mass at the unigram level
Gigaword 133,310,562 3,445,946,266 was added to the probability gflUNK> A count
Europarl train 1,651,392 48,230,859 cutoff of 2 occurrences was applied to the trigrams
Europarl test 2,000 55,566| and 4-grams in estimating these models.
We computed the cross-entropy of each sen-
Table 1: Corpus size statistics tence in the Gigaword corpus according to both

models, and scored each sentence by the differ-

ence in cross-entropy g, (s) — Hgw(s). We then

selected subsets of the Gigaword data correspond-
ding to 8 cutoff points in the cross-entropy differ-

We have empirically evaluated our propose : .
. . ence scores, and trained 4-gram models (again us-
method for selecting data from a non-domain-, . . . )
o ) - ._ing absolute discounting with a discount of 0.7) on
specific source to model text in a specific domain. .
) . . each of these subsets and on the full Gigaword cor-
For the in-domain corpus, we chose the English

side of the English-French parallel text from re-PUS: These language models were estimated with-

lease v5 of the Europarl corpus (Koehn, 2005).out restricting the vocabulary or applying count
) . . cutoffs, but the only parameters computed were
This consists of proceedings of the European Par- . )
. those needed to determine the perplexity of the
liament from 1999 through 2009. We used the .
: . . held-out Europarl test set, which saves a substan-
text from 1999 through 2008 as in-domain train- . T L

. : tial amount of computation in determining the op-
ing data, and we used the first 2000 sentences .
timal selection threshold.

from January 2009 as test data. For the non- Wi q lect hod h
domain-specific corpus, we used the LDC Eng- e compared our selection method to three

lish Gigaword Third Edition (LDC Catalog No.: other methods. As a baseline, we tramgd lan-
LDC2007T07). guage models on random subsets of the Gigaword

We used a simple tokenization scheme on an:orpus of approximately equal size to the data
data, splitting on white space and on boundariege'[S produced by the cutoffs we selected for the

. . cross-entropy difference scores. Next, we scored
between alphanumeric and nonalphanumeric (e.g,,

. . . o Il th igawor nten he cross-entr
punctuation) characters. With this tokenlzatlon,a the .G gaword sentences byt & cross-entropy
a&cordmg to the Europarl-trained model alone.

the sizes of our data sets in terms of sentences alk . ) .
. .As we noted above, this is equivalent to the in-
tokens are shown in Table 1. The token counts in-

clude added end-of-sentence tokens. domain perplexity scoring method used by Lin et

al. (1997) and Gao et al. (2002). Finally, we im-

To implement our data selection method we re'plemented Klakow’s (2000) method, scoring each

quirgd one language mode! trained on the Eumpa'ﬂ;igaword sentence by removing it from the Giga-
galnlng dati aﬂd or|1e rained ond tt|1e G'gaWOLCI‘Nord corpus and computing the difference in the

ata. To make these 'ahguage models compara I%'g likelihood of the Europarl corpus according to
and_to show the feas_lblllty of th|m|2|ng the fit to unigram models trained on the Gigaword corpus
the.m-do_mam data without tra|n.|ng a modgl on thewith and without that sentence. With the latter two
entire Gigaword corpus, we trained the GlgaWO“%ethods, we chose cutoff points in the resulting

language model for data selection on a random., s 1 produce data sets approximately equal in
sample of the Gigaword corpus of a similar size tog;, ¢ ¢, those obtained using our selection method.
that of the Europarl training data: 1,874,051 sen-

tences, 48,459,945 tokens. 4 Results
To further increase the comparability of these

Europarl and Gigaword language models, we reFor all four selection methods, plots of test set per-
stricted the vocabulary of both models to the to-plexity vs. the number of training data tokens se-
kens appearing at least twice in the Europarl traintected are displayed in Figure 1. (Note that the
ing data, treating all other tokens as instances dfraining data token counts are displayed on a log-
<UNK> With this vocabulary, 4-gram language arithmic scale.) The test set perplexity for the lan-
models were trained on both the Europarl trainingguage model trained on the full Gigaword corpus
data and the Gigaword random sample using backs 135. As we might expect, reducing training
off absolute discounting (Ney et al. 1994), with adata by random sampling always increases per-
discount of 0.7 used for all N-gram lengths. Theplexity. Selecting Gigaword sentences by their

3 Experiments
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Figure 1: Test set perplexity vs. training set size

Selection Method Original LM PPL | Modified LM PPL
in-domain cross-entropy scoring 124.4 124.8
Klakow’s method 110.5 110.8
cross-entropy difference scoring 100.7 101.9

Table 2: Results adjusted for vocabulary coverage

cross-entropy according to the Europarl-trainedhe training sets that appear to produce the lowest
model is effective in reducing both test set perplexperplexity for each selection method, however, the
ity and training corpus size, with an optimum per-spread of OOV counts is much narrower, ranging
plexity of 124, obtained with a model built from 53 (0.10%) for best training set based on cross-
36% of the Gigaword corpus. Klakow’s method entropy difference scoring, to 20 (0.03%), for ran-
is even more effective, with an optimum perplex-dom selection.
ity of 111, obtained with a model built from 21% 14 control for the difference in vocabulary, we
of the Gigaword corpus. The cross-entropy differ-astimated a modified 4-gram language model for
ence selection method, however, is yet more effecagch selection method (other than random se-
tive, with an optimum perplexity of 101, obtained lection) using the training set that appeared to
with a model built from less than 7% of the Giga- produce the lowest perplexity for that selection
word corpus. method in our initial experiments. In the modified
The comparisons implied by Figure 1, how-language models, the unigram model based on the
ever, are only approximate, because each perpleselected training set is smoothed by absolute dis-
ity (even along the same curve) is computed withcounting, and backed-off to an unsmoothed uni-
respect to a different vocabulary, resulting in a dif-gram model based on the full Gigaword corpus.
ferent out-of-vocabulary (OOV) rate. OOV tokens This produces language models that are normal-
in the test data are excluded from the perplexityized over the same vocabulary as a model trained
computation, so the perplexity measurements aren the full Gigaword corpus; thus the test set has
not strictly comparable. the same OQVs for each model.

Out of the 55566 test set tokens, the number Test set perplexity for each of these modifed
of OOV tokens ranges from 418 (0.75%), for thelanguage models is compared to that of the orig-
smallest training set based on in-domain crossinal version of the model in Table 2. It can be
entropy scoring, to 20 (0.03%), for training on seen that adjusting the vocabulary in this way, so
the full Gigaword corpus. If we consider only that all models are based on the same vocabulary,
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yields only very small changes in the measured ACM Transactions on Asian Language Informa-
test-set perplexity, and these differences are much tion Processing1(1):3-33.

smaller than the differences between the different

selection methods, whichever way the vocabulanP'€trich Klakow. 2000. Selecting articles from
of the language models is determined. the language model training corpus.|@ASSP
200Q June 5-9, Istanbul, Turkey, vol. 3, 1695—

5 Conclusions 1698.

The cross-entropy difference selection method inPhilipp Koehn. 2005. Europarl: a parallel cor-
troduced here seems to produce language mod- pus for statistical machine translat