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Tanel Alumäe and Mikko Kurimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Decision Detection Using Hierarchical Graphical Models
Trung H. Bui and Stanley Peters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Using Speech to Reply to SMS Messages While Driving: An In-Car Simulator User Study
Yun-Cheng Ju and Tim Paek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Classification of Feedback Expressions in Multimodal Data
Costanza Navarretta and Patrizia Paggio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Optimizing Informativeness and Readability for Sentiment Summarization
Hitoshi Nishikawa, Takaaki Hasegawa, Yoshihiro Matsuo and Genichiro Kikui . . . . . . . . . . . . . . 325

Last but Definitely Not Least: On the Role of the Last Sentence in Automatic Polarity-Classification
Israela Becker and Vered Aharonson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

Automatically Generating Annotator Rationales to Improve Sentiment Classification
Ainur Yessenalina, Yejin Choi and Claire Cardie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Simultaneous Tokenization and Part-Of-Speech Tagging for Arabic without a Morphological Analyzer
Seth Kulick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Hierarchical A* Parsing with Bridge Outside Scores
Adam Pauls and Dan Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Using Parse Features for Preposition Selection and Error Detection
Joel Tetreault, Jennifer Foster and Martin Chodorow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Distributional Similarity vs. PU Learning for Entity Set Expansion
Xiao-Li Li, Lei Zhang, Bing Liu and See-Kiong Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Active Learning-Based Elicitation for Semi-Supervised Word Alignment
Vamshi Ambati, Stephan Vogel and Jaime Carbonell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

An Active Learning Approach to Finding Related Terms
David Vickrey, Oscar Kipersztok and Daphne Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Learning Better Data Representation Using Inference-Driven Metric Learning
Paramveer S. Dhillon, Partha Pratim Talukdar and Koby Crammer . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Wrapping up a Summary: From Representation to Generation
Josef Steinberger, Marco Turchi, Mijail Kabadjov, Ralf Steinberger and Nello Cristianini . . . . . 382

vi



Proceedings of the ACL 2010 Conference Short Papers, pages 1–5,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Paraphrase Lattice for Statistical Machine Translation

Takashi Onishi and Masao Utiyama and Eiichiro Sumita
Language Translation Group, MASTAR Project

National Institute of Information and Communications Technology
3-5 Hikaridai, Keihanna Science City, Kyoto, 619-0289, JAPAN

{takashi.onishi,mutiyama,eiichiro.sumita}@nict.go.jp

Abstract

Lattice decoding in statistical machine
translation (SMT) is useful in speech
translation and in the translation of Ger-
man because it can handle input ambigu-
ities such as speech recognition ambigui-
ties and German word segmentation ambi-
guities. We show that lattice decoding is
also useful for handling input variations.
Given an input sentence, we build a lattice
which represents paraphrases of the input
sentence. We call this a paraphrase lattice.
Then, we give the paraphrase lattice as an
input to the lattice decoder. The decoder
selects the best path for decoding. Us-
ing these paraphrase lattices as inputs, we
obtained significant gains in BLEU scores
for IWSLT and Europarl datasets.

1 Introduction

Lattice decoding in SMT is useful in speech trans-
lation and in the translation of German (Bertoldi
et al., 2007; Dyer, 2009). In speech translation,
by using lattices that represent not only 1-best re-
sult but also other possibilities of speech recogni-
tion, we can take into account the ambiguities of
speech recognition. Thus, the translation quality
for lattice inputs is better than the quality for 1-
best inputs.

In this paper, we show that lattice decoding is
also useful for handling input variations. “Input
variations” refers to the differences of input texts
with the same meaning. For example, “Is there
a beauty salon?” and “Is there a beauty par-
lor?” have the same meaning with variations in
“beauty salon” and “beauty parlor”. Since these
variations are frequently found in natural language
texts, a mismatch of the expressions in source sen-
tences and the expressions in training corpus leads
to a decrease in translation quality. Therefore,

we propose a novel method that can handle in-
put variations using paraphrases and lattice decod-
ing. In the proposed method, we regard a given
source sentence as one of many variations (1-best).
Given an input sentence, we build a paraphrase lat-
tice which represents paraphrases of the input sen-
tence. Then, we give the paraphrase lattice as an
input to the Moses decoder (Koehn et al., 2007).
Moses selects the best path for decoding. By using
paraphrases of source sentences, we can translate
expressions which are not found in a training cor-
pus on the condition that paraphrases of them are
found in the training corpus. Moreover, by using
lattice decoding, we can employ the source-side
language model as a decoding feature. Since this
feature is affected by the source-side context, the
decoder can choose a proper paraphrase and trans-
late correctly.

This paper is organized as follows: Related
works on lattice decoding and paraphrasing are
presented in Section 2. The proposed method is
described in Section 3. Experimental results for
IWSLT and Europarl dataset are presented in Sec-
tion 4. Finally, the paper is concluded with a sum-
mary and a few directions for future work in Sec-
tion 5.

2 Related Work

Lattice decoding has been used to handle ambigu-
ities of preprocessing. Bertoldi et al. (2007) em-
ployed a confusion network, which is a kind of lat-
tice and represents speech recognition hypotheses
in speech translation. Dyer (2009) also employed
a segmentation lattice, which represents ambigui-
ties of compound word segmentation in German,
Hungarian and Turkish translation. However, to
the best of our knowledge, there is no work which
employed a lattice representing paraphrases of an
input sentence.

On the other hand, paraphrasing has been used
to enrich the SMT model. Callison-Burch et

1



Input sentence 

Paraphrase Lattice

Output sentence 

Paraphrase

List

SMT model

Parallel Corpus

(for paraphrase)

Parallel Corpus

(for training)

Paraphrasing

Lattice Decoding

Figure 1: Overview of the proposed method.

al. (2006) and Marton et al. (2009) augmented
the translation phrase table with paraphrases to
translate unknown phrases. Bond et al. (2008)
and Nakov (2008) augmented the training data by
paraphrasing. However, there is no work which
augments input sentences by paraphrasing and
represents them in lattices.

3 Paraphrase Lattice for SMT

Overview of the proposed method is shown in Fig-
ure 1. In advance, we automatically acquire a
paraphrase list from a parallel corpus. In order to
acquire paraphrases of unknown phrases, this par-
allel corpus is different from the parallel corpus
for training.

Given an input sentence, we build a lattice
which represents paraphrases of the input sentence
using the paraphrase list. We call this lattice a
paraphrase lattice. Then, we give the paraphrase
lattice to the lattice decoder.

3.1 Acquiring the paraphrase list

We acquire a paraphrase list using Bannard and
Callison-Burch (2005)’s method. Their idea is, if
two different phrases e1, e2 in one language are
aligned to the same phrase c in another language,
they are hypothesized to be paraphrases of each
other. Our paraphrase list is acquired in the same
way.

The procedure is as follows:

1. Build a phrase table.
Build a phrase table from parallel corpus us-
ing standard SMT techniques.

2. Filter the phrase table by the sigtest-filter.
The phrase table built in 1 has many inappro-
priate phrase pairs. Therefore, we filter the

phrase table and keep only appropriate phrase
pairs using the sigtest-filter (Johnson et al.,
2007).

3. Calculate the paraphrase probability.
Calculate the paraphrase probability p(e2|e1)
if e2 is hypothesized to be a paraphrase of e1.

p(e2|e1) =
∑

c

P (c|e1)P (e2|c)

where P (·|·) is phrase translation probability.

4. Acquire a paraphrase pair.
Acquire (e1, e2) as a paraphrase pair if
p(e2|e1) > p(e1|e1). The purpose of this
threshold is to keep highly-accurate para-
phrase pairs. In experiments, more than 80%
of paraphrase pairs were eliminated by this
threshold.

3.2 Building paraphrase lattice

An input sentence is paraphrased using the para-
phrase list and transformed into a paraphrase lat-
tice. The paraphrase lattice is a lattice which rep-
resents paraphrases of the input sentence. An ex-
ample of a paraphrase lattice is shown in Figure 2.
In this example, an input sentence is “is there a
beauty salon ?”. This paraphrase lattice contains
two paraphrase pairs “beauty salon” = “beauty
parlor” and “beauty salon” = “salon”, and rep-
resents following three sentences.

• is there a beauty salon ?

• is there a beauty parlor ?

• is there a salon ?

In the paraphrase lattice, each node consists of
a token, the distance to the next node and features
for lattice decoding. We use following four fea-
tures for lattice decoding.

• Paraphrase probability (p)
A paraphrase probability p(e2|e1) calculated
when acquiring the paraphrase.

hp = p(e2|e1)

• Language model score (l)
A ratio between the language model proba-
bility of the paraphrased sentence (para) and
that of the original sentence (orig).

hl = lm(para)
lm(orig)

2



0 -- ("is"     , 1, 1, 1, 1)

1 -- ("there"  , 1, 1, 1, 1)

2 -- ("a"      , 1, 1, 1, 1)

3 -- ("beauty" , 1, 1, 1, 2) ("beauty" , 0.250, 1.172, 1, 1) ("salon" , 0.133, 0.537, 0.367, 3)

4 -- ("parlor" , 1, 1, 1, 2)

5 -- ("salon"  , 1, 1, 1, 1)

6 -- ("?"      , 1, 1, 1, 1)

Paraphrase probability (p)

Language model score (l)

Paraphrase length (d)

Distance to the next node Features for lattice decodingToken

Figure 2: An example of a paraphrase lattice, which contains three features of (p, l, d).

• Normalized language model score (L)
A language model score where the language
model probability is normalized by the sen-
tence length. The sentence length is calcu-
lated as the number of tokens.

hL = LM(para)
LM(orig) ,

where LM(sent) = lm(sent)
1

length(sent)

• Paraphrase length (d)
The difference between the original sentence
length and the paraphrased sentence length.

hd = exp(length(para)− length(orig))

The values of these features are calculated only
if the node is the first node of the paraphrase, for
example the second “beauty” and “salon” in line
3 of Figure 2. In other nodes, for example “par-
lor” in line 4 and original nodes, we use 1 as the
values of features.

The features related to the language model, such
as (l) and (L), are affected by the context of source
sentences even if the same paraphrase pair is ap-
plied. As these features can penalize paraphrases
which are not appropriate to the context, appropri-
ate paraphrases are chosen and appropriate trans-
lations are output in lattice decoding. The features
related to the sentence length, such as (L) and (d),
are added to penalize the language model score
in case the paraphrased sentence length is shorter
than the original sentence length and the language
model score is unreasonably low.

In experiments, we use four combinations of
these features, (p), (p, l), (p, L) and (p, l, d).

3.3 Lattice decoding
We use Moses (Koehn et al., 2007) as a decoder
for lattice decoding. Moses is an open source

SMT system which allows lattice decoding. In
lattice decoding, Moses selects the best path and
the best translation according to features added in
each node and other SMT features. These weights
are optimized using Minimum Error Rate Training
(MERT) (Och, 2003).

4 Experiments

In order to evaluate the proposed method, we
conducted English-to-Japanese and English-to-
Chinese translation experiments using IWSLT
2007 (Fordyce, 2007) dataset. This dataset con-
tains EJ and EC parallel corpus for the travel
domain and consists of 40k sentences for train-
ing and about 500 sentences sets (dev1, dev2
and dev3) for development and testing. We used
the dev1 set for parameter tuning, the dev2 set
for choosing the setting of the proposed method,
which is described below, and the dev3 set for test-
ing.

The English-English paraphrase list was ac-
quired from the EC corpus for EJ translation and
53K pairs were acquired. Similarly, 47K pairs
were acquired from the EJ corpus for EC trans-
lation.

4.1 Baseline
As baselines, we used Moses and Callison-Burch
et al. (2006)’s method (hereafter CCB). In Moses,
we used default settings without paraphrases. In
CCB, we paraphrased the phrase table using the
automatically acquired paraphrase list. Then,
we augmented the phrase table with paraphrased
phrases which were not found in the original
phrase table. Moreover, we used an additional fea-
ture whose value was the paraphrase probability
(p) if the entry was generated by paraphrasing and
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Moses (w/o Paraphrases) CCB Proposed Method
EJ 38.98 39.24 (+0.26) 40.34 (+1.36)
EC 25.11 26.14 (+1.03) 27.06 (+1.95)

Table 1: Experimental results for IWSLT (%BLEU).

1 if otherwise. Weights of the feature and other
features in SMT were optimized using MERT.

4.2 Proposed method
In the proposed method, we conducted experi-
ments with various settings for paraphrasing and
lattice decoding. Then, we chose the best setting
according to the result of the dev2 set.

4.2.1 Limitation of paraphrasing
As the paraphrase list was automatically ac-
quired, there were many erroneous paraphrase
pairs. Building paraphrase lattices with all erro-
neous paraphrase pairs and decoding these para-
phrase lattices caused high computational com-
plexity. Therefore, we limited the number of para-
phrasing per phrase and per sentence. The number
of paraphrasing per phrase was limited to three and
the number of paraphrasing per sentence was lim-
ited to twice the size of the sentence length.

As a criterion for limiting the number of para-
phrasing, we use three features (p), (l) and (L),
which are same as the features described in Sub-
section 3.2. When building paraphrase lattices, we
apply paraphrases in descending order of the value
of the criterion.

4.2.2 Finding optimal settings
As previously mentioned, we have three choices
for the criterion for building paraphrase lattices
and four combinations of features for lattice de-
coding. Thus, there are 3 × 4 = 12 combinations
of these settings. We conducted parameter tuning
with the dev1 set for each setting and used as best
the setting which got the highest BLEU score for
the dev2 set.

4.3 Results
The experimental results are shown in Table 1. We
used the case-insensitive BLEU metric for eval-
uation. In EJ translation, the proposed method
obtained the highest score of 40.34%, which
achieved an absolute improvement of 1.36 BLEU
points over Moses and 1.10 BLEU points over
CCB. In EC translation, the proposed method also
obtained the highest score of 27.06% and achieved

an absolute improvement of 1.95 BLEU points
over Moses and 0.92 BLEU points over CCB. As
the relation of three systems is Moses < CCB <
Proposed Method, paraphrasing is useful for SMT
and using paraphrase lattices and lattice decod-
ing is especially more useful than augmenting the
phrase table. In Proposed Method, the criterion for
building paraphrase lattices and the combination
of features for lattice decoding were (p) and (p, L)
in EJ translation and (L) and (p, l) in EC transla-
tion. Since features related to the source-side lan-
guage model were chosen in each direction, using
the source-side language model is useful for de-
coding paraphrase lattices.

We also tried a combination of Proposed
Method and CCB, which is a method of decoding
paraphrase lattices with an augmented phrase ta-
ble. However, the result showed no significant im-
provements. This is because the proposed method
includes the effect of augmenting the phrase table.

Moreover, we conducted German-English
translation using the Europarl corpus (Koehn,
2005). We used the WMT08 dataset1, which
consists of 1M sentences for training and 2K sen-
tences for development and testing. We acquired
5.3M pairs of German-German paraphrases from
a 1M German-Spanish parallel corpus. We con-
ducted experiments with various sizes of training
corpus, using 10K, 20K, 40K, 80K, 160K and 1M.
Figure 3 shows the proposed method consistently
get higher score than Moses and CCB.

5 Conclusion

This paper has proposed a novel method for trans-
forming a source sentence into a paraphrase lattice
and applying lattice decoding. Since our method
can employ source-side language models as a de-
coding feature, the decoder can choose proper
paraphrases and translate properly. The exper-
imental results showed significant gains for the
IWSLT and Europarl dataset. In IWSLT dataset,
we obtained 1.36 BLEU points over Moses in EJ
translation and 1.95 BLEU points over Moses in

1http://www.statmt.org/wmt08/
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EC translation. In Europarl dataset, the proposed
method consistently get higher score than base-
lines.

In future work, we plan to apply this method
with paraphrases derived from a massive corpus
such as the Web corpus and apply this method to a
hierarchical phrase based SMT.
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Abstract

In hierarchical phrase-based SMT sys-
tems, statistical models are integrated to
guide the hierarchical rule selection for
better translation performance. Previous
work mainly focused on the selection of
either the source side of a hierarchical rule
or the target side of a hierarchical rule
rather than considering both of them si-
multaneously. This paper presents a joint
model to predict the selection of hierar-
chical rules. The proposed model is esti-
mated based on four sub-models where the
rich context knowledge from both source
and target sides is leveraged. Our method
can be easily incorporated into the prac-
tical SMT systems with the log-linear
model framework. The experimental re-
sults show that our method can yield sig-
nificant improvements in performance.

1 Introduction

Hierarchical phrase-based model has strong ex-
pression capabilities of translation knowledge. It
can not only maintain the strength of phrase trans-
lation in traditional phrase-based models (Koehn
et al., 2003; Xiong et al., 2006), but also char-
acterize the complicated long distance reordering
similar to syntactic based statistical machine trans-
lation (SMT) models (Yamada and Knight, 2001;
Quirk et al., 2005; Galley et al., 2006; Liu et al.,
2006; Marcu et al., 2006; Mi et al., 2008; Shen et
al., 2008).

In hierarchical phrase-based SMT systems, due
to the flexibility of rule matching, a huge number
of hierarchical rules could be automatically learnt
from bilingual training corpus (Chiang, 2005).
SMT decoders are forced to face the challenge of

∗This work was finished while the first author visited Mi-
crosoft Research Asia as an intern.

proper rule selection for hypothesis generation, in-
cluding both source-side rule selection and target-
side rule selection where the source-side rule de-
termines what part of source words to be translated
and the target-side rule provides one of the candi-
date translations of the source-side rule. Improper
rule selections may result in poor translations.

There is some related work about the hierarchi-
cal rule selection. In the original work (Chiang,
2005), the target-side rule selection is analogous to
the model in traditional phrase-based SMT system
such as Pharaoh (Koehn et al., 2003). Extending
this work, (He et al., 2008; Liu et al., 2008) in-
tegrate rich context information of non-terminals
to predict the target-side rule selection. Different
from the above work where the probability dis-
tribution of source-side rule selection is uniform,
(Setiawan et al., 2009) proposes to select source-
side rules based on the captured function words
which often play an important role in word re-
ordering. There is also some work considering to
involve more rich contexts to guide the source-side
rule selection. (Marton and Resnik, 2008; Xiong
et al., 2009) explore the source syntactic informa-
tion to reward exact matching structure rules or
punish crossing structure rules.

All the previous work mainly focused on either
source-side rule selection task or target-side rule
selection task rather than both of them together.
The separation of these two tasks, however, weak-
ens the high interrelation between them. In this pa-
per, we propose to integrate both source-side and
target-side rule selection in a unified model. The
intuition is that the joint selection of source-side
and target-side rules is more reliable as it conducts
the search in a larger space than the single selec-
tion task does. It is expected that these two kinds
of selection can help and affect each other, which
may potentially lead to better hierarchical rule se-
lections with a relative global optimum instead of
a local optimum that might be reached in the pre-
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vious methods. Our proposed joint probability
model is factored into four sub-models that can
be further classified into source-side and target-
side rule selection models or context-based and
context-free selection models. The context-based
models explore rich context features from both
source and target sides, including function words,
part-of-speech (POS) tags, syntactic structure in-
formation and so on. Our model can be easily in-
corporated as an independent feature into the prac-
tical hierarchical phrase-based systems with the
log-linear model framework. The experimental re-
sults indicate our method can improve the system
performance significantly.

2 Hierarchical Rule Selection Model

Following (Chiang, 2005), 〈α, γ〉 is used to repre-
sent a synchronous context free grammar (SCFG)
rule extracted from the training corpus, where α
and γ are the source-side and target-side rule re-
spectively. Let C be the context of 〈α, γ〉. For-
mally, our joint probability model of hierarchical
rule selection is described as follows:

P (α, γ|C) = P (α|C)P (γ|α,C) (1)

We decompose the joint probability model into
two sub-models based on the Bayes formulation,
where the first sub-model is source-side rule se-
lection model and the second one is the target-side
rule selection model.

For the source-side rule selection model, we fur-
ther compute it by the interpolation of two sub-
models:

θPs(α) + (1− θ)Ps(α|C) (2)

where Ps(α) is the context-free source model
(CFSM) and Ps(α|C) is the context-based source
model (CBSM), θ is the interpolation weight that
can be optimized over the development data.

CFSM is the probability of source-side rule se-
lection that can be estimated based on maximum
likelihood estimation (MLE) method:

Ps(α) =

∑
γ Count(〈α, γ〉)
Count(α)

(3)

where the numerator is the total count of bilin-
gual rule pairs with the same source-side rule that
are extracted based on the extraction algorithm in
(Chiang, 2005), and the denominator is the total
amount of source-side rule patterns contained in

the monolingual source side of the training corpus.
CFSM is used to capture how likely the source-
side rule is linguistically motivated or has the cor-
responding target-side counterpart.

For CBSM, it can be naturally viewed as a clas-
sification problem where each distinct source-side
rule is a single class. However, considering the
huge number of classes may cause serious data
sparseness problem and thereby degrade the clas-
sification accuracy, we approximate CBSM by a
binary classification problem which can be solved
by the maximum entropy (ME) approach (Berger
et al., 1996) as follows:

Ps(α|C) ≈ Ps(υ|α,C)

=
exp[

∑
i λihi(υ, α,C)]∑

υ′ exp[
∑

i λihi(υ
′ , α, C)]

(4)

where υ ∈ {0, 1} is the indicator whether the
source-side rule is applied during decoding, υ = 1
when the source-side rule is applied, otherwise
υ = 0; hi is a feature function, λi is the weight
of hi. CBSM estimates the probability of the
source-side rule being selected according to the
rich context information coming from the surface
strings and sub-phrases that will be reduced to
non-terminals during decoding.

Analogously, we decompose the target-side rule
selection model by the interpolation approach as
well:

ϕPt(γ) + (1− ϕ)Pt(γ|α,C) (5)

where Pt(γ) is the context-free target model
(CFTM) and Pt(γ|α,C) is the context-based tar-
get model (CBTM), ϕ is the interpolation weight
that can be optimized over the development data.

In the similar way, we compute CFTM by the
MLE approach and estimate CBTM by the ME
approach. CFTM computes how likely the target-
side rule is linguistically motivated, while CBTM
predicts how likely the target-side rule is applied
according to the clues from the rich context infor-
mation.

3 Model Training of CBSM and CBTM

3.1 The acquisition of training instances
CBSM and CBTM are trained by ME approach for
the binary classification, where a training instance
consists of a label and the context related to SCFG
rules. The context is divided into source context

7



Figure 1: Example of training instances in CBSM and CBTM.

and target context. CBSM is trained only based
on the source context while CBTM is trained over
both the source and the target context. All the
training instances are automatically constructed
from the bilingual training corpus, which have la-
bels of either positive (i.e., υ = 1) or negative (i.e.,
υ = 0). This section explains how the training in-
stances are constructed for the training of CBSM
and CBTM.

Let s and t be the source sentence and target
sentence,W be the word alignment between them,
rs be a source-side rule that pattern-matches a
sub-phrase of s, rt be the target-side rule pattern-
matching a sub-phrase of t and being aligned to rs
based on W , and C(r) be the context features re-
lated to the rule r which will be explained in the
following section.

For the training of CBSM, if the SCFG rule
〈rs, rt〉 can be extracted based on the rule extrac-
tion algorithm in (Chiang, 2005), 〈υ = 1, C(rs)〉
is constructed as a positive instance, otherwise
〈υ = 0, C(rs)〉 is constructed as a negative in-
stance. For example in Figure 1(a), the context of
source-side rule ”X1 hezuo” that pattern-matches
the phrase ”youhao hezuo” produces a positive
instance, while the context of ”X1 youhao” that
pattern-matches the source phrase ”de youhao” or
”shuangfang de youhao” will produce a negative
instance as there are no corresponding plausible
target-side rules that can be extracted legally1.

For the training of CBTM, given rs, suppose
there is a SCFG rule set {〈rs, rkt 〉|1 ≤ k ≤ n}
extracted from multiple distinct sentence pairs in
the bilingual training corpus, among which we as-
sume 〈rs, rit〉 is extracted from the sentence pair
〈s, t〉. Then, we construct 〈υ = 1, C(rs), C(rit)〉

1Because the aligned target words are not contiguous and
”cooperation” is aligned to the word outside the source-side
rule.

as a positive instance, while the elements in {〈υ =
0, C(rs), C(rjt )〉|j 6= i ∧ 1 ≤ j ≤ n} are viewed
as negative instances since they fail to be applied
to the translation from s to t. For example in Fig-
ure 1(c), Rule (1) and Rule (2) are two different
SCFG rules extracted from Figure 1(a) and Figure
1(b) respectively, where their source-side rules are
the same. As Rule (1) cannot be applied to Fig-
ure 1(b) for the translation and Rule (2) cannot
be applied to Figure 1(a) for the translation either,
〈υ = 1, C(ras ), C(rat )〉 and 〈υ = 1, C(rbs), C(rbt )〉
are constructed as positive instances while 〈υ =
0, C(ras ), C(rbt )〉 and 〈υ = 0, C(rbs), C(rat )〉 are
viewed as negative instances. It is noticed that
this instance construction method may lead to a
large quantity of negative instances and choke the
training procedure. In practice, to limit the size
of the training set, the negative instances con-
structed based on low-frequency target-side rules
are pruned.

3.2 Context-based features for ME training
ME approach has the merit of easily combining
different features to predict the probability of each
class. We incorporate into the ME based model
the following informative context-based features
to train CBSM and CBTM. These features are
carefully designed to reduce the data sparseness
problem and some of them are inspired by pre-
vious work (He et al., 2008; Gimpel and Smith,
2008; Marton and Resnik, 2008; Chiang et al.,
2009; Setiawan et al., 2009; Shen et al., 2009;
Xiong et al., 2009):

1. Function word features, which indicate
whether the hierarchical source-side/target-
side rule strings and sub-phrases covered by
non-terminals contain function words that are
often important clues of predicting syntactic
structures.
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2. POS features, which are POS tags of the
boundary source words covered by non-
terminals.

3. Syntactic features, which are the constituent
constraints of hierarchical source-side rules
exactly matching or crossing syntactic sub-
trees.

4. Rule format features, which are non-
terminal positions and orders in source-
side/target-side rules. This feature interacts
between source and target components since
it shows whether the translation ordering is
affected.

5. Length features, which are the length
of sub-phrases covered by source non-
terminals.

4 Experiments

4.1 Experiment setting

We implement a hierarchical phrase-based system
similar to the Hiero (Chiang, 2005) and evaluate
our method on the Chinese-to-English translation
task. Our bilingual training data comes from FBIS
corpus, which consists of around 160K sentence
pairs where the source data is parsed by the Berke-
ley parser (Petrov and Klein, 2007). The ME train-
ing toolkit, developed by (Zhang, 2006), is used to
train our CBSM and CBTM. The training size of
constructed positive instances for both CBSM and
CBTM is 4.68M, while the training size of con-
structed negative instances is 3.74M and 3.03M re-
spectively. Following (Setiawan et al., 2009), we
identify function words as the 128 most frequent
words in the corpus. The interpolation weights are
set to θ = 0.75 and ϕ = 0.70. The 5-gram lan-
guage model is trained over the English portion
of FBIS corpus plus Xinhua portion of the Giga-
word corpus. The development data is from NIST
2005 evaluation data and the test data is from
NIST 2006 and NIST 2008 evaluation data. The
evaluation metric is the case-insensitive BLEU4
(Papineni et al., 2002). Statistical significance in
BLEU score differences is tested by paired boot-
strap re-sampling (Koehn, 2004).

4.2 Comparison with related work

Our baseline is the implemented Hiero-like SMT
system where only the standard features are em-
ployed and the performance is state-of-the-art.

We compare our method with the baseline and
some typical approaches listed in Table 1 where
XP+ denotes the approach in (Marton and Resnik,
2008) and TOFW (topological ordering of func-
tion words) stands for the method in (Setiawan et
al., 2009). As (Xiong et al., 2009)’s work is based
on phrasal SMT system with bracketing transduc-
tion grammar rules (Wu, 1997) and (Shen et al.,
2009)’s work is based on the string-to-dependency
SMT model, we do not implement these two re-
lated work due to their different models from ours.
We also do not compare with (He et al., 2008)’s
work due to its less practicability of integrating
numerous sub-models.

Methods NIST 2006 NIST 2008
Baseline 0.3025 0.2200
XP+ 0.3061 0.2254
TOFW 0.3089 0.2253
Our method 0.3141 0.2318

Table 1: Comparison results, our method is signif-
icantly better than the baseline, as well as the other
two approaches (p < 0.01)

As shown in Table 1, all the methods outper-
form the baseline because they have extra mod-
els to guide the hierarchical rule selection in some
ways which might lead to better translation. Ap-
parently, our method also performs better than the
other two approaches, indicating that our method
is more effective in the hierarchical rule selection
as both source-side and target-side rules are se-
lected together.

4.3 Effect of sub-models
Due to the space limitation, we analyze the ef-
fect of sub-models upon the system performance,
rather than that of ME features, part of which have
been investigated in previous related work.

Settings NIST 2006 NIST 2008
Baseline 0.3025 0.2200
Baseline+CFSM 0.3092∗ 0.2266∗

Baseline+CBSM 0.3077∗ 0.2247∗

Baseline+CFTM 0.3076∗ 0.2286∗

Baseline+CBTM 0.3060 0.2255∗

Baseline+CFSM+CFTM 0.3109∗ 0.2289∗

Baseline+CFSM+CBSM 0.3104∗ 0.2282∗

Baseline+CFTM+CBTM 0.3099∗ 0.2299∗

Baseline+all sub-models 0.3141∗ 0.2318∗

Table 2: Sub-model effect upon the performance,
*: significantly better than baseline (p < 0.01)

As shown in Table 2, when sub-models are inte-
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grated as independent features, the performance is
improved compared to the baseline, which shows
that each of the sub-models can improve the hier-
archical rule selection. It is noticeable that the per-
formance of the source-side rule selection model
is comparable with that of the target-side rule se-
lection model. Although CFSM and CFTM per-
form only slightly better than the others among
the individual sub-models, the best performance is
achieved when all the sub-models are integrated.

5 Conclusion

Hierarchical rule selection is an important and
complicated task for hierarchical phrase-based
SMT system. We propose a joint probability
model for the hierarchical rule selection and the
experimental results prove the effectiveness of our
approach.

In the future work, we will explore more useful
features and test our method over the large scale
training corpus. A challenge might exist when
running the ME training toolkit over a big size
of training instances from the large scale training
data.
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Abstract

Lexicalized reordering models play a crucial
role in phrase-based translation systems. They
are usually learned from the word-aligned
bilingual corpus by examining the reordering
relations of adjacent phrases. Instead of just
checking whether there is one phrase adjacent
to a given phrase, we argue that it is important
to take the number of adjacent phrases into
account for better estimations of reordering
models. We propose to use a structure named
reordering graph, which represents all phrase
segmentations of a sentence pair, to learn lex-
icalized reordering models efficiently. Exper-
imental results on the NIST Chinese-English
test sets show that our approach significantly
outperforms the baseline method.

1 Introduction

Phrase-based translation systems (Koehn et al.,
2003; Och and Ney, 2004) prove to be the state-
of-the-art as they have delivered translation perfor-
mance in recent machine translation evaluations.
While excelling at memorizing local translation and
reordering, phrase-based systems have difficulties in
modeling permutations among phrases. As a result,
it is important to develop effective reordering mod-
els to capture such non-local reordering.

The early phrase-based paradigm (Koehn et al.,
2003) applies a simple distance-based distortion
penalty to model the phrase movements. More re-
cently, many researchers have presented lexicalized
reordering models that take advantage of lexical
information to predict reordering (Tillmann, 2004;
Xiong et al., 2006; Zens and Ney, 2006; Koehn et

Figure 1: Occurrence of a swap with different numbers
of adjacent bilingual phrases: only one phrase in (a) and
three phrases in (b). Black squares denote word align-
ments and gray rectangles denote bilingual phrases. [s,t]
indicates the target-side span of bilingual phrase bp and
[u,v] represents the source-side span of bilingual phrase
bp.

al., 2007; Galley and Manning, 2008). These mod-
els are learned from a word-aligned corpus to pre-
dict three orientations of a phrase pair with respect
to the previous bilingual phrase: monotone (M ),
swap (S), and discontinuous (D). Take the bilingual
phrase bp in Figure 1(a) for example. The word-
based reordering model (Koehn et al., 2007) ana-
lyzes the word alignments at positions (s−1, u−1)
and (s − 1, v + 1). The orientation of bp is set
to D because the position (s − 1, v + 1) contains
no word alignment. The phrase-based reordering
model (Tillmann, 2004) determines the presence
of the adjacent bilingual phrase located in position
(s− 1, v +1) and then treats the orientation of bp as
S. Given no constraint on maximum phrase length,
the hierarchical phrase reordering model (Galley and
Manning, 2008) also analyzes the adjacent bilingual
phrases for bp and identifies its orientation as S.

However, given a bilingual phrase, the above-
mentioned models just consider the presence of an
adjacent bilingual phrase rather than the number of
adjacent bilingual phrases. See the examples in Fig-

12



Figure 2: (a) A parallel Chinese-English sentence pair and (b) its corresponding reordering graph. In (b), we denote
each bilingual phrase with a rectangle, where the upper and bottom numbers in the brackets represent the source
and target spans of this bilingual phrase respectively. M = monotone (solid lines), S = swap (dotted line), and D =
discontinuous (segmented lines). The bilingual phrases marked in the gray constitute a reordering example.

ure 1 for illustration. In Figure 1(a), bp is in a swap
order with only one bilingual phrase. In Figure 1(b),
bp swaps with three bilingual phrases. Lexicalized
reordering models do not distinguish different num-
bers of adjacent phrase pairs, and just give bp the
same count in the swap orientation.

In this paper, we propose a novel method to better
estimate the reordering probabilities with the con-
sideration of varying numbers of adjacent bilingual
phrases. Our method uses reordering graphs to rep-
resent all phrase segmentations of parallel sentence
pairs, and then gets the fractional counts of bilin-
gual phrases for orientations from reordering graphs
in an inside-outside fashion. Experimental results
indicate that our method achieves significant im-
provements over the traditional lexicalized reorder-
ing model (Koehn et al., 2007).

This paper is organized as follows: in Section 2,
we first give a brief introduction to the traditional
lexicalized reordering model. Then we introduce
our method to estimate the reordering probabilities
from reordering graphs. The experimental results
are reported in Section 3. Finally, we end with a
conclusion and future work in Section 4.

2 Estimation of Reordering Probabilities
Based on Reordering Graph

In this section, we first describe the traditional lexi-
calized reordering model, and then illustrate how to
construct reordering graphs to estimate the reorder-

ing probabilities.

2.1 Lexicalized Reordering Model

Given a phrase pair bp = (ei, fai
), where ai de-

fines that the source phrase fai
is aligned to the

target phrase ei, the traditional lexicalized reorder-
ing model computes the reordering count of bp in
the orientation o based on the word alignments of
boundary words. Specifically, the model collects
bilingual phrases and distinguishes their orientations
with respect to the previous bilingual phrase into
three categories:

o =





M ai − ai−1 = 1
S ai − ai−1 = −1
D |ai − ai−1| 6= 1

(1)

Using the relative-frequency approach, the re-
ordering probability regarding bp is

p(o|bp) =
Count(o, bp)∑
o′ Count(o′, bp)

(2)

2.2 Reordering Graph

For a parallel sentence pair, its reordering graph in-
dicates all possible translation derivations consisting
of the extracted bilingual phrases. To construct a
reordering graph, we first extract bilingual phrases
using the way of (Och, 2003). Then, the adjacent
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bilingual phrases are linked according to the target-
side order. Some bilingual phrases, which have
no adjacent bilingual phrases because of maximum
length limitation, are linked to the nearest bilingual
phrases in the target-side order.

Shown in Figure 2(b), the reordering graph for
the parallel sentence pair (Figure 2(a)) can be rep-
resented as an undirected graph, where each rect-
angle corresponds to a phrase pair, each link is the
orientation relationship between adjacent bilingual
phrases, and two distinguished rectangles bs and be

indicate the beginning and ending of the parallel sen-
tence pair, respectively. With the reordering graph,
we can obtain all reordering examples containing
the given bilingual phrase. For example, the bilin-
gual phrase 〈zhengshi huitan, formal meetings〉 (see
Figure 2(a)), corresponding to the rectangle labeled
with the source span [6,7] and the target span [4,5],
is in a monotone order with one previous phrase
and in a discontinuous order with two subsequent
phrases (see Figure 2(b)).

2.3 Estimation of Reordering Probabilities
We estimate the reordering probabilities from re-
ordering graphs. Given a parallel sentence pair,
there are many translation derivations correspond-
ing to different paths in its reordering graph. As-
suming all derivations have a uniform probability,
the fractional counts of bilingual phrases for orien-
tations can be calculated by utilizing an algorithm in
the inside-outside fashion.

Given a phrase pair bp in the reordering graph,
we denote the number of paths from bs to bp with
α(bp). It can be computed in an iterative way
α(bp) =

∑
bp′ α(bp′), where bp′ is one of the pre-

vious bilingual phrases of bp and α(bs)=1. In a sim-
ilar way, the number of paths from be to bp, notated
as β(bp), is simply β(bp) =

∑
bp′′ β(bp′′), where

bp′′ is one of the subsequent bilingual phrases of bp
and β(be)=1. Here, we show the α and β values of
all bilingual phrases of Figure 2 in Table 1. Espe-
cially, for the reordering example consisting of the
bilingual phrases bp1=〈jiang juxing, will hold〉 and
bp2=〈zhengshi huitan, formal meetings〉, marked in
the gray color in Figure 2, the α and β values can be
calculated: α(bp1) = 1, β(bp2) = 1+1 = 2, β(bs) =
8+1 = 9.

Inspired by the parsing literature on pruning

src span trg span α β

[0, 0] [0, 0] 1 9
[1, 1] [1, 1] 1 8
[1, 7] [1, 7] 1 1
[4, 4] [2, 2] 1 1
[4, 5] [2, 3] 1 3
[4, 6] [2, 4] 1 1
[4, 7] [2, 5] 1 2
[2, 7] [2, 7] 1 1
[5, 5] [3, 3] 1 1
[6, 6] [4, 4] 2 1
[6, 7] [4, 5] 1 2
[7, 7] [5, 5] 3 1
[2, 2] [6, 6] 5 1
[2, 3] [6, 7] 2 1
[3, 3] [7, 7] 5 1
[8, 8] [8, 8] 9 1

Table 1: The α and β values of the bilingual phrases
shown in Figure 2.

(Charniak and Johnson, 2005; Huang, 2008), the
fractional count of (o, bp′, bp) is

Count(o, bp′, bp) =
α(bp′) · β(bp)

β(bs)
(3)

where the numerator indicates the number of paths
containing the reordering example (o, bp′, bp) and
the denominator is the total number of paths in the
reordering graph. Continuing with the reordering
example described above, we obtain its fractional
count using the formula (3): Count(M, bp1, bp2) =
(1× 2)/9 = 2/9.

Then, the fractional count of bp in the orientation
o is calculated as described below:

Count(o, bp) =
∑

bp′
Count(o, bp′, bp) (4)

For example, we compute the fractional count of
bp2 in the monotone orientation by the formula (4):
Count(M, bp2) = 2/9.

As described in the lexicalized reordering model
(Section 2.1), we apply the formula (2) to calculate
the final reordering probabilities.

3 Experiments

We conduct experiments to investigate the effec-
tiveness of our method on the msd-fe reorder-
ing model and the msd-bidirectional-fe reordering
model. These two models are widely applied in
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phrase-based system (Koehn et al., 2007). The msd-
fe reordering model has three features, which rep-
resent the probabilities of bilingual phrases in three
orientations: monotone, swap, or discontinuous. If a
msd-bidirectional-fe model is used, then the number
of features doubles: one for each direction.

3.1 Experiment Setup

Two different sizes of training corpora are used in
our experiments: one is a small-scale corpus that
comes from FBIS corpus consisting of 239K bilin-
gual sentence pairs, the other is a large-scale corpus
that includes 1.55M bilingual sentence pairs from
LDC. The 2002 NIST MT evaluation test data is
used as the development set and the 2003, 2004,
2005 NIST MT test data are the test sets. We
choose the MOSES1 (Koehn et al., 2007) as the ex-
perimental decoder. GIZA++ (Och and Ney, 2003)
and the heuristics “grow-diag-final-and” are used to
generate a word-aligned corpus, where we extract
bilingual phrases with maximum length 7. We use
SRILM Toolkits (Stolcke, 2002) to train a 4-gram
language model on the Xinhua portion of Gigaword
corpus.

In exception to the reordering probabilities, we
use the same features in the comparative experi-
ments. During decoding, we set ttable-limit = 20,
stack = 100, and perform minimum-error-rate train-
ing (Och, 2003) to tune various feature weights. The
translation quality is evaluated by case-insensitive
BLEU-4 metric (Papineni et al., 2002). Finally, we
conduct paired bootstrap sampling (Koehn, 2004) to
test the significance in BLEU scores differences.

3.2 Experimental Results

Table 2 shows the results of experiments with the
small training corpus. For the msd-fe model, the
BLEU scores by our method are 30.51 32.78 and
29.50, achieving absolute improvements of 0.89,
0.66 and 0.62 on the three test sets, respectively. For
the msd-bidirectional-fe model, our method obtains
BLEU scores of 30.49 32.73 and 29.24, with abso-
lute improvements of 1.11, 0.73 and 0.60 over the
baseline method.

1The phrase-based lexical reordering model (Tillmann,
2004) is also closely related to our model. However, due to
the limit of time and space, we only use Moses-style reordering
model (Koehn et al., 2007) as our baseline.

model method MT-03 MT-04 MT-05
baseline 29.62 32.12 28.88m-f

RG 30.51∗∗ 32.78∗∗ 29.50∗

baseline 29.38 32.00 28.64m-b-f
RG 30.49∗∗ 32.73∗∗ 29.24∗

Table 2: Experimental results with the small-scale cor-
pus. m-f: msd-fe reordering model. m-b-f: msd-
bidirectional-fe reordering model. RG: probabilities esti-
mation based on Reordering Graph. * or **: significantly
better than baseline (p < 0 .05 or p < 0 .01 ).

model method MT-03 MT-04 MT-05
baseline 31.58 32.39 31.49m-f

RG 32.44∗∗ 33.24∗∗ 31.64

baseline 32.43 33.07 31.69m-b-f
RG 33.29∗∗ 34.49∗∗ 32.79∗∗

Table 3: Experimental results with the large-scale cor-
pus.

Table 3 shows the results of experiments with
the large training corpus. In the experiments of
the msd-fe model, in exception to the MT-05 test
set, our method is superior to the baseline method.
The BLEU scores by our method are 32.44, 33.24
and 31.64, which obtain 0.86, 0.85 and 0.15 gains
on three test set, respectively. For the msd-
bidirectional-fe model, the BLEU scores produced
by our approach are 33.29, 34.49 and 32.79 on the
three test sets, with 0.86, 1.42 and 1.1 points higher
than the baseline method, respectively.

4 Conclusion and Future Work

In this paper, we propose a method to improve the
reordering model by considering the effect of the
number of adjacent bilingual phrases on the reorder-
ing probabilities estimation. Experimental results on
NIST Chinese-to-English tasks demonstrate the ef-
fectiveness of our method.

Our method is also general to other lexicalized
reordering models. We plan to apply our method
to the complex lexicalized reordering models, for
example, the hierarchical reordering model (Galley
and Manning, 2008) and the MEBTG reordering
model (Xiong et al., 2006). In addition, how to fur-
ther improve the reordering model by distinguishing
the derivations with different probabilities will be-
come another study emphasis in further research.
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Abstract 

Source language parse trees offer very useful 
but imperfect reordering constraints for statis-
tical machine translation. A lot of effort has 
been made for soft applications of syntactic 
constraints. We alternatively propose the se-
lective use of syntactic constraints. A classifier 
is built automatically to decide whether a node 
in the parse trees should be used as a reorder-
ing constraint or not. Using this information 
yields a 0.8 BLEU point improvement over a 
full constraint-based system. 

1 Introduction 

In statistical machine translation (SMT), the 
search problem is NP-hard if arbitrary reordering 
is allowed (Knight, 1999). Therefore, we need to 
restrict the possible reordering in an appropriate 
way for both efficiency and translation quality. 
The most widely used reordering constraints are 
IBM constraints (Berger et al., 1996), ITG con-
straints (Wu, 1995) and syntactic constraints 
(Yamada et al., 2000; Galley et al., 2004; Liu et 
al., 2006; Marcu et al., 2006; Zollmann and 
Venugopal 2006; and numerous others). Syntac-
tic constraints can be imposed from the source 
side or target side. This work will focus on syn-
tactic constraints from source parse trees. 

Linguistic parse trees can provide very useful 
reordering constraints for SMT. However, they 
are far from perfect because of both parsing er-
rors and the crossing of the constituents and for-
mal phrases extracted from parallel training data. 
The key challenge is how to take advantage of 
the prior knowledge in the linguistic parse trees 
without affecting the strengths of formal phrases. 
Recent efforts attack this problem by using the 
constraints softly (Cherry, 2008; Marton and 
Resnik, 2008). In their methods, a candidate 

translation gets an extra credit if it respects the 
parse tree but may incur a cost if it violates a 
constituent boundary. 

In this paper, we address this challenge from a 
less explored direction. Rather than use all con-
straints offered by the parse trees, we propose 
using them selectively. Based on parallel training 
data, a classifier is built automatically to decide 
whether a node in the parse trees should be used 
as a reordering constraint or not. As a result, we 
obtain a 0.8 BLEU point improvement over a full 
constraint-based system.  

2 Reordering Constraints from Source 
Parse Trees 

In this section we briefly review a constraint-
based system named IST-ITG (Imposing Source 
Tree on Inversion Transduction Grammar, Ya-
mamoto et al., 2008) upon which this work 
builds. 

When using ITG constraints during decoding, 
the source-side parse tree structure is not consid-
ered. The reordering process can be more tightly 
constrained if constraints from the source parse 
tree are integrated with the ITG constraints. IST-
ITG constraints directly apply source sentence 
tree structure to generate the target with the 
following constraint: the target sentence is ob-
tained by rotating any node of the source sen-
tence tree structure. 

After parsing the source sentence, a bracketed 
sentence is obtained by removing the node 
syntactic labels; this bracketed sentence can then 
be directly expressed as a tree structure. For 
example1, the parse tree “(S1 (S (NP (DT This)) 
(VP (AUX is) (NP (DT a) (NN pen)))))” is 
obtained from the source sentence “This is a 
pen”, which consists of four words. By removing 

                                                 
1 We use English examples for the sake of readability. 
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the node syntactic labels, the bracketed sentence 
“((This) ((is) ((a) (pen))))” is obtained. Such a 
bracketed sentence can be used to produce 
constraints.  

For example, for the source-side bracketed 
tree “((f1 f2) (f3 f4)) ”, eight target sequences [e1, 
e2, e3, e4], [e2, e1, e3, e4], [e1, e2, e4, e3], [e2, 
e1, e4, e3], [e3, e4, e1, e2], [e3, e4, e2, e1], [e4, 
e3, e1, e2], and [e4, e3, e2, e1] are possible. For 
the source-side bracketed tree “(((f1f2) f3) f4),” 
eight sequences [e1, e2, e3, e4], [e2, e1, e3, e4], 
[e3, e1, e2, e4], [e3, e2, e1, e4], [e4, e1, e2, e3], 
[e4, e2, e1, e3], [e4, e3, e1, e2], and [e4, e3, e2, 
e1] are possible. When the source sentence tree 
structure is a binary tree, the number of word 
orderings is reduced to 2N-1 where N is the length 
of the source sentence.  

The parsing results sometimes do not produce 
binary trees. In this case, some subtrees have 
more than two child nodes. For a non-binary sub-
tree, any reordering of child nodes is allowed. 
For example, if a subtree has three child nodes, 
six reorderings of the nodes are possible. 

3 Learning to Classify Parse Tree 
Nodes 

In IST-ITG and many other methods which use 
syntactic constraints, all of the nodes in the parse 
trees are utilized. Though many nodes in the 
parse trees are useful, we would argue that some 
nodes are not trustworthy. For example, if we 
constrain the translation of “f1 f2 f3 f4” with 
node N2 illustrated in Figure 1, then word “e1” 
will never be put in the middle the other three 
words. If we want to obtain the translation “e2 e1 
e4 e3”, node N3 can offer a good constraint 
while node N2 should be filtered out. In real cor-
pora, cases such as node N2 are frequent enough 
to be noticeable (see Fox (2002) or section 4.1 in 
this paper). 

Therefore, we use the definitions in Galley et 
al. (2004) to classify the nodes in parse trees into 
two types: frontier nodes and interior nodes. 
Though the definitions were originally made for 
target language parse trees, they can be straight-
forwardly applied to the source side. A node 
which satisfies both of the following two condi-
tions is referred as a frontier node: 

 
• All the words covered by the node can be 

translated separately. That is to say, these 
words do not share a translation with any 
word outside the coverage of the node. 

• All the words covered by the node remain 
contiguous after translation. 

 
Otherwise the node is an interior node. 
For example, in Figure 1, both node N1 and 

node N3 are frontier nodes. Node N2 is an inte-
rior node because the source words f2, f3 and f4 
are translated into e2, e3 and e4, which are not 
contiguous in the target side. 

Clearly, only frontier nodes should be used as 
reordering constraints while interior nodes are 
not suitable for this. However, little work has 
been done on how to explicitly distinguish these 
two kinds of nodes in the source parse trees. In 
this section, we will explore building a classifier 
which can label the nodes in the parse trees as 
frontier nodes or interior nodes.  

 
Figure 1: An example parse tree and align-

ments 

3.1 Training 

Ideally, we would have a human-annotated cor-
pus in which each sentence is parsed and each 
node in the parse trees is labeled as a frontier 
node or an interior node. But such a target lan-
guage specific corpus is hard to come by, and 
never in the quantity we would like. 

Instead, we generate such a corpus automati-
cally. We begin with a parallel corpus which will 
be used to train our SMT model. In our case, it is 
the FBIS Chinese-English corpus.  

Firstly, the Chinese sentences are segmented, 
POS tagged and parsed by the tools described in 
Kruengkrai et al. (2009) and Cao et al. (2007), 
both of which are trained on the Penn Chinese 
Treebank 6.0. 

Secondly, we use GIZA++ to align the sen-
tences in both the Chinese-English and English-
Chinese directions. We combine the alignments 
using the “grow-diag-final-and” procedure pro-
vided with MOSES (Koehn, 2007). Because 
there are many errors in the alignment, we re-
move the links if the alignment count is less than 
three for the source or the target word. Addition-
ally, we also remove notoriously bad links in 

  f1        f2      f3   f4 
 
  e2       e1      e4   e3 

N3 

N2

N1
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{de, le} × {the, a, an} following Fossum and 
Knight (2008).  

Thirdly, given the parse trees and the align-
ment information, we label each node as a fron-
tier node or an interior node according to the 
definition introduced in this section. Using the 
labeled nodes as training data, we can build a 
classifier. In theory, a broad class of machine 
learning tools can be used; however, due to the 
scale of the task (see section 4), we utilize the 
Pegasos 2  which is a very fast SVM solver 
(Shalev-Shwartz et al, 2007).  

3.2 Features 

For each node in the parse trees, we use the fol-
lowing feature templates: 
• A context-free grammar rule which rewrites 

the current node (In this and all the following 
grammar based features, a mark is used to 
indicate which non terminal is the current 
node.) 

• A context-free grammar rule which rewrites 
the current node’s father 

• The combination of the above two rules  
• A lexicalized context-free grammar rule 

which rewrites the current node 
• A lexicalized context-free grammar rule 

which rewrites the current node’s father 
• Syntactic label, head word, and head POS 

tag of the current node 
• Syntactic label, head word, and head POS 

tag of the current node’s left child 
• Syntactic label, head word, and head POS 

tag of the current node’s right child 
• Syntactic label, head word, and head POS 

tag of the current node’s left brother  
• Syntactic label, head word, and head POS 

tag of the current node’s right brother  
• Syntactic label, head word, and head POS 

tag of the current node’s father 
• The leftmost word covered by the current 

node and the word before it 
• The rightmost word covered by the current 

node and the word after it 
 

4 Experiments 

Our SMT system is based on a fairly typical 
phrase-based model (Finch and Sumita, 2008). 
For the training of our SMT model, we use a 
modified training toolkit adapted from the 

                                                 
2 http://www.cs.huji.ac.il/~shais/code/index.html 

MOSES decoder. Our decoder can operate on the 
same principles as the MOSES decoder. Mini-
mum error rate training (MERT) with respect to 
BLEU score is used to tune the decoder’s pa-
rameters, and it is performed using the standard 
technique of Och (2003). A lexical reordering 
model was used in our experiments.  

The translation model was created from the 
FBIS corpus. We used a 5-gram language model 
trained with modified Knesser-Ney smoothing. 
The language model was trained on the target 
side of FBIS corpus and the Xinhua news in GI-
GAWORD corpus. The development and test 
sets are from NIST MT08 evaluation campaign. 
Table 1 shows the statistics of the corpora used 
in our experiments. 

 
Data Sentences Chinese 

words 
English 
words 

Training set 243,698 7,933,133 10,343,140 
Development set 1664 38,779 46,387 

Test set 1357 32377 42,444 
GIGAWORD 19,049,757 - 306,221,306 

 
Table 1: Corpora statistics 

 

4.1 Experiments on Nodes Classification 

We extracted about 3.9 million example nodes 
from the training data, i.e. the FBIS corpus. 
There were 2.37 million frontier nodes and 1.59 
million interior nodes in these examples, give 
rise to about 4.4 million features. To test the per-
formance of our classifier, we simply use the last 
ten thousand examples as a test set, and the rest 
being used as Pegasos training data. All the pa-
rameters in Pegasos were set as default values. In 
this way, the accuracy of the classifier was 
71.59%. 

Then we retrained our classifier by using all of 
the examples. The nodes in the automatically 
parsed NIST MT08 test set were labeled by the 
classifier. As a result, 17,240 nodes were labeled 
as frontier nodes and 5,736 nodes were labeled 
as interior nodes. 

4.2 Experiments on Chinese-English SMT 

In order to confirm that it is advantageous to dis-
tinguish between frontier nodes and interior 
nodes, we performed four translation experi-
ments.  

The first one was a typical beam search decod-
ing without any syntactic constraints.  

All the other three experiments were based on 
the IST-ITG method which makes use of syntac-

19



tic constraints. The difference between these 
three experiments lies in what constraints are 
used. In detail, the second one used all nodes 
recognized by the parser; the third one only used 
frontier nodes labeled by the classifier; the fourth 
one only used interior nodes labeled by the clas-
sifier.  

With the exception of the above differences, 
all the other settings were the same in the four 
experiments. Table 2 summarizes the SMT per-
formance. 

 
Syntactic Constraints BLEU 

none 17.26 
all nodes 16.83 

frontier nodes 17.63 
interior nodes 16.59 

 
Table 2: Comparison of different constraints by 

SMT quality 
 

Clearly, we obtain the best performance if we 
constrain the search with only frontier nodes. 
Using just frontier yields a 0.8 BLEU point im-
provement over the baseline constraint-based 
system which uses all the constraints. 

On the other hand, constraints from interior 
nodes result in the worst performance. This com-
parison shows it is necessary to explicitly distin-
guish nodes in the source parse trees when they 
are used as reordering constraints.  

The improvement over the system without 
constraints is only modest. It may be too coarse 
to use pare trees as hard constraints. We believe 
a greater improvement can be expected if we ap-
ply our idea to finer-grained approaches that use 
constraints softly (Marton and Resnik (2008) and 
Cherry (2008)).  

5 Conclusion and Future Work 

We propose a selectively approach to syntactic 
constraints during decoding. A classifier is built 
automatically to decide whether a node in the 
parse trees should be used as a reordering con-
straint or not. Preliminary results show that it is 
not only advantageous but necessary to explicitly 
distinguish between frontier nodes and interior 
nodes. 

The idea of selecting syntactic constraints is 
compatible with the idea of using constraints 
softly; we plan to combine the two ideas and ob-
tain further improvements in future work.  
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Abstract

We present a novel method to improve
word alignment quality and eventually the
translation performance by producing and
combining complementary word align-
ments for low-resource languages. Instead
of focusing on the improvement of a single
set of word alignments, we generate mul-
tiple sets of diversified alignments based
on different motivations, such as linguis-
tic knowledge, morphology and heuris-
tics. We demonstrate this approach on an
English-to-Pashto translation task by com-
bining the alignments obtained from syn-
tactic reordering, stemming, and partial
words. The combined alignment outper-
forms the baseline alignment, with signif-
icantly higher F-scores and better transla-
tion performance.

1 Introduction

Word alignment usually serves as the starting
point and foundation for a statistical machine
translation (SMT) system. It has received a signif-
icant amount of research over the years, notably in
(Brown et al., 1993; Ittycheriah and Roukos, 2005;
Fraser and Marcu, 2007; Hermjakob, 2009). They
all focused on the improvement of word alignment
models. In this work, we leverage existing align-
ers and generate multiple sets of word alignments
based on complementary information, then com-
bine them to get the final alignment for phrase
training. The resource required for this approach
is little, compared to what is needed to build a rea-
sonable discriminative alignment model, for ex-
ample. This makes the approach especially ap-
pealing for SMT on low-resource languages.

Most of the research on alignment combination
in the past has focused on how to combine the
alignments from two different directions, source-
to-target and target-to-source. Usually people start
from the intersection of two sets of alignments,
and gradually add links in the union based on
certain heuristics, as in (Koehn et al., 2003), to
achieve a better balance compared to using either
intersection (high precision) or union (high recall).
In (Ayan and Dorr, 2006) a maximum entropy ap-
proach was proposed to combine multiple align-
ments based on a set of linguistic and alignment
features. A different approach was presented in
(Deng and Zhou, 2009), which again concentrated
on the combination of two sets of alignments, but
with a different criterion. It tries to maximize the
number of phrases that can be extracted in the
combined alignments. A greedy search method
was utilized and it achieved higher translation per-
formance than the baseline.

More recently, an alignment selection approach
was proposed in (Huang, 2009), which com-
putes confidence scores for each link and prunes
the links from multiple sets of alignments using
a hand-picked threshold. The alignments used
in that work were generated from different align-
ers (HMM, block model, and maximum entropy
model). In this work, we use soft voting with
weighted confidence scores, where the weights
can be tuned with a specific objective function.
There is no need for a pre-determined threshold
as used in (Huang, 2009). Also, we utilize var-
ious knowledge sources to enrich the alignments
instead of using different aligners. Our strategy is
to diversify and then combine in order to catch any
complementary information captured in the word
alignments for low-resource languages.

The rest of the paper is organized as follows.
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We present three different sets of alignments in
Section 2 for an English-to-Pashto MT task. In
Section 3, we propose the alignment combination
algorithm. The experimental results are reported
in Section 4. We conclude the paper in Section 5.

2 Diversified Word Alignments

We take an English-to-Pashto MT task as an exam-
ple and create three sets of additional alignments
on top of the baseline alignment.

2.1 Syntactic Reordering

Pashto is a subject-object-verb (SOV) language,
which puts verbs after objects. People have pro-
posed different syntactic rules to pre-reorder SOV
languages, either based on a constituent parse tree
(Drábek and Yarowsky, 2004; Wang et al., 2007)
or dependency parse tree (Xu et al., 2009). In
this work, we apply syntactic reordering for verb
phrases (VP) based on the English constituent
parse. The VP-based reordering rule we apply in
the work is:

• V P (V B∗, ∗) → V P (∗, V B∗)

whereV B∗ representsV B, V BD, V BG, V BN ,
V BP andV BZ.

In Figure 1, we show the reference alignment
between an English sentence and the correspond-
ing Pashto translation, whereE is the original En-
glish sentence,P is the Pashto sentence (in ro-
manized text), andE′ is the English sentence after
reordering. As we can see, after the VP-based re-
ordering, the alignment between the two sentences
becomes monotone, which makes it easier for the
aligner to get the alignment correct. During the
reordering of English sentences, we store the in-
dex changes for the English words. After getting
the alignment trained on the reordered English and
original Pashto sentence pairs, we map the English
words back to the original order, along with the
learned alignment links. In this way, the align-
ment is ready to be combined with the baseline
alignment and any other alternatives.

2.2 Stemming

Pashto is one of the morphologically rich lan-
guages. In addition to the linguistic knowledge ap-
plied in the syntactic reordering described above,
we also utilize morphological analysis by applying
stemming on both the English and Pashto sides.
For English, we use Porter stemming (Porter,

                          
                                        S                                                                                                 
 
 
                          S           CC            S 
  
            NP              VP            NP              VP 
 
            PRP  VBP        NP                  VBP         NP        ADVP 
 
                      PRP$         NNS                     PRP       RB 
 
      E:    they  are   your employees and you   know    them      well 
 
 
      P:  hQvy  stAsO   kArvAl   dy    Av  tAsO   hQvy    smh      pOZnB  
 
 
      E’: they  your  employees  are   and  you   them    well      know 

Figure 1: Alignment before/after VP-based re-
ordering.

1980), a widely applied algorithm to remove the
common morphological and inflexional endings
from words in English. For Pashto, we utilize
a morphological decompostion algorithm that has
been shown to be effective for Arabic speech
recognition (Xiang et al., 2006). We start from a
fixed set of affixes with 8 prefixes and 21 suffixes.
The prefixes and suffixes are stripped off from
the Pashto words under the two constraints:(1)
Longest matched affixes first; (2) Remaining stem
must be at least two characters long.

2.3 Partial Word

For low-resource languages, we usually suffer
from the data sparsity issue. Recently, a simple
method was presented in (Chiang et al., 2009),
which keeps partial English and Urdu words in the
training data for alignment training. This is similar
to the stemming method, but is more heuristics-
based, and does not rely on a set of available af-
fixes. With the same motivation, we keep the first
4 characters of each English and Pashto word to
generate one more alternative for the word align-
ment.

3 Confidence-Based Alignment
Combination

Now we describe the algorithm to combine mul-
tiple sets of word alignments based on weighted
confidence scores. Supposeaijk is an alignment
link in the i-th set of alignments between thej-th
source word andk-th target word in sentence pair
(S,T ). Similar to (Huang, 2009), we define the
confidence ofaijk as

c(aijk|S, T ) =
√

qs2t(aijk|S, T )qt2s(aijk|T, S),
(1)
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where the source-to-target link posterior probabil-
ity

qs2t(aijk|S, T ) =
pi(tk|sj)

∑K
k′=1

pi(tk′ |sj)
, (2)

and the target-to-source link posterior probability
qt2s(aijk|T, S) is defined similarly. pi(tk|sj) is
the lexical translation probability between source
word sj and target wordtk in thei-th set of align-
ments.

Our alignment combination algorithm is as fol-
lows.

1. Each candidate linkajk gets soft votes from
N sets of alignments via weighted confidence
scores:

v(ajk|S, T ) =
N

∑

i=1

wi ∗ c(aijk|S, T ), (3)

where the weightwi for each set of alignment
can be optimized under various criteria. In
this work, we tune it on a hand-aligned de-
velopment set to maximize the alignment F-
score.

2. All candidates are sorted by soft votes in de-
scending order and evaluated sequentially. A
candidate linkajk is included if one of the
following is true:

• Neithersj nor tk is aligned so far;

• sj is not aligned and its left or right
neighboring word is aligned totk so far;

• tk is not aligned and its left or right
neighboring word is aligned tosj so far.

3. Repeat scanning all candidate links until no
more links can be added.

In this way, those alignment links with higher
confidence scores have higher priority to be in-
cluded in the combined alignment.

4 Experiments

4.1 Baseline

Our training data contains around 70K English-
Pashto sentence pairs released under the DARPA
TRANSTAC project, with about 900K words on
the English side. The baseline is a phrase-based
MT system similar to (Koehn et al., 2003). We
use GIZA++ (Och and Ney, 2000) to generate
the baseline alignment for each direction and then

apply grow-diagonal-final (gdf). The decoding
weights are optimized with minimum error rate
training (MERT) (Och, 2003) to maximize BLEU
scores (Papineni et al., 2002). There are 2028 sen-
tences in the tuning set and 1019 sentences in the
test set, both with one reference. We use another
150 sentence pairs as a heldout hand-aligned set
to measure the word alignment quality. The three
sets of alignments described in Section 2 are gen-
erated on the same training data separately with
GIZA++ and enhanced bygdf as for the baseline
alignment. The English parse tree used for the
syntactic reordering was produced by a maximum
entropy based parser (Ratnaparkhi, 1997).

4.2 Improvement in Word Alignment

In Table 1 we show the precision, recall and F-
score of each set of word alignments for the 150-
sentence set. Using partial word provides the high-
est F-score among all individual alignments. The
F-score is 5% higher than for the baseline align-
ment. The VP-based reordering itself does not im-
prove the F-score, which could be due to the parse
errors on the conversational training data. We ex-
periment with three options (c0, c1, c2) when com-
bining the baseline and reordering-based align-
ments. Inc0, the weightswi and confidence scores
c(aijk|S, T ) in Eq. (3) are all set to 1. Inc1,
we set confidence scores to 1, while tuning the
weights with hill climbing to maximize the F-
score on a hand-aligned tuning set. Inc2, we com-
pute the confidence scores as in Eq. (1) and tune
the weights as inc1. The numbers in Table 1 show
the effectiveness of having both weights and con-
fidence scores during the combination.

Similarly, we combine the baseline with each
of the other sets of alignments usingc2. They
all result in significantly higher F-scores. We
also generate alignments on VP-reordered partial
words (X in Table 1) and comparedB + X and
B + V + P . The better results withB + V + P

show the benefit of keeping the alignments as di-
versified as possible before the combination. Fi-
nally, we compare the proposed alignment combi-
nationc2 with the heuristics-based method (gdf),
where the latter starts from the intersection of all 4
sets of alignments and then applies grow-diagonal-
final (Koehn et al., 2003) based on the links in
the union. The proposed combination approach on
B + V + S + P results in close to 7% higher F-
scores than the baseline and also 2% higher than
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gdf. We also notice that its higher F-score is
mainly due to the higher precision, which should
result from the consideration of confidence scores.

Alignment Comb P R F

Baseline 0.6923 0.6414 0.6659
V 0.6934 0.6388 0.6650
S 0.7376 0.6495 0.6907
P 0.7665 0.6643 0.7118
X 0.7615 0.6641 0.7095
B+V c0 0.7639 0.6312 0.6913
B+V c1 0.7645 0.6373 0.6951
B+V c2 0.7895 0.6505 0.7133
B+S c2 0.7942 0.6553 0.7181
B+P c2 0.8006 0.6612 0.7242
B+X c2 0.7827 0.6670 0.7202
B+V+P c2 0.7912 0.6755 0.7288
B+V+S+P gdf 0.7238 0.7042 0.7138
B+V+S+P c2 0.7906 0.6852 0.7342

Table 1: Alignment precision, recall and F-score
(B: baseline; V: VP-based reordering; S: stem-
ming; P: partial word; X: VP-reordered partial
word).

4.3 Improvement in MT Performance

In Table 2, we show the corresponding BLEU
scores on the test set for the systems built on each
set of word alignment in Table 1. Similar to the
observation from Table 1,c2 outperformsc0 and
c1, and B + V + S + P with c2 outperforms
B + V + S + P with gdf. We also ran one ex-
periment in which we concatenated all 4 sets of
alignments into one big set (shown ascat). Over-
all, the BLEU score with confidence-based com-
bination was increased by 1 point compared to the
baseline, 0.6 compared togdf, and 0.7 compared
to cat. All results are statistically significant with
p < 0.05 using the sign-test described in (Collins
et al., 2005).

5 Conclusions

In this work, we have presented a word alignment
combination method that improves both the align-
ment quality and the translation performance. We
generated multiple sets of diversified alignments
based on linguistics, morphology, and heuris-
tics, and demonstrated the effectiveness of com-
bination on the English-to-Pashto translation task.
We showed that the combined alignment signif-
icantly outperforms the baseline alignment with

Alignment Comb Links Phrase BLEU

Baseline 963K 565K 12.67
V 965K 624K 12.82
S 915K 692K 13.04
P 906K 716K 13.30
X 911K 689K 13.00
B+V c0 870K 890K 13.20
B+V c1 865K 899K 13.32
B+V c2 874K 879K 13.60
B+S c2 864K 948K 13.41
B+P c2 863K 942K 13.40
B+X c2 871K 905K 13.37
B+V+P c2 880K 914K 13.60
B+V+S+P cat 3749K 1258K 13.01
B+V+S+P gdf 1021K 653K 13.14
B+V+S+P c2 907K 771K 13.73

Table 2: Improvement in BLEU scores (B: base-
line; V: VP-based reordering; S: stemming; P: par-
tial word; X: VP-reordered partial word).

both higher F-score and higher BLEU score. The
combination approach itself is not limited to any
specific alignment. It provides a general frame-
work that can take advantage of as many align-
ments as possible, which could differ in prepro-
cessing, alignment modeling, or any other aspect.

Acknowledgments

This work was supported by the DARPA
TRANSTAC program. We would like to thank
Upendra Chaudhari, Sameer Maskey and Xiao-
qiang Luo for providing useful resources and the
anonymous reviewers for their constructive com-
ments.

References

Necip Fazil Ayan and Bonnie J. Dorr. 2006. A max-
imum entropy approach to combining word align-
ments. InProc. HLT/NAACL, June.

Peter Brown, Vincent Della Pietra, Stephen Della
Pietra, and Robert Mercer. 1993. The mathematics
of statistical machine translation: parameter estima-
tion. Computational Linguistics, 19(2):263–311.

David Chiang, Kevin Knight, Samad Echihabi, et al.
2009. Isi/language weaver nist 2009 systems. In
Presentation at NIST MT 2009 Workshop, August.

Michael Collins, Philipp Koehn, and Ivona Kučerová.
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Abstract

This paper presents an efficient imple-
mentation of linearised lattice minimum
Bayes-risk decoding using weighted finite
state transducers. We introduce transduc-
ers to efficiently count lattice paths con-
taining n-grams and use these to gather
the required statistics. We show that these
procedures can be implemented exactly
through simple transformations of word
sequences to sequences ofn-grams. This
yields a novel implementation of lattice
minimum Bayes-risk decoding which is
fast and exact even for very large lattices.

1 Introduction

This paper focuses on an exact implementation
of the linearised form of lattice minimum Bayes-
risk (LMBR) decoding using general purpose
weighted finite state transducer (WFST) opera-
tions1. The LMBR decision rule in Tromble et al.
(2008) has the form

Ê = argmax
E′∈E

{

θ0|E
′|+

∑

u∈N

θu#u(E′)p(u|E)

}

(1)
whereE is a lattice of translation hypotheses,N
is the set of alln-grams in the lattice (typically,
n = 1 . . . 4), and the parametersθ are constants
estimated on held-out data. The quantityp(u|E)
we refer to as the path posterior probability of the
n-gramu. This particular posterior is defined as

p(u|E) = p(Eu|E) =
∑

E∈Eu

P (E|F ), (2)

whereEu = {E ∈ E : #u(E) > 0} is the sub-
set of lattice paths containing then-gramu at least

1We omit an introduction to WFSTs for space reasons.
See Mohri et al. (2008) for details of the general purpose
WFST operations used in this paper.

once. It is the efficient computation of these path
posteriorn-gram probabilities that is the primary
focus of this paper. We will show how general
purpose WFST algorithms can be employed to ef-
ficiently computep(u|E) for all u ∈ N .

Tromble et al. (2008) use Equation (1) as an
approximation to the general form of statistical
machine translation MBR decoder (Kumar and
Byrne, 2004):

Ê = argmin
E′∈E

∑

E∈E

L(E,E′)P (E|F ) (3)

The approximation replaces the sum over all paths
in the lattice by a sum over latticen-grams. Even
though a lattice may have manyn-grams, it is
possible to extract and enumerate them exactly
whereas this is often impossible for individual
paths. Therefore, while the Tromble et al. (2008)
linearisation of the gain function in the decision
rule is an approximation, Equation (1) can be com-
puted exactly even over very large lattices. The
challenge is to do so efficiently.

If the quantityp(u|E) had the form of a condi-
tional expected count

c(u|E) =
∑

E∈E

#u(E)P (E|F ), (4)

it could be computed efficiently using counting
transducers (Allauzen et al., 2003). The statis-
tic c(u|E) counts the number of times ann-gram
occurs on each path, accumulating the weighted
count over all paths. By contrast, what is needed
by the approximation in Equation (1) is to iden-
tify all paths containing ann-gram and accumulate
their probabilities. The accumulation of probabil-
ities at the path level, rather than then-gram level,
makes the exact computation ofp(u|E) hard.

Tromble et al. (2008) approach this problem by
building a separate word sequence acceptor for
eachn-gram inN and intersecting this acceptor
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with the lattice to discard all paths that do not con-
tain then-gram; they then sum the probabilities of
all paths in the filtered lattice. We refer to this as
the sequential method, sincep(u|E) is calculated
separately for eachu in sequence.

Allauzen et al. (2010) introduce a transducer
for simultaneous calculation ofp(u|E) for all un-
igramsu ∈ N1 in a lattice. This transducer is
effective for finding path posterior probabilities of
unigrams because there are relatively few unique
unigrams in the lattice. As we will show, however,
it is less efficient for higher-ordern-grams.

Allauzen et al. (2010) use exact statistics for
the unigram path posterior probabilities in Equa-
tion (1), but use the conditional expected counts
of Equation (4) for higher-ordern-grams. Their
hybrid MBR decoder has the form

Ê = argmax
E′∈E

{

θ0|E
′|

+
∑

u∈N :1≤|u|≤k

θu#u(E′)p(u|E)

+
∑

u∈N :k<|u|≤4

θu#u(E′)c(u|E)

}

, (5)

wherek determines the range ofn-gram orders
at which the path posterior probabilitiesp(u|E)
of Equation (2) and conditional expected counts
c(u|E) of Equation (4) are used to compute the
expected gain. Fork < 4, Equation (5) is thus
an approximation to the approximation. In many
cases it will be perfectly fine, depending on how
closelyp(u|E) andc(u|E) agree for higher-order
n-grams. Experimentally, Allauzen et al. (2010)
find this approximation works well atk = 1 for
MBR decoding of statistical machine translation
lattices. However, there may be scenarios in which
p(u|E) andc(u|E) differ so that Equation (5) is no
longer useful in place of the original Tromble et
al. (2008) approximation.

In the following sections, we present an efficient
method for simultaneous calculation ofp(u|E) for
n-grams of a fixed order. While other fast MBR
approximations are possible (Kumar et al., 2009),
we show how the exact path posterior probabilities
can be calculated and applied in the implementa-
tion of Equation (1) for efficient MBR decoding
over lattices.

2 N-gram Mapping Transducer

We make use of a trick to count higher-ordern-
grams. We build transducerΦn to map word se-

quences ton-gram sequences of ordern. Φn has a
similar form to the WFST implementation of ann-
gram language model (Allauzen et al., 2003).Φn

includes for eachn-gramu = wn
1

arcs of the form:

wn-1
1 wn

2

wn:u

Then-gram lattice of ordern is calledEn and is
found by composingE ◦Φn, projecting on the out-
put, removingǫ-arcs, determinizing, and minimis-
ing. The construction ofEn is fast even for large
lattices and is memory efficient.En itself may
have more states thanE due to the association of
distinctn-gram histories with states. However, the
counting transducer for unigrams is simpler than
the corresponding counting transducer for higher-
ordern-grams. As a result, counting unigrams in
En is easier than countingn-grams inE .

3 Efficient Path Counting

Associated with eachEn we have a transducerΨn

which can be used to calculate the path posterior
probabilitiesp(u|E) for all u ∈ Nn. In Figures
1 and 2 we give two possible forms2 of Ψn that
can be used to compute path posterior probabilities
overn-gramsu1,2 ∈ Nn for somen. No modifica-
tion to theρ-arc matching mechanism is required
even in counting higher-ordern-grams since alln-
grams are represented as individual symbols after
application of the mapping transducerΦn.

TransducerΨL
n is used by Allauzen et al. (2010)

to compute the exact unigram contribution to the
conditional expected gain in Equation (5). For ex-
ample, in counting paths that containu1, ΨL

n re-
tains thefirst occurrence ofu1 and maps every
other symbol toǫ. This ensures that in any path
containing a givenu, only the firstu is counted,
avoiding multiple counting of paths.

We introduce an alternative path counting trans-
ducerΨR

n that effectively deletes all symbols ex-
cept thelast occurrence ofu on any path by en-
suring that any paths in composition which count
earlier instances ofu do not end in a final state.
Multiple counting is avoided by counting only the
last occurrence of each symbolu on a path.

We note that initialǫ:ǫ arcs inΨL
n effectively

create |Nn| copies ofEn in composition while
searching for the first occurrence of eachu. Com-

2The special composition symbolσ matches any arc;ρ
matches any arc other than those with an explicit transition.
See the OpenFst documentation: http://openfst.org
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Figure 1: Path counting transducerΨL
n matching

first (left-most) occurrence of eachu ∈ Nn.

0

1

3

2

4

u1:u1

u2:u2

u1:ǫ

u2:ǫ

σ:ǫ

ρ:ǫ

ρ:ǫ

Figure 2: Path counting transducerΨR
n matching

last (right-most) occurrence of eachu ∈ Nn.

posing withΨR
n creates a single copy ofEn while

searching for the last occurrence ofu; we find this
to be much more efficient for largeNn.

Path posterior probabilities are calculated over
eachEn by composing withΨn in the log semir-
ing, projecting on the output, removingǫ-arcs, de-
terminizing, minimising, and pushing weights to
the initial state (Allauzen et al., 2010). Using ei-
therΨL

n orΨR
n , the resulting counts acceptor isXn.

It has a compact form with one arc from the start
state for eachui ∈ Nn:

0 i
ui/- log p(ui|E)

3.1 Efficient Path Posterior Calculation

AlthoughXn has a convenient and elegant form,
it can be difficult to build for largeNn because
the compositionEn ◦ Ψn results in millions of
states and arcs. The log semiringǫ-removal and
determinization required to sum the probabilities
of paths labelled with eachu can be slow.

However, if we use the proposedΨR
n , then each

path in En ◦ ΨR
n has only one non-ǫ output la-

bel u and all paths leading to a given final state
share the sameu. A modified forward algorithm
can be used to calculatep(u|E) without the costly
ǫ-removal and determinization. The modification
simply requires keeping track of which symbol
u is encountered along each path to a final state.

More than one final state may gather probabilities
for the sameu; to computep(u|E) these proba-
bilities are added. The forward algorithm requires
thatEn◦Ψ

R
n be topologically sorted; although sort-

ing can be slow, it is still quicker than log semiring
ǫ-removal and determinization.

The statistics gathered by the forward algo-
rithm could also be gathered under the expectation
semiring (Eisner, 2002) with suitably defined fea-
tures. We take the view that the full complexity of
that approach is not needed here, since only one
symbol is introduced per path and per exit state.

Unlike En ◦ΨR
n , the compositionEn ◦ΨL

n does
not segregate paths byu such that there is a di-
rect association between final states and symbols.
The forward algorithm does not readily yield the
per-symbol probabilities, although an arc weight
vector indexed by symbols could be used to cor-
rectly aggregate the required statistics (Riley et al.,
2009). For largeNn this would be memory in-
tensive. The association between final states and
symbols could also be found by label pushing, but
we find this slow for largeEn ◦Ψn.

4 Efficient Decoder Implementation

In contrast to Equation (5), we use the exact values
of p(u|E) for all u ∈ Nn at ordersn = 1 . . . 4 to
compute

Ê = argmin
E′∈E

{

θ0|E
′|+

4
∑

n=1

gn(E,E′)

}

, (6)

wheregn(E,E′) =
∑

u∈Nn
θu#u(E′)p(u|E) us-

ing the exact path posterior probabilities at each
order. We make acceptorsΩn such thatE ◦ Ωn

assigns ordern partial gaingn(E,E′) to all paths
E ∈ E . Ωn is derived fromΦn directly by assign-
ing arc weightθu×p(u|E) to arcs with output label
u and then projecting on the input labels. For each
n-gramu = wn

1
in Nn arcs ofΩn have the form:

wn-1
1 wn

2

wn/θu × p(u|E)

To apply θ0 we make a copy ofE , calledE0,
with fixed weightθ0 on all arcs. The decoder is
formed as the compositionE0 ◦Ω1 ◦Ω2 ◦Ω3 ◦Ω4

andÊ is extracted as the maximum cost string.

5 Lattice Generation for LMBR

Lattice MBR decoding performance and effi-
ciency is evaluated in the context of the NIST
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mt0205tune mt0205test mt08nw mt08ng
ML 54.2 53.8 51.4 36.3

k

0 52.6 52.3 49.8 34.5
1 54.8 54.4 52.2 36.6
2 54.9 54.5 52.4 36.8
3 54.9 54.5 52.4 36.8

LMBR 55.0 54.6 52.4 36.8

Table 1: BLEU scores for Arabic→English maximum likelihood translation (ML), MBR decodingusing
the hybrid decision rule of Equation (5) at0 ≤ k ≤ 3, and regular linearised lattice MBR (LMBR).

mt0205tune mt0205test mt08nw mt08ng

Posteriors
sequential 3160 3306 2090 3791

ΨL
n 6880 7387 4201 8796

ΨR
n 1746 1789 1182 2787

Decoding
sequential 4340 4530 2225 4104

Ψn 284 319 118 197

Total
sequential 7711 8065 4437 8085

ΨL
n 7458 8075 4495 9199

ΨR
n 2321 2348 1468 3149

Table 2: Time in seconds required for path posteriorn-gram probability calculation and LMBR decoding
using sequential method and left-most(ΨL

n) or right-most(ΨR
n ) counting transducer implementations.

Arabic→English machine translation task3. The
development set mt0205tune is formed from the
odd numbered sentences of the NIST MT02–
MT05 testsets; the even numbered sentences form
the validation set mt0205test. Performance on
NIST MT08 newswire (mt08nw) and newsgroup
(mt08ng) data is also reported.

First-pass translation is performed using HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder. Word alignments are generated using
MTTK (Deng and Byrne, 2008) over 150M words
of parallel text for the constrained NIST MT08
Arabic→English track. In decoding, a Shallow-
1 grammar with a single level of rule nesting is
used and no pruning is performed in generating
first-pass lattices (Iglesias et al., 2009).

The first-pass language model is a modified
Kneser-Ney (Kneser and Ney, 1995) 4-gram esti-
mated over the English parallel text and an 881M
word subset of the GigaWord Third Edition (Graff
et al., 2007). Prior to LMBR, the lattices are
rescored with large stupid-backoff 5-gram lan-
guage models (Brants et al., 2007) estimated over
more than 6 billion words of English text.

Then-gram factorsθ0, . . . , θ4 are set according
to Tromble et al. (2008) using unigram precision

3http://www.itl.nist.gov/iad/mig/tests/mt

p = 0.85 and average recall ratior = 0.74. Our
translation decoder and MBR procedures are im-
plemented using OpenFst (Allauzen et al., 2007).

6 LMBR Speed and Performance

Lattice MBR decoding performance is shown in
Table 1. Compared to the maximum likelihood
translation hypotheses (row ML), LMBR gives
gains of +0.8 to +1.0 BLEU for newswire data and
+0.5 BLEU for newsgroup data (row LMBR).

The other rows of Table 1 show the performance
of LMBR decoding using the hybrid decision rule
of Equation (5) for0 ≤ k ≤ 3. When the condi-
tional expected countsc(u|E) are used at all orders
(i.e. k = 0), the hybrid decoder BLEU scores are
considerably lower than even the ML scores. This
poor performance is because there are many un-
igramsu for which c(u|E) is much greater than
p(u|E). The consensus translation maximising the
conditional expected gain is then dominated by
unigram matches, significantly degrading LMBR
decoding performance. Table 1 shows that for
these lattices the hybrid decision rule is an ac-
curate approximation to Equation (1) only when
k ≥ 2 and the exact contribution to the gain func-
tion is computed using the path posterior probabil-
ities at ordersn = 1 andn = 2.
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We now analyse the efficiency of lattice MBR
decoding using the exact path posterior probabil-
ities of Equation (2) at all orders. We note that
the sequential method and both simultaneous im-
plementations using path counting transducersΨL

n

andΨR
n yield the same hypotheses (allowing for

numerical accuracy); they differ only in speed and
memory usage.

Posteriors Efficiency Computation times for
the steps in LMBR are given in Table 2. In calcu-
lating path posteriorn-gram probabilitiesp(u|E),
we find that the use ofΨL

n is more than twice
as slow as the sequential method. This is due to
the difficulty of counting higher-ordern-grams in
large lattices. ΨL

n is effective for counting uni-
grams, however, since there are far fewer of them.
UsingΨR

n is almost twice as fast as the sequential
method. This speed difference is due to the sim-
ple forward algorithm. We also observe that for
higher-ordern, the compositionEn ◦ ΨR

n requires
less memory and produces a smaller machine than
En ◦ ΨL

n . It is easier to count paths by the final
occurrence of a symbol than by the first.

Decoding Efficiency Decoding times are signif-
icantly faster usingΩn than the sequential method;
average decoding time is around 0.1 seconds per
sentence. The total time required for lattice MBR
is dominated by the calculation of the path pos-
terior n-gram probabilities, and this is a func-
tion of the number ofn-grams in the lattice|N |.
For each sentence in mt0205tune, Figure 3 plots
the total LMBR time for the sequential method
(marked ‘o’) and for probabilities computed using
ΨR

n (marked ‘+’). This compares the two tech-
niques on a sentence-by-sentence basis. As|N |
grows, the simultaneous path counting transducer
is found to be much more efficient.

7 Conclusion

We have described an efficient and exact imple-
mentation of the linear approximation to LMBR
using general WFST operations. A simple trans-
ducer was used to map words to sequences ofn-
grams in order to simplify the extraction of higher-
order statistics. We presented a counting trans-
ducerΨR

n that extracts the statistics required for
all n-grams of ordern in a single composition and
allows path posterior probabilities to be computed
efficiently using a modified forward procedure.

We take the view that even approximate search
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Figure 3: Total time in seconds versus|N |.

criteria should be implemented exactly where pos-
sible, so that it is clear exactly what the system is
doing. For machine translation lattices, conflat-
ing the values ofp(u|E) and c(u|E) for higher-
ordern-grams might not be a serious problem, but
in other scenarios – especially where symbol se-
quences are repeated multiple times on the same
path – it may be a poor approximation.

We note that since much of the time in calcula-
tion is spent dealing withǫ-arcs that are ultimately
removed, an optimised composition algorithm that
skips over such redundant structure may lead to
further improvements in time efficiency.
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Abstract

We investigate coreference relationships
between NPs with the same head noun.
It is relatively common in unsupervised
work to assume that such pairs are
coreferent– but this is not always true, es-
pecially if realistic mention detection is
used. We describe the distribution of non-
coreferent same-head pairs in news text,
and present an unsupervised generative
model which learns not to link some same-
head NPs using syntactic features, improv-
ing precision.

1 Introduction

Full NP coreference, the task of discovering which
non-pronominal NPs in a discourse refer to the
same entity, is widely known to be challenging.
In practice, however, most work focuses on the
subtask of linking NPs with different head words.
Decisions involving NPs with the same head word
have not attracted nearly as much attention, and
many systems, especially unsupervised ones, op-
erate under the assumption that all same-head
pairs corefer. This is by no means always the case–
there are several systematic exceptions to the rule.
In this paper, we show that these exceptions are
fairly common, and describe an unsupervised sys-
tem which learns to distinguish them from coref-
erent same-head pairs.

There are several reasons why relatively little
attention has been paid to same-head pairs. Pri-
marily, this is because they are a comparatively
easy subtask in a notoriously difficult area; Stoy-
anov et al. (2009) shows that, among NPs headed
by common nouns, those which have an exact
match earlier in the document are the easiest to

resolve (variant MUC score .82 on MUC-6) and
while those with partial matches are quite a bit
harder (.53), by far the worst performance is on
those without any match at all (.27). This effect
is magnified by most popular metrics for coref-
erence, which reward finding links within large
clusters more than they punish proposing spu-
rious links, making it hard to improve perfor-
mance by linking conservatively. Systems that
use gold mention boundaries (the locations of NPs
marked by annotators)1 have even less need to
worry about same-head relationships, since most
NPs which disobey the conventional assumption
are not marked as mentions.

In this paper, we count how often same-head
pairs fail to corefer in the MUC-6 corpus, show-
ing that gold mention detection hides most such
pairs, but more realistic detection finds large num-
bers. We also present an unsupervised genera-
tive model which learns to make certain same-
head pairs non-coreferent. The model is based
on the idea that pronoun referents are likely to
be salient noun phrases in the discourse, so we
can learn about NP antecedents using pronom-
inal antecedents as a starting point. Pronoun
anaphora, in turn, is learnable from raw data
(Cherry and Bergsma, 2005; Charniak and Elsner,
2009). Since our model links fewer NPs than the
baseline, it improves precision but decreases re-
call. This tradeoff is favorable for CEAF, but not
for b3.

2 Related work

Unsupervised systems specify the assumption of
same-head coreference in several ways: by as-

1Gold mention detection means something slightly differ-
ent in the ACE corpus, where the system input contains every
NP annotated with an entity type.
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sumption (Haghighi and Klein, 2009), using
a head-prediction clause (Poon and Domingos,
2008), and using a sparse Dirichlet prior on word
emissions (Haghighi and Klein, 2007). (These
three systems, perhaps not coincidentally, use gold
mentions.) An exception is Ng (2008), who points
out that head identity is not an entirely reliable cue
and instead uses exact string match (minus deter-
miners) for common NPs and an alias detection
system for proper NPs. This work uses mentions
extracted with an NP chunker. No specific results
are reported for same-head NPs. However, while
using exact string match raises precision, many
non-matching phrases are still coreferent, so this
approach cannot be considered a full solution to
the problem.

Supervised systems do better on the task, but
not perfectly. Recent work (Stoyanov et al., 2009)
attempts to determine the contributions of various
categories of NP to coreference scores, and shows
(as stated above) that common NPs which partially
match an earlier mention are not well resolved by
the state-of-the-art RECONCILE system, which
uses pairwise classification. They also show that
using gold mention boundaries makes the corefer-
ence task substantially easier, and argue that this
experimental setting is “rather unrealistic”.

3 Descriptive study: MUC-6

We begin by examining how often non-same-head
pairs appear in the MUC-6 coreference dataset.
To do so, we compare two artificial coreference
systems: the link-all strategy links all, and only,
full (non-pronominal) NP pairs with the same head
which occur within 10 sentences of one another.
The oracle strategy links NP pairs with the same
head which occur within 10 sentences, but only if
they are actually coreferent (according to the gold
annotation)2 The link-all system, in other words,
does what most existing unsupervised systems do
on the same-head subset of NPs, while the oracle
system performs perfectly.

We compare our results to the gold standard us-
ing two metrics. b3(Bagga and Baldwin, 1998)
is a standard metric which calculates a precision
and recall for each mention. The mention CEAF
(Luo, 2005) constructs a maximum-weight bipar-

2The choice of 10 sentences as the window size captures
most, but not all, of the available recall. Using nouns mention
detection, it misses 117 possible same-head links, or about
10%. However, precision drops further as the window size
increases.

tite matching between gold and proposed clusters,
then gives the percentage of entities whose gold
label and proposed label match. b3 gives more
weight to errors involving larger clusters (since
these lower scores for several mentions at once);
for mention CEAF, all mentions are weighted
equally.

We annotate the data with the self-trained Char-
niak parser (McClosky et al., 2006), then extract
mentions using three different methods. The gold
mentions method takes only mentions marked by
annotators. The nps method takes all base noun
phrases detected by the parser. Finally, the nouns
method takes all nouns, even those that do not
head NPs; this method maximizes recall, since it
does not exclude prenominals in phrases like “a
Bush spokesman”. (High-precision models of the
internal structure of flat Penn Treebank-style NPs
were investigated by Vadas and Curran (2007).)
For each experimental setting, we show the num-
ber of mentions detected, and how many of them
are linked to some antecedent by the system.

The data is shown in Table 1. b3 shows a large
drop in precision when all same-head pairs are
linked; in fact, in the nps and nouns settings, only
about half the same-headed NPs are actually coref-
erent (864 real links, 1592 pairs for nps). This
demonstrates that non-coreferent same-head pairs
not only occur, but are actually rather common in
the dataset. The drop in precision is much less
obvious in the gold mentions setting, however;
most unlinked same-head pairs are not annotated
as mentions in the gold data, which is one reason
why systems run in this experimental setting can
afford to ignore them.

Improperly linking same-head pairs causes a
loss in precision, but scores are dominated by re-
call3. Thus, reporting b3 helps to mask the impact
of these pairs when examining the final f-score.

We roughly characterize what sort of same-
headed NPs are non-coreferent by hand-
examining 100 randomly selected pairs. 39
pairs denoted different entities (“recent employ-
ees” vs “employees who have worked for longer”)
disambiguated by modifiers or sometimes by
discourse position. The next largest group (24)
consists of time and measure phrases like “ten
miles”. 12 pairs refer to parts or quantities

3This bias is exaggerated for systems which only link
same-head pairs, but continues to apply to real systems; for
instance (Haghighi and Klein, 2009) has a b3 precision of 84
and recall of 67.
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Mentions Linked b3 pr rec F mention CEAF
Gold mentions

Oracle 1929 1164 100 32.3 48.8 54.4
Link all 1929 1182 80.6 31.7 45.5 53.8
Alignment 1929 495 93.7 22.1 35.8 40.5

NPs
Oracle 3993 864 100 30.6 46.9 73.4
Link all 3993 1592 67.2 29.5 41.0 62.2
Alignment 3993 518 87.2 24.7 38.5 67.0

Nouns
Oracle 5435 1127 100 41.5 58.6 83.5
Link all 5435 2541 56.6 40.9 45.7 67.0
Alignment 5435 935 83.0 32.8 47.1 74.4

Table 1: Oracle, system and baseline scores on MUC-6 test data. Gold mentions leave little room
for improvement between baseline and oracle; detecting more mentions widens the gap between
them. With realistic mention detection, precision and CEAF scores improve over baselines, while recall
and f-scores drop.

(“members of...”), and 12 contained a generic
(“In a corporate campaign, a union tries...”). 9
contained an annotator error. The remaining 4
were mistakes involving proper noun phrases
headed by Inc. and other abbreviations; this case
is easy to handle, but apparently not the primary
cause of errors.

4 System

Our system is a version of the popular IBM model
2 for machine translation. To define our generative
model, we assume that the parse trees for the en-
tire document D are given, except for the subtrees
with root nonterminal NP, denoted ni, which our
system will generate. These subtrees are related
by a hidden set of alignments, ai, which link each
NP to another NP (which we call a generator) ap-
pearing somewhere before it in the document, or
to a null antecedent. The set of potential genera-
tors G (which plays the same role as the source-
language text in MT) is taken to be all the NPs
occurring within 10 sentences of the target, plus a
special null antecedent which plays the same role
as the null word in machine translation– it serves
as a dummy generator for NPs which are unrelated
to any real NP in G.

The generative process fills in all the NP nodes
in order, from left to right. This process ensures
that, when generating node ni, we have already
filled in all the NPs in the set G (since these all
precede ni). When deciding on a generator for
NP ni, we can extract features characterizing its

relationship to a potential generator gj . These fea-
tures, which we denote f(ni, gj , D), may depend
on their relative position in the document D, and
on any features of gj , since we have already gener-
ated its tree. However, we cannot extract features
from the subtree under ni, since we have yet to
generate it!

As usual for IBM models, we learn using EM,
and we need to start our alignment function off
with a good initial set of parameters. Since an-
tecedents of NPs and pronouns (both salient NPs)
often occur in similar syntactic environments, we
use an alignment function for pronoun corefer-
ence as a starting point. This alignment can be
learned from raw data, making our approach un-
supervised.

We take the pronoun model of Charniak and El-
sner (2009)4 as our starting point. We re-express
it in the IBM framework, using a log-linear model
for our alignment. Then our alignment (parame-
terized by feature weights w) is:

p(ai = j|G,D) ∝ exp(f(ni, gj , D) • w)

The weights w are learned by gradient descent
on the log-likelihood. To use this model within
EM, we alternate an E-step where we calculate
the expected alignments E[ai = j], then an M-
step where we run gradient descent. (We have also
had some success with stepwise EM as in (Liang
and Klein, 2009), but this requires some tuning to
work properly.)

4Downloaded from http://bllip.cs.brown.edu.
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As features, we take the same features as Char-
niak and Elsner (2009): sentence and word-count
distance between ni and gj , sentence position of
each, syntactic role of each, and head type of gj

(proper, common or pronoun). We add binary fea-
tures for the nonterminal directly over gj (NP, VP,
PP, any S type, or other), the type of phrases mod-
ifying gj (proper nouns, phrasals (except QP and
PP), QP, PP-of, PP-other, other modifiers, or noth-
ing), and the type of determiner of gj (possessive,
definite, indefinite, deictic, other, or nothing). We
designed this feature set to distinguish prominent
NPs in the discourse, and also to be able to detect
abstract or partitive phrases by examining modi-
fiers and determiners.

To produce full NPs and learn same-head coref-
erence, we focus on learning a good alignment
using the pronoun model as a starting point. For
translation, we use a trivial model, p(ni|gai) = 1
if the two have the same head, and 0 otherwise,
except for the null antecedent, which draws heads
from a multinomial distribution over words.

While we could learn an alignment and then
treat all generators as antecedents, so that only
NPs aligned to the null antecedent were not la-
beled coreferent, in practice this model would
align nearly all the same-head pairs. This is
true because many words are “bursty”; the prob-
ability of a second occurrence given the first is
higher than the a priori probability of occurrence
(Church, 2000). Therefore, our model is actually a
mixture of two IBM models, pC and pN , where pC

produces NPs with antecedents and pN produces
pairs that share a head, but are not coreferent. To
break the symmetry, we allow pC to use any pa-
rameters w, while pN uses a uniform alignment,
w ≡ ~0. We interpolate between these two models
with a constant λ, the single manually set parame-
ter of our system, which we fixed at .9.

The full model, therefore, is:

p(ni|G,D) =λpT (ni|G,D)
+ (1− λ)pN (ni|G,D)

pT (ni|G,D) =
1
Z

∑
j∈G

exp(f(ni, gj , D) • w)

× I{head(ni) = head(j)}

pT (ni|G,D) =
∑
j∈G

1
|G|

I{head(ni) = head(gj)}

NPs for which the maximum-likelihood gener-

ator (the largest term in either of the sums) is from
pT and is not the null antecedent are marked as
coreferent to the generator. Other NPs are marked
not coreferent.

5 Results

Our results on the MUC-6 formal test set are
shown in Table 1. In all experimental settings,
the model improves precision over the baseline
while decreasing recall– that is, it misses some le-
gitimate coreferent pairs while correctly exclud-
ing many of the spurious ones. Because of the
precision-recall tradeoff at which the systems op-
erate, this results in reduced b3 and link F. How-
ever, for the nps and nouns settings, where the
parser is responsible for finding mentions, the
tradeoff is positive for the CEAF metrics. For in-
stance, in the nps setting, it improves over baseline
by 57%.

As expected, the model does poorly in the gold
mentions setting, doing worse than baseline on
both metrics. Although it is possible to get very
high precision in this setting, the model is far too
conservative, linking less than half of the available
mentions to anything, when in fact about 60% of
them are coreferent. As we explain above, this ex-
perimental setting makes it mostly unnecessary to
worry about non-coreferent same-head pairs be-
cause the MUC-6 annotators don’t often mark
them.

6 Conclusions

While same-head pairs are easier to resolve than
same-other pairs, they are still non-trivial and de-
serve further attention in coreference research. To
effectively measure their effect on performance,
researchers should report multiple metrics, since
under b3 the link-all heuristic is extremely diffi-
cult to beat. It is also important to report results
using a realistic mention detector as well as gold
mentions.
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Abstract
In this paper, we present a novel approach
for authorship attribution, the task of iden-
tifying the author of a document, using
probabilistic context-free grammars. Our
approach involves building a probabilistic
context-free grammar for each author and
using this grammar as a language model
for classification. We evaluate the perfor-
mance of our method on a wide range of
datasets to demonstrate its efficacy.

1 Introduction

Natural language processing allows us to build
language models, and these models can be used
to distinguish between languages. In the con-
text of written text, such as newspaper articles or
short stories, the author’s style could be consid-
ered a distinct “language.” Authorship attribution,
also referred to as authorship identification or pre-
diction, studies strategies for discriminating be-
tween the styles of different authors. These strate-
gies have numerous applications, including set-
tling disputes regarding the authorship of old and
historically important documents (Mosteller and
Wallace, 1984), automatic plagiarism detection,
determination of document authenticity in court
(Juola and Sofko, 2004), cyber crime investiga-
tion (Zheng et al., 2009), and forensics (Luyckx
and Daelemans, 2008).

The general approach to authorship attribution
is to extract a number of style markers from the
text and use these style markers as features to train
a classifier (Burrows, 1987; Binongo and Smith,
1999; Diederich et al., 2000; Holmes and Forsyth,
1995; Joachims, 1998; Mosteller and Wallace,
1984). These style markers could include the
frequencies of certain characters, function words,
phrases or sentences. Peng et al. (2003) build a
character-level n-gram model for each author. Sta-
matatos et al. (1999) and Luyckx and Daelemans

(2008) use a combination of word-level statistics
and part-of-speech counts or n-grams. Baayen et
al. (1996) demonstrate that the use of syntactic
features from parse trees can improve the accu-
racy of authorship attribution. While there have
been several approaches proposed for authorship
attribution, it is not clear if the performance of one
is better than the other. Further, it is difficult to
compare the performance of these algorithms be-
cause they were primarily evaluated on different
datasets. For more information on the current state
of the art for authorship attribution, we refer the
reader to a detailed survey by Stamatatos (2009).

We further investigate the use of syntactic infor-
mation by building complete models of each au-
thor’s syntax to distinguish between authors. Our
approach involves building a probabilistic context-
free grammar (PCFG) for each author and using
this grammar as a language model for classifica-
tion. Experiments on a variety of corpora includ-
ing poetry and newspaper articles on a number of
topics demonstrate that our PCFG approach per-
forms fairly well, but it only outperforms a bi-
gram language model on a couple of datasets (e.g.
poetry). However, combining our approach with
other methods results in an ensemble that performs
the best on most datasets.

2 Authorship Attribution using PCFG

We now describe our approach to authorship at-
tribution. Given a training set of documents from
different authors, we build a PCFG for each author
based on the documents they have written. Given
a test document, we parse it using each author’s
grammar and assign it to the author whose PCFG
produced the highest likelihood for the document.

In order to build a PCFG, a standard statistical
parser takes a corpus of parse trees of sentences
as training input. Since we do not have access to
authors’ documents annotated with parse trees,
we use a statistical parser trained on a generic
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corpus like the Wall Street Journal (WSJ) or
Brown corpus from the Penn Treebank (http:
//www.cis.upenn.edu/˜treebank/)
to automatically annotate (i.e. treebank) the
training documents for each author. In our
experiments, we used the Stanford Parser (Klein
and Manning, 2003b; Klein and Manning,
2003a) and the OpenNLP sentence segmenter
(http://opennlp.sourceforge.net/).
Our approach is summarized below:

Input – A training set of documents labeled
with author names and a test set of documents with
unknown authors.

1. Train a statistical parser on a generic corpus
like the WSJ or Brown corpus.

2. Treebank each training document using the
parser trained in Step 1.

3. Train a PCFG Gi for each author Ai using the
treebanked documents for that author.

4. For each test document, compute its likeli-
hood for each grammar Gi by multiplying the
probability of the top PCFG parse for each
sentence.

5. For each test document, find the author Ai

whose grammar Gi results in the highest like-
lihood score.

Output – A label (author name) for each docu-
ment in the test set.

3 Experimental Comparison

This section describes experiments evaluating our
approach on several real-world datasets.

3.1 Data

We collected a variety of documents with known
authors including news articles on a wide range of
topics and literary works like poetry. We down-
loaded all texts from the Internet and manually re-
moved extraneous information as well as titles, au-
thor names, and chapter headings. We collected
several news articles from the New York Times
online journal (http://global.nytimes.
com/) on topics related to business, travel, and
football. We also collected news articles on
cricket from the ESPN cricinfo website (http:

//www.cricinfo.com). In addition, we col-
lected poems from the Project Gutenberg web-
site (http://www.gutenberg.org/wiki/
Main_Page). We attempted to collect sets of
documents on a shared topic written by multiple
authors. This was done to ensure that the datasets
truly tested authorship attribution as opposed to
topic identification. However, since it is very dif-
ficult to find authors that write literary works on
the same topic, the Poetry dataset exhibits higher
topic variability than our news datasets. We had
5 different datasets in total – Football, Business,
Travel, Cricket, and Poetry. The number of au-
thors in our datasets ranged from 3 to 6.

For each dataset, we split the documents into
training and test sets. Previous studies (Stamatatos
et al., 1999) have observed that having unequal
number of words per author in the training set
leads to poor performance for the authors with
fewer words. Therefore, we ensured that, in the
training set, the total number of words per author
was roughly the same. We would like to note that
we could have also selected the training set such
that the total number of sentences per author was
roughly the same. However, since we would like
to compare the performance of the PCFG-based
approach with a bag-of-words baseline, we de-
cided to normalize the training set based on the
number of words, rather than sentences. For test-
ing, we used 15 documents per author for datasets
with news articles and 5 or 10 documents per au-
thor for the Poetry dataset. More details about the
datasets can be found in Table 1.

Dataset # authors # words/auth # docs/auth # sent/auth

Football 3 14374.67 17.3 786.3
Business 6 11215.5 14.16 543.6

Travel 4 23765.75 28 1086
Cricket 4 23357.25 24.5 1189.5
Poetry 6 7261.83 24.16 329

Table 1: Statistics for the training datasets used in
our experiments. The numbers in columns 3, 4 and
5 are averages.

3.2 Methodology
We evaluated our approach to authorship predic-
tion on the five datasets described above. For news
articles, we used the first 10 sections of the WSJ
corpus, which consists of annotated news articles
on finance, to build the initial statistical parser in
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Step 1. For Poetry, we used 7 sections of the
Brown corpus which consists of annotated docu-
ments from different areas of literature.

In the basic approach, we trained a PCFG model
for each author based solely on the documents
written by that author. However, since the num-
ber of documents per author is relatively low, this
leads to very sparse training data. Therefore, we
also augmented the training data by adding one,
two or three sections of the WSJ or Brown corpus
to each training set, and up-sampling (replicating)
the data from the original author. We refer to this
model as “PCFG-I”, where I stands for interpo-
lation since this effectively exploits linear interpo-
lation with the base corpus to smooth parameters.
Based on our preliminary experiments, we repli-
cated the original data three or four times.

We compared the performance of our approach
to bag-of-words classification and n-gram lan-
guage models. When using bag-of-words, one
generally removes commonly occurring “stop
words.” However, for the task of authorship pre-
diction, we hypothesized that the frequency of
specific stop words could provide useful infor-
mation about the author’s writing style. Prelim-
inary experiments verified that eliminating stop
words degraded performance; therefore, we did
not remove them. We used the Maximum Entropy
(MaxEnt) and Naive Bayes classifiers in the MAL-
LET software package (McCallum, 2002) as ini-
tial baselines. We surmised that a discriminative
classifier like MaxEnt might perform better than
a generative classifier like Naive Bayes. How-
ever, when sufficient training data is not available,
generative models are known to perform better
than discriminative models (Ng and Jordan, 2001).
Hence, we chose to compare our method to both
Naive Bayes and MaxEnt.

We also compared the performance of the
PCFG approach against n-gram language models.
Specifically, we tried unigram, bigram and trigram
models. We used the same background corpus
mixing method used for the PCFG-I model to ef-
fectively smooth the n-gram models. Since a gen-
erative model like Naive Bayes that uses n-gram
frequencies is equivalent to an n-gram language
model, we also used the Naive Bayes classifier in
MALLET to implement the n-gram models. Note
that a Naive-Bayes bag-of-words model is equiva-
lent to a unigram language model.

While the PCFG model captures the author’s

writing style at the syntactic level, it may not accu-
rately capture lexical information. Since both syn-
tactic and lexical information is presumably useful
in capturing the author’s overall writing style, we
also developed an ensemble using a PCFG model,
the bag-of-words MaxEnt classifier, and an n-
gram language model. We linearly combined the
confidence scores assigned by each model to each
author, and used the combined score for the final
classification. We refer to this model as “PCFG-
E”, where E stands for ensemble. We also de-
veloped another ensemble based on MaxEnt and
n-gram language models to demonstrate the con-
tribution of the PCFG model to the overall per-
formance of PCFG-E. For each dataset, we report
accuracy, the fraction of the test documents whose
authors were correctly identified.

3.3 Results and Discussion

Table 2 shows the accuracy of authorship predic-
tion on different datasets. For the n-gram mod-
els, we only report the results for the bigram
model with smoothing (Bigram-I) as it was the
best performing model for most datasets (except
for Cricket and Poetry). For the Cricket dataset,
the trigram-I model was the best performing n-
gram model with an accuracy of 98.34%. Gener-
ally, a higher order n-gram model (n = 3 or higher)
performs poorly as it requires a fair amount of
smoothing due to the exponential increase in all
possible n-gram combinations. Hence, the supe-
rior performance of the trigram-I model on the
Cricket dataset was a surprising result. For the
Poetry dataset, the unigram-I model performed
best among the smoothed n-gram models at 81.8%
accuracy. This is unsurprising because as men-
tioned above, topic information is strongest in
the Poetry dataset, and it is captured well in the
unigram model. For bag-of-words methods, we
find that the generatively trained Naive Bayes
model (unigram language model) performs bet-
ter than or equal to the discriminatively trained
MaxEnt model on most datasets (except for Busi-
ness). This result is not suprising since our
datasets are limited in size, and generative models
tend to perform better than discriminative meth-
ods when there is very little training data available.
Amongst the different baseline models (MaxEnt,
Naive Bayes, Bigram-I), we find Bigram-I to be
the best performing model (except for Cricket and
Poetry). For both Cricket and Poetry, Naive Bayes
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Dataset MaxEnt Naive Bayes Bigram-I PCFG PCFG-I PCFG-E MaxEnt+Bigram-I

Football 84.45 86.67 86.67 93.34 80 91.11 86.67
Business 83.34 77.78 90.00 77.78 85.56 91.11 92.22

Travel 83.34 83.34 91.67 81.67 86.67 91.67 90.00
Cricket 91.67 95.00 91.67 86.67 91.67 95.00 93.34
Poetry 56.36 78.18 70.90 78.18 83.63 87.27 76.36

Table 2: Accuracy in % for authorship prediction on different datasets. Bigram-I refers to the bigram
language model with smoothing. PCFG-E refers to the ensemble based on MaxEnt, Bigram-I , and
PCFG-I . MaxEnt+Bigram-I refers to the ensemble based on MaxEnt and Bigram-I .

is the best performing baseline model. While dis-
cussing the performance of the PCFG model and
its variants, we consider the best performing base-
line model.

We observe that the basic PCFG model and the
PCFG-I model do not usually outperform the best
baseline method (except for Football and Poetry,
as discussed below). For Football, the basic PCFG
model outperforms the best baseline, while for
Poetry, the PCFG-I model outperforms the best
baseline. Further, the performance of the basic
PCFG model is inferior to that of PCFG-I for most
datasets, likely due to the insufficient training data
used in the basic model. Ideally one would use
more training documents, but in many domains
it is impossible to obtain a large corpus of doc-
uments written by a single author. For example,
as Luyckx and Daelemans (2008) argue, in foren-
sics one would like to identify the authorship of
documents based on a limited number of docu-
ments written by the author. Hence, we investi-
gated smoothing techniques to improve the perfor-
mance of the basic PCFG model. We found that
the interpolation approach resulted in a substan-
tial improvement in the performance of the PCFG
model for all but the Football dataset (discussed
below). However, for some datasets, even this
improvement was not sufficient to outperform the
best baseline.

The results for PCFG and PCFG-I demon-
strate that syntactic information alone is gener-
ally a bit less accurate than using n-grams. In or-
der to utilize both syntactic and lexical informa-
tion, we developed PCFG-E as described above.
We combined the best n-gram model (Bigram-I)
and PCFG model (PCFG-I) with MaxEnt to build
PCFG-E. For the Travel dataset, we find that the
performance of the PCFG-E model is equal to that
of the best constituent model (Bigram-I). For the
remaining datasets, the performance of PCFG-E

is better than the best constituent model. Further-
more, for the Football, Cricket and Poetry datasets
this improvement is quite substantial. We now
find that the performance of some variant of PCFG
is always better than or equal to that of the best
baseline. While the basic PCFG model outper-
forms the baseline for the Football dataset, PCFG-
E outperforms the best baseline for the Poetry
and Business datasets. For the Cricket and Travel
datasets, the performance of the PCFG-E model
equals that of the best baseline. In order to as-
sess the statistical significance of any performance
difference between the best PCFG model and the
best baseline, we performed the McNemar’s test,
a non-parametric test for binomial variables (Ros-
ner, 2005). We found that the difference in the
performance of the two methods was not statisti-
cally significant at .05 significance level for any of
the datasets, probably due to the small number of
test samples.

The performance of PCFG and PCFG-I is par-
ticularly impressive on the Football and Poetry
datasets. For the Football dataset, the basic PCFG
model is the best performing PCFG model and it
performs much better than other methods. It is sur-
prising that smoothing using PCFG-I actually re-
sults in a drop in performance on this dataset. We
hypothesize that the authors in the Football dataset
may have very different syntactic writing styles
that are effectively captured by the basic PCFG
model. Smoothing the data apparently weakens
this signal, hence causing a drop in performance.
For Poetry, PCFG-I achieves much higher accu-
racy than the baselines. This is impressive given
the much looser syntactic structure of poetry com-
pared to news articles, and it indicates the value of
syntactic information for distinguishing between
literary authors.

Finally, we consider the specific contribution of
the PCFG-I model towards the performance of
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the PCFG-E ensemble. Based on comparing the
results for PCFG-E and MaxEnt+Bigram-I , we
find that there is a drop in performance for most
datasets when removing PCFG-I from the ensem-
ble. This drop is quite substantial for the Football
and Poetry datasets. This indicates that PCFG-I
is contributing substantially to the performance of
PCFG-E. Thus, it further illustrates the impor-
tance of broader syntactic information for the task
of authorship attribution.

4 Future Work and Conclusions

In this paper, we have presented our ongoing work
on authorship attribution, describing a novel ap-
proach that uses probabilistic context-free gram-
mars. We have demonstrated that both syntac-
tic and lexical information are useful in effec-
tively capturing authors’ overall writing style. To
this end, we have developed an ensemble ap-
proach that performs better than the baseline mod-
els on several datasets. An interesting extension
of our current approach is to consider discrimina-
tive training of PCFGs for each author. Finally,
we would like to compare the performance of our
method to other state-of-the-art approaches to au-
thorship prediction.
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Abstract

Supporting natural language input may
improve learning in intelligent tutoring
systems. However, interpretation errors
are unavoidable and require an effective
recovery policy. We describe an evaluation
of an error recovery policy in the BEE-
TLE II tutorial dialogue system and dis-
cuss how different types of interpretation
problems affect learning gain and user sat-
isfaction. In particular, the problems aris-
ing from student use of non-standard ter-
minology appear to have negative conse-
quences. We argue that existing strategies
for dealing with terminology problems are
insufficient and that improving such strate-
gies is important in future ITS research.

1 Introduction

There is a mounting body of evidence that student
self-explanation and contentful talk in human-
human tutorial dialogue are correlated with in-
creased learning gain (Chi et al., 1994; Purandare
and Litman, 2008; Litman et al., 2009). Thus,
computer tutors that understand student explana-
tions have the potential to improve student learn-
ing (Graesser et al., 1999; Jordan et al., 2006;
Aleven et al., 2001; Dzikovska et al., 2008). How-
ever, understanding and correctly assessing the
student’s contributions is a difficult problem due
to the wide range of variation observed in student
input, and especially due to students’ sometimes
vague and incorrect use of domain terminology.

Many tutorial dialogue systems limit the range
of student input by asking short-answer questions.
This provides a measure of robustness, and previ-
ous evaluations of ASR in spoken tutorial dialogue
systems indicate that neither word error rate nor
concept error rate in such systems affect learning
gain (Litman and Forbes-Riley, 2005; Pon-Barry

et al., 2004). However, limiting the range of pos-
sible input limits the contentful talk that the stu-
dents are expected to produce, and therefore may
limit the overall effectiveness of the system.

Most of the existing tutoring systems that accept
unrestricted language input use classifiers based
on statistical text similarity measures to match
student answers to open-ended questions with
pre-authored anticipated answers (Graesser et al.,
1999; Jordan et al., 2004; McCarthy et al., 2008).
While such systems are robust to unexpected ter-
minology, they provide only a very coarse-grained
assessment of student answers. Recent research
aims to develop methods that produce detailed
analyses of student input, including correct, in-
correct and missing parts (Nielsen et al., 2008;
Dzikovska et al., 2008), because the more detailed
assessments can help tailor tutoring to the needs of
individual students.

While the detailed assessments of answers to
open-ended questions are intended to improve po-
tential learning, they also increase the probabil-
ity of misunderstandings, which negatively impact
tutoring and therefore negatively impact student
learning (Jordan et al., 2009). Thus, appropri-
ate error recovery strategies are crucially impor-
tant for tutorial dialogue applications. We describe
an evaluation of an implemented tutorial dialogue
system which aims to accept unrestricted student
input and limit misunderstandings by rejecting low
confidence interpretations and employing a range
of error recovery strategies depending on the cause
of interpretation failure.

By comparing two different system policies, we
demonstrate that with less restricted language in-
put the rate of non-understanding errors impacts
both learning gain and user satisfaction, and that
problems arising from incorrect use of terminol-
ogy have a particularly negative impact. A more
detailed analysis of the results indicates that, even
though we based our policy on an approach ef-
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fective in task-oriented dialogue (Hockey et al.,
2003), many of our strategies were not success-
ful in improving learning gain. At the same time,
students appear to be aware that the system does
not fully understand them even if it accepts their
input without indicating that it is having interpre-
tation problems, and this is reflected in decreased
user satisfaction. We argue that this indicates that
we need better strategies for dealing with termi-
nology problems, and that accepting non-standard
terminology without explicitly addressing the dif-
ference in acceptable phrasing may not be suffi-
cient for effective tutoring.

In Section 2 we describe our tutoring system,
and the two tutoring policies implemented for the
experiment. In Section 3 we present experimen-
tal results and an analysis of correlations between
different types of interpretation problems, learning
gain and user satisfaction. Finally, in Section 4 we
discuss the implications of our results for error re-
covery policies in tutorial dialogue systems.

2 Tutorial Dialogue System and Error
Recovery Policies

This work is based on evaluation of BEETLE II
(Dzikovska et al., 2010), a tutorial dialogue sys-
tem which provides tutoring in basic electricity
and electronics. Students read pre-authored mate-
rials, experiment with a circuit simulator, and then
are asked to explain their observations. BEETLE II
uses a deep parser together with a domain-specific
diagnoser to process student input, and a deep gen-
erator to produce tutorial feedback automatically
depending on the current tutorial policy. It also
implements an error recovery policy to deal with
interpretation problems.

Students currently communicate with the sys-
tem via a typed chat interface. While typing
removes the uncertainty and errors involved in
speech recognition, expected student answers are
considerably more complex and varied than in
a typical spoken dialogue system. Therefore, a
significant number of interpretation errors arise,
primarily during the semantic interpretation pro-
cess. These errors can lead to non-understandings,
when the system cannot produce a syntactic parse
(or a reasonable fragmentary parse), or when it
does not know how to interpret an out-of-domain
word; and misunderstandings, where a system ar-
rives at an incorrect interpretation, due to either
an incorrect attachment in the parse, an incorrect

word sense assigned to an ambiguous word, or an
incorrectly resolved referential expression.

Our approach to selecting an error recovery pol-
icy is to prefer non-understandings to misunder-
standings. There is a known trade-off in spoken di-
alogue systems between allowing misunderstand-
ings, i.e., cases in which a system accepts and
acts on an incorrect interpretation of an utterance,
and non-understandings, i.e., cases in which a sys-
tem rejects an utterance as uninterpretable (Bo-
hus and Rudnicky, 2005). Since misunderstand-
ings on the part of a computer tutor are known
to negatively impact student learning, and since
in human-human tutorial dialogue the majority of
student responses using unexpected terminology
are classified as incorrect (Jordan et al., 2009),
it would be a reasonable approach for a tutorial
dialogue system to deal with potential interpreta-
tion problems by treating low-confidence interpre-
tations as non-understandings and focusing on an
effective non-understanding recovery policy.1

We implemented two different policies for com-
parison. Our baseline policy does not attempt any
remediation or error recovery. All student utter-
ances are passed through the standard interpreta-
tion pipeline, so that the results can be analyzed
later. However, the system does not attempt to ad-
dress the student content. Instead, regardless of
the answer analysis, the system always uses a neu-
tral acceptance and bottom out strategy, giving the
student the correct answer every time, e.g., “OK.
One way to phrase the correct answer is: the open
switch creates a gap in the circuit”. Thus, the stu-
dents are never given any indication of whether
they have been understood or not.

The full policy acts differently depending on the
analysis of the student answer. For correct an-
swers, it acknowledges the answer as correct and
optionally restates it (see (Dzikovska et al., 2008)
for details). For incorrect answers, it restates the
correct portion of the answer (if any) and provides
a hint to guide the student towards the completely
correct answer. If the student’s utterance cannot be
interpreted, the system responds with a help mes-
sage indicating the cause of the problem together
with a hint. In both cases, after 3 unsuccessful at-
tempts to address the problem the system uses the
bottom out strategy and gives away the answer.

1While there is no confidence score from a speech recog-
nizer, our system uses a combination of a parse quality score
assigned by the parser and a set of consistency checks to de-
termine whether an interpretation is sufficiently reliable.
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The content of the bottom out is the same as in
the baseline, except that the full system indicates
clearly that the answer was incorrect or was not
understood, e.g., “Not quite. Here is the answer:
the open switch creates a gap in the circuit”.

The help messages are based on the Targeted-
Help approach successfully used in spoken dia-
logue (Hockey et al., 2003), together with the error
classification we developed for tutorial dialogue
(Dzikovska et al., 2009). There are 9 different er-
ror types, each associated with a different targeted
help message. The goal of the help messages is to
give the student as much information as possible
as to why the system failed to understand them but
without giving away the answer.

In comparing the two policies, we would expect
that the students in both conditions would learn
something, but that the learning gain and user sat-
isfaction would be affected by the difference in
policies. We hypothesized that students who re-
ceive feedback on their errors in the full condition
would learn more compared to those in the base-
line condition.

3 Evaluation

We collected data from 76 subjects interacting
with the system. The subjects were randomly as-
signed to either the baseline (BASE) or the full
(FULL) policy condition. Each subject took a pre-
test, then worked through a lesson with the system,
and then took a post-test and filled in a user satis-
faction survey. Each session lasted approximately
4 hours, with 232 student language turns in FULL

(SD = 25.6) and 156 in BASE (SD = 2.02). Ad-
ditional time was taken by reading and interact-
ing with the simulation environment. The students
had little prior knowledge of the domain. The sur-
vey consisted of 63 questions on the 5-point Lik-
ert scale covering the lesson content, the graphical
user interface, and tutor’s understanding and feed-
back. For purposes of this study, we are using an
averaged tutor score.

The average learning gain was 0.57 (SD =
0.23) in FULL, and 0.63 (SD = 0.26) in BASE.
There was no significant difference in learning
gain between conditions. Students liked BASE bet-
ter: the average tutor evaluation score for FULL

was 2.56 out of 5 (SD = 0.65), compared to 3.32
(SD = 0.65) in BASE. These results are signif-
icantly different (t-test, p < 0.05). In informal
comments after the session many students said that

they were frustrated when the system said that it
did not understand them. However, some students
in BASE also mentioned that they sometimes were
not sure if the system’s answer was correcting a
problem with their answer, or simply phrasing it
in a different way.

We used mean frequency of non-interpretable
utterances (out of all student utterances in
each session) to evaluate the effectiveness of
the two different policies. On average, 14%
of utterances in both conditions resulted in
non-understandings.2 The frequency of non-
understandings was negatively correlated with
learning gain in FULL: r = −0.47, p < 0.005,
but not significantly correlated with learning gain
in BASE: r = −0.09, p = 0.59. However, in both
conditions the frequency of non-understandings
was negatively correlated with user satisfaction:
FULL r = −0.36, p = 0.03, BASE r = −0.4, p =
0.01. Thus, even though in BASE the system
did not indicate non-understanding, students were
negatively affected. That is, they were not satis-
fied with the policy that did not directly address
the interpretation problems. We discuss possible
reasons for this below.

We investigated the effect of different types of
interpretation errors using two criteria. First, we
checked whether the mean frequency of errors was
reduced between BASE and FULL for each individ-
ual strategy. The reduced frequency means that
the recovery strategy for this particular error type
is effective in reducing the error frequency. Sec-
ond, we looked for the cases where the frequency
of a given error type is negatively correlated with
either learning gain or user satisfaction. This is
provides evidence that such errors are negatively
impacting the learning process, and therefore im-
proving recovery strategies for those error types is
likely to improve overall system effectiveness,

The results, shown in Table 1, indicate that the
majority of interpretation problems are not sig-
nificantly correlated with learning gain. How-
ever, several types of problems appear to be
particularly significant, and are all related to
improper use of domain terminology. These
were irrelevant answer, no appr terms, selec-
tional restriction failure and program error.

An irrelevant answer error occurs when the stu-
dent makes a statement that uses domain termi-

2We do not know the percentage of misunderstandings or
concept error rate as yet. We are currently annotating the data
with the goal to evaluate interpretation correctness.
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full baseline

error type
mean freq.
(std. dev)

satisfac-
tion r

gain
r

mean freq
(std. dev)

satisfac-
tion r

gain
r

irrelevant answer 0.008 (0.01) -0.08 -0.19 0.012 (0.01) -0.07 -0.47**
no appr terms 0.005 (0.01) -0.57** -0.42** 0.003 (0.01) -0.38** -0.01
selectional restr failure 0.032 (0.02) -0.12 -0.55** 0.040 (0.03) 0.13 0.26*
program error 0.002 (0.003) 0.02 0.26 0.003 (0.003) 0 -0.35**
unknown word 0.023 (0.01) 0.05 -0.21 0.024 (0.02) -0.15 -0.09
disambiguation failure 0.013 (0.01) -0.04 0.02 0.007 (0.01) -0.18 0.19
no parse 0.019 (0.01) -0.14 -0.08 0.022(0.02) -0.3* 0.01
partial interpretation 0.004 (0.004) -0.11 -0.01 0.004 (0.005) -0.19 0.22
reference failure 0.012 (0.02) -0.31* -0.09 0.017 (0.01) -0.15 -0.23
Overall 0.134 (0.05) -0.36** -0.47** 0.139 (0.04) -0.4** -0.09

Table 1: Correlations between frequency of different error types and student learning gain and satisfac-
tion. ** - correlation is significant with p < 0.05, * - with p <= 0.1.

nology but does not appear to answer the system’s
question directly. For example, the expected an-
swer to “In circuit 1, which components are in a
closed path?” is “the bulb”. Some students mis-
read the question and say “Circuit 1 is closed.” If
that happens, in FULL the system says “Sorry, this
isn’t the form of answer that I expected. I am look-
ing for a component”, pointing out to the student
the kind of information it is looking for. The BASE

system for this error, and for all other errors dis-
cussed below, gives away the correct answer with-
out indicating that there was a problem with in-
terpreting the student’s utterance, e.g., “OK, the
correct answer is the bulb.”

The no appr terms error happens when the stu-
dent is using terminology inappropriate for the les-
son in general. Students are expected to learn to
explain everything in terms of connections and ter-
minal states. For example, the expected answer to
“What is voltage?” is “the difference in states be-
tween two terminals”. If instead the student says
“Voltage is electricity”, FULL responds with “I am
sorry, I am having trouble understanding. I see no
domain concepts in your answer. Here’s a hint:
your answer should mention a terminal.” The mo-
tivation behind this strategy is that in general, it is
very difficult to reason about vaguely used domain
terminology. We had hoped that by telling the stu-
dent that the content of their utterance is outside
the domain as understood by the system, and hint-
ing at the correct terms to use, the system would
guide students towards a better answer.

Selectional restr failure errors are typically due
to incorrect terminology, when the students
phrased answers in a way that contradicted the sys-

tem’s domain knowledge. For example, the sys-
tem can reason about damaged bulbs and batter-
ies, and open and closed paths. So if the stu-
dent says “The path is damaged”, the FULL sys-
tem would respond with “I am sorry, I am having
trouble understanding. Paths cannot be damaged.
Only bulbs and batteries can be damaged.”

Program error were caused by faults in the un-
derlying network software, but usually occurred
when the student was using extremely long and
complicated utterances.

Out of the four important error types described
above, only the strategy for irrelevant answer was
effective: the frequency of irrelevant answer er-
rors is significantly higher in BASE (t-test, p <
0.05), and it is negatively correlated with learning
gain in BASE. The frequencies of other error types
did not significantly differ between conditions.

However, one other finding is particularly in-
teresting: the frequency of no appr terms errors
is negatively correlated with user satisfaction in
BASE. This indicates that simply accepting the stu-
dent’s answer when they are using incorrect termi-
nology and exposing them to the correct answer is
not the best strategy, possibly because the students
are noticing the unexplained lack of alignment be-
tween their utterance and the system’s answer.

4 Discussion and Future Work

As discussed in Section 1, previous studies of
short-answer tutorial dialogue systems produced a
counter-intuitive result: measures of interpretation
accuracy were not correlated with learning gain.
With less restricted language, misunderstandings
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negatively affected learning. Our study provides
further evidence that interpretation quality signif-
icantly affects learning gain in tutorial dialogue.
Moreover, while it has long been known that user
satisfaction is negatively correlated with interpre-
tation error rates in spoken dialogue, this is the
first attempt to evaluate the impact of different
types of interpretation errors on task success and
usability of a tutoring system.

Our results demonstrate that different types of
errors may matter to a different degree. In our
system, all of the error types negatively correlated
with learning gain stem from the same underlying
problem: the use of incorrect or vague terminol-
ogy by the student. With the exception of the ir-
relevant answer strategy, the targeted help strate-
gies we implemented were not effective in reduc-
ing error frequency or improving learning gain.
Additional research is needed to understand why.
One possibility is that irrelevant answer was eas-
ier to remediate compared to other error types. It
usually happened in situations where there was a
clear expectation of the answer type (e.g., a list of
component names, a yes/no answer). Therefore,
it was easier to design an effective prompt. Help
messages for other error types were more frequent
when the expected answer was a complex sen-
tence, and multiple possible ways of phrasing the
correct answer were acceptable. Therefore, it was
more difficult to formulate a prompt that would
clearly describe the problem in all contexts.

One way to improve the help messages may be
to have the system indicate more clearly when user
terminology is a problem. Our system apologized
each time there was a non-understanding, leading
students to believe that they may be answering cor-
rectly but the answer is not being understood. A
different approach would be to say something like
“I am sorry, you are not using the correct termi-
nology in your answer. Here’s a hint: your answer
should mention a terminal”. Together with an ap-
propriate mechanism to detect paraphrases of cor-
rect answers (as opposed to vague answers whose
correctness is difficult to determine), this approach
could be more beneficial in helping students learn.
We are considering implementing and evaluating
this as part of our future work.

Some of the errors, in particular instances of
no appr terms and selectional restr failure, also
stemmed from unrecognized paraphrases with
non-standard terminology. Those answers could

conceivably be accepted by a system using seman-
tic similarity as a metric (e.g., using LSA with pre-
authored answers). However, our results also indi-
cate that simply accepting the incorrect terminol-
ogy may not be the best strategy. Users appear to
be sensitive when the system’s language does not
align with their terminology, as reflected in the de-
creased satisfaction ratings associated with higher
rates of incorrect terminology problems in BASE.
Moreover, prior analysis of human-human data
indicates that tutors use different restate strate-
gies depending on the “quality” of the student an-
swers, even if they are accepting them as correct
(Dzikovska et al., 2008). Together, these point at
an important unaddressed issue: existing systems
are often built on the assumption that only incor-
rect and missing parts of the student answer should
be remediated, and a wide range of terminology
should be accepted (Graesser et al., 1999; Jordan
et al., 2006). While it is obviously important for
the system to accept a range of different phrasings,
our analysis indicates that this may not be suffi-
cient by itself, and students could potentially ben-
efit from addressing the terminology issues with a
specifically devised strategy.

Finally, it could also be possible that some
differences between strategy effectiveness were
caused by incorrect error type classification. Man-
ual examination of several dialogues suggests that
most of the errors are assigned to the appropri-
ate type, though in some cases incorrect syntac-
tic parses resulted in unexpected interpretation er-
rors, causing the system to give a confusing help
message. These misclassifications appear to be
evenly split between different error types, though
a more formal evaluation is planned in the fu-
ture. However from our initial examination, we
believe that the differences in strategy effective-
ness that we observed are due to the actual differ-
ences in the help messages. Therefore, designing
better prompts would be the key factor in improv-
ing learning and user satisfaction.
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Fábio Paraguaçu, editors, Intelligent Tutoring Sys-
tems, volume 3220 of Lecture Notes in Computer
Science, pages 346–357. Springer.

Pamela Jordan, Maxim Makatchev, Umarani Pap-
puswamy, Kurt VanLehn, and Patricia Albacete.
2006. A natural language tutorial dialogue system
for physics. In Proceedings of the 19th International
FLAIRS conference.

Pamela Jordan, Diane Litman, Michael Lipschultz, and
Joanna Drummond. 2009. Evidence of misunder-
standings in tutorial dialogue and their impact on
learning. In Proceedings of the 14th International
Conference on Artificial Intelligence in Education
(AIED), Brighton, UK, July.

Diane Litman and Kate Forbes-Riley. 2005. Speech
recognition performance and learning in spoken di-
alogue tutoring. In Proceedings of EUROSPEECH-
2005, page 1427.

Diane Litman, Johanna Moore, Myroslava Dzikovska,
and Elaine Farrow. 2009. Generalizing tutorial dia-
logue results. In Proceedings of 14th International
Conference on Artificial Intelligence in Education
(AIED), Brighton, UK, July.

Philip M. McCarthy, Vasile Rus, Scott Crossley,
Arthur C. Graesser, and Danielle S. McNamara.
2008. Assessing forward-, reverse-, and average-
entailment indeces on natural language input from
the intelligent tutoring system, iSTART. In Proceed-
ings of the 21st International FLAIRS conference,
pages 165–170.

Rodney D. Nielsen, Wayne Ward, and James H. Mar-
tin. 2008. Learning to assess low-level conceptual
understanding. In Proceedings 21st International
FLAIRS Conference, Coconut Grove, Florida, May.

Heather Pon-Barry, Brady Clark, Elizabeth Owen
Bratt, Karl Schultz, and Stanley Peters. 2004. Eval-
uating the effectiveness of SCoT: A spoken conver-
sational tutor. In J. Mostow and P. Tedesco, editors,
Proceedings of the ITS 2004 Workshop on Dialog-
based Intelligent Tutoring Systems, pages 23–32.

Amruta Purandare and Diane Litman. 2008. Content-
learning correlations in spoken tutoring dialogs at
word, turn and discourse levels. In Proceedings 21st
International FLAIRS Conference, Coconut Grove,
Florida, May.

48



Proceedings of the ACL 2010 Conference Short Papers, pages 49–54,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

The Prevalence of Descriptive Referring Expressions
in News and Narrative

Raquel Hervás
Departamento de Ingenieria

del Software e Inteligencı́a Artificial
Universidad Complutense de Madrid

Madrid, 28040 Spain
raquelhb@fdi.ucm.es

Mark Alan Finlayson
Computer Science and

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, 02139 USA
markaf@mit.edu

Abstract

Generating referring expressions is a key
step in Natural Language Generation. Re-
searchers have focused almost exclusively
on generatingdistinctivereferring expres-
sions, that is, referring expressions that
uniquely identify their intended referent.
While undoubtedly one of their most im-
portant functions, referring expressions
can be more than distinctive. In particular,
descriptivereferring expressions – those
that provide additional information not re-
quired for distinction – are critical to flu-
ent, efficient, well-written text. We present
a corpus analysis in which approximately
one-fifth of 7,207 referring expressions in
24,422 words of news and narrative are de-
scriptive. These data show that if we are
ever to fully master natural language gen-
eration, especially for the genres of news
and narrative, researchers will need to de-
vote more attention to understanding how
to generate descriptive, and not just dis-
tinctive, referring expressions.

1 A Distinctive Focus

Generating referring expressions is a key step in
Natural Language Generation (NLG). From early
treatments in seminal papers by Appelt (1985)
and Reiter and Dale (1992) to the recent set
of Referring Expression Generation (REG) Chal-
lenges (Gatt et al., 2009) through different corpora
available for the community (Eugenio et al., 1998;
van Deemter et al., 2006; Viethen and Dale, 2008),
generating referring expressions has become one
of the most studied areas of NLG.

Researchers studying this area have, almost
without exception, focused exclusively on how
to generatedistinctivereferring expressions, that
is, referring expressions that unambiguously iden-

tify their intended referent. Referring expres-
sions, however, may be more than distinctive. It
is widely acknowledged that they can be used to
achieve multiple goals, above and beyond distinc-
tion. Here we focus ondescriptivereferring ex-
pressions, that is, referring expressions that are not
only distinctive, but provide additional informa-
tion not required for identifying their intended ref-
erent. Consider the following text, in which some
of the referring expressions have been underlined:

Once upon a time there wasa man, who had
three daughters. They lived ina house and
their dresses were made offabric.

While a bit strange, the text is perfectly well-
formed. All the referring expressions are distinc-
tive, in that we can properly identify the referents
of each expression. But the real text, the opening
lines to the folktaleThe Beauty and the Beast, is
actually much more lyrical:

Once upon a time there wasa rich merchant,
who had three daughters. They lived ina
very finehouse and theirgownswere made
of the richestfabric sewn with jewels.

All the boldfaced portions – namely, the choice
of head nouns, the addition of adjectives, the use
of appositive phrases – serve to perform a descrip-
tive function, and, importantly, are all unneces-
sary for distinction! In all of these cases, the au-
thor is using the referring expressions as a vehi-
cle for communicating information about the ref-
erents. This descriptive information is sometimes
new, sometimes necessary for understanding the
text, and sometimes just for added flavor. But
when the expression isdescriptive, as opposed to
distinctive, this additional information is not re-
quired for identifying the referent of the expres-
sion, and it is these sorts of referring expressions
that we will be concerned with here.
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Although these sorts of referring expression
have been mostly ignored by researchers in this
area1, we show in this corpus study that descrip-
tive expressions are in fact quite prevalent: nearly
one-fifth of referring expressions in news and nar-
rative are descriptive. In particular, our data,
the trained judgments of native English speakers,
show that 18% of all distinctive referring expres-
sions in news and 17% of those in narrative folk-
tales are descriptive. With this as motivation, we
argue that descriptive referring expressions must
be studied more carefully, especially as the field
progresses from referring in a physical, immedi-
ate context (like that in the REG Challenges) to
generating more literary forms of text.

2 Corpus Annotation

This is a corpus study; our procedure was there-
fore to define our annotation guidelines (Sec-
tion 2.1), select texts to annotate (2.2), create an
annotation tool for our annotators (2.3), and, fi-
nally, train annotators, have them annotate refer-
ring expressions’ constituents and function, and
then adjudicate the double-annotated texts into a
gold standard (2.4).

2.1 Definitions

We wrote an annotation guide explaining the dif-
ference between distinctive and descriptive refer-
ring expressions. We used the guide when train-
ing annotators, and it was available to them while
annotating. With limited space here we can only
give an outline of what is contained in the guide;
for full details see (Finlayson and Hervás, 2010a).

Referring Expressions We defined referring
expressions as referential noun phrases and their
coreferential expressions, e.g., “John kissedMary.
She blushed.”. This included referring expressions
to generics (e.g., “Lions are fierce”), dates, times,
and numbers, as well as events if they were re-
ferred to using a noun phrase. We included in each
referring expression all the determiners, quan-
tifiers, adjectives, appositives, and prepositional
phrases that syntactically attached to that expres-
sion. When referring expressions were nested, all
the nested referring expressions were also marked
separately.

Nuclei vs. Modifiers In the only previous cor-
pus study of descriptive referring expressions, on

1With the exception of a small amount of work, discussed
in Section 4.

museum labels, Cheng et al. (2001) noted that de-
scriptive information is often integrated into refer-
ring expressions using modifiers to the head noun.
To study this, and to allow our results to be more
closely compared with Cheng’s, we had our an-
notators split referring expressions into their con-
stituents, portions called eithernucleior modifiers.
The nuclei were the portions of the referring ex-
pression that performed the ‘core’ referring func-
tion; the modifiers were those portions that could
be varied, syntactically speaking, independently of
the nuclei. Annotators then assigned a distinctive
or descriptive function to each constituent, rather
than the referring expression as a whole.

Normally, the nuclei corresponded to the head
of the noun phrase. In (1), the nucleus is the token
king, which we have here surrounded with square
brackets. The modifiers, surrounded by parenthe-
ses, areTheandold.

(1) (The)(old) [king] was wise.

Phrasal modifiers were marked as single modi-
fiers, for example, in (2).

(2) (The)[roof] (of the house) collapsed.

It is significant that we had our annotators mark
and tag the nuclei of referring expressions. Cheng
and colleagues only mentioned the possibility that
additional information could be introduced in the
modifiers. However, O’Donnell et al. (1998) ob-
served that often the choice of head noun can also
influence the function of a referring expression.
Consider (3), in which the wordvillain is used to
refer to the King.

The King assumed the throne today.(3)

I don’t trust (that) [villain] one bit.

The speaker could have merely usedhim to re-
fer to the King–the choice of that particular head
nounvillain gives us additional information about
the disposition of the speaker. Thusvillain is de-
scriptive.

Function: Distinctive vs. Descriptive As al-
ready noted, instead of tagging the whole re-
ferring expression, annotators tagged each con-
stituent (nuclei and modifiers) as distinctive or de-
scriptive.

The two main tests for determining descriptive-
ness were (a) if presence of the constituent was
unnecessary for identifying the referent, or (b) if
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the constituent was expressed using unusual or os-
tentatious word choice. If either was true, the con-
stituent was considered descriptive; otherwise, it
was tagged as distinctive. In cases where the con-
stituent was completely irrelevant to identifying
the referent, it was tagged as descriptive. For ex-
ample, in the folktaleThe Princess and the Pea,
from which (1) was extracted, there is only one
king in the entire story. Thus, in that story,the
king is sufficient for identification, and therefore
the modifierold is descriptive. This points out the
importance of context in determining distinctive-
ness or descriptiveness; if there had been a room-
ful of kings, the tags on those modifiers would
have been reversed.

There is some question as to whether copular
predicates, such asthe plumberin (4), are actually
referring expressions.

(4) John istheplumber

Our annotators marked and tagged these construc-
tions as normal referring expressions, but they
added an additional flag to identify them as cop-
ular predicates. We then excluded these construc-
tions from our final analysis. Note that copular
predicates were treated differently from apposi-
tives: in appositives the predicate was included in
the referring expression, and in most cases (again,
depending on context) was marked descriptive
(e.g.,John,theplumber, slept.).

2.2 Text Selection

Our corpus comprised 62 texts, all originally writ-
ten in English, from two different genres, news
and folktales. We began with 30 folktales of dif-
ferent sizes, totaling 12,050 words. These texts
were used in a previous work on the influence of
dialogues on anaphora resolution algorithms (Ag-
garwal et al., 2009); they were assembled with an
eye toward including different styles, different au-
thors, and different time periods. Following this,
we matched, approximately, the number of words
in the folktales by selecting 32 texts from Wall
Street Journal section of the Penn Treebank (Mar-
cus et al., 1993). These texts were selected at ran-
dom from the first 200 texts in the corpus.

2.3 The Story Workbench

We used the Story Workbench application (Fin-
layson, 2008) to actually perform the annotation.
The Story Workbench is a semantic annotation

program that, among other things, includes the
ability to annotate referring expressions and coref-
erential relationships. We added the ability to an-
notate nuclei, modifiers, and their functions by
writing a workbench “plugin” in Java that could
be installed in the application.

The Story Workbench is not yet available to the
public at large, being in a limited distribution beta
testing phase. The developers plan to release it as
free software within the next year. At that time,
we also plan to release our plugin as free, down-
loadable software.

2.4 Annotation & Adjudication

The main task of the study was the annotation of
the constituents of each referring expression, as
well as the function (distinctive or descriptive) of
each constituent. The system generated a first pass
of constituent analysis, but did not mark functions.
We hired two native English annotators, neither of
whom had any linguistics background, who cor-
rected these automatically-generated constituent
analyses, and tagged each constituent as descrip-
tive or distinctive. Every text was annotated by
both annotators. Adjudication of the differences
was conducted by discussion between the two an-
notators; the second author moderated these dis-
cussions and settled irreconcilable disagreements.
We followed a “train-as-you-go” paradigm, where
there was no distinct training period, but rather
adjudication proceeded in step with annotation,
and annotators received feedback during those ses-
sions.

We calculated two measures of inter-annotator
agreement: a kappa statistic and an f-measure,
shown in Table 1. All of our f-measures indicated
that annotators agreed almost perfectly on the lo-
cation of referring expressions and their break-
down into constituents. These agreement calcu-
lations were performed on the annotators’ original
corrected texts.

All the kappa statistics were calculated for two
tags (nuclei vs. modifier for the constituents, and
distinctive vs. descriptive for the functions) over
both each token assigned to a nucleus or modifier
and each referring expression pair. Our kappas in-
dicate moderate to good agreement, especially for
the folktales. These results are expected because
of the inherent subjectivity of language. During
the adjudication sessions it became clear that dif-
ferent people do not consider the same information
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as obvious or descriptive for the same concepts,
and even the contexts deduced by each annotators
from the texts were sometimes substantially dif-
ferent.

Tales Articles Total
Ref. Exp. (F1) 1.00 0.99 0.99
Constituents (F1) 0.99 0.98 0.98
Nuc./Mod. (κ) 0.97 0.95 0.96
Const. Func. (κ) 0.61 0.48 0.54
Ref. Exp. Func. (κ) 0.65 0.54 0.59

Table 1: Inter-annotator agreement measures

3 Results

Table 2 lists the primary results of the study. We
considered a referring expression descriptive if
any of its constituents were descriptive. Thus,
18% of the referring expressions in the corpus
added additional information beyond what was re-
quired to unambiguously identify their referent.
The results were similar in both genres.

Tales Articles Total
Texts 30 32 62
Words 12,050 12,372 24,422
Sentences 904 571 1,475
Ref. Exp. 3,681 3,526 7,207
Dist. Ref. Exp. 3,057 2,830 5,887
Desc. Ref. Exp. 609 672 1,281
% Dist. Ref. 83% 81% 82%
% Desc. Ref. 17% 19% 18%

Table 2: Primary results.

Table 3 contains the percentages of descriptive
and distinctive tags broken down by constituent.
Like Cheng’s results, our analysis shows that de-
scriptive referring expressions make up a signif-
icant fraction of all referring expressions. Al-
though Cheng did not examine nuclei, our results
show that the use of descriptive nuclei is small but
not negligible.

4 Relation to the Field

Researchers working on generating referring ex-
pressions typically acknowledge that referring ex-
pressions can perform functions other than distinc-
tion. Despite this widespread acknowledgment,
researchers have, for the most part, explicitly ig-
nored these functions. Exceptions to this trend

Tales Articles Total
Nuclei 3,666 3,502 7,168
Max. Nuc/Ref 1 1 1
Dist. Nuc. 95% 97% 96%
Desc. Nuc. 5% 3% 4%
Modifiers 2,277 3,627 5,904
Avg. Mod/Ref 0.6 1.0 0.8
Max. Mod/Ref 4 6 6
Dist. Mod. 78% 81% 80%
Desc. Mod. 22% 19% 20%

Table 3: Breakdown of Constituent Tags

are three. First is the general study ofaggregation
in the process of referring expression generation.
Second and third are corpus studies by Cheng et al.
(2001) and Jordan (2000a) that bear on the preva-
lence of descriptive referring expressions.

The NLG subtask of aggregation can be used
to imbue referring expressions with a descriptive
function (Reiter and Dale, 2000,§5.3). There is a
specific kind of aggregation calledembeddingthat
moves information from one clause to another in-
side the structure of a separate noun phrase. This
type of aggregation can be used to transform two
sentences such as“The princess lived in a castle.
She was pretty”into “The pretty princess lived in
a castle”. The adjectivepretty, previously a cop-
ular predicate, becomes a descriptive modifier of
the reference to the princess, making the second
text more natural and fluent. This kind of ag-
gregation is widely used by humans for making
the discourse more compact and efficient. In or-
der to create NLG systems with this ability, we
must take into account the caveat, noted by Cheng
(1998), that any non-distinctive information in a
referring expression must not lead to confusion
about the distinctive function of the referring ex-
pression. This is by no means a trivial problem
– this sort of aggregation interferes with refer-
ring and coherence planning at both a local and
global level (Cheng and Mellish, 2000; Cheng et
al., 2001). It is clear, from the current state of the
art of NLG, that we have not yet obtained a deep
enough understanding of aggregation to enable us
to handle these interactions. More research on the
topic is needed.

Two previous corpus studies have looked at
the use of descriptive referring expressions. The
first showed explicitly that people craft descrip-
tive referring expressions to accomplish different
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goals. Jordan and colleagues (Jordan, 2000b; Jor-
dan, 2000a) examined the use of referring expres-
sions using the COCONUT corpus (Eugenio et
al., 1998). They tested how domain and discourse
goals can influence the content of non-pronominal
referring expressions in a dialogue context, check-
ing whether or not a subject’s goals led them to in-
clude non-referring information in a referring ex-
pression. Their results are intriguing because they
point toward heretofore unexamined constraints,
utilities and expectations (possibly genre- or style-
dependent) that may underlie the use of descriptive
information to perform different functions, and are
not yet captured by aggregation modules in partic-
ular or NLG systems in general.

In the other corpus study, which partially in-
spired this work, Cheng and colleagues analyzed
a set of museum descriptions, the GNOME cor-
pus (Poesio, 2004), for the pragmatic functions of
referring expressions. They had three functions
in their study, in contrast to our two. Their first
function (marked by theiruniq tag) was equiv-
alent to our distinctive function. The other two
were specializations of our descriptive tag, where
they differentiated between additional information
that helped to understand the text (int), or ad-
ditional information not necessary for understand-
ing (attr). Despite their annotators seeming to
have trouble distinguishing between the latter two
tags, they did achieve good overall inter-annotator
agreement. They identified 1,863 modifiers to
referring expressions in their corpus, of which
47.3% fulfilled a descriptive (attr or int) func-
tion. This is supportive of our main assertion,
namely, that descriptive referring expressions, not
only crucial for efficient and fluent text, are ac-
tually a significant phenomenon. It is interest-
ing, though, that Cheng’s fraction of descriptive
referring expression was so much higher than ours
(47.3% versus our 18%). We attribute this sub-
stantial difference to genre, in that Cheng stud-
ied museum labels, in which the writer is space-
constrained, having to pack a lot of information
into a small label. The issue bears further study,
and perhaps will lead to insights into differences
in writing style that may be attributed to author or
genre.

5 Contributions

We make two contributions in this paper.
First, we assembled, double-annotated, and ad-

judicated into a gold-standard a corpus of 24,422
words. We marked all referring expressions,
coreferential relations, and referring expression
constituents, and tagged each constituent as hav-
ing a descriptive or distinctive function. We wrote
an annotation guide and created software that al-
lows the annotation of this information in free text.
The corpus and the guide are available on-line in a
permanent digital archive (Finlayson and Hervás,
2010a; Finlayson and Hervás, 2010b). The soft-
ware will also be released in the same archive
when the Story Workbench annotation application
is released to the public. This corpus will be useful
for the automatic generation and analysis of both
descriptive and distinctive referring expressions.
Any kind of system intended to generate text as
humans do must take into account that identifica-
tion is not the only function of referring expres-
sions. Many analysis applications would benefit
from the automatic recognition of descriptive re-
ferring expressions.

Second, we demonstrated that descriptive refer-
ring expressions comprise a substantial fraction
(18%) of the referring expressions in news and
narrative. Along with museum descriptions, stud-
ied by Cheng, it seems that news and narrative are
genres where authors naturally use a large num-
ber of descriptive referring expressions. Given that
so little work has been done on descriptive refer-
ring expressions, this indicates that the field would
be well served by focusing more attention on this
phenomenon.
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Abstract

Current Referring Expression Generation
algorithms rely on domain dependent pref-
erences for both content selection and lin-
guistic realization. We present two exper-
iments showing that human speakers may
opt for dispreferred properties and dispre-
ferred modifier orderings when these were
salient in a preceding interaction (without
speakers being consciously aware of this).
We discuss the impact of these findings for
current generation algorithms.

1 Introduction

The generation of referring expressions is a core
ingredient of most Natural Language Generation
(NLG) systems (Reiter and Dale, 2000; Mellish et
al., 2006). These systems usually approach Refer-
ring Expression Generation (REG) as a two-step
procedure, where first it is decided which prop-
erties to include (content selection), after which
the selected properties are turned into a natural
language referring expression (linguistic realiza-
tion). The basic problem in both stages is one of
choice; there are many ways in which one could
refer to a target object and there are multiple ways
in which these could be realized in natural lan-
guage. Typically, these choice problems are tack-
led by giving preference to some solutions over
others. For example, the Incremental Algorithm
(Dale and Reiter, 1995), one of the most widely
used REG algorithms, assumes that certain at-
tributes are preferred over others, partly based on
evidence provided by Pechmann (1989); a chair
would first be described in terms of its color, and
only if this does not result in a unique charac-
terization, other, less preferred attributes such as
orientation are tried. The Incremental Algorithm
is arguably unique in assuming a complete pref-
erence order of attributes, but other REG algo-

rithms rely on similar distinctions. The Graph-
based algorithm (Krahmer et al., 2003), for ex-
ample, searches for the cheapest description for
a target, and distinguishes cheap attributes (such
as color) from more expensive ones (orientation).
Realization of referring expressions has received
less attention, yet recent studies on the ordering of
modifiers (Shaw and Hatzivassiloglou, 1999; Mal-
ouf, 2000; Mitchell, 2009) also work from the as-
sumption that some orderings (large red) are pre-
ferred over others (red large).

We argue that such preferences are less stable
when referring expressions are generated in inter-
active settings, as would be required for applica-
tions such as spoken dialogue systems or interac-
tive virtual characters. In these cases, we hypothe-
size that, besides domain preferences, also the re-
ferring expressions that were produced earlier in
the interaction are important. It has been shown
that if one dialogue participant refers to a couch as
a sofa, the next speaker is more likely to use the
word sofa as well (Branigan et al., in press). This
kind of micro-planning or “lexical entrainment”
(Brennan and Clark, 1996) can be seen as a spe-
cific form of “alignment” (Pickering and Garrod,
2004) between speaker and addressee. Pickering
and Garrod argue that alignment may take place
on all levels of interaction, and indeed it has been
shown that participants also align their intonation
patterns and syntactic structures. However, as far
as we know, experimental evidence for alignment
on the level of content planning has never been
given, and neither have alignment effects in modi-
fier orderings during realization been shown. With
a few notable exceptions, such as Buschmeier et
al. (2009) who study alignment in micro-planning,
and Janarthanam and Lemon (2009) who study
alignment in expertise levels, alignment has re-
ceived little attention in NLG so far.

This paper is organized as follows. Experi-
ment I studies the trade-off between adaptation
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and preferences during content selection while Ex-
periment II looks at this trade-off for modifier
orderings during realization. Both studies use a
novel interactive reference production paradigm,
applied to two domains – the Furniture and People
domains of the TUNA data-set (Gatt et al., 2007;
Koolen et al., 2009) – to see whether adaptation
may be domain dependent. Finally, we contrast
our findings with the performance of state-of-the-
art REG algorithms, discussing how they could be
adapted so as to account for the new data, effec-
tively adding plasticity to the generation process.

2 Experiment I

Experiment I studies what speakers do when re-
ferring to a target that can be distinguished in a
preferred (the blue fan) or a dispreferred way (the
left-facing fan), when in the prior context either
the first or the second variant was made salient.

Method

Participants 26 students (2 male, mean age = 20
years, 11 months), all native speakers of Dutch
without hearing or speech problems, participated
for course credits.
Materials Target pictures were taken from the
TUNA corpus (Gatt et al., 2007) that has been
extensively used for REG evaluation. This cor-
pus consists of two domains: one containing pic-
tures of people (famous mathematicians), the other
containing furniture items in different colors de-
picted from different orientations. From previous
studies (Gatt et al., 2007; Koolen et al., 2009) it
is known that participants show a preference for
certain attributes: color in the Furniture domain
and glasses in the People domain, and disprefer
other attributes (orientation of a furniture piece
and wearing a tie, respectively).
Procedure Trials consisted of four turns in an in-
teractive reference understanding and production
experiment: a prime, two fillers and the experi-
mental description (see Figure 1). First, partici-
pants listened to a pre-recorded female voice re-
ferring to one of three objects and had to indi-
cate which one was being referenced. In this sub-
task, references either used a preferred or a dis-
preferred attribute; both were distinguishing. Sec-
ond, participants themselves described a filler pic-
ture, after which, third, they had to indicate which
filler picture was being described. The two filler
turns always concerned stimuli from the alterna-

Figure 1: The 4 tasks per trial. A furniture trial is
shown; people trials have an identical structure.

tive domain and were intended to prevent a too
direct connection between the prime and the tar-
get. Fourth, participants described the target ob-
ject, which could always be distinguished from its
distractors in a preferred (The blue fan) or a dis-
preferred (The left facing fan) way. Note that at-
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Figure 2: Proportions of preferred and dispre-
ferred attributes in the Furniture domain.

tributes are primed, not values; a participant may
have heard front facing in the prime turn, while
the target has a different value for this attribute (cf.
Fig. 1).

For the two domains, there were 20 preferred
and 20 dispreferred trials, giving rise to 2 x (20 +
20) = 80 critical trials. These were presented in
counter-balanced blocks, and within blocks each
participant received a different random order. In
addition, there were 80 filler trials (each following
the same structure as outlined in Figure 1). During
debriefing, none of the participants indicated they
had been aware of the experiment’s purpose.

Results

We use the proportion of attribute alignment as
our dependent measure. Alignment occurs when
a participant uses the same attribute in the target
as occurred in the prime. This includes overspeci-
fied descriptions (Engelhardt et al., 2006; Arnold,
2008), where both the preferred and dispreferred
attributes were mentioned by participants. Over-
specification occurred in 13% of the critical trials
(and these were evenly distributed over the exper-
imental conditions).

The use of the preferred and dispreferred at-
tribute as a function of prime and domain is shown
in Figure 2 and Figure 3. In both domains, the
preferred attribute is used much more frequently
than the dispreferred attribute with the preferred
primes, which serves as a manipulation check. As
a test of our hypothesis that adaptation processes
play an important role in attribute selection for
referring expressions, we need to look at partic-
ipants’ expressions with the dispreferred primes
(with the preferred primes, effects of adaptation
and of preferences cannot be teased apart). Cur-
rent REG algorithms such as the Incremental Al-
gorithm and the Graph-based algorithm predict
that participants will always opt for the preferred

Figure 3: Proportions of preferred and dispre-
ferred attributes in the People domain.

attribute, and hence will not use the dispreferred
attribute. This is not what we observe: our par-
ticipants used the dispreferred attribute at a rate
significantly larger than zero when they had been
exposed to it three turns earlier (tfurniture [25] =
6.64, p < 0.01; tpeople [25] = 4.78 p < 0.01). Ad-
ditionally, they used the dispreferred attribute sig-
nificantly more when they had previously heard
the dispreferred attribute rather than the preferred
attribute. This difference is especially marked
and significant in the Furniture domain (tfurniture

[25] = 2.63, p < 0.01, tpeople [25] = 0.98, p <
0.34), where participants opt for the dispreferred
attribute in 54% of the trials, more frequently than
they do for the preferred attribute (Fig. 2).

3 Experiment II

Experiment II uses the same paradigm used for
Experiment I to study whether speaker’s prefer-
ences for modifier orderings can be changed by
exposing them to dispreferred orderings.

Method
Participants 28 Students (ten males, mean age =
23 years and two months) participated for course
credits. All were native speakers of Dutch, without
hearing and speech problems. None participated
in Experiment I.
Materials The materials were identical to those
used in Experiment I, except for their arrangement
in the critical trials. In these trials, the participants
could only identify the target picture using two at-
tributes. In the Furniture domain these were color
and size, in the People domain these were having a
beard and wearing glasses. In the prime turn (Task
I, Fig. 1), these attributes were realized in a pre-
ferred way (“size first”: e.g., the big red sofa, or
“glasses first”: the bespectacled and bearded man)
or in a dispreferred way (“color first”: the red big
sofa or “beard first” the bespectacled and bearded
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Figure 4: Proportions of preferred and dispre-
ferred modifier orderings in the Furniture domain.

man). Google counts for the original Dutch mod-
ifier orderings reveal that the ratio of preferred to
dispreferred is in the order of 40:1 in the Furniture
domain and 3:1 in the People domain.
Procedure As above.

Results

We use the proportion of modifier ordering align-
ments as our dependent measure, where alignment
occurs when the participant’s ordering coincides
with the primed ordering. Figure 4 and 5 show the
use of the preferred and dispreferred modifier or-
dering per prime and domain. It can be seen that
in the preferred prime conditions, participants pro-
duce the expected orderings, more or less in accor-
dance with the Google counts.

State-of-the-art realizers would always opt for
the most frequent ordering of a given pair of mod-
ifiers and hence would never predict the dispre-
ferred orderings to occur. Still, the use of the dis-
preferred modifier ordering occurred significantly
more often than one would expect given this pre-
diction, tfurniture [27] = 6.56, p < 0.01 and tpeople

[27] = 9.55, p < 0.01. To test our hypotheses con-
cerning adaptation, we looked at the dispreferred
realizations when speakers were exposed to dis-
preferred primes (compared to preferred primes).
In both domains this resulted in an increase of the
anount of dispreferred realizations, which was sig-
nificant in the People domain (tpeople [27] = 1.99,
p < 0.05, tfurniture [25] = 2.63, p < 0.01).

4 Discussion

Current state-of-the-art REG algorithms often rest
upon the assumption that some attributes and some
realizations are preferred over others. The two ex-
periments described in this paper show that this
assumption is incorrect, when references are pro-
duced in an interactive setting. In both experi-
ments, speakers were more likely to select a dis-

Figure 5: Proportions of preferred and dispre-
ferred modifier orderings in the People domain.

preferred attribute or produce a dispreferred mod-
ifier ordering when they had previously been ex-
posed to these attributes or orderings, without be-
ing aware of this. These findings fit in well with
the adaptation and alignment models proposed by
psycholinguists, but ours, as far as we know, is
the first experimental evidence of alignment in at-
tribute selection and in modifier ordering. Inter-
estingly, we found that effect sizes differ for the
different domains, indicating that the trade-off be-
tween preferences and adaptions is a gradual one,
also influenced by the a priori differences in pref-
erence (it is more difficult to make people say
something truly dispreferred than something more
marginally dispreferred).

To account for these findings, GRE algorithms
that function in an interactive setting should be
made sensitive to the production of dialogue part-
ners. For the Incremental Algorithm (Dale and Re-
iter, 1995), this could be achieved by augmenting
the list of preferred attributes with a list of “previ-
ously mentioned” attributes. The relative weight-
ing of these two lists will be corpus dependent,
and can be estimated in a data-driven way. Alter-
natively, in the Graph-based algorithm (Krahmer
et al., 2003), costs of properties could be based
on two components: a relatively fixed domain
component (preferred is cheaper) and a flexible
interactive component (recently used is cheaper).
Which approach would work best is an open, em-
pirical question, but either way this would consti-
tute an important step towards interactive REG.
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Abstract

We pose the development of cognitively
plausible models of human language pro-
cessing as a challenge for computational
linguistics. Existing models can only deal
with isolated phenomena (e.g., garden
paths) on small, specifically selected data
sets. The challenge is to build models that
integrate multiple aspects of human lan-
guage processing at the syntactic, seman-
tic, and discourse level. Like human lan-
guage processing, these models should be
incremental, predictive, broad coverage,
and robust to noise. This challenge can
only be met if standardized data sets and
evaluation measures are developed.

1 Introduction

In many respects, human language processing is
the ultimate goldstandard for computational lin-
guistics. Humans understand and generate lan-
guage with amazing speed and accuracy, they are
able to deal with ambiguity and noise effortlessly
and can adapt to new speakers, domains, and reg-
isters. Most surprisingly, they achieve this compe-
tency on the basis of limited training data (Hart
and Risley, 1995), using learning algorithms that
are largely unsupervised.

Given the impressive performance of humans
as language processors, it seems natural to turn
to psycholinguistics, the discipline that studies hu-
man language processing, as a source of informa-
tion about the design of efficient language pro-
cessing systems. Indeed, psycholinguists have un-
covered an impressive array of relevant facts (re-
viewed in Section 2), but computational linguists
are often not aware of this literature, and results
about human language processing rarely inform
the design, implementation, or evaluation of artifi-
cial language processing systems.

At the same time, research in psycholinguis-
tics is often oblivious of work in computational

linguistics (CL). To test their theories, psycholin-
guists construct computational models of hu-
man language processing, but these models of-
ten fall short of the engineering standards that
are generally accepted in the CL community
(e.g., broad coverage, robustness, efficiency): typ-
ical psycholinguistic models only deal with iso-
lated phenomena and fail to scale to realistic data
sets. A particular issue is evaluation, which is typ-
ically anecdotal, performed on a small set of hand-
crafted examples (see Sections 3).

In this paper, we propose a challenge that re-
quires the combination of research efforts in com-
putational linguistics and psycholinguistics: the
development of cognitively plausible models of
human language processing. This task can be de-
composed into a modeling challenge (building
models that instantiate known properties of hu-
man language processing) and a data and evalu-
ation challenge (accounting for experimental find-
ings and evaluating against standardized data sets),
which we will discuss in turn.

2 Modeling Challenge

2.1 Key Properties
The first part of the challenge is to develop a model
that instantiates key properties of human language
processing, as established by psycholinguistic ex-
perimentation (see Table 1 for an overview and
representative references).1 A striking property of
the human language processor is its efficiency and
robustness. For the vast majority of sentences, it
will effortlessly and rapidly deliver the correct
analysis, even in the face of noise and ungrammat-
icalities. There is considerable experimental evi-

1Here an in the following, we will focus on sentence
processing, which is often regarded as a central aspect of
human language processing. A more comprehensive answer
to our modeling challenge should also include phonological
and morphological processing, semantic inference, discourse
processing, and other non-syntactic aspects of language pro-
cessing. Furthermore, established results regarding the inter-
face between language processing and non-linguistic cogni-
tion (e.g., the sensorimotor system) should ultimately be ac-
counted for in a fully comprehensive model.
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ModelProperty Evidence Rank Surp Pred Stack
Efficiency and robustness Ferreira et al. (2001); Sanford and Sturt (2002) − − − +
Broad coverage Crocker and Brants (2000) + + − +
Incrementality and connectedness Tanenhaus et al. (1995); Sturt and Lombardo (2005) + + + +
Prediction Kamide et al. (2003); Staub and Clifton (2006) − ± + −
Memory cost Gibson (1998); Vasishth and Lewis (2006) − − + +

Table 1: Key properties of human language processing and their instantiation in various models of sentence processing (see
Section 2 for details)

dence that shallow processing strategies are used
to achieve this. The processor also achieves broad
coverage: it can deal with a wide variety of syntac-
tic constructions, and is not restricted by the do-
main, register, or modality of the input.

Human language processing is also word-by-
word incremental. There is strong evidence that
a new word is integrated as soon as it is avail-
able into the representation of the sentence thus
far. Readers and listeners experience differential
processing difficulty during this integration pro-
cess, depending on the properties of the new word
and its relationship to the preceding context. There
is evidence that the processor instantiates a strict
form of incrementality by building only fully con-
nected trees. Furthermore, the processor is able
to make predictions about upcoming material on
the basis of sentence prefixes. For instance, listen-
ers can predict an upcoming post-verbal element
based on the semantics of the preceding verb. Or
they can make syntactic predictions, e.g., if they
encounter the word either, they predict an upcom-
ing or and the type of complement that follows it.

Another key property of human language pro-
cessing is the fact that it operates with limited
memory, and that structures in memory are subject
to decay and interference. In particular, the pro-
cessor is known to incur a distance-based memory
cost: combining the head of a phrase with its syn-
tactic dependents is more difficult the more depen-
dents have to be integrated and the further away
they are. This integration process is also subject
to interference from similar items that have to be
held in memory at the same time.

2.2 Current Models

The challenge is to develop a computational model
that captures the key properties of human language
processing outlined in the previous section. A
number of relevant models have been developed,
mostly based on probabilistic parsing techniques,
but none of them instantiates all the key proper-
ties discussed above (Table 1 gives an overview of

model properties).2

The earliest approaches were ranking-based
models (Rank), which make psycholinguistic pre-
dictions based on the ranking of the syntactic
analyses produced by a probabilistic parser. Ju-
rafsky (1996) assumes that processing difficulty
is triggered if the correct analysis falls below a
certain probability threshold (i.e., is pruned by
the parser). Similarly, Crocker and Brants (2000)
assume that processing difficulty ensures if the
highest-ranked analysis changes from one word to
the next. Both approaches have been shown to suc-
cessfully model garden path effects. Being based
on probabilistic parsing techniques, ranking-based
models generally achieve a broad coverage, but
their efficiency and robustness has not been evalu-
ated. Also, they are not designed to capture syntac-
tic prediction or memory effects (other than search
with a narrow beam in Brants and Crocker 2000).

The ranking-based approach has been gener-
alized by surprisal models (Surp), which pre-
dict processing difficulty based on the change in
the probability distribution over possible analy-
ses from one word to the next (Hale, 2001; Levy,
2008; Demberg and Keller, 2008a; Ferrara Boston
et al., 2008; Roark et al., 2009). These models
have been successful in accounting for a range of
experimental data, and they achieve broad cover-
age. They also instantiate a limited form of predic-
tion, viz., they build up expectations about the next
word in the input. On the other hand, the efficiency
and robustness of these models has largely not
been evaluated, and memory costs are not mod-
eled (again except for restrictions in beam size).

The prediction model (Pred) explicitly predicts
syntactic structure for upcoming words (Demberg
and Keller, 2008b, 2009), thus accounting for ex-
perimental results on predictive language process-
ing. It also implements a strict form of incre-

2We will not distinguish between model and linking the-
ory, i.e., the set of assumptions that links model quantities
to behavioral data (e.g., more probably structures are easier
to process). It is conceivable, for instance, that a stack-based
model is combined with a linking theory based on surprisal.

61



Factor Evidence
Word senses Roland and Jurafsky (2002)
Selectional re-
strictions

Garnsey et al. (1997); Pickering and
Traxler (1998)

Thematic roles McRae et al. (1998); Pickering et al.
(2000)

Discourse ref-
erence

Altmann and Steedman (1988); Grod-
ner and Gibson (2005)

Discourse
coherence

Stewart et al. (2000); Kehler et al.
(2008)

Table 2: Semantic factors in human language processing

mentality by building fully connected trees. Mem-
ory costs are modeled directly as a distance-based
penalty that is incurred when a prediction has to be
verified later in the sentence. However, the current
implementation of the prediction model is neither
robust and efficient nor offers broad coverage.

Recently, a stack-based model (Stack) has been
proposed that imposes explicit, cognitively mo-
tivated memory constraints on the parser, in ef-
fect limiting the stack size available to the parser
(Schuler et al., 2010). This delivers robustness, ef-
ficiency, and broad coverage, but does not model
syntactic prediction. Unlike the other models dis-
cussed here, no psycholinguistic evaluation has
been conducted on the stack-based model, so its
cognitive plausibility is preliminary.

2.3 Beyond Parsing
There is strong evidence that human language pro-
cessing is driven by an interaction of syntactic, se-
mantic, and discourse processes (see Table 2 for
an overview and references). Considerable exper-
imental work has focused on the semantic prop-
erties of the verb of the sentence, and verb sense,
selectional restrictions, and thematic roles have all
been shown to interact with syntactic ambiguity
resolution. Another large body of research has elu-
cidated the interaction of discourse processing and
syntactic processing. The most-well known effect
is probably that of referential context: syntactic
ambiguities can be resolved if a discourse con-
text is provided that makes one of the syntactic
alternatives more plausible. For instance, in a con-
text that provides two possible antecedents for a
noun phrase, the processor will prefer attaching a
PP or a relative clause such that it disambiguates
between the two antecedents; garden paths are re-
duced or disappear. Other results point to the im-
portance of discourse coherence for sentence pro-
cessing, an example being implicit causality.

The challenge facing researchers in compu-
tational and psycholinguistics therefore includes

the development of language processing models
that combine syntactic processing with semantic
and discourse processing. So far, this challenge is
largely unmet: there are some examples of models
that integrate semantic processes such as thematic
role assignment into a parsing model (Narayanan
and Jurafsky, 2002; Padó et al., 2009). However,
other semantic factors are not accounted for by
these models, and incorporating non-lexical as-
pects of semantics into models of sentence pro-
cessing is a challenge for ongoing research. Re-
cently, Dubey (2010) has proposed an approach
that combines a probabilistic parser with a model
of co-reference and discourse inference based on
probabilistic logic. An alternative approach has
been taken by Pynte et al. (2008) and Mitchell
et al. (2010), who combine a vector-space model
of semantics (Landauer and Dumais, 1997) with a
syntactic parser and show that this results in pre-
dictions of processing difficulty that can be vali-
dated against an eye-tracking corpus.

2.4 Acquisition and Crosslinguistics

All models of human language processing dis-
cussed so far rely on supervised training data. This
raises another aspect of the modeling challenge:
the human language processor is the product of
an acquisition process that is largely unsupervised
and has access to only limited training data: chil-
dren aged 12–36 months are exposed to between
10 and 35 million words of input (Hart and Ris-
ley, 1995). The challenge therefore is to develop
a model of language acquisition that works with
such small training sets, while also giving rise to
a language processor that meets the key criteria
in Table 1. The CL community is in a good posi-
tion to rise to this challenge, given the significant
progress in unsupervised parsing in recent years
(starting from Klein and Manning 2002). How-
ever, none of the existing unsupervised models has
been evaluated against psycholinguistic data sets,
and they are not designed to meet even basic psy-
cholinguistic criteria such as incrementality.

A related modeling challenge is the develop-
ment of processing models for languages other
than English. There is a growing body of ex-
perimental research investigating human language
processing in other languages, but virtually all ex-
isting psycholinguistic models only work for En-
glish (the only exceptions we are aware of are
Dubey et al.’s (2008) and Ferrara Boston et al.’s
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(2008) parsing models for German). Again, the
CL community has made significant progress in
crosslinguistic parsing, especially using depen-
dency grammar (Hajič, 2009), and psycholinguis-
tic modeling could benefit from this in order to
meet the challenge of developing crosslinguisti-
cally valid models of human language processing.

3 Data and Evaluation Challenge

3.1 Test Sets

The second key challenge that needs to be ad-
dressed in order to develop cognitively plausible
models of human language processing concerns
test data and model evaluation. Here, the state of
the art in psycholinguistic modeling lags signif-
icantly behind standards in the CL community.
Most of the models discussed in Section 2 have not
been evaluated rigorously. The authors typically
describe their performance on a small set of hand-
picked examples; no attempts are made to test on
a range of items from the experimental literature
and determine model fit directly against behavioral
measures (e.g., reading times). This makes it very
hard to obtain a realistic estimate of how well the
models achieve their aim of capturing human lan-
guage processing behavior.

We therefore suggest the development of stan-
dard test sets for psycholinguistic modeling, simi-
lar to what is commonplace for tasks in computa-
tional linguistics: parsers are evaluated against the
Penn Treebank, word sense disambiguation sys-
tems against the SemEval data sets, co-reference
systems against the Tipster or ACE corpora, etc.
Two types of test data are required for psycholin-
guistic modeling. The first type of test data con-
sists of a collection of representative experimental
results. This collection should contain the actual
experimental materials (sentences or discourse
fragments) used in the experiments, together with
the behavioral measurements obtained (reading
times, eye-movement records, rating judgments,
etc.). The experiments included in this test set
would be chosen to cover a wide range of ex-
perimental phenomena, e.g., garden paths, syntac-
tic complexity, memory effects, semantic and dis-
course factors. Such a test set will enable the stan-
dardized evaluation of psycholinguistic models by
comparing the model predictions (rankings, sur-
prisal values, memory costs, etc.) against behav-
ioral measures on a large set of items. This way
both the coverage of a model (how many phenom-

ena can it account for) and its accuracy (how well
does it fit the behavioral data) can be assessed.

Experimental test sets should be complemented
by test sets based on corpus data. In order to as-
sess the efficiency, robustness, and broad cover-
age of a model, a corpus of unrestricted, naturally
occurring text is required. The use of contextual-
ized language data makes it possible to assess not
only syntactic models, but also models that capture
discourse effects. These corpora need to be anno-
tated with behavioral measures, e.g., eye-tracking
or reading time data. Some relevant corpora have
already been constructed, see the overview in Ta-
ble 3, and various authors have used them for
model evaluation (Demberg and Keller, 2008a;
Pynte et al., 2008; Frank, 2009; Ferrara Boston
et al., 2008; Patil et al., 2009; Roark et al., 2009;
Mitchell et al., 2010).

However, the usefulness of the psycholinguis-
tic corpora in Table 3 is restricted by the absence
of gold-standard linguistic annotation (though the
French part of the Dundee corpus, which is syn-
tactically annotated). This makes it difficult to test
the accuracy of the linguistic structures computed
by a model, and restricts evaluation to behavioral
predictions. The challenge is therefore to collect
a standardized test set of naturally occurring text
or speech enriched not only with behavioral vari-
ables, but also with syntactic and semantic anno-
tation. Such a data set could for example be con-
structed by eye-tracking section 23 of the Penn
Treebank (which is also part of Propbank, and thus
has both syntactic and thematic role annotation).

In computational linguistics, the development
of new data sets is often stimulated by competi-
tions in which systems are compared on a stan-
dardized task, using a data set specifically de-
signed for the competition. Examples include the
CoNLL shared task, SemEval, or TREC in com-
putational syntax, semantics, and discourse, re-
spectively. A similar competition could be devel-
oped for computational psycholinguistics – maybe
along the lines of the model comparison chal-
lenges that held at the International Conference
on Cognitive Modeling. These challenges provide
standardized task descriptions and data sets; par-
ticipants can enter their cognitive models, which
were then compared using a pre-defined evalua-
tion metric.3

3The ICCM 2009 challenge was the Dynamic Stock and
Flows Task, for more information see http://www.hss.
cmu.edu/departments/sds/ddmlab/modeldsf/.
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Corpus Language Words Participants Method Reference
Dundee Corpus English, French 50,000 10 Eye-tracking Kennedy and Pynte (2005)
Potsdam Corpus German 1,138 222 Eye-tracking Kliegl et al. (2006)
MIT Corpus English 3,534 23 Self-paced reading Bachrach (2008)

Table 3: Test corpora that have been used for psycholinguistic modeling of sentence processing; note that the Potsdam Corpus
consists of isolated sentences, rather than of continuous text

3.2 Behavioral and Neural Data

As outlined in the previous section, a number of
authors have evaluated psycholinguistic models
against eye-tracking or reading time corpora. Part
of the data and evaluation challenge is to extend
this evaluation to neural data as provided by event-
related potential (ERP) or brain imaging studies
(e.g., using functional magnetic resonance imag-
ing, fMRI). Neural data sets are considerably more
complex than behavioral ones, and modeling them
is an important new task that the community is
only beginning to address. Some recent work has
evaluated models of word semantics against ERP
(Murphy et al., 2009) or fMRI data (Mitchell et al.,
2008).4 This is a very promising direction, and the
challenge is to extend this approach to the sentence
and discourse level (see Bachrach 2008). Again,
it will again be necessary to develop standardized
test sets of both experimental data and corpus data.

3.3 Evaluation Measures

We also anticipate that the availability of new test
data sets will facilitate the development of new
evaluation measures that specifically test the va-
lidity of psycholinguistic models. Established CL
evaluation measures such as Parseval are of lim-
ited use, as they can only test the linguistic, but not
the behavioral or neural predictions of a model.

So far, many authors have relied on qualita-
tive evaluation: if a model predicts a difference
in (for instance) reading time between two types
of sentences where such a difference was also
found experimentally, then that counts as a suc-
cessful test. In most cases, no quantitative evalu-
ation is performed, as this would require model-
ing the reading times for individual item and in-
dividual participants. Suitable procedures for per-
forming such tests do not currently exist; linear
mixed effects models (Baayen et al., 2008) pro-
vide a way of dealing with item and participant
variation, but crucially do not enable direct com-
parisons between models in terms of goodness of
fit.

4These data sets were released as part of the NAACL-
2010 Workshop on Computational Neurolinguistics.

Further issues arise from the fact that we of-
ten want to compare model fit for multiple experi-
ments (ideally without reparametrizing the mod-
els), and that various mutually dependent mea-
sures are used for evaluation, e.g., processing ef-
fort at the sentence, word, and character level. An
important open challenge is there to develop eval-
uation measures and associated statistical proce-
dures that can deal with these problems.

4 Conclusions

In this paper, we discussed the modeling and
data/evaluation challenges involved in developing
cognitively plausible models of human language
processing. Developing computational models is
of scientific importance in so far as models are im-
plemented theories: models of language process-
ing allow us to test scientific hypothesis about the
cognitive processes that underpin language pro-
cessing. This type of precise, formalized hypoth-
esis testing is only possible if standardized data
sets and uniform evaluation procedures are avail-
able, as outlined in the present paper. Ultimately,
this approach enables qualitative and quantitative
comparisons between theories, and thus enhances
our understanding of a key aspect of human cog-
nition, language processing.

There is also an applied side to the proposed
challenge. Once computational models of human
language processing are available, they can be
used to predict the difficulty that humans experi-
ence when processing text or speech. This is use-
ful for a number applications: for instance, nat-
ural language generation would benefit from be-
ing able to assess whether machine-generated text
or speech is easy to process. For text simplifica-
tion (e.g., for children or impaired readers), such a
model is even more essential. It could also be used
to assess the readability of text, which is of interest
in educational applications (e.g., essay scoring). In
machine translation, evaluating the fluency of sys-
tem output is crucial, and a model that predicts
processing difficulty could be used for this, or to
guide the choice between alternative translations,
and maybe even to inform human post-editing.
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Abstract

The Manually Annotated Sub-Corpus
(MASC) project provides data and annota-
tions to serve as the base for a community-
wide annotation effort of a subset of the
American National Corpus. The MASC
infrastructure enables the incorporation of
contributed annotations into a single, us-
able format that can then be analyzed as
it is or ported to any of a variety of other
formats. MASC includes data from a
much wider variety of genres than exist-
ing multiply-annotated corpora of English,
and the project is committed to a fully
open model of distribution, without re-
striction, for all data and annotations pro-
duced or contributed. As such, MASC
is the first large-scale, open, community-
based effort to create much needed lan-
guage resources for NLP. This paper de-
scribes the MASC project, its corpus and
annotations, and serves as a call for con-
tributions of data and annotations from the
language processing community.

1 Introduction

The need for corpora annotated for multiple phe-
nomena across a variety of linguistic layers is
keenly recognized in the computational linguistics
community. Several multiply-annotated corpora
exist, especially for Western European languages
and for spoken data, but, interestingly, broad-
based English language corpora with robust anno-
tation for diverse linguistic phenomena are rela-
tively rare. The most widely-used corpus of En-
glish, the British National Corpus, contains only
part-of-speech annotation; and although it con-
tains a wider range of annotation types, the fif-

teen million word Open American National Cor-
pus annotations are largely unvalidated. The most
well-known multiply-annotated and validated cor-
pus of English is the one million word Wall Street
Journal corpus known as the Penn Treebank (Mar-
cus et al., 1993), which over the years has been
fully or partially annotated for several phenomena
over and above the original part-of-speech tagging
and phrase structure annotation. The usability of
these annotations is limited, however, by the fact
that many of them were produced by independent
projects using their own tools and formats, mak-
ing it difficult to combine them in order to study
their inter-relations. More recently, the OntoNotes
project (Pradhan et al., 2007) released a one mil-
lion word English corpus of newswire, broadcast
news, and broadcast conversation that is annotated
for Penn Treebank syntax, PropBank predicate ar-
gument structures, coreference, and named enti-
ties. OntoNotes comes closest to providing a cor-
pus with multiple layers of annotation that can be
analyzed as a unit via its representation of the an-
notations in a “normal form”. However, like the
Wall Street Journal corpus, OntoNotes is limited
in the range of genres it includes. It is also limited
to only those annotations that may be produced by
members of the OntoNotes project. In addition,
use of the data and annotations with software other
than the OntoNotes database API is not necessar-
ily straightforward.

The sparseness of reliable multiply-annotated
corpora can be attributed to several factors. The
greatest obstacle is the high cost of manual pro-
duction and validation of linguistic annotations.
Furthermore, the production and annotation of
corpora, even when they involve significant scien-
tific research, often do not, per se, lead to publish-
able research results. It is therefore understand-
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able that many research groups are unwilling to
get involved in such a massive undertaking for rel-
atively little reward.

The Manually Annotated Sub-Corpus
(MASC) (Ide et al., 2008) project has been
established to address many of these obstacles
to the creation of large-scale, robust, multiply-
annotated corpora. The project is providing
appropriate data and annotations to serve as the
base for a community-wide annotation effort,
together with an infrastructure that enables the
representation of internally-produced and con-
tributed annotations in a single, usable format
that can then be analyzed as it is or ported to any
of a variety of other formats, thus enabling its
immediate use with many common annotation
platforms as well as off-the-shelf concordance
and analysis software. The MASC project’s aim is
to offset some of the high costs of producing high
quality linguistic annotations via a distribution of
effort, and to solve some of the usability problems
for annotations produced at different sites by
harmonizing their representation formats.

The MASC project provides a resource that is
significantly different from OntoNotes and simi-
lar corpora. It provides data from a much wider
variety of genres than existing multiply-annotated
corpora of English, and all of the data in the cor-
pus are drawn from current American English so
as to be most useful for NLP applications. Per-
haps most importantly, the MASC project is com-
mitted to a fully open model of distribution, with-
out restriction, for all data and annotations. It is
also committed to incorporating diverse annota-
tions contributed by the community, regardless of
format, into the corpus. As such, MASC is the
first large-scale, open, community-based effort to
create a much-needed language resource for NLP.
This paper describes the MASC project, its corpus
and annotations, and serves as a call for contribu-
tions of data and annotations from the language
processing community.

2 MASC: The Corpus

MASC is a balanced subset of 500K words of
written texts and transcribed speech drawn pri-
marily from the Open American National Corpus
(OANC)1. The OANC is a 15 million word (and
growing) corpus of American English produced
since 1990, all of which is in the public domain

1http://www.anc.org

Genre No. texts Total words
Email 2 468
Essay 4 17516
Fiction 4 20413
Gov’t documents 1 6064
Journal 10 25635
Letters 31 10518
Newspaper/newswire 41 17951
Non-fiction 4 17118
Spoken 11 25783
Debate transcript 2 32325
Court transcript 1 20817
Technical 3 15417
Travel guides 4 12463
Total 118 222488

Table 1: MASC Composition (first 220K)

or otherwise free of usage and redistribution re-
strictions.

Where licensing permits, data for inclusion in
MASC is drawn from sources that have already
been heavily annotated by others. So far, the
first 80K increment of MASC data includes a
40K subset consisting of OANC data that has
been previously annotated for PropBank predi-
cate argument structures, Pittsburgh Opinion an-
notation (opinions, evaluations, sentiments, etc.),
TimeML time and events2, and several other lin-
guistic phenomena. It also includes a handful of
small texts from the so-called Language Under-
standing (LU) Corpus3 that has been annotated by
multiple groups for a wide variety of phenomena,
including events and committed belief. All of the
first 80K increment is annotated for Penn Tree-
bank syntax. The second 120K increment includes
5.5K words of Wall Street Journal texts that have
been annotated by several projects, including Penn
Treebank, PropBank, Penn Discourse Treebank,
TimeML, and the Pittsburgh Opinion project. The
composition of the 220K portion of the corpus an-
notated so far is shown in Table 1. The remain-
ing 280K of the corpus fills out the genres that are
under-represented in the first portion and includes
a few additional genres such as blogs and tweets.

3 MASC Annotations

Annotations for a variety of linguistic phenomena,
either manually produced or corrected from output
of automatic annotation systems, are being added

2The TimeML annotations of the data are not yet com-
pleted.

3MASC contains about 2K words of the 10K LU corpus,
eliminating non-English and translated LU texts as well as
texts that are not free of usage and redistribution restrictions.
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Annotation type Method No. texts No. words
Token Validated 118 222472
Sentence Validated 118 222472
POS/lemma Validated 118 222472
Noun chunks Validated 118 222472
Verb chunks Validated 118 222472
Named entities Validated 118 222472
FrameNet frames Manual 21 17829
HSPG Validated 40* 30106
Discourse Manual 40* 30106
Penn Treebank Validated 97 87383
PropBank Validated 92 50165
Opinion Manual 97 47583
TimeBank Validated 34 5434
Committed belief Manual 13 4614
Event Manual 13 4614
Coreference Manual 2 1877

Table 2: Current MASC Annotations (* projected)

to MASC data in increments of roughly 100K
words. To date, validated or manually produced
annotations for 222K words have been made avail-
able.

The MASC project is itself producing annota-
tions for portions of the corpus for WordNet senses
and FrameNet frames and frame elements. To de-
rive maximal benefit from the semantic informa-
tion provided by these resources, the entire cor-
pus is also annotated and manually validated for
shallow parses (noun and verb chunks) and named
entities (person, location, organization, date and
time). Several additional types of annotation have
either been contracted by the MASC project or
contributed from other sources. The 220K words
of MASC I and II include seventeen different types
of linguistic annotation4, shown in Table 2.

All MASC annotations, whether contributed or
produced in-house, are transduced to the Graph
Annotation Framework (GrAF) (Ide and Suder-
man, 2007) defined by ISO TC37 SC4’s Linguistic
Annotation Framework (LAF) (Ide and Romary,
2004). GrAF is an XML serialization of the LAF
abstract model of annotations, which consists of
a directed graph decorated with feature structures
providing the annotation content. GrAF’s primary
role is to serve as a “pivot” format for transducing
among annotations represented in different for-
mats. However, because the underlying data struc-
ture is a graph, the GrAF representation itself can
serve as the basis for analysis via application of

4This includes WordNet sense annotations, which are not
listed in Table 2 because they are not applied to full texts; see
Section 3.1 for a description of the WordNet sense annota-
tions in MASC.

graph-analytic algorithms such as common sub-
tree detection.

The layering of annotations over MASC texts
dictates the use of a stand-off annotation repre-
sentation format, in which each annotation is con-
tained in a separate document linked to the pri-
mary data. Each text in the corpus is provided in
UTF-8 character encoding in a separate file, which
includes no annotation or markup of any kind.
Each file is associated with a set of GrAF standoff
files, one for each annotation type, containing the
annotations for that text. In addition to the anno-
tation types listed in Table 2, a document contain-
ing annotation for logical structure (titles, head-
ings, sections, etc. down to the level of paragraph)
is included. Each text is also associated with
(1) a header document that provides appropriate
metadata together with machine-processable in-
formation about associated annotations and inter-
relations among the annotation layers; and (2) a
segmentation of the primary data into minimal re-
gions, which enables the definition of different to-
kenizations over the text. Contributed annotations
are also included in their original format, where
available.

3.1 WordNet Sense Annotations

A focus of the MASC project is to provide corpus
evidence to support an effort to harmonize sense
distinctions in WordNet and FrameNet (Baker and
Fellbaum, 2009), (Fellbaum and Baker, to appear).
The WordNet and FrameNet teams have selected
for this purpose 100 common polysemous words
whose senses they will study in detail, and the
MASC team is annotating occurrences of these
words in the MASC. As a first step, fifty oc-
currences of each word are annotated using the
WordNet 3.0 inventory and analyzed for prob-
lems in sense assignment, after which the Word-
Net team may make modifications to the inven-
tory if needed. The revised inventory (which will
be released as part of WordNet 3.1) is then used to
annotate 1000 occurrences. Because of its small
size, MASC typically contains less than 1000 oc-
currences of a given word; the remaining occur-
rences are therefore drawn from the 15 million
words of the OANC. Furthermore, the FrameNet
team is also annotating one hundred of the 1000
sentences for each word with FrameNet frames
and frame elements, providing direct comparisons
of WordNet and FrameNet sense assignments in
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attested sentences.5

For convenience, the annotated sentences are
provided as a stand-alone corpus, with the Word-
Net and FrameNet annotations represented in
standoff files. Each sentence in this corpus is
linked to its occurrence in the original text, so that
the context and other annotations associated with
the sentence may be retrieved.

3.2 Validation

Automatically-produced annotations for sentence,
token, part of speech, shallow parses (noun and
verb chunks), and named entities (person, lo-
cation, organization, date and time) are hand-
validated by a team of students. Each annotation
set is first corrected by one student, after which it
is checked (and corrected where necessary) by a
second student, and finally checked by both auto-
matic extraction of the annotated data and a third
pass over the annotations by a graduate student
or senior researcher. We have performed inter-
annotator agreement studies for shallow parses in
order to establish the number of passes required to
achieve near-100% accuracy.

Annotations produced by other projects and
the FrameNet and Penn Treebank annotations
produced specifically for MASC are semi-
automatically and/or manually produced by those
projects and subjected to their internal quality con-
trols. No additional validation is performed by the
ANC project.

The WordNet sense annotations are being used
as a base for an extensive inter-annotator agree-
ment study, which is described in detail in (Pas-
sonneau et al., 2009), (Passonneau et al., 2010).
All inter-annotator agreement data and statistics
are published along with the sense tags. The re-
lease also includes documentation on the words
annotated in each round, the sense labels for each
word, the sentences for each word, and the anno-
tator or annotators for each sense assignment to
each word in context. For the multiply annotated
data in rounds 2-4, we include raw tables for each
word in the form expected by Ron Artstein’s cal-
culate alpha.pl perl script6, so that the agreement
numbers can be regenerated.

5Note that several MASC texts have been fully annotated
for FrameNet frames and frame elements, in addition to the
WordNet-tagged sentences.

6http://ron.artstein.org/resources/calculate-alpha.perl

4 MASC Availability and Distribution

Like the OANC, MASC is distributed without
license or other restrictions from the American
National Corpus website7. It is also available
from the Linguistic Data Consortium (LDC)8 for
a nominal processing fee.

In addition to enabling download of the entire
MASC, we provide a web application that allows
users to select some or all parts of the corpus and
choose among the available annotations via a web
interface (Ide et al., 2010). Once generated, the
corpus and annotation bundle is made available to
the user for download. Thus, the MASC user need
never deal directly with or see the underlying rep-
resentation of the stand-off annotations, but gains
all the advantages that representation offers. The
following output formats are currently available:

1. in-line XML (XCES9), suitable for use with
the BNCs XAIRA search and access inter-
face and other XML-aware software;

2. token / part of speech, a common input for-
mat for general-purpose concordance soft-
ware such as MonoConc10, as well as the
Natural Language Toolkit (NLTK) (Bird et
al., 2009);

3. CONLL IOB format, used in the Confer-
ence on Natural Language Learning shared
tasks.11

5 Tools

The ANC project provides an API for GrAF an-
notations that can be used to access and manip-
ulate GrAF annotations directly from Java pro-
grams and render GrAF annotations in a format
suitable for input to the open source GraphViz12

graph visualization application.13 Beyond this, the
ANC project does not provide specific tools for
use of the corpus, but rather provides the data in
formats suitable for use with a variety of available
applications, as described in section 4, together
with means to import GrAF annotations into ma-
jor annotation software platforms. In particular,
the ANC project provides plugins for the General

7http://www.anc.org
8http://www.ldc.upenn.edu
9XML Corpus Encoding Standard, http://www.xces.org

10http://www.athel.com/mono.html
11http://ifarm.nl/signll/conll
12http://www.graphviz.org/
13http://www.anc.org/graf-api
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Architecture for Text Engineering (GATE) (Cun-
ningham et al., 2002) to input and/or output an-
notations in GrAF format; a “CAS Consumer”
to enable using GrAF annotations in the Un-
structured Information Management Architecture
(UIMA) (Ferrucci and Lally, 2004); and a corpus
reader for importing MASC data and annotations
into NLTK14.

Because the GrAF format is isomorphic to in-
put to many graph-analytic tools, existing graph-
analytic software can also be exploited to search
and manipulate MASC annotations. Trivial merg-
ing of GrAF-based annotations involves simply
combining the graphs for each annotation, after
which graph minimization algorithms15 can be ap-
plied to collapse nodes with edges to common
subgraphs to identify commonly annotated com-
ponents. Graph-traversal and graph-coloring al-
gorithms can also be applied in order to iden-
tify and generate statistics that could reveal in-
teractions among linguistic phenomena that may
have previously been difficult to observe. Other
graph-analytic algorithms — including common
sub-graph analysis, shortest paths, minimum span-
ning trees, connectedness, identification of artic-
ulation vertices, topological sort, graph partition-
ing, etc. — may also prove to be useful for mining
information from a graph of annotations at multi-
ple linguistic levels.

6 Community Contributions

The ANC project solicits contributions of anno-
tations of any kind, applied to any part or all of
the MASC data. Annotations may be contributed
in any format, either inline or standoff. All con-
tributed annotations are ported to GrAF standoff
format so that they may be used with other MASC
annotations and rendered in the various formats
the ANC tools generate. To accomplish this, the
ANC project has developed a suite of internal tools
and methods for automatically transducing other
annotation formats to GrAF and for rapid adapta-
tion of previously unseen formats.

Contributions may be emailed to
anc@cs.vassar.edu or uploaded via the
ANC website16. The validity of annotations
and supplemental documentation (if appropriate)
are the responsibility of the contributor. MASC

14Available in September, 2010.
15Efficient algorithms for graph merging exist; see,

e.g., (Habib et al., 2000).
16http://www.anc.org/contributions.html

users may contribute evaluations and error reports
for the various annotations on the ANC/MASC
wiki17.

Contributions of unvalidated annotations for
MASC and OANC data are also welcomed and are
distributed separately. Contributions of unencum-
bered texts in any genre, including stories, papers,
student essays, poetry, blogs, and email, are also
solicited via the ANC web site and the ANC Face-
Book page18, and may be uploaded at the contri-
bution page cited above.

7 Conclusion

MASC is already the most richly annotated corpus
of English available for widespread use. Because
the MASC is an open resource that the commu-
nity can continually enhance with additional an-
notations and modifications, the project serves as a
model for community-wide resource development
in the future. Past experience with corpora such
as the Wall Street Journal shows that the commu-
nity is eager to annotate available language data,
and we anticipate even greater interest in MASC,
which includes language data covering a range of
genres that no existing resource provides. There-
fore, we expect that as MASC evolves, more and
more annotations will be contributed, thus creat-
ing a massive, inter-linked linguistic infrastructure
for the study and processing of current American
English in its many genres and varieties. In addi-
tion, by virtue of its WordNet and FrameNet anno-
tations, MASC will be linked to parallel WordNets
and FrameNets in languages other than English,
thus creating a global resource for multi-lingual
technologies, including machine translation.
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Abstract

This paper proposes a method of correct-
ing annotation errors in a treebank. By us-
ing a synchronous grammar, the method
transforms parse trees containing annota-
tion errors into the ones whose errors are
corrected. The synchronous grammar is
automatically induced from the treebank.
We report an experimental result of apply-
ing our method to the Penn Treebank. The
result demonstrates that our method cor-
rects syntactic annotation errors with high
precision.

1 Introduction

Annotated corpora play an important role in the
fields such as theoretical linguistic researches or
the development of NLP systems. However, they
often contain annotation errors which are caused
by a manual or semi-manual mark-up process.
These errors are problematic for corpus-based re-
searches.

To solve this problem, several error detection
and correction methods have been proposed so far
(Eskin, 2000; Nakagawa and Matsumoto, 2002;
Dickinson and Meurers, 2003a; Dickinson and
Meurers, 2003b; Ule and Simov, 2004; Murata
et al., 2005; Dickinson and Meurers, 2005; Boyd
et al., 2008). These methods detect corpus posi-
tions which are marked up incorrectly, and find
the correct labels (e.g. pos-tags) for those posi-
tions. However, the methods cannot correct errors
in structural annotation. This means that they are
insufficient to correct annotation errors in a tree-
bank.

This paper proposes a method of correcting er-
rors in structural annotation. Our method is based
on a synchronous grammar formalism, called syn-
chronous tree substitution grammar (STSG) (Eis-
ner, 2003), which defines a tree-to-tree transfor-

mation. By using an STSG, our method trans-
forms parse trees containing errors into the ones
whose errors are corrected. The grammar is au-
tomatically induced from the treebank. To select
STSG rules which are useful for error correction,
we define a score function based on the occurrence
frequencies of the rules. An experimental result
shows that the selected rules archive high preci-
sion.

This paper is organized as follows: Section 2
gives an overview of previous work. Section 3 ex-
plains our method of correcting errors in a tree-
bank. Section 4 reports an experimental result us-
ing the Penn Treebank.

2 Previous Work

This section summarizes previous methods for
correcting errors in corpus annotation and dis-
cusses their problem.

Some research addresses the detection of er-
rors in pos-annotation (Nakagawa and Matsumoto,
2002; Dickinson and Meurers, 2003a), syntactic
annotation (Dickinson and Meurers, 2003b; Ule
and Simov, 2004; Dickinson and Meurers, 2005),
and dependency annotation (Boyd et al., 2008).
These methods only detect corpus positions where
errors occur. It is unclear how we can correct the
errors.

Several methods can correct annotation errors
(Eskin, 2000; Murata et al., 2005). These meth-
ods are to correct tag-annotation errors, that is,
they simply suggest a candidate tag for each po-
sition where an error is detected. The methods
cannot correct syntactic annotation errors, because
syntactic annotation is structural. There is no ap-
proach to correct structural annotation errors.

To clarify the problem, let us consider an exam-
ple. Figure 1 depicts two parse trees annotated ac-
cording to the Penn Treebank annotation 1. The

10 and *T* are null elements.
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(a) incorrect parse tree

(b) correct parse tree

Figure 1: An example of a treebank error

parse tree (a) contains errors and the parse tree
(b) is the corrected version. In the parse tree (a),
the positions of the two subtrees (, ,) are erro-
neous. To correct the errors, we need to move the
subtrees to the positions which are directly dom-
inated by the node PRN. This example demon-
strates that we need a framework of transforming
tree structures to correct structural annotation er-
rors.

3 Correcting Errors by Using
Synchronous Grammar

To solve the problem described in Section 2, this
section proposes a method of correcting structural
annotation errors by using a synchronous tree sub-
stitution grammar (STSG) (Eisner, 2003). An
STSG defines a tree-to-tree transformation. Our
method induces an STSG which transforms parse
trees containing errors into the ones whose errors
are corrected.

3.1 Synchronous Tree Substitution Grammar

First of all, we describe the STSG formalism. An
STSG defines a set of tree pairs. An STSG can be
treated as a tree transducer which takes a tree as
input and produces a tree as output. Each grammar
rule consists of the following elements:

• a pair of trees called elementary trees

PRN
S

,1 NP2 VP3 ,4

PRN

S,1

NP2 VP3

,4

source target

Figure 2: An example of an STSG rule

• a one-to-one alignment between nodes in the
elementary trees

For a tree pair ⟨t, t′⟩, the tree t and t′ are
called source and target, respectively. The non-
terminal leaves of elementary trees are called fron-
tier nodes. There exists a one-to-one alignment
between the frontier nodes in t and t′. The rule
means that the structure which matches the source
elementary tree is transformed into the structure
which is represented by the target elementary tree.
Figure 2 shows an example of an STSG rule. The
subscripts indicate the alignment. This rule can
correct the errors in the parse tree (a) depicted in
Figure 1.

An STSG derives tree pairs. Any derivation
process starts with the pair of nodes labeled with
special symbols called start symbols. A derivation
proceeds in the following steps:

1. Choose a pair of frontier nodes ⟨η, η′⟩ for
which there exists an alignment.

2. Choose a rule ⟨t, t′⟩ s.t. label(η) = root(t)
and label(η′) = root(t′) where label(η) is
the label of η and root(t) is the root label of
t.

3. Substitute t and t′ into η and η′, respectively.

Figure 3 shows a derivation process in an STSG.
In the rest of the paper, we focus on the rules

in which the source elementary tree is not identi-
cal to its target, since such identical rules cannot
contribute to error correction.

3.2 Inducing an STSG for Error Correction
This section describes a method of inducing an
STSG for error correction. The basic idea of
our method is similar to the method presented by
Dickinson and Meurers (2003b). Their method de-
tects errors by seeking word sequences satisfying
the following conditions:

• The word sequence occurs more than once in
the corpus.
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Figure 3: A derivation process of tree pairs in an
STSG

• Different syntactic labels are assigned to the
occurrences of the word sequence.

Unlike their method, our method seeks word se-
quences whose occurrences have different partial
parse trees. We call a collection of these word
sequences with partial parse trees pseudo paral-
lel corpus. Moreover, our method extracts STSG
rules which transform the one partial tree into the
other.

3.2.1 Constructing a Pseudo Parallel Corpus
Our method firstly constructs a pseudo parallel
corpus which represents a correspondence be-
tween parse trees containing errors and the ones
whose errors are corrected. The procedure is as
follows: Let T be the set of the parse trees oc-
curring in the corpus. We write Sub(σ) for the
set which consists of the partial parse trees in-
cluded in the parse tree σ. A pseudo parallel cor-
pus Para(T ) is constructed as follows:

Para(T ) = {⟨τ, τ ′⟩ | τ, τ ′ ∈
∪

σ∈T

Sub(σ)

∧ τ ̸= τ ′

∧ yield(τ) = yield(τ ′)
∧ root(τ) = root(τ ′)}

PRN
S,1

NP2 VP4
PRP3
they

VBP5
say

SBAR6
-NONE-7 S8

-NONE-90
*T*

,
,10
,

PRN
S

,1 NP2 VP4
PRP3
they

VBP5
say

SBAR6
-NONE-7 S8

-NONE-90
*T*

,
,10
,

Figure 4: An example of a partial parse tree pair
in a pseudo parallel corpus
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,
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NNS
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.
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proud

Figure 5: Another example of a parse tree contain-
ing a word sequence “, they say ,”

where yield(τ) is the word sequence dominated
by τ .

Let us consider an example. If the parse trees
depicted in Figure 1 exist in the treebank T , the
pair of partial parse trees depicted in Figure 4 is
an element of Para(T ). We also obtain this pair
in the case where there exists not the parse tree
(b) depicted in Figure 1 but the parse tree depicted
in Figure 5, which contains the word sequence “,
they say ,”.

3.2.2 Inducing a Grammar from a Pseudo
Parallel Corpus

Our method induces an STSG from the pseudo
parallel corpus according to the method proposed
by Cohn and Lapata (2009). Cohn and Lapata’s
method can induce an STSG which represents a
correspondence in a parallel corpus. Their method
firstly determine an alignment of nodes between
pairs of trees in the parallel corpus and extracts
STSG rules according to the alignments.

For partial parse trees τ and τ ′, we define a node
alignment C(τ, τ ′) as follows:

C(τ, τ ′) = {⟨η, η′⟩ | η ∈ Node(τ)
∧ η′ ∈ Node(τ ′)
∧ η is not the root of τ
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∧ η′ is not the root of τ ′

∧ label(η) = label(η′)
∧ yield(η) = yield(η′)}

where Node(τ) is the set of the nodes in τ , and
yield(η) is the word sequence dominated by η.
Figure 4 shows an example of a node alignment.
The subscripts indicate the alignment.

An STSG rule is extracted by deleting nodes in
a partial parse tree pair ⟨τ, τ ′⟩ ∈ Para(T ). The
procedure is as follows:

• For each ⟨η, η′⟩ ∈ C(τ, τ ′), delete the de-
scendants of η and η′.

For example, the rule shown in Figure 2 is ex-
tracted from the pair shown in Figure 4.

3.3 Rule Selection

Some rules extracted by the procedure in Section
3.2 are not useful for error correction, since the
pseudo parallel corpus contains tree pairs whose
source tree is correct or whose target tree is incor-
rect. The rules which are extracted from such pairs
can be harmful. To select rules which are use-
ful for error correction, we define a score function
which is based on the occurrence frequencies of
elementary trees in the treebank. The score func-
tion is defined as follows:

Score(⟨t, t′⟩) =
f(t′)

f(t) + f(t′)

where f(·) is the occurrence frequency in the tree-
bank. The score function ranges from 0 to 1. We
assume that the occurrence frequency of an ele-
mentary tree matching incorrect parse trees is very
low. According to this assumption, the score func-
tion Score(⟨t, t′⟩) is high when the source ele-
mentary tree t matches incorrect parse trees and
the target elementary tree t′ matches correct parse
trees. Therefore, STSG rules with high scores are
regarded to be useful for error correction.

4 An Experiment

To evaluate the effectiveness of our method, we
conducted an experiment using the Penn Treebank
(Marcus et al., 1993).

We used 49208 sentences in Wall Street Journal
sections. We induced STSG rules by applying our
method to the corpus. We obtained 8776 rules. We

PRN
, S
NP ,

PRN S
NP
NP

VP
S

NP VP

NP
NP NP

IN NP

NP
NP PP

IN NP

(1) (2)

(4)

source target

VP
, S ,
NP VP

(3) PP
IN NNSDT

PP
IN NP

DT NNS

Figure 6: Examples of error correction rules in-
duced from the Penn Treebank

measured the precision of the rules. The precision
is defined as follows:

precision =
# of the positions where an error is corrected

# of the positions to which some rule is applied

We manually checked whether each rule appli-
cation corrected an error, because the corrected
treebank does not exist2. Furthermore, we only
evaluated the first 100 rules which are ordered by
the score function described in Section 3.3, since
it is time-consuming and expensive to evaluate all
of the rules. These 100 rules were applied at 331
positions. The precision of the rules is 71.9%. For
each rule, we measured the precision of it. 70 rules
achieved 100% precision. These results demon-
strate that our method can correct syntactic anno-
tation errors with high precision. Moreover, 30
rules of the 70 rules transformed bracketed struc-
tures. This fact shows that the treebank contains
structural errors which cannot be dealt with by the
previous methods.

Figure 6 depicts examples of error correction
rules which achieved 100% precision. Rule (1),
(2) and (3) are rules which transform bracketed
structures. Rule (4) simply replaces a node la-
bel. Rule (1) corrects an erroneous position of a
comma (see Figure 7 (a)). Rule (2) deletes a use-
less node NP in a subject position (see Figure 7
(b)). Rule (3) inserts a node NP (see Figure 7 (c)).
Rule (4) replaces a node label NP with the cor-
rect label PP (see Figure 7 (d)). These examples
demonstrate that our method can correct syntactic
annotation errors.

Figure 8 depicts an example where our method
detected an annotation error but could not correct
it. To correct the error, we need to attach the node

2This also means that we cannot measure the recall of the
rules.
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Figure 7: Examples of correcting syntactic annotation errors
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IN
At
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CD
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when ... when ...

Figure 8: An example where our method detected
an annotation error but could not correct it

SBAR under the node NP. We found that 22 of the
rule applications were of this type.

Figure 9 depicts a false positive example
where our method mistakenly transformed a cor-
rect syntactic structure. The score of the rule
is very high, since the source elementary tree
(TOP (NP NP VP .)) is less frequent. This
example shows that our method has a risk of
changing correct annotations of less frequent syn-
tactic structures.

5 Conclusion

This paper proposes a method of correcting er-
rors in a treebank by using a synchronous tree
substitution grammar. Our method constructs a
pseudo parallel corpus from the treebank and ex-
tracts STSG rules from the parallel corpus. The
experimental result demonstrates that we can ob-
tain error correction rules with high precision.

TOP

NP .VP

based on quotations at
five major banks

The average of interbank offered rates

NP

TOP

NP .VP

based on quotations at
five major banks

The average of interbank offered rates

S

Figure 9: A false positive example where a correct
syntactic structure was mistakenly transformed

In future work, we will explore a method of in-
creasing the recall of error correction by construct-
ing a wide-coverage STSG.
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Abstract

This paper introduces mNCD, a method
for automatic evaluation of machine trans-
lations. The measure is based on nor-
malized compression distance (NCD), a
general information theoretic measure of
string similarity, and flexible word match-
ing provided by stemming and synonyms.
The mNCD measure outperforms NCD in
system-level correlation to human judg-
ments in English.

1 Introduction

Automatic evaluation of machine translation (MT)
systems requires automated procedures to en-
sure consistency and efficient handling of large
amounts of data. In statistical MT systems, au-
tomatic evaluation of translations is essential for
parameter optimization and system development.
Human evaluation is too labor intensive, time con-
suming and expensive for daily evaluations. How-
ever, manual evaluation is important in the com-
parison of different MT systems and for the valida-
tion and development of automatic MT evaluation
measures, which try to model human assessments
of translations as closely as possible. Furthermore,
the ideal evaluation method would be language in-
dependent, fast to compute and simple.

Recently, normalized compression distance
(NCD) has been applied to the evaluation of
machine translations. NCD is a general in-
formation theoretic measure of string similar-
ity, whereas most MT evaluation measures, e.g.,
BLEU and METEOR, are specifically constructed
for the task. Parker (2008) introduced BAD-
GER, an MT evaluation measure that uses NCD
and a language independent word normalization

method. BADGER scores were directly compared
against the scores of METEOR and word error
rate (WER). The correlation between BADGER
and METEOR were low and correlations between
BADGER and WER high. Kettunen (2009) uses
the NCD directly as an MT evaluation measure.
He showed with a small corpus of three language
pairs that NCD and METEOR 0.6 correlated for
translations of 10–12 MT systems. NCD was not
compared to human assessments of translations,
but correlations of NCD and METEOR scores
were very high for all the three language pairs.

Väyrynen et al. (2010) have extended the work
by including NCD in the ACL WMT08 evaluation
framework and showing that NCD is correlated
to human judgments. The NCD measure did not
match the performance of the state-of-the-art MT
evaluation measures in English, but it presented a
viable alternative to de facto standard BLEU (Pa-
pineni et al., 2001), which is simple and effective
but has been shown to have a number of drawbacks
(Callison-Burch et al., 2006).

Some recent advances in automatic MT evalu-
ation have included non-binary matching between
compared items (Banerjee and Lavie, 2005; Agar-
wal and Lavie, 2008; Chan and Ng, 2009), which
is implicitly present in the string-based NCD mea-
sure. Our motivation is to investigate whether in-
cluding additional language dependent resources
would improve the NCD measure. We experiment
with relaxed word matching using stemming and
a lexical database to allow lexical changes. These
additional modules attempt to make the reference
sentences more similar to the evaluated transla-
tions on the string level. We report an experiment
showing that document-level NCD and aggregated
NCD scores for individual sentences produce very
similar correlations to human judgments.
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Figure 1: An example showing the compressed
sizes of two strings separately and concatenated.

2 Normalized Compression Distance

Normalized compression distance (NCD) is a sim-
ilarity measure based on the idea that a string x is
similar to another string y when both share sub-
strings. The description of y can reference shared
substrings in the known x without repetition, in-
dicating shared information. Figure 1 shows an
example in which the compression of the concate-
nation of x and y results in a shorter output than
individual compressions of x and y.

The normalized compression distance, as de-
fined by Cilibrasi and Vitanyi (2005), is given in
Equation 1, with C(x) as length of the compres-
sion of x and C(x, y) as the length of the com-
pression of the concatenation of x and y.

NCD(x, y) =
C(x, y)−min {C(x), C(y)}

max {C(x), C(y)}
(1)

NCD computes the distance as a score closer to
one for very different strings and closer to zero for
more similar strings.

NCD is an approximation of the uncomputable
normalized information distance (NID), a general
measure for the similarity of two objects. NID
is based on the notion of Kolmogorov complex-
ity K(x), a theoretical measure for the informa-
tion content of a string x, defined as the shortest
universal Turing machine that prints x and stops
(Solomonoff, 1964). NCD approximates NID by
the use of a compressor C(x) that is an upper
bound of the Kolmogorov complexity K(x).

3 mNCD

Normalized compression distance was not con-
ceived with MT evaluation in mind, but rather it
is a general measure of string similarity. Implicit
non-binary matching with NCD is indicated by
preliminary experiments which show that NCD is
less sensitive to random changes on the character
level than, for instance, BLEU, which only counts
the exact matches between word n-grams. Thus
comparison of sentences at the character level
could account better for morphological changes.

Variation in language leads to several accept-
able translations for each source sentence, which
is why multiple reference translations are pre-
ferred in evaluation. Unfortunately, it is typical
to have only one reference translation. Paraphras-
ing techniques can produce additional translation
variants (Russo-Lassner et al., 2005; Kauchak and
Barzilay, 2006). These can be seen as new refer-
ence translations, similar to pseudo references (Ma
et al., 2007).

The proposed method, mNCD, works analo-
gously to M-BLEU and M-TER, which use the
flexible word matching modules from METEOR
to find relaxed word-to-word alignments (Agar-
wal and Lavie, 2008). The modules are able to
align words even if they do not share the same
surface form, but instead have a common stem or
are synonyms of each other. A similarized transla-
tion reference is generated by replacing words in
the reference with their aligned counterparts from
the translation hypothesis. The NCD score is com-
puted between the translations and the similarized
references to get the mNCD score.

Table 1 shows some hand-picked German–
English candidate translations along with a) the
reference translations including the 1-NCD score
to easily compare with METEOR and b) the simi-
larized references including the mNCD score. For
comparison, the corresponding METEOR scores
without implicit relaxed matching are shown.

4 Experiments

The proposed mNCD and the basic NCD measure
were evaluated by computing correlation to hu-
man judgments of translations. A high correlation
value between an MT evaluation measure and hu-
man judgments indicates that the measure is able
to evaluate translations in a more similar way to
humans.

Relaxed alignments with the METEOR mod-
ules exact, stem and synonym were created
for English for the computation of the mNCD
score. The synonym module was not available
with other target languages.

4.1 Evaluation Data

The 2008 ACL Workshop on Statistical Machine
Translation (Callison-Burch et al., 2008) shared
task data includes translations from a total of 30
MT systems between English and five European
languages, as well as automatic and human trans-
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Candidate C/ Reference R/ Similarized Reference S 1-NCD METEOR

C There is no effective means to stop a Tratsch, which was already included in the world.
R There is no good way to halt gossip that has already begun to spread. .41 .31
S There is no effective means to stop gossip that has already begun to spread. .56 .55

C Crisis, not only in America
R A Crisis Not Only in the U.S. .51 .44
S A Crisis not only in the America .72 .56

C Influence on the whole economy should not have this crisis.
R Nevertheless, the crisis should not have influenced the entire economy. .60 .37
S Nevertheless, the crisis should not have Influence the entire economy. .62 .44

C Or the lost tight meeting will be discovered at the hands of a gentlemen?
R Perhaps you see the pen you thought you lost lying on your colleague’s desk. .42 .09
S Perhaps you meeting the pen you thought you lost lying on your colleague’s desk. .40 .13

Table 1: Example German–English translations showing the effect of relaxed matching in the 1-mNCD
score (for rows S) compared with METEOR using the exact module only, since the modules stem
and synonym are already used in the similarized reference. Replaced words are emphasized.

lation evaluations for the translations. There are
several tasks, defined by the language pair and the
domain of translated text.

The human judgments include three different
categories. The RANK category has human quality
rankings of five translations for one sentence from
different MT systems. The CONST category con-
tains rankings for short phrases (constituents), and
the YES/NO category contains binary answers if a
short phrase is an acceptable translation or not.

For the translation tasks into English, the re-
laxed alignment using a stem module and the
synonym module affected 7.5 % of all words,
whereas only 5.1 % of the words were changed in
the tasks from English into the other languages.

The data was preprocessed in two different
ways. For NCD we kept the data as is, which we
called real casing (rc). Since the used METEOR
align module lowercases all text, we restored the
case information in mNCD by copying the correct
case from the reference translation to the similar-
ized reference, based on METEOR’s alignment.
The other way was to lowercase all data (lc).

4.2 System-level correlation

We follow the same evaluation methodology as in
Callison-Burch et al. (2008), which allows us to
measure how well MT evaluation measures corre-
late with human judgments on the system level.

Spearman’s rank correlation coefficient ρ was
calculated between each MT evaluation measure
and human judgment category using the simplified
equation

ρ = 1− 6
∑

i di

n(n2 − 1)
(2)

where for each system i, di is the difference be-
tween the rank derived from annotators’ input and
the rank obtained from the measure. From the an-
notators’ input, the n systems were ranked based
on the number of times each system’s output was
selected as the best translation divided by the num-
ber of times each system was part of a judgment.

We computed system-level correlations for
tasks with English, French, Spanish and German
as the target language1.

5 Results

We compare mNCD against NCD and relate their
performance to other MT evaluation measures.

5.1 Block size effect on NCD scores

Väyrynen et al. (2010) computed NCD between a
set of candidate translations and references at the
same time regardless of the sentence alignments,
analogously to document comparison. We experi-
mented with segmentation of the candidate trans-
lations into smaller blocks, which were individ-
ually evaluated with NCD and aggregated into a
single value with arithmetic mean. The resulting
system-level correlations between NCD and hu-
man judgments are shown in Figure 2 as a function
of the block size. The correlations are very simi-
lar with all block sizes, except for Spanish, where
smaller block size produces higher correlation. An
experiment with geometric mean produced similar
results. The reported results with mNCD use max-
imum block size, similar to Väyrynen et al. (2010).

1The English-Spanish news task was left out as most mea-
sures had negative correlation with human judgments.
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Figure 2: The block size has very little effect on
the correlation between NCD and human judg-
ments. The right side corresponds to document
comparison and the left side to aggregated NCD
scores for sentences.

5.2 mNCD against NCD

Table 2 shows the average system level correlation
of different NCD and mNCD variants for trans-
lations into English. The two compressors that
worked best in our experiments were PPMZ and
bz2. PPMZ is slower to compute but performs
slightly better compared to bz2, except for the

Method Parameters R
A

N
K

C
O

N
S

T

Y
E

S
/N

O

M
ea

n

mNCD PPMZ rc .69 .74 .80 .74
NCD PPMZ rc .60 .66 .71 .66

mNCD bz2 rc .64 .73 .73 .70
NCD bz2 rc .57 .64 .69 .64

mNCD PPMZ lc .66 .80 .79 .75
NCD PPMZ lc .56 .79 .75 .70

mNCD bz2 lc .59 .85 .74 .73
NCD bz2 lc .54 .82 .71 .69

Table 2: Mean system level correlations over
all translation tasks into English for variants of
mNCD and NCD. Higher values are emphasized.
Parameters are the compressor PPMZ or bz2 and
the preprocessing choice lowercasing (lc) or real
casing (rc).

Target Lang Corr

Method Parameters EN DE FR ES

mNCD PPMZ rc .69 .37 .82 .38
NCD PPMZ rc .60 .37 .84 .39

mNCD bz2 rc .64 .32 .75 .25
NCD bz2 rc .57 .34 .85 .42

mNCD PPMZ lc .66 .33 .79 .23
NCD PPMZ lc .56 .37 .77 .21

mNCD bz2 lc .59 .25 .78 .16
NCD bz2 lc .54 .26 .77 .15

Table 3: mNCD versus NCD system correlation
RANK results with different parameters (the same
as in Table 2) for each target language. Higher
values are emphasized. Target languages DE, FR

and ES use only the stem module.

lowercased CONST category.
Table 2 shows that real casing improves RANK

correlation slightly throughout NCD and mNCD
variants, whereas it reduces correlation in the cat-
egories CONST, YES/NO as well as the mean.

The best mNCD (PPMZ rc) improves the best
NCD (PPMZ rc) method by 15% in the RANK

category. In the CONST category the best mNCD
(bz2 lc) improves the best NCD (bz2 lc) by 3.7%.
For the total average, the best mNCD (PPMZ rc)
improves the the best NCD (bz2 lc) by 7.2%.

Table 3 shows the correlation results for the
RANK category by target language. As shown al-
ready in Table 2, mNCD clearly outperforms NCD
for English. Correlations for other languages show
mixed results and on average, mNCD gives lower
correlations than NCD.

5.3 mNCD versus other methods
Table 4 presents the results for the selected mNCD
(PPMZ rc) and NCD (bz2 rc) variants along with
the correlations for other MT evaluation methods
from the WMT’08 data, based on the results in
Callison-Burch et al. (2008). The results are av-
erages over language pairs into English, sorted
by RANK, which we consider the most signifi-
cant category. Although mNCD correlation with
human evaluations improved over NCD, the rank-
ing among other measures was not affected. Lan-
guage and task specific results not shown here, re-
veal very low mNCD and NCD correlations in the
Spanish-English news task, which significantly
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Method R
A

N
K

C
O

N
S

T

Y
E

S
/N

O

M
ea

n

DP .81 .66 .74 .73
ULCh .80 .68 .78 .75

DR .79 .53 .65 .66
meteor-ranking .78 .55 .63 .65

ULC .77 .72 .81 .76
posbleu .75 .69 .78 .74

SR .75 .66 .76 .72
posF4gram-gm .74 .60 .71 .68

meteor-baseline .74 .60 .63 .66
posF4gram-am .74 .58 .69 .67

mNCD (PPMZ rc) .69 .74 .80 .74
NCD (PPMZ rc) .60 .66 .71 .66

mbleu .50 .76 .70 .65
bleu .50 .72 .74 .65
mter .38 .74 .68 .60

svm-rank .37 .10 .23 .23

Mean .67 .62 .69 .66

Table 4: Average system-level correlations over
translation tasks into English for NCD, mNCD
and other MT evaluations measures

degrades the averages. Considering the mean of
the categories instead, mNCD’s correlation of .74
is third best together with ’posbleu’.

Table 5 shows the results from English. The ta-
ble is shorter since many of the better MT mea-
sures use language specific linguistic resources
that are not easily available for languages other
than English. mNCD performs competitively only
for French, otherwise it falls behind NCD and
other methods as already shown earlier.

6 Discussion

We have introduced a new MT evaluation mea-
sure, mNCD, which is based on normalized com-
pression distance and METEOR’s relaxed align-
ment modules. The mNCD measure outperforms
NCD in English with all tested parameter com-
binations, whereas results with other target lan-
guages are unclear. The improved correlations
with mNCD did not change the position in the
RANK category of the MT evaluation measures in
the 2008 ACL WMT shared task.

The improvement in English was expected on
the grounds of the synonym module, and indicated
also by the larger number of affected words in the

Method
Target Lang Corr

DE FR ES Mean

posbleu .75 .80 .75 .75
posF4gram-am .74 .82 .79 .74
posF4gram-gm .74 .82 .79 .74

bleu .47 .83 .80 .68
NCD (bz2 rc) .34 .85 .42 .66

svm-rank .44 .80 .80 .66
mbleu .39 .77 .83 .63

mNCD (PPMZ rc) .37 .82 .38 .63
meteor-baseline .43 .61 .84 .58
meteor-ranking .26 .70 .83 .55

mter .26 .69 .73 .52

Mean .47 .77 .72 .65

Table 5: Average system-level correlations for the
RANK category from English for NCD, mNCD
and other MT evaluation measures.

similarized references. We believe there is poten-
tial for improvement in other languages as well if
synonym lexicons are available.

We have also extended the basic NCD measure
to scale between a document comparison mea-
sure and aggregated sentence-level measure. The
rather surprising result is that NCD produces quite
similar scores with all block sizes. The different
result with Spanish may be caused by differences
in the data or problems in the calculations.

After using the same evaluation methodology as
in Callison-Burch et al. (2008), we have doubts
whether it presents the most effective method ex-
ploiting all the given human evaluations in the best
way. The system-level correlation measure only
awards the winner of the ranking of five differ-
ent systems. If a system always scored second,
it would never be awarded and therefore be overly
penalized. In addition, the human knowledge that
gave the lower rankings is not exploited.

In future work with mNCD as an MT evalu-
ation measure, we are planning to evaluate syn-
onym dictionaries for other languages than En-
glish. The synonym module for English does
not distinguish between different senses of words.
Therefore, synonym lexicons found with statis-
tical methods might provide a viable alternative
for manually constructed lexicons (Kauchak and
Barzilay, 2006).
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Abstract

We illustrate and explain problems of
n-grams-based machine translation (MT)
metrics (e.g. BLEU) when applied to
morphologically rich languages such as
Czech. A novel metric SemPOS based
on the deep-syntactic representation of the
sentence tackles the issue and retains the
performance for translation to English as
well.

1 Introduction

Automatic metrics of machine translation (MT)
quality are vital for research progress at a fast
pace. Many automatic metrics of MT quality have
been proposed and evaluated in terms of correla-
tion with human judgments while various tech-
niques of manual judging are being examined as
well, see e.g. MetricsMATR08 (Przybocki et al.,
2008)1, WMT08 and WMT09 (Callison-Burch et
al., 2008; Callison-Burch et al., 2009)2.

The contribution of this paper is twofold. Sec-
tion 2 illustrates and explains severe problems of a
widely used BLEU metric (Papineni et al., 2002)
when applied to Czech as a representative of lan-
guages with rich morphology. We see this as an
instance of the sparse data problem well known
for MT itself: too much detail in the formal repre-
sentation leading to low coverage of e.g. a transla-
tion dictionary. In MT evaluation, too much detail
leads to the lack of comparable parts of the hy-
pothesis and the reference.

∗ This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003
of the Czech Republic), FP7-ICT-2009-4-247762 (Faust),
GA201/09/H057, GAUK 1163/2010, and MSM 0021620838.
We are grateful to the anonymous reviewers for further re-
search suggestions.

1http://nist.gov/speech/tests
/metricsmatr/2008/results/

2http://www.statmt.org/wmt08 and wmt09
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Figure 1: BLEU and human ranks of systems par-
ticipating in the English-to-Czech WMT09 shared
task.

Section 3 introduces and evaluates some new
variations of SemPOS (Kos and Bojar, 2009), a
metric based on the deep syntactic representation
of the sentence performing very well for Czech as
the target language. Aside from including depen-
dency and n-gram relations in the scoring, we also
apply and evaluate SemPOS for English.

2 Problems of BLEU

BLEU (Papineni et al., 2002) is an established
language-independent MT metric. Its correlation
to human judgments was originally deemed high
(for English) but better correlating metrics (esp.
for other languages) were found later, usually em-
ploying language-specific tools, see e.g. Przy-
bocki et al. (2008) or Callison-Burch et al. (2009).
The unbeaten advantage of BLEU is its simplicity.

Figure 1 illustrates a very low correlation to hu-
man judgments when translating to Czech. We
plot the official BLEU score against the rank es-
tablished as the percentage of sentences where a
system ranked no worse than all its competitors
(Callison-Burch et al., 2009). The systems devel-
oped at Charles University (cu-) are described in
Bojar et al. (2009), uedin is a vanilla configuration
of Moses (Koehn et al., 2007) and the remaining
ones are commercial MT systems.

In a manual analysis, we identified the reasons
for the low correlation: BLEU is overly sensitive
to sequences and forms in the hypothesis matching
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Con- Error
firmed Flags 1-grams 2-grams 3-grams 4-grams
Yes Yes 6.34% 1.58% 0.55% 0.29%
Yes No 36.93% 13.68% 5.87% 2.69%
No Yes 22.33% 41.83% 54.64% 63.88%
No No 34.40% 42.91% 38.94% 33.14%
Total n-grams 35,531 33,891 32,251 30,611

Table 1: n-grams confirmed by the reference and
containing error flags.

the reference translation. This focus goes directly
against the properties of Czech: relatively free
word order allows many permutations of words
and rich morphology renders many valid word
forms not confirmed by the reference.3 These
problems are to some extent mitigated if several
reference translations are available, but this is of-
ten not the case.

Figure 2 illustrates the problem of “sparse data”
in the reference. Due to the lexical and morpho-
logical variance of Czech, only a single word in
each hypothesis matches a word in the reference.
In the case of pctrans, the match is even a false
positive, “do” (to) is a preposition that should be
used for the “minus” phrase and not for the “end
of the day” phrase. In terms of BLEU, both hy-
potheses are equally poor but 90% of their tokens
were not evaluated.

Table 1 estimates the overall magnitude of this
issue: For 1-grams to 4-grams in 1640 instances
(different MT outputs and different annotators) of
200 sentences with manually flagged errors4, we
count how often the n-gram is confirmed by the
reference and how often it contains an error flag.
The suspicious cases are n-grams confirmed by
the reference but still containing a flag (false posi-
tives) and n-grams not confirmed despite contain-
ing no error flag (false negatives).

Fortunately, there are relatively few false posi-
tives in n-gram based metrics: 6.3% of unigrams
and far fewer higher n-grams.

The issue of false negatives is more serious and
confirms the problem of sparse data if only one
reference is available. 30 to 40% of n-grams do
not contain any error and yet they are not con-

3Condon et al. (2009) identify similar issues when eval-
uating translation to Arabic and employ rule-based normal-
ization of MT output to improve the correlation. It is beyond
the scope of this paper to describe the rather different nature
of morphological richness in Czech, Arabic and also other
languages, e.g. German or Finnish.

4The dataset with manually flagged errors is available at
http://ufal.mff.cuni.cz/euromatrixplus/

firmed by the reference. This amounts to 34% of
running unigrams, giving enough space to differ in
human judgments and still remain unscored.

Figure 3 documents the issue across languages:
the lower the BLEU score itself (i.e. fewer con-
firmed n-grams), the lower the correlation to hu-
man judgments regardless of the target language
(WMT09 shared task, 2025 sentences per lan-
guage).

Figure 4 illustrates the overestimation of scores
caused by too much attention to sequences of to-
kens. A phrase-based system like Moses (cu-
bojar) can sometimes produce a long sequence of
tokens exactly as required by the reference, lead-
ing to a high BLEU score. The framed words
in the illustration are not confirmed by the refer-
ence, but the actual error in these words is very
severe for comprehension: nouns were used twice
instead of finite verbs, and a misleading transla-
tion of a preposition was chosen. The output by
pctrans preserves the meaning much better despite
not scoring in either of the finite verbs and produc-
ing far shorter confirmed sequences.

3 Extensions of SemPOS

SemPOS (Kos and Bojar, 2009) is inspired by met-
rics based on overlapping of linguistic features in
the reference and in the translation (Giménez and
Márquez, 2007). It operates on so-called “tec-
togrammatical” (deep syntactic) representation of
the sentence (Sgall et al., 1986; Hajič et al., 2006),
formally a dependency tree that includes only au-
tosemantic (content-bearing) words.5 SemPOS as
defined in Kos and Bojar (2009) disregards the
syntactic structure and uses the semantic part of
speech of the words (noun, verb, etc.). There are
19 fine-grained parts of speech. For each semantic
part of speech t, the overlapping O(t) is set to zero
if the part of speech does not occur in the reference
or the candidate set and otherwise it is computed
as given in Equation 1 below.

5We use TectoMT (Žabokrtský and Bojar, 2008),
http://ufal.mff.cuni.cz/tectomt/, for the lin-
guistic pre-processing. While both our implementation of
SemPOS as well as TectoMT are in principle freely avail-
able, a stable public version has yet to be released. Our plans
include experiments with approximating the deep syntactic
analysis with a simple tagger, which would also decrease the
installation burden and computation costs, at the expense of
accuracy.
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SRC Prague Stock Market falls to minus by the end of the trading day
REF pražská burza se ke konci obchodovánı́ propadla do minusu
cu-bojar praha stock market klesne k minus na konci obchodnı́ho dne
pctrans praha trh cenných papı́rů padá minus do konce obchodnı́ho dne

Figure 2: Sparse data in BLEU evaluation: Large chunks of hypotheses are not compared at all. Only a
single unigram in each hypothesis is confirmed in the reference.
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Figure 3: BLEU correlates with its correlation to human judgments. BLEU scores around 0.1 predict
little about translation quality.

O(t) =

∑
i∈I

∑
w∈ri∩ci

min(cnt(w, t, ri), cnt(w, t, ci))∑
i∈I

∑
w∈ri∪ci

max(cnt(w, t, ri), cnt(w, t, ci))

(1)
The semantic part of speech is denoted t; ci

and ri are the candidate and reference translations
of sentence i, and cnt(w, t, rc) is the number of
wordsw with type t in rc (the reference or the can-
didate). The matching is performed on the level of
lemmas, i.e. no morphological information is pre-
served in ws. See Figure 5 for an example; the
sentence is the same as in Figure 4.

The final SemPOS score is obtained by macro-
averaging over all parts of speech:

SemPOS =
1
|T |

∑
t∈T

O(t) (2)

where T is the set of all possible semantic parts
of speech types. (The degenerate case of blank
candidate and reference has SemPOS zero.)

3.1 Variations of SemPOS
This section describes our modifications of Sem-
POS. All methods are evaluated in Section 3.2.

Different Classification of Autosemantic
Words. SemPOS uses semantic parts of speech
to classify autosemantic words. The tectogram-
matical layer offers also a feature called Functor
describing the relation of a word to its governor

similarly as semantic roles do. There are 67
functor types in total.

Using Functor instead of SemPOS increases the
number of word classes that independently require
a high overlap. For a contrast we also completely
remove the classification and use only one global
class (Void).

Deep Syntactic Relations in SemPOS. In
SemPOS, an autosemantic word of a class is con-
firmed if its lemma matches the reference. We uti-
lize the dependency relations at the tectogrammat-
ical layer to validate valence by refining the over-
lap and requiring also the lemma of 1) the parent
(denoted “par”), or 2) all the children regardless of
their order (denoted “sons”) to match.

Combining BLEU and SemPOS. One of the
major drawbacks of SemPOS is that it completely
ignores word order. This is too coarse even for
languages with relatively free word order like
Czech. Another issue is that it operates on lemmas
and it completely disregards correct word forms.
Thus, a weighted linear combination of SemPOS
and BLEU (computed on the surface representa-
tion of the sentence) should compensate for this.
For the purposes of the combination, we compute
BLEU only on unigrams up to fourgrams (denoted
BLEU1, . . . , BLEU4) but including the brevity
penalty as usual. Here we try only a few weight
settings in the linear combination but given a held-
out dataset, one could optimize the weights for the
best performance.
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SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vláda usa může do bank napumpovat 700 miliard dolarů

cu-bojar kongres výnosy : vláda usa může čerpadlo 700 miliard dolarů v bankách
pctrans kongres vynášı́ : us vláda může čerpat 700 miliardu dolarů do bank

Figure 4: Too much focus on sequences in BLEU: pctrans’ output is better but does not score well.
BLEU gave credit to cu-bojar for 1, 3, 5 and 8 fourgrams, trigrams, bigrams and unigrams, resp., but
only for 0, 0, 1 and 8 n-grams produced by pctrans. Confirmed sequences of tokens are underlined and
important errors (not considered by BLEU) are framed.

REF kongres/n ustoupit/v :/n vláda/n usa/n banka/n napumpovat/v 700/n miliarda/n dolar/n
cu-bojar kongres/n výnos/n :/n vláda/n usa/n moci/v čerpadlo/n 700/n miliarda/n dolar/n banka/n
pctrans kongres/n vynášet/v :/n us/n vláda/n čerpat/v 700/n miliarda/n dolar/n banka/n

Figure 5: SemPOS evaluates the overlap of lemmas of autosemantic words given their semantic part of
speech (n, v, . . . ). Underlined words are confirmed by the reference.

SemPOS for English. The tectogrammatical
layer is being adapted for English (Cinková et al.,
2004; Hajič et al., 2009) and we are able to use the
available tools to obtain all SemPOS features for
English sentences as well.

3.2 Evaluation of SemPOS and Friends

We measured the metric performance on data used
in MetricsMATR08, WMT09 and WMT08. For
the evaluation of metric correlation with human
judgments at the system level, we used the Pearson
correlation coefficient ρ applied to ranks. In case
of a tie, the systems were assigned the average po-
sition. For example if three systems achieved the
same highest score (thus occupying the positions
1, 2 and 3 when sorted by score), each of them
would obtain the average rank of 2 = 1+2+3

3 .
When correlating ranks (instead of exact scores)
and with this handling of ties, the Pearson coeffi-
cient is equivalent to Spearman’s rank correlation
coefficient.

The MetricsMATR08 human judgments include
preferences for pairs of MT systems saying which
one of the two systems is better, while the WMT08
and WMT09 data contain system scores (for up to
5 systems) on the scale 1 to 5 for a given sentence.
We assigned a human ranking to the systems based
on the percent of time that their translations were
judged to be better than or equal to the translations
of any other system in the manual evaluation. We
converted automatic metric scores to ranks.

Metrics’ performance for translation to English
and Czech was measured on the following test-
sets (the number of human judgments for a given
source language in brackets):

To English: MetricsMATR08 (cn+ar: 1652),
WMT08 News Articles (de: 199, fr: 251),
WMT08 Europarl (es: 190, fr: 183), WMT09
(cz: 320, de: 749, es: 484, fr: 786, hu: 287)

To Czech: WMT08 News Articles (en: 267),
WMT08 Commentary (en: 243), WMT09
(en: 1425)

The MetricsMATR08 testset contained 4 refer-
ence translations for each sentence whereas the re-
maining testsets only one reference.

Correlation coefficients for English are shown
in Table 2. The best metric is Voidpar closely fol-
lowed by Voidsons. The explanation is that Void
compared to SemPOS or Functor does not lose
points by an erroneous assignment of the POS or
the functor, and that Voidpar profits from check-
ing the dependency relations between autoseman-
tic words. The combination of BLEU and Sem-
POS6 outperforms both individual metrics, but in
case of SemPOS only by a minimal difference.
Additionally, we confirm that 4-grams alone have
little discriminative power both when used as a
metric of their own (BLEU4) as well as in a lin-
ear combination with SemPOS.

The best metric for Czech (see Table 3) is a lin-
ear combination of SemPOS and 4-gram BLEU
closely followed by other SemPOS and BLEUn

combinations. We assume this is because BLEU4
can capture correctly translated fixed phrases,
which is positively reflected in human judgments.
Including BLEU1 in the combination favors trans-
lations with word forms as expected by the refer-

6For each n ∈ {1, 2, 3, 4}, we show only the best weight
setting for SemPOS and BLEUn.
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Metric Avg Best Worst
Voidpar 0.75 0.89 0.60
Voidsons 0.75 0.90 0.54
Void 0.72 0.91 0.59
Functorsons 0.72 1.00 0.43
GTM 0.71 0.90 0.54
4·SemPOS+1·BLEU2 0.70 0.93 0.43
SemPOSpar 0.70 0.93 0.30
1·SemPOS+4·BLEU3 0.70 0.91 0.26
4·SemPOS+1·BLEU1 0.69 0.93 0.43
NIST 0.69 0.90 0.53
SemPOSsons 0.69 0.94 0.40
SemPOS 0.69 0.95 0.30
2·SemPOS+1·BLEU4 0.68 0.91 0.09
BLEU1 0.68 0.87 0.43
BLEU2 0.68 0.90 0.26
BLEU3 0.66 0.90 0.14
BLEU 0.66 0.91 0.20
TER 0.63 0.87 0.29
PER 0.63 0.88 0.32
BLEU4 0.61 0.90 -0.31
Functorpar 0.57 0.83 -0.03
Functor 0.55 0.82 -0.09

Table 2: Average, best and worst system-level cor-
relation coefficients for translation to English from
various source languages evaluated on 10 different
testsets.

ence, thus allowing to spot bad word forms. In
all cases, the linear combination puts more weight
on SemPOS. Given the negligible difference be-
tween SemPOS alone and the linear combinations,
we see that word forms are not the major issue for
humans interpreting the translation—most likely
because the systems so far often make more im-
portant errors. This is also confirmed by the obser-
vation that using BLEU alone is rather unreliable
for Czech and BLEU-1 (which judges unigrams
only) is even worse. Surprisingly BLEU-2 per-
formed better than any other n-grams for reasons
that have yet to be examined. The error metrics
PER and TER showed the lowest correlation with
human judgments for translation to Czech.

4 Conclusion

This paper documented problems of single-
reference BLEU when applied to morphologically
rich languages such as Czech. BLEU suffers from
a sparse data problem, unable to judge the quality
of tokens not confirmed by the reference. This is
confirmed for other languages as well: the lower
the BLEU score the lower the correlation to hu-
man judgments.

We introduced a refinement of SemPOS, an
automatic metric of MT quality based on deep-
syntactic representation of the sentence tackling

Metric Avg Best Worst
3·SemPOS+1·BLEU4 0.55 0.83 0.14
2·SemPOS+1·BLEU2 0.55 0.83 0.14
2·SemPOS+1·BLEU1 0.53 0.83 0.09
4·SemPOS+1·BLEU3 0.53 0.83 0.09
SemPOS 0.53 0.83 0.09
BLEU2 0.43 0.83 0.09
SemPOSpar 0.37 0.53 0.14
Functorsons 0.36 0.53 0.14
GTM 0.35 0.53 0.14
BLEU4 0.33 0.53 0.09
Void 0.33 0.53 0.09
NIST 0.33 0.53 0.09
Voidsons 0.33 0.53 0.09
BLEU 0.33 0.53 0.09
BLEU3 0.33 0.53 0.09
BLEU1 0.29 0.53 -0.03
SemPOSsons 0.28 0.42 0.03
Functorpar 0.23 0.40 0.14
Functor 0.21 0.40 0.09
Voidpar 0.16 0.53 -0.08
PER 0.12 0.53 -0.09
TER 0.07 0.53 -0.23

Table 3: System-level correlation coefficients for
English-to-Czech translation evaluated on 3 differ-
ent testsets.

the sparse data issue. SemPOS was evaluated on
translation to Czech and to English, scoring better
than or comparable to many established metrics.
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Abstract

This paper describes ongoing work on dis-
tributional models for word meaning in
context. We abandon the usual one-vector-
per-word paradigm in favor of an exemplar
model that activates only relevant occur-
rences. On a paraphrasing task, we find
that a simple exemplar model outperforms
more complex state-of-the-art models.

1 Introduction

Distributional models are a popular framework
for representing word meaning. They describe
a lemma through a high-dimensional vector that
records co-occurrence with context features over a
large corpus. Distributional models have been used
in many NLP analysis tasks (Salton et al., 1975;
McCarthy and Carroll, 2003; Salton et al., 1975), as
well as for cognitive modeling (Baroni and Lenci,
2009; Landauer and Dumais, 1997; McDonald and
Ramscar, 2001). Among their attractive properties
are their simplicity and versatility, as well as the
fact that they can be acquired from corpora in an
unsupervised manner.

Distributional models are also attractive as a
model of word meaning in context, since they do
not have to rely on fixed sets of dictionary sense
with their well-known problems (Kilgarriff, 1997;
McCarthy and Navigli, 2009). Also, they can
be used directly for testing paraphrase applicabil-
ity (Szpektor et al., 2008), a task that has recently
become prominent in the context of textual entail-
ment (Bar-Haim et al., 2007). However, polysemy
is a fundamental problem for distributional models.
Typically, distributional models compute a single
“type” vector for a target word, which contains co-
occurrence counts for all the occurrences of the
target in a large corpus. If the target is polyse-
mous, this vector mixes contextual features for all
the senses of the target. For example, among the

top 20 features for coach, we get match and team
(for the “trainer” sense) as well as driver and car
(for the “bus” sense). This problem has typically
been approached by modifying the type vector for
a target to better match a given context (Mitchell
and Lapata, 2008; Erk and Padó, 2008; Thater et
al., 2009).

In the terms of research on human concept rep-
resentation, which often employs feature vector
representations, the use of type vectors can be un-
derstood as a prototype-based approach, which uses
a single vector per category. From this angle, com-
puting prototypes throws away much interesting
distributional information. A rival class of mod-
els is that of exemplar models, which memorize
each seen instance of a category and perform cat-
egorization by comparing a new stimulus to each
remembered exemplar vector.

We can address the polysemy issue through an
exemplar model by simply removing all exem-
plars that are “not relevant” for the present con-
text, or conversely activating only the relevant
ones. For the coach example, in the context of
a text about motorways, presumably an instance
like “The coach drove a steady 45 mph” would be
activated, while “The team lost all games since the
new coach arrived” would not.

In this paper, we present an exemplar-based dis-
tributional model for modeling word meaning in
context, applying the model to the task of decid-
ing paraphrase applicability. With a very simple
vector representation and just using activation, we
outperform the state-of-the-art prototype models.
We perform an in-depth error analysis to identify
stable parameters for this class of models.

2 Related Work

Among distributional models of word, there are
some approaches that address polysemy, either
by inducing a fixed clustering of contexts into
senses (Schütze, 1998) or by dynamically modi-
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fying a word’s type vector according to each given
sentence context (Landauer and Dumais, 1997;
Mitchell and Lapata, 2008; Erk and Padó, 2008;
Thater et al., 2009). Polysemy-aware approaches
also differ in their notion of context. Some use a
bag-of-words representation of words in the cur-
rent sentence (Schütze, 1998; Landauer and Du-
mais, 1997), some make use of syntactic con-
text (Mitchell and Lapata, 2008; Erk and Padó,
2008; Thater et al., 2009). The approach that we
present in the current paper computes a representa-
tion dynamically for each sentence context, using
a simple bag-of-words representation of context.

In cognitive science, prototype models predict
degree of category membership through similar-
ity to a single prototype, while exemplar theory
represents a concept as a collection of all previ-
ously seen exemplars (Murphy, 2002). Griffiths et
al. (2007) found that the benefit of exemplars over
prototypes grows with the number of available ex-
emplars. The problem of representing meaning in
context, which we consider in this paper, is closely
related to the problem of concept combination in
cognitive science, i.e., the derivation of representa-
tions for complex concepts (such as “metal spoon”)
given the representations of base concepts (“metal”
and “spoon”). While most approaches to concept
combination are based on prototype models, Voor-
spoels et al. (2009) show superior results for an
exemplar model based on exemplar activation.

In NLP, exemplar-based (memory-based) mod-
els have been applied to many problems (Daele-
mans et al., 1999). In the current paper, we use an
exemplar model for computing distributional repre-
sentations for word meaning in context, using the
context to activate relevant exemplars. Comparing
representations of context, bag-of-words (BOW)
representations are more informative and noisier,
while syntax-based representations deliver sparser
and less noisy information. Following the hypothe-
sis that richer, topical information is more suitable
for exemplar activation, we use BOW representa-
tions of sentential context in the current paper.

3 Exemplar Activation Models

We now present an exemplar-based model for
meaning in context. It assumes that each target
lemma is represented by a set of exemplars, where
an exemplar is a sentence in which the target occurs,
represented as a vector. We use lowercase letters
for individual exemplars (vectors), and uppercase

Sentential context Paraphrase
After a fire extinguisher is used, it must
always be returned for recharging and
its use recorded.

bring back (3),
take back (2),
send back (1),
give back (1)

We return to the young woman who is
reading the Wrigley’s wrapping paper.

come back (3),
revert (1), revisit
(1), go (1)

Table 1: The Lexical Substitution (LexSub) dataset.

letters for sets of exemplars.
We model polysemy by activating relevant ex-

emplars of a lemma E in a given sentence context
s. (Note that we use E to refer to both a lemma
and its exemplar set, and that s can be viewed as
just another exemplar vector.) In general, we define
activation of a set E by exemplar s as

act(E, s) = {e ∈ E | sim(e, s) > θ(E, s)}

where E is an exemplar set, s is the “point of com-
parison”, sim is some similarity measure such as
Cosine or Jaccard, and θ(E, s) is a threshold. Ex-
emplars belong to the activated set if their similarity
to s exceeds θ(E, s).1 We explore two variants of
activation. In kNN activation, the k most simi-
lar exemplars to s are activated by setting θ to the
similarity of the k-th most similar exemplar. In
q-percentage activation, we activate the top q%
of E by setting θ to the (100-q)-th percentile of the
sim(e, s) distribution. Note that, while in the kNN
activation scheme the number of activated exem-
plars is the same for every lemma, this is not the
case for percentage activation: There, a more fre-
quent lemma (i.e., a lemma with more exemplars)
will have more exemplars activated.

Exemplar activation for paraphrasing. A para-
phrases is typically only applicable to a particular
sense of a target word. Table 1 illustrates this on
two examples from the Lexical Substitution (Lex-
Sub) dataset (McCarthy and Navigli, 2009), both
featuring the target return. The right column lists
appropriate paraphrases of return in each context
(given by human annotators). 2 We apply the ex-
emplar activation model to the task of predicting
paraphrase felicity: Given a target lemma T in a
particular sentential context s, and given a list of

1In principle, activation could be treated not just as binary
inclusion/exclusion, but also as a graded weighting scheme.
However, weighting schemes introduce a large number of
parameters, which we wanted to avoid.

2Each annotator was allowed to give up to three para-
phrases per target in context. As a consequence, the number
of gold paraphrases per target sentence varies.
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potential paraphrases of T , the task is to predict
which of the paraphrases are applicable in s.

Previous approaches (Mitchell and Lapata, 2008;
Erk and Padó, 2008; Erk and Padó, 2009; Thater
et al., 2009) have performed this task by modify-
ing the type vector for T to the context s and then
comparing the resulting vector T ′ to the type vec-
tor of a paraphrase candidate P . In our exemplar
setting, we select a contextually adequate subset
of contexts in which T has been observed, using
T ′ = act(T, s) as a generalized representation of
meaning of target T in the context of s.

Previous approaches used all of P as a repre-
sentation for a paraphrase candidate P . However,
P includes also irrelevant exemplars, while for a
paraphrase to be judged as good, it is sufficient that
one plausible reading exists. Therefore, we use
P ′ = act(P, s) to represent the paraphrase.

4 Experimental Evaluation

Data. We evaluate our model on predicting para-
phrases from the Lexical Substitution (LexSub)
dataset (McCarthy and Navigli, 2009). This dataset
consists of 2000 instances of 200 target words in
sentential contexts, with paraphrases for each tar-
get word instance generated by up to 6 participants.
Paraphrases are ranked by the number of annota-
tors that chose them (cf. Table 1). Following Erk
and Padó (2008), we take the list of paraphrase can-
didates for a target as given (computed by pooling
all paraphrases that LexSub annotators proposed
for the target) and use the models to rank them for
any given sentence context.

As exemplars, we create bag-of-words co-
occurrence vectors from the BNC. These vectors
represent instances of a target word by the other
words in the same sentence, lemmatized and POS-
tagged, minus stop words. E.g., if the lemma
gnurge occurs twice in the BNC, once in the sen-
tence “The dog will gnurge the other dog”, and
once in “The old windows gnurged”, the exemplar
set for gnurge contains the vectors [dog-n: 2, other-
a:1] and [old-a: 1, window-n: 1]. For exemplar
similarity, we use the standard Cosine similarity,
and for the similarity of two exemplar sets, the
Cosine of their centroids.

Evaluation. The model’s prediction for an item
is a list of paraphrases ranked by their predicted
goodness of fit. To evaluate them against a
weighted list of gold paraphrases, we follow Thater
et al. (2009) in using Generalized Average Preci-

para- actT actP
meter kNN perc. kNN perc.
10 36.1 35.5 36.5 38.6
20 36.2 35.2 36.2 37.9
30 36.1 35.3 35.8 37.8
40 36.0 35.3 35.8 37.7
50 35.9 35.1 35.9 37.5
60 36.0 35.0 36.1 37.5
70 35.9 34.8 36.1 37.5
80 36.0 34.7 36.0 37.4
90 35.9 34.5 35.9 37.3
no act. 34.6 35.7
random BL 28.5

Table 2: Activation of T or P individually on the
full LexSub dataset (GAP evaluation)

sion (GAP), which interpolates the precision values
of top-n prediction lists for increasing n. Let G =
〈q1, . . . , qm〉 be the list of gold paraphrases with
gold weights 〈y1, . . . , ym〉. Let P = 〈p1, . . . , pn〉
be the list of model predictions as ranked by the
model, and let 〈x1, . . . , xn〉 be the gold weights
associated with them (assume xi = 0 if pi 6∈ G),
where G ⊆ P . Let I(xi) = 1 if pi ∈ G, and zero
otherwise. We write xi = 1

i

∑i
k=1 xk for the av-

erage gold weight of the first i model predictions,
and analogously yi. Then

GAP (P,G) =
1∑m

j=1 I(yj)yj

n∑
i=1

I(xi)xi

Since the model may rank multiple paraphrases the
same, we average over 10 random permutations of
equally ranked paraphrases. We report mean GAP
over all items in the dataset.

Results and Discussion. We first computed two
models that activate either the paraphrase or the
target, but not both. Model 1, actT , activates only
the target, using the complete P as paraphrase, and
ranking paraphrases by sim(P, act(T, s)). Model
2, actP, activates only the paraphrase, using s as
the target word, ranking by sim(act(P, s), s).

The results for these models are shown in Ta-
ble 2, with both kNN and percentage activation:
kNN activation with a parameter of 10 means that
the 10 closest neighbors were activated, while per-
centage with a parameter of 10 means that the clos-
est 10% of the exemplars were used. Note first
that we computed a random baseline (last row)
with a GAP of 28.5. The second-to-last row (“no
activation”) shows two more informed baselines.
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The actT “no act” result (34.6) corresponds to a
prototype-based model that ranks paraphrase can-
didates by the distance between their type vectors
and the target’s type vector. Virtually all exem-
plar models outperform this prototype model. Note
also that both actT and actP show the best results
for small values of the activation parameter. This
indicates paraphrases can be judged on the basis
of a rather small number of exemplars. Neverthe-
less, actT and actP differ with regard to the details
of their optimal activation. For actT , a small ab-
solute number of activated exemplars (here, 20)
works best , while actP yields the best results for
a small percentage of paraphrase exemplars. This
can be explained by the different functions played
by actT and actP (cf. Section 3): Activation of the
paraphrase must allow a guess about whether there
is reasonable interpretation of P in the context s.
This appears to require a reasonably-sized sample
from P . In contrast, target activation merely has to
counteract the sparsity of s, and activation of too
many exemplars from T leads to oversmoothing.

We obtained significances by computing 95%
and 99% confidence intervals with bootstrap re-
sampling. As a rule of thumb, we find that 0.4%
difference in GAP corresponds to a significant dif-
ference at the 95% level, and 0.7% difference in
GAP to significance at the 99% level. The four
activation methods (i.e., columns in Table 2) are
significantly different from each other, with the ex-
ception of the pair actT/kNN and actP/kNN (n.s.),
so that we get the following order:

actP/perc > actP/kNN ≈ actT/kNN > actT/perc

where > means “significantly outperforms”. In par-
ticular, the best method (actT/kNN) outperforms
all other methods at p<0.01. Here, the best param-
eter setting (10% activation) is also significantly
better than the next-one one (20% activation). With
the exception of actT/perc, all activation methods
significantly outperform the best baseline (actP, no
activation).

Based on these observations, we computed a
third model, actTP, that activates both T (by kNN)
and P (by percentage), ranking paraphrases by
sim(act(P, s), act(T, s)). Table 3 shows the re-
sults. We find the overall best model at a similar
location in parameter space as for actT and actP
(cf. Table 2), namely by setting the activation pa-
rameters to small values. The sensitivity of the
parameters changes considerably, though. When

P activation (%) ⇒ 10 20 30
T activation (kNN) ⇓

5 38.2 38.1 38.1
10 37.6 37.8 37.7
20 37.3 37.4 37.3
40 37.2 37.2 36.1

Table 3: Joint activation of P and T on the full
LexSub dataset (GAP evaluation)

we fix the actP activation level, we find compara-
tively large performance differences between the
T activation settings k=5 and k=10 (highly signif-
icant for 10% actP, and significant for 20% and
30% actP). On the other hand, when we fix the
actT activation level, changes in actP activation
generally have an insignificant impact.

Somewhat disappointingly, we are not able to
surpass the best result for actP alone. This indicates
that – at least in the current vector space – the
sparsity of s is less of a problem than the “dilution”
of s that we face when we representing the target
word by exemplars of T close to s. Note, however,
that the numerically worse performance of the best
actTP model is still not significantly different from
the best actP model.

Influence of POS and frequency. An analysis
of the results by target part-of-speech showed that
the globally optimal parameters also yield the best
results for individual POS, even though there are
substantial differences among POS. For actT , the
best results emerge for all POS with kNN activation
with k between 10 and 30. For k=20, we obtain a
GAP of 35.3 (verbs), 38.2 (nouns), and 35.1 (adjec-
tives). For actP, the best parameter for all POS was
activation of 10%, with GAPs of 36.9 (verbs), 41.4
(nouns), and 37.5 (adjectives). Interestingly, the
results for actTP (verbs: 38.4, nouns: 40.6, adjec-
tives: 36.9) are better than actP for verbs, but worse
for nouns and adjectives, which indicates that the
sparsity problem might be more prominent than for
the other POS. In all three models, we found a clear
effect of target and paraphrase frequency, with de-
teriorating performance for the highest-frequency
targets as well as for the lemmas with the highest
average paraphrase frequency.

Comparison to other models. Many of the
other models are syntax-based and are therefore
only applicable to a subset of the LexSub data.
We have re-evaluated our exemplar models on the
subsets we used in Erk and Padó (2008, EP08, 367
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Models
EP08 EP09 TDP09

EP08 dataset 27.4 NA NA
EP09 dataset NA 32.2 36.5

actT actP actTP
EP08 dataset 36.5 38.0 39.9
EP09 dataset 39.1 39.9 39.6

Table 4: Comparison to other models on two sub-
sets of LexSub (GAP evaluation)

datapoints) and Erk and Padó (2009, EP09, 100 dat-
apoints). The second set was also used by Thater et
al. (2009, TDP09). The results in Table 4 compare
these models against our best previous exemplar
models and show that our models outperform these
models across the board. 3 Due to the small sizes
of these datasets, statistical significance is more
difficult to attain. On EP09, the differences among
our models are not significant, but the difference
between them and the original EP09 model is.4 On
EP08, all differences are significant except for actP
vs. actTP.

We note that both the EP08 and the EP09
datasets appear to be simpler to model than the
complete Lexical Substitution dataset, at least by
our exemplar-based models. This underscores an
old insight: namely, that direct syntactic neighbors,
such as arguments and modifiers, provide strong
clues as to word sense.

5 Conclusions and Outlook

This paper reports on work in progress on an ex-
emplar activation model as an alternative to one-
vector-per-word approaches to word meaning in
context. Exemplar activation is very effective in
handling polysemy, even with a very simple (and
sparse) bag-of-words vector representation. On
both the EP08 and EP09 datasets, our models sur-
pass more complex prototype-based approaches
(Tab. 4). It is also noteworthy that the exemplar
activation models work best when few exemplars
are used, which bodes well for their efficiency.

We found that the best target representations re-

3Since our models had the advantage of being tuned on
the dataset, we also report the range of results across the
parameters we tested. On the EP08 dataset, we obtained 33.1–
36.5 for actT; 33.3–38.0 for actP; 37.7-39.9 for actTP. On the
EP09 dataset, the numbers were 35.8–39.1 for actT; 38.1–39.9
for actP; 37.2–39.8 for actTP.

4We did not have access to the TDP09 predictions to do
significance testing.

sult from activating a low absolute number of exem-
plars. Paraphrase representations are best activated
with a percentage-based threshold. Overall, we
found that paraphrase activation had a much larger
impact on performance than target activation, and
that drawing on target exemplars other than s to
represent the target meaning in context improved
over using s itself only for verbs (Tab. 3). This sug-
gests the possibility of considering T ’s activated
paraphrase candidates as the representation of T in
the context s, rather than some vector of T itself,
in the spirit of Kintsch (2001).

While it is encouraging that the best parameter
settings involved the activation of only few exem-
plars, computation with exemplar models still re-
quires the management of large numbers of vectors.
The computational overhead can be reduced by us-
ing data structures that cut down on the number
of vector comparisons, or by decreasing vector di-
mensionality (Gorman and Curran, 2006). We will
experiment with those methods to determine the
tradeoff of runtime and accuracy for this task.

Another area of future work is to move beyond
bag-of-words context: It is known from WSD
that syntactic and bag-of-words contexts provide
complementary information (Florian et al., 2002;
Szpektor et al., 2008), and we hope that they can be
integrated in a more sophisticated exemplar model.

Finally, we will to explore task-based evalua-
tions. Relation extraction and textual entailment
in particular are tasks where similar models have
been used before (Szpektor et al., 2008).
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Abstract

In predicate-argument structure analysis,
it is important to capture non-local de-
pendencies among arguments and inter-
dependencies between the sense of a pred-
icate and the semantic roles of its argu-
ments. However, no existing approach ex-
plicitly handles both non-local dependen-
cies and semantic dependencies between
predicates and arguments. In this pa-
per we propose a structured model that
overcomes the limitation of existing ap-
proaches; the model captures both types of
dependencies simultaneously by introduc-
ing four types of factors including a global
factor type capturing non-local dependen-
cies among arguments and a pairwise fac-
tor type capturing local dependencies be-
tween a predicate and an argument. In
experiments the proposed model achieved
competitive results compared to the state-
of-the-art systems without applying any
feature selection procedure.

1 Introduction

Predicate-argument structure analysis is a process
of assigning who does what to whom, where,
when, etc. for each predicate. Arguments of a
predicate are assigned particular semantic roles,
such as Agent, Theme, Patient, etc. Lately,
predicate-argument structure analysis has been re-
garded as a task of assigning semantic roles of
arguments as well as word senses of a predicate
(Surdeanu et al., 2008; Hajič et al., 2009).

Several researchers have paid much attention to
predicate-argument structure analysis, and the fol-
lowing two important factors have been shown.
Toutanova et al. (2008), Johansson and Nugues
(2008), and Björkelund et al. (2009) presented
importance of capturing non-local dependencies

of core arguments in predicate-argument structure
analysis. They used argument sequences tied with
a predicate sense (e.g. AGENT-buy.01/Active-
PATIENT) as a feature for the re-ranker of the
system where predicate sense and argument role
candidates are generated by their pipelined archi-
tecture. They reported that incorporating this type
of features provides substantial gain of the system
performance.

The other factor is inter-dependencies between
a predicate sense and argument roles, which re-
late to selectional preference, and motivated us
to jointly identify a predicate sense and its argu-
ment roles. This type of dependencies has been
explored by Riedel and Meza-Ruiz (2008; 2009b;
2009a), all of which use Markov Logic Networks
(MLN). The work uses the global formulae that
have atoms in terms of both a predicate sense and
each of its argument roles, and the system identi-
fies predicate senses and argument roles simulta-
neously.

Ideally, we want to capture both types of depen-
dencies simultaneously. The former approaches
can not explicitly include features that capture
inter-dependencies between a predicate sense and
its argument roles. Though these are implicitly in-
corporated by re-ranking where the most plausi-
ble assignment is selected from a small subset of
predicate and argument candidates, which are gen-
erated independently. On the other hand, it is dif-
ficult to deal with core argument features in MLN.
Because the number of core arguments varies with
the role assignments, this type of features cannot
be expressed by a single formula.

Thompson et al. (2010) proposed a gener-
ative model that captures both predicate senses
and its argument roles. However, the first-order
markov assumption of the model eliminates abil-
ity to capture non-local dependencies among ar-
guments. Also, generative models are in general
inferior to discriminatively trained linear or log-
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Figure 1: Undirected graphical model representa-
tion of the structured model

linear models.

In this paper we propose a structured model
that overcomes limitations of the previous ap-
proaches. For the model, we introduce several
types of features including those that capture both
non-local dependencies of core arguments, and
inter-dependencies between a predicate sense and
its argument roles. By doing this, both tasks are
mutually influenced, and the model determines
the most plausible set of assignments of a predi-
cate sense and its argument roles simultaneously.
We present an exact inference algorithm for the
model, and a large-margin learning algorithm that
can handle both local and global features.

2 Model

Figure 1 shows the graphical representation of our
proposed model. The node p corresponds to a
predicate, and the nodes a1, ..., aN to arguments
of the predicate. Each node is assigned a particu-
lar predicate sense or an argument role label. The
black squares are factors which provide scores of
label assignments. In the model, the nodes for ar-
guments depend on the predicate sense, and by in-
fluencing labels of a predicate sense and its argu-
ment roles, the most plausible label assignment of
the nodes is determined considering all factors.

In this work, we use linear models. Let x be
words in a sentence, p be a sense of a predicate in
x, and A = {an}N

1 be a set of possible role label
assignments for x. A predicate-argument structure
is represented by a pair of p and A. We define
the score function for predicate-argument struc-
tures as s(p,A) =

∑
Fk∈F Fk(x, p,A). F is a

set of all the factors, Fk(x, p,A) corresponds to a
particular factor in Figure 1, and gives a score to a
predicate or argument label assignments. Since we
use linear models, Fk(x, p,A) = w ·Φk(x, p,A).

2.1 Factors of the Model

We define four types of factors for the model.

Predicate Factor FP scores a sense of p, and
does not depend on any arguments. The score
function is defined by FP (x, p,A) = w·ΦP (x, p).

Argument Factor FA scores a label assignment
of a particular argument a ∈ A. The score is deter-
mined independently from a predicate sense, and
is given by FA(x, p, a) = w · ΦA(x, a).

Predicate-Argument Pairwise Factor
FPA captures inter-dependencies between
a predicate sense and one of its argument
roles. The score function is defined as
FPA(x, p, a) = w · ΦPA(x, p, a). The dif-
ference from FA is that FPA influences both
the predicate sense and the argument role. By
introducing this factor, the role label can be
influenced by the predicate sense, and vise versa.

Global Factor FG is introduced to capture plau-
sibility of the whole predicate-argument structure.
Like the other factors, the score function is de-
fined as FG(x, p,A) = w · ΦG(x, p,A). A pos-
sible feature that can be considered by this fac-
tor is the mutual dependencies among core argu-
ments. For instance, if a predicate-argument struc-
ture has an agent (A0) followed by the predicate
and a patient (A1), we encode the structure as a
string A0-PRED-A1 and use it as a feature. This
type of features provide plausibility of predicate-
argument structures. Even if the highest scoring
predicate-argument structure with the other factors
misses some core arguments, the global feature
demands the model to fill the missing arguments.

The numbers of factors for each factor type are:
FP and FG are 1, FA and FPA are |A|. By inte-
grating the all factors, the score function becomes
s(p,A) = w · ΦP (x, p) + w · ΦG(x, p,A) + w ·∑

a∈A{ΦA(x, a) + ΦPA(x, p, a)}.

2.2 Inference

The crucial point of the model is how to deal
with the global factor FG, because enumerating
possible assignments is too costly. A number of
methods have been proposed for the use of global
features for linear models such as (Daumé III
and Marcu, 2005; Kazama and Torisawa, 2007).
In this work, we use the approach proposed in
(Kazama and Torisawa, 2007). Although the ap-
proach is proposed for sequence labeling tasks, it
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can be easily extended to our structured model.
That is, for each possible predicate sense p of the
predicate, we provide N-best argument role as-
signments using three local factors FP , FA and
FPA, and then add scores of the global factor FG,
finally select the argmax from them. In this case,
the argmax is selected from |Pl|N candidates.

2.3 Learning the Model
For learning of the model, we borrow a funda-
mental idea of Kazama and Torisawa’s perceptron
learning algorithm. However, we use a more so-
phisticated online-learning algorithm based on the
Passive-Aggressive Algorithm (PA) (Crammer et
al., 2006).

For the sake of simplicity, we introduce some
notations. We denote a predicate-argument struc-
ture y = 〈p,A〉, a local feature vector as
ΦL(x,y) = ΦP (x, p) +

∑
a∈A{ΦA(x, a) +

ΦPA(x, p, a)}，a feature vector coupling both
local and global features as ΦL+G(x,y) =
ΦL(x,y) + ΦG(x, p,A), the argmax using ΦL+G

as ŷL+G, the argmax using ΦL as ŷL. Also, we
use a loss function ρ(y,y′), which is a cost func-
tion associated with y and y′.

The margin perceptron learning proposed by
Kazama and Torisawa can be seen as an optimiza-
tion with the following two constrains.

(A) w·ΦL+G(x,y)−w·ΦL+G(x, ŷL+G) ≥ ρ(y, ŷL+G)

(B) w · ΦL(x,y)−w · ΦL(x, ŷL) ≥ ρ(y, ŷL)

(A) is the constraint that ensures a sufficient
margin ρ(y, ŷL+G) between y and ŷL+G. (B)
is the constraint that ensures a sufficient margin
ρ(y, ŷL) between y and ŷL. The necessity of
this constraint is that if we apply only (A), the al-
gorithm does not guarantee a sufficient margin in
terms of local features, and it leads to poor quality
in the N-best assignments. The Kazama and Tori-
sawa’s perceptron algorithm uses constant values
for the cost function ρ(y, ŷL+G) and ρ(y, ŷL).

The proposed model is trained using the follow-
ing optimization problem.

wnew = arg min
w′∈<n

1

2
||w′ −w||2 + Cξ

(

s.t. lL+G ≤ ξ, ξ ≥ 0 if ŷL+G 6= y

s.t. lL ≤ ξ, ξ ≥ 0 if ŷL+G = y 6= ŷL (1)

lL+G = w · ΦL+G(x, ŷL+G)

−w · ΦL+G(x,y) + ρ(y, ŷL+G) (2)

lL = w · ΦL(x, ŷL)−w · ΦL(x,y) + ρ(y, ŷL) (3)

lL+G is the loss function for the case of using
both local and global features, corresponding to
the constraint (A), and lL is the loss function for
the case of using only local features, correspond-
ing to the constraints (B) provided that (A) is sat-
isfied.

2.4 The Role-less Argument Bias Problem

The fact that an argument candidate is not as-
signed any role (namely it is assigned the la-
bel “NONE”) is unlikely to contribute pred-
icate sense disambiguation. However, it re-
mains possible that “NONE” arguments is bi-
ased toward a particular predicate sense by FPA

(i.e. w · ΦPA(x, sensei, ak= “NONE′′) > w ·
ΦPA(x, sensej , ak= “NONE′′).

In order to avoid this bias, we define a spe-
cial sense label, senseany, that is used to cal-
culate the score for a predicate and a roll-less
argument, regardless of the predicate’s sense.
We use the feature vector ΦPA(x, senseany, ak)
if ak= “NONE′′ and ΦPA(x, sensei, ak) other-
wise.

3 Experiment

3.1 Experimental Settings

We use the CoNLL-2009 Shared Task dataset
(Hajič et al., 2009) for experiments. It is a
dataset for multi-lingual syntactic and semantic
dependency parsing 1. In the SRL-only challenge
of the task, participants are required to identify
predicate-argument structures of only the specified
predicates. Therefore the problems to be solved
are predicate sense disambiguation and argument
role labeling. We use Semantic Labeled F1 for
evaluation.

For generating N-bests, we used the beam-
search algorithm, and the number of N-bests was
set to N = 64. For learning of the joint model, the
loss function ρ(yt,y′) of the Passive-Aggressive
Algorithm was set to the number of incorrect as-
signments of a predicate sense and its argument
roles. Also, the number of iterations of the model
used for testing was selected based on the perfor-
mance on the development data.

Table 1 shows the features used for the struc-
tured model. The global features used for FG are
based on those used in (Toutanova et al., 2008;
Johansson and Nugues, 2008), and the features

1The dataset consists of seven languages: Catalan, Chi-
nese, Czech, English, German, Japanese and Spanish.
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FP Plemma of the predicate and predicate’s head, and ppos of the predicate
Dependency label between the predicate and predicate’s head
The concatenation of the dependency labels of the predicate’s dependents

FA Plemma and ppos of the predicate, the predicate’s head, the argument candidate, and the argument’s head
Plemma and ppos of the leftmost/rightmost dependent and leftmost/rightmost sibling
The dependency label of predicate, argument candidate and argument candidate’s dependent
The position of the argument candidate with respect to the predicate position in the dep. tree (e.g. CHILD)
The position of the head of the dependency relation with respect to the predicate position in the sentence
The left-to-right chain of the deplabels of the predicate’s dependents
Plemma, ppos and dependency label paths between the predicate and the argument candidates
The number of dependency edges between the predicate and the argument candidate

FPA Plemma and plemma&ppos of the argument candidate
Dependency label path between the predicate and the argument candidates

FG The sequence of the predicate and the argument labels in the predicate-argument structure (e.g. A0-PRED-A1）
Whether the semantic roles defined in frames exist in the structure, (e.g. CONTAINS:A1)
The conjunction of the predicate sense and the frame information (e.g. wear.01&CONTAINS:A1)

Table 1: Features for the Structured Model

Avg. Ca Ch Cz En Ge Jp Sp
FP +FA 79.17 78.00 76.02 85.24 83.09 76.76 77.27 77.83
FP +FA+FPA 79.58 78.38 76.23 85.14 83.36 78.31 77.72 77.92
FP +FA+FG 80.42 79.50 76.96 85.88 84.49 78.64 78.32 79.21
ALL 80.75 79.55 77.20 85.94 84.97 79.62 78.69 79.29
Björkelund 80.80 80.01 78.60 85.41 85.63 79.71 76.30 79.91
Zhao 80.47 80.32 77.72 85.19 85.44 75.99 78.15 80.46
Meza-Ruiz 77.46 78.00 77.73 75.75 83.34 73.52 76.00 77.91

Table 2: Results on the CoNLL-2009 Shared Task dataset (Semantic Labeled F1).

SENSE ARG
FP +FA 89.65 72.20
FP +FA+FPA 89.78 72.74
FP +FA+FG 89.83 74.11
ALL 90.15 74.46

Table 3: Predicate sense disambiguation and argu-
ment role labeling results (average).

used for FPA are inspired by formulae used in
the MLN-based SRL systems, such as (Meza-Ruiz
and Riedel, 2009b). We used the same feature
templates for all languages.

3.2 Results

Table 2 shows the results of the experiments, and
also shows the results of the top 3 systems in the
CoNLL-2009 Shared Task participants of the SRL-
only system.

By incorporating FPA, we achieved perfor-
mance improvement for all languages. This results
suggest that it is effective to capture local inter-
dependencies between a predicate sense and one
of its argument roles. Comparing the results with
FP +FA and FP +FA+FG, incorporating FG also
contributed performance improvements for all lan-
guages, especially the substantial F1 improvement
of +1.88 is obtained in German.

Next, we compare our system with top 3 sys-
tems in the CoNLL-2009 Shared Task. By in-
corporating both FPA and FG, our joint model
achieved competitive results compared to the top 2
systems (Björkelund and Zhao), and achieved the
better results than the Meza-Ruiz’s system 2. The
systems by Björkelund and Zhao applied feature
selection algorithms in order to select the best set
of feature templates for each language, requiring
about 1 to 2 months to obtain the best feature set.
On the other hand, our system achieved the com-
petitive results with the top two systems, despite
the fact that we used the same feature templates
for all languages without applying any feature en-
gineering procedure.

Table 3 shows the performances of predicate
sense disambiguation and argument role labeling
separately. In terms of sense disambiguation re-
sults, incorporating FPA and FG worked well. Al-
though incorporating either of FPA and FG pro-
vided improvements of +0.13 and +0.18 on av-
erage, adding both factors provided improvements
of +0.50. We compared the predicate sense dis-

2The result of Meza-Ruiz for Czech is substantially worse
than the other systems because of inappropriate preprocess-
ing for predicate sense disambiguation. Excepting Czech, the
average F1 value of the Meza-Ruiz is 77.75, where as our
system is 79.89.
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ambiguation results of FP +FA and ALL with the
McNemar test, and the difference was statistically
significant (p < 0.01). This result suggests that
combination of these factors is effective for sense
disambiguation.

As for argument role labeling results, incorpo-
rating FPA and FG contributed positively for all
languages. Especially, we obtained a substan-
tial gain (+4.18) in German. By incorporating
FPA, the system achieved the F1 improvements
of +0.54 on average. This result shows that cap-
turing inter-dependencies between a predicate and
its arguments contributes to argument role label-
ing. By incorporating FG, the system achieved the
substantial improvement of F1 (+1.91).

Since both tasks improved by using all factors,
we can say that the proposed joint model suc-
ceeded in joint learning of predicate senses and
its argument roles.

4 Conclusion

In this paper, we proposed a structured model that
captures both non-local dependencies between ar-
guments, and inter-dependencies between a pred-
icate sense and its argument roles. We designed
a linear model-based structured model, and de-
fined four types of factors: predicate factor, ar-
gument factor, predicate-argument pairwise fac-
tor and global factor for the model. In the ex-
periments, the proposed model achieved compet-
itive results compared to the state-of-the-art sys-
tems without any feature engineering.

A further research direction we are investi-
gating is exploitation of unlabeled texts. Semi-
supervised semantic role labeling methods have
been explored by (Collobert and Weston, 2008;
Deschacht and Moens, 2009; Fürstenau and La-
pata, 2009), and they have achieved successful
outcomes. However, we believe that there is still
room for further improvement.
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Abstract
One deficiency of current shallow pars-
ing based Semantic Role Labeling (SRL)
methods is that syntactic chunks are too
small to effectively group words. To par-
tially resolve this problem, we propose
semantics-driven shallow parsing, which
takes into account both syntactic struc-
tures and predicate-argument structures.
We also introduce several new “path” fea-
tures to improve shallow parsing based
SRL method. Experiments indicate that
our new method obtains a significant im-
provement over the best reported Chinese
SRL result.

1 Introduction

In the last few years, there has been an increas-
ing interest in Semantic Role Labeling (SRL) on
several languages, which consists of recognizing
arguments involved by predicates of a given sen-
tence and labeling their semantic types. Both
full parsing based and shallow parsing based SRL
methods have been discussed for English and Chi-
nese. In Chinese SRL, shallow parsing based
methods that cast SRL as the classification of
syntactic chunks into semantic labels has gained
promising results. The performance reported in
(Sun et al., 2009) outperforms the best published
performance of full parsing based SRL systems.

Previously proposed shallow parsing takes into
account only syntactic information and basic
chunks are usually too small to group words into
argument candidates. This causes one main defi-
ciency of Chinese SRL. To partially resolve this
problem, we propose a new shallow parsing. The
new chunk definition takes into account both syn-
tactic structure and predicate-argument structures

of a given sentence. Because of the semantic in-
formation it contains, we call it semantics-driven
shallow parsing. The key idea is to make basic
chunks as large as possible but not overlap with ar-
guments. Additionally, we introduce several new
“path” features to express more structural infor-
mation, which is important for SRL.

We present encouraging SRL results on Chinese
PropBank (CPB) data. With semantics-driven
shallow parsing, our SRL system achieves 76.10
F-measure, with gold segmentation and POS tag-
ging. The performance further achieves 76.46
with the help of new “path” features. These re-
sults obtain significant improvements over the best
reported SRL performance (74.12) in the literature
(Sun et al., 2009).

2 Related Work

CPB is a project to add predicate-argument rela-
tions to the syntactic trees of the Chinese Tree-
Bank (CTB). Similar to English PropBank, the ar-
guments of a predicate are labeled with a contigu-
ous sequence of integers, in the form of AN (N is
a natural number); the adjuncts are annotated as
such with the label AM followed by a secondary
tag that represents the semantic classification of
the adjunct. The assignment of argument labels
is illustrated in Figure 1, where the predicate is the
verb “提供/provide” For example, the noun phrase
“保险公司/the insurance company” is labeled as
A0, meaning that it is the proto-Agent of “提供”.

Sun et al. (2009) explore the Chinese SRL prob-
lem on the basis of shallow syntactic information
at the level of phrase chunks. They present a se-
mantic chunking method to resolve SRL on basis
of shallow parsing. Their method casts SRL as
the classification of syntactic chunks with IOB2
representation for semantic roles (i.e. semantic
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WORD: 保险 公司 已 为 三峡 工程 提供 保险 服务

insurance company already for Sanxia Project provide insurance service
POS: [NN NN] [AD] [P] [NR] [NN] [VV] [NN NN]

SYN CH: [NP] [ADVP] [PP NP NP ] [VP] [NP]
SEM CH: B-A0 B-AM-ADV B-A2 I-A2 I-A2 B-V B-A1

The insurance company has provided insurance services for the Sanxia Project.

Figure 1: An example from Chinese PropBank.

chunks). Two labeling strategies are presented: 1)
directly tagging semantic chunks in one-stage, and
2) identifying argument boundaries as a chunking
task and labeling their semantic types as a clas-
sification task. On the basis of syntactic chunks,
they define semantic chunks which do not overlap
nor embed using IOB2 representation. Syntactic
chunks outside a chunk receive the tag O (Out-
side). For syntactic chunks forming a chunk of
type A*, the first chunk receives the B-A* tag (Be-
gin), and the remaining ones receive the tag I-A*
(Inside). Then a SRL system can work directly
by using sequence tagging technique. Shallow
chunk definition presented in (Chen et al., 2006)
is used in their experiments. The definition of syn-
tactic and semantic chunks is illustrated Figure 1.
For example, “保险公司/the insurance company”,
consisting of two nouns, is a noun phrase; in the
syntactic chunking stage, its two components “保
险” and “公司” should be labeled as B-NP and
I-NP. Because this phrase is the Agent of the pred-
icate “提供/provide”, it takes a semantic chunk
label B-A0. In the semantic chunking stage, this
phrase should be labeled as B-A0.

Their experiments on CPB indicate that accord-
ing to current state-of-the-art of Chinese parsing,
SRL systems on basis of full parsing do not per-
form better than systems based on shallow parsing.
They report the best SRL performance with gold
segmentation and POS tagging as inputs. This is
very different from English SRL. In English SRL,
previous work shows that full parsing, both con-
stituency parsing and dependency parsing, is nec-
essary.

Ding and Chang (2009) discuss semantic
chunking methods without any parsing informa-
tion. Different from (Sun et al., 2009), their
method formulates SRL as the classification of
words with semantic chunks. Comparison of ex-
perimental results in their work shows that parsing
is necessary for Chinese SRL, and the semantic
chunking methods on the basis of shallow parsing
outperform the ones without any parsing.

Joint learning of syntactic and semantic struc-
tures is another hot topic in dependency parsing
research. Some models have been well evalu-
ated in CoNLL 2008 and 2009 shared tasks (Sur-
deanu et al., 2008; Hajič et al., 2009). The
CoNLL 2008/2009 shared tasks propose a unified
dependency-based formalism to model both syn-
tactic dependencies and semantic roles for multi-
ple languages. Several joint parsing models are
presented in the shared tasks. Our focus is differ-
ent from the shared tasks. In this paper, we hope
to find better syntactic representation for semantic
role labeling.

3 Semantics-Driven Shallow Parsing

3.1 Motivation
There are two main jobs of semantic chunking: 1)
grouping words as argument candidate and 2) clas-
sifying semantic types of possible arguments. Pre-
viously proposed shallow parsing only considers
syntactic information and basic chunks are usu-
ally too small to effectively group words. This
causes one main deficiency of semantic chunking.
E.g. the argument “为三峡工程/for the Sanxia
Project” consists of three chunks, each of which
only consists of one word. To rightly recognize
this A2, Semantic chunker should rightly predict
three chunk labels. Small chunks also make the
important “path” feature sparse, since there are
more chunks between a target chunk and the pred-
icate in focus. In this section, we introduce a new
chunk definition to improve shallow parsing based
SRL, which takes both syntactic and predicate-
argument structures into account. The key idea
is to make syntactic chunks as large as possible
for semantic chunking. The formal definition is as
follows.

3.2 Chunk Bracketing
Given a sentence s = w1, ..., wn, let c[i : j]
denote a constituent that is made up of words
between wi and wj (including wi and wj); let
pv = {c[i : j]|c[i : j] is an argument of v}
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WORD POS TARGET PROPOSITION CHUNK 1 CHUNK 2
China 中国 NR - (A0* * * * B-NP B-NPˆS

tax 税务 NN - * * * * I-NP I-NPˆS
department 部门 NN - *) * * * I-NP I-NPˆS

stipulate 规定 VV 规定 (V*) * * * O O
: ： PU - * * * * O O

owing 欠缴 VV 欠缴 (A1* (V*) * (A0* O O
tax payment 税款 NN - * (A1*) * * B-NP B-NPˆVP

company 企业 NN - * (A0*) * * B-NP B-NPˆNP
Function Word 的 DEG - * * * * O O

leaders 领导人 NN - * * * *) B-NP B-NPˆNP
not 不 AD - * * * (AM-ADV*) B-ADVP B-ADVPˆVP
can 得 VV 得 * * (V*) * O O

leave the country 出境 VV 出境 *) * * (V*) B-VP B-VPˆVP

Figure 2: An example for definition of semantics-driven chunks with IOB2 representation.

denote one predicate-argument structure where v
is the predicate in focus. Given a syntactic tree
Ts = {c[i : j]|c[i : j] is a constituent of s}, and
its all argument structures Ps = {pv| v is a verbal
predicate in s}, there is one and only one chunk
set C = {c[i : j]} s.t.

1. ∀c[i : j] ∈ C, c[i : j] ∈ Ts;

2. ∀c[i : j] ∈ C, ∀c[iv : jv] ∈ ∪Ps, j < iv or
i > jv or iv ≤ i ≤ j ≤ jv;

3. ∀c[i : j] ∈ C, the parent of c[i : j] does not
satisfy the condition 2.

4. ∀C′ satisfies above conditions, C′ ⊂ C.

The first condition guarantees that every chunk
is a constituent. The second condition means that
chunks do not overlap with arguments, and further
guarantees that semantic chunking can recover all
arguments with the last condition. The third condi-
tion makes new chunks as big as possible. The last
one makes sure that C contains all sub-components
of all arguments. Figure 2 is an example to illus-
trate our new chunk definition. For example, “中
国/Chinese 税务/tax 部分/department” is a con-
stituent of current sentence, and is also an argu-
ment of “规定/stipulate”. If we take it as a chunk,
it does not conflict with any other arguments, so
it is a reasonable syntactic chunk. For the phrase
“欠缴/owing 税款/tax payment”, though it does
not overlap with the first, third and fourth proposi-
tions, it is bigger than the argument “税款” (con-
flicting with condition 2) while labeling the pred-
icate “欠缴”, so it has to be separated into two
chunks. Note that the third condition also guar-
antees the constituents in C does not overlap with
each other since each one is as large as possible.

So we can still formulate our new shallow parsing
as an “IOB” sequence labeling problem.

3.3 Chunk Type

We introduce two types of chunks. The first is
simply the phrase type, such as NP, PP, of cur-
rent chunk. The column CHUNK 1 illustrates
this kind of chunk type definition. The second is
more complicated. Inspired by (Klein and Man-
ning, 2003), we split one phrase type into several
subsymbols, which contain category information
of current constituent’s parent. For example, an
NP immediately dominated by a S, will be sub-
stituted by NPˆS. This strategy severely increases
the number of chunk types and make it hard to
train chunking models. To shrink this number, we
linguistically use a cluster of CTB phrasal types,
which was introduced in (Sun and Sui, 2009). The
column CHUNK 2 illustrates this definition. E.g.,
NPˆS implicitly represents Subject while NPˆVP
represents Object.

3.4 New Path Features

The Path feature is defined as a chain of base
phrases between the token and the predicate. At
both ends, the chain is terminated with the POS
tags of the predicate and the headword of the to-
ken. For example, the path feature of “保险公
司” in Figure 1 is “公司-ADVP-PP-NP-NP-VV”.
Among all features, the “path” feature contains
more structural information, which is very impor-
tant for SRL. To better capture structural infor-
mation, we introduce several new “path” features.
They include:

• NP|PP|VP path: only syntactic chunks
that takes tag NP, PP or VP are kept.
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When labeling the predicate “出境/leave the
country” in Figure 2, this feature of “中
国税务部门/Chinese tax departments” is
NP+NP+NP+NP+VP.

• V|的 path: a sequential container of POS tags
of verbal words and “的”; This feature of “中
国税务部门” is NP+VV+VV+的+VV+VP.

• O2POS path: if a word occupies a chunk
label O, use its POS in the path fea-
ture. This feature of “中国税务部门” is
NP+VV+PU+VV+NP+NP+DEG+ADVP+
VV+VP.

4 Experiments and Analysis

4.1 Experimental Setting

Experiments in previous work are mainly based
on CPB 1.0 and CTB 5.0. We use CoNLL-2005
shared task software to process CPB and CTB. To
facilitate comparison with previous work, we use
the same data setting with (Xue, 2008). Nearly
all previous research on Chinese SRL evalua-
tion use this setting, also including (Ding and
Chang, 2008, 2009; Sun et al., 2009; Sun, 2010).
The data is divided into three parts: files from
chtb 081 to chtb 899 are used as training set; files
from chtb 041 to chtb 080 as development set;
files from chtb 001 to chtb 040, and chtb 900 to
chtb 931 as test set. Both syntactic chunkers and
semantic chunkers are trained and evaluated by us-
ing the same data set. By using CPB and CTB, we
can extract gold standard semantics-driven shal-
low chunks according to our definition. We use
this kind of gold chunks automatically generated
from training data to train syntactic chunkers.

For both syntactic and semantic chunking, we
used conditional random field model. Crfsgd1, is
used for experiments. Crfsgd provides a feature
template that defines a set of strong word and POS
features to do syntactic chunking. We use this
feature template to resolve shallow parsing. For
semantic chunking, we implement a similar one-
stage shallow parsing based SRL system described
in (Sun et al., 2009). There are two differences be-
tween our system and Sun et al.’s system. First,
our system uses Start/End method to represent se-
mantic chunks (Kudo and Matsumoto, 2001). Sec-
ond, word formation features are not used.

Test P(%) R(%) Fβ=1

(Chen et al., 2006) 93.51 92.81 93.16
Overall (C1) 91.66 89.13 90.38
Bracketing (C1) 92.31 89.72 91.00
Overall (C2) 88.77 86.71 87.73
Bracketing (C2) 92.71 90.55 91.62

Table 1: Shallow parsing performance.

4.2 Syntactic Chunking Performance

Table 1 shows the performance of shallow syntac-
tic parsing. Line Chen et al., 2006 is the chunk-
ing performance evaluated on syntactic chunk def-
inition proposed in (Chen et al., 2006). The sec-
ond and third blocks present the chunking perfor-
mance with new semantics-driven shallow pars-
ing. The second block shows the overall perfor-
mance when the first kind of chunks type is used,
while the last block shows the performance when
the more complex chunk type definition is used.
For the semantic-driven parsing experiments, we
add the path from current word to the first verb be-
fore or after as two new features. Line Bracketing
evaluates the word grouping ability of these two
kinds of chunks. In other words, detailed phrase
types are not considered. Because the two new
chunk definitions use the same chunk boundaries,
the fourth and sixth lines are comparable. There
is a clear decrease between the traditional shallow
parsing (Chen et al., 2006) and ours. We think one
main reason is that syntactic chunks in our new
definition are larger than the traditional ones. An
interesting phenomenon is that though the second
kind of chunk type definition increases the com-
plexity of the parsing job, it achieves better brack-
eting performance.

4.3 SRL Performance

Table 2 summarizes the SRL performance. Line
Sun et al., 2009 is the SRL performance reported
in (Sun et al., 2009). To the author’s knowledge,
this is the best published SRL result in the liter-
ature. Line SRL (Chen et al., 2006) is the SRL
performance of our system. These two systems
are both evaluated by using syntactic chunking de-
fined in (Chen et al., 2006). From the first block
we can see that our semantic chunking system
reaches the state-of-the-art. The second and third
blocks in Table 2 present the performance with

1http://leon.bottou.org/projects/sgd

106



new shallow parsing. Line SRL (C1) and SRL (C2)
show the overall performances with the first and
second chunk definition. The lines following are
the SRL performance when new “path” features
are added. We can see that new “path” features
are useful for semantic chunking.

Test P(%) R(%) Fβ=1

(Sun et al., 2009) 79.25 69.61 74.12
SRL [(Chen et al., 2006)] 80.87 68.74 74.31
SRL [C1] 80.23 71.00 75.33
+ NP|PP|VP path 80.25 71.19 75.45
+ V|的 path 80.78 71.67 75.96
+ O2POS path 80.44 71.59 75.76
+ All new path 80.73 72.08 76.16
SRL [C2] 80.87 71.86 76.10
+ All new path 81.03 72.38 76.46

Table 2: SRL performance on the test data. Items
in the first column SRL [(Chen et al., 2006)], SRL
[C1] and SRL [C2] respetively denote the SRL
systems based on shallow parsing defined in (Chen
et al., 2006) and Section 3.

5 Conclusion

In this paper we propose a new syntactic shal-
low parsing for Chinese SRL. The new chunk
definition contains both syntactic structure and
predicate-argument structure information. To im-
prove SRL, we also introduce several new “path”
features. Experimental results show that our new
chunk definition is more suitable for Chinese SRL.
It is still an open question what kinds of syntactic
information is most important for Chinese SRL.
We suggest that our attempt at semantics-driven
shallow parsing is a possible way to better exploit
this problem.
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Abstract

In this paper we start to explore two-part
collocation extraction association measures
that do not estimate expected probabili-
ties on the basis of the independence as-
sumption. We propose two new measures
based upon the well-known measures of
mutual information and pointwise mutual
information. Expected probabilities are de-
rived from automatically trained Aggregate
Markov Models. On three collocation gold
standards, we find the new association mea-
sures vary in their effectiveness.

1 Introduction

Collocation extraction typically proceeds by scor-
ing collocation candidates with an association mea-
sure, where high scores are taken to indicate likely
collocationhood. Two well-known such measures
are pointwise mutual information (PMI) and mu-
tual information (MI). In terms of observing a com-
bination of words w1, w2, these are:

i(w1, w2) = log
p(w1, w2)

p(w1) p(w2)
, (1)

I (w1, w2) =
∑

x∈{w1,¬w1}
y∈{w2,¬w2}

p(x, y) i(x, y). (2)

PMI (1) is the logged ratio of the observed bi-
gramme probability and the expected bigramme
probability under independence of the two words
in the combination. MI (2) is the expected outcome
of PMI, and measures how much information of the
distribution of one word is contained in the distribu-
tion of the other. PMI was introduced into the collo-
cation extraction field by Church and Hanks (1990).
Dunning (1993) proposed the use of the likelihood-
ratio test statistic, which is equivalent to MI up to
a constant factor.

Two aspects of (P)MI are worth highlighting.
First, the observed occurrence probability pobs is
compared to the expected occurrence probability
pexp. Secondly, the independence assumption un-
derlies the estimation of pexp.

The first aspect is motivated by the observa-
tion that interesting combinations are often those
that are unexpectedly frequent. For instance, the
bigramme of the is uninteresting from a colloca-
tion extraction perspective, although it probably is
amongst the most frequent bigrammes for any En-
glish corpus. However, we can expect to frequently
observe the combination by mere chance, simply
because its parts are so frequent. Looking at pobs

and pexp together allows us to recognize these cases
(Manning and Schütze (1999) and Evert (2007) for
more discussion).

The second aspect, the independence assump-
tion in the estimation of pexp, is more problem-
atic, however, even in the context of collocation
extraction. As Evert (2007, p42) notes, the assump-
tion of “independence is extremely unrealistic,” be-
cause it ignores “a variety of syntactic, semantic
and lexical restrictions.” Consider an estimate for
pexp(the the). Under independence, this estimate
will be high, as the itself is very frequent. However,
with our knowledge of English syntax, we would
say pexp(the the) is low. The independence assump-
tion leads to overestimated expectation and the the
will need to be very frequent for it to show up as a
likely collocation. A less contrived example of how
the independence assumption might mislead collo-
cation extraction is when bigramme distribution is
influenced by compositional, non-collocational, se-
mantic dependencies. Investigating adjective-noun
combinations in a corpus, we might find that beige
cloth gets a high PMI, whereas beige thought does
not. This does not make the former a collocation or
multiword unit. Rather, what we would measure is
the tendency to use colours with visible things and
not with abstract objects. Syntactic and semantic
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associations between words are real dependencies,
but they need not be collocational in nature. Be-
cause of the independence assumption, PMI and
MI measure these syntactic and semantic associa-
tions just as much as they measure collocational
association. In this paper, we therefore experimen-
tally investigate the use of a more informed pexp in
the context of collocation extraction.

2 Aggregate Markov Models

To replace pexp under independence, one might
consider models with explicit linguistic infor-
mation, such as a POS-tag bigramme model.
This would for instance give us a more realistic
pexp(the the). However, lexical semantic informa-
tion is harder to incorporate. We might not know
exactly what factors are needed to estimate pexp

and even if we do, we might lack the resources
to train the resulting models. The only thing we
know about estimating pexp is that we need more
information than a unigramme model but less than
a bigramme model (as this would make pobs/pexp

uninformative). Therefore, we propose to use Ag-
gregate Markov Models (Saul and Pereira, 1997;
Hofmann and Puzicha, 1998; Rooth et al., 1999;
Blitzer et al., 2005)1 for the task of estimating pexp.
In an AMM, bigramme probability is not directly
modeled, but mediated by a hidden class variable c:

pamm(w2|w1) =
∑

c

p(c|w1)p(w2|c). (3)

The number of classes in an AMM determines the
amount of dependency that can be captured. In the
case of just one class, AMM is equivalent to a uni-
gramme model. AMMs become equivalent to the
full bigramme model when the number of classes
equals the size of the smallest of the vocabular-
ies of the parts of the combination. Between these
two extremes, AMMs can capture syntactic, lexical,
semantic and even pragmatic dependencies.

AMMs can be trained with EM, using no more
information than one would need for ML bigramme
probability estimates. Specifications of the E- and
M-steps can be found in any of the four papers cited
above – here we follow Saul and Pereira (1997). At
each iteration, the model components are updated

1These authors use very similar models, but with differing
terminology and with different goals. The term AMM is used
in the first and fourth paper. In the second paper, the models
are referred to as Separable Mixture Models. Their use in
collocation extraction is to our knowledge novel.

according to:

p(c|w1)←
∑

w n(w1, w)p(c|w1, w)∑
w,c′ n(w1, w)p(c′|w1, w)

, (4)

p(w2|c)←
∑

w n(w, w2)p(c|w, w2)∑
w,w′ n(w, w′)p(c|w, w′)

, (5)

where n(w1, w2) are bigramme counts and the pos-
terior probability of a hidden category c is esti-
mated by:

p(c|w1, w2) =
p(c|w1)p(w2|c)∑
c′ p(c′|w1)p(w2|c′)

. (6)

Successive updates converge to a local maximum
of the AMM’s log-likelihood.

The definition of the counterparts to (P)MI with-
out the independence assumption, the AMM-ratio
and AMM-divergence, is now straightforward:

ramm(w1, w2) = log
p(w1, w2)

p(w1) pamm(w2|w1)
, (7)

damm(w1, w2) =
∑

x∈{w1,¬w1}
y∈{w2,¬w2}

p(x, y) ramm(x, y). (8)

The free parameter in these association measures is
the number of hidden classes in the AMM, that is,
the amount of dependency between the bigramme
parts used to estimate pexp. Note that AMM-ratio
and AMM-divergence with one hidden class are
equivalent to PMI and MI, respectively. It can be
expected that in different corpora and for differ-
ent types of collocation, different settings of this
parameter are suitable.

3 Evaluation

3.1 Data and procedure
We apply AMM-ratio and AMM-divergence to
three collocation gold standards. The effectiveness
of association measures in collocation extraction is
measured by ranking collocation candidates after
the scores defined by the measures, and calculat-
ing average precision of these lists against the gold
standard annotation. We consider the newly pro-
posed AMM-based measures for a varying number
of hidden categories. The new measures are com-
pared against two baselines: ranking by frequency
(pobs) and random ordering. Because AMM-ratio
and -divergence with one hidden class boil down
to PMI and MI (and thus log-likelihood ratio), the
evaluation contains an implicit comparison with
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these canonical measures, too. However, the re-
sults will not be state-of-the-art: for the datasets
investigated below, there are more effective extrac-
tion methods based on supervised machine learning
(Pecina, 2008).

The first gold standard used is the German
adjective-noun dataset (Evert, 2008). It contains
1212 A-N pairs taken from a German newspaper
corpus. We consider three subtasks, depending on
how strict we define true positives. We used the
bigramme frequency data included in the resource.
We assigned all types with a token count ≤5 to one
type, resulting in AMM training data of 10k As,
20k Ns and 446k A-N pair types.

The second gold standard consists of 5102 Ger-
man PP-verb combinations, also sampled from
newspaper texts (Krenn, 2008). The data con-
tains annotation for support verb constructions
(FVGs) and figurative expressions. This resource
also comes with its own frequency data. After fre-
quency thresholding, AMMs are trained on 46k
PPs, 7.6k Vs, and 890k PP-V pair types.

Third and last is the English verb-particle con-
struction (VPC) gold standard (Baldwin, 2008),
consisting of 3078 verb-particle pairs and annota-
tion for transitive and intransitive idiomatic VPCs.
We extract frequency data from the BNC, follow-
ing the methods described in Baldwin (2005). This
results in two slightly different datasets for the two
types of VPC. For the intransitive VPCs, we train
AMMs on 4.5k Vs, 35 particles, and 43k pair types.
For the transitive VPCs, we have 5k Vs, 35 parti-
cles and 54k pair types.

All our EM runs start with randomly initialized
model vectors. In Section 3.3 we discuss the impact
of model variation due to this random factor.

3.2 Results

German A-N collocations The top slice in Ta-
ble 1 shows results for the three subtasks of the
A-N dataset. We see that using AMM-based pexp

initially improves average precision, for each task
and for both the ratio and the divergence measure.
At their maxima, the informed measures outper-
form both baselines as well as PMI and MI/log-
likelihood ratio (# classes=1). The AMM-ratio per-
forms best for 16-class AMMs, the optimum for
AMM-divergence varies slightly.

It is likely that the drop in performance for the
larger AMM-based measures is due to the AMMs
learning the collocations themselves. That is, the

AMMs become rich enough to not only capture
the broadly applicative distributional influences of
syntax and semantics, but also provide accurate
pexps for individual, distributionally deviant combi-
nations – like collocations. An accurate pexp results
in a low association score.

One way of inspecting what kind of dependen-
cies the AMMs pick up is to cluster the data with
them. Following Blitzer et al. (2005), we take the
200 most frequent adjectives and assign them to
the category that maximizes p(c|w1); likewise for
nouns and p(w2|c). Four selected clusters (out of
16) are given in Table 2.2 The esoteric class 1 con-
tains ordinal numbers and nouns that one typically
uses those with, including references to temporal
concepts. Class 2 and 3 appear more semantically
motivated, roughly containing human and collec-
tive denoting nouns, respectively. Class 4 shows
a group of adjectives denoting colours and/or po-
litical affiliations and a less coherent set of nouns,
although the noun cluster can be understood if we
consider individual adjectives that are associated
with this class. Our informal impression from look-
ing at clusters is that this is a common situation: as
a whole, a cluster cannot be easily characterized,
although for subsets or individual pairs, one can
get an intuition for why they are in the same class.
Unfortunately, we also see that some actual collo-
cations are clustered in class 4, such as gelbe Karte
‘warning’ (lit.: ‘yellow card’) and dickes Auto ‘big
(lit.: fat) car’.

German PP-Verb collocations The second slice
in Table 1 shows that, for both subtypes of PP-V
collocation, better pexp-estimates lead to decreased
average precision. The most effective AMM-ratio
and -distance measures are those equivalent to
(P)MI. Apparently, the better pexps are unfortunate
for the extraction of the type of collocations in this
dataset.

The poor performance of PMI on these data –
clearly below frequency – has been noticed before
by Krenn and Evert (2001). A possible explanation
for the lack of improvement in the AMMs lies in
the relatively high performing frequency baselines.
The frequency baseline for FVGs is five times the

2An anonymous reviewer rightly warns against sketching
an overly positive picture of the knowledge captured in the
AMMs by only presenting a few clusters. However, the clus-
tering performed here is only secondary to our main goal
of improving collocation extraction. The model inspection
should thus not be taken as an evaluation of the quality of the
models as clustering models.
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# classes

1 2 4 8 16 32 64 128 256 512 Rnd Frq

A-N
category 1 ramm 45.6 46.4 47.6 47.3 48.3 48.0 47.0 46.1 44.7 41.9 30.1 32.2

damm 42.3 42.9 44.4 45.2 46.1 46.5 45.0 46.3 45.5 45.5
category 1–2 ramm 55.7 56.3 57.4 57.5 58.1 58.1 57.7 56.9 55.7 52.8 43.1 47.0

damm 56.3 57.0 58.1 58.4 59.8 60.1 59.3 60.6 59.2 59.3
category 1–3 ramm 62.3 62.8 63.9 64.0 64.4 62.2 62.2 62.7 62.4 60.0 52.7 56.4

damm 64.3 64.7 65.9 66.6 66.7 66.3 66.3 65.4 66.0 64.7
PP-V

figurative ramm 7.5 6.1 6.4 6.0 5.6 5.4 4.5 4.2 3.8 3.5 3.3 10.5
damm 14.4 13.0 13.3 13.1 12.2 11.2 9.0 7.7 6.9 5.7

FVG ramm 4.1 3.4 3.4 3.0 2.9 2.7 2.2 2.1 2.0 2.0 3.0 14.7
damm 15.3 12.7 12.6 10.7 9.0 7.7 3.4 3.2 2.5 2.3

VPC
intransitive ramm 9.3 9.2 9.0 8.3 5.5 5.3 4.8 14.7

damm 12.2 12.2 14.0 16.3 6.9 5.8
transitive ramm 16.4 14.8 15.2 14.5 11.3 10.0 10.1 20.1

damm 19.6 17.3 20.7 23.8 12.8 10.1

Table 1: Average precision for AMM-based association measures and baselines on three datasets.

Cl Adjective Noun

1 dritt ‘third’, erst ‘first’, fünft ‘fifth’, halb ‘half’, kommend
‘next’, laufend ‘current’, letzt ‘last’, nah ‘near’, paar ‘pair’,
vergangen ‘last’, viert ‘fourth’, wenig ‘few’, zweit ‘sec-
ond’

Jahr ‘year’, Klasse ‘class’, Linie ‘line’, Mal ‘time’, Monat
‘month’, Platz ‘place’, Rang ‘grade’, Runde ‘round’, Saison
‘season’, Satz ‘sentence’, Schritt ‘step’, Sitzung ‘session’, Son-
ntag ‘Sunday’, Spiel ‘game’, Stunde ‘hour’, Tag ‘day’, Woche
‘week’, Wochenende ‘weekend’

2 aktiv ‘active’, alt ‘old’, ausländisch ‘foreign’, betroffen
‘concerned’, jung ‘young’, lebend ‘alive’, meist ‘most’,
unbekannt ‘unknown’, viel ‘many’

Besucher ‘visitor’, Bürger ‘citizens’, Deutsche ‘German’, Frau
‘woman’, Gast ‘guest’, Jugendliche ‘youth’, Kind ‘child’, Leute
‘people’, Mädchen ‘girl’, Mann ‘man’, Mensch ‘human’, Mit-
glied ‘member’

3 deutsch ‘German’, europäisch ‘European’, ganz ‘whole’,
gesamt ‘whole’, international ‘international’, national ‘na-
tional’, örtlich ‘local’, ostdeutsch ‘East-German’, privat
‘private’, rein ‘pure’, sogenannt ‘so-called’, sonstig ‘other’,
westlich ‘western’

Betrieb ‘company’, Familie ‘family’, Firma ‘firm’, Gebiet
‘area’, Gesellschaft ‘society’, Land ‘country’, Mannschaft
‘team’, Markt ‘market’, Organisation ‘organisation’, Staat
‘state’, Stadtteil ‘city district’, System ‘system’, Team ‘team’,
Unternehmen ‘enterprise’, Verein ‘club’, Welt ‘world’

4 blau ‘blue’, dick ‘fat’, gelb ‘yellow’, grün ‘green’, linke
‘left’, recht ‘right’, rot ‘red’, schwarz ‘black’, white ‘weiß’

Auge ‘eye’, Auto ‘car’, Haar ‘hair’, Hand ‘hand’, Karte ‘card’,
Stimme ‘voice/vote’

Table 2: Selected adjective-noun clusters from a 16-class AMM.

random baseline, and MI does not outperform it by
much. Since the AMMs provide a better fit for the
more frequent pairs in the training data, they might
end up providing too good pexp-estimates for the
true collocations from the beginning.

Further investigation is needed to find out
whether this situation can be ameliorated and, if
not, whether we can systematically identify for
what kind of collocation extraction tasks using bet-
ter pexps is simply not a good idea.

English Verb-Particle constructions The last
gold standard is the English VPC dataset, shown
in the bottom slice of Table 1. We have only used
class-sizes up to 32, as there are only 35 particle
types. We can clearly see the effect of the largest
AMMs approaching the full bigramme model as

average precision here approaches the random base-
line. The VPC extraction task shows a difference
between the two AMM-based measures: AMM-
ratio does not improve at all, remaining below the
frequency baseline. AMM-divergence, however,
shows a slight decrease in precision first, but ends
up performing above the frequency baseline for the
8-class AMMs in both subtasks.

Table 3 shows four clusters of verbs and par-
ticles. The large first cluster contains verbs that
involve motion/displacement of the subject or ob-
ject and associated particles, for instance walk
about or push away. Interestingly, the description
of the gold standard gives exactly such cases as
negatives, since they constitute compositional verb-
particle constructions (Baldwin, 2008). Classes 2
and 3 show syntactic dependencies, which helps
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Cl Verb Particle

1 break, bring, come, cut, drive, fall, get, go, lay, look, move, pass, push,
put, run, sit, throw, turn, voice, walk

across, ahead, along, around, away, back, back-
ward, down, forward, into, over, through, together

2 accord, add, apply, give, happen, lead, listen, offer, pay, present, refer,
relate, return, rise, say, sell, send, speak, write

astray, to

3 know, talk, tell, think about
4 accompany, achieve, affect, cause, create, follow, hit, increase, issue,

mean, produce, replace, require, sign, support
by

Table 3: Selected verb-particle clusters from an 8-class AMM on transitive data.

collocation extraction by decreasing the impact of
verb-preposition associations that are due to PP-
selecting verbs. Class 4 shows a third type of distri-
butional generalization: the verbs in this class are
all frequently used in the passive.

3.3 Variation due to local optima

We start each EM run with a random initializa-
tion of the model parameters. Since EM finds local
rather than global optima, each run may lead to
different AMMs, which in turn will affect AMM-
based collocation extraction. To gain insight into
this variation, we have trained 40 16-class AMMs
on the A-N dataset. Table 4 gives five point sum-
maries of the average precision of the resulting
40 ‘association measures’. Performance varies con-
siderably, spanning 2–3 percentage points in each
case. The models consistently outperform (P)MI in
Table 1, though.

Several techniques might help to address this
variation. One might try to find a good fixed way of
initializing EM or to use EM variants that reduce
the impact of the initial state (Smith and Eisner,
2004, a.o.), so that a run with the same data and
the same number of classes will always learn (al-
most) the same model. On the assumption that an
average over several runs will vary less than indi-
vidual runs, we have also constructed a combined
pexp by averaging over 40 pexps. The last column

Variation in avg precision

min q1 med q3 max Comb

A-N
cat 1 ramm 46.5 47.3 47.9 48.4 49.1 48.4

damm 44.4 45.4 45.8 46.1 47.1 46.4
cat 1–2 ramm 56.7 57.2 57.9 58.2 59.0 58.2

damm 58.1 58.8 59.2 59.4 60.4 60.0
cat 1–3 ramm 63.0 63.7 64.2 64.6 65.3 64.6

damm 65.2 66.0 66.4 66.6 67.6 66.9

Table 4: Variation on A-N data over 40 EM runs
and result of combining pexps.

in Table 4 shows this combined estimator leads to
good extraction results.

4 Conclusions

In this paper, we have started to explore collocation
extraction beyond the assumption of independence.
We have introduced two new association measures
that do away with this assumption in the estima-
tion of expected probabilities. The success of using
these association measures varies. It remains to be
investigated whether they can be improved more.

A possible obstacle in the adoption of AMMs in
collocation extraction is that we have not provided
any heuristic for setting the number of classes for
the AMMs. We hope to be able to look into this
question in future research. Luckily, for the AN and
VPC data, the best models are not that large (in the
order of 8–32 classes), which means that model fit-
ting is fast enough to experiment with different set-
tings. In general, considering these smaller models
might suffice for tasks that have a fairly restricted
definition of collocation candidate, like the tasks
in our evaluation do. Because AMM fitting is un-
supervised, selecting a class size is in this respect
no different from selecting a suitable association
measure from the canon of existing measures.

Future research into association measures that
are not based on the independence assumption will
also include considering different EM variants and
other automatically learnable models besides the
AMMs used in this paper. Finally, the idea of us-
ing an informed estimate of expected probability
in an association measure need not be confined
to (P)MI, as there are many other measures that
employ expected probabilities.
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Abstract 

In recent years, collocation has been 
widely acknowledged as an essential 
characteristic to distinguish native speak-
ers from non-native speakers. Research 
on academic writing has also shown that 
collocations are not only common but 
serve a particularly important discourse 
function within the academic community. 
In our study, we propose a machine 
learning approach to implementing an 
online collocation writing assistant. We 
use a data-driven classifier to provide 
collocation suggestions to improve word 
choices, based on the result of classifica-
tion. The system generates and ranks 
suggestions to assist learners’ collocation 
usages in their academic writing with sat-
isfactory results. * 

1 Introduction 

The notion of collocation has been widely dis-
cussed in the field of language teaching for dec-
ades. It has been shown that collocation, a suc-
cessive common usage of words in a chain, is 
important in helping language learners achieve 
native-like fluency. In the field of English for 
Academic Purpose, more and more researchers 
are also recognizing this important feature in 
academic writing. It is often argued that colloca-
tion can influence the effectiveness of a piece of 
writing and the lack of such knowledge might 
cause cumulative loss of precision (Howarth, 
1998). 

Many researchers have discussed the function 
of collocations in the highly conventionalized 
and specialized writing used within academia. 
Research also identified noticeable increases in 
the quantity and quality of collocational usage by 
                                                             
* Corresponding author: Yu-chia Chang (Email address: 
richtrf@gmail.com) 

native speakers (Howarth, 1998). Granger (1998) 
reported that learners underuse native-like collo-
cations and overuse atypical word combinations. 
This disparity in collocation usage between na-
tive and non-native speakers is clear and should 
receive more attention from the language tech-
nology community. 

To tackle such word usage problems, tradi-
tional language technology often employs a da-
tabase of the learners' common errors that are 
manually tagged by teachers or specialists (e.g. 
Shei and Pain, 2000; Liu, 2002). Such system 
then identifies errors via string or pattern match-
ing and offer only pre-stored suggestions. Com-
piling the database is time-consuming and not 
easily maintainable, and the usefulness is limited 
by the manual collection of pre-stored sugges-
tions. Therefore, it is beneficial if a system can 
mainly use untagged data from a corpus contain-
ing correct language usages rather than the error-
tagged data from a learner corpus. A large corpus 
of correct language usages is more readily avail-
able and useful than a small labeled corpus of 
incorrect language usages. 

For this suggestion task, the large corpus not 
only provides us with a rich set of common col-
locations but also provides the context within 
which these collocations appear. Intuitively, we 
can take account of such context of collocation to 
generate more suitable suggestions. Contextual 
information in this sense often entails more lin-
guistic clues to provide suggestions within sen-
tences or paragraph. However, the contextual 
information is messy and complex and thus has 
long been overlooked or ignored. To date, most 
fashionable suggestion methods still rely upon 
the linguistic components within collocations as 
well as the linguistic relationship between mis-
used words and their correct counterparts (Chang 
et al., 2008; Liu, 2009).  

In contrast to other research, we employ con-
textual information to automate suggestions for 
verb-noun lexical collocation. Verb-noun collo-
cations are recognized as presenting the most 
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challenge to students (Howarth, 1996; Liu, 
2002). More specifically, in this preliminary 
study we start by focusing on the word choice of 
verbs in collocations which are considered as the 
most difficult ones for learners to master (Liu, 
2002; Chang, 2008). The experiment confirms 
that our collocation writing assistant proves the 
feasibility of using machine learning methods to 
automatically prompt learners with collocation 
suggestions in academic writing.  

2 Collocation Checking and Suggestion 

This study aims to develop a web service, Collo-
cation Inspector (shown in Figure 1) that accepts 
sentences as input and generates the related can-
didates for learners. 

In this paper, we focus on automatically pro-
viding academic collocation suggestions when 
users are writing up their abstracts. After an ab-
stract is submitted, the system extracts linguistic 
features from the user’s text for machine learning 
model. By using a corpus of published academic 
texts, we hope to match contextual linguistic 
clues from users’ text to help elicit the most rele-
vant suggestions. We now formally state the 
problem that we are addressing: 

Problem Statement: Given a sentence S writ-
ten by a learner and a reference corpus RC, our 
goal is to output a set of most probable sugges-
tion candidates c1, c2, ... , cm. For this, we train a 
classifier MC to map the context (represented as 
feature set f1, f2, ..., fn) of each sentence in RC to 
the collocations. At run-time, we predict these 
collocations for S as suggestions. 

2.1 Academic Collocation Checker Train-
ing Procedures 

Sentence Parsing and Collocation Extraction: 
We start by collecting a large number of ab-
stracts from the Web to develop a reference cor-
pus for collocation suggestion. And we continue 
to identify collocations in each sentence for the 
subsequent processing. 

Collocation extraction is an essential step in 
preprocessing data. We only expect to extract the 
collocation which comprises components having 
a syntactic relationship with one another. How-
ever, this extraction task can be complicated. 
Take the following scholarly sentence from the 
reference corpus as an example (example (1)): 

(1) We introduce a novel method 
for learning to find documents 
on the web. 

 
Figure 1. The interface for the collocation suggestion  

nsubj (introduce-2, We-1) 
det (method-5, a-3) 
amod (method-5, novel-4) 
dobj (introduce-2, method-5) 
prepc_for (introduce-2, learning-7) 
aux (find-9, to-8) 
… … 

Figure 2. Dependency parsing of Example (1) 
 

Traditionally, through part-of-speech tagging, 
we can obtain a tagged sentence as follows (ex-
ample (2)). We can observe that the desired col-
location “introduce method”, conforming to 
“VERB+NOUN” relationship, exists within the 
sentence. However, the distance between these 
two words is often flexible, not necessarily rigid. 
Heuristically writing patterns to extract such verb 
and noun might not be effective. The patterns 
between them can be tremendously varied. In 
addition, some verbs and nouns are adjacent, but 
they might be intervened by clause and thus have 
no syntactic relation with one another (e.g. “pro-
pose model” in example (3)). 

(2) We/PRP  introduce/VB  a/DT  
novel/JJ  method/NN  for/IN  
learning/VBG  to/TO  find/VB  
documents/NNS  on/IN  the/DT  
web/NN  ./.  

(3) We proposed that the web-
based model would be more ef-
fective than corpus-based one. 

A natural language parser can facilitate the ex-
traction of the target type of collocations. Such 
parser is a program that works out the grammati-
cal structure of sentences, for instance, by identi-
fying which group of words go together or which 
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word is the subject or object of a verb. In our 
study, we take advantage of a dependency parser, 
Stanford Parser, which extracts typed dependen-
cies for certain grammatical relations (shown in 
Figure 2). Within the parsed sentence of example 
(1), we can notice that the extracted dependency 
“dobj (introduce-2, method-4)” meets the crite-
rion. 
 
Using a Classifier for the Suggestion task: A 
classifier is a function generally to take a set of 
attributes as an input and to provide a tagged 
class as an output. The basic way to build a clas-
sifier is to derive a regression formula from a set 
of tagged examples. And this trained classifier 
can thus make predication and assign a tag to any 
input data. 

The suggestion task in this study will be seen 
as a classification problem. We treat the colloca-
tion extracted from each sentence as the class tag 
(see examples in Table 1). Hopefully, the system 
can learn the rules between tagged classes (i.e. 
collocations) and example sentences (i.e. schol-
arly sentences) and can predict which collocation 
is the most appropriate one given attributes ex-
tracted from the sentences. 

Another advantage of using a classifier to 
automate suggestion is to provide alternatives 
with regard to the similar attributes shared by 
sentences. In Table 1, we can observe that these 
collocations exhibit a similar discourse function 
and can thus become interchangeable in these 
sentences. Therefore, based on the outputs along 
with the probability from the classifier, we can 
provide more than one adequate suggestions. 
 
Feature Selection for Machine Learning: In 
the final stage of training, we build a statistical 
machine-learning model. For our task, we can 
use a supervised method to automatically learn 
the relationship between collocations and exam-
ple sentences. 
We choose Maximum Entropy (ME) as our train-
ing algorithm to build a collocation suggestion 
classifier. One advantage of an ME classifier is 
that in addition to assigning a classification it can 
provide the probability of each assignment. The 
ME framework estimates probabilities based on 
the principle of making as few assumptions as 
possible. Such constraints are derived from the 
training data, expressing relationships between 
features and outcomes.  

Moreover, an effective feature selection can 
increase the precision of machine learning. In our 
study, we employ the contextual features which  

Table 1. Example sentences and class tags (colloca-
tions) 
Example Sentence  Class tag   

We introduce a novel method for learning 
to find documents on the web.  introduce  

We presented a method of improving Japa-
nese dependency parsing by using large-
scale statistical information.  

present  

In this paper, we will describe a method of 
identifying the syntactic role of antece-
dents, which consists of two phases  

describe  

In this paper, we suggest a method that 
automatically constructs an NE tagged cor-
pus from the web to be used for learning of 
NER systems.  

suggest  

 
consist of two elements, the head and the ngram 
of context words: 
 

Head: Each collocation comprises two parts, 
collocate and head. For example, in a given verb-
noun collocation, the verb is the collocate as well 
as the target for which we provide suggestions; 
the noun serves as the head of collocation and 
convey the essential meaning of the collocation. 
We use the head as a feature to condition the 
classifier to generate candidates relevant to a 
given head. 

 
Ngram: We use the context words around the 

target collocation by considering the correspond-
ing unigrams and bigrams words within the sen-
tence. Moreover, to ensure the relevance, those 
context words, before and after the punctuation 
marks enclosing the collocation in question, will 
be excluded. We use the parsed sentence from 
previous step (example (2)) to show the extracted 
context features1 (example (4)): 

(4) CN=method UniV_L=we 
UniV_R=a UniV_R=novel UniN_L=a 
UniN_L=novel UniN_R=for 
UniN_R=learn BiV_R=a_novel 
BiN_L=a_novel BiN_R=for_learn 
BiV_I=we_a BiN_I=novel_for  

                                                             
1 CN refers to the head within collocation. Uni and Bi indi-
cate the unigram and bigram context words of window size 
two respectively. V and N differentiate the contexts related 
to verb or noun. The ending alphabets L, R, I show the posi-
tion of the words in context, L = left, R = right, and I = in 
between. 
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2.2 Automatic Collocation Suggestion at 
Run-time 

After the ME classifier is automatically trained, 
the model is used to find out the best collocation 
suggestion. Figure 3 shows the algorithm of pro-
ducing suggestions for a given sentence. The 
input is a learner’s sentence in an abstract, along 
with an ME model trained from the reference 
corpus.  

In Step (1) of the algorithm, we parse the sen-
tence for data preprocessing. Based on the parser 
output, we extract the collocation from a given 
sentence as well as generate features sets in Step 
(2) and (3). After that in Step (4), with the 
trained machine-learning model, we obtain a set 
of likely collocates with probability as predicted 
by the ME model. In Step (5), SuggestionFilter 
singles out the valid collocation and returns the 
best collocation suggestion as output in Step (6). 
For example, if a learner inputs the sentence like 
Example (5), the features and output candidates 
are shown in Table 2. 

(5) There are many investiga-
tions about wireless network 
communication, especially it is 
important to add Internet 
transfer calculation speeds.  

3 Experiment 

From an online research database, CiteSeer, we 
have collected a corpus of 20,306 unique ab-
stracts, which contained 95,650 sentences. To 
train a Maximum Entropy classifier, 46,255 col-
locations are extracted and 790 verbal collocates 
are identified as tagged classes for collocation 
suggestions. We tested the classifier on scholarly 
sentences in place of authentic student writings 
which were not available at the time of this pilot 
study. We extracted 364 collocations among 600 
randomly selected sentences as the held out test 
data not overlapping with the training set. To 
automate the evaluation, we blank out the verb 
collocates within these sentences and treat these 
verbs directly as the only correct suggestions in 
question, although two or more suggestions may 
be interchangeable or at least appropriate. In this 
sense, our evaluation is an underestimate of the 
performance of the proposed method. 
   While evaluating the quality of the suggestions 
provided by our system, we used the mean recip-
rocal rank (MRR) of the first relevant sugges-
tions returned so as to assess whether the sugges-
tion list contains an answer and how far up the 
answer is in the list as a quality metric of the sys-  

Procedure CollocationSuggestion(sent, MEmodel)   
(1)   parsedSen = Parsing(sent) 
(2)   extractedColl = CollocationExtraction(parsedSent) 
(3)   features = AssignFeature(ParsedSent)   
(4)   probCollection = MEprob(features, MEmodel)    
(5)   candidate = SuggestionFilter(probCollection) 
(6)   Return candidate  
Figure 3. Collocation Suggestion at Run-time 

 
Table 2. An example from learner’s sentence 
Extracted 
Collocation Features Ranked 

Candidates 

add speed 

CN=speed 
UniV_L=important 
UniV_L=to 
UniV_R=internet 
UniV_R=transfer 
UniN_L=transfer 
UniN_L=calculation 
BiV_L=important_to 
BiV_R=internet_transfer 
BiN_L=transfer_calcula-
tion 
BiV_I=to_intenet 

improve 
increase 
determine 
maintain 
… … 

 
Table 3. MRR for different feature sets 
Feature Sets Included In Classifier MRR  
Features of HEAD 0.407 
Features of CONTEXT 0.469 
Features of HEAD+CONTEXT 0.518 
 
tem output. Table 3 shows that the best MRR of 
our prototype system is 0.518. The results indi-
cate that on average users could easily find an-
swers (exactly reproduction of the blanked out 
collocates) in the first two to three ranking of 
suggestions. It is very likely that we get a much 
higher MMR value if we would go through the 
lists and evaluate each suggestion by hand. 
Moreover, in Table 3, we can further notice that 
contextual features are quite informative in com-
parison with the baseline feature set containing 
merely the feature of HEAD. Also the integrated 
feature set of HEAD and CONTEXT together 
achieves a more satisfactory suggestion result. 

4 Conclusion 

Many avenues exist for future research that are 
important for improving the proposed method. 
For example, we need to carry out the experi-
ment on authentic learners’ texts. We will con-
duct a user study to investigate whether our sys-
tem would improve a learner’s writing in a real 
setting. Additionally, adding classifier features 
based on the translation of misused words in 
learners’ text could be beneficial  (Chang et al., 
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2008). The translation can help to resolve preva-
lent collocation misuses influenced by a learner's 
native language. Yet another direction of this 
research is to investigate if our methodology is 
applicable to other types of collocations, such as 
AN and PN in addition to VN dealt with in this 
paper. 

In summary, we have presented an unsuper-
vised method for suggesting collocations based 
on a corpus of abstracts collected from the Web. 
The method involves selecting features from the 
reference corpus of the scholarly texts. Then a 
classifier is automatically trained to determine 
the most probable collocation candidates with 
regard to the given context. The preliminary re-
sults show that it is beneficial to use classifiers 
for identifying and ranking collocation sugges-
tions based on the context features.  
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Abstract

Bag-of-words approaches to information
retrieval (IR) are effective but assume in-
dependence between words. The Hy-
perspace Analogue to Language (HAL)
is a cognitively motivated and validated
semantic space model that captures sta-
tistical dependencies between words by
considering their co-occurrences in a sur-
rounding window of text. HAL has been
successfully applied to query expansion in
IR, but has several limitations, including
high processing cost and use of distribu-
tional statistics that do not exploit syn-
tax. In this paper, we pursue two methods
for incorporating syntactic-semantic infor-
mation from textual ‘events’ into HAL.
We build the HAL space directly from
events to investigate whether processing
costs can be reduced through more careful
definition of word co-occurrence, and im-
prove the quality of the pseudo-relevance
feedback by applying event information
as a constraint during HAL construction.
Both methods significantly improve per-
formance results in comparison with orig-
inal HAL, and interpolation of HAL and
relevance model expansion outperforms
either method alone.

1 Introduction

Despite its intuitive appeal, the incorporation of
linguistic and semantic word dependencies in IR
has not been shown to significantly improve over
a bigram language modeling approach (Song and
Croft, 1999) that encodes word dependencies as-
sumed from mere syntactic adjacency. Both the

dependence language model for IR (Gao et al.,
2004), which incorporates linguistic relations be-
tween non-adjacent words while limiting the gen-
eration of meaningless phrases, and the Markov
Random Field (MRF) model, which captures short
and long range term dependencies (Metzler and
Croft, 2005; Metzler and Croft, 2007), con-
sistently outperform a unigram language mod-
elling approach but are closely approximated by
a bigram language model that uses no linguis-
tic knowledge. Improving retrieval performance
through application of semantic and syntactic in-
formation beyond proximity and co-occurrence
features is a difficult task but remains a tantalising
prospect.

Our approach is like that of Gao et al. (2004)
in that it considers semantic-syntactically deter-
mined relationships between words at the sentence
level, but allows words to have more than one
role, such as predicate and argument for differ-
ent events, while link grammar (Sleator and Tem-
perley, 1991) dictates that a word can only sat-
isfy one connector in a disjunctive set. Compared
to the MRF model, our approach is unsupervised
where MRFs require the training of parameters us-
ing relevance judgments that are often unavailable
in practical conditions.

Other work incorporating syntactic and linguis-
tic information into IR includes early research by
(Smeaton, O’Donnell and Kelledy, 1995), who
employed tree structured analytics (TSAs) resem-
bling dependency trees, the use of syntax to de-
tect paraphrases for question answering (QA) (Lin
and Pantel, 2001), and semantic role labelling in
QA (Shen and Lapata, 2007).

Independent from IR, Pado and Lapata (2007)
proposed a general framework for the construc-
tion of a semantic space endowed with syntactic
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information. This was represented by an undi-
rected graph, where nodes stood for words, de-
pendency edges stood for syntactical relations, and
sequences of dependency edges formed paths that
were weighted for each target word. Our work is
in line with Pado and Lapata (2007) in construct-
ing a semantic space with syntactic information,
but builds our space from events, states and attri-
butions as defined linguistically by Bach (1986).
We call these simply events, and extract them auto-
matically from predicate-argument structures and
a dependency parse. We will use this space to per-
form query expansion in IR, a task that aims to find
additional words related to original query terms,
such that an expanded query including these words
better expresses the information need. To our
knowledge, the notion of events has not been ap-
plied to query expansion before.

This paper will outline the original HAL al-
gorithm which serves as our baseline, and the
event extraction process. We then propose two
methods to arm HAL with event information: di-
rect construction of HAL from events (eHAL-1),
and treating events as constraints on HAL con-
struction from the corpus (eHAL-2). Evaluation
will compare results using original HAL, eHAL-
1 and eHAL-2 with a widely used unigram lan-
guage model (LM) for IR and a state of the art
query expansion method, namely the Relevance
Model (RM) (Lavrenko and Croft, 2001). We also
explore whether a complementary effect can be
achieved by combining HAL-based dependency
modelling with the unigram-based RM.

2 HAL Construction

Semantic space models aim to capture the mean-
ings of words using co-occurrence information
in a text corpus. Two examples are the Hyper-
space Analogue to Language (HAL) (Lund and
Burgess, 1996), in which a word is represented
by a vector of other words co-occurring with it
in a sliding window, and Latent Semantic Anal-
ysis (LSA) (Deerwester, Dumais, Furnas, Lan-
dauer and Harshman, 1990; Landauer, Foltz and
Laham, 1998), in which a word is expressed as
a vector of documents (or any other syntacti-
cal units such as sentences) containing the word.
In these semantic spaces, vector-based represen-
tations facilitate measurement of similarities be-
tween words. Semantic space models have been
validated through various studies and demonstrate

compatibility with human information processing.
Recently, they have also been applied in IR, such
as LSA for latent semantic indexing, and HAL for
query expansion. For the purpose of this paper, we
focus on HAL, which encodes word co-occurrence
information explicitly and thus can be applied to
query expansion in a straightforward way.

HAL is premised on context surrounding a word
providing important information about its mean-
ing (Harris, 1968). To be specific, an L-size
sliding window moves across a large text corpus
word-by-word. Any two words in the same win-
dow are treated as co-occurring with each other
with a weight that is inversely proportional to their
separation distance in the text. By accumulating
co-occurrence information over a corpus, a word-
by-word matrix is constructed, a simple illustra-
tion of which is given in Table 1. A single word is
represented by a row vector and a column vector
that capture the information before and after the
word, respectively. In some applications, direc-
tion sensitivity is ignored to obtain a single vector
representation of a word by adding corresponding
row and column vectors (Bai et al., 2005).

w1 w2 w3 w4 w5 w6

w1

w2 5
w3 4 5
w4 3 4 5
w5 2 3 4 5
w6 2 3 4 5

Table 1: A HAL space for the text “w1 w2 w3 w4

w5 w6” using a 5-word sliding window (L = 5).

HAL has been successfully applied to query ex-
pansion and can be incorporated into this task di-
rectly (Bai et al., 2005) or indirectly, as with the
Information Flow method based on HAL (Bruza
and Song, 2002). However, to date it has used
only statistical information from co-occurrence
patterns. We extend HAL to incorporate syntactic-
semantic information.

3 Event Extraction

Prior to event extraction, predicates, arguments,
part of speech (POS) information and syntac-
tic dependencies are annotated using the best-
performing joint syntactic-semantic parser from
the CoNNL 2008 Shared Task (Johansson and
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Nugues, 2008), trained on PropBank and Nom-
Bank data. The event extraction algorithm then
instantiates the template REL [modREL] Arg0
[modArg0] ...ArgN [modArgN], where REL is the
predicate relation (or root verb if no predicates
are identified), and Arg0...ArgN are its arguments.
Modifiers (mod) are identified by tracing from
predicate and argument heads along the depen-
dency tree. All predicates are associated with at
least one event unless both Arg0 and Arg1 are not
identified, or the only argument is not a noun.

The algorithm checks for modifiers based on
POS tag1, tracing up and down the dependency
tree, skipping over prepositions, coordinating con-
junctions and words indicating apportionment,
such as ‘sample (of)’. However, to constrain out-
put the search is limited to a depth of one (with
the exception of skipping). For example, given
the phrase ‘apples from the store nearby’ and an
argument head apples, the first dependent, store,
will be extracted but not nearby, which is the de-
pendent of store. This can be detrimental when
encountering compound nouns but does focus on
core information. For verbs, modal dependents are
not included in output.

Available paths up and down the dependency
tree are followed until all branches are exhausted,
given the rules outlined above. Tracing can re-
sult in multiple extracted events for one predicate
and predicates may also appear as arguments in
a different event, or be part of argument phrases.
For this reason, events are constrained to cover
only detail appearing above subsequent predicates
in the tree, which simplifies the event structure.
For example, the sentence “Baghdad already has
the facilities to continue producing massive quan-
tities of its own biological and chemical weapons”
results in the event output: (1) has Baghdad al-
ready facilities continue producing; (2) continue
quantities producing massive; (3) producing quan-
tities massive weapons biological; (4) quantities
weapons biological massive.

4 HAL With Events

4.1 eHAL-1: Construction From Events
Since events are extracted from documents, they
form a reduced text corpus from which HAL can

1To be specific, the modifiers include negation, as well as
adverbs or particles for verbal heads, adjectives and nominal
modifiers for nominal heads, and verbal or nominal depen-
dents of modifiers, provided modifiers are not also identified
as arguments elsewhere in the event.

be built in a similar manner to the original HAL.
We ignore the parameter of window length (L)
and treat every event as a single window of length
equal to the number of words in the event. Every
pair of words in an event is considered to be co-
occurrent with each other. The weight assigned to
the association between each pair is simply set to
one. With this scheme, all the events are traversed
and the event-based HAL is constructed.

The advantage of this method is that it sub-
stantially reduces the processing time during HAL
construction because only events are involved and
there is no need to calculate weights per occur-
rence. Additional processing time is incurred in
semantic role labelling (SRL) during event iden-
tification. However, the naive approach to extrac-
tion might be simulated with a combination of less
costly chunking and dependency parsing, given
that the word ordering information available with
SRL is not utilised.

eHAL-1 combines syntactical and statistical in-
formation, but has a potential drawback in that
only events are used during construction so some
information existing in the co-occurrence patterns
of the original text may be lost. This motivates the
second method.

4.2 eHAL-2: Event-Based Filtering
This method attempts to include more statistical
information in eHAL construction. The key idea
is to decide whether a text segment in a corpus
should be used for the HAL construction, based
on how much event information it covers. Given a
corpus of text and the events extracted from it, the
eHAL-2 method runs as follows:

1. Select the events of length M or more and
discard the others for efficiency;

2. Set an “inclusion criterion”, which decides if
a text segment, defined as a word sequence
within an L-size sliding window, contains an
event. For example, if 80% of the words in an
event are contained in a text segment, it could
be considered to “include” the event;

3. Move across the whole corpus word-by-word
with an L-size sliding window. For each win-
dow, complete Steps 4-7;

4. For the current L-size text segment, check
whether it includes an event according to the
“inclusion criterion” (Step 2);
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5. If an event is included in the current text
segment, check the following segments for
a consecutive sequence of segments that also
include this event. If the current segment in-
cludes more than one event, find the longest
sequence of related text segments. An illus-
tration is given in Figure 1 in which dark
nodes stand for the words in a specific event
and an 80% inclusion criterion is used.

Text

Segment K


Segment K+1

Segment K+2

Segment K+3


Figure 1: Consecutive segments for an event

6. Extract the full span of consecutive segments
just identified and go to the next available text
segment. Repeat Step 3;

7. When the scanning is done, construct HAL
using the original HAL method over all ex-
tracted sequences.

With the guidance of event information, the pro-
cedure above keeps only those segments of text
that include at least one event and discards the rest.
It makes use of more statistical co-occurrence in-
formation than eHAL-1 by applying weights that
are proportional to word separation distance. It
also alleviates the identified drawback of eHAL-1
by using the full text surrounding events. A trade-
off is that not all the events are included by the
selected text segments, and thus some syntactical
information may be lost. In addition, the paramet-
ric complexity and computational complexity are
also higher than eHAL-1.

5 Evaluation

We empirically test whether our event-based
HALs perform better than the original HAL, and
standard LM and RM, using three TREC2 col-
lections: AP89 with Topics 1-50 (title field),
AP8889 with Topics 101-150 (title field) and
WSJ9092 with Topics 201-250 (description field).
All the collections are stemmed, and stop words
are removed, prior to retrieval using the Lemur
Toolkit Version 4.113. Initial retrieval is iden-
tical for all models evaluated: KL-divergence

2TREC stands for the Text REtrieval Conference series
run by NIST. Please refer to http://trec.nist.gov/ for details.

3Available at http://www.lemurproject.org/

based LM smoothed using Dirichlet prior with µ
set to 1000 as appropriate for TREC style title
queries (Lavrenko, 2004). The top 50 returned
documents form the basis for all pseudo-relevance
feedback, with other parameters tuned separately
for the RM and HAL methods.

For each dataset, the number of feedback terms
for each method is selected optimally among 20,
40, 60, 804 and the interpolation and smoothing
coefficient is set to be optimal in [0,1] with in-
terval 0.1. For RM, we choose the first relevance
model in Lavrenko and Croft (2001) with the doc-
ument model smoothing parameter optimally set
at 0.8. The number of feedback terms is fixed at
60 (for AP89 and WSJ9092) and 80 (for AP8889),
and interpolation between the query and relevance
models is set at 0.7 (for WSJ9092) and 0.9 (for
AP89 and AP8889). The HAL-based query ex-
pansion methods add the top 80 expansion terms
to the query with interpolation coefficient 0.9 for
WSJ9092 and 1 (that is, no interpolation) for AP89
and AP8889. The other HAL-based parameters
are set as follows: shortest event length M = 5,
for eHAL-2 the “inclusion criterion” is 75% of
words in an event, and for HAL and eHAL-2, win-
dow size L = 8. Top expansion terms are selected
according to the formula:

PHAL(tj | ⊕ t) =
HAL(tj | ⊕ q)∑

ti

HAL(ti| ⊕ q)

where HAL(tj |⊕q) is the weight of tj in the com-
bined HAL vector ⊕q (Bruza and Song, 2002)
of original query terms. Mean Average Precision
(MAP) is the performance indicator, and t-test (at
the level of 0.05) is performed to measure the sta-
tistical significance of results.

Table 2 lists the experimental results5. It can
be observed that all the three HAL-based query
expansion methods improve performance over the
LM and both eHALs achieve better performance
than original HAL, indicating that the incorpora-
tion of event information is beneficial. In addition,
eHAL-2 leads to better performance than eHAL-
1, suggesting that use of linguistic information as
a constraint on statistical processing, rather than
the focus of extraction, is a more effective strat-
egy. The results are still short of those achieved

4For RM, feedback terms were also tested on larger num-
bers up to 1000 but only comparable result was observed.

5In Table 2, brackets show percent improvement of
eHALs / RM over HAL / eHAL-2 respectively and * and #
indicate the corresponding statistical significance.
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Method AP89 AP8889 WSJ9092
LM 0.2015 0.2290 0.2242

HAL 0.2299 0.2738 0.2346
eHAL-1 0.2364 0.2829 0.2409

(+2.83%) (+3.32%*) (+2.69%)
eHAL-2 0.2427 0.2850 0.2460

(+5.57%*) (+4.09%*) (+4.86%*)
RM 0.2611 0.3178 0.2676

(+7.58%#) (+11.5%#) (+8.78%#)

Table 2: Performance (MAP) comparison of query
expansion using different HALs

with RM, but the gap is significantly reduced by
incorporating event information here, suggesting
this is a promising line of work. In addition, as
shown in (Bai et al., 2005), the Information Flow
method built upon the original HAL largely out-
performed RM. We expect that eHAL would pro-
vide an even better basis for Information Flow, but
this possibility is yet to be explored.

As is known, RM is a pure unigram model while
HAL methods are dependency-based. They cap-
ture different information, hence it is natural to
consider if their strengths might complement each
other in a combined model. For this purpose, we
design the following two schemes:

1. Apply RM to the feedback documents (orig-
inal RM), the events extracted from these
documents (eRM-1), and the text segments
around each event (eRM-2), where the three
sources are the same as used to produce HAL,
eHAL-1 and eHAL-2 respectively;

2. Interpolate the expanded query model by
RM with the ones generated by each HAL,
represented by HAL+RM, eHAL-1+RM and
eHAL-2+RM. The interpolation coefficient is
again selected to achieve the optimal MAP.

The MAP comparison between the original RM
and these new models are demonstrated in Ta-
ble 36. From the first three lines (Scheme 1), we
can observe that in most cases the performance
generally deteriorates when RM is directly run
over the events and the text segments. The event
information is more effective to express the infor-
mation about the term dependencies while the un-
igram RM ignores this information and only takes

6For rows in Table 3, brackets show percent difference
from original RM.

Method AP89 AP8889 WSJ9092
RM 0.2611 0.3178 0.2676

eRM-1 0.2554 0.3150 0.2555
(-2.18%) (-0.88%) (-4.52%)

eRM-2 0.2605 0.3167 0.2626
(-0.23%) (-0.35%) (-1.87%)

HAL 0.2640 0.3186 0.2727
+RM (+1.11%) (+0.25%) (+1.19%)

eHAL-1 0.2600 0.3210 0.2734
+RM (-0.42%) (+1.01%) (+2.17%)

eHAL-2 0.2636 0.3191 0.2735
+RM (+0.96%) (+0.41%) (+2.20%)

Table 3: Performance (MAP) comparison of query
expansion using the combination of RM and term
dependencies

the occurrence frequencies of individual words
into account, which is not well-captured by the
events. In contrast, the performance of Scheme 2
is more promising. The three methods outperform
the original RM in most cases, but the improve-
ment is not significant and it is also observed that
there is little difference shown between RM with
HAL and eHALs. The phenomenon implies more
effective methods may be invented to complement
the unigram models with the syntactical and sta-
tistical dependency information.

6 Conclusions

The application of original HAL to query expan-
sion attempted to incorporate statistical word as-
sociation information, but did not take into ac-
count the syntactical dependencies and had a
high processing cost. By utilising syntactic-
semantic knowledge from event modelling of
pseudo-relevance feedback documents prior to
computing the HAL space, we showed that pro-
cessing costs might be reduced through more care-
ful selection of word co-occurrences and that per-
formance may be enhanced by effectively improv-
ing the quality of pseudo-relevance feedback doc-
uments. Both methods improved over original
HAL query expansion. In addition, interpolation
of HAL and RM expansion improved results over
those achieved by either method alone.
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Abstract

We propose a novel method to automati-
cally acquire a term-frequency-based tax-
onomy from a corpus using an unsuper-
vised method. A term-frequency-based
taxonomy is useful for application do-
mains where the frequency with which
terms occur on their own and in combi-
nation with other terms imposes a natural
term hierarchy. We highlight an applica-
tion for our approach and demonstrate its
effectiveness and robustness in extracting
knowledge from real-world data.

1 Introduction

Taxonomy deduction is an important task to under-
stand and manage information. However, building
taxonomies manually for specific domains or data
sources is time consuming and expensive. Tech-
niques to automatically deduce a taxonomy in an
unsupervised manner are thus indispensable. Au-
tomatic deduction of taxonomies consist of two
tasks: extracting relevant terms to represent con-
cepts of the taxonomy and discovering relation-
ships between concepts. For unstructured text, the
extraction of relevant terms relies on information
extraction methods (Etzioni et al., 2005).

The relationship extraction task can be classi-
fied into two categories. Approaches in the first
category use lexical-syntactic formulation to de-
fine patterns, either manually (Kozareva et al.,
2008) or automatically (Girju et al., 2006), and
apply those patterns to mine instances of the pat-
terns. Though producing accurate results, these
approaches usually have low coverage for many
domains and suffer from the problem of incon-
sistency between terms when connecting the in-
stances as chains to form a taxonomy. The second
category of approaches uses clustering to discover
terms and the relationships between them (Roy

and Subramaniam, 2006), even if those relation-
ships do not explicitly appear in the text. Though
these methods tackle inconsistency by addressing
taxonomy deduction globally, the relationships ex-
tracted are often difficult to interpret by humans.

We show that for certain domains, the frequency
with which terms appear in a corpus on their own
and in conjunction with other terms induces a nat-
ural taxonomy. We formally define the concept
of a term-frequency-based taxonomy and show
its applicability for an example application. We
present an unsupervised method to generate such
a taxonomy from scratch and outline how domain-
specific constraints can easily be integrated into
the generation process. An advantage of the new
method is that it can also be used to extend an ex-
isting taxonomy.

We evaluated our method on a large corpus of
real-life addresses. For addresses from emerging
geographies no standard postal address scheme
exists and our objective was to produce a postal
taxonomy that is useful in standardizing addresses
(Kothari et al., 2010). Specifically, the experi-
ments were designed to investigate the effective-
ness of our approach on noisy terms with lots of
variations. The results show that our method is
able to induce a taxonomy without using any kind
of lexical-semantic patterns.

2 Related Work

One approach for taxonomy deduction is to use
explicit expressions (Iwaska et al., 2000) or lexi-
cal and semantic patterns such as is a (Snow et al.,
2004), similar usage (Kozareva et al., 2008), syn-
onyms and antonyms (Lin et al., 2003), purpose
(Cimiano and Wenderoth, 2007), and employed by
(Bunescu and Mooney, 2007) to extract and orga-
nize terms. The quality of extraction is often con-
trolled using statistical measures (Pantel and Pen-
nacchiotti, 2006) and external resources such as
wordnet (Girju et al., 2006). However, there are
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domains (such as the one introduced in Section
3.2) where the text does not allow the derivation
of linguistic relations.

Supervised methods for taxonomy induction
provide training instances with global seman-
tic information about concepts (Fleischman and
Hovy, 2002) and use bootstrapping to induce new
seeds to extract further patterns (Cimiano et al.,
2005). Semi-supervised approaches start with
known terms belonging to a category, construct
context vectors of classified terms, and associate
categories to previously unclassified terms de-
pending on the similarity of their context (Tanev
and Magnini, 2006). However, providing train-
ing data and hand-crafted patterns can be tedious.
Moreover in some domains (such as the one pre-
sented in Section 3.2) it is not possible to construct
a context vector or determine the replacement fit.

Unsupervised methods use clustering of word-
context vectors (Lin, 1998), co-occurrence (Yang
and Callan, 2008), and conjunction features (Cara-
ballo, 1999) to discover implicit relationships.
However, these approaches do not perform well
for small corpora. Also, it is difficult to label the
obtained clusters which poses challenges for eval-
uation. To avoid these problems, incremental clus-
tering approaches have been proposed (Yang and
Callan, 2009). Recently, lexical entailment has
been used where the term is assigned to a cate-
gory if its occurrence in the corpus can be replaced
by the lexicalization of the category (Giuliano and
Gliozzo, 2008). In our method, terms are incre-
mentally added to the taxonomy based on their
support and context.

Association rule mining (Agrawal and Srikant,
1994) discovers interesting relations between
terms, based on the frequency with which terms
appear together. However, the amount of patterns
generated is often huge and constructing a tax-
onomy from all the patterns can be challenging.
In our approach, we employ similar concepts but
make taxonomy construction part of the relation-
ship discovery process.

3 Term-frequency-induced Taxonomies

For some application domains, a taxonomy is in-
duced by the frequency in which terms appear in a
corpus on their own and in combination with other
terms. We first introduce the problem formally and
then motivate it with an example application.

Figure 1: Part of an address taxonomy

3.1 Definition
Let C be a corpus of records r. Each record is
represented as a set of terms t. Let T = {t | t ∈
r ∧ r ∈ C} be the set of all terms of C. Let f(t)
denote the frequency of term t, that is the number
of records in C that contain t. Let F (t, T+, T−)
denote the frequency of term t given a set of must-
also-appear terms T+ and a set of cannot-also-
appear terms T−. F (t, T+, T−) = | {r ∈ C |
t ∈ r∧ ∀ t′ ∈ T+ : t′ ∈ r ∧ ∀ t′ ∈ T− : t′ /∈ r} |.

A term-frequency-induced taxonomy (TFIT), is
an ordered tree over terms in T . For a node n in
the tree, n.t is the term at n, A(n) the ancestors of
n, and P (n) the predecessors of n.

A TFIT has a root node with the special term ⊥
and the conditional frequency ∞. The following
condition is true for any other node n:
∀t ∈ T, F (n.t, A(n), P (n)) ≥ F (t, A(n), P (n)).
That is, each node’s term has the highest condi-
tional frequency in the context of the node’s an-
cestors and predecessors. Only terms with a con-
ditional frequency above zero are added to a TFIT.

We show in Section 4 how a TFIT taxonomy
can be automatically induced from a given corpus.
But before that, we show that TFITs are useful in
practice and reflect a natural ordering of terms for
application domains where the concept hierarchy
is expressed through the frequency in which terms
appear.

3.2 Example Domain: Address Data
An address taxonomy is a key enabler for address
standardization. Figure 1 shows part of such an ad-
dress taxonomy where the root contains the most
generic term and leaf-level nodes contain the most
specific terms. For emerging economies building
a standardized address taxonomy is a huge chal-
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Row Term Part of address Category
1 D-15 house number alphanumerical
2 Rawal building name proper noun
3 Complex building name proper noun
4 Behind landmark marker
5 Hotel landmark marker
6 Ruchira landmark proper noun
7 Katre street proper noun
8 Road street marker
9 Jeevan area proper noun
10 Nagar area marker
11 Andheri city (taluk) proper noun
12 East city (taluk) direction
13 Mumbai district proper noun
14 Maharashtra state proper noun
15 400069 ZIP code 6 digit string

Table 1: Example of a tokenized address

lenge. First, new areas and with it new addresses
constantly emerge. Second, there are very limited
conventions for specifying an address (Faruquie et
al., 2010). However, while many developing coun-
tries do not have a postal taxonomy, there is often
no lack of address data to learn a taxonomy from.

Column 2 of Table 1 shows an example of an
Indian address. Although Indian addresses tend to
follow the general principal that more specific in-
formation is mentioned earlier, there is no fixed or-
der for different elements of an address. For exam-
ple, the ZIP code of an address may be mentioned
before or after the state information and, although
ZIP code information is more specific than city in-
formation, it is generally mentioned later in the
address. Also, while ZIP codes often exist, their
use by people is very limited. Instead, people tend
to mention copious amounts of landmark informa-
tion (see for example rows 4-6 in Table 1).

Taking all this into account, there is often not
enough structure available to automatically infer a
taxonomy purely based on the structural or seman-
tic aspects of an address. However, for address
data, the general-to-specific concept hierarchy is
reflected in the frequency with which terms appear
on their own and together with other terms.

It mostly holds that f(s) > f(d) > f(c) >
f(z) where s is a state name, d is a district name,
c is a city name, and z is a ZIP code. How-
ever, sometimes the name of a large city may be
more frequent than the name of a small state. For
example, in a given corpus, the term ’Houston’
(a populous US city) may appear more frequent
than the term ’Vermont’ (a small US state). To
avoid that ’Houston’ is picked as a node at the first
level of the taxonomy (which should only contain

states), the conditional-frequency constraint intro-
duced in Section 3.1 is enforced for each node in a
TFIT. ’Houston’s state ’Texas’ (which is more fre-
quent) is picked before ’Houston’. After ’Texas’ is
picked it appears in the ”cannot-also-appear”’ list
for all further siblings on the first level, thus giving
’Houston’ has a conditional frequency of zero.

We show in Section 5 that an address taxonomy
can be inferred by generating a TFIT taxonomy.

4 Automatically Generating TFITs

We describe a basic algorithm to generate a TFIT
and then show extensions to adapt to different ap-
plication domains.

4.1 Base Algorithm

Algorithm 1 Algorithm for generating a TFIT.
// For initialization T+, T− are empty
// For initialization l,w are zero
genTFIT(T+, T−, C, l, w)
// select most frequent term
tnext = tj with F (tj , T

+, T−) is maximal amongst all
tj ∈ C;
fnext = F (tnext, T

+, T−);
if fnext ≥ support then

//Output node (tj , l, w)
...
// Generate child node
genTFIT(T+ ∪ {tnext}, T−, C, l + 1, w)
// Generate sibling node
genTFIT(T+, T− ∪ {tnext}, C, l, w + 1)

end if

To generate a TFIT taxonomy as defined in Sec-
tion 3.1 we recursively pick the most frequent term
given previously chosen terms. The basic algo-
rithm genTFIT is sketched out in Algorithm 1.
When genTFIT is called the first time, T+ and
T− are empty and both level l and width w are
zero. With each call of genTFIT a new node
n in the taxonomy is created with (t, l, w) where
t is the most frequent term given T+ and T−

and l and w capture the position in the taxonomy.
genTFIT is recursively called to generate a child
of n and a sibling for n.

The only input parameter required by our al-
gorithm is support. Instead of adding all terms
with a conditional frequency above zero, we only
add terms with a conditional frequency equal to or
higher than support. The support parameter con-
trols the precision of the resulting TFIT and also
the runtime of the algorithm. Increasing support
increases the precision but also lowers the recall.
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4.2 Integrating Constraints

Structural as well as semantic constraints can eas-
ily be integrated into the TFIT generation.

We distinguish between taxonomy-level and
node-level structural constraints. For example,
limiting the depth of the taxonomy by introduc-
ing a maxLevel constraint and checking before
each recursive call if maxLevel is reached, is
a taxonomy-level constraint. A node-level con-
straint applies to each node and affects the way
the frequency of terms is determined.

For our example application, we introduce the
following node-level constraint: at each node we
only count terms that appear at specific positions
in records with respect to the current level of the
node. Specifically, we slide (or incrementally in-
crease) a window over the address records start-
ing from the end. For example, when picking the
term ’Washington’ as a state name, occurrences of
’Washington’ as city or street name are ignored.
Using a window instead of an exact position ac-
counts for positional variability. Also, to accom-
modate varying amounts of landmark information
we length-normalize the position of terms. That is,
we divide all positions in an address by the average
length of an address (which is 10 for our 40 Mil-
lion addresses). Accordingly, we adjust the size of
the window and use increments of 0.1 for sliding
(or increasing) the window.

In addition to syntactical constraints, semantic
constraints can be integrated by classifying terms
for use when picking the next frequent term. In our
example application, markers tend to appear much
more often than any proper noun. For example,
the term ’Road’ appears in almost all addresses,
and might be picked up as the most frequent term
very early in the process. Thus, it is beneficial to
ignore marker terms during taxonomy generation
and adding them as a post-processing step.

4.3 Handling Noise

The approach we propose naturally handles noise
by ignoring it, unless the noise level exceeds the
support threshold. Misspelled terms are generally
infrequent and will as such not become part of
the taxonomy. The same applies to incorrect ad-
dresses. Incomplete addresses partially contribute
to the taxonomy and only cause a problem if the
same information is missing too often. For ex-
ample, if more than support addresses with the
city ’Houston’ are missing the state ’Texas’, then

’Houston’ may become a node at the first level and
appear to be a state. Generally, such cases only ap-
pear at the far right of the taxonomy.

5 Evaluation

We present an evaluation of our approach for ad-
dress data from an emerging economy. We imple-
mented our algorithm in Java and store the records
in a DB2 database. We rely on the DB2 optimizer
to efficiently retrieve the next frequent term.

5.1 Dataset
The results are based on 40 Million Indian ad-
dresses. Each address record was given to us as
a single string and was first tokenized into a se-
quence of terms as shown in Table 1. In a second
step, we addressed spelling variations. There is no
fixed way of transliterating Indian alphabets to En-
glish and most Indian proper nouns have various
spellings in English. We used tools to detect syn-
onyms with the same context to generate a list of
rules to map terms to a standard form (Lin, 1998).
For example, in Table 1 ’Maharashtra’ can also be
spelled ’Maharastra’. We also used a list of key-
words to classify some terms as markers such as
’Road’ and ’Nagar’ shown in Table 1.

Our evaluation consists of two parts. First, we
show results for constructing a TFIT from scratch.
To evaluate the precision and recall we also re-
trieved post office addresses from India Post1,
cleaned them, and organized them in a tree.

Second, we use our approach to enrich the ex-
isting hierarchy created from post office addresses
with additional area terms. To validate the result,
we also retrieved data about which area names ap-
pear within a ZIP code.2 We also verified whether
Google Maps shows an area on its map.3

5.2 Taxonomy Generation
We generated a taxonomy O using all 40 million
addresses. We compare the terms assigned to
category levels district and taluk4 in O with the
tree P constructed from post office addresses.
Each district and taluk has at least one post office.
Thus P covers all districts and taluks and allows
us to test coverage and precision. We compute the
precision and recall for each category level CL as

1http://www.indiapost.gov.in/Pin/pinsearch.aspx
2http://www.whereincity.com/india/pincode/search
3maps.google.com
4Administrative division in some South-Asian countries.
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Support Recall % Precision %
100 District 93.9 57.4

Taluk 50.9 60.5
200 District 87.9 64.4

Taluk 49.6 66.1

Table 2: Precision and recall for categorizing
terms belonging to the state Maharashtra

RecallCL = # correct paths from root to CL in O
# paths from root to CL in P

PrecisionCL = # correct paths from root to CL in O
# paths from root to CL in O

Table 2 shows precision and recall for district
and taluk for the large state Maharashtra. Recall
is good for district. For taluk it is lower because a
major part of the data belongs to urban areas where
taluk information is missing. The precision seems
to be low but it has to be noted that in almost 75%
of the addresses either district or taluk informa-
tion is missing or noisy. Given that, we were able
to recover a significant portion of the knowledge
structure.

We also examined a branch for a smaller state
(Kerala). Again, both districts and taluks appear
at the next level of the taxonomy. For a support
of 200 there are 19 entries in O of which all but
two appear in P as district or taluk. One entry is a
taluk that actually belongs to Maharashtra and one
entry is a name variation of a taluk in P . There
were not enough addresses to get a good coverage
of all districts and taluks.

5.3 Taxonomy Augmentation

We used P and ran our algorithm for each branch
in P to include area information. We focus our
evaluation on the city Mumbai. The recall is low
because many addresses do not mention a ZIP
code or use an incorrect ZIP code. However,
the precision is good implying that our approach
works even in the presence of large amounts of
noise.

Table 3 shows the results for ZIP code 400002
and 400004 for a support of 100. We get simi-
lar results for other ZIP codes. For each detected
area we compared whether the area is also listed
on whereincity.com, part of a post office name
(PO), or shown on google maps. All but four
areas found are confirmed by at least one of the
three external sources. Out of the unconfirmed
terms Fanaswadi and MarineDrive seem to
be genuine area names but we could not confirm
DhakurdwarRoad. The term th is due to our

Area Whereincity PO Google
Bhuleshwar yes no yes
Chira Bazar yes no yes
Dhobi Talao no no yes
Fanaswadi no no no
Kalbadevi Road yes yes yes
Marine Drive no no no
Marine Lines yes yes yes
Princess Street no no yes
th no no no
Thakurdwar Road no no no
Zaveri Bazar yes no yes
Charni Road no yes no
Girgaon yes yes yes
Khadilkar Road yes no yes
Khetwadi Road yes no no
Kumbharwada no no yes
Opera House no yes no
Prathna Samaj yes no no

Table 3: Areas found for ZIP code 400002 (top)
and 400004 (bottom)

tokenization process. 16 correct terms out of 18
terms results in a precision of 89%.

We also ran experiments to measure the cov-
erage of area detection for Mumbai without us-
ing ZIP codes. Initializing our algorithm with
Maharshtra and Mumbai yielded over 100 ar-
eas with a support of 300 and more. However,
again the precision is low because quite a few of
those areas are actually taluk names.

Using a large number of addresses is necessary
to achieve good recall and precision.

6 Conclusion

In this paper, we presented a novel approach to
generate a taxonomy for data where terms ex-
hibit an inherent frequency-based hierarchy. We
showed that term frequency can be used to gener-
ate a meaningful taxonomy from address records.
The presented approach can also be used to extend
an existing taxonomy which is a big advantage
for emerging countries where geographical areas
evolve continuously.

While we have evaluated our approach on ad-
dress data, it is applicable to all data sources where
the inherent hierarchical structure is encoded in
the frequency with which terms appear on their
own and together with other terms. Preliminary
experiments on real-time analyst’s stock market
tips 5 produced a taxonomy of (TV station, An-
alyst, Affiliation) with decent precision and recall.

5See Live Market voices at:
http://money.rediff.com/money/jsp/markets home.jsp
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Abstract

We describe the strategy currently pur-
sued for verbalising OWL ontologies by
sentences in Controlled Natural Language
(i.e., combining generic rules for realising
logical patterns with ontology-specific lex-
icons for realising atomic terms for indi-
viduals, classes, and properties) and argue
that its success depends on assumptions
about the complexity of terms and axioms
in the ontology. We then show, through
analysis of a corpus of ontologies, that al-
though these assumptions could in princi-
ple be violated, they are overwhelmingly
respected in practice by ontology develop-
ers.

1 Introduction

Since OWL (Web Ontology Language) was
adopted as a standard in 2004, researchers have
sought ways of mediating between the (decidedly
cumbersome) raw code and the human users who
aspire to view or edit it. Among the solutions
that have been proposed are more readable coding
formats such as Manchester OWL Syntax (Hor-
ridge et al., 2006), and graphical interfaces such
as Protégé (Knublauch et al., 2004); more specula-
tively, several research groups have explored ways
of mapping between OWL and controlled English,
with the aim of presenting ontologies (both for
viewing and editing) in natural language (Schwit-
ter and Tilbrook, 2004; Sun and Mellish, 2006;
Kaljurand and Fuchs, 2007; Hart et al., 2008). In
this paper we uncover and test some assumptions
on which this latter approach is based.

Historically, ontology verbalisation evolved
from a more general tradition (predating OWL
and the Semantic Web) that aimed to support
knowledge formation by automatic interpretation
of texts authored in Controlled Natural Languages

(Fuchs and Schwitter, 1995). The idea is to es-
tablish a mapping from a formal language to a
natural subset of English, so that any sentence
conforming to the Controlled Natural Language
(CNL) can be assigned a single interpretation in
the formal language — and conversely, any well-
formed statement in the formal language can be
realised in the CNL. With the advent of OWL,
some of these CNLs were rapidly adapted to the
new opportunity: part of Attempto Controlled En-
glish (ACE) was mapped to OWL (Kaljurand and
Fuchs, 2007), and Processable English (PENG)
evolved to Sydney OWL Syntax (SOS) (Cregan et
al., 2007). In addition, new CNLs were developed
specifically for editing OWL ontologies, such as
Rabbit (Hart et al., 2008) and Controlled Lan-
guage for Ontology Editing (CLOnE) (Funk et al.,
2007).

In detail, these CNLs display some variations:
thus an inclusion relationship between the classes
Admiral and Sailor would be expressed by the
pattern ‘Admirals are a type of sailor’ in CLOnE,
‘Every admiral is a kind of sailor’ in Rabbit, and
‘Every admiral is a sailor’ in ACE and SOS. How-
ever, at the level of general strategy, all the CNLs
rely on the same set of assumptions concerning the
mapping from natural to formal language; for con-
venience we will refer to these assumptions as the
consensus model. In brief, the consensus model
assumes that when an ontology is verbalised in
natural language, axioms are expressed by sen-
tences, and atomic terms are expressed by en-
tries from the lexicon. Such a model may fail in
two ways: (1) an ontology might contain axioms
that cannot be described transparently by a sen-
tence (for instance, because they contain complex
Boolean expressions that lead to structural ambi-
guity); (2) it might contain atomic terms for which
no suitable lexical entry can be found. In the re-
mainder of this paper we first describe the consen-
sus model in more detail, then show that although
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Logic OWL
C uD IntersectionOf(C D)
∃P.C SomeValuesFrom(P C)

C v D SubClassOf(C D)
a ∈ C ClassAssertion(C a)

[a, b] ∈ P PropertyAssertion(P a b)

Table 1: Common OWL expressions

in principle it is vulnerable to both the problems
just mentioned, in practice these problems almost
never arise.

2 Consensus model

Atomic terms in OWL (or any other language im-
plementing description logic) are principally of
three kinds, denoting either individuals, classes
or properties1. Individuals denote entities in the
domain, such as Horatio Nelson or the Battle of
Trafalgar; classes denote sets of entities, such as
people or battles; and properties denote relations
between individuals, such as the relation victor of
between a person and a battle.

From these basic terms, a wide range of com-
plex expressions may be constructed for classes,
properties and axioms, of which some common
examples are shown in table 1. The upper part of
the table presents two class constructors (C and
D denote any classes; P denotes any property);
by combining them we could build the following
expression denoting the class of persons that com-
mand fleets2:

Person u ∃ CommanderOf.F leet

The lower half of the table presents three axiom
patterns for making statements about classes and
individuals (a, b denote individuals); examples of
their usage are as follows:

1. Admiral v ∃ CommanderOf.F leet

2. Nelson ∈ Admiral

3. [Nelson, Trafalgar] ∈ VictorOf

Note that since class expressions contain classes
as constituents, they can become indefinitely com-
plex. For instance, given the intersection A u B

1If data properties are used, there will also be terms for
data types and literals (e.g., numbers and strings), but for sim-
plicity these are not considered here.

2In description logic notation, the constructor C u D
forms the intersection of two classes and corresponds to
Boolean conjunction, while the existential restriction ∃P.C
forms the class of individuals having the relation P to
one or more members of class C. Thus Person u ∃
CommanderOf.F leet denotes the set of individuals x such
that x is a person and x commands one or more fleets.

we could replace atomic class A by a constructed
class, thus obtaining perhaps (A1 u A2) u B, and
so on ad infinitum. Moreover, since most axiom
patterns contain classes as constituents, they too
can become indefinitely complex.

This sketch of knowledge representation in
OWL illustrates the central distinction be-
tween logical functors (e.g., IntersectionOf,
SubClassOf), which belong to the W3C standard
(Motik et al., 2010), and atomic terms for in-
dividuals, classes and properties (e.g., Nelson,
Admiral, VictorOf). Perhaps the fundamental de-
sign decision of the Semantic Web is that all do-
main terms remain unstandardised, leaving ontol-
ogy developers free to conceptualise the domain
in any way they see fit. In the consensus verbali-
sation model, this distinction is reflected by divid-
ing linguistic resources into a generic grammar for
realising logical patterns, and an ontology-specific
lexicon for realising atomic terms.

Consider for instance C v D, the axiom pat-
tern for class inclusion. This purely logical pattern
can often be mapped (following ACE and SOS) to
the sentence pattern ‘Every [C] is a [D]’, where C
and D will be realised by count nouns from the
lexicon if they are atomic, or further grammatical
rules if they are complex. The more specific pat-
tern C v ∃P.D can be expressed better by a sen-
tence pattern based on a verb frame (‘Every [C]
[P]s a [D]’). All these mappings depend entirely
on the OWL logical functors, and will work with
any lexicalisation of atomic terms that respects the
syntactic constraints of the grammar, to yield ver-
balisations such as the following (for axioms 1-3
above):

1. Every admiral commands a fleet.

2. Nelson is an admiral.

3. Nelson is the victor of Trafalgar.

The CNLs we have cited are more sophisticated
than this, allowing a wider range of linguistic pat-
terns (e.g., adjectives for classes), but the basic
assumptions are the same. The model provides
satisfactory verbalisations for the simple examples
considered so far, but what happens when the ax-
ioms and atomic terms become more complex?

3 Complex terms and axioms

The distribution of content among axioms depends
to some extent on stylistic decisions by ontol-
ogy developers, in particular with regard to ax-
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iom size. This freedom is possible because de-
scription logics (including OWL) allow equiva-
lent formulations using a large number of short
axioms at one extreme, and a small number of
long ones at the other. For many logical patterns,
rules can be stated for amalgamating or splitting
axioms while leaving overall content unchanged
(thus ensuring that exactly the same inferences are
drawn by a reasoning engine); such rules are often
used in reasoning algorithms. For instance, any set
of SubClassOf axioms can be amalgamated into
a single ‘metaconstraint’ (Horrocks, 1997) of the
form > v M , where > is the class containing
all individuals in the domain, and M is a class
to which any individual respecting the axiom set
must belong3. Applying this transformation even
to only two axioms (verbalised by 1 and 2 below)
will yield an outcome (verbalised by 3) that strains
human comprehension:

1. Every admiral is a sailor.

2. Every admiral commands a fleet.

3. Everything is (a) either a non-admiral or a sailor, and
(b) either a non-admiral or something that commands a
fleet.

An example of axiom-splitting rules is found in
a computational complexity proof for the descrip-
tion logic EL+ (Baader et al., 2005), which re-
quires class inclusion axioms to be rewritten to a
maximally simple ‘normal form’ permitting only
four patterns: A1 v A2, A1 u A2 v A3, A1 v
∃P.A2, and ∃P.A1 v A2, where P and all AN

are atomic terms. However, this simplification of
axiom structure can be achieved only by introduc-
ing new atomic terms. For example, to simplify
an axiom of the form A1 v ∃P.(A2 u A3), the
rewriting rules must introduce a new term A23 ≡
A2 uA3, through which the axiom may be rewrit-
ten as A1 v ∃P.A23 (along with some further ax-
ioms expressing the definition of A23); depending
on the expressions that they replace, the content of
such terms may become indefinitely complex.

A trade-off therefore results. We can often find
rules for refactoring an overcomplex axiom by a
number of simpler ones, but only at the cost of in-
troducing atomic terms for which no satisfactory
lexical realisation may exist. In principle, there-
fore, there is no guarantee that OWL ontologies

3For an axiom set C1 v D1, C2 v D2 . . ., M will be
(¬C1 t D1) u (¬C2 t D2) . . ., where the class construc-
tors ¬C (complement of C) and C tD (union of C and D)
correspond to Boolean negation and disjunction.

Figure 1: Identifier content

can be verbalised transparently within the assump-
tions of the consensus model.

4 Empirical studies of usage

We have shown that OWL syntax will permit
atomic terms that cannot be lexicalised, and ax-
ioms that cannot be expressed clearly in a sen-
tence. However, it remains possible that in prac-
tice, ontology developers use OWL in a con-
strained manner that favours verbalisation by the
consensus model. This could happen either be-
cause the relevant constraints are psychologically
intuitive to developers, or because they are some-
how built into the editing tools that they use
(e.g., Protégé). To investigate this possibility,
we have carried out an exploratory study using a
corpus of 48 ontologies mostly downloaded from
the University of Manchester TONES repository
(TONES, 2010). The corpus covers ontologies of
varying expressivity and subject-matter, including
some well-known tutorial examples (pets, pizzas)
and topics of general interest (photography, travel,
heraldry, wine), as well as some highly technical
scientific material (mosquito anatomy, worm on-
togeny, periodic table). Overall, our sample con-
tains around 45,000 axioms and 25,000 atomic
terms.

Our first analysis concerns identifier length,
which we measure simply by counting the num-
ber of words in the identifying phrase. The pro-
gram recovers the phrase by the following steps:
(1) read an identifier (or label if one is provided4);
(2) strip off the namespace prefix; (3) segment the
resulting string into words. For the third step we

4Some ontology developers use ‘non-semantic’ identifiers
such as #000123, in which case the meaning of the identifier
is indicated in an annotation assertion linking the identifier to
a label.
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Pattern Frequency Percentage
CA v CA 18961 42.3%
CA u CA v ⊥ 8225 18.3%
CA v ∃PA.CA 6211 13.9%
[I, I] ∈ PA 4383 9.8%
[I, L] ∈ DA 1851 4.1%
I ∈ CA 1786 4.0%
CA ≡ CA u ∃PA.CA 500 1.1%
Other 2869 6.4%
Total 44786 100%

Table 2: Axiom pattern frequencies

assume that word boundaries are marked either
by underline characters or by capital letters (e.g.,
battle of trafalgar, BattleOfTrafalgar), a
rule that holds (in our corpus) almost without ex-
ception. The analysis (figure 1) reveals that phrase
lengths are typically between one and four words
(this was true of over 95% of individuals, over
90% of classes, and over 98% of properties), as
in the following random selections:

Individuals: beaujolais region, beringer, blue
mountains, bondi beach

Classes: abi graph plot, amps block format, abat-
toir, abbey church

Properties: has activity, has address, has amino
acid, has aunt in law

Our second analysis concerns axiom patterns,
which we obtain by replacing all atomic terms
with a symbol meaning either individual, class,
property, datatype or literal. Thus for example the
axioms Admiral v Sailor and Dog v Animal
are both reduced to the form CA v CA, where
the symbol CA means ‘any atomic class term’. In
this way we can count the frequencies of all the
logical patterns in the corpus, abstracting from the
domain-specific identifier names. The results (ta-
ble 2) show an overwhelming focus on a small
number of simple logical patterns5. Concern-
ing class constructors, the most common by far
were intersection (C u C) and existential restric-
tion (∃P.C); universal restriction (∀P.C) was rel-
atively rare, so that for example the pattern CA v
∀PA.CA occurred only 54 times (0.1%)6.

5Most of these patterns have been explained already; the
others are disjoint classes (CAuCA v ⊥), equivalent classes
(CA ≡ CA u ∃PA.CA) and data property assertion ([I, L] ∈
DA). In the latter pattern, DA denotes a data property, which
differs from an object property (PA) in that it ranges over
literals (L) rather than individuals (I).

6If C v ∃P.D means ‘Every admiral commands a fleet’,
C v ∀P.D will mean ‘Every admiral commands only fleets’
(this will remain true if some admirals do not command any-
thing at all).

The preference for simple patterns was con-
firmed by an analysis of argument struc-
ture for the OWL functors (e.g., SubClassOf,
IntersectionOf) that take classes as arguments.
Overall, 85% of arguments were atomic terms
rather than complex class expressions. Interest-
ingly, there was also a clear effect of argument po-
sition, with the first argument of a functor being
atomic rather than complex in as many as 99.4%
of cases7.

5 Discussion

Our results indicate that although in principle the
consensus model cannot guarantee transparent re-
alisations, in practice these are almost always at-
tainable, since ontology developers overwhelm-
ingly favour terms and axioms with relatively sim-
ple content. In an analysis of around 50 ontologies
we have found that over 90% of axioms fit a mere
seven patterns (table 2); the following examples
show that each of these patterns can be verbalised
by a clear unambiguous sentence – provided, of
course, that no problems arise in lexicalising the
atomic terms:

1. Every admiral is a sailor

2. No sailor is a landlubber

3. Every admiral commands a fleet

4. Nelson is the victor of Trafalgar

5. Trafalgar is dated 1805

6. Nelson is an admiral

7. An admiral is defined as a person that com-
mands a fleet

However, since identifiers containing 3-4 words
are fairly common (figure 1), we need to consider
whether these formulations will remain transpar-
ent when combined with more complex lexical en-
tries. For instance, a travel ontology in our cor-
pus contains an axiom (fitting pattern 4) which our
prototype verbalises as follows:

4’. West Yorkshire has as boundary the West
Yorkshire Greater Manchester Boundary Frag-
ment

The lexical entries here are far from ideal: ‘has
as boundary’ is clumsy, and ‘the West Yorkshire
Greater Manchester Boundary Fragment’ has as

7One explanation for this result could be that develop-
ers (or development tools) treat axioms as having a topic-
comment structure, where the topic is usually the first ar-
gument; we intend to investigate this possibility in a further
study.
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many as six content words (and would benefit
from hyphens). We assess the sentence as ugly but
understandable, but to draw more definite conclu-
sions one would need to perform a different kind
of empirical study using human readers.

6 Conclusion

We conclude (a) that existing ontologies can be
mostly verbalised using the consensus model, and
(b) that an editing tool based on relatively simple
linguistic patterns would not inconvenience on-
tology developers, but merely enforce constraints
that they almost always respect anyway. These
conclusions are based on analysis of identifier and
axiom patterns in a corpus of ontologies; they need
to be complemented by studies showing that the
resulting verbalisations are understood by ontol-
ogy developers and other users.
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Abstract

We present a novel framework for word
alignment that incorporates synonym
knowledge collected from monolingual
linguistic resources in a bilingual proba-
bilistic model. Synonym information is
helpful for word alignment because we
can expect a synonym to correspond to
the same word in a different language.
We design a generative model for word
alignment that uses synonym information
as a regularization term. The experimental
results show that our proposed method
significantly improves word alignment
quality.

1 Introduction

Word alignment is an essential step in most phrase
and syntax based statistical machine translation
(SMT). It is an inference problem of word cor-
respondences between different languages given
parallel sentence pairs. Accurate word alignment
can induce high quality phrase detection and trans-
lation probability, which leads to a significant im-
provement in SMT performance. Many word
alignment approaches based on generative mod-
els have been proposed and they learn from bilin-
gual sentences in an unsupervised manner (Vo-
gel et al., 1996; Och and Ney, 2003; Fraser and
Marcu, 2007).

One way to improve word alignment quality
is to add linguistic knowledge derived from a
monolingual corpus. This monolingual knowl-
edge makes it easier to determine corresponding
words correctly. For instance, functional words
in one language tend to correspond to functional
words in another language (Deng and Gao, 2007),
and the syntactic dependency of words in each lan-
guage can help the alignment process (Ma et al.,
2008). It has been shown that suchgrammatical

information works as a constraint in word align-
ment models and improves word alignment qual-
ity.

A large number of monolinguallexical seman-
tic resources such as WordNet (Miller, 1995) have
been constructed in more than fifty languages
(Sagot and Fiser, 2008). They include word-
level relations such as synonyms, hypernyms and
hyponyms. Synonym information is particularly
helpful for word alignment because we can ex-
pect a synonym to correspond to the same word
in a different language. In this paper, we explore a
method for using synonym information effectively
to improve word alignment quality.

In general, synonym relations are defined in
terms of word sense, not in terms of word form. In
other words, synonym relations are usually con-
text or domain dependent. For instance, ‘head’
and ‘chief’ are synonyms in contexts referring to
working environment, while ‘head’ and ‘forefront’
are synonyms in contexts referring to physical po-
sitions. It is difficult, however, to imagine a con-
text where ‘chief’ and ‘forefront’ are synonyms.
Therefore, it is easy to imagine that simply replac-
ing all occurrences of ‘chief’ and ‘forefront’ with
‘head’ do sometimes harm with word alignment
accuracy, and we have to model either the context
or senses of words.

We propose a novel method that incorporates
synonyms from monolingual resources in a bilin-
gual word alignment model. We formulate a syn-
onym pair generative model with a topic variable
and use this model as a regularization term with a
bilingual word alignment model. The topic vari-
able in our synonym model is helpful for disam-
biguating the meanings of synonyms. We extend
HM-BiTAM, which is a HMM-based word align-
ment model with a latent topic, with a novel syn-
onym pair generative model. We applied the pro-
posed method to an English-French word align-
ment task and successfully improved the word
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Figure1: Graphical model of HM-BiTAM

alignment quality.

2 Bilingual Word Alignment Model

In this section, we review a conventional gener-
ative word alignment model, HM-BiTAM (Zhao
and Xing, 2008).

HM-BiTAM is a bilingual generative model
with topic z, alignmenta and topic weight vec-
tor θ as latent variables. Topic variables such
as ‘science’ or ‘economy’ assigned to individual
sentences help to disambiguate the meanings of
words. HM-BiTAM assumes that thenth bilin-
gual sentence pair,(En, Fn), is generated under a
given latent topiczn ∈ {1, . . . , k, . . . ,K}, where
K is the number of latent topics. LetN be the
number of sentence pairs, andIn andJn be the
lengths ofEn andFn, respectively. In this frame-
work, all of the bilingual sentence pairs{E, F} =
{(En, Fn)}N

n=1 are generated as follows.

1. θ ∼ Dirichlet (α): sample topic-weight vector

2. For each sentence pair(En, Fn)

(a) zn ∼ Multinomial (θ): sample the topic
(b) en,i:In |zn ∼ p (En |zn; β ): sample English

words from a monolingual unigram model given
topiczn

(c) For each positionjn = 1, . . . , Jn

i. ajn ∼ p (ajn |ajn−1; T ): sample an align-
ment linkajn from a first order Markov pro-
cess

ii. fjn ∼ p (fjn |En, ajn , zn; B ): sample a
target word fjn given an aligned source
word and topic

where alignmentajn = i denotes source wordei

and target wordfjn are aligned.α is a parame-
ter over the topic weight vectorθ, β = {βk,e} is
the source word probability given thekth topic:
p (e |z = k ). B = {Bf,e,k} represents the word

translation probability frome to f under thekth
topic: p (f |e, z = k ). T =

{
Ti,i′

}
is a state tran-

sition probability of a first order Markov process.
Fig. 1 shows a graphical model of HM-BiTAM.

The total likelihood of bilingual sentence pairs
{E, F} can be obtained by marginalizing out la-
tent variablesz, a andθ,

p (F, E; Ψ) =
∑

z

∑
a

�
p (F, E, z, a, θ; Ψ) dθ, (1)

whereΨ = {α, β, T, B} is a parameter set. In
this model, we can infer word alignmenta by max-
imizing the likelihood above.

3 Proposed Method

3.1 Synonym Pair Generative Model

We design a generative model for synonym pairs
{f, f ′} in languageF , which assumes that the
synonyms are collected from monolingual linguis-
tic resources. We assume that each synonym pair
(f, f ′) is generated independently given the same
‘sense’s. Under this assumption, the probability
of synonym pair(f, f ′) can be formulated as,

p
(
f, f ′

)
∝

∑
s

p (f |s ) p
(
f ′ |s

)
p (s) . (2)

We define a pair(e, k) as a representation of
the senses, wheree and k are a word in a dif-
ferent languageE and a latent topic, respectively.
It has been shown that a worde in a different
language is an appropriate representation ofs in
synonym modeling (Bannard and Callison-Burch,
2005). We assume that adding a latent topick for
the sense is very useful for disambiguating word
meaning, and thus that(e, k) gives us a good ap-
proximation ofs. Under this assumption, the syn-
onym pair generative model can be defined as fol-
lows.

p
({

f, f ′
}

; Ψ̃
)

∝
∏

(f,f ′)

∑
e,k

p(f |e, k; Ψ̃)p(f ′|e, k; Ψ̃)p(e, k; Ψ̃),(3)

whereΨ̃ is the parameter set of our model.

3.2 Word Alignment with Synonym
Regularization

In this section, we extend the bilingual genera-
tive model (HM-BiTAM) with our synonym pair
model. Our expectation is that synonym pairs
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Figure2: Graphical model of synonym pair gen-
erative process

correspond to the same word in a different lan-
guage, thus they make it easy to infer accurate
word alignment. HM-BiTAM and the synonym
model share parameters in order to incorporate
monolingual synonym information into the bilin-
gual word alignment model. This can be achieved
via reparameterizing̃Ψ in eq. 3 as,

p
(
f
∣∣∣e, k; Ψ̃

)
≡ p (f |e, k; B ) , (4)

p
(
e, k; Ψ̃

)
≡ p (e |k; β ) p (k; α) . (5)

Overall, we re-define the synonym pair model
with the HM-BiTAM parameter setΨ,

p(
{
f, f ′

}
; Ψ)

∝ 1∑
k′ αk′

∏
(f,f ′)

∑
k,e

αkβk,eBf,e,kBf ′,e,k. (6)

Fig. 2 shows a graphical model of the synonym
pair generative process. We estimate the param-
eter values to maximize the likelihood of HM-
BiTAM with respect to bilingual sentences and
that of the synonym model with respect to syn-
onym pairs collected from monolingual resources.
Namely, the parameter estimate,Ψ̂, is computed
as

Ψ̂ = arg max
Ψ

{
log p(F, E; Ψ) + ζ log p(

{
f, f ′

}
; Ψ)

}
,

(7)

whereζ is a regularization weight that should
be set for training. We can expect that the second
term of eq. 7 to constrain parameter setΨ and
avoid overfitting for the bilingual word alignment
model. We resort to the variational EM approach
(Bernardo et al., 2003) to infer̂Ψ following HM-
BiTAM. We omit the parameter update equation
due to lack of space.

4 Experiments

4.1 Experimental Setting

For an empirical evaluation of the proposed
method, we used a bilingual parallel corpus of
English-French Hansards (Mihalcea and Pedersen,
2003). The corpus consists of over 1 million sen-
tence pairs, which include 447 manually word-
aligned sentences. We selected 100 sentence pairs
randomly from the manually word-aligned sen-
tences as development data for tuning the regu-
larization weightζ, and used the 347 remaining
sentence pairs as evaluation data. We also ran-
domly selected 10k, 50k, and 100k sized sentence
pairs from the corpus as additional training data.
We ran the unsupervised training of our proposed
word alignment model on the additional training
data and the 347 sentence pairs of the evaluation
data. Note that manual word alignment of the
347 sentence pairs was not used for the unsuper-
vised training. After the unsupervised training, we
evaluated the word alignment performance of our
proposed method by comparing the manual word
alignment of the 347 sentence pairs with the pre-
diction provided by the trained model.

We collected English and French synonym pairs
from WordNet 2.1 (Miller, 1995) and WOLF 0.1.4
(Sagot and Fiser, 2008), respectively. WOLF is a
semantic resource constructed from the Princeton
WordNet and various multilingual resources. We
selected synonym pairs where both words were in-
cluded in the bilingual training set.

We compared the word alignment performance
of our model with that of GIZA++ 1.031 (Vo-
gel et al., 1996; Och and Ney, 2003), and HM-
BiTAM (Zhao and Xing, 2008) implemented by
us. GIZA++ is an implementation of IBM-model
4 and HMM, and HM-BiTAM corresponds toζ =
0 in eq. 7. We adoptedK = 3 topics, following
the setting in (Zhao and Xing, 2006).

We trained the word alignment in two direc-
tions: English to French, and French to English.
The alignment results for both directions were re-
fined with ‘GROW’ heuristics to yield high preci-
sion and high recall in accordance with previous
work (Och and Ney, 2003; Zhao and Xing, 2006).
We evaluated these results for precision, recall, F-
measure and alignment error rate (AER), which
are standard metrics for word alignment accuracy
(Och and Ney, 2000).

1http://fjoch.com/GIZA++.html
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10k PrecisionRecallF-measureAER

GIZA++ standard 0.856 0.718 0.781 0.207
with SRH 0.874 0.720 0.789 0.198

HM-BiTAM standard 0.869 0.788 0.826 0.169
with SRH 0.884 0.790 0.834 0.160

Proposed 0.941 0.808 0.870 0.123

(a)

50k PrecisionRecallF-measureAER

GIZA++ standard 0.905 0.770 0.832 0.156
with SRH 0.903 0.759 0.825 0.164

HM-BiTAM standard 0.901 0.814 0.855 0.140
with SRH 0.899 0.808 0.853 0.145

Proposed 0.947 0.824 0.881 0.112

(b)

100k PrecisionRecallF-measureAER

GIZA++ standard 0.925 0.791 0.853 0.136
with SRH 0.934 0.803 0.864 0.126

HM-BiTAM standard 0.898 0.851 0.874 0.124
with SRH 0.909 0.860 0.879 0.114

Proposed 0.927 0.862 0.893 0.103

(c)

Table 1: Comparison of word alignment accuracy.
The best results are indicated in bold type. The
additional data set sizes are (a) 10k, (b) 50k, (c)
100k.

4.2 Results and Discussion

Table 1 shows the word alignment accuracy of the
three methods trained with 10k, 50k, and 100k ad-
ditional sentence pairs. For all settings, our pro-
posed method outperformed other conventional
methods. This result shows that synonym infor-
mation is effective for improving word alignment
quality as we expected.

As mentioned in Sections 1 and 3.1, the main
idea of our proposed method is to introducela-
tent topicsfor modeling synonym pairs, and then
to utilize the synonym pair model for the regu-
larization of word alignment models. We expect
the latent topics to be useful for modeling poly-
semous words included in synonym pairs and to
enable us to incorporate synonym information ef-
fectively into word alignment models. To con-
firm the effect of the synonym pair model with
latent topics, we also tested GIZA++ and HM-
BiTAM with what we callSynonym Replacement
Heuristics (SRH), where all of the synonym pairs
in the bilingual training sentences were simply re-
placed with a representative word. For instance,
the words ‘sick’ and ‘ill’ in the bilingual sentences

# vocabularies 10k 50k 100k
English standard 8578 16924 22817

with SRH 5435 7235 13978
French standard 10791 21872 30294

with SRH 9737 20077 27970

Table 2: The number of vocabularies in the 10k,
50k and 100k data sets.

were replaced with the word ‘sick’. As shown in
Table 2, the number of vocabularies in the English
and French data sets decreased as a result of em-
ploying the SRH.

We show the performance of GIZA++ and HM-
BiTAM with the SRH in the lines entitled “with
SRH” in Table 1. The GIZA++ and HM-BiTAM
with the SRH slightly outperformed thestandard
GIZA++ and HM-BiTAM for the 10k and 100k
data sets, but underperformed with the 50k data
set. We assume that the SRH mitigated the over-
fitting of these models into low-frequency word
pairs in bilingual sentences, and then improved the
word alignment performance. The SRH regards
all of the different words coupled with the same
word in the synonym pairs as synonyms. For in-
stance, the words ‘head’, ‘chief’ and ‘forefront’ in
the bilingual sentences are replaced with ‘chief’,
since (‘head’, ‘chief’) and (‘head’, ‘forefront’) are
synonyms. Obviously, (‘chief’, ‘forefront’) are
not synonyms, which is detrimented to word align-
ment.

The proposed method consistently outper-
formed GIZA++ and HM-BiTAM with the SRH
in 10k, 50k and 100k data sets in F-measure.
The synonym pair model in our proposed method
can automatically learn that (‘head’, ‘chief’) and
(‘head’, ‘forefront’) are individual synonyms with
different meanings by assigning these pairs to dif-
ferent topics. By sharing latent topics between
the synonym pair model and the word alignment
model, the synonym information incorporated in
the synonym pair model is used directly for train-
ing word alignment model. The experimental re-
sults show that our proposed method was effec-
tive in improving the performance of the word
alignment model by using synonym pairs includ-
ing suchambiguoussynonym words.

Finally, we discuss the data set size used for un-
supervised training. As shown in Table 1, using
a large number of additional sentence pairs im-
proved the performance of all the models. In all
our experimental settings, all the additional sen-
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tencepairs and the evaluation data were selected
from the Hansards data set. These experimental
results show that a larger number of sentence pairs
was more effective in improving word alignment
performance when the sentence pairs were col-
lected from ahomogeneousdata source. However,
in practice, it might be difficult to collect a large
number of such homogeneous sentence pairs for
a specific target domain and language pair. One
direction for future work is to confirm the effect
of the proposed method when training the word
alignment model by using a large number of sen-
tence pairs collected from various data sources in-
cluding many topics for a specific language pair.

5 Conclusions and Future Work

We proposed a novel framework that incorpo-
rates synonyms from monolingual linguistic re-
sources in a word alignment generative model.
This approach utilizes both bilingual and mono-
lingual synonym resources effectively for word
alignment. Our proposed method uses a latent
topic for bilingual sentences and monolingual syn-
onym pairs, which is helpful in terms of word
sense disambiguation. Our proposed method im-
proved word alignment quality with both small
and large data sets. Future work will involve ex-
amining the proposed method for different lan-
guage pairs such as English-Chinese and English-
Japanese and evaluating the impact of our pro-
posed method on SMT performance. We will also
apply our proposed method to a larger data sets
of multiple domains since we can expect a fur-
ther improvement in word alignment accuracy if
we use more bilingual sentences and more mono-
lingual knowledge.
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Abstract

This paper presents a novel filtration cri-
terion to restrict the rule extraction for
the hierarchical phrase-based translation
model, where a bilingual but relaxed well-
formed dependency restriction is used to
filter out bad rules. Furthermore, a new
feature which describes the regularity that
the source/target dependency edge trig-
gers the target/source word is also pro-
posed. Experimental results show that, the
new criteria weeds out about 40% rules
while with translation performance im-
provement, and the new feature brings an-
other improvement to the baseline system,
especially on larger corpus.

1 Introduction

Hierarchical phrase-based (HPB) model (Chiang,
2005) is the state-of-the-art statistical machine
translation (SMT) model. By looking for phrases
that contain other phrases and replacing the sub-
phrases with nonterminal symbols, it gets hierar-
chical rules. Hierarchical rules are more powerful
than conventional phrases since they have better
generalization capability and could capture long
distance reordering. However, when the train-
ing corpus becomes larger, the number of rules
will grow exponentially, which inevitably results
in slow and memory-consuming decoding.

In this paper, we address the problem of reduc-
ing the hierarchical translation rule table resorting
to the dependency information of bilingual lan-
guages. We only keep rules that both sides are
relaxed-well-formed (RWF) dependency structure
(see the definition in Section 3), and discard others
which do not satisfy this constraint. In this way,
about 40% bad rules are weeded out from the orig-
inal rule table. However, the performance is even
better than the traditional HPB translation system.

Source

Target 

f f’ 

e

Figure 1: Solid wire reveals the dependency rela-
tion pointing from the child to the parent. Target
word e is triggered by the source wordf and it’s
head wordf ′, p(e|f → f ′).

Based on therelaxed-well-formed dependency
structure, we also introduce a new linguistic fea-
ture to enhance translation performance. In the
traditional phrase-based SMT model, there are
always lexical translation probabilities based on
IBM model 1 (Brown et al., 1993), i.e.p(e|f),
namely, the target worde is triggered by the source
word f . Intuitively, however, the generation ofe
is not only involved withf , sometimes may also
be triggered by other context words in the source
side. Here we assume that the dependency edge
(f → f ′) of word f generates target worde (we
call it head word trigger in Section 4). Therefore,
two words in one language trigger one word in
another, which provides a more sophisticated and
better choice for the target word, i.e. Figure 1.
Similarly, the dependency feature works well in
Chinese-to-English translation task, especially on
large corpus.

2 Related Work

In the past, a significant number of techniques
have been presented to reduce the hierarchical rule
table. He et al. (2009) just used the key phrases
of source side to filter the rule table without taking
advantage of any linguistic information. Iglesias
et al. (2009) put rules into syntactic classes based
on the number of non-terminals and patterns, and
applied various filtration strategies to improve the
rule table quality. Shen et al. (2008) discarded
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found

The

girl 

lovely 

house

a beautiful

Figure 2: An example of dependency tree. The
corresponding plain sentence isThe lovely girl
found a beautiful house.

most entries of the rule table by using the con-
straint that rules of the target-side are well-formed
(WF) dependency structure, but this filtering led to
degradation in translation performance. They ob-
tained improvements by adding an additional de-
pendency language model. The basic difference
of our method from (Shen et al., 2008) is that we
keep rules that both sides should berelaxed-well-
formed dependency structure, not just the target
side. Besides, our system complexity is not in-
creased because no additional language model is
introduced.

The feature of head word trigger which we ap-
ply to the log-linear model is motivated by the
trigger-based approach (Hasan and Ney, 2009).
Hasan and Ney (2009) introduced a second word
to trigger the target word without considering any
linguistic information. Furthermore, since the sec-
ond word can come from any part of the sentence,
there may be a prohibitively large number of pa-
rameters involved. Besides, He et al. (2008) built
a maximum entropy model which combines rich
context information for selecting translation rules
during decoding. However, as the size of the cor-
pus increases, the maximum entropy model will
become larger. Similarly, In (Shen et al., 2009),
context language model is proposed for better rule
selection. Taking the dependency edge as condi-
tion, our approach is very different from previous
approaches of exploring context information.

3 Relaxed-well-formed Dependency
Structure

Dependency models have recently gained consid-
erable interest in SMT (Ding and Palmer, 2005;
Quirk et al., 2005; Shen et al., 2008). Depen-
dency tree can represent richer structural infor-
mation. It reveals long-distance relation between
words and directly models the semantic structure
of a sentence without any constituent labels. Fig-

ure 2 shows an example of a dependency tree. In
this example, the wordfound is the root of the tree.

Shen et al. (2008) propose the well-formed de-
pendency structure to filter the hierarchical rule ta-
ble. A well-formed dependency structure could be
either a single-rooted dependency tree or a set of
sibling trees. Although most rules are discarded
with the constraint that the target side should be
well-formed, this filtration leads to degradation in
translation performance.

As an extension of the work of (Shen et
al., 2008), we introduce the so-calledrelaxed-
well-formed dependency structure to filter the hi-
erarchical rule table. Given a sentenceS =
w1w2...wn. Letd1d2...dn represent the position of
parent word for each word. For example,d3 = 4
means thatw3 depends onw4. If wi is a root, we
definedi = −1.

Definition A dependency structurewi...wj is
a relaxed-well-formed structure, where there is
h /∈ [i, j], all the wordswi...wj are directly or
indirectly depended onwh or -1 (here we define
h = −1). If and only if it satisfies the following
conditions

• dh /∈ [i, j]

• ∀k ∈ [i, j], dk ∈ [i, j] or dk = h

From the definition above, we can see that
the relaxed-well-formed structure obviously cov-
ers the well-formed one. In this structure, we
don’t constrain that all the children of the sub-root
should be complete. Let’s review the dependency
tree in Figure 2 as an example. Except for the well-
formed structure, we could also extractgirl found
a beautiful house. Therefore, if the modifierThe
lovely changes toThe cute, this rule also works.

4 Head Word Trigger

(Koehn et al., 2003) introduced the concept of
lexical weighting to check how well words of
the phrase translate to each other. Source word
f aligns with target worde, according to the
IBM model 1, the lexical translation probability
is p(e|f). However, in the sense of dependency
relationship, we believe that the generation of the
target worde, is not only triggered by the aligned
source wordf , but also associated withf ’s head
word f ′. Therefore, the lexical translation prob-
ability becomesp(e|f → f ′), which of course
allows for a more fine-grained lexical choice of
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the target word. More specifically, the probabil-
ity could be estimated by the maximum likelihood
(MLE) approach,

p(e|f → f ′) =
count(e, f → f ′)∑
e′ count(e′, f → f ′)

(1)

Given a phrase pairf , e and word alignment
a, and the dependent relation of the source sen-
tencedJ

1 (J is the length of the source sentence,
I is the length of the target sentence). Therefore,
given the lexical translation probability distribu-
tion p(e|f → f ′), we compute the feature score of
a phrase pair (f , e) as

p(e|f, dJ
1 , a)

= Π
|e|
i=1

1

|{j|(j, i) ∈ a}|

∑

∀(j,i)∈a

p(ei|fj → fdj
) (2)

Now we get p(e|f, dJ
1 , a), we could obtain

p(f |e, dI
1, a) (dI

1 represents dependent relation of
the target side) in the similar way. This new fea-
ture can be easily integrated into the log-linear
model as lexical weighting does.

5 Experiments

In this section, we describe the experimental set-
ting used in this work, and verify the effect of
therelaxed-well-formed structure filtering and the
new feature, head word trigger.

5.1 Experimental Setup

Experiments are carried out on the NIST1

Chinese-English translation task with two differ-
ent size of training corpora.

• FBIS: We use the FBIS corpus as the first
training corpus, which contains 239K sen-
tence pairs with 6.9M Chinese words and
8.9M English words.

• GQ: This is manually selected from the
LDC2 corpora. GQ contains 1.5M sentence
pairs with 41M Chinese words and 48M En-
glish words. In fact, FBIS is the subset of
GQ.

1www.nist.gov/speech/tests/mt
2It consists of six LDC corpora:

LDC2002E18, LDC2003E07, LDC2003E14, Hansards part
of LDC2004T07, LDC2004T08, LDC2005T06.

For language model, we use the SRI Language
Modeling Toolkit (Stolcke, 2002) to train a 4-
gram model on the first 1/3 of the Xinhua portion
of GIGAWORD corpus. And we use the NIST
2002 MT evaluation test set as our development
set, and NIST 2004, 2005 test sets as our blind
test sets. We evaluate the translation quality us-
ing case-insensitive BLEU metric (Papineni et
al., 2002) without dropping OOV words, and the
feature weights are tuned by minimum error rate
training (Och, 2003).

In order to get the dependency relation of the
training corpus, we re-implement a beam-search
style monolingual dependency parser according
to (Nivre and Scholz, 2004). Then we use the
same method suggested in (Chiang, 2005) to
extract SCFG grammar rules within dependency
constraint on both sides except that unaligned
words are allowed at the edge of phrases. Pa-
rameters of head word trigger are estimated as de-
scribed in Section 4. As a default, the maximum
initial phrase length is set to 10 and the maximum
rule length of the source side is set to 5. Besides,
we also re-implement the decoder of Hiero (Chi-
ang, 2007) as our baseline. In fact, we just exploit
the dependency structure during the rule extrac-
tion phase. Therefore, we don’t need to change
the main decoding algorithm of the SMT system.

5.2 Results on FBIS Corpus

A series of experiments was done on the FBIS cor-
pus. We first parse the bilingual languages with
monolingual dependency parser respectively, and
then only retain the rules that both sides are in line
with the constraint of dependency structure. In
Table 1, therelaxed-well-formed structure filtered
out 35% of the rule table and the well-formed dis-
carded 74%.RWF extracts additional 39% com-
pared toWF, which can be seen as some kind
of evidence that the rules we additional get seem
common in the sense of linguistics. Compared to
(Shen et al., 2008), we just use the dependency
structure to constrain rules, not to maintain the tree
structures to guide decoding.

Table 2 shows the translation result on FBIS.
We can see that theRWF structure constraint can
improve translation quality substantially both at
development set and different test sets. On the
Test04 task, it gains +0.86% BLEU, and +0.84%
on Test05. Besides, we also used Shen et al.
(2008)’s WF structure to filter both sides. Al-
though it discard about 74% of the rule table, the
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System Rule table size
HPB 30,152,090
RWF 19,610,255
WF 7,742,031

Table 1: Rule table size with different con-
straint on FBIS. HereHPB refers to the base-
line hierarchal phrase-based system,RWF means
relaxed-well-formed constraint andWF represents
the well-formed structure.

System Dev02 Test04 Test05
HPB 0.3285 0.3284 0.2965
WF 0.3125 0.3218 0.2887

RWF 0.3326 0.3370** 0.3050
RWF+Tri 0.3281 / 0.2965

Table 2: Results of FBIS corpus. HereTri means
the feature of head word trigger on both sides. And
we don’t test the new feature on Test04 because of
the bad performance on development set. * or **
= significantly better than baseline (p < 0.05 or
0.01, respectively).

over-all BLEU is decreased by 0.66%-0.78% on
the test sets.

As for the feature of head word trigger, it seems
not work on the FBIS corpus. On Test05, it gets
the same score with the baseline, but lower than
RWF filtering. This may be caused by the data
sparseness problem, which results in inaccurate
parameter estimation of the new feature.

5.3 Result on GQ Corpus

In this part, we increased the size of the training
corpus to check whether the feature of head word
trigger works on large corpus.

We get 152M rule entries from the GQ corpus
according to (Chiang, 2007)’s extraction method.
If we use theRWF structure to constrain both
sides, the number of rules is 87M, about 43% of
rule entries are discarded. From Table 3, the new

System Dev02 Test04 Test05
HPB 0.3473 0.3386 0.3206
RWF 0.3539 0.3485** 0.3228

RWF+Tri 0.3540 0.3607** 0.3339*

Table 3: Results of GQ corpus. * or ** = sig-
nificantly better than baseline (p < 0.05 or 0.01,
respectively).

feature works well on two different test sets. The
gain is +2.21% BLEU on Test04, and +1.33% on
Test05. Compared to the result of the baseline,
only using theRWF structure to filter performs the
same as the baseline on Test05, and +0.99% gains
on Test04.

6 Conclusions

This paper proposes a simple strategy to filter the
hierarchal rule table, and introduces a new feature
to enhance the translation performance. We em-
ploy the relaxed-well-formed dependency struc-
ture to constrain both sides of the rule, and about
40% of rules are discarded with improvement of
the translation performance. In order to make full
use of the dependency information, we assume
that the target worde is triggered by dependency
edge of the corresponding source wordf . And
this feature works well on large parallel training
corpus.

How to estimate the probability of head word
trigger is very important. Here we only get the pa-
rameters in a generative way. In the future, we we
are plan to exploit some discriminative approach
to train parameters of this feature, such as EM al-
gorithm (Hasan et al., 2008) or maximum entropy
(He et al., 2008).

Besides, the quality of the parser is another ef-
fect for this method. As the next step, we will
try to exploit bilingual knowledge to improve the
monolingual parser, i.e. (Huang et al., 2009).
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Abstract 

Factored Statistical Machine Translation ex-

tends the Phrase Based SMT model by al-

lowing each word to be a vector of factors. 

Experiments have shown effectiveness of 

many factors, including the Part of Speech 

tags in improving the grammaticality of the 

output. However, high quality part of 

speech taggers are not available in open 

domain for many languages. In this paper 

we used fixed length word suffix as a new 

factor in the Factored SMT, and were able 

to achieve significant improvements in three 

set of experiments: large NIST Arabic to 

English system, medium WMT Spanish to 

English system, and small TRANSTAC 

English to Iraqi system. 

1 Introduction 

Statistical Machine Translation(SMT) is current-

ly the state of the art solution to the machine 

translation. Phrase based SMT is also among the 

top performing approaches available as of today. 

This approach is a purely lexical approach, using 

surface forms of the words in the parallel corpus 

to generate the translations and estimate proba-

bilities. It is possible to incorporate syntactical 

information into this framework through differ-

ent ways. Source side syntax based re-ordering 

as preprocessing step, dependency based reorder-

ing models, cohesive decoding features are 

among many available successful attempts for 

the integration of syntax into the translation 

model. Factored translation modeling is another 

way to achieve this goal. These models allow 

each word to be represented as a vector of factors 

rather than a single surface form.  Factors can 

represent richer expression power on each word. 

Any factors such as word stems, gender, part of 

speech, tense, etc. can be easily used in this 

framework.  

   Previous work in factored translation modeling 

have reported consistent improvements from Part 

of Speech(POS) tags, morphology, gender, and 

case factors (Koehn et. a. 2007). In another work, 

Birch et. al. 2007 have achieved improvement 

using Combinational Categorial Grammar (CCG) 

super-tag factors. Creating the factors is done as 

a preprocessing step, and so far, most of the ex-

periments have assumed existence of external 

tools for the creation of these factors (i. e. Part of 

speech taggers, CCG parsers, etc.). Unfortunately 

high quality language processing tools, especial-

ly for the open domain, are not available for most 

languages. 

   While linguistically identifiable representations 

(i.e. POS tags, CCG supertags, etc) have been 

very frequently used as factors in many applica-

tions including MT, simpler representations have 

also been effective in achieving the same result 

in other application areas. Grzymala-Busse and 

Old 1997, DINCER et.al. 2008, were able to use 

fixed length suffixes as features for training a 

POS tagging. In another work Saberi and Perrot 

1999 showed that reversing middle chunks of the 

words while keeping the first and last part intact, 

does not decrease listeners’ recognition ability. 

This result is very relevant to Machine Transla-

tion, suggesting that inaccurate context which is 

usually modeled with n-gram language models, 

can still be as effective as accurate surface forms. 

Another research (Rawlinson 1997) confirms this 

finding; this time in textual domain, observing 

that randomization of letters in the middle of 

words has little or no effect on the ability of 

skilled readers to understand the text. These re-

sults suggest that the inexpensive representation-

al factors which do not need unavailable tools 

might also be worth investigating. 

   These results encouraged us to introduce lan-

guage independent simple factors for machine 

translation. In this paper, following the work of 

Grzymala-Busse et. al. we used fixed length suf-
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fix as word factor, to lower the perplexity of the 

language model, and have the factors roughly 

function as part of speech tags, thus increasing 

the grammaticality of the translation results. We 

were able to obtain consistent, significant im-

provements over our baseline in 3 different expe-

riments, large NIST Arabic to English system, 

medium WMT Spanish to English system, and 

small TRANSTAC English to Iraqi system.  

   The rest of this paper is as follows. Section 2 

briefly reviews the Factored Translation Models. 

In section 3 we will introduce our model, and 

section 4 will contain the experiments and the 

analysis of the results, and finally, we will con-

clude this paper in section 5. 

2 Factored Translation Model  

Statistical Machine Translation uses the log li-

near combination of a number of features, to 

compute the highest probable hypothesis as the 

translation.   

 

e = argmaxe p(e|f) = argmaxe p exp Σi=1
n
 λi hi(e,f) 

 

   In phrase based SMT, assuming the source and 

target phrase segmentation as {(fi,ei)}, the most 

important features include: the Language Model 

feature hlm(e,f) = plm(e); the phrase translation 

feature ht(e,f) defined as product of translation 

probabilities, lexical probabilities and phrase pe-

nalty; and the reordering probability, hd(e,f), 

usually defined as πi=1
n 

d(starti,endi-1) over the 

source phrase reordering events. 

   Factored Translation Model, recently intro-

duced by (Koehn et. al. 2007), allow words to 

have a vector representation. The model can then 

extend the definition of each of the features from 

a uni-dimensional value to an arbitrary joint and 

conditional combination of features. Phrase 

based SMT is in fact a special case of Factored 

SMT.  

   The factored features are defined as an exten-

sion of phrase translation features. The function 

τ(fj,ej), which was defined for a phrase pair be-

fore, can now be extended as a log linear combi-

nation Σf τf(fjf,ejf).  The model also allows for a 

generation feature, defining the relationship be-

tween final surface form and target factors. Other 

features include additional language model fea-

tures over individual factors, and factored reor-

dering features.  

   Figure 1 shows an example of a possible fac-

tored model.  

 
Figure 1: An example of a Factored Translation and 

Generation Model 

 

   In this particular model, words on both source 

and target side are represented as a vector of four 

factors: surface form, lemma, part of speech 

(POS) and the morphology. The target phrase is 

generated as follows: Source word lemma gene-

rates target word lemma. Source word's Part of 

speech and morphology together generate the 

target word's part of speech and morphology, and 

from its lemma, part of speech and morphology 

the surface form of the target word is finally gen-

erated. This model has been able to result in 

higher translation BLEU score as well as gram-

matical coherency for English to German, Eng-

lish to Spanish, English to Czech, English to 

Chinese, Chinese to English and German to Eng-

lish. 

3 Fixed Length Suffix Factors for Fac-

tored Translation Modeling 

Part of speech tagging, constituent and depen-

dency parsing, combinatory categorical grammar 

super tagging are used extensively in most appli-

cations when syntactic representations are 

needed. However training these tools require 

medium size treebanks and tagged data, which 

for most languages will not be available for a 

while. On the other hand, many simple words 

features, such as their character n-grams, have in 

fact proven to be comparably as effective in 

many applications.  

(Keikha et. al. 2008) did an experiment on text 

classification on noisy data, and compared sever-

al word representations. They compared surface 

form, stemmed words, character n-grams, and 

semantic relationships, and found that for noisy 

and open domain text, character-ngrams outper-

form other representations when used for text 

classification. In another work (Dincer et al 

2009) showed that using fixed length word end-

ing outperforms whole word representation for 

training a part of speech tagger for Turkish lan-

guage.  
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Based on this result, we proposed a suffix fac-

tored model for translation, which is shown in 

Figure 2.  

 

 

 

 

 

 

 
Figure 2: Suffix Factored model: Source word de-

termines factor vectors (target word, target word suf-

fix) and each factor will be associated with its 

language model. 

 

Based on this model, the final probability of 

the translation hypothesis will be the log linear 

combination of phrase probabilities, reordering 

model probabilities, and each of the language 

models’ probabilities.  

 

P(e|f) ~  plm-word(eword)* plm-suffix(esuffix) 

 * Σi=1
n
  p(eword-j & esuffix-j|fj)  

 * Σi=1
n
 p(fj | eword-j & esuffix-j) 

 

Where plm-word is the n-gram language model 

probability over the word surface sequence, with 

the language model built from the surface forms. 

Similarly, plm-suffix(esuffix) is the language model 

probability over suffix sequences.  p(eword-j & 

esuffix-j|fj) and p(fj | eword-j & esuffix-j) are translation 

probabilities for each phrase pair i , used in by 

the decoder. This probability is estimated after 

the phrase extraction step which is based on 

grow-diag heuristic at this stage. 

4 Experiments and Results 

We used Moses implementation of the factored 

model for training the feature weights, and SRI 

toolkit for building n-gram language models. The 

baseline for all systems included the moses sys-

tem with lexicalized re-ordering, SRI 5-gram 

language models. 

 

4.1 Small System from Dialog Domain: 

English to Iraqi 
 

This system was TRANSTAC system, which 

was built on about 650K sentence pairs with the 

average sentence length of 5.9 words. After 

choosing length 3 for suffixes, we built a new 

parallel corpus, and SRI 5-gram language models 

for each factor. Vocabulary size for the surface 

form was 110K whereas the word suffixes had 

about 8K distinct words. Table 1 shows the result 

(BLEU Score) of the system compared to the 

baseline. 

 
System Tune on  

Set-

July07 

Test on  

Set-

June08 

Test on  

Set-

Nov08 

Baseline 27.74 21.73 15.62 

Factored 28.83 22.84 16.41 

Improvement 1.09 1.11 0.79 

Table 1: BLEU score, English to Iraqi Transtac sys-

tem, comparing Factored and Baseline systems. 

 

As you can see, this improvement is consistent 

over multiple unseen datasets. Arabic cases and 

numbers show up as the word suffix. Also, verb 

numbers usually appear partly as word suffix and 

in some cases as word prefix. Defining a lan-

guage model over the word endings increases the 

probability of sequences which have this case 

and number agreement, favoring correct agree-

ments over the incorrect ones.  

 

4.2 Medium System on Travel Domain: 

Spanish to English 

 
This system is the WMT08 system, on a corpus 

of 1.2 million sentence pairs with average sen-

tence length 27.9 words. Like the previous expe-

riment, we defined the 3 character suffix of the 

words as the second factor, and built the lan-

guage model and reordering model on the joint 

event of (surface, suffix) pairs. We built 5-gram 

language models for each factor. The system had 

about 97K distinct vocabulary in the surface lan-

guage model, which was reduced to 8K using the 

suffix corpus. Having defined the baseline, the 

system results are as follows.  
 

 

System Tune-

WMT06 

Test set-

WMT08 

Baseline 33.34 32.53 

Factored 33.60 32.84 

Improvement 0.26 0.32 

Table 2: BLEU score, Spanish to English WMT sys-

tem, comparing Factored and Baseline systems. 

 

Here, we see improvement with the suffix fac-

tors compared to the baseline system. Word end-

ings in English language are major indicators of 

word’s part of speech in the sentence. In fact 

 Word Language Model 

Suffix Language Model 

 LM 

  Word 
Word  

Suffix   

Source Target 

149



most common stemming algorithm, Porter’s 

Stemmer, works by removing word’s suffix. 

Having a language model on these suffixes push-

es the common patterns of these suffixes to the 

top, making the more grammatically coherent 

sentences to achieve a better probability.  
 

4.3 Large NIST 2009 System: Arabic to 

English 
 

We used NIST2009 system as our baseline in 

this experiment. The corpus had about 3.8 Mil-

lion sentence pairs, with average sentence length 

of 33.4 words. The baseline defined the lexica-

lized reordering model. As before we defined 3 

character long word endings, and built 5-gram 

SRI language models for each factor. The result 

of this experiment is shown in table 3.  
 

System Tune 

on  

MT06 

Test on  

Dev07 

News

Wire 

Test on  

Dev07 

Weblog 

Test 

on 

MT08 

Baseline 43.06 48.87 37.84 41.70 

Factored 44.20 50.39 39.93 42.74 

Improve

ment 

1.14 1.52 2.09 1.04 

Table 3: BLEU score, Arabic to English NIST 2009 

system, comparing Factored and Baseline systems. 

 

This result confirms the positive effect of the 

suffix factors even on large systems. As men-

tioned before we believe that this result is due to 

the ability of the suffix to reduce the word into a 

very simple but rough grammatical representa-

tion. Defining language models for this factor 

forces the decoder to prefer sentences with more 

probable suffix sequences, which is believed to 

increase the grammaticality of the result. Future 

error analysis will show us more insight of the 

exact effect of this factor on the outcome. 

5 Conclusion 

In this paper we introduced a simple yet very 

effective factor: fixed length word suffix, to use 

in Factored Translation Models. This simple fac-

tor has been shown to be effective as a rough 

replacement for part of speech. We tested our 

factors in three experiments in a small, English to 

Iraqi system, a medium sized system of Spanish 

to English, and a large system, NIST09 Arabic to 

English. We observed consistent and significant 

improvements over the baseline. This result, ob-

tained from the language independent and inex-

pensive factor, shows promising new 

opportunities for all language pairs.  
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Abstract

Documents often have inherently parallel
structure: they may consist of a text and
commentaries, or an abstract and a body,
or parts presenting alternative views on
the same problem. Revealing relations be-
tween the parts by jointly segmenting and
predicting links between the segments,
would help to visualize such documents
and construct friendlier user interfaces. To
address this problem, we propose an un-
supervised Bayesian model for joint dis-
course segmentation and alignment. We
apply our method to the “English as a sec-
ond language” podcast dataset where each
episode is composed of two parallel parts:
a story and an explanatory lecture. The
predicted topical links uncover hidden re-
lations between the stories and the lec-
tures. In this domain, our method achieves
competitive results, rivaling those of a pre-
viously proposed supervised technique.

1 Introduction

Many documents consist of parts exhibiting a high
degree of parallelism: e.g., abstract and body of
academic publications, summaries and detailed
news stories, etc. This is especially common with
the emergence of the Web 2.0 technologies: many
texts on the web are now accompanied with com-
ments and discussions. Segmentation of these par-
allel parts into coherent fragments and discovery
of hidden relations between them would facilitate
the development of better user interfaces and im-
prove the performance of summarization and in-
formation retrieval systems.

Discourse segmentation of the documents com-
posed of parallel parts is a novel and challeng-
ing problem, as previous research has mostly fo-
cused on the linear segmentation of isolated texts

(e.g., (Hearst, 1994)). The most straightforward
approach would be to use a pipeline strategy,
where an existing segmentation algorithm finds
discourse boundaries of each part independently,
and then the segments are aligned. Or, conversely,
a sentence-alignment stage can be followed by a
segmentation stage. However, as we will see in our
experiments, these strategies may result in poor
segmentation and alignment quality.

To address this problem, we construct a non-
parametric Bayesian model for joint segmenta-
tion and alignment of parallel parts. In com-
parison with the discussed pipeline approaches,
our method has two important advantages: (1) it
leverages the lexical cohesion phenomenon (Hal-
liday and Hasan, 1976) in modeling the paral-
lel parts of documents, and (2) ensures that the
effective number of segments can grow adap-
tively. Lexical cohesion is an idea that topically-
coherent segments display compact lexical distri-
butions (Hearst, 1994; Utiyama and Isahara, 2001;
Eisenstein and Barzilay, 2008). We hypothesize
that not only isolated fragments but also each
group of linked fragments displays a compact and
consistent lexical distribution, and our generative
model leverages this inter-part cohesion assump-
tion.

In this paper, we consider the dataset of “En-
glish as a second language” (ESL) podcast1, where
each episode consists of two parallel parts: a story
(an example monologue or dialogue) and an ex-
planatory lecture discussing the meaning and us-
age of English expressions appearing in the story.
Fig. 1 presents an example episode, consisting of
two parallel parts, and their hidden topical rela-
tions.2 From the figure we may conclude that there
is a tendency of word repetition between each pair
of aligned segments, illustrating our hypothesis of
compactness of their joint distribution. Our goal is

1http://www.eslpod.com/
2Episode no. 232 post on Jan. 08, 2007.
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I have a day job, but I recently started a 
small business on the side.

I didn't know anything about accounting 
and my friend, Roland, said that he would 
give me some advice.

Roland: So, the reason that you need to 
do your bookkeeping is so you can 
manage your cash flow.

This podcast is all about business vocabulary related to accounting. 
The title of the podcast is Business Bookkeeping. ... 
The story begins by Magdalena saying that she has a day job. 
A day job is your regular job that you work at from nine in the morning 'til five in the afternoon, for         
      example. 
She also has a small business on the side. ... 
Magdalena continues by saying that she didn't know anything about accounting and her friend, 
     Roland, said he would give her some advice. 
Accounting is the job of keeping correct records of the money you spend; it's very similar to 
     bookkeeping. ... 
Roland begins by saying that the reason that you need to do your bookkeeping is so you can  
     manage your cash flow. 
Cash flow, flow, means having enough money to run your business - to pay your bills. ... 
...

Story Lecture transcript

...

Figure 1: An example episode of ESL podcast. Co-occurred words are represented in italic and underline.

to divide the lecture transcript into discourse units
and to align each unit to the related segment of the
story. Predicting these structures for the ESL pod-
cast could be the first step in development of an
e-learning system and a podcast search engine for
ESL learners.

2 Related Work

Discourse segmentation has been an active area
of research (Hearst, 1994; Utiyama and Isahara,
2001; Galley et al., 2003; Malioutov and Barzilay,
2006). Our work extends the Bayesian segmenta-
tion model (Eisenstein and Barzilay, 2008) for iso-
lated texts, to the problem of segmenting parallel
parts of documents.

The task of aligning each sentence of an abstract
to one or more sentences of the body has been
studied in the context of summarization (Marcu,
1999; Jing, 2002; Daumé and Marcu, 2004). Our
work is different in that we do not try to extract
the most relevant sentence but rather aim to find
coherent fragments with maximally overlapping
lexical distributions. Similarly, the query-focused
summarization (e.g., (Daumé and Marcu, 2006))
is also related but it focuses on sentence extraction
rather than on joint segmentation.

We are aware of only one previous work on joint
segmentation and alignment of multiple texts (Sun
et al., 2007) but their approach is based on similar-
ity functions rather than on modeling lexical cohe-
sion in the generative framework. Our application,
the analysis of the ESL podcast, was previously
studied in (Noh et al., 2010). They proposed a su-
pervised method which is driven by pairwise clas-
sification decisions. The main drawback of their
approach is that it neglects the discourse structure
and the lexical cohesion phenomenon.

3 Model

In this section we describe our model for discourse
segmentation of documents with inherently paral-
lel structure. We start by clarifying our assump-
tions about their structure.

We assume that a document x consists of K
parallel parts, that is, x = {x(k)}k=1:K , and
each part of the document consists of segments,
x(k) = {s(k)

i }i=1:I . Note that the effective num-
ber of fragments I is unknown. Each segment can
either be specific to this part (drawn from a part-
specific language model φ(k)

i ) or correspond to
the entire document (drawn from a document-level
language model φ(doc)

i ). For example, the first
and the second sentences of the lecture transcript
in Fig. 1 are part-specific, whereas other linked
sentences belong to the document-level segments.
The document-level language models define top-
ical links between segments in different parts of
the document, whereas the part-specific language
models define the linear segmentation of the re-
maining unaligned text.

Each document-level language model corre-
sponds to the set of aligned segments, at most one
segment per part. Similarly, each part-specific lan-
guage model corresponds to a single segment of
the single corresponding part. Note that all the
documents are modeled independently, as we aim
not to discover collection-level topics (as e.g. in
(Blei et al., 2003)), but to perform joint discourse
segmentation and alignment.

Unlike (Eisenstein and Barzilay, 2008), we can-
not make an assumption that the number of seg-
ments is known a-priori, as the effective number of
part-specific segments can vary significantly from
document to document, depending on their size
and structure. To tackle this problem, we use
Dirichlet processes (DP) (Ferguson, 1973) to de-
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fine priors on the number of segments. We incor-
porate them in our model in a similar way as it
is done for the Latent Dirichlet Allocation (LDA)
by Yu et al. (2005). Unlike the standard LDA, the
topic proportions are chosen not from a Dirichlet
prior but from the marginal distribution GEM(α)
defined by the stick breaking construction (Sethu-
raman, 1994), where α is the concentration param-
eter of the underlying DP distribution. GEM(α)
defines a distribution of partitions of the unit inter-
val into a countable number of parts.

The formal definition of our model is as follows:

• Draw the document-level topic proportions β(doc) ∼
GEM(α(doc)).

• Choose the document-level language model φ(doc)
i ∼

Dir(γ(doc)) for i ∈ {1, 2, . . .}.

• Draw the part-specific topic proportions β(k) ∼
GEM(α(k)) for k ∈ {1, . . . ,K}.

• Choose the part-specific language models φ
(k)
i ∼

Dir(γ(k)) for k ∈ {1, . . . ,K} and i ∈ {1, 2, . . .}.
• For each part k and each sentence n:

– Draw type t(k)
n ∼ Unif(Doc, Part).

– If (t(k)
n = Doc); draw topic z(k)

n ∼ β(doc); gen-
erate words x(k)

n ∼Mult(φ
(doc)

z
(k)
n

)

– Otherwise; draw topic z(k)
n ∼ β(k); generate

words x(k)
n ∼Mult(φ

(k)

z
(k)
n

).

The priors γ(doc), γ(k), α(doc) and α(k) can be
estimated at learning time using non-informative
hyperpriors (as we do in our experiments), or set
manually to indicate preferences of segmentation
granularity.

At inference time, we enforce each latent topic
z
(k)
n to be assigned to a contiguous span of text,

assuming that coherent topics are not recurring
across the document (Halliday and Hasan, 1976).
It also reduces the search space and, consequently,
speeds up our sampling-based inference by reduc-
ing the time needed for Monte Carlo chains to
mix. In fact, this constraint can be integrated in the
model definition but it would significantly compli-
cate the model description.

4 Inference

As exact inference is intractable, we follow Eisen-
stein and Barzilay (2008) and instead use a
Metropolis-Hastings (MH) algorithm. At each
iteration of the MH algorithm, a new potential
alignment-segmentation pair (z′, t′) is drawn from
a proposal distribution Q(z′, t′|z, t), where (z, t)

(a) (b) (c)

Figure 2: Three types of moves: (a) shift, (b) split
and (c) merge.

is the current segmentation and its type. The new
pair (z′, t′) is accepted with the probability

min

(
1,
P (z′, t′,x)Q(z′, t′|z, t)
P (z, t,x)Q(z, t|z′, t′)

)
.

In order to implement the MH algorithm for our
model, we need to define the set of potential moves
(i.e. admissible changes from (z, t) to (z′, t′)),
and the proposal distribution Q over these moves.
If the actual number of segments is known and
only a linear discourse structure is acceptable, then
a single move, shift of the segment border (Fig.
2(a)), is sufficient (Eisenstein and Barzilay, 2008).
In our case, however, a more complex set of moves
is required.

We make two assumptions which are moti-
vated by the problem considered in Section 5:
we assume that (1) we are given the number of
document-level segments and also that (2) the
aligned segments appear in the same order in each
part of the document. With these assumptions in
mind, we introduce two additional moves (Fig.
2(b) and (c)):

• Split move: select a segment, and split it at
one of the spanned sentences; if the segment
was a document-level segment then one of
the fragments becomes the same document-
level segment.
• Merge move: select a pair of adjacent seg-

ments where at least one of the segments is
part-specific, and merge them; if one of them
was a document-level segment then the new
segment has the same document-level topic.

All the moves are selected with the uniform prob-
ability, and the distance c for the shift move is
drawn from the proposal distribution proportional
to c−1/cmax . The moves are selected indepen-
dently for each part.

Although the above two assumptions are not
crucial as a simple modification to the set of moves
would support both introduction and deletion of
document-level fragments, this modification was
not necessary for our experiments.
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5 Experiment

5.1 Dataset and setup
Dataset We apply our model to the ESL podcast
dataset (Noh et al., 2010) of 200 episodes, with
an average of 17 sentences per story and 80 sen-
tences per lecture transcript. The gold standard
alignments assign each fragment of the story to a
segment of the lecture transcript. We can induce
segmentations at different levels of granularity on
both the story and the lecture side. However, given
that the segmentation of the story was obtained by
an automatic sentence splitter, there is no reason
to attempt to reproduce this segmentation. There-
fore, for quantitative evaluation purposes we fol-
low Noh et al. (2010) and restrict our model to
alignment structures which agree with the given
segmentation of the story. For all evaluations, we
apply standard stemming algorithm and remove
common stop words.
Evaluation metrics To measure the quality of seg-
mentation of the lecture transcript, we use two
standard metrics, Pk (Beeferman et al., 1999) and
WindowDiff (WD) (Pevzner and Hearst, 2002),
but both metrics disregard the alignment links (i.e.
the topic labels). Consequently, we also use the
macro-averaged F1 score on pairs of aligned span,
which measures both the segmentation and align-
ment quality.
Baseline Since there has been little previous re-
search on this problem, we compare our results
against two straightforward unsupervised base-
lines. For the first baseline, we consider the
pairwise sentence alignment (SentAlign) based
on the unigram and bigram overlap. The sec-
ond baseline is a pipeline approach (Pipeline),
where we first segment the lecture transcript with
BayesSeg (Eisenstein and Barzilay, 2008) and
then use the pairwise alignment to find their best
alignment to the segments of the story.
Our model We evaluate our joint model of seg-
mentation and alignment both with and without
the split/merge moves. For the model without
these moves, we set the desired number of seg-
ments in the lecture to be equal to the actual num-
ber of segments in the story I . In this setting,
the moves can only adjust positions of the seg-
ment borders. For the model with the split/merge
moves, we start with the same number of segments
I but it can be increased or decreased during in-
ference. For evaluation of our model, we run our
inference algorithm from five random states, and

Method Pk WD 1− F1

Uniform 0.453 0.458 0.682
SentAlign 0.446 0.547 0.313
Pipeline (I) 0.250 0.249 0.443
Pipeline (2I+1) 0.268 0.289 0.318
Our model (I) 0.193 0.204 0.254
+split/merge 0.181 0.193 0.239

Table 1: Results on the ESL podcast dataset. For
all metrics, lower values are better.

take the 100,000th iteration of each chain as a sam-
ple. Results are the average over these five runs.
Also we perform L-BFGS optimization to auto-
matically adjust the non-informative hyperpriors
after each 1,000 iterations of sampling.

5.2 Result

Table 1 summarizes the obtained results. ‘Uni-
form’ denotes the minimal baseline which uni-
formly draws a random set of I spans for each lec-
ture, and then aligns them to the segments of the
story preserving the linear order. Also, we con-
sider two variants of the pipeline approach: seg-
menting the lecture on I and 2I + 1 segments, re-
spectively.3 Our joint model substantially outper-
forms the baselines. The difference is statistically
significant with the level p < .01 measured with
the paired t-test. The significant improvement over
the pipeline results demonstrates benefits of joint
modeling for the considered problem. Moreover,
additional benefits are obtained by using the DP
priors and the split/merge moves (the last line in
Table 1). Finally, our model significantly outper-
forms the previously proposed supervised model
(Noh et al., 2010): they report micro-averaged F1

score 0.698 while our best model achieves 0.778
with the same metric. This observation confirms
that lexical cohesion modeling is crucial for suc-
cessful discourse analysis.

6 Conclusions

We studied the problem of joint discourse segmen-
tation and alignment of documents with inherently
parallel structure and achieved favorable results on
the ESL podcast dataset outperforming the cas-
caded baselines. Accurate prediction of these hid-
den relations would open interesting possibilities

3The use of the DP priors and the split/merge moves on
the first stage of the pipeline did not result in any improve-
ment in accuracy.
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for construction of friendlier user interfaces. One
example being an application which, given a user-
selected fragment of the abstract, produces a sum-
mary from the aligned segment of the document
body.
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Abstract
Despite the existence of several noun phrase coref-
erence resolution data sets as well as several for-
mal evaluations on the task, it remains frustratingly
difficult to compare results across different corefer-
ence resolution systems. This is due to the high cost
of implementing a complete end-to-end coreference
resolution system, which often forces researchers
to substitute available gold-standard information in
lieu of implementing a module that would compute
that information. Unfortunately, this leads to incon-
sistent and often unrealistic evaluation scenarios.

With the aim to facilitate consistent and realis-
tic experimental evaluations in coreference resolu-
tion, we present Reconcile, an infrastructure for the
development of learning-based noun phrase (NP)
coreference resolution systems. Reconcile is de-
signed to facilitate the rapid creation of corefer-
ence resolution systems, easy implementation of
new feature sets and approaches to coreference res-
olution, and empirical evaluation of coreference re-
solvers across a variety of benchmark data sets and
standard scoring metrics. We describe Reconcile
and present experimental results showing that Rec-
oncile can be used to create a coreference resolver
that achieves performance comparable to state-of-
the-art systems on six benchmark data sets.

1 Introduction
Noun phrase coreference resolution (or simply
coreference resolution) is the problem of identi-
fying all noun phrases (NPs) that refer to the same
entity in a text. The problem of coreference res-
olution is fundamental in the field of natural lan-
guage processing (NLP) because of its usefulness
for other NLP tasks, as well as the theoretical in-
terest in understanding the computational mech-
anisms involved in government, binding and lin-
guistic reference.

Several formal evaluations have been conducted
for the coreference resolution task (e.g., MUC-6
(1995), ACE NIST (2004)), and the data sets cre-
ated for these evaluations have become standard
benchmarks in the field (e.g., MUC and ACE data
sets). However, it is still frustratingly difficult to
compare results across different coreference res-
olution systems. Reported coreference resolu-
tion scores vary wildly across data sets, evaluation
metrics, and system configurations.

We believe that one root cause of these dispar-
ities is the high cost of implementing an end-to-
end coreference resolution system. Coreference
resolution is a complex problem, and successful
systems must tackle a variety of non-trivial sub-
problems that are central to the coreference task —
e.g., mention/markable detection, anaphor identi-
fication — and that require substantial implemen-
tation efforts. As a result, many researchers ex-
ploit gold-standard annotations, when available, as
a substitute for component technologies to solve
these subproblems. For example, many published
research results use gold standard annotations to
identify NPs (substituting for mention/markable
detection), to distinguish anaphoric NPs from non-
anaphoric NPs (substituting for anaphoricity de-
termination), to identify named entities (substitut-
ing for named entity recognition), and to identify
the semantic types of NPs (substituting for seman-
tic class identification). Unfortunately, the use of
gold standard annotations for key/critical compo-
nent technologies leads to an unrealistic evalua-
tion setting, and makes it impossible to directly
compare results against coreference resolvers that
solve all of these subproblems from scratch.

Comparison of coreference resolvers is further
hindered by the use of several competing (and
non-trivial) evaluation measures, and data sets that
have substantially different task definitions and
annotation formats. Additionally, coreference res-
olution is a pervasive problem in NLP and many
NLP applications could benefit from an effective
coreference resolver that can be easily configured
and customized.

To address these issues, we have created a plat-
form for coreference resolution, called Reconcile,
that can serve as a software infrastructure to sup-
port the creation of, experimentation with, and
evaluation of coreference resolvers. Reconcile
was designed with the following seven desiderata
in mind:

• implement the basic underlying software ar-
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chitecture of contemporary state-of-the-art
learning-based coreference resolution sys-
tems;

• support experimentation on most of the stan-
dard coreference resolution data sets;

• implement most popular coreference resolu-
tion scoring metrics;

• exhibit state-of-the-art coreference resolution
performance (i.e., it can be configured to cre-
ate a resolver that achieves performance close
to the best reported results);

• can be easily extended with new methods and
features;

• is relatively fast and easy to configure and
run;

• has a set of pre-built resolvers that can be
used as black-box coreference resolution sys-
tems.

While several other coreference resolution sys-
tems are publicly available (e.g., Poesio and
Kabadjov (2004), Qiu et al. (2004) and Versley et
al. (2008)), none meets all seven of these desider-
ata (see Related Work). Reconcile is a modular
software platform that abstracts the basic archi-
tecture of most contemporary supervised learning-
based coreference resolution systems (e.g., Soon
et al. (2001), Ng and Cardie (2002), Bengtson and
Roth (2008)) and achieves performance compara-
ble to the state-of-the-art on several benchmark
data sets. Additionally, Reconcile can be eas-
ily reconfigured to use different algorithms, fea-
tures, preprocessing elements, evaluation settings
and metrics.

In the rest of this paper, we review related work
(Section 2), describe Reconcile’s organization and
components (Section 3) and show experimental re-
sults for Reconcile on six data sets and two evalu-
ation metrics (Section 4).

2 Related Work

Several coreference resolution systems are cur-
rently publicly available. JavaRap (Qiu et al.,
2004) is an implementation of the Lappin and
Leass’ (1994) Resolution of Anaphora Procedure
(RAP). JavaRap resolves only pronouns and, thus,
it is not directly comparable to Reconcile. GuiTaR

(Poesio and Kabadjov, 2004) and BART (Versley
et al., 2008) (which can be considered a succes-
sor of GuiTaR) are both modular systems that tar-
get the full coreference resolution task. As such,
both systems come close to meeting the majority
of the desiderata set forth in Section 1. BART,
in particular, can be considered an alternative to
Reconcile, although we believe that Reconcile’s
approach is more flexible than BART’s. In addi-
tion, the architecture and system components of
Reconcile (including a comprehensive set of fea-
tures that draw on the expertise of state-of-the-art
supervised learning approaches, such as Bengtson
and Roth (2008)) result in performance closer to
the state-of-the-art.

Coreference resolution has received much re-
search attention, resulting in an array of ap-
proaches, algorithms and features. Reconcile
is modeled after typical supervised learning ap-
proaches to coreference resolution (e.g. the archi-
tecture introduced by Soon et al. (2001)) because
of the popularity and relatively good performance
of these systems.

However, there have been other approaches
to coreference resolution, including unsupervised
and semi-supervised approaches (e.g. Haghighi
and Klein (2007)), structured approaches (e.g.
McCallum and Wellner (2004) and Finley and
Joachims (2005)), competition approaches (e.g.
Yang et al. (2003)) and a bell-tree search approach
(Luo et al. (2004)). Most of these approaches rely
on some notion of pairwise feature-based similar-
ity and can be directly implemented in Reconcile.

3 System Description
Reconcile was designed to be a research testbed
capable of implementing most current approaches
to coreference resolution. Reconcile is written in
Java, to be portable across platforms, and was de-
signed to be easily reconfigurable with respect to
subcomponents, feature sets, parameter settings,
etc.

Reconcile’s architecture is illustrated in Figure
1. For simplicity, Figure 1 shows Reconcile’s op-
eration during the classification phase (i.e., assum-
ing that a trained classifier is present).

The basic architecture of the system includes
five major steps. Starting with a corpus of docu-
ments together with a manually annotated corefer-
ence resolution answer key1, Reconcile performs

1Only required during training.
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Figure 1: The Reconcile classification architecture.

the following steps, in order:

1. Preprocessing. All documents are passed
through a series of (external) linguistic pro-
cessors such as tokenizers, part-of-speech
taggers, syntactic parsers, etc. These com-
ponents produce annotations of the text. Ta-
ble 1 lists the preprocessors currently inter-
faced in Reconcile. Note that Reconcile in-
cludes several in-house NP detectors, that
conform to the different data sets’ defini-
tions of what constitutes a NP (e.g., MUC
vs. ACE). All of the extractors utilize a syn-
tactic parse of the text and the output of a
Named Entity (NE) extractor, but extract dif-
ferent constructs as specialized in the corre-
sponding definition. The NP extractors suc-
cessfully recognize about 95% of the NPs in
the MUC and ACE gold standards.

2. Feature generation. Using annotations pro-
duced during preprocessing, Reconcile pro-
duces feature vectors for pairs of NPs. For
example, a feature might denote whether the
two NPs agree in number, or whether they
have any words in common. Reconcile in-
cludes over 80 features, inspired by other suc-
cessful coreference resolution systems such
as Soon et al. (2001) and Ng and Cardie
(2002).

3. Classification. Reconcile learns a classifier
that operates on feature vectors representing

Task Systems
Sentence UIUC (CC Group, 2009)
splitter OpenNLP (Baldridge, J., 2005)
Tokenizer OpenNLP (Baldridge, J., 2005)
POS OpenNLP (Baldridge, J., 2005)
Tagger + the two parsers below
Parser Stanford (Klein and Manning, 2003)

Berkeley (Petrov and Klein, 2007)
Dep. parser Stanford (Klein and Manning, 2003)
NE OpenNLP (Baldridge, J., 2005)
Recognizer Stanford (Finkel et al., 2005)
NP Detector In-house

Table 1: Preprocessing components available in
Reconcile.

pairs of NPs and it is trained to assign a score
indicating the likelihood that the NPs in the
pair are coreferent.

4. Clustering. A clustering algorithm consoli-
dates the predictions output by the classifier
and forms the final set of coreference clusters
(chains).2

5. Scoring. Finally, during testing Reconcile
runs scoring algorithms that compare the
chains produced by the system to the gold-
standard chains in the answer key.

Each of the five steps above can invoke differ-
ent components. Reconcile’s modularity makes it

2Some structured coreference resolution algorithms (e.g.,
McCallum and Wellner (2004) and Finley and Joachims
(2005)) combine the classification and clustering steps above.
Reconcile can easily accommodate this modification.
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Step Available modules
Classification various learners in the Weka toolkit

libSVM (Chang and Lin, 2001)
SVMlight (Joachims, 2002)

Clustering Single-link
Best-First
Most Recent First

Scoring MUC score (Vilain et al., 1995)
B3 score (Bagga and Baldwin, 1998)
CEAF score (Luo, 2005)

Table 2: Available implementations for different
modules available in Reconcile.

easy for new components to be implemented and
existing ones to be removed or replaced. Recon-
cile’s standard distribution comes with a compre-
hensive set of implemented components – those
available for steps 2–5 are shown in Table 2. Rec-
oncile contains over 38,000 lines of original Java
code. Only about 15% of the code is concerned
with running existing components in the prepro-
cessing step, while the rest deals with NP extrac-
tion, implementations of features, clustering algo-
rithms and scorers. More details about Recon-
cile’s architecture and available components and
features can be found in Stoyanov et al. (2010).

4 Evaluation

4.1 Data Sets

Reconcile incorporates the six most commonly
used coreference resolution data sets, two from the
MUC conferences (MUC-6, 1995; MUC-7, 1997)
and four from the ACE Program (NIST, 2004).
For ACE, we incorporate only the newswire por-
tion. When available, Reconcile employs the stan-
dard test/train split. Otherwise, we randomly split
the data into a training and test set following a
70/30 ratio. Performance is evaluated according
to the B3 and MUC scoring metrics.

4.2 The Reconcile2010 Configuration

Reconcile can be easily configured with differ-
ent algorithms for markable detection, anaphoric-
ity determination, feature extraction, etc., and run
against several scoring metrics. For the purpose of
this sample evaluation, we create only one partic-
ular instantiation of Reconcile, which we will call
Reconcile2010 to differentiate it from the general
platform. Reconcile2010 is configured using the
following components:

1. Preprocessing
(a) Sentence Splitter: OpenNLP

(b) Tokenizer: OpenNLP
(c) POS Tagger: OpenNLP
(d) Parser: Berkeley
(e) Named Entity Recognizer: Stanford

2. Feature Set - A hand-selected subset of 60 out of the
more than 80 features available. The features were se-
lected to include most of the features from Soon et al.
Soon et al. (2001), Ng and Cardie (2002) and Bengtson
and Roth (2008).

3. Classifier - Averaged Perceptron
4. Clustering - Single-link - Positive decision threshold

was tuned by cross validation of the training set.

4.3 Experimental Results
The first two rows of Table 3 show the perfor-
mance of Reconcile2010. For all data sets, B3

scores are higher than MUC scores. The MUC
score is highest for the MUC6 data set, while B3

scores are higher for the ACE data sets as com-
pared to the MUC data sets.

Due to the difficulties outlined in Section 1,
results for Reconcile presented here are directly
comparable only to a limited number of scores
reported in the literature. The bottom three
rows of Table 3 list these comparable scores,
which show that Reconcile2010 exhibits state-of-
the-art performance for supervised learning-based
coreference resolvers. A more detailed study of
Reconcile-based coreference resolution systems
in different evaluation scenarios can be found in
Stoyanov et al. (2009).

5 Conclusions
Reconcile is a general architecture for coreference
resolution that can be used to easily create various
coreference resolvers. Reconcile provides broad
support for experimentation in coreference reso-
lution, including implementation of the basic ar-
chitecture of contemporary state-of-the-art coref-
erence systems and a variety of individual mod-
ules employed in these systems. Additionally,
Reconcile handles all of the formatting and scor-
ing peculiarities of the most widely used coref-
erence resolution data sets (those created as part
of the MUC and ACE conferences) and, thus,
allows for easy implementation and evaluation
across these data sets. We hope that Reconcile
will support experimental research in coreference
resolution and provide a state-of-the-art corefer-
ence resolver for both researchers and application
developers. We believe that in this way Recon-
cile will facilitate meaningful and consistent com-
parisons of coreference resolution systems. The
full Reconcile release is available for download at
http://www.cs.utah.edu/nlp/reconcile/.
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System Score Data sets
MUC6 MUC7 ACE-2 ACE03 ACE04 ACE05

Reconcile2010
MUC 68.50 62.80 65.99 67.87 62.03 67.41

B3 70.88 65.86 78.29 79.39 76.50 73.71
Soon et al. (2001) MUC 62.6 60.4 – – – –
Ng and Cardie (2002) MUC 70.4 63.4 – – – –
Yang et al. (2003) MUC 71.3 60.2 – – – –

Table 3: Scores for Reconcile on six data sets and scores for comparable coreference systems.
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Abstract

Maintaining high annotation consistency
in large corpora is crucial for statistical
learning; however, such work is hard,
especially for tasks containing semantic
elements. This paper describes predi-
cate argument structure analysis using　
transformation-based learning. An advan-
tage of transformation-based learning is
the readability of learned rules. A dis-
advantage is that the rule extraction pro-
cedure is time-consuming. We present
incremental-based, transformation-based
learning for semantic processing tasks. As
an example, we deal with Japanese pred-
icate argument analysis and show some
tendencies of annotators for constructing
a corpus with our method.

1 Introduction

Automatic predicate argument structure analysis
(PAS) provides information of “who did what
to whom” and is an important base tool for
such various text processing tasks as machine
translation information extraction (Hirschman et
al., 1999), question answering (Narayanan and
Harabagiu, 2004; Shen and Lapata, 2007), and
summarization (Melli et al., 2005). Most re-
cent approaches to predicate argument structure
analysis are statistical machine learning methods
such as support vector machines (SVMs)(Pradhan
et al., 2004). For predicate argument struc-
ture analysis, we have the following represen-
tative large corpora: FrameNet (Fillmore et al.,
2001), PropBank (Palmer et al., 2005), and Nom-
Bank (Meyers et al., 2004) in English, the Chi-
nese PropBank (Xue, 2008) in Chinese, the
GDA Corpus (Hashida, 2005), Kyoto Text Corpus
Ver.4.0 (Kawahara et al., 2002), and the NAIST
Text Corpus (Iida et al., 2007) in Japanese.

The construction of such large corpora is strenu-
ous and time-consuming. Additionally, maintain-
ing high annotation consistency in such corpora
is crucial for statistical learning; however, such
work is hard, especially for tasks containing se-
mantic elements. For example, in Japanese cor-
pora, distinguishing true dative (or indirect object)
arguments from time-type argument is difficult be-
cause the arguments of both types are often ac-
companied with the ‘ni’ case marker.

A problem with such statistical learners as SVM
is the lack of interpretability; if accuracy is low, we
cannot identify the problems in the annotations.

We are focusing on transformation-based learn-
ing (TBL). An advantage for such learning meth-
ods is that we can easily interpret the learned
model. The tasks in most previous research are
such simple tagging tasks as part-of-speech tag-
ging, insertion and deletion of parentheses in syn-
tactic parsing, and chunking (Brill, 1995; Brill,
1993; Ramshaw and Marcus, 1995). Here we ex-
periment with a complex task: Japanese PASs.
TBL can be slow, so we proposed an incremen-
tal training method to speed up the training. We
experimented with a Japanese PAS corpus with a
graph-based TBL. From the experiments, we in-
terrelated the annotation tendency on the dataset.

The rest of this paper is organized as follows.
Section 2 describes Japanese predicate structure,
our graph expression of it, and our improved
method. The results of experiments using the
NAIST Text Corpus, which is our target corpus,
are reported in Section 3, and our conclusion is
provided in Section 4.

2 Predicate argument structure and
graph transformation learning

First, we illustrate the structure of a Japanese sen-
tence in Fig. 1. In Japanese, we can divide a sen-
tence into bunsetsu phrases (BP). A BP usually
consists of one or more content words and zero,
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Figure 1: Graph expression for PAS

one, or more than one functional words. Syn-
tactic dependency between bunsetsu phrases can
be defined. Japanese dependency parsers such as
Cabocha (Kudo and Matsumoto, 2002) can extract
BPs and their dependencies with about 90% accu-
racy.

Since predicates and arguments in Japanese are
mainly annotated on the head content word in
each BP, we can deal with BPs as candidates of
predicates or arguments. In our experiments, we
mapped each BP to an argument candidate node
of graphs. We also mapped each predicate to a
predicate node. Each predicate-argument relation
is identified by an edge between a predicate and an
argument, and the argument type is mapped to the
edge label. In our experiments below, we defined
five argument types: nominative (subjective), ac-
cusative (direct objective), dative (indirect objec-
tive), time, and location. We use five transforma-
tion types: a) add or b) delete a predicate node, c)
add or d) delete an edge between an predicate and
an argument node, e) change a label (= an argu-
ment type) to another label (Fig. 2). We explain
the existence of an edge between a predicate and
an argument labeled t candidate node as that the
predicate and the argument have a t type relation-
ship.

Transformation-based learning was proposed
by (Brill, 1995). Below we explain our learn-
ing strategy when we directly adapt the learning
method to our graph expression of PASs. First, un-
structured texts from the training data are inputted.
After pre-processing, each text is mapped to an
initial graph. In our experiments, the initial graph
has argument candidate nodes with corresponding
BPs and no predicate nodes or edges. Next, com-
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Figure 2: Transform types

paring the current graphs with the gold standard
graph structure in the training data, we find the dif-
ferent statuses of the nodes and edges among the
graphs. We extract such transformation rule candi-
dates as ‘add node’ and ‘change edge label’ with
constraints, including ‘the corresponding BP in-
cludes a verb’ and ‘the argument candidate and the
predicate node have a syntactic dependency.’ The
extractions are executed based on the rule tem-
plates given in advance. Each extracted rule is
evaluated for the current graphs, and error reduc-
tion is calculated. The best rule for the reduction
is selected as a new rule and inserted at the bottom
of the current rule list. The new rule is applied to
the current graphs, which are transferred to other
graph structures. This procedure is iterated until
the total errors for the gold standard graphs be-
come zero. When the process is completed, the
rule list is the final model. In the test phase, we it-
eratively transform nodes and edges in the graphs
mapped from the test data, based on rules in the
model like decision lists. The last graph after all
rule adaptations is the system output of the PAS.

In this procedure, the calculation of error reduc-
tion is very time-consuming, because we have to
check many constraints from the candidate rules
for all training samples. The calculation order is
O(MN), where M is the number of articles and
N is the number of candidate rules. Additionally,
an edge rule usually has three types of constraints:
‘pred node constraint,’ ‘argument candidate node
constraint,’ and ‘relation constraint.’ The num-
ber of combinations and extracted rules are much
larger than one of the rules for the node rules.
Ramshaw et al. proposed an index-based efficient
reduction method for the calculation of error re-
duction (Ramshaw and Marcus, 1994). However,
in PAS tasks, we need to check the exclusiveness
of the argument types (for example, a predicate ar-
gument structure does not have two nominative ar-
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guments), and we cannot directly use the method.
Jijkoun et al. only used candidate rules that hap-
pen in the current and gold standard graphs and
used SVM learning for constraint checks (Jijkoun
and de Rijke, 2007). This method is effective
for achieving high accuracy; however, it loses the
readability of the rules. This is contrary to our aim
to extract readable rules.

To reduce the calculations while maintaining
readability, we propose an incremental method
and describe its procedure below. In this proce-
dure, we first have PAS graphs for only one arti-
cle. After the total errors among the current and
gold standard graphs become zero in the article,
we proceed to the next article. For the next article,
we first adapt the rules learned from the previous
article. After that, we extract new rules from the
two articles until the total errors for the articles be-
come zero. We continue these processes until the
last article. Additionally, we count the number of
rule occurrences and only use the rule candidates
that happen more than once, because most such
rules harm the accuracy. We save and use these
rules again if the occurrence increases.

3 Experiments

3.1 Experimental Settings

We used the articles in the NAIST Text Cor-
pus version 1.4β (Iida et al., 2007) based on the
Mainichi Shinbun Corpus (Mainichi, 1995), which
were taken from news articles published in the
Japanese Mainichi Shinbun newspaper. We used
articles published on January 1st for training ex-
amples and on January 3rd for test examples.
Three original argument types are defined in the
NAIST Text Corpus: nominative (or subjective),
accusative (or direct object), and dative (or indi-
rect object). For evaluation of the difficult anno-
tation cases, we also added annotations for ‘time’
and ‘location’ types by ourselves. We show the
dataset distribution in Table 1. We extracted the
BP units and dependencies among these BPs from
the dataset using Cabocha, a Japanese dependency
parser, as pre-processing. After that, we adapted
our incremental learning to the training data. We
used two constraint templates in Tables 2 and 3
for predicate nodes and edges when extracting the
rule candidates.

Table 1: Data distribution
Training Test

# of Articles 95 74
# of Sentences 1,129 687
# of Predicates 3,261 2,038
# of Arguments 3,877 2,468

Nom. 1,717 971
Acc. 1,012 701
Dat. 632 376
Time 371 295
Loc. 145 125

Table 4: Total performances (F1-measure (%))
Type System P R F1
Pred. Baseline 89.4 85.1 87.2

Our system 91.8 85.3 88.4
Arg. Baseline 79.3 59.5 68.0

Our system 81.9 62.4 70.8

3.2 Results

Our incremental method takes an hour. In com-
parison, the original TBL cannot even extract one
rule in a day. The results of predicate and argu-
ment type predictions are shown in Table 4. Here,
‘Baseline’ is the baseline system that predicts the
BSs that contain verbs, adjectives, and da form
nouns (‘to be’ in English) as predicates and pre-
dicts argument types for BSs having syntactical
dependency with a predicted predicate BS, based
on the following rules: 1) BSs containing nomina-
tive (ga) / accusative (wo) / dative (ni) case mark-
ers are predicted to be nominative, accusative, and
dative, respectively. 2) BSs containing a topic case
marker (wa) are predicted to be nominative. 3)
When a word sense category from a Japanese on-
tology of the head word in BS belongs to a ‘time’
or ‘location’ category, the BS is predicted to be a
‘time’ and ‘location’ type argument. In all preci-
sion, recall, and F1-measure, our system outper-
formed the baseline system.

Next, we show our system’s learning curve in
Fig. 3. The number of final rules was 68. This
indicates that the first twenty rules are mainly ef-
fective rules for the performance. The curve also
shows that no overfitting happened. Next, we
show the performance for every argument type in
Table 5. ‘TBL,’ which stands for ‘transformation-
based learning,’ is our system. In this table,
the performance of the dative and time types im-
proved, even though they are difficult to distin-
guish. On the other hand, the performance of the
location type argument in our system is very low.
Our method learns rules as decreasing errors of
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Table 2: Predicate node constraint templates

Pred. Node Constraint Template Rule Example
Constraint Description Pred. Node Constraint Operation

pos1 noun, verb, adjective, etc. pos1=‘ADJECTIVE’ add pred node
pos2 independent, attached word, etc. pos2=‘DEPENDENT WORD’ del pred node

pos1 & pos2 above two features combination pos1=‘VERB’ & pos2=‘ANCILLARY WORD’ add pred node
‘da’ da form (copula) ‘da form’ add pred node

lemma word base form lemma=‘%’ add pred node

Table 3: Edge constraint templates

Edge Constraint Template Rule Example
Arg. Cand. Pred. Node Relation Edge Constraint OperationConst. Const. Const.
FW (=func.
word)

∗ dep(arg→ pred) FW of Arg. =‘wa(TOP)’ & dep(arg→ pred) add NOM edge

∗ FW dep(arg← pred) FW of Pred. =‘na(ADNOMINAL)’ & dep(arg
← pred)

add NOM edge

SemCat
(=semantic
category)

∗ dep(arg→ pred) SemCat of Arg. = ‘TIME’ & dep(arg→ pred) add TIME edge

FW passive form dep(arg→ pred) FW of Arg. =‘ga(NOM) & Pred.: passive form chg edge label
NOM→ ACC

∗ kform (= type
of inflected
form)

∗ kform of Pred. = continuative ‘ta’ form add NOM edge

SemCat Pred. SemCat ∗ SemCat of Arg. = ‘HUMAN’ & Pred. SemCat
= ‘PHYSICAL MOVE’

add NOM edge
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Figure 3: Learning curves: x-axis = number of
rules; y-axis: F1-measure (%)

all arguments, and the performance of the location
type argument is probably sacrificed for total error
reduction because the number of location type ar-
guments is much smaller than the number of other
argument types (Table 1), and the improvement of
the performance-based learning for location type
arguments is relatively low. To confirm this, we
performed an experiment in which we gave the
rules of the baseline system to our system as initial
rules and subsequently performed our incremen-
tal learning. ‘Base + TBL’ shows the experiment.
The performance for the location type argument
improved drastically. However, the total perfor-
mance of the arguments was below the original
TBL. Moreover, the ‘Base + TBL’ performance
surpassed the baseline system. This indicates that
our system learned a reasonable model.

Finally, we show some interesting extracted
rules in Fig. 4. The first rule stands for an ex-
pression where the sentence ends with the per-
formance of something, which is often seen in
Japanese newspaper articles. The second and third
rules represent that annotators of this dataset tend
to annotate time types for which the semantic cate-
gory of the argument is time, even if the argument
looks like the dat. type, and annotators tend to an-
notate dat. type for arguments that have an dat.
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Figure 4: Examples of extracted rules

Table 5: Results for every arg. type (F-measure
(%))

System Args. Nom. Acc. Dat. Time Loc.
Base 68.0 65.8 79.6 70.5 51.5 38.0
TBL 70.8 64.9 86.4 74.8 59.6 1.7

Base + TBL 69.5 63.9 85.8 67.8 55.8 37.4

type case marker.

4 Conclusion

We performed experiments for Japanese predicate
argument structure analysis using transformation-
based learning and extracted rules that indicate the
tendencies annotators have. We presented an in-
cremental procedure to speed up rule extraction.
The performance of PAS analysis improved, espe-
cially, the dative and time types, which are difficult
to distinguish. Moreover, when time expressions
are attached to the ‘ni’ case, the learned model
showed a tendency to annotate them as dative ar-
guments in the used corpus. Our method has po-
tential for dative predictions and interpreting the
tendencies of annotator inconsistencies.

Acknowledgments

We thank Kevin Duh for his valuable comments.

References
Eric Brill. 1993. Transformation-based error-driven

parsing. In Proc. of the Third International Work-
shop on Parsing Technologies.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Charles J. Fillmore, Charles Wooters, and Collin F.
Baker. 2001. Building a large lexical databank
which provides deep semantics. In Proc. of the Pa-
cific Asian Conference on Language, Information
and Computation (PACLING).

Kouichi Hashida. 2005. Global document annotation
(GDA) manual. http://i-content.org/GDA/.

Lynette Hirschman, Patricia Robinson, Lisa
Ferro, Nancy Chinchor, Erica Brown,
Ralph Grishman, and Beth Sundheim.
1999. Hub-4 Event’99 general guidelines.
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

Ryu Iida, Mamoru Komachi, Kentaro Inui, and Yuji
Matsumoto. 2007. Annotating a Japanese text cor-
pus with predicate-argument and coreference rela-
tions. In Proc. of ACL 2007 Workshop on Linguistic
Annotation, pages 132–139.

Valentin Jijkoun and Maarten de Rijke. 2007. Learn-
ing to transform linguistic graphs. In Proc. of
the Second Workshop on TextGraphs: Graph-
Based Algorithms for Natural Language Processing
(TextGraphs-2), pages 53–60. Association for Com-
putational Linguistics.

166



Daisuke Kawahara, Sadao Kurohashi, and Koichi
Hashida. 2002. Construction of a Japanese
relevance-tagged corpus (in Japanese). Proc. of the
8th Annual Meeting of the Association for Natural
Language Processing, pages 495–498.

Taku Kudo and Yuji Matsumoto. 2002. Japanese
dependency analysis using cascaded chunking. In
Proc. of the 6th Conference on Natural Language
Learning 2002 (CoNLL 2002).

Mainichi. 1995. CD Mainichi Shinbun 94. Nichigai
Associates Co.

Gabor Melli, Yang Wang, Yudong Liu, Mehdi M.
Kashani, Zhongmin Shi, Baohua Gu, Anoop Sarkar,
and Fred Popowich. 2005. Description of
SQUASH, the SFU question answering summary
handler for the DUC-2005 summarization task. In
Proc. of DUC 2005.

Adam Meyers, Ruth Reeves, Catherine Macleod,
Rachel Szekely, Veronika Zielinska, Brian Young,
and Ralph Grishman. 2004. The NomBank project:
An interim report. In Proc. of HLT-NAACL 2004
Workshop on Frontiers in Corpus Annotation.

Srini Narayanan and Sanda Harabagiu. 2004. Ques-
tion answering based on semantic structures. In
Proc. of the 20th International Conference on Com-
putational Linguistics (COLING).

M. Palmer, P. Kingsbury, and D. Gildea. 2005. The
proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

Sameer Pradhan, Waybe Ward, Kadri Hacioglu, James
Martin, and Dan Jurafsky. 2004. Shallow semantic
parsing using support vector machines. In Proc. of
the Human Language Technology Conference/North
American Chapter of the Association of Computa-
tional Linguistics HLT/NAACL 2004.

Lance Ramshaw and Mitchell Marcus. 1994. Explor-
ing the statistical derivation of transformational rule
sequences for part-of-speech tagging. In The Bal-
ancing Act: Proc. of the ACL Workshop on Com-
bining Symbolic and Statistical Approaches to Lan-
guage.

Lance Ramshaw and Mitchell Marcus. 1995. Text
chunking using transformation-based learning. In
Proc. of the third workshop on very large corpora,
pages 82–94.

Dan Shen and Mirella Lapata. 2007. Using se-
mantic roles to improve question answering. In
Proc. of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP/CoNLL), pages 12–21.

Nianwen Xue. 2008. Labeling Chinese predicates
with semantic roles. Computational Linguistics,
34(2):224–255.

167



Proceedings of the ACL 2010 Conference Short Papers, pages 168–172,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Improving Chinese Semantic Role Labeling with Rich Syntactic Features

Weiwei Sun∗
Department of Computational Linguistics, Saarland University

German Research Center for Artificial Intelligence (DFKI)
D-66123, Saarbrücken, Germany

wsun@coli.uni-saarland.de

Abstract

Developing features has been shown cru-
cial to advancing the state-of-the-art in Se-
mantic Role Labeling (SRL). To improve
Chinese SRL, we propose a set of ad-
ditional features, some of which are de-
signed to better capture structural infor-
mation. Our system achieves 93.49 F-
measure, a significant improvement over
the best reported performance 92.0. We
are further concerned with the effect
of parsing in Chinese SRL. We empiri-
cally analyze the two-fold effect, grouping
words into constituents and providing syn-
tactic information. We also give some pre-
liminary linguistic explanations.

1 Introduction

Previous work on Chinese Semantic Role La-
beling (SRL) mainly focused on how to imple-
ment SRL methods which are successful on En-
glish. Similar to English, parsing is a standard
pre-processing for Chinese SRL. Many features
are extracted to represent constituents in the input
parses (Sun and Jurafsky, 2004; Xue, 2008; Ding
and Chang, 2008). By using these features, se-
mantic classifiers are trained to predict whether a
constituent fills a semantic role. Developing fea-
tures that capture the right kind of information en-
coded in the input parses has been shown crucial
to advancing the state-of-the-art. Though there
has been some work on feature design in Chinese
SRL, information encoded in the syntactic trees is
not fully exploited and requires more research ef-
fort. In this paper, we propose a set of additional

∗The work was partially completed while this author was
at Peking University.

features, some of which are designed to better cap-
ture structural information of sub-trees in a given
parse. With help of these new features, our sys-
tem achieves 93.49 F-measure with hand-crafted
parses. Comparison with the best reported results,
92.0 (Xue, 2008), shows that these features yield a
significant improvement of the state-of-the-art.

We further analyze the effect of syntactic pars-
ing in Chinese SRL. The main effect of parsing
in SRL is two-fold. First, grouping words into
constituents, parsing helps to find argument candi-
dates. Second, parsers provide semantic classifiers
plenty of syntactic information, not to only recog-
nize arguments from all candidate constituents but
also to classify their detailed semantic types. We
empirically analyze each effect in turn. We also
give some preliminary linguistic explanations for
the phenomena.

2 Chinese SRL

The Chinese PropBank (CPB) is a semantic anno-
tation for the syntactic trees of the Chinese Tree-
Bank (CTB). The arguments of a predicate are la-
beled with a contiguous sequence of integers, in
the form of AN (N is a natural number); the ad-
juncts are annotated as such with the label AM
followed by a secondary tag that represents the se-
mantic classification of the adjunct. The assign-
ment of semantic roles is illustrated in Figure 1,
where the predicate is the verb “调查/investigate”.
E.g., the NP “事故原因/the cause of the accident”
is labeled as A1, meaning that it is the Patient.

In previous research, SRL methods that are suc-
cessful on English are adopted to resolve Chinese
SRL (Sun and Jurafsky, 2004; Xue, 2008; Ding
and Chang, 2008, 2009; Sun et al., 2009; Sun,
2010). Xue (2008) produced complete and sys-
tematic research on full parsing based methods.
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Figure 1: An example sentence: The police are
thoroughly investigating the cause of the accident.

Their method divided SRL into three sub-tasks: 1)
pruning with a heuristic rule, 2) Argument Identi-
fication (AI) to recognize arguments, and 3) Se-
mantic Role Classification (SRC) to predict se-
mantic types. The main two sub-tasks, AI and
SRC, are formulated as two classification prob-
lems. Ding and Chang (2008) divided SRC into
two sub-tasks in sequence: Each argument should
first be determined whether it is a core argument or
an adjunct, and then be classified into fine-grained
categories. However, delicately designed features
are more important and our experiments suggest
that by using rich features, a better SRC solver
can be directly trained without using hierarchical
architecture. There are also some attempts at re-
laxing the necessity of using full syntactic parses,
and semantic chunking methods have been intro-
duced by (Sun et al., 2009; Sun, 2010; Ding and
Chang, 2009).

2.1 Our System

We implement a three-stage (i.e. pruning, AI and
SRC) SRL system. In the pruning step, our sys-
tem keeps all constituents (except punctuations)
that c-command1 current predicate in focus as ar-
gument candidates. In the AI step, a lot of syntac-
tic features are extracted to distinguish argument
and non-argument. In other words, a binary classi-
fier is trained to classify each argument candidate
as either an argument or not. Finally, a multi-class
classifier is trained to label each argument recog-
nized in the former stage with a specific semantic
role label. In both AI and SRC, the main job is to
select strong syntactic features.

1See (Sun et al., 2008) for detailed definition.

3 Features

A majority of features used in our system are a
combination of features described in (Xue, 2008;
Ding and Chang, 2008) as well as the word for-
mation and coarse frame features introduced in
(Sun et al., 2009), the c-command thread fea-
tures proposed in (Sun et al., 2008). We give
a brief description of features used in previous
work, but explain new features in details. For
more information, readers can refer to relevant
papers and our source codes2 that are well com-
mented. To conveniently illustrate, we denote
a candidate constituent ck with a fixed context
wi−1[ck

wi...wh...wj ]wj+1, where wh is the head
word of ck, and denote predicate in focus with
a context wv

−2w
v
−1w

vwv
+1w

v
+2, where wv is the

predicate in focus.

3.1 Baseline Features

The following features are introduced in previous
Chinese SRL systems. We use them as baseline.

Word content of wv, wh, wi, wj and wi+wj ;
POS tag of wv, wh. subcategorization frame, verb
class of wv; position, phrase type ck, path from ck

to wv (from (Xue, 2008; Ding and Chang, 2008))
First character, last character and word length

of wv, first character+length, last character+word
length, first character+position, last charac-
ter+position, coarse frame, frame+wv, frame+left
character, frame+verb class, frame+ck (from (Sun
et al., 2009)).

Head word POS, head word of PP phrases, cat-
egory of ck’s lift and right siblings, CFG rewrite
rule that expands ck and ck’s parent (from (Ding
and Chang, 2008)).

3.2 New Word Features

We introduce some new features which can be
extracted without syntactic structure. We denote
them as word features. They include:

Word content of wv
−1, wv

+1, wi−1 and wj+1;
POS tag of wv

−1, wv
+1, wv

−2, wv
+2, wi−1, wi, wj ,

wj+1, wi+2 and wj−2.
Length of ck: how many words are there in ck.
Word before “LC”: If the POS of wj is “LC”

(localizer), we use wj−1 and its POS tag as two
new features.

NT: Does ck contain a word with POS “NT”
(temporal noun)?

2Available at http://code.google.com/p/
csrler/.

169



Combination features: wi’s POS+wj’s POS,
wv+Position

3.3 New Syntactic Features

Taking complex syntax trees as inputs, the clas-
sifiers should characterize their structural proper-
ties. We put forward a number of new features to
encode the structural information.

Category of ck’s parent; head word and POS of
head word of parent, left sibling and right sibling
of ck.

Lexicalized Rewrite rules: Conjuction of
rewrite rule and head word of its corresponding
RHS. These features of candidate (lrw-c) and its
parent (lrw-p) are used. For example, this lrw-
c feature of the NP “事故原因” in Figure 1 is
NP → NN + NN (原因).

Partial Path: Path from the ck or wv to the low-
est common ancestor of ck and wv. One path fea-
ture, hence, is divided into left path and right path.

Clustered Path: We use the manually created
clusters (see (Sun and Sui, 2009)) of categories of
all nodes in the path (cpath) and right path.

C-commander thread between ck and wv (cct):
(proposed by (Sun et al., 2008)). For example, this
feature of the NP “警方” in Figure 1 is NP +
ADV P + ADV P + V V .

Head Trace: The sequential container of the
head down upon the phrase (from (Sun and Sui,
2009)). We design two kinds of traces (htr-p, htr-
w): one uses POS of the head word; the other uses
the head word word itself. E.g., the head word of
事故原因 is “原因” therefore these feature of this
NP are NP↓NN and NP↓原因.

Combination features: verb class+ck, wh+wv,
wh+Position, wh+wv+Position, path+wv,
wh+right path, wv+left path, frame+wv+wh,
and wv+cct.

4 Experiments and Analysis

4.1 Experimental Setting

To facilitate comparison with previous work, we
use CPB 1.0 and CTB 5.0, the same data set-
ting with (Xue, 2008). The data is divided into
three parts: files from 081 to 899 are used as
training set; files from 041 to 080 as develop-
ment set; files from 001 to 040, and 900 to 931
as test set. Nearly all previous research on con-
stituency based SRL evaluation use this setting,
also including (Ding and Chang, 2008, 2009; Sun

et al., 2009; Sun, 2010). All parsing and SRL ex-
periments use this data setting. To resolve clas-
sification problems, we use a linear SVM classi-
fier SVMlin

3, along with One-Vs-All approach for
multi-class classification. To evaluate SRL with
automatic parsing, we use a state-of-the-art parser,
Bikel parser4 (Bikel, 2004). We use gold segmen-
tation and POS as input to the Bikel parser and
use it parsing results as input to our SRL system.
The overall LP/LR/F performance of Bikel parser
is 79.98%/82.95%/81.43.

4.2 Overall Performance

Table 1 summarizes precision, recall and F-
measure of AI, SRC and the whole task (AI+SRC)
of our system respectively. The forth line is
the best published SRC performance reported in
(Ding and Chang, 2008), and the sixth line is the
best SRL performance reported in (Xue, 2008).
Other lines show the performance of our system.
These results indicate a significant improvement
over previous systems due to the new features.

Test P(%) R(%) F/A
AI 98.56 97.91 98.24
SRC - - - - 95.04
(Ding and Chang, 2008) - - - - 94.68
AI + SRC 93.80 93.18 93.49
(Xue, 2008) 93.0 91.0 92.0

Table 1: SRL performance on the test data with
gold standard parses.

4.3 Two-fold Effect of Parsing in SRL

The effect of parsing in SRL is two-fold. On the
one hand, SRL systems should group words as ar-
gument candidates, which are also constituents in
a given sentence. Full parsing provides bound-
ary information of all constituents. As arguments
should c-command the predicate, a full parser can
further prune a majority of useless constituents. In
other words, parsing can effectively supply SRL
with argument candidates. Unfortunately, it is
very hard to rightly produce full parses for Chi-
nese text. On the other hand, given a constituent,
SRL systems should identify whether it is an argu-
ment and further predict detailed semantic types if

3http://people.cs.uchicago.edu/
˜vikass/svmlin.html

4http://www.cis.upenn.edu/˜dbikel/
software.html
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Task Parser Bracket Feat P(%) R(%) F/A
AI - - Gold W 82.44 86.78 84.55

CTB Gold W+S 98.69 98.11 98.40
Bikel Bikel W+S 77.54 71.62 74.46

SRC - - Gold W - - - - 93.93
CTB Gold W+S - - - - 95.80
Bikel Gold W+S - - - - 92.62

Table 2: Classification perfromance on develop-
ment data. In the Feat column, W means word
features; W+S means word and syntactic feautres.

it is an argument. For the two classification prob-
lems, parsing can provide complex syntactic infor-
mation such as path features.

4.3.1 The Effect of Parsing in AI
In AI, full parsing is very important for both
grouping words and classification. Table 2 sum-
marizes relative experimental results. Line 2 is the
AI performance when gold candidate boundaries
and word features are used; Line 3 is the perfor-
mance with additional syntactic features. Line 4
shows the performance by using automatic parses
generated by Bikel parser. We can see that: 1)
word features only cannot train good classifiers to
identify arguments; 2) it is very easy to recognize
arguments with good enough syntactic parses; 3)
there is a severe performance decline when auto-
matic parses are used. The third observation is a
similar conclusion in English SRL. However this
problem in Chinese is much more serious due to
the state-of-the-art of Chinese parsing.

Information theoretic criteria are popular cri-
teria in variable selection (Guyon and Elisse-
eff, 2003). This paper uses empirical mutual
information between each variable and the tar-
get, I(X, Y ) =

∑
x∈X,y∈Y p(x, y) log p(x,y)

p(x)p(y) , to
roughly rank the importance of features. Table 3
shows the ten most useful features in AI. We can
see that the most important features all based on
full parsing information. Nine of these top 10 use-
ful features are our new features.

Rank Feature Rank Feature
1 wv cct 2 ‡ wh+wv+Position
3 htr-w 4 htr-p
5 path 6 ‡ wh+wv

7 cpath 8 cct
9 path+wv 10 lrw-p

Table 3: Top 10 useful features for AI. ‡ means
word features.

4.3.2 The Effect of Parsing in SRC

The second block in Table 2 summarizes the SRC
performance with gold argument boundaries. Line
5 is the accuracy when word features are used;
Line 6 is the accuracy when additional syntactic
features are added; The last row is the accuracy
when syntactic features used are extracted from
automatic parses (Bikel+Gold). We can see that
different from AI, word features only can train
reasonable good semantic classifiers. The com-
parison between Line 5 and 7 suggests that with
parsing errors, automatic parsed syntactic features
cause noise to the semantic role classifiers.

4.4 Why Word Features Are Effective for
SRC?

Rank Feature Rank Feature
1 ‡frame+wh+wv 2 ‡wh+wv+position
3 ‡wh+wv 4 wv+cct
5 lrw-p 6 †wi+wj

7 lrw-c 8 ‡wh+Postion
9 †frame+wv 10 htr-p

Table 4: Top 10 useful features for SRC.

Table 4 shows the ten most useful features in
SRC. We can see that two of these ten features
are word features (denoted by †). Namely, word
features play a more important role in SRC than
in AI. Though the other eight features are based
on full parsing, four of them (denoted by ‡) use
the head word which can be well approximated
by word features, according to some language spe-
cific properties. The head rules described in (Sun
and Jurafsky, 2004) are very popular in Chinese
parsing research, such as in (Duan et al., 2007;
Zhang and Clark, 2008). From these head rules,
we can see that head words of most phrases in
Chinese are located at the first or the last position.
We implement these rules on Chinese Tree Bank
and find that 84.12% 5 nodes realize their heads as
either their first or last word. Head position sug-
gests that boundary words are good approximation
of head word features. If head words have good
approximation word features, then it is not strange
that the four features denoted by ‡ can be effec-
tively represented by word features. Similar with
feature effect in AI, most of most useful features
in SRC are our new features.

5This statistics excludes all empty categories in CTB.
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5 Conclusion

This paper proposes an additional set of features
to improve Chinese SRL. These new features yield
a significant improvement over the best published
performance. We further analyze the effect of
parsing in Chinese SRL, and linguistically explain
some phenomena. We found that (1) full syntactic
information playes an essential role only in AI and
that (2) due to the head word position distribution,
SRC is easy to resolve in Chinese SRL.
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Abstract

This work deals with the application of
confidence measures within an interactive-
predictive machine translation system in
order to reduce human effort. If a small
loss in translation quality can be tolerated
for the sake of efficiency, user effort can
be saved by interactively translating only
those initial translations which the confi-
dence measure classifies as incorrect. We
apply confidence estimation as a way to
achieve a balance between user effort sav-
ings and final translation error. Empiri-
cal results show that our proposal allows
to obtain almost perfect translations while
significantly reducing user effort.

1 Introduction

In Statistical Machine Translation(SMT), the
translation is modelled as a decission process. For
a given source stringfJ

1 = f1 . . . fj . . . fJ , we
seek for the target stringeI

1 = e1 . . . ei . . . eI

which maximises posterior probability:

êÎ
1 = argmax

I,eI

1

Pr(eI
1|f

J
1 ) . (1)

Within the Interactive-predictive Machine
Translation (IMT) framework, a state-of-the-art
SMT system is employed in the following way:
For a given source sentence, the SMT system
fully automatically generates an initial translation.
A human translator checks this translation from
left to right, correcting the first error. The SMT
system then proposes a new extension, taking the
correct prefixei

1 = e1 . . . ei into account. These
steps are repeated until the whole input sentence
has been correctly translated. In the resulting
decision rule, we maximise over all possible
extensionseI

i+1 of ei
1:

êÎ
i+1 = argmax

I,eI

i+1

Pr(eI
i+1|e

i
1, f

J
1 ) . (2)

An implementation of the IMT famework was
performed in the TransType project (Foster et al.,
1997; Langlais et al., 2002) and further improved
within the TransType2 project (Esteban et al.,
2004; Barrachina et al., 2009).

IMT aims at reducing the effort and increas-
ing the productivity of translators, while preserv-
ing high-quality translation. In this work, we inte-
grateConfidence Measures(CMs) within the IMT
framework to further reduce the user effort. As
will be shown, our proposal allows to balance the
ratio between user effort and final translation error.

1.1 Confidence Measures

Confidence estimation have been extensively stud-
ied for speech recognition. Only recently have re-
searchers started to investigate CMs for MT (Gan-
drabur and Foster, 2003; Blatz et al., 2004; Ueffing
and Ney, 2007).

Different TransType-style MT systems use con-
fidence information to improve translation predic-
tion accuracy (Gandrabur and Foster, 2003; Ueff-
ing and Ney, 2005). In this work, we propose a fo-
cus shift in which CMs are used to modify the in-
teraction between the user and the system instead
of modify the IMT translation predictions.

To compute CMs we have to select suitable con-
fidence features and define a binary classifier. Typ-
ically, the classification is carried out depending
on whether the confidence value exceeds a given
threshold or not.

2 IMT with Sentence CMs

In the conventional IMT scenario a human trans-
lator and a SMT system collaborate in order to
obtain the translation the user has in mind. Once
the user has interactively translated the source sen-
tences, the output translations are error-free. We
propose an alternative scenario where not all the
source sentences are interactively translated by the
user. Specifically, only those source sentences
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whose initial fully automatic translation are incor-
rect, according to some quality criterion, are in-
teractively translated. We propose to use CMs as
the quality criterion to classify those initial trans-
lations.

Our approach implies a modification of the
user-machine interaction protocol. For a given
source sentence, the SMT system generates an ini-
tial translation. Then, if the CM classifies this
translation as correct, we output it as our final
translation. On the contrary, if the initial trans-
lation is classified as incorrect, we perform a con-
ventional IMT procedure, validating correct pre-
fixes and generating new suffixes, until the sen-
tence that the user has in mind is reached.

In our scenario, we allow the final translations
to be different from the ones the user has in mind.
This implies that the output may contain errors.
If a small loss in translation can be tolerated for
the sake of efficiency, user effort can be saved by
interactively translating only those sentences that
the CMs classify as incorrect.

It is worth of notice that our proposal can be
seen as a generalisation of the conventional IMT
approach. Varying the value of the CM classifi-
cation threshold, we can range from a fully auto-
matic SMT system where all sentences are clas-
sified as correct to a conventional IMT system
where all sentences are classified as incorrect.

2.1 Selecting a CM for IMT

We compute sentence CMs by combining the
scores given by a word CM based on the IBM
model 1 (Brown et al., 1993), similar to the one
described in (Blatz et al., 2004). We modified this
word CM by replacing theaverageby the max-
imal lexicon probability, because the average is
dominated by this maximum (Ueffing and Ney,
2005). We choose this word CM because it can be
calculated very fast during search, which is cru-
cial given the time constraints of the IMT sys-
tems. Moreover, its performance is similar to that
of other word CMs as results presented in (Blatz
et al., 2003; Blatz et al., 2004) show. The word
confidence value of wordei, cw(ei), is given by

cw(ei) = max
0≤j≤J

p(ei|fj) , (3)

wherep(ei|fj) is the IBM model 1 lexicon proba-
bility, andf0 is the empty source word.

From this word CM, we compute two sentence
CMs which differ in the way the word confidence

Spanish English

Tr
ai

n Sentences 214.5K
Running words 5.8M 5.2M
Vocabulary 97.4K 83.7K

D
ev

. Sentences 400
Running words 11.5K 10.1K
Perplexity (trigrams) 46.1 59.4

Te
st

Sentences 800
Running words 22.6K 19.9K
Perplexity (trigrams) 45.2 60.8

Table 1: Statistics of the Spanish–English EU cor-
pora. K and M denote thousands and millions of
elements respectively.

scorescw(ei) are combined:

MEAN CM ( cM (eI
1)) is computed as the geo-

metric mean of the confidence scores of the
words in the sentence:

cM (eI
1) = I

√

√

√

√

I
∏

i=1

cw(ei) . (4)

RATIO CM ( cR(eI
1)) is computed as the percent-

age of words classified as correct in the sen-
tence. A word is classified as correct if
its confidence exceeds a word classification
thresholdτw.

cR(eI
1) =

|{ei / cw(ei) > τw}|

I
(5)

After computing the confidence value, each sen-
tence is classified as either correct or incorrect, de-
pending on whether its confidence value exceeds
or not a sentence clasiffication thresholdτs. If
τs = 0.0 then all the sentences will be classified
as correct whereas ifτs = 1.0 all the sentences
will be classified as incorrect.

3 Experimentation

The aim of the experimentation was to study the
possibly trade-off between saved user effort and
translation error obtained when using sentence
CMs within the IMT framework.

3.1 System evaluation

In this paper, we report our results as measured
by Word Stroke Ratio(WSR) (Barrachina et al.,
2009). WSR is used in the context of IMT to mea-
sure the effort required by the user to generate her
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Figure 1: BLEU translation scores versus WSR
for different values of the sentence classification
threshold using the MEAN CM.

translations. WSR is computed as the ratio be-
tween the number of word-strokes a user would
need to achieve the translation she has in mind and
the total number of words in the sentence. In this
context, a word-stroke is interpreted as a single ac-
tion, in which the user types a complete word, and
is assumed to have constant cost.

Additionally, and because our proposal allows
differences between its output and the reference
translation, we will also present translation qual-
ity results in terms ofBiLingual Evaluation Un-
derstudy(BLEU) (Papineni et al., 2002). BLEU
computes a geometric mean of the precision ofn-
grams multiplied by a factor to penalise short sen-
tences.

3.2 Experimental Setup

Our experiments were carried out on the EU cor-
pora (Barrachina et al., 2009). The EU corpora
were extracted from the Bulletin of the European
Union. The EU corpora is composed of sentences
given in three different language pairs. Here, we
will focus on the Spanish–English part of the EU
corpora. The corpus is divided into training, de-
velopment and test sets. The main figures of the
corpus can be seen in Table 1.

As a first step, be built a SMT system to trans-
late from Spanish into English. This was done
by means of the Thot toolkit (Ortiz et al., 2005),
which is a complete system for building phrase-
based SMT models. This toolkit involves the esti-
mation, from the training set, of different statisti-
cal models, which are in turn combined in a log-
linear fashion by adjusting a weight for each of
them by means of the MERT (Och, 2003) proce-
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Figure 2: BLEU translation scores versus WSR
for different values of the sentence classification
threshold using the RATIO CM withτw = 0.4.

dure, optimising the BLEU score on the develop-
ment set.

The IMT system which we have implemented
relies on the use of word graphs (Ueffing et al.,
2002) to efficiently compute the suffix for a given
prefix. A word graph has to be generated for each
sentence to be interactively translated. For this
purpose, we used a multi-stack phrase-based de-
coder which will be distributed in the near future
together with the Thot toolkit. We discarded to
use the state-of-the-art Moses toolkit (Koehn et
al., 2007) because preliminary experiments per-
formed with it revealed that the decoder by Ortiz-
Mart́ınez et al. (2005) performs better in terms of
WSR when used to generate word graphs for their
use in IMT (Sanchis-Trilles et al., 2008). More-
over, the performance difference in regular SMT is
negligible. The decoder was set to only consider
monotonic translation, since in real IMT scenar-
ios considering non-monotonic translation leads to
excessive response time for the user.

Finally, the obtained word graphs were used
within the IMT procedure to produce the refer-
ence translations in the test set, measuring WSR
and BLEU.

3.3 Results

We carried out a series of experiments ranging the
value of the sentence classification thresholdτs,
between0.0 (equivalent to a fully automatic SMT
system) and1.0 (equivalent to a conventional IMT
system), for both the MEAN and RATIO CMs.
For each threshold value, we calculated the effort
of the user in terms of WSR, and the translation
quality of the final output as measured by BLEU.
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src-1 DECLARACIÓN (No 17) relativa al derecho de acceso a la información
ref-1 DECLARATION (No 17) on the right of access to information
tra-1 DECLARATION (No 17) on the right of access to information

src-2 Conclusiones del Consejo sobre el comercio electrónico y los impuestos indirectos.
ref-2 Council conclusions on electronic commerce and indirect taxation.
tra-2 Council conclusions on e-commerce and indirect taxation.

src-3 participacíon de los páıses candidatos en los programas comunitarios.
ref-3 participation of the applicant countries in Community programmes.
tra-3 countries’ involvement in Community programmes.

Example 1: Examples of initial fully automatically generated sentences classified as correct by the CMs.

Figure 1 shows WSR (WSR IMT-CM) and
BLEU (BLEU IMT-CM) scores obtained varying
τs for the MEAN CM. Additionally, we also show
the BLEU score (BLEU SMT) obtained by a fully
automatic SMT system as translation quality base-
line, and the WSR score (WSR IMT) obtained by
a conventional IMT system as user effort baseline.
This figure shows a continuous transition between
the fully automatic SMT system and the conven-
tional IMT system. This transition occurs when
rangingτs between0.0 and0.6. This is an unde-
sired effect, since for almost a half of the possible
values forτs there is no change in the behaviour
of our proposed IMT system.

The RATIO CM confidence values depend on
a word classification thresholdτw. We have car-
ried out experimentation rangingτw between0.0
and1.0 and found that this value can be used to
solve the above mentioned undesired effect for
the MEAN CM. Specifically, varying the value of
τw we can stretch the interval in which the tran-
sition between the fully automatic SMT system
and the conventional IMT system is produced, al-
lowing us to obtain smother transitions. Figure 2
shows WSR and BLEU scores for different val-
ues of the sentence classification thresholdτs us-
ing τw = 0.4. We show results only for this value
of τw due to paper space limitations and because
τw = 0.4 produced the smoothest transition. Ac-
cording to Figure 2, using a sentence classification
threshold value of0.6 we obtain a WSR reduction
of 20% relative and an almost perfect translation
quality of87 BLEU points.

It is worth of notice that the final translations
are compared with only one reference, therefore,
the reported translation quality scores are clearly
pessimistic. Better results are expected using a
multi-reference corpus. Example 1 shows the
source sentence (src), the reference translation

(ref) and the final translation (tra) for three of the
initial fully automatically generated translations
that were classified as correct by our CMs, and
thus, were not interactively translated by the user.
The first translation (tra-1) is identical to the corre-
sponding reference translation (ref-1). The second
translation (tra-2) corresponds to a correct trans-
lation of the source sentence (src-2) that is differ-
ent from the corresponding reference (ref-2). Fi-
nally, the third translation (tra-3) is an example of
a slightly incorrect translation.

4 Concluding Remarks

In this paper, we have presented a novel proposal
that introduces sentence CMs into an IMT system
to reduce user effort. Our proposal entails a mod-
ification of the user-machine interaction protocol
that allows to achieve a balance between the user
effort and the final translation error.

We have carried out experimentation using two
different sentence CMs. Varying the value of
the sentence classification threshold, we can range
from a fully automatic SMT system to a conven-
tional IMT system. Empirical results show that
our proposal allows to obtain almost perfect trans-
lations while significantly reducing user effort.

Future research aims at the investigation of im-
proved CMs to be integrated in our IMT system.
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Abstract

We study the challenges raised by Ara-
bic verb and subject detection and re-
ordering in Statistical Machine Transla-
tion (SMT). We show that post-verbal sub-
ject (VS) constructions are hard to trans-
late because they have highly ambiguous
reordering patterns when translated to En-
glish. In addition, implementing reorder-
ing is difficult because the boundaries of
VS constructions are hard to detect accu-
rately, even with a state-of-the-art Arabic
dependency parser. We therefore propose
to reorder VS constructions into SV or-
der for SMT word alignment only. This
strategy significantly improves BLEU and
TER scores, even on a strong large-scale
baseline and despite noisy parses.

1 Introduction

Modern Standard Arabic (MSA) is a morpho-
syntactically complex language, with different
phenomena from English, a fact that raises many
interesting issues for natural language processing
and Arabic-to-English statistical machine transla-
tion (SMT). While comprehensive Arabic prepro-
cessing schemes have been widely adopted for
handling Arabic morphology in SMT (e.g., Sa-
dat and Habash (2006), Zollmann et al. (2006),
Lee (2004)), syntactic issues have not received
as much attention by comparison (Green et
al. (2009), Crego and Habash (2008), Habash
(2007)). Arabic verbal constructions are par-
ticularly challenging since subjects can occur in
pre-verbal (SV), post-verbal (VS) or pro-dropped
(“null subject”) constructions. As a result, training
data for learning verbal construction translations
is split between the different constructions and
their patterns; and complex reordering schemas
are needed in order to translate them into primarily

pre-verbal subject languages (SVO) such as En-
glish.

These issues are particularly problematic in
phrase-based SMT (Koehn et al., 2003). Standard
phrase-based SMT systems memorize phrasal
translation of verb and subject constructions as ob-
served in the training bitext. They do not cap-
ture any generalizations between occurrences in
VS and SV orders, even for the same verbs. In
addition, their distance-based reordering models
are not well suited to handling complex reorder-
ing operations which can include long distance
dependencies, and may vary by context. Despite
these limitations, phrase-based SMT systems have
achieved competitive results in Arabic-to-English
benchmark evaluations.1 However, error analysis
shows that verbs are still often dropped or incor-
rectly translated, and subjects are split or garbled
in translation. This suggests that better syntactic
modeling should further improve SMT.

We attempt to get a better understanding of
translation patterns for Arabic verb constructions,
particularly VS constructions, by studying their
occurrence and reordering patterns in a hand-
aligned Arabic-English parallel treebank. Our
analysis shows that VS reordering rules are not
straightforward and that SMT should therefore
benefit from direct modeling of Arabic verb sub-
ject translation. In order to detect VS construc-
tions, we use our state-of-the-art Arabic depen-
dency parser, which is essentially the CATIBEX

baseline in our subsequent parsing work in Mar-
ton et al. (2010), and is further described there. We
show that VS subjects and their exact boundaries
are hard to identify accurately. Given the noise
in VS detection, existing strategies for source-side
reordering (e.g., Xia and McCord (2004), Collins
et al. (2005), Wang et al. (2007)) or using de-

1http://www.itl.nist.gov/iad/
mig/tests/mt/2009/ResultsRelease/
currentArabic.html
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Table 1: How are Arabic SV and VS translated in
the manually word-aligned Arabic-English paral-
lel treebank? We check whether V and S are trans-
lated in a “monotone” or “inverted” order for all
VS and SV constructions. “Overlap” represents
instances where translations of the Arabic verb
and subject have some English words in common,
and are not monotone nor inverted.

gold reordering all verbs %
SV monotone 2588 98.2
SV inverted 15 0.5
SV overlap 35 1.3
SV total 2638 100
VS monotone 1700 27.3
VS inverted 4033 64.7
VS overlap 502 8.0
VS total 6235 100

pendency parses as cohesion constraints in decod-
ing (e.g., Cherry (2008); Bach et al. (2009)) are
not effective at this stage. While these approaches
have been successful for language pairs such as
German-English for which syntactic parsers are
more developed and relevant reordering patterns
might be less ambiguous, their impact potential on
Arabic-English translation is still unclear.

In this work, we focus on VS constructions
only, and propose a new strategy in order to bene-
fit from their noisy detection: for the word align-
ment stage only, we reorder phrases detected as
VS constructions into an SV order. Then, for
phrase extraction, weight optimization and decod-
ing, we use the original (non-reordered) text. This
approach significantly improves both BLEU and
TER on top of strong medium and large-scale
phrase-based SMT baselines.

2 VS reordering in gold Arabic-English
translation

We use the manually word-aligned parallel
Arabic-English Treebank (LDC2009E82) to study
how Arabic VS constructions are translated into
English by humans. Given the gold Arabic syn-
tactic parses and the manual Arabic-English word
alignments, we can determine the gold reorder-
ings for SV and VS constructions. We extract VS
representations from the gold constituent parses
by deterministic conversion to a simplified depen-
dency structure, CATiB (Habash and Roth, 2009)

(see Section 3). We then check whether the En-
glish translations of the Arabic verb and the Ara-
bic subject occur in the same order as in Arabic
(monotone) or not (inverted). Table 1 summa-
rizes the reordering patterns for each category. As
expected, 98% of Arabic SV are translated in a
monotone order in English. For VS constructions,
the picture is surprisingly more complex. The
monotone VS translations are mostly explained
by changes to passive voice or to non-verbal con-
structions (such as nominalization) in the English
translation.

In addition, Table 1 shows that verb subjects oc-
cur more frequently in VS order (70%) than in SV
order (30%). These numbers do not include pro-
dropped (“null subject”) constructions.

3 Arabic VS construction detection

Even if the SMT system had perfect knowledge
of VS reordering, it has to accurately detect VS
constructions and their spans in order to apply
the reordering correctly. For that purpose, we
use our state-of-ther-art parsing model, which is
essentially the CATIBEX baseline model in Mar-
ton et al. (2010), and whose details we summa-
rize next. We train a syntactic dependency parser,
MaltParser v1.3 with the Nivre “eager” algorithm
(Nivre, 2003; Nivre et al., 2006; Nivre, 2008) on
the training portion of the Penn Arabic Treebank
part 3 v3.1, hereafter PATB3 (Maamouri et al.,
2008; Maamouri et al., 2009). The training / de-
velopment split is the same as in Zitouni et al.
(2006). We convert the PATB3 representation into
the succinct CATiB format, with 8 dependency
relations and 6 POS tags, which we then extend
to a set of 44 tags using regular expressions of
the basic POS and the normalized surface word
form, similarly to Marton et al. (2010), following
Habash and Roth (2009). We normalize Alif Maq-
sura to Ya, and Hamzated Alifs to bare Alif, as is
commonly done in Arabic SMT.

For analysis purposes, we evaluate our subject
and verb detection on the development part of
PATB3 using gold POS tags. There are various
ways to go about it. We argue that combined de-
tection statistics of constructions of verbs and their
subjects (VATS), for which we achieve an F-score
of 74%, are more telling for the task at hand.2

2We divert from the CATiB representation in that a non-
matrix subject of a pseudo verb (An and her sisters) is treated
as a subject of the verb that is under the same pseudo verb.
This treatment of said subjects is comparable to the PATB’s.
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These scores take into account the spans of both
the subject and the specific verb it belongs to, and
potentially reorder with. We also provide statistics
of VS detection separately (F-score 63%), since
we only handle VS here. This low score can be
explained by the difficulty in detecting the post-
verbal subject’s end boundary, and the correct verb
the subject belongs to. The SV construction scores
are higher, presumably since the pre-verbal sub-
ject’s end is bounded by the verb it belongs to. See
Table 2.

Although not directly comparable, our VS
scores are similar to those of Green et al. (2009).
Their VS detection technique with conditional
random fields (CRF) is different from ours in by-
passing full syntactic parsing, and in only detect-
ing maximal (non-nested) subjects of verb-initial
clauses. Additionally, they use a different train-
ing / test split of the PATB data (parts 1, 2 and 3).
They report 65.9% precision and 61.3% F-score.
Note that a closer score comparison should take
into account their reported verb detection accuracy
of 98.1%.

Table 2: Precision, Recall and F-scores for con-
structions of Arabic verbs and their subjects, eval-
uated on our development part of PATB3.

construction P R F
VATS (verbs & their subj.) 73.84 74.37 74.11
VS 66.62 59.41 62.81
SV 86.75 61.07 71.68
VNS (verbs w/ null subj.) 76.32 92.04 83.45
verbal subj. exc. null subj. 72.46 60.18 65.75
verbal subj. inc. null subj. 73.97 74.50 74.23
verbs with non-null subj. 91.94 76.17 83.31
SV or VS 72.19 59.95 65.50

4 Reordering Arabic VS for SMT word
alignment

Based on these analyses, we propose a new
method to help phrase-based SMT systems deal
with Arabic-English word order differences due to
VS constructions. As in related work on syntactic
reordering by preprocessing, our method attempts
to make Arabic and English word order closer to
each other by reordering Arabic VS constructions
into SV. However, unlike in previous work, the re-
ordered Arabic sentences are used only for word
alignment. Phrase translation extraction and de-

coding are performed on the original Arabic word
order. Preliminary experiments on an earlier ver-
sion of the large-scale SMT system described in
Section 6 showed that forcing reordering of all
VS constructions at training and test time does
not have a consistent impact on translation qual-
ity: for instance, on the NIST MT08-NW test set,
TER slightly improved from 44.34 to 44.03, while
BLEU score decreased from 49.21 to 49.09.

Limiting reordering to alignment allows the sys-
tem to be more robust and recover from incorrect
changes introduced either by incorrect VS detec-
tion, or by incorrect reordering of a correctly de-
tected VS. Given a parallel sentence (a, e), we
proceed as follows:

1. automatically tag VS constructions in a

2. generate new sentence a′ = reorder(a) by
reordering Arabic VS into SV

3. get word alignment wa′ on new sentence pair
(a′, e)

4. using mapping from a to a′, get correspond-
ing word alignment wa = unreorder(wa′)
for the original sentence pair (a, e)

5 Experiment set-up

We use the open-source Moses toolkit (Koehn et
al., 2007) to build two phrase-based SMT systems
trained on two different data conditions:

• medium-scale the bitext consists of 12M
words on the Arabic side (LDC2007E103).
The language model is trained on the English
side of the large bitext.

• large-scale the bitext consists of several
newswire LDC corpora, and has 64M words
on the Arabic side. The language model is
trained on the English side of the bitext aug-
mented with Gigaword data.

Except from this difference in training data, the
two systems are identical. They use a standard
phrase-based architecture. The parallel corpus is
word-aligned using the GIZA++ (Och and Ney,
2003), which sequentially learns word alignments
for the IBM1, HMM, IBM3 and IBM4 models.
The resulting alignments in both translation di-
rections are intersected and augmented using the
grow-diag-final-and heuristic (Koehn et al., 2007).
Phrase translations of up to 10 words are extracted
in the Moses phrase-table. We apply statistical
significance tests to prune unreliable phrase-pairs

180



and score remaining phrase-table entries (Chen et
al., 2009). We use a 5-gram language model with
modified Kneser-Ney smoothing. Feature weights
are tuned to maximize BLEU on the NIST MT06
test set.

For all systems, the English data is tokenized
using simple punctuation-based rules. The Arabic
side is segmented according to the Arabic Tree-
bank (PATB3) tokenization scheme (Maamouri et
al., 2009) using the MADA+TOKAN morpholog-
ical analyzer and tokenizer (Habash and Rambow,
2005). MADA-produced Arabic lemmas are used
for word alignment.

6 Results

We evaluate translation quality using both BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006) scores on three standard evaluation test
sets from the NIST evaluations, which yield more
than 4400 test sentences with 4 reference transla-
tions. On this large data set, our VS reordering
method remarkably yields statistically significant
improvements in BLEU and TER on the medium
and large SMT systems at the 99% confidence
level (Table 3).

Results per test set are reported in Table 4. TER
scores are improved in all 10 test configurations,
and BLEU scores are improved in 8 out of the 10
configurations. Results on the MT08 test set show
that improvements are obtained both on newswire
and on web text as measured by TER (but not
BLEU score on the web section.) It is worth noting
that consistent improvements are obtained even on
the large-scale system, and that both baselines are
full-fledged systems, which include lexicalized re-
ordering and large 5-gram language models.

Analysis shows that our VS reordering tech-
nique improves word alignment coverage (yield-
ing 48k and 330k additional links on the medium
and large scale systems respectively). This results
in larger phrase-tables which improve translation
quality.

7 Related work

To the best of our knowledge, the only other ap-
proach to detecting and using Arabic verb-subject
constructions for SMT is that of Green et al.
(2009) (see Section 3), which failed to improve
Arabic-English SMT. In contrast with our reorder-
ing approach, they integrate subject span informa-
tion as a log-linear model feature which encour-

Table 3: Evaluation on all test sets: on the total
of 4432 test sentences, improvements are statisti-
cally significant at the 99% level using bootstrap
resampling (Koehn, 2004)

system BLEU r4n4 (%) TER (%)
medium baseline 44.35 48.34
+ VS reordering 44.65 (+0.30) 47.78 (-0.56)
large baseline 51.45 42.45

+ VS reordering 51.70 (+0.25) 42.21 (-0.24)

ages a phrase-based SMT decoder to use phrasal
translations that do not break subject boundaries.

Syntactically motivated reordering for phrase-
based SMT has been more successful on language
pairs other than Arabic-English, perhaps due to
more accurate parsers and less ambiguous reorder-
ing patterns than for Arabic VS. For instance,
Collins et al. (2005) apply six manually defined
transformations to German parse trees which im-
prove German-English translation by 0.4 BLEU
on the Europarl task. Xia and McCord (2004)
learn reordering rules for French to English trans-
lations, which arguably presents less syntactic dis-
tortion than Arabic-English. Zhang et al. (2007)
limit reordering to decoding for Chinese-English
SMT using a lattice representation. Cherry (2008)
uses dependency parses as cohesion constraints in
decoding for French-English SMT.

For Arabic-English phrase-based SMT, the im-
pact of syntactic reordering as preprocessing is
less clear. Habash (2007) proposes to learn syntac-
tic reordering rules targeting Arabic-English word
order differences and integrates them as deter-
ministic preprocessing. He reports improvements
in BLEU compared to phrase-based SMT limited
to monotonic decoding, but these improvements
do not hold with distortion. Instead of apply-
ing reordering rules deterministically, Crego and
Habash (2008) use a lattice input to represent alter-
nate word orders which improves a ngram-based
SMT system. But they do not model VS construc-
tions explicitly.

Most previous syntax-aware word alignment
models were specifically designed for syntax-
based SMT systems. These models are often
bootstrapped from existing word alignments, and
could therefore benefit from our VS reordering ap-
proach. For instance, Fossum et al. (2008) report
improvements ranging from 0.1 to 0.5 BLEU on
Arabic translation by learning to delete alignment
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Table 4: VS reordering improves BLEU and TER scores in almost all test conditions on 5 test sets, 2
metrics, and 2 MT systems

BLEU r4n4 (%)
test set MT03 MT04 MT05 MT08nw MT08wb

medium baseline 45.95 44.94 48.05 44.86 32.05
+ VS reordering 46.33 (+0.38) 45.03 (+0.09) 48.69 (+0.64) 45.06 (+0.20) 31.96 (-0.09)
large baseline 52.3 52.45 54.66 52.60 39.22

+ VS reordering 52.63 (+0.33) 52.34 (-0.11) 55.29 (+0.63) 52.85 (+0.25) 39.87 (+0.65)
TER (%)

test set MT03 MT04 MT05 MT08nw MT08wb
medium baseline 48.77 46.45 45.00 47.74 58.02
+ VS reordering 48.31 (-0.46) 46.10 (-0.35) 44.29 (-0.71) 47.11 (-0.63) 57.30 (-0.72)
large baseline 43.33 40.42 39.15 41.81 52.05

+ VS reordering 42.95 (-0.38) 40.40 (-0.02) 38.75 (-0.40) 41.51 (-0.30) 51.86 (-0.19)

links if they degrade their syntax-based translation
system. Departing from commonly-used align-
ment models, Hermjakob (2009) aligns Arabic and
English content words using pointwise mutual in-
formation, and in this process indirectly uses En-
glish sentences reordered into VS order to collect
cooccurrence counts. The approach outperforms
GIZA++ on a small-scale translation task, but the
impact of reordering alone is not evaluated.

8 Conclusion and future work

We presented a novel method for improving over-
all SMT quality using a noisy syntactic parser: we
use these parses to reorder VS constructions into
SV for word alignment only. This approach in-
creases word alignment coverage and significantly
improves BLEU and TER scores on two strong
SMT baselines.

In subsequent work, we show that matrix (main-
clause) VS constructions are reordered much more
frequently than non-matrix VS, and that limit-
ing reordering to matrix VS constructions for
word alignment further improves translation qual-
ity (Carpuat et al., 2010). In the future, we plan to
improve robustness to parsing errors by using not
just one, but multiple subject boundary hypothe-
ses. We will also investigate the integration of VS
reordering in SMT decoding.
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Abstract

We propose a corpus-based probabilis-
tic framework to extract hidden common
syntax across languages from non-parallel
multilingual corpora in an unsupervised
fashion. For this purpose, we assume a
generative model for multilingual corpora,
where each sentence is generated from a
language dependent probabilistic context-
free grammar (PCFG), and these PCFGs
are generated from a prior grammar that
is common across languages. We also de-
velop a variational method for efficient in-
ference. Experiments on a non-parallel
multilingual corpus of eleven languages
demonstrate the feasibility of the proposed
method.

1 Introduction

Languages share certain common proper-
ties (Pinker, 1994). For example, the word order
in most European languages is subject-verb-object
(SVO), and some words with similar forms are
used with similar meanings in different languages.
The reasons for these common properties can be
attributed to: 1) a common ancestor language,
2) borrowing from nearby languages, and 3) the
innate abilities of humans (Chomsky, 1965).

We assume hidden commonalities in syntax
across languages, and try to extract a common
grammar from non-parallel multilingual corpora.
For this purpose, we propose a generative model
for multilingual grammars that is learned in an
unsupervised fashion. There are some computa-
tional models for capturing commonalities at the
phoneme and word level (Oakes, 2000; Bouchard-
Côté et al., 2008), but, as far as we know, no at-
tempt has been made to extract commonalities in
syntax level from non-parallel and non-annotated
multilingual corpora.

In our scenario, we use probabilistic context-
free grammars (PCFGs) as our monolingual gram-
mar model. We assume that a PCFG for each
language is generated from a general model that
are common across languages, and each sentence
in multilingual corpora is generated from the lan-
guage dependent PCFG. The inference of the gen-
eral model as well as the multilingual PCFGs can
be performed by using a variational method for
efficiency. Our approach is based on a Bayesian
multitask learning framework (Yu et al., 2005;
Daumé III, 2009). Hierarchical Bayesian model-
ing provides a natural way of obtaining a joint reg-
ularization for individual models by assuming that
the model parameters are drawn from a common
prior distribution (Yu et al., 2005).

2 Related work

The unsupervised grammar induction task has
been extensively studied (Carroll and Charniak,
1992; Stolcke and Omohundro, 1994; Klein and
Manning, 2002; Klein and Manning, 2004; Liang
et al., 2007). Recently, models have been pro-
posed that outperform PCFG in the grammar in-
duction task (Klein and Manning, 2002; Klein and
Manning, 2004). We used PCFG as a first step
for capturing commonalities in syntax across lan-
guages because of its simplicity. The proposed
framework can be used for probabilistic grammar
models other than PCFG.

Grammar induction using bilingual parallel cor-
pora has been studied mainly in machine transla-
tion research (Wu, 1997; Melamed, 2003; Eisner,
2003; Chiang, 2005; Blunsom et al., 2009; Sny-
der et al., 2009). These methods require sentence-
aligned parallel data, which can be costly to obtain
and difficult to scale to many languages. On the
other hand, our model does not require sentences
to be aligned. Moreover, since the complexity of
our model increases linearly with the number of
languages, our model is easily applicable to cor-
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pora of more than two languages, as we will show
in the experiments. To our knowledge, the only
grammar induction work on non-parallel corpora
is (Cohen and Smith, 2009), but their method does
not model a common grammar, and requires prior
information such as part-of-speech tags. In con-
trast, our method does not require any such prior
information.

3 Proposed Method

3.1 Model
Let X = {X l}l∈L be a non-parallel and non-
annotated multilingual corpus, where X l is a set
of sentences in language l, and L is a set of lan-
guages. The task is to learn multilingual PCFGs
G = {Gl}l∈L and a common grammar that gen-
erates these PCFGs. Here, Gl = (K,W l,Φl)
represents a PCFG of language l, where K is a
set of nonterminals, W l is a set of terminals, and
Φl is a set of rule probabilities. Note that a set of
nonterminals K is shared among languages, but
a set of terminals W l and rule probabilities Φl

are specific to the language. For simplicity, we
consider Chomsky normal form grammars, which
have two types of rules: emissions rewrite a non-
terminal as a terminal A → w, and binary pro-
ductions rewrite a nonterminal as two nontermi-
nalsA→ BC, whereA,B,C ∈K and w ∈W l.

The rule probabilities for each nonterminal
A of PCFG Gl in language l consist of: 1)
θAl = {θlAt}t∈{0,1}, where θlA0 and θlA1 repre-
sent probabilities of choosing the emission rule
and the binary production rule, respectively, 2)
φlA = {φlABC}B,C∈K , where φlABC repre-
sents the probability of nonterminal production
A → BC, and 3) ψlA = {ψlAw}w∈W l

, where
ψlAw represents the probability of terminal emis-
sion A→ w. Note that θlA0 + θlA1 = 1, θlAt ≥ 0,∑

B,C φlABC = 1, φlABC ≥ 0,
∑

w ψlAw = 1,
and ψlAw ≥ 0. In the proposed model, multino-
mial parameters θlA and φlA are generated from
Dirichlet distributions that are common across lan-
guages: θlA ∼ Dir(αθA) and φlA ∼ Dir(αφA),
since we assume that languages share a common
syntax structure. αθA and αφA represent the param-
eters of a common grammar. We use the Dirichlet
prior because it is the conjugate prior for the multi-
nomial distribution. In summary, the proposed
model assumes the following generative process
for a multilingual corpus,

1. For each nonterminal A ∈K :

α

αφ
Aa,b

a,b

|L|

θ
Aα lA

lA

|K|

φ φ

θ

ψ
lA

|L|

z 1

z 2 z 3

x2 x3

φ 

ψ 

θ θ

Figure 1: Graphical model.

(a) For each rule type t ∈ {0, 1}:
i. Draw common rule type parameters

αθAt ∼ Gam(aθ, bθ)

(b) For each nonterminal pair (B, C):
i. Draw common production parameters

αφABC ∼ Gam(aφ, bφ)

2. For each language l ∈ L:

(a) For each nonterminal A ∈K :
i. Draw rule type parameters

θlA ∼ Dir(αθA)
ii. Draw binary production parameters
φlA ∼ Dir(αφA)

iii. Draw emission parameters
ψlA ∼ Dir(αψ)

(b) For each node i in the parse tree:
i. Choose rule type

tli ∼ Mult(θlzi)
ii. If tli = 0:

A. Emit terminal
xli ∼ Mult(ψlzi

)
iii. Otherwise:

A. Generate children nonterminals
(zlL(i), zlR(i)) ∼ Mult(φlzi

),

where L(i) and R(i) represent the left and right
children of node i. Figure 1 shows a graphi-
cal model representation of the proposed model,
where the shaded and unshaded nodes indicate ob-
served and latent variables, respectively.

3.2 Inference

The inference of the proposed model can be ef-
ficiently computed using a variational Bayesian
method. We extend the variational method to
the monolingual PCFG learning of Kurihara and
Sato (2004) for multilingual corpora. The goal
is to estimate posterior p(Z,Φ,α|X), where Z
is a set of parse trees, Φ = {Φl}l∈L is a
set of language dependent parameters, Φl =
{θlA,φlA,ψlA}A∈K , and α = {αθA,α

φ
A}A∈K

is a set of common parameters. In the variational
method, posterior p(Z,Φ,α|X) is approximated
by a tractable variational distribution q(Z,Φ,α).
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We use the following variational distribution,

q(Z,Φ,α) =
∏
A

q(αθA)q(αφA)
∏
l,d

q(zld)

×
∏
l,A

q(θlA)q(φlA)q(ψlA), (1)

where we assume that hyperparameters q(αθA) and
q(αφA) are degenerated, or q(α) = δα∗(α), and
infer them by point estimation instead of distribu-
tion estimation. We find an approximate posterior
distribution that minimizes the Kullback-Leibler
divergence from the true posterior. The variational
distribution of the parse tree of the dth sentence in
language l is obtained as follows,

q(zld) ∝
∏

A→BC

(
πθlA1π

φ
lABC

)C(A→BC;zld,l,d)

×
∏
A→w

(
πθlA0π

ψ
lAw

)C(A→w;zld,l,d)
, (2)

where C(r; z, l, d) is the count of rule r that oc-
curs in the dth sentence of language l with parse
tree z. The multinomial weights are calculated as
follows,

πθlAt = exp
(
Eq(θlA)

[
log θlAt

])
, (3)

πφlABC = exp
(
Eq(φlA)

[
log φlABC

])
, (4)

πψlAw = exp
(
Eq(ψlA)

[
logψlAw

])
. (5)

The variational Dirichlet parameters for q(θlA) =
Dir(γθlA), q(φlA) = Dir(γφlA), and q(ψlA) =
Dir(γψlA), are obtained as follows,

γθlAt = αθAt +
∑
d,zld

q(zld)C(A, t; zld, l, d), (6)

γφlABC = αφABC+
∑
d,zld

q(zld)C(A→BC; zld, l, d),

(7)
γψlAw = αψ +

∑
d,zld

q(zld)C(A→ w; zld, l, d),

(8)
where C(A, t; z, l, d) is the count of rule type t
that is selected in nonterminal A in the dth sen-
tence of language l with parse tree z.

The common rule type parameter αθAt that min-
imizes the KL divergence between the true pos-
terior and the approximate posterior can be ob-
tained by using the fixed-point iteration method

described in (Minka, 2000). The update rule is as
follows,

α
θ(new)
At ←

aθ−1+αθAtL
(
Ψ(

∑
t′ α

θ
At′)−Ψ(αθAt)

)
bθ +

∑
l

(
Ψ(

∑
t′ γ

θ
lAt′)−Ψ(γθlAt)

) ,

(9)
where L is the number of languages, and Ψ(x) =
∂ log Γ(x)

∂x is the digamma function. Similarly, the
common production parameter αφABC can be up-
dated as follows,

α
φ(new)
ABC ←

aφ − 1 + αφABCLJABC
bφ +

∑
l J

′
lABC

, (10)

where JABC = Ψ(
∑

B′,C′ α
φ
AB′C′) − Ψ(αφABC),

and J ′lABC = Ψ(
∑

B′,C′ γ
φ
lAB′C′)−Ψ(γφlABC).

Since factored variational distributions depend
on each other, an optimal approximated posterior
can be obtained by updating parameters by (2) -
(10) alternatively until convergence. The updat-
ing of language dependent distributions by (2) -
(8) is also described in (Kurihara and Sato, 2004;
Liang et al., 2007) while the updating of common
grammar parameters by (9) and (10) is new. The
inference can be carried out efficiently using the
inside-outside algorithm based on dynamic pro-
gramming (Lari and Young, 1990).

After the inference, the probability of a com-
mon grammar rule A → BC is calculated by
φ̂A→BC = θ̂1φ̂ABC , where θ̂1 = αθ1/(α

θ
0 + αθ1)

and φ̂ABC = αφABC/
∑

B′,C′ α
φ
AB′C′ represent

the mean values of θl0 and φlABC , respectively.

4 Experimental results

We evaluated our method by employing the Eu-
roParl corpus (Koehn, 2005). The corpus con-
sists of the proceedings of the European Parlia-
ment in eleven western European languages: Dan-
ish (da), German (de), Greek (el), English (en),
Spanish (es), Finnish (fi), French (fr), Italian (it),
Dutch (nl), Portuguese (pt), and Swedish (sv), and
it contains roughly 1,500,000 sentences in each
language. We set the number of nonterminals at
|K| = 20, and omitted sentences with more than
ten words for tractability. We randomly sampled
100,000 sentences for each language, and ana-
lyzed them using our method. It should be noted
that our random samples are not sentence-aligned.

Figure 2 shows the most probable terminals of
emission for each language and nonterminal with
a high probability of selecting the emission rule.

186



2: verb and auxiliary verb (V)

5: noun (N)

7: subject (SBJ)

9: preposition (PR)

11: punctuation (.)

13: determiner (DT)

Figure 2: Probable terminals of emission for each
language and nonterminal.

0→ 16 11 (R→ S . ) 0.11
16→ 7 6 (S→ SBJ VP) 0.06
6→ 2 12 (VP→ V NP) 0.04
12→ 13 5 (NP→ DT N) 0.19
15→ 17 19 (NP→ NP N) 0.07
17→ 5 9 (NP→ N PR) 0.07
15→ 13 5 (NP→ DT N) 0.06

Figure 3: Examples of inferred common gram-
mar rules in eleven languages, and their proba-
bilities. Hand-provided annotations have the fol-
lowing meanings, R: root, S: sentence, NP: noun
phrase, VP: verb phrase, and others appear in Fig-
ure 2.

We named nonterminals by using grammatical cat-
egories after the inference. We can see that words
in the same grammatical category clustered across
languages as well as within a language. Fig-
ure 3 shows examples of inferred common gram-
mar rules with high probabilities. Grammar rules
that seem to be common to European languages
have been extracted.

5 Discussion

We have proposed a Bayesian hierarchical PCFG
model for capturing commonalities at the syntax
level for non-parallel multilingual corpora. Al-
though our results have been encouraging, a num-
ber of directions remain in which we must extend
our approach. First, we need to evaluate our model
quantitatively using corpora with a greater diver-
sity of languages. Measurement examples include
the perplexity, and machine translation score. Sec-
ond, we need to improve our model. For ex-
ample, we can infer the number of nonterminals
with a nonparametric Bayesian model (Liang et
al., 2007), infer the model more robustly based
on a Markov chain Monte Carlo inference (John-
son et al., 2007), and use probabilistic grammar
models other than PCFGs. In our model, all the
multilingual grammars are generated from a gen-
eral model. We can extend it hierarchically using
the coalescent (Kingman, 1982). That model may
help to infer an evolutionary tree of languages in
terms of grammatical structure without the etymo-
logical information that is generally used (Gray
and Atkinson, 2003). Finally, the proposed ap-
proach may help to indicate the presence of a uni-
versal grammar (Chomsky, 1965), or to find it.
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Abstract

Nivre’s method was improved by en-
hancing deterministic dependency parsing
through application of a tree-based model.
The model considers all words necessary
for selection of parsing actions by includ-
ing words in the form of trees. It chooses
the most probable head candidate from
among the trees and uses this candidate to
select a parsing action.

In an evaluation experiment using the
Penn Treebank (WSJ section), the pro-
posed model achieved higher accuracy
than did previous deterministic models.
Although the proposed model’s worst-case
time complexity isO(n2), the experimen-
tal results demonstrated an average pars-
ing time not much slower thanO(n).

1 Introduction

Deterministic parsing methods achieve both effec-
tive time complexity and accuracy not far from
those of the most accurate methods. One such
deterministic method is Nivre’s method, an incre-
mental parsing method whose time complexity is
linear in the number of words (Nivre, 2003). Still,
deterministic methods can be improved. As a spe-
cific example, Nivre’s model greedily decides the
parsing action only from two words and their lo-
cally relational words, which can lead to errors.

In the field of Japanese dependency parsing,
Iwatate et al. (2008) proposed a tournament model
that takes all head candidates into account in judg-
ing dependency relations. This method assumes
backward parsing because the Japanese depen-
dency structure has a head-final constraint, so that
any word’s head is located to its right.

Here, we propose a tree-based model, applica-
ble to any projective language, which can be con-
sidered as a kind of generalization of Iwatate’s

idea. Instead of selecting a parsing action for
two words, as in Nivre’s model, our tree-based
model first chooses the most probable head can-
didate from among the trees through a tournament
and then decides the parsing action between two
trees.

Global-optimization parsing methods are an-
other common approach (Eisner, 1996; McDon-
ald et al., 2005). Koo et al. (2008) studied
semi-supervised learning with this approach. Hy-
brid systems have improved parsing by integrat-
ing outputs obtained from different parsing mod-
els (Zhang and Clark, 2008).

Our proposal can be situated among global-
optimization parsing methods as follows. The pro-
posed tree-based model is deterministic but takes a
step towards global optimization by widening the
search space to include all necessary words con-
nected by previously judged head-dependent rela-
tions, thus achieving a higher accuracy yet largely
retaining the speed of deterministic parsing.

2 Deterministic Dependency Parsing

2.1 Dependency Parsing

A dependency parser receives an input sentence
x = w1, w2, . . . , wn and computes a dependency
graph G = (W,A). The set of nodesW =
{w0, w1, . . . , wn} corresponds to the words of a
sentence, and the nodew0 is the root ofG. A is
the set of arcs(wi, wj), each of which represents a
dependency relation wherewi is theheadandwj

is thedependent.
In this paper, we assume that the resulting de-

pendency graph for a sentence is well-formed and
projective (Nivre, 2008).G is well-formed if and
only if it satisfies the following three conditions of
beingsingle-headed, acyclic, androoted.

2.2 Nivre’s Method

An incremental dependency parsing algorithm
was first proposed by (Covington, 2001). After
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Table 1: Transitions for Nivre’s method and the proposed method.
Transition Precondition

Nivre’s
Method

Left-Arc (σ|wi, wj |β, A) ⇒ (σ,wj |β, A ∪ {(wj , wi)}) i ̸= 0 ∧ ¬∃wk (wk, wi) ∈ A
Right-Arc (σ|wi, wj |β, A) ⇒ (σ|wi|wj , β, A ∪ {(wi, wj)})
Reduce (σ|wi, β, A) ⇒ (σ, β, A) ∃wk (wk, wi) ∈ A
Shift (σ,wj |β, A) ⇒ (σ|wj , β, A)

Proposed
Method

Left-Arc (σ|ti, tj |β,A) ⇒ (σ, tj |β,A ∪ {(wj , wi)}) i ̸= 0
Right-Arc (σ|ti, tj |β,A) ⇒ (σ|ti, β, A ∪ {(mphc(ti, tj), wj)})
Shift (σ, tj |β, A) ⇒ (σ|tj , β, A)

studies taking data-driven approaches, by (Kudo
and Matsumoto, 2002), (Yamada and Matsumoto,
2003), and (Nivre, 2003), the deterministic incre-
mental parser was generalized to a state transition
system in (Nivre, 2008).

Nivre’s method applying an arc-eager algorithm
works by using a stack of words denoted asσ, for
a bufferβ initially containing the sentencex. Pars-
ing is formulated as a quadruple(S, Ts, sinit, St),
where each component is defined as follows:

• S is a set of states, each of which is denoted
as(σ, β,A) ∈ S.

• Ts is a set of transitions, and each element of
Ts is a functionts : S → S.

• sinit = ([w0], [w1, . . . , wn], ϕ) is the initial
state.

• St is a set of terminal states.

Syntactic analysis generates a sequence of optimal
transitionsts provided by an oracleo : S → Ts,
applied to a target consisting of the stack’s top ele-
mentwi and the first elementwj in the buffer. The
oracle is constructed as a classifier trained on tree-
bank data. Each transition is defined in the upper
block of Table 1 and explained as follows:

Left-Arc Make wj the head ofwi and popwi,
wherewi is located at the stack top (denoted
asσ|wi), when the buffer head iswj (denoted
aswj |β).

Right-Arc Makewi the head ofwj , and pushwj .
Reduce Popwi, located at the stack top.
Shift Push the wordwj , located at the buffer head,

onto the stack top.

The method explained thus far has the following
drawbacks.

Locality of Parsing Action Selection

The dependency relations are greedily determined,
so when the transition Right-Arc adds a depen-
dency arc(wi, wj), a more probable head ofwj

located in the stack is disregarded as a candidate.

Features Used for Selecting Reduce

The features used in (Nivre and Scholz, 2004) to
define a state transition are basically obtained from
the two target wordswi andwj , and their related
words. These words are not sufficient to select Re-
duce, because this action means thatwj has no de-
pendency relation with any word in the stack.

Preconditions

When the classifier selects a transition, the result-
ing graph satisfies well-formedness and projectiv-
ity only under the preconditions listed in Table 1.
Even though the parsing seems to be formulated as
a four-class classifier problem, it is in fact formed
of two types of three-class classifiers.

Solving these problems and selecting a more
suitable dependency relation requires a parser that
considers more global dependency relations.

3 Tree-Based Parsing Applied to Nivre’s
Method

3.1 Overall Procedure

Tree-based parsing uses trees as the procedural el-
ements instead of words. This allows enhance-
ment of previously proposed deterministic mod-
els such as (Covington, 2001; Yamada and Mat-
sumoto, 2003). In this paper, we show the applica-
tion of tree-based parsing to Nivre’s method. The
parser is formulated as a state transition system
(S, Ts, sinit, St), similarly to Nivre’s parser, butσ
andβ for a states = (σ, β,A) ∈ S denote a stack
of trees and a buffer of trees, respectively. A tree
ti ∈ T is defined as the tree rooted by the wordwi,
and the initial state issinit = ([t0], [t1, . . . , tn], ϕ),
which is formed from the input sentencex.

The state transitionsTs are decided through the
following two steps.

1. Select the most probable head candidate
(MPHC) : For the treeti located at the stack
top, search for and select the MPHC forwj ,
which is the root word oftj located at the
buffer head. This procedure is denoted as a
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Figure 1: Example of a tournament.

functionmphc(ti, tj), and its details are ex-
plained in§3.2.

2. Select a transition: Choose a transition,
by using an oracle, from among the follow-
ing three possibilities (explained in detail in
§3.3):

Left-Arc Make wj the head ofwi and pop
ti, whereti is at the stack top (denoted
asσ|ti, with the tail beingσ), when the
buffer head istj (denoted astj |β).

Right-Arc Make the MPHC the head ofwj ,
and pop the MPHC.

Shift Push the treetj located at the buffer
head onto the stack top.

These transitions correspond to three possibilities
for the relation betweenti andtj : (1) a word ofti
is a dependent of a word oftj ; (2) a word oftj is a
dependent of a word ofti; or (3) the two trees are
not related.

The formulations of these transitions in the
lower block of Table 1 correspond to Nivre’s tran-
sitions of the same name, except that here a tran-
sition is applied to a tree. This enhancement from
words to trees allows removal of both the Reduce
transition and certain preconditions.

3.2 Selection of Most Probable Head
Candidate

By usingmphc(ti, tj), a word located far fromwj

(the head oftj) can be selected as the head can-
didate inti. This selection process decreases the
number of errors resulting from greedy decision
considering only a few candidates.

Various procedures can be considered for im-
plementingmphc(ti, tj). One way is to apply the
tournament procedure to the words inti. The tour-
nament procedure was originally introduced for
parsing methods in Japanese by (Iwatate et al.,

The biped

was

sold

separately by

robot

his company

ti t j

mphc ),( ji tt

Right-Arc

The biped

was

sold

separately by

robot

his company

ti t j

Figure 2: Example of the transition Right.

2008). Since the Japanese language has the head-
final property, the tournament model itself consti-
tutes parsing, whereas for parsing a general pro-
jective language, the tournament model can only
be used as part of a parsing algorithm.

Figure 1 shows a tournament for the example
of “with,” where the word “watched” finally wins.
Although only the words on the left-hand side of
tree tj are searched, this does not mean that the
tree-based method considers only one side of a de-
pendency relation. For example, when we apply
the tree-based parsing to Yamada’s method, the
search problems on both sides are solved.

To implementmphc(ti, tj), a binary classifier
is built to judge which of two given words is more
appropriate as the head for another input word.
This classifier concerns three words, namely, the
two words l (left) and r (right) in ti, whose ap-
propriateness as the head is compared for the de-
pendentwj . All word pairs of l and r in ti are
compared repeatedly in a “tournament,” and the
survivor is regarded as the MPHC ofwj .

The classifier is generated through learning of
training examples for allti and wj pairs, each
of which generates examples comparing the true
head and other (inappropriate) heads inti. Ta-
ble 2 lists the features used in the classifier. Here,
lex(X) and pos(X) mean the surface form and part
of speech ofX, respectively. X left means the
dependents ofX located on the left-hand side of
X, while Xright means those on the right. Also,
Xhead means the head ofX. The feature design
concerns three additional words occurring after
wj , as well, denoted aswj+1, wj+2, wj+3.

3.3 Transition Selection

A transition is selected by a three-class classifier
after deciding the MPHC, as explained in§3.1.
Table 1 lists the three transitions and one precon-
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Table 2: Features used for a tournament.

pos(l), lex(l)
pos(lhead), pos(lleft), pos(lright)
pos(r), lex(r)
pos(rhead), pos(rleft), pos(rright)

pos(wj), lex(wj), pos(wleft
j )

pos(wj+1), lex(wj+1), pos(wj+2), lex(wj+2)
pos(wj+3), lex(wj+3)

Table 3: Features used for a state transition.

pos(wi), lex(wi)
pos(wleft

i ), pos(wright
i ), lex(wleft

i ), lex(wright
i )

pos(MPHC), lex(MPHC)
pos(MPHChead), pos(MPHCleft), pos(MPHCright)
lex(MPHChead), lex(MPHCleft), lex(MPHCright)

pos(wj), lex(wj), pos(wleft
j ), lex(wleft

j )
pos(wj+1), lex(wj+1), pos(wj+2), lex(wj+2), pos(wj+3), lex(wj+3)

dition. The transition Shift indicates that the tar-
get treesti and tj have no dependency relations.
The transition Right-Arc indicates generation of
the dependent-head relation betweenwj and the
result ofmphc(ti, tj), i.e., the MPHC forwj . Fig-
ure 2 shows an example of this transition. The
transition Left-Arc indicates generation of the de-
pendency relation in whichwj is the head ofwi.
While Right-Arc requires searching for the MPHC
in ti, this is not the case for Left-Arc1.

The key to obtaining an accurate tree-based
parsing model is to extend the search space while
at the same time providing ways to narrow down
the space and find important information, such as
the MPHC, for proper judgment of transitions.

The three-class classifier is constructed as fol-
lows. The dependency relation between the target
trees is represented by the three wordswi, MPHC,
andwj . Therefore, the features are designed to in-
corporate these words, their relational words, and
the three words next towj . Table 3 lists the exact
set of features used in this work. Since this transi-
tion selection procedure presumes selection of the
MPHC, the result ofmphc(ti, tj) is also incorpo-
rated among the features.

4 Evaluation

4.1 Data and Experimental Setting

In our experimental evaluation, we used Yamada’s
head rule to extract unlabeled dependencies from
the Wall Street Journal section of a Penn Treebank.
Sections 2-21 were used as the training data, and
section 23 was used as the test data. This test data

1The head word ofwi can only bewj without searching
within tj , because the relations between the other words intj

andwi have already been inferred from the decisions made
within previous transitions. Iftj has a childwk that could
become the head ofwi under projectivity, thiswk must be
located betweenwi andwj . The fact thatwk ’s head iswj

means that there were two phases beforeti and tj (i.e., wi

andwj) became the target:
• ti andtk became the target, and Shift was selected.
• tk andtj became the target, and Left-Arc was selected.

The first phase precisely indicates thatwi andwk are unre-
lated.

was used in several other previous works, enabling
mutual comparison with the methods reported in
those works.

The SVMlight package2 was used to build the
support vector machine classifiers. The binary
classifier for MPHC selection and the three-class
classifier for transition selection were built using a
cubic polynomial kernel. The parsing speed was
evaluated on a Core2Duo (2.53 GHz) machine.

4.2 Parsing Accuracy

We measured the ratio of words assigned correct
heads to all words (accuracy), and the ratio of sen-
tences with completely correct dependency graphs
to all sentences (complete match). In the evalua-
tion, we consistently excluded punctuation marks.

Table 4 compares our results for the proposed
method with those reported in some previous
works using equivalent training and test data.
The first column lists the four previous methods
and our method, while the second through fourth
columns list the accuracy, complete match accu-
racy, and time complexity, respectively, for each
method. Here, we obtained the scores for the pre-
vious works from the corresponding articles listed
in the first column. Note that every method used
different features, which depend on the method.

The proposed method achieved higher accuracy
than did the previous deterministic models. Al-
though the accuracy of our method did not reach
that of (McDonald and Pereira, 2006), the scores
were competitive even though our method is de-
terministic. These results show the capability of
the tree-based approach in effectively extending
the search space.

4.3 Parsing Time

Such extension of the search space also concerns
the speed of the method. Here, we compare its
computational time with that of Nivre’s method.
We re-implemented Nivre’s method to use SVMs
with cubic polynomial kernel, similarly to our

2http://svmlight.joachims.org/
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Table 4: Dependency parsing performance.

Accuracy Complete Time Global vs. Learning
match complexity deterministic method

McDonald & Pereira (2006) 91.5 42.1 O(n3) global MIRA
McDonald et al. (2005) 90.9 37.5 O(n3) global MIRA

Yamada & Matsumoto (2003) 90.4 38.4 O(n2) deterministic support vector machine
Goldberg & Elhadad (2010) 89.7 37.5 O(n log n) deterministic structured perceptron

Nivre (2004) 87.1 30.4 O(n) deterministic memory based learning
Proposed method 91.3 41.7 O(n2) deterministic support vector machine
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Figure 3: Parsing time for sentences.

method. Figure 3 shows plots of the parsing times
for all sentences in the test data. The average pars-
ing time for our method was 8.9 sec, whereas that
for Nivre’s method was 7.9 sec.

Although the worst-case time complexity for
Nivre’s method isO(n) and that for our method is
O(n2), worst-case situations (e.g., all words hav-
ing heads on their left) did not appear frequently.
This can be seen from the sparse appearance of the
upper bound in the second figure.

5 Conclusion

We have proposed a tree-based model that decides
head-dependency relations between trees instead
of between words. This extends the search space
to obtain the best head for a word within a deter-
ministic model. The tree-based idea is potentially
applicable to various previous parsing methods; in
this paper, we have applied it to enhance Nivre’s
method.

Our tree-based model outperformed various de-
terministic parsing methods reported previously.
Although the worst-case time complexity of our
method isO(n2), the average parsing time is not
much slower thanO(n).
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Abstract

A strong inductive bias is essential in un-
supervised grammar induction. We ex-
plore a particular sparsity bias in de-
pendency grammars that encourages a
small number of unique dependency
types. Specifically, we investigate
sparsity-inducing penalties on the poste-
rior distributions of parent-child POS tag
pairs in the posterior regularization (PR)
framework of Graça et al. (2007). In ex-
periments with 12 languages, we achieve
substantial gains over the standard expec-
tation maximization (EM) baseline, with
average improvement in attachment ac-
curacy of 6.3%. Further, our method
outperforms models based on a standard
Bayesian sparsity-inducing prior by an av-
erage of 4.9%. On English in particular,
we show that our approach improves on
several other state-of-the-art techniques.

1 Introduction

We investigate an unsupervised learning method
for dependency parsing models that imposes spar-
sity biases on the dependency types. We assume
a corpus annotated with POS tags, where the task
is to induce a dependency model from the tags for
corpus sentences. In this setting, the type of a de-
pendency is defined as a pair: tag of the dependent
(also known as the child), and tag of the head (also
known as the parent). Given that POS tags are de-
signed to convey information about grammatical
relations, it is reasonable to assume that only some
of the possible dependency types will be realized

for a given language. For instance, in English it
is ungrammatical for nouns to dominate verbs, ad-
jectives to dominate adverbs, and determiners to
dominate almost any part of speech. Thus, the re-
alized dependency types should be a sparse subset
of all possible types.

Previous work in unsupervised grammar induc-
tion has tried to achieve sparsity through priors.
Liang et al. (2007), Finkel et al. (2007) and John-
son et al. (2007) proposed hierarchical Dirichlet
process priors. Cohen et al. (2008) experimented
with a discounting Dirichlet prior, which encour-
ages a standard dependency parsing model (see
Section 2) to limit the number of dependent types
for each head type.

Our experiments show a more effective sparsity
pattern is one that limits the total number of unique
head-dependent tag pairs. This kind of sparsity
bias avoids inducing competition between depen-
dent types for each head type. We can achieve the
desired bias with a constraint on model posteri-
ors during learning, using the posterior regulariza-
tion (PR) framework (Graça et al., 2007). Specifi-
cally, to implement PR we augment the maximum
marginal likelihood objective of the dependency
model with a term that penalizes head-dependent
tag distributions that are too permissive.

Although not focused on sparsity, several other
studies use soft parameter sharing to couple dif-
ferent types of dependencies. To this end, Cohen
et al. (2008) and Cohen and Smith (2009) inves-
tigated logistic normal priors, and Headden III et
al. (2009) used a backoff scheme. We compare to
their results in Section 5.

The remainder of this paper is organized as fol-
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lows. Section 2 and 3 review the models and sev-
eral previous approaches for learning them. Sec-
tion 4 describes learning with PR. Section 5 de-
scribes experiments across 12 languages and Sec-
tion 6 analyzes the results. For additional details
on this work see Gillenwater et al. (2010).

2 Parsing Model

The models we use are based on the generative de-
pendency model with valence (DMV) (Klein and
Manning, 2004). For a sentence with tags x, the
root POS r(x) is generated first. Then the model
decides whether to generate a right dependent con-
ditioned on the POS of the root and whether other
right dependents have already been generated for
this head. Upon deciding to generate a right de-
pendent, the POS of the dependent is selected by
conditioning on the head POS and the direction-
ality. After stopping on the right, the root gener-
ates left dependents using the mirror reversal of
this process. Once the root has generated all its
dependents, the dependents generate their own de-
pendents in the same manner.

2.1 Model Extensions

For better comparison with previous work we
implemented three model extensions, borrowed
from Headden III et al. (2009). The first exten-
sion alters the stopping probability by condition-
ing it not only on whether there are any depen-
dents in a particular direction already, but also on
how many such dependents there are. When we
talk about models with maximum stop valency Vs
= S, this means it distinguishes S different cases:
0, 1, . . . , S−2, and≥ S−1 dependents in a given
direction. The basic DMV has Vs = 2.

The second model extension we implement is
analogous to the first, but applies to dependent tag
probabilities instead of stop probabilities. Again,
we expand the conditioning such that the model
considers how many other dependents were al-
ready generated in the same direction. When we
talk about a model with maximum child valency
Vc = C, this means we distinguish C different
cases. The basic DMV has Vc = 1. Since this
extension to the dependent probabilities dramati-
cally increases model complexity, the third model
extension we implement is to add a backoff for the
dependent probabilities that does not condition on
the identity of the parent POS (see Equation 2).

More formally, under the extended DMV the

probability of a sentence with POS tags x and de-
pendency tree y is given by:

pθ(x,y) = proot(r(x))×Y
y∈y

pstop(false | yp, yd, yvs)pchild(yc | yp, yd, yvc)×Y
x∈x

pstop(true | x, left, xvl) pstop(true | x, right, xvr )

(1)

where y is the dependency of yc on head yp in di-
rection yd, and yvc , yvs , xvr , and xvl indicate va-
lence. For the third model extension, the backoff
to a probability not dependent on parent POS can
be formally expressed as:

λpchild(yc | yp, yd, yvc) + (1− λ)pchild(yc | yd, yvc) (2)

for λ ∈ [0, 1]. We fix λ = 1/3, which is a crude
approximation to the value learned by Headden III
et al. (2009).

3 Previous Learning Approaches

In our experiments, we compare PR learning
to standard expectation maximization (EM) and
to Bayesian learning with a sparsity-inducing
prior. The EM algorithm optimizes marginal like-
lihood L(θ) = log

∑
Y pθ(X,Y), where X =

{x1, . . . ,xn} denotes the entire unlabeled corpus
and Y = {y1, . . . ,yn} denotes a set of corre-
sponding parses for each sentence. Neal and Hin-
ton (1998) view EM as block coordinate ascent on
a function that lower-bounds L(θ). Starting from
an initial parameter estimate θ0, the algorithm it-
erates two steps:

E : qt+1 = arg min
q

KL(q(Y) ‖ pθt(Y | X)) (3)

M : θt+1 = arg max
θ

Eqt+1 [log pθ(X,Y)] (4)

Note that the E-step just sets qt+1(Y) =
pθt(Y|X), since it is an unconstrained minimiza-
tion of a KL-divergence. The PR method we
present modifies the E-step by adding constraints.

Besides EM, we also compare to learning with
several Bayesian priors that have been applied to
the DMV. One such prior is the Dirichlet, whose
hyperparameter we will denote by α. For α < 0.5,
this prior encourages parameter sparsity. Cohen
et al. (2008) use this method with α = 0.25 for
training the DMV and achieve improvements over
basic EM. In this paper we will refer to our own
implementation of the Dirichlet prior as the “dis-
counting Dirichlet” (DD) method. In addition to
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the Dirichlet, other types of priors have been ap-
plied, in particular logistic normal priors (LN) and
shared logistic normal priors (SLN) (Cohen et al.,
2008; Cohen and Smith, 2009). LN and SLN aim
to tie parameters together. Essentially, this has a
similar goal to sparsity-inducing methods in that it
posits a more concise explanation for the grammar
of a language. Headden III et al. (2009) also im-
plement a sort of parameter tying for the E-DMV
through a learning a backoff distribution on child
probabilities. We compare against results from all
these methods.

4 Learning with Sparse Posteriors

We would like to penalize models that predict a
large number of distinct dependency types. To en-
force this penalty, we use the posterior regular-
ization (PR) framework (Graça et al., 2007). PR
is closely related to generalized expectation con-
straints (Mann and McCallum, 2007; Mann and
McCallum, 2008; Bellare et al., 2009), and is also
indirectly related to a Bayesian view of learning
with constraints on posteriors (Liang et al., 2009).
The PR framework uses constraints on posterior
expectations to guide parameter estimation. Here,
PR allows a natural and tractable representation of
sparsity constraints based on edge type counts that
cannot easily be encoded in model parameters. We
use a version of PR where the desired bias is a
penalty on the log likelihood (see Ganchev et al.
(2010) for more details). For a distribution pθ, we
define a penalty as the (generic) β-norm of expec-
tations of some features φ:

||Epθ [φ(X,Y)]||β (5)

For computational tractability, rather than penaliz-
ing the model’s posteriors directly, we use an aux-
iliary distribution q, and penalize the marginal log-
likelihood of a model by the KL-divergence of pθ
from q, plus the penalty term with respect to q.
For a fixed set of model parameters θ the full PR
penalty term is:

min
q

KL(q(Y) ‖ pθ(Y|X)) + σ ||Eq[φ(X,Y)]||β (6)

where σ is the strength of the regularization. PR
seeks to maximize L(θ) minus this penalty term.
The resulting objective can be optimized by a vari-
ant of the EM (Dempster et al., 1977) algorithm
used to optimize L(θ).

4.1 `1/`∞ Regularization
We now define precisely how to count dependency
types. For each child tag c, let i range over an enu-
meration of all occurrences of c in the corpus, and
let p be another tag. Let the indicator φcpi(X,Y)
have value 1 if p is the parent tag of the ith occur-
rence of c, and value 0 otherwise. The number of
unique dependency types is then:X

cp

max
i
φcpi(X,Y) (7)

Note there is an asymmetry in this count: occur-
rences of child type c are enumerated with i, but
all occurrences of parent type p are or-ed in φcpi.
That is, φcpi = 1 if any occurrence of p is the par-
ent of the ith occurrence of c. We will refer to PR
training with this constraint as PR-AS. Instead of
counting pairs of a child token and a parent type,
we can alternatively count pairs of a child token
and a parent token by letting p range over all to-
kens rather than types. Then each potential depen-
dency corresponds to a different indicator φcpij ,
and the penalty is symmetric with respect to par-
ents and children. We will refer to PR training
with this constraint as PR-S. Both approaches per-
form very well, so we report results for both.

Equation 7 can be viewed as a mixed-norm
penalty on the features φcpi or φcpij : the sum cor-
responds to an `1 norm and the max to an `∞
norm. Thus, the quantity we want to minimize
fits precisely into the PR penalty framework. For-
mally, to optimize the PR objective, we complete
the following E-step:

arg min
q

KL(q(Y)||pθ(Y|X)) + σ
X
cp

max
i

Eq[φ(X,Y)],

(8)

which can equivalently be written as:

min
q(Y),ξcp

KL(q(Y) ‖ pθ(Y|X)) + σ
X
cp

ξcp

s. t. ξcp ≤ Eq[φ(X,Y)]

(9)

where ξcp corresponds to the maximum expecta-
tion of φ over all instances of c and p. Note that
the projection problem can be solved efficiently in
the dual (Ganchev et al., 2010).

5 Experiments

We evaluate on 12 languages. Following the ex-
ample of Smith and Eisner (2006), we strip punc-
tuation from the sentences and keep only sen-
tences of length ≤ 10. For simplicity, for all mod-
els we use the “harmonic” initializer from Klein
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Model EM PR Type σ
DMV 45.8 62.1 PR-S 140

2-1 45.1 62.7 PR-S 100
2-2 54.4 62.9 PR-S 80
3-3 55.3 64.3 PR-S 140
4-4 55.1 64.4 PR-AS 140

Table 1: Attachment accuracy results. Column 1: Vc-
Vs used for the E-DMV models. Column 3: Best PR re-
sult for each model, which is chosen by applying each of
the two types of constraints (PR-S and PR-AS) and trying
σ ∈ {80, 100, 120, 140, 160, 180}. Columns 4 & 5: Con-
straint type and σ that produced the values in column 3.

and Manning (2004), which we refer to as K&M.
We always train for 100 iterations and evaluate
on the test set using Viterbi parses. Before eval-
uating, we smooth the resulting models by adding
e−10 to each learned parameter, merely to remove
the chance of zero probabilities for unseen events.
(We did not tune this as it should make very little
difference for final parses.) We score models by
their attachment accuracy — the fraction of words
assigned the correct parent.

5.1 Results on English
We start by comparing English performance for
EM, PR, and DD. To find α for DD we searched
over five values: {0.01, 0.1, 0.25, 1}. We found
0.25 to be the best setting for the DMV, the same
as found by Cohen et al. (2008). DD achieves ac-
curacy 46.4% with this α. For the E-DMV we
tested four model complexities with valencies Vc-
Vs of 2-1, 2-2, 3-3, and 4-4. DD’s best accuracy
was 53.6% with the 4-4 model at α = 0.1. A
comparison between EM and PR is shown in Ta-
ble 1. PR-S generally performs better than the PR-
AS for English. Comparing PR-S to EM, we also
found PR-S is always better, independent of the
particular σ, with improvements ranging from 2%
to 17%. Note that in this work we do not perform
the PR projection at test time; we found it detri-
mental, probably due to a need to set the (corpus-
size-dependent) σ differently for the test set. We
also note that development likelihood and the best
setting for σ are not well-correlated, which un-
fortunately makes it hard to pick these parameters
without some supervision.

5.2 Comparison with Previous Work
In this section we compare to previously published
unsupervised dependency parsing results for En-
glish. It might be argued that the comparison is
unfair since we do supervised selection of model

Learning Method Accuracy
≤ 10 ≤ 20 all

PR-S (σ = 140) 62.1 53.8 49.1
LN families 59.3 45.1 39.0
SLN TieV & N 61.3 47.4 41.4
PR-AS (σ = 140) 64.4 55.2 50.5
DD (α = 1, λ learned) 65.0 (±5.7)

Table 2: Comparison with previous published results. Rows
2 and 3 are taken from Cohen et al. (2008) and Cohen and
Smith (2009), and row 5 from Headden III et al. (2009).

complexity and regularization strength. However,
we feel the comparison is not so unfair as we per-
form only a very limited search of the model-σ
space. Specifically, the only values of σ we search
over are {80, 100, 120, 140, 160, 180}.

First, we consider the top three entries in Ta-
ble 2, which are for the basic DMV. The first en-
try was generated using our implementation of
PR-S. The second two entries are logistic nor-
mal and shared logistic normal parameter tying re-
sults (Cohen et al., 2008; Cohen and Smith, 2009).
The PR-S result is the clear winner, especially as
length of test sentences increases. For the bot-
tom two entries in the table, which are for the E-
DMV, the last entry is best, corresponding to us-
ing a DD prior with α = 1 (non-sparsifying), but
with a special “random pools” initialization and a
learned weight λ for the child backoff probabil-
ity. The result for PR-AS is well within the vari-
ance range of this last entry, and thus we conjec-
ture that combining PR-AS with random pools ini-
tialization and learned λ would likely produce the
best-performing model of all.

5.3 Results on Other Languages

Here we describe experiments on 11 additional
languages. For each we set σ and model complex-
ity (DMV versus one of the four E-DMV exper-
imented with previously) based on the best con-
figuration found for English. This likely will not
result in the ideal parameters for all languages, but
provides a realistic test setting: a user has avail-
able a labeled corpus in one language, and would
like to induce grammars for many other languages.
Table 3 shows the performance for all models and
training procedures. We see that the sparsifying
methods tend to improve over EM most of the
time. For the basic DMV, average improvements
are 1.6% for DD, 6.0% for PR-S, and 7.5% for
PR-AS. PR-AS beats PR-S in 8 out of 12 cases,
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Bg Cz De Dk En Es Jp Nl Pt Se Si Tr
DMV Model

EM 37.8 29.6 35.7 47.2 45.8 40.3 52.8 37.1 35.7 39.4 42.3 46.8
DD 0.25 39.3 30.0 38.6 43.1 46.4 47.5 57.8 35.1 38.7 40.2 48.8 43.8
PR-S 140 53.7 31.5 39.6 44.0 62.1 61.1 58.8 31.0 47.0 42.2 39.9 51.4
PR-AS 140 54.0 32.0 39.6 42.4 61.9 62.4 60.2 37.9 47.8 38.7 50.3 53.4

Extended Model
EM (3,3) 41.7 48.9 40.1 46.4 55.3 44.3 48.5 47.5 35.9 48.6 47.5 46.2
DD 0.1 (4,4) 47.6 48.5 42.0 44.4 53.6 48.9 57.6 45.2 48.3 47.6 35.6 48.9
PR-S 140 (3,3) 59.0 54.7 47.4 45.8 64.3 57.9 60.8 33.9 54.3 45.6 49.1 56.3
PR-AS 140 (4,4) 59.8 54.6 45.7 46.6 64.4 57.9 59.4 38.8 49.5 41.4 51.2 56.9

Table 3: Attachment accuracy results. The parameters used are the best settings found for English. Values for hyperparameters
(α or σ) are given after the method name. For the extended model (Vc, Vs) are indicated in parentheses. En is the English Penn
Treebank (Marcus et al., 1993) and the other 11 languages are from the CoNLL X shared task: Bulgarian [Bg] (Simov et al.,
2002), Czech [Cz] (Bohomovà et al., 2001), German [De] (Brants et al., 2002), Danish [Dk] (Kromann et al., 2003), Spanish
[Es] (Civit and Martí, 2004), Japanese [Jp] (Kawata and Bartels, 2000), Dutch [Nl] (Van der Beek et al., 2002), Portuguese
[Pt] (Afonso et al., 2002), Swedish [Se] (Nilsson et al., 2005), Slovene [Sl] (Džeroski et al., 2006), and Turkish [Tr] (Oflazer et
al., 2003).
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Figure 1: Posterior edge probabilities for an example sen-
tence from the Spanish test corpus. At the top are the gold
dependencies, the middle are EM posteriors, and bottom are
PR posteriors. Green indicates correct dependencies and red
indicates incorrect dependencies. The numbers on the edges
are the values of the posterior probabilities.

though the average increase is only 1.5%. PR-S
is also better than DD for 10 out of 12 languages.
If we instead consider these methods for the E-
DMV, DD performs worse, just 1.4% better than
the E-DMV EM, while both PR-S and PR-AS con-
tinue to show substantial average improvements
over EM, 6.5% and 6.3%, respectively.

6 Analysis

One common EM error that PR fixes in many lan-
guages is the directionality of the noun-determiner
relation. Figure 1 shows an example of a Span-
ish sentence where PR significantly outperforms
EM because of this. Sentences such as “Lleva
tiempo entenderlos” which has tags “main-verb
common-noun main-verb” (no determiner tag)
provide an explanation for PR’s improvement—
when PR sees that sometimes nouns can appear
without determiners but that the opposite situation

does not occur, it shifts the model parameters to
make nouns the parent of determiners instead of
the reverse. Then it does not have to pay the cost
of assigning a parent with a new tag to cover each
noun that doesn’t come with a determiner.

7 Conclusion

In this paper we presented a new method for unsu-
pervised learning of dependency parsers. In con-
trast to previous approaches that constrain model
parameters, we constrain model posteriors. Our
approach consistently outperforms the standard
EM algorithm and a discounting Dirichlet prior.

We have several ideas for further improving our
constraints, such as: taking into account the direc-
tionality of the edges, using different regulariza-
tion strengths for the root probabilities than for the
child probabilities, and working directly on word
types rather than on POS tags. In the future, we
would also like to try applying similar constraints
to the more complex task of joint induction of POS
tags and dependency parses.
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Abstract

We propose a top-down algorithm for ex-
tracting k-best lists from a parser. Our
algorithm, TKA∗ is a variant of the k-
best A∗ (KA∗) algorithm of Pauls and
Klein (2009). In contrast to KA∗, which
performs an inside and outside pass be-
fore performing k-best extraction bottom
up, TKA∗ performs only the inside pass
before extracting k-best lists top down.
TKA∗ maintains the same optimality and
efficiency guarantees of KA∗, but is sim-
pler to both specify and implement.

1 Introduction

Many situations call for a parser to return a k-
best list of parses instead of a single best hypothe-
sis.1 Currently, there are two efficient approaches
known in the literature. The k-best algorithm of
Jiménez and Marzal (2000) and Huang and Chi-
ang (2005), referred to hereafter as LAZY, oper-
ates by first performing an exhaustive Viterbi in-
side pass and then lazily extracting k-best lists in
top-down manner. The k-best A∗ algorithm of
Pauls and Klein (2009), hereafter KA∗, computes
Viterbi inside and outside scores before extracting
k-best lists bottom up.

Because these additional passes are only partial,
KA∗ can be significantly faster than LAZY, espe-
cially when a heuristic is used (Pauls and Klein,
2009). In this paper, we propose TKA∗, a top-
down variant of KA∗ that, like LAZY, performs
only an inside pass before extracting k-best lists
top-down, but maintains the same optimality and
efficiency guarantees as KA∗. This algorithm can
be seen as a generalization of the lattice k-best al-
gorithm of Soong and Huang (1991) to parsing.
Because TKA∗ eliminates the outside pass from
KA∗, TKA∗ is simpler both in implementation and
specification.

1See Huang and Chiang (2005) for a review.

2 Review

Because our algorithm is very similar to KA∗,
which is in turn an extension of the (1-best) A∗

parsing algorithm of Klein and Manning (2003),
we first introduce notation and review those two
algorithms before presenting our new algorithm.

2.1 Notation
Assume we have a PCFG2 G and an input sen-
tence s0 . . . sn−1 of length n. The grammar G has
a set of symbols denoted by capital letters, includ-
ing a distinguished goal (root) symbol G. With-
out loss of generality, we assume Chomsky nor-
mal form: each non-terminal rule r in G has the
form r = A → B C with weight wr. Edges
are labeled spans e = (A, i, j). Inside deriva-
tions of an edge (A, i, j) are trees with root non-
terminalA, spanning si . . . sj−1. The weight (neg-
ative log-probability) of the best (minimum) inside
derivation for an edge e is called the Viterbi in-
side score β(e), and the weight of the best deriva-
tion of G → s0 . . . si−1 A sj . . . sn−1 is called
the Viterbi outside score α(e). The goal of a k-
best parsing algorithm is to compute the k best
(minimum weight) inside derivations of the edge
(G, 0, n).

We formulate the algorithms in this paper
in terms of prioritized weighted deduction rules
(Shieber et al., 1995; Nederhof, 2003). A prior-
itized weighted deduction rule has the form

φ1 : w1, . . . , φn : wn
p(w1,...,wn)−−−−−−−−→ φ0 : g(w1, . . . , wn)

where φ1, . . . , φn are the antecedent items of the
deduction rule and φ0 is the conclusion item. A
deduction rule states that, given the antecedents
φ1, . . . , φn with weights w1, . . . , wn, the conclu-
sion φ0 can be formed with weight g(w1, . . . , wn)
and priority p(w1, . . . , wn).

2While we present the algorithm specialized to parsing
with a PCFG, this algorithm generalizes to a wide range of
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Figure 1: Representations of the different types of items
used in parsing. (a) An inside edge item I(VP, 2, 5). (b)
An outside edge item O(VP, 2, 5). (c) An inside deriva-
tion item: D(TVP, 2, 5). (d) An outside derivation item:
Q(TGVP, 1, 2, {(NP, 2, n)}. The edges in boldface are fron-
tier edges.

These deduction rules are “executed” within
a generic agenda-driven algorithm, which con-
structs items in a prioritized fashion. The algo-
rithm maintains an agenda (a priority queue of
items), as well as a chart of items already pro-
cessed. The fundamental operation of the algo-
rithm is to pop the highest priority item φ from the
agenda, put it into the chart with its current weight,
and apply deduction rules to form any items which
can be built by combining φ with items already
in the chart. When the resulting items are either
new or have a weight smaller than an item’s best
score so far, they are put on the agenda with pri-
ority given by p(·). Because all antecedents must
be constructed before a deduction rule is executed,
we sometimes refer to particular conclusion item
as “waiting” on another item before it can be built.

2.2 A∗

A∗ parsing (Klein and Manning, 2003) is an al-
gorithm for computing the 1-best parse of a sen-
tence. A∗ operates on items called inside edge
items I(A, i, j), which represent the many pos-
sible inside derivations of an edge (A, i, j). In-
side edge items are constructed according to the
IN deduction rule of Table 1. This deduction rule
constructs inside edge items in a bottom-up fash-
ion, combining items representing smaller edges
I(B, i, k) and I(C, k, j) with a grammar rule r =
A → B C to form a larger item I(A, i, j). The
weight of a newly constructed item is given by the
sum of the weights of the antecedent items and
the grammar rule r, and its priority is given by

hypergraph search problems as shown in Klein and Manning
(2001).
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Figure 2: (a) An outside derivation item before expansion at
the edge (VP, 1, 4). (b) A possible expansion of the item in
(a) using the rule VP→ VP NN. Frontier edges are marked in
boldface.

its weight plus a heuristic h(A, i, j). For consis-
tent and admissible heuristics h(·), this deduction
rule guarantees that when an inside edge item is
removed from the agenda, its current weight is its
true Viterbi inside score.

The heuristic h controls the speed of the algo-
rithm. It can be shown that an edge e satisfying
β(e) + h(A, i, j) > β(G, 0, n) will never be re-
moved from the agenda, allowing some edges to
be safely pruned during parsing. The more closely
h(e) approximates the Viterbi outside cost α(e),
the more items are pruned.

2.3 KA∗

The use of inside edge items in A∗ exploits the op-
timal substructure property of derivations – since
a best derivation of a larger edge is always com-
posed of best derivations of smaller edges, it is
only necessary to compute the best way of build-
ing a particular inside edge item. When finding
k-best lists, this is no longer possible, since we are
interested in suboptimal derivations.

Thus, KA∗, the k-best extension of A∗, must
search not in the space of inside edge items,
but rather in the space of inside derivation items
D(TA, i, j), which represent specific derivations
of the edge (A, i, j) using tree TA. However, the
number of inside derivation items is exponential
in the length of the input sentence, and even with
a very accurate heuristic, running A∗ directly in
this space is not feasible.

Fortunately, Pauls and Klein (2009) show that
with a perfect heuristic, that is, h(e) = α(e) ∀e,
A∗ search on inside derivation items will only
remove items from the agenda that participate
in the true k-best lists (up to ties). In order
to compute this perfect heuristic, KA∗ makes
use of outside edge items O(A, i, j) which rep-
resent the many possible derivations of G →
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IN∗†: I(B, i, l) : w1 I(C, l, j) : w2
w1+w2+wr+h(A,i,j)−−−−−−−−−−−−−−→ I(A, i, j) : w1 + w2 + wr

IN-D†: O(A, i, j) : w1 D(TB , i, l) : w2 D(TC , l, j) : w3
w2+w3+wr+w1−−−−−−−−−−→ D(TA, i, j) : w2 + w3 + wr

OUT-L†: O(A, i, j) : w1 I(B, i, l) : w2 I(C, l, j) : w3
w1+w3+wr+w2−−−−−−−−−−→ O(B, i, l) : w1 + w3 + wr

OUT-R†: O(A, i, j) : w1 I(B, i, l) : w2 I(C, l, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ O(C, l, j) : w1 + w2 + wr

OUT-D∗: Q(TGA , i, j,F) : w1 I(B, i, l) : w2 I(C, l, j) : w3
w1+wr+w2+w3+β(F)−−−−−−−−−−−−−−−→ Q(TGB , i, l,FC) : w1 + wr

Table 1: The deduction rules used in this paper. Here, r is the rule A → B C. A superscript * indicates that the rule is used
in TKA∗, and a superscript † indicates that the rule is used in KA∗. In IN-D, the tree TA is rooted at (A, i, j) and has children
TB and TC . In OUT-D, the tree TGB is the tree TGA extended at (A, i, j) with rule r, FC is the list F with (C, l, j) prepended,
and β(F) is

P
e∈F β(e). Whenever the left child I(B, i, l) of an application of OUT-D represents a terminal, the next edge is

removed from F and is used as the new point of expansion.

s1 . . . si A sj+1 . . . sn (see Figure 1(b)).
Outside items are built using the OUT-L and

OUT-R deduction rules shown in Table 1. OUT-
L and OUT-R combine, in a top-down fashion, an
outside edge over a larger span and inside edge
over a smaller span to form a new outside edge
over a smaller span. Because these rules make ref-
erence to inside edge items I(A, i, j), these items
must also be built using the IN deduction rules
from 1-best A∗. Outside edge items must thus wait
until the necessary inside edge items have been
built. The outside pass is initialized with the item
O(G, 0, n) when the inside edge item I(G, 0, n) is
popped from the agenda.

Once we have started populating outside scores
using the outside deductions, we can initiate a
search on inside derivation items.3 These items
are built bottom-up using the IN-D deduction rule.
The crucial element of this rule is that derivation
items for a particular edge wait until the exact out-
side score of that edge has been computed. The al-
gorithm terminates when k derivation items rooted
at (G, 0, n) have been popped from the agenda.

3 TKA∗

KA∗ efficiently explores the space of inside
derivation items because it waits for the exact
Viterbi outside cost before building each deriva-
tion item. However, these outside costs and asso-
ciated deduction items are only auxiliary quanti-
ties used to guide the exploration of inside deriva-
tions: they allow KA∗ to prioritize currently con-
structed inside derivation items (i.e., constructed
derivations of the goal) by their optimal comple-
tion costs. Outside costs are thus only necessary
because we construct partial derivations bottom-
up; if we constructed partial derivations in a top-
down fashion, all we would need to compute opti-

3We stress that the order of computation is entirely speci-
fied by the deduction rules – we only speak about e.g. “initi-
ating a search” as an appeal to intuition.

mal completion costs are Viterbi inside scores, and
we could forget the outside pass.

TKA∗ does exactly that. Inside edge items are
constructed in the same way as KA∗, but once the
inside edge item I(G, 0, n) has been discovered,
TKA∗ begins building partial derivations from the
goal outwards. We replace the inside derivation
items of KA∗ with outside derivation items, which
represent trees rooted at the goal and expanding
downwards. These items bottom out in a list of
edges called the frontier edges. See Figure 1(d)
for a graphical representation. When a frontier
edge represents a single word in the input, i.e. is
of the form (si, i, i+ 1), we say that edge is com-
plete. An outside derivation can be expanded by
applying a rule to one of its incomplete frontier
edges; see Figure 2. In the same way that inside
derivation items wait on exact outside scores be-
fore being built, outside derivation items wait on
the inside edge items of all frontier edges before
they can be constructed.

Although building derivations top-down obvi-
ates the need for a 1-best outside pass, it raises a
new issue. When building derivations bottom-up,
the only way to expand a particular partial inside
derivation is to combine it with another partial in-
side derivation to build a bigger tree. In contrast,
an outside derivation item can be expanded any-
where along its frontier. Naively building deriva-
tions top-down would lead to a prohibitively large
number of expansion choices.

We solve this issue by always expanding the
left-most incomplete frontier edge of an outside
derivation item. We show the deduction rule
OUT-D which performs this deduction in Fig-
ure 1(d). We denote an outside derivation item as
Q(TG

A , i, j,F), where TG
A is a tree rooted at the

goal with left-most incomplete edge (A, i, j), and
F is the list of incomplete frontier edges exclud-
ing (A, i, j), ordered from left to right. Whenever
the application of this rule “completes” the left-
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most edge, the next edge is removed from F and
is used as the new point of expansion. Once all
frontier edges are complete, the item represents a
correctly scored derivation of the goal, explored in
a pre-order traversal.

3.1 Correctness

It should be clear that expanding the left-most in-
complete frontier edge first eventually explores the
same set of derivations as expanding all frontier
edges simultaneously. The only worry in fixing
this canonical order is that we will somehow ex-
plore the Q items in an incorrect order, possibly
building some complete derivation Q′C before a
more optimal complete derivation QC . However,
note that all items Q along the left-most construc-
tion ofQC have priority equal to or better than any
less optimal complete derivation Q′C . Therefore,
when Q′C is enqueued, it will have lower priority
than all Q; Q′C will therefore not be dequeued un-
til all Q – and hence QC – have been built.

Furthermore, it can be shown that the top-down
expansion strategy maintains the same efficiency
and optimality guarantees as KA∗ for all item
types: for consistent heuristics h, the first k en-
tirely complete outside derivation items are the
true k-best derivations (modulo ties), and that only
derivation items which participate in those k-best
derivations will be removed from the queue (up to
ties).

3.2 Implementation Details

Building derivations bottom-up is convenient from
an indexing point of view: since larger derivations
are built from smaller ones, it is not necessary to
construct the larger derivation from scratch. In-
stead, one can simply construct a new tree whose
children point to the old trees, saving both mem-
ory and CPU time.

In order keep the same efficiency when build-
ing trees top-down, a slightly different data struc-
ture is necessary. We represent top-down deriva-
tions as a lazy list of expansions. The top node
TG

G is an empty list, and whenever we expand an
outside derivation item Q(TG

A , i, j,F) with a rule
r = A → B C and split point l, the resulting
derivation TG

B is a new list item with (r, l) as the
head data, and TG

A as its tail. The tree can be re-
constructed later by recursively reconstructing the
parent, and adding the edges (B, i, l) and (C, l, j)
as children of (A, i, j).

3.3 Advantages

Although our algorithm eliminates the 1-best out-
side pass of KA∗, in practice, even for k = 104,
the 1-best inside pass remains the overwhelming
bottleneck (Pauls and Klein, 2009), and our modi-
fications leave that pass unchanged.

However, we argue that our implementation is
simpler to specify and implement. In terms of de-
duction rules, our algorithm eliminates the 2 out-
side deduction rules and replaces the IN-D rule
with the OUT-D rule, bringing the total number
of rules from four to two.

The ease of specification translates directly into
ease of implementation. In particular, if high-
quality heuristics are not available, it is often more
efficient to implement the 1-best inside pass as
an exhaustive dynamic program, as in Huang and
Chiang (2005). In this case, one would only need
to implement a single, agenda-based k-best extrac-
tion phase, instead of the 2 needed for KA∗.

3.4 Performance

The contribution of this paper is theoretical, not
empirical. We have argued that TKA∗ is simpler
than TKA∗, but we do not expect it to do any more
or less work than KA∗, modulo grammar specific
optimizations. Therefore, we simply verify, like
KA∗, that the additional work of extracting k-best
lists with TKA∗ is negligible compared to the time
spent building 1-best inside edges.

We examined the time spent building 100-best
lists for the same experimental setup as Pauls and
Klein (2009).4 On 100 sentences, our implemen-
tation of TKA∗ constructed 3.46 billion items, of
which about 2% were outside derivation items.
Our implementation of KA∗ constructed 3.41 bil-
lion edges, of which about 0.1% were outside edge
items or inside derivation items. In other words,
the cost of k-best extraction is dwarfed by the
the 1-best inside edge computation in both cases.
The reason for the slight performance advantage
of KA∗ is that our implementation of KA∗ uses
lazy optimizations discussed in Pauls and Klein
(2009), and while such optimizations could easily
be incorporated in TKA∗, we have not yet done so
in our implementation.

4This setup used 3- and 6-round state-split grammars from
Petrov et al. (2006), the former used to compute a heuristic
for the latter, tested on sentences of length up to 25.
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4 Conclusion

We have presented TKA∗, a simplification to the
KA∗ algorithm. Our algorithm collapses the 1-
best outside and bottom-up derivation passes of
KA∗ into a single, top-down pass without sacri-
ficing efficiency or optimality. This reduces the
number of non base-case deduction rules, making
TKA∗ easier both to specify and implement.
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Abstract

Most attempts to train part-of-speech tag-
gers on a mixture of labeled and unlabeled
data have failed. In this work stacked
learning is used to reduce tagging to a
classification task. This simplifies semi-
supervised training considerably. Our
prefered semi-supervised method com-
bines tri-training (Li and Zhou, 2005) and
disagreement-based co-training. On the
Wall Street Journal, we obtain an error re-
duction of 4.2% with SVMTool (Gimenez
and Marquez, 2004).

1 Introduction

Semi-supervised part-of-speech (POS) tagging is
relatively rare, and the main reason seems to be
that results have mostly been negative. Meri-
aldo (1994), in a now famous negative result, at-
tempted to improve HMM POS tagging by expec-
tation maximization with unlabeled data. Clark
et al. (2003) reported positive results with little
labeled training data but negative results when
the amount of labeled training data increased; the
same seems to be the case in Wang et al. (2007)
who use co-training of two diverse POS taggers.
Huang et al. (2009) present positive results for
self-training a simple bigram POS tagger, but re-
sults are considerably below state-of-the-art.

Recently researchers have explored alternative
methods. Suzuki and Isozaki (2008) introduce
a semi-supervised extension of conditional ran-
dom fields that combines supervised and unsuper-
vised probability models by so-called MDF pa-
rameter estimation, which reduces error on Wall
Street Journal (WSJ) standard splits by about 7%
relative to their supervised baseline. Spoustova
et al. (2009) use a new pool of unlabeled data
tagged by an ensemble of state-of-the-art taggers
in every training step of an averaged perceptron

POS tagger with 4–5% error reduction. Finally,
Søgaard (2009) stacks a POS tagger on an un-
supervised clustering algorithm trained on large
amounts of unlabeled data with mixed results.

This work combines a new semi-supervised
learning method to POS tagging, namely tri-
training (Li and Zhou, 2005), with stacking on un-
supervised clustering. It is shown that this method
can be used to improve a state-of-the-art POS tag-
ger, SVMTool (Gimenez and Marquez, 2004). Fi-
nally, we introduce a variant of tri-training called
tri-training with disagreement, which seems to
perform equally well, but which imports much less
unlabeled data and is therefore more efficient.

2 Tagging as classification

This section describes our dataset and our input
tagger. We also describe how stacking is used to
reduce POS tagging to a classification task. Fi-
nally, we introduce the supervised learning algo-
rithms used in our experiments.

2.1 Data
We use the POS-tagged WSJ from the Penn Tree-
bank Release 3 (Marcus et al., 1993) with the
standard split: Sect. 0–18 is used for training,
Sect. 19–21 for development, and Sect. 22–24 for
testing. Since we need to train our classifiers on
material distinct from the training material for our
input POS tagger, we save Sect. 19 for training our
classifiers. Finally, we use the (untagged) Brown
corpus as our unlabeled data. The number of to-
kens we use for training, developing and testing
the classifiers, and the amount of unlabeled data
available to it, are thus:

tokens
train 44,472
development 103,686
test 129,281
unlabeled 1,170,811
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The amount of unlabeled data available to our
classifiers is thus a bit more than 25 times the
amount of labeled data.

2.2 Input tagger
In our experiments we use SVMTool (Gimenez
and Marquez, 2004) with model type 4 run incre-
mentally in both directions. SVMTool has an ac-
curacy of 97.15% on WSJ Sect. 22-24 with this
parameter setting. Gimenez and Marquez (2004)
report that SVMTool has an accuracy of 97.16%
with an optimized parameter setting.

2.3 Classifier input
The way classifiers are constructed in our experi-
ments is very simple. We train SVMTool and an
unsupervised tagger, Unsupos (Biemann, 2006),
on our training sections and apply them to the de-
velopment, test and unlabeled sections. The re-
sults are combined in tables that will be the input
of our classifiers. Here is an excerpt:1

Gold standard SVMTool Unsupos
DT DT 17
NNP NNP 27
NNP NNS 17*
NNP NNP 17
VBD VBD 26

Each row represents a word and lists the gold
standard POS tag, the predicted POS tag and the
word cluster selected by Unsupos. For example,
the first word is labeled ’DT’, which SVMTool
correctly predicts, and it belongs to cluster 17 of
about 500 word clusters. The first column is blank
in the table for the unlabeled section.

Generally, the idea is that a classifier will learn
to trust SVMTool in some cases, but that it may
also learn that if SVMTool predicts a certain tag
for some word cluster the correct label is another
tag. This way of combining taggers into a single
end classifier can be seen as a form of stacking
(Wolpert, 1992). It has the advantage that it re-
duces POS tagging to a classification task. This
may simplify semi-supervised learning consider-
ably.

2.4 Learning algorithms
We assume some knowledge of supervised learn-
ing algorithms. Most of our experiments are im-
plementations of wrapper methods that call off-

1The numbers provided by Unsupos refer to clusters; ”*”
marks out-of-vocabulary words.

the-shelf implementations of supervised learning
algorithms. Specifically we have experimented
with support vector machines (SVMs), decision
trees, bagging and random forests. Tri-training,
explained below, is a semi-supervised learning
method which requires large amounts of data.
Consequently, we only used very fast learning al-
gorithms in the context of tri-training. On the de-
velopment section, decisions trees performed bet-
ter than bagging and random forests. The de-
cision tree algorithm is the C4.5 algorithm first
introduced in Quinlan (1993). We used SVMs
with polynomial kernels of degree 2 to provide a
stronger stacking-only baseline.

3 Tri-training

This section first presents the tri-training algo-
rithm originally proposed by Li and Zhou (2005)
and then considers a novel variant: tri-training
with disagreement.

Let L denote the labeled data and U the unla-
beled data. Assume that three classifiers c1, c2, c3

(same learning algorithm) have been trained on
three bootstrap samples of L. In tri-training, an
unlabeled datapoint in U is now labeled for a clas-
sifier, say c1, if the other two classifiers agree on
its label, i.e. c2 and c3. Two classifiers inform
the third. If the two classifiers agree on a label-
ing, there is a good chance that they are right.
The algorithm stops when the classifiers no longer
change. The three classifiers are combined by ma-
jority voting. Li and Zhou (2005) show that un-
der certain conditions the increase in classification
noise rate is compensated by the amount of newly
labeled data points.

The most important condition is that the three
classifiers are diverse. If the three classifiers are
identical, tri-training degenerates to self-training.
Diversity is obtained in Li and Zhou (2005) by
training classifiers on bootstrap samples. In their
experiments, they consider classifiers based on the
C4.5 algorithm, BP neural networks and naive
Bayes classifiers. The algorithm is sketched
in a simplified form in Figure 1; see Li and
Zhou (2005) for all the details.

Tri-training has to the best of our knowledge not
been applied to POS tagging before, but it has been
applied to other NLP classification tasks, incl. Chi-
nese chunking (Chen et al., 2006) and question
classification (Nguyen et al., 2008).
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1: for i ∈ {1..3} do
2: Si ← bootstrap sample(L)
3: ci ← train classifier(Si)
4: end for
5: repeat
6: for i ∈ {1..3} do
7: for x ∈ U do
8: Li ← ∅
9: if cj(x) = ck(x)(j, k 6= i) then

10: Li ← Li ∪ {(x, cj(x)}
11: end if
12: end for
13: ci ← train classifier(L ∪ Li)
14: end for
15: until none of ci changes
16: apply majority vote over ci

Figure 1: Tri-training (Li and Zhou, 2005).

3.1 Tri-training with disagreement
We introduce a possible improvement of the tri-
training algorithm: If we change lines 9–10 in the
algorithm in Figure 1 with the lines:

if cj(x) = ck(x) 6= ci(x)(j, k 6= i) then
Li ← Li ∪ {(x, cj(x)}

end if

two classifiers, say c1 and c2, only label a data-
point for the third classifier, c3, if c1 and c2 agree
on its label, but c3 disagrees. The intuition is
that we only want to strengthen a classifier in its
weak points, and we want to avoid skewing our
labeled data by easy data points. Finally, since tri-
training with disagreement imports less unlabeled
data, it is much more efficient than tri-training. No
one has to the best of our knowledge applied tri-
training with disagreement to real-life classifica-
tion tasks before.

4 Results

Our results are presented in Figure 2. The stacking
result was obtained by training a SVM on top of
the predictions of SVMTool and the word clusters
of Unsupos. SVMs performed better than deci-
sion trees, bagging and random forests on our de-
velopment section, but improvements on test data
were modest. Tri-training refers to the original al-
gorithm sketched in Figure 1 with C4.5 as learn-
ing algorithm. Since tri-training degenerates to

self-training if the three classifiers are trained on
the same sample, we used our implementation of
tri-training to obtain self-training results and vali-
dated our results by a simpler implementation. We
varied poolsize to optimize self-training. Finally,
we list results for a technique called co-forests (Li
and Zhou, 2007), which is a recent alternative to
tri-training presented by the same authors, and for
tri-training with disagreement (tri-disagr). The p-
values are computed using 10,000 stratified shuf-
fles.

Tri-training and tri-training with disagreement
gave the best results. Note that since tri-training
leads to much better results than stacking alone,
it is unlabeled data that gives us most of the im-
provement, not the stacking itself. The differ-
ence between tri-training and self-training is near-
significant (p <0.0150). It seems that tri-training
with disagreement is a competitive technique in
terms of accuracy. The main advantage of tri-
training with disagreement compared to ordinary
tri-training, however, is that it is very efficient.
This is reflected by the average number of tokens
in Li over the three learners in the worst round of
learning:

av. tokens in Li

tri-training 1,170,811
tri-disagr 173

Note also that self-training gave very good re-
sults. Self-training was, again, much slower than
tri-training with disagreement since we had to
train on a large pool of unlabeled data (but only
once). Of course this is not a standard self-training
set-up, but self-training informed by unsupervised
word clusters.

4.1 Follow-up experiments
SVMTool is one of the most accurate POS tag-
gers available. This means that the predictions
that are added to the labeled data are of very
high quality. To test if our semi-supervised learn-
ing methods were sensitive to the quality of the
input taggers we repeated the self-training and
tri-training experiments with a less competitive
POS tagger, namely the maximum entropy-based
POS tagger first described in (Ratnaparkhi, 1998)
that comes with the maximum entropy library in
(Zhang, 2004). Results are presented as the sec-
ond line in Figure 2. Note that error reduction is
much lower in this case.
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BL stacking tri-tr. self-tr. co-forests tri-disagr error red. p-value
SVMTool 97.15% 97.19% 97.27% 97.26% 97.13% 97.27% 4.21% <0.0001
MaxEnt 96.31% - 96.36% 96.36% 96.28% 96.36% 1.36% <0.0001

Figure 2: Results on Wall Street Journal Sect. 22-24 with different semi-supervised methods.

5 Conclusion

This paper first shows how stacking can be used to
reduce POS tagging to a classification task. This
reduction seems to enable robust semi-supervised
learning. The technique was used to improve the
accuracy of a state-of-the-art POS tagger, namely
SVMTool. Four semi-supervised learning meth-
ods were tested, incl. self-training, tri-training, co-
forests and tri-training with disagreement. All
methods increased the accuracy of SVMTool sig-
nificantly. Error reduction on Wall Street Jour-
nal Sect. 22-24 was 4.2%, which is comparable
to related work in the literature, e.g. Suzuki and
Isozaki (2008) (7%) and Spoustova et al. (2009)
(4–5%).
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Abstract

The Minimum Description Length (MDL)
principle is a method for model selection
that trades off between the explanation of
the data by the model and the complexity
of the model itself. Inspired by the MDL
principle, we develop an objective func-
tion for generative models that captures
the description of the data by the model
(log-likelihood) and the description of the
model (model size). We also develop a ef-
ficient general search algorithm based on
the MAP-EM framework to optimize this
function. Since recent work has shown that
minimizing the model size in a Hidden
Markov Model for part-of-speech (POS)
tagging leads to higher accuracies, we test
our approach by applying it to this prob-
lem. The search algorithm involves a sim-
ple change to EM and achieves high POS
tagging accuracies on both English and
Italian data sets.

1 Introduction

The Minimum Description Length (MDL) princi-
ple is a method for model selection that provides a
generic solution to the overfitting problem (Barron
et al., 1998). A formalization of Ockham’s Razor,
it says that the parameters are to be chosen that
minimize the description length of the data given
the model plus the description length of the model
itself.

It has been successfully shown that minimizing
the model size in a Hidden Markov Model (HMM)
for part-of-speech (POS) tagging leads to higher
accuracies than simply running the Expectation-
Maximization (EM) algorithm (Dempster et al.,
1977). Goldwater and Griffiths (2007) employ a
Bayesian approach to POS tagging and use sparse
Dirichlet priors to minimize model size. More re-

cently, Ravi and Knight (2009) alternately mini-
mize the model using an integer linear program
and maximize likelihood using EM to achieve the
highest accuracies on the task so far. However, in
the latter approach, because there is no single ob-
jective function to optimize, it is not entirely clear
how to generalize this technique to other prob-
lems. In this paper, inspired by the MDL princi-
ple, we develop an objective function for genera-
tive models that captures both the description of
the data by the model (log-likelihood) and the de-
scription of the model (model size). By using a
simple prior that encourages sparsity, we cast our
problem as a search for the maximum a poste-
riori (MAP) hypothesis and present a variant of
EM to approximately search for the minimum-
description-length model. Applying our approach
to the POS tagging problem, we obtain higher ac-
curacies than both EM and Bayesian inference as
reported by Goldwater and Griffiths (2007). On a
Italian POS tagging task, we obtain even larger
improvements. We find that our objective function
correlates well with accuracy, suggesting that this
technique might be useful for other problems.

2 MAP EM with Sparse Priors

2.1 Objective function

In the unsupervised POS tagging task, we are
given a word sequence w = w1, . . . ,wN and want
to find the best tagging t = t1, . . . , tN , where
ti ∈ T , the tag vocabulary. We adopt the problem
formulation of Merialdo (1994), in which we are
given a dictionary of possible tags for each word
type.

We define a bigram HMM

P(w, t | θ) =

N∏
i=1

P(w, t | θ) · P(ti | ti−1) (1)

In maximum likelihood estimation, the goal is to
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find parameter estimates

θ̂ = arg max
θ

log P(w | θ) (2)

= arg max
θ

log
∑

t
P(w, t | θ) (3)

The EM algorithm can be used to find a solution.
However, we would like to maximize likelihood
and minimize the size of the model simultane-
ously. We define the size of a model as the number
of non-zero probabilities in its parameter vector.
Let θ1, . . . , θn be the components of θ. We would
like to find

θ̂ = arg min
θ

(
− log P(w | θ) + α‖θ‖0

)
(4)

where ‖θ‖0, called the L0 norm of θ, simply counts
the number of non-zero parameters in θ. The
hyperparameter α controls the tradeoff between
likelihood maximization and model minimization.
Note the similarity of this objective function with
MDL’s, where α would be the space (measured
in nats) needed to describe one parameter of the
model.

Unfortunately, minimization of the L0 norm
is known to be NP-hard (Hyder and Mahata,
2009). It is not smooth, making it unamenable
to gradient-based optimization algorithms. There-
fore, we use a smoothed approximation,

‖θ‖0 ≈
∑

i

(
1 − e

−θi
β

)
(5)

where 0 < β ≤ 1 (Mohimani et al., 2007). For
smaller values of β, this closely approximates the
desired function (Figure 1). Inverting signs and ig-
noring constant terms, our objective function is
now:

θ̂ = arg max
θ

log P(w | θ) + α
∑

i

e
−θi
β

 (6)

We can think of the approximate model size as
a kind of prior:

P(θ) =
expα

∑
i e
−θi
β

Z
(7)

log P(θ) = α ·
∑

i

e
−θi
β − log Z (8)

where Z =
∫

dθ expα
∑

i e
−θi
β is a normalization

constant. Then our goal is to find the maximum
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Figure 1: Ideal model-size term and its approxima-
tions.

a posterior parameter estimate, which we find us-
ing MAP-EM (Bishop, 2006):

θ̂ = arg max
θ

log P(w, θ) (9)

= arg max
θ

(
log P(w | θ) + log P(θ)

)
(10)

Substituting (8) into (10) and ignoring the constant
term log Z, we get our objective function (6) again.

We can exercise finer control over the sparsity
of the tag-bigram and channel probability distri-
butions by using a different α for each:

arg max
θ

(
log P(w | θ) +

αc

∑
w,t

e
−P(w|t)

β + αt

∑
t,t′

e
−P(t′ |t)

β

)
(11)

In our experiments, we set αc = 0 since previ-
ous work has shown that minimizing the number
of tag n-gram parameters is more important (Ravi
and Knight, 2009; Goldwater and Griffiths, 2007).

A common method for preferring smaller mod-
els is minimizing the L1 norm,

∑
i |θi|. However,

for a model which is a product of multinomial dis-
tributions, the L1 norm is a constant.∑

i

|θi| =
∑

i

θi

=
∑

t

∑
w

P(w | t) +
∑

t′
P(t′ | t)


= 2|T |

Therefore, we cannot use the L1 norm as part of
the size term as the result will be the same as the
EM algorithm.
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2.2 Parameter optimization
To optimize (11), we use MAP EM, which is an it-
erative search procedure. The E step is the same as
in standard EM, which is to calculate P(t | w, θt),
where the θt are the parameters in the current iter-
ation t. The M step in iteration (t + 1) looks like

θt+1 = arg max
θ

(
EP(t|w,θt)

[
log P(w, t | θ)

]
+

αt

∑
t,t′

e
−P(t′ |t)

β

) (12)

Let C(t,w; t,w) count the number of times the
word w is tagged as t in t, and C(t, t′; t) the number
of times the tag bigram (t, t′) appears in t. We can
rewrite the M step as

θt+1 = arg max
θ

(∑
t

∑
w

E[C(t,w)] log P(w | t)+

∑
t

∑
t′

(
E[C(t, t′)] log P(t′ | t) + αte

−P(t′ |t)
β

) (13)

subject to the constraints
∑

w P(w | t) = 1 and∑
t′ P(t′ | t) = 1. Note that we can optimize each

term of both summations over t separately. For
each t, the term∑

w

E[C(t,w)] log P(w | t) (14)

is easily optimized as in EM: just let P(w | t) ∝
E[C(t,w)]. But the term∑

t′

(
E[C(t, t′)] log P(t′ | t) + αte

−P(t′ |t)
β

)
(15)

is trickier. This is a non-convex optimization prob-
lem for which we invoke a publicly available
constrained optimization tool, ALGENCAN (An-
dreani et al., 2007). To carry out its optimization,
ALGENCAN requires computation of the follow-
ing in every iteration:

• Objective function, defined in equation (15).
This is calculated in polynomial time using
dynamic programming.

• Constraints: gt =
∑

t′ P(t′ | t) − 1 = 0 for
each tag t ∈ T . Also, we constrain P(t′ | t) to
the interval [ε, 1].1

1We must have ε > 0 because of the log P(t′ | t) term
in equation (15). It seems reasonable to set ε � 1

N ; in our
experiments, we set ε = 10−7.

• Gradient of objective function:

∂F
∂P(t′ | t)

=
E[C(t, t′)]

P(t′ | t)
−
αt

β
e
−P(t′ |t)

β (16)

• Gradient of equality constraints:

∂gt

∂P(t′′ | t′)
=

1 if t = t′

0 otherwise
(17)

• Hessian of objective function, which is not
required but greatly speeds up the optimiza-
tion:

∂2F
∂P(t′ | t)∂P(t′ | t)

= −
E[C(t, t′)]
P(t′ | t)2 + αt

e
−P(t′ |t)

β

β2

(18)
The other second-order partial derivatives are
all zero, as are those of the equality con-
straints.

We perform this optimization for each instance
of (15). These optimizations could easily be per-
formed in parallel for greater scalability.

3 Experiments

We carried out POS tagging experiments on En-
glish and Italian.

3.1 English POS tagging
To set the hyperparameters αt and β, we prepared
three held-out sets H1,H2, and H3 from the Penn
Treebank. Each Hi comprised about 24, 000 words
annotated with POS tags. We ran MAP-EM for
100 iterations, with uniform probability initializa-
tion, for a suite of hyperparameters and averaged
their tagging accuracies over the three held-out
sets. The results are presented in Table 2. We then
picked the hyperparameter setting with the highest
average accuracy. These were αt = 80, β = 0.05.
We then ran MAP-EM again on the test data with
these hyperparameters and achieved a tagging ac-
curacy of 87.4% (see Table 1). This is higher than
the 85.2% that Goldwater and Griffiths (2007) ob-
tain using Bayesian methods for inferring both
POS tags and hyperparameters. It is much higher
than the 82.4% that standard EM achieves on the
test set when run for 100 iterations.

Using αt = 80, β = 0.05, we ran multiple ran-
dom restarts on the test set (see Figure 2). We find
that the objective function correlates well with ac-
curacy, and picking the point with the highest ob-
jective function value achieves 87.1% accuracy.
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αt
β

0.75 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 82.81 82.78 83.10 83.50 83.76 83.70 84.07 83.95 83.75
20 82.78 82.82 83.26 83.60 83.89 84.88 83.74 84.12 83.46
30 82.78 83.06 83.26 83.29 84.50 84.82 84.54 83.93 83.47
40 82.81 83.13 83.50 83.98 84.23 85.31 85.05 83.84 83.46
50 82.84 83.24 83.15 84.08 82.53 84.90 84.73 83.69 82.70
60 83.05 83.14 83.26 83.30 82.08 85.23 85.06 83.26 82.96
70 83.09 83.10 82.97 82.37 83.30 86.32 83.98 83.55 82.97
80 83.13 83.15 82.71 83.00 86.47 86.24 83.94 83.26 82.93
90 83.20 83.18 82.53 84.20 86.32 84.87 83.49 83.62 82.03

100 83.19 83.51 82.84 84.60 86.13 85.94 83.26 83.67 82.06
110 83.18 83.53 83.29 84.40 86.19 85.18 80.76 83.32 82.05
120 83.08 83.65 83.71 84.11 86.03 85.39 80.66 82.98 82.20
130 83.10 83.19 83.52 84.02 85.79 85.65 80.08 82.04 81.76
140 83.11 83.17 83.34 85.26 85.86 85.84 79.09 82.51 81.64
150 83.14 83.20 83.40 85.33 85.54 85.18 78.90 81.99 81.88

Table 2: Average accuracies over three held-out sets for English.

system accuracy (%)
Standard EM 82.4

+ random restarts 84.5
(Goldwater and Griffiths, 2007) 85.2
our approach 87.4

+ random restarts 87.1

Table 1: MAP-EM with a L0 norm achieves higher
tagging accuracy on English than (2007) and much
higher than standard EM.

system zero parameters bigram types
maximum possible 1389 –
EM, 100 iterations 444 924
MAP-EM, 100 iterations 695 648

Table 3: MAP-EM with a smoothed L0 norm
yields much smaller models than standard EM.

We also carried out the same experiment with stan-
dard EM (Figure 3), where picking the point with
the highest corpus probability achieves 84.5% ac-
curacy.

We also measured the minimization effect of the
sparse prior against that of standard EM. Since our
method lower-bounds all the parameters by ε, we
consider a parameter θi as a zero if θi ≤ ε. We
also measured the number of unique tag bigram
types in the Viterbi tagging of the word sequence.
Table 3 shows that our method produces much
smaller models than EM, and produces Viterbi
taggings with many fewer tag-bigram types.

3.2 Italian POS tagging

We also carried out POS tagging experiments on
an Italian corpus from the Italian Turin Univer-
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Figure 2: Tagging accuracy vs. objective func-
tion for 1152 random restarts of MAP-EM with
smoothed L0 norm.

sity Treebank (Bos et al., 2009). This test set com-
prises 21, 878 words annotated with POS tags and
a dictionary for each word type. Since this is all
the available data, we could not tune the hyperpa-
rameters on a held-out data set. Using the hyper-
parameters tuned on English (αt = 80, β = 0.05),
we obtained 89.7% tagging accuracy (see Table 4),
which was a large improvement over 81.2% that
standard EM achieved. When we tuned the hyper-
parameters on the test set, the best setting (αt =

120, β = 0.05 gave an accuracy of 90.28%.

4 Conclusion

A variety of other techniques in the literature have
been applied to this unsupervised POS tagging
task. Smith and Eisner (2005) use conditional ran-
dom fields with contrastive estimation to achieve
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αt
β

0.75 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 81.62 81.67 81.63 82.47 82.70 84.64 84.82 84.96 84.90
20 81.67 81.63 81.76 82.75 84.28 84.79 85.85 88.49 85.30
30 81.66 81.63 82.29 83.43 85.08 88.10 86.16 88.70 88.34
40 81.64 81.79 82.30 85.00 86.10 88.86 89.28 88.76 88.80
50 81.71 81.71 78.86 85.93 86.16 88.98 88.98 89.11 88.01
60 81.65 82.22 78.95 86.11 87.16 89.35 88.97 88.59 88.00
70 81.69 82.25 79.55 86.32 89.79 89.37 88.91 85.63 87.89
80 81.74 82.23 80.78 86.34 89.70 89.58 88.87 88.32 88.56
90 81.70 81.85 81.00 86.35 90.08 89.40 89.09 88.09 88.50

100 81.70 82.27 82.24 86.53 90.07 88.93 89.09 88.30 88.72
110 82.19 82.49 82.22 86.77 90.12 89.22 88.87 88.48 87.91
120 82.23 78.60 82.76 86.77 90.28 89.05 88.75 88.83 88.53
130 82.20 78.60 83.33 87.48 90.12 89.15 89.30 87.81 88.66
140 82.24 78.64 83.34 87.48 90.12 89.01 88.87 88.99 88.85
150 82.28 78.69 83.32 87.75 90.25 87.81 88.50 89.07 88.41

Table 4: Accuracies on test set for Italian.
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Figure 3: Tagging accuracy vs. likelihood for 1152
random restarts of standard EM.

88.6% accuracy. Goldberg et al. (2008) provide
a linguistically-informed starting point for EM to
achieve 91.4% accuracy. More recently, Chiang et
al. (2010) use GIbbs sampling for Bayesian in-
ference along with automatic run selection and
achieve 90.7%.

In this paper, our goal has been to investi-
gate whether EM can be extended in a generic
way to use an MDL-like objective function that
simultaneously maximizes likelihood and mini-
mizes model size. We have presented an efficient
search procedure that optimizes this function for
generative models and demonstrated that maxi-
mizing this function leads to improvement in tag-
ging accuracy over standard EM. We infer the hy-
perparameters of our model using held out data
and achieve better accuracies than (Goldwater and
Griffiths, 2007). We have also shown that the ob-
jective function correlates well with tagging accu-

racy supporting the MDL principle. Our approach
performs quite well on POS tagging for both En-
glish and Italian. We believe that, like EM, our
method can benefit from more unlabeled data, and
there is reason to hope that the success of these
experiments will carry over to other tasks as well.

Acknowledgements

We would like to thank Sujith Ravi, Kevin Knight
and Steve DeNeefe for their valuable input, and
Jason Baldridge for directing us to the Italian
POS data. This research was supported in part by
DARPA contract HR0011-06-C-0022 under sub-
contract to BBN Technologies and DARPA con-
tract HR0011-09-1-0028.

References
R. Andreani, E. G. Birgin, J. M. Martnez, and M. L.

Schuverdt. 2007. On Augmented Lagrangian meth-
ods with general lower-level constraints. SIAM
Journal on Optimization, 18:1286–1309.

A. Barron, J. Rissanen, and B. Yu. 1998. The min-
imum description length principle in coding and
modeling. IEEE Transactions on Information The-
ory, 44(6):2743–2760.

C. Bishop. 2006. Pattern Recognition and Machine
Learning. Springer.

J. Bos, C. Bosco, and A. Mazzei. 2009. Converting a
dependency treebank to a categorical grammar tree-
bank for italian. In Eighth International Workshop
on Treebanks and Linguistic Theories (TLT8).

D. Chiang, J. Graehl, K. Knight, A. Pauls, and S. Ravi.
2010. Bayesian inference for Finite-State transduc-
ers. In Proceedings of the North American Associa-
tion of Computational Linguistics.

213



A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Computational Linguistics, 39(4):1–
38.

Y. Goldberg, M. Adler, and M. Elhadad. 2008. EM can
find pretty good HMM POS-taggers (when given a
good start). In Proceedings of the ACL.

S. Goldwater and T. L. Griffiths. 2007. A fully
Bayesian approach to unsupervised part-of-speech
tagging. In Proceedings of the ACL.

M. Hyder and K. Mahata. 2009. An approximate L0
norm minimization algorithm for compressed sens-
ing. In Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing.

B. Merialdo. 1994. Tagging English text with a
probabilistic model. Computational Linguistics,
20(2):155–171.

H. Mohimani, M. Babaie-Zadeh, and C. Jutten. 2007.
Fast sparse representation based on smoothed L0
norm. In Proceedings of the 7th International Con-
ference on Independent Component Analysis and
Signal Separation (ICA2007).

S. Ravi and K. Knight. 2009. Minimized models for
unsupervised part-of-speech tagging. In Proceed-
ings of ACL-IJCNLP.

N. Smith. and J. Eisner. 2005. Contrastive estima-
tion: Training log-linear models on unlabeled data.
In Proceedings of the ACL.

214



Proceedings of the ACL 2010 Conference Short Papers, pages 215–219,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

SVD and Clustering for Unsupervised POS Tagging 

 

Michael Lamar* 

Division of Applied Mathematics 

Brown University 

Providence, RI, USA 

mlamar@dam.brown.edu 

 

Yariv Maron* 

Gonda Brain Research Center 

Bar-Ilan University 

Ramat-Gan, Israel 

syarivm@yahoo.com 

Mark Johnson 

Department of Computing 

Faculty of Science 

Macquarie University 

Sydney, Australia 

mjohnson@science.mq.edu.au 

Elie Bienenstock 

Division of Applied Mathematics 

and Department of Neuroscience 

Brown University 

Providence, RI, USA 

elie@brown.edu 

  

Abstract 

We revisit the algorithm of Schütze 

(1995) for unsupervised part-of-speech 

tagging. The algorithm uses reduced-rank 

singular value decomposition followed 

by clustering to extract latent features 

from context distributions. As imple-

mented here, it achieves state-of-the-art 

tagging accuracy at considerably less cost 

than more recent methods. It can also 

produce a range of finer-grained tag-

gings, with potential applications to vari-

ous tasks. 

1 Introduction 

While supervised approaches are able to solve 

the part-of-speech (POS) tagging problem with 

over 97% accuracy (Collins 2002; Toutanova et 

al. 2003), unsupervised algorithms perform con-

siderably less well. These models attempt to tag 

text without resources such as an annotated cor-

pus, a dictionary, etc. The use of singular value 

decomposition (SVD) for this problem was in-

troduced in Schütze (1995). Subsequently, a 

number of methods for POS tagging without a 

dictionary were examined, e.g., by Clark (2000), 

Clark (2003), Haghighi and Klein (2006), John-

son (2007), Goldwater and Griffiths (2007), Gao 

and Johnson (2008), and Graça et al. (2009).  

The latter two, using Hidden Markov Models 

(HMMs), exhibit the highest performances to 

date for fully unsupervised POS tagging.   

The revisited SVD-based approach presented 

here, which we call “two-step SVD” or SVD2, 

has four important characteristics. First, it 

achieves state-of-the-art tagging accuracy. 

Second, it requires drastically less computational 

effort than the best currently available models. 

Third, it demonstrates that state-of-the-art accu-

racy can be realized without disambiguation, i.e., 

without attempting to assign different tags to dif-

ferent tokens of the same type. Finally, with no 

significant increase in computational cost, SVD2 

can create much finer-grained labelings than typ-

ically produced by other algorithms. When com-

bined with some minimal supervision in post-

processing, this makes the approach useful for 

tagging languages that lack the resources re-

quired by fully supervised models. 

2 Methods 

Following the original work of Schütze (1995), 

we begin by constructing a right context matrix, 

R, and a left context matrix, L.  Rij counts the 

number of times in the corpus a token of word 

type i is immediately followed by a token of 

word type j. Similarly, Lij counts the number of 

times a token of type i is preceded by a token of 

type j. We truncate these matrices, including, in 

the right and left contexts, only the w1 most fre-

quent word types. The resulting L and R are of 

dimension Ntypes×w1, where Ntypes is the number 

of word types (spelling forms) in the corpus, and 

w1 is set to 1000. (The full Ntypes× Ntypes context 

matrices satisfy R = L
T
.) 

* These authors contributed equally. 
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Next, both context matrices are factored using 

singular value decomposition: 

L = UL SL VL
T
 

R = UR SR VR
T
. 

The diagonal matrices SL and SR (each of rank 

1000) are reduced down to rank r1 = 100 by re-

placing the 900 smallest singular values in each 

matrix with zeros, yielding SL
* 
and SR

*
.  We then 

form a pair of latent-descriptor matrices defined 

by:   

L
*
 = UL SL

*
 

R
*
 = UR SR

*
. 

Row i in matrix L
*
 (resp. R

*
) is the left (resp. 

right) latent descriptor for word type i. We next 

include a normalization step in which each row 

in each of L
* 

and R
*
 is scaled to unit length, 

yielding matrices L
** 

and R
**

. Finally, we form a 

single descriptor matrix D by concatenating these 

matrices into D = [L
** 
R

**
].  Row i in matrix D is 

the complete latent descriptor for word type i; 

this latent descriptor sits on the Cartesian product 

of two 100-dimensional unit spheres, hereafter 

the 2-sphere. 

We next categorize these descriptors into 

k1 = 500 groups, using a k-means clustering algo-

rithm. Centroid initialization is done by placing 

the k initial centroids on the descriptors of the k 

most frequent words in the corpus. As the de-

scriptors sit on the 2-sphere, we measure the 

proximity of a descriptor to a centroid by the dot 

product between them; this is equal to the sum of 

the cosines of the angles—computed on the left 

and right parts—between them. We update each 

cluster’s centroid as the weighted average of its 

constituents, the weight being the frequency of 

the word type; the centroids are then scaled, so 

they sit on the 2-sphere. Typically, only a few 

dozen iterations are required for full convergence 

of the clustering algorithm. 

We then apply a second pass of this entire 

SVD-and-clustering procedure. In this second 

pass, we use the k1 = 500 clusters from the first 

iteration to assemble a new pair of context ma-

trices. Now, Rij counts all the cluster-j (j=1… k1) 

words to the right of word i, and Lij counts all the 

cluster-j words to the left of word i. The new ma-

trices L and R have dimension Ntypes × k1. 

As in the first pass, we perform reduced-rank 

SVD, this time down to rank r2 = 300, and we 

again normalize the descriptors to unit length, 

yielding a new pair of latent descriptor matrices 

L
** 

and R
**

.  Finally, we concatenate L
** 

and R
** 

into a single matrix of descriptors, and cluster 

these descriptors into k2 groups, where k2 is the 

desired number of induced tags. We use the same 

weighted k-means algorithm as in the first pass, 

again placing the k initial centroids on the de-

scriptors of the k most frequent words in the cor-

pus. The final tag of any token in the corpus is 

the cluster number of its type. 

3 Data and Evaluation 

We ran the SVD2 algorithm described above on 

the full Wall Street Journal part of the Penn 

Treebank (1,173,766 tokens). Capitalization was 

ignored, resulting in Ntypes = 43,766, with only a 

minor effect on accuracy. Evaluation was done 

against the POS-tag annotations of the 45-tag 

PTB tagset (hereafter PTB45), and against the 

Smith and Eisner (2005) coarse version of the 

PTB tagset (hereafter PTB17). We selected the 

three evaluation criteria of Gao and Johnson 

(2008): M-to-1, 1-to-1, and VI. M-to-1 and 1-to-

1 are the tagging accuracies under the best many-

to-one map and the greedy one-to-one map re-

spectively; VI is a map-free information-

theoretic criterion—see Gao and Johnson (2008) 

for details. Although we find M-to-1 to be the 

most reliable criterion of the three, we include 

the other two criteria for completeness. 

In addition to the best M-to-1 map, we also 

employ here, for large values of k2, a prototype-

based M-to-1 map.  To construct this map, we 

first find, for each induced tag t, the word type 

with which it co-occurs most frequently; we call 

this word type the prototype of t. We then query 

the annotated data for the most common gold tag 

for each prototype, and we map induced tag t to 

this gold tag. This prototype-based M-to-1 map 

produces accuracy scores no greater—typically 

lower—than the best M-to-1 map. We discuss 

the value of this approach as a minimally-

supervised post-processing step in Section 5. 

4 Results 

Low-k performance. Here we present the per-

formance of the SVD2 model when k2, the num-

ber of induced tags, is the same or roughly the 

same as the number of tags in the gold stan-

dard—hence small. Table 1 compares the per-

formance of SVD2 to other leading models. Fol-

lowing Gao and Johnson (2008), the number of 

induced tags is 17 for PTB17 evaluation and 50 

for PTB45 evaluation. Thus, with the exception 

of Graça et al. (2009) who use 45 induced tags 

for PTB45, the number of induced tags is the 

same across each column of Table 1. 
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The performance of SVD2 compares favora-

bly to the HMM models. Note that SVD2 is a 

deterministic algorithm. The table shows, in pa-

rentheses, the standard deviations reported in 

Graça et al. (2009). For the sake of comparison 

with Graça et al. (2009), we also note that, with 

k2 = 45, SVD2 scores 0.659 on PTB45. The NVI 

scores (Reichart and Rappoport 2009) corres-

ponding to the VI scores for SVD2 are 0.938 for 

PTB17 and 0.885 for PTB45. To examine the 

sensitivity of the algorithm to its four parameters, 

w1, r1, k1, and r2, we changed each of these para-

meters separately by a multiplicative factor of 

either 0.5 or 2; in neither case did M-to-1 accura-

cy drop by more than 0.014. 

This performance was achieved despite the 

fact that the SVD2 tagger is mathematically 

much simpler than the other models. Our MAT-

LAB implementation of SVD2 takes only a few 

minutes to run on a desktop computer, in contrast 

to HMM training times of several hours or days 

(Gao and Johnson 2008; Johnson 2007). 

 

High-k performance.  Not suffering from the 

same computational limitations as other models, 

SVD2 can easily accommodate high numbers of 

induced tags, resulting in fine-grained labelings. 

The value of this flexibility is discussed in the 

next section. Figure 1 shows, as a function of k2, 

the tagging accuracy of SVD2 under both the 

best and the prototype-based M-to-1 maps (see 

Section 3), for both the PTB45 and the PTB17 

tagsets. The horizontal one-tag-per-word-type 

line in each panel is the theoretical upper limit 

for tagging accuracy in non-disambiguating 

models (such as SVD2). This limit is the fraction 

of all tokens in the corpus whose gold tag is the 

most frequent for their type.  

5 Discussion 

At the heart of the algorithm presented here is 

the reduced-rank SVD method of Schütze 

(1995), which transforms bigram counts into la-

tent descriptors. In view of the present work, 

which achieves state-of-the-art performance 

when evaluation is done with the criteria now in 

common use, Schütze's original work should 

rightly be praised as ahead of its time. The SVD2 

model presented here differs from Schütze's 

work in many details of implementation—not all 

of which are explicitly specified in Schütze 

(1995). In what follows, we discuss the features 

of SVD2 that are most critical to its performance. 

Failure to incorporate any one of them signifi-

Figure 1. Performance of the SVD2 algo-

rithm as a function of the number of induced 

tags. Top: PTB45; bottom: PTB17.  Each 

plot shows the tagging accuracy under the 

best and the prototype-based M-to-1 maps, as 

well as the upper limit for non-

disambiguating taggers. 

 M-to-1 1-to-1 VI 

Model PTB17 PTB45 PTB17 PTB45 PTB17 PTB45 

SVD2 0.730 0.660 0.513 0.467 3.02 3.84 

HMM-EM  0.647 0.621 0.431 0.405 3.86 4.48 

HMM-VB  0.637 0.605 0.514 0.461 3.44 4.28 

HMM-GS  0.674 0.660 0.466 0.499 3.46 4.04 

HMM-Sparse(32) 0.702(2.2) 0.654(1.0) 0.495 0.445   

VEM (10-1,10-1) 0.682(0.8) 0.546(1.7) 0.528 0.460   

Table 1.  Tagging accuracy under the best M-to-1 map, the greedy 1-to-1 map, and 

VI, for the full PTB45 tagset and  the reduced PTB17 tagset.  HMM-EM, HMM-VB 

and HMM-GS show the best results from Gao and Johnson (2008); HMM-Sparse(32) 

and VEM (10
-1

,10
-1

) show the best results from Graça et al. (2009). 
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cantly reduces the performance of the algorithm 

(M-to-1 reduced by 0.04 to 0.08). 

First, the reduced-rank left-singular vectors 

(for the right and left context matrices) are 

scaled, i.e., multiplied, by the singular values.  

While the resulting descriptors, the rows of L
* 

and R
*
, live in a much lower-dimensional space 

than the original context vectors, they are 

mapped by an angle-preserving map (defined by 

the matrices of right-singular vectors VL and VR) 

into vectors in the original space. These mapped 

vectors best approximate (in the least-squares 

sense) the original context vectors; they have the 

same geometric relationships as their equivalent 

high-dimensional images, making them good 

candidates for the role of word-type descriptors. 

A second important feature of the SVD2 algo-

rithm is the unit-length normalization of the la-

tent descriptors, along with the computation of 

cluster centroids as the weighted averages of 

their constituent vectors. Thanks to this com-

bined device, rare words are treated equally to 

frequent words regarding the length of their de-

scriptor vectors, yet contribute less to the place-

ment of centroids. 

Finally, while the usual drawback of k-means-

clustering algorithms is the dependency of the 

outcome on the initial—usually random—

placement of centroids, our initialization of the k 

centroids as the descriptors of the k most fre-

quent word types in the corpus makes the algo-

rithm fully deterministic, and improves its per-

formance substantially: M-to-1 PTB45 by 0.043, 

M-to-1 PTB17 by 0.063. 

As noted in the Results section, SVD2 is fairly 

robust to changes in all four parameters w1, r1, k1, 

and r2. The values used here were obtained by a  

coarse, greedy strategy, where each parameter 

was optimized independently. It is worth noting 

that dispensing with the second pass altogether, 

i.e., clustering directly the latent descriptor vec-

tors obtained in the first pass into the desired 

number of induced tags, results in a drop of 

Many-to-1 score of only 0.021 for the PTB45 

tagset and 0.009 for the PTB17 tagset. 

 

Disambiguation. An obvious limitation of 

SVD2 is that it is a non-disambiguating tagger, 

assigning the same label to all tokens of a type. 

However, this limitation per se is unlikely to be 

the main obstacle to the improvement of low-k 

performance, since, as is well known, the theo-

retical upper limit for the tagging accuracy of 

non-disambiguating models (shown in Fig. 1) is 

much higher than the current state-of-the-art for 

unsupervised taggers, whether disambiguating or 

not. 

To further gain insight into how successful 

current models are at disambiguating when they 

have the power to do so, we examined a collec-

tion of HMM-VB runs (Gao and Johnson 2008) 

and asked how the accuracy scores would change 

if, after training was completed, the model were 

forced to assign the same label to all tokens of 

the same type. To answer this question, we de-

termined, for each word type, the modal HMM 

state, i.e., the state most frequently assigned by 

the HMM to tokens of that type. We then re-

labeled all words with their modal label. The ef-

fect of thus eliminating the disambiguation ca-

pacity of the model was to slightly increase the 

tagging accuracy under the best M-to-1 map for 

every HMM-VB run (the average increase was 

0.026  for PTB17, and 0.015 for PTB45).  We 

view this as a further indication that, in the cur-

rent state of the art and with regards to tagging 

accuracy, limiting oneself to non-disambiguating 

models may not adversely affect performance.  

To the contrary, this limitation may actually 

benefit an approach such as SVD2. Indeed, on 

difficult learning tasks, simpler models often be-

have better than more powerful ones (Geman et 

al. 1992). HMMs are powerful since they can, in 

theory, induce both a system of tags and a system 

of contextual patterns that allow them to disam-

biguate word types in terms of these tags. How-

ever, carrying out both of these unsupervised 

learning tasks at once is problematic in view of 

the very large number of parameters to be esti-

mated compared to the size of the training data 

set. 

The POS-tagging subtask of disambiguation 

may then be construed as a challenge in its own 

right: demonstrate effective disambiguation in an 

unsupervised model. Specifically, show that tag-

ging accuracy decreases when the model's dis-

ambiguation capacity is removed, by re-labeling 

all tokens with their modal label, defined above. 

We believe that the SVD2 algorithm presented 

here could provide a launching pad for an ap-

proach that would successfully address the dis-

ambiguation challenge. It would do so by allow-

ing a gradual and carefully controlled amount of 

ambiguity into an initially non-disambiguating 

model. This is left for future work. 

 

Fine-grained labeling. An important feature of 

the SVD2 algorithm is its ability to produce a 

fine-grained labeling of the data, using a number 

of clusters much larger than the number of tags 
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in a syntax-motivated POS-tag system. Such 

fine-grained labelings can capture additional lin-

guistic features. To achieve a fine-grained labe-

ling, only the final clustering step in the SVD2 

algorithm needs to be changed; the computation-

al cost this entails is negligible. A high-quality 

fine-grained labeling, such as achieved by the 

SVD2 approach, may be of practical interest as 

an input to various types of unsupervised gram-

mar-induction algorithms (Headden et al. 2008). 

This application is left for future work. 

 

Prototype-based tagging. One potentially im-

portant practical application of a high-quality 

fine-grained labeling is its use for languages 

which lack any kind of annotated data. By first 

applying the SVD2 algorithm, word types are 

grouped together into a few hundred clusters. 

Then, a prototype word is automatically ex-

tracted from each cluster. This produces, in a 

completely unsupervised way, a list of only a 

few hundred words that need to be hand-tagged 

by an expert. The results shown in Fig. 1 indicate 

that these prototype tags can then be used to tag 

the entire corpus with only a minor decrease in 

accuracy compared to the best M-to-1 map—the 

construction of which requires a fully annotated 

corpus. Fig. 1 also indicates that, with only a few 

hundred prototypes, the gap left between the ac-

curacy thus achieved and the upper bound for 

non-disambiguating models is fairly small. 
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Abstract

We address the problem of selecting non-
domain-specific language model training
data to build auxiliary language models
for use in tasks such as machine transla-
tion. Our approach is based on comparing
the cross-entropy, according to domain-
specific and non-domain-specifc language
models, for each sentence of the text
source used to produce the latter language
model. We show that this produces better
language models, trained on less data, than
both random data selection and two other
previously proposed methods.

1 Introduction

Statistical N-gram language models are widely
used in applications that produce natural-language
text as output, particularly speech recognition and
machine translation. It seems to be a univer-
sal truth that output quality can always be im-
proved by using more language model training
data, but only if the training data is reasonably
well-matched to the desired output. This presents
a problem, because in virtually any particular ap-
plication the amount of in-domain data is limited.

Thus it has become standard practice to com-
bine in-domain data with other data, either by
combining N-gram counts from in-domain and
other data (usually weighting the counts in some
way), or building separate language models from
different data sources, interpolating the language
model probabilities either linearly or log-linearly.
Log-linear interpolation is particularly popular
in statistical machine translation (e.g., Brants et
al., 2007), because the interpolation weights can
easily be discriminatively trained to optimize an
end-to-end translation objective function (such as
BLEU) by making the log probability according to
each language model a separate feature function in
the overall translation model.

The normal practice when using multiple lan-
guages models in machine translation seems to be
to train models on as much data as feasible from
each source, and to depend on feature weight opti-
mization to down-weight the impact of data that is
less well-matched to the translation application. In
this paper, however, we show that for a data source
that is not entirely in-domain, we can improve the
match between the language model from that data
source and the desired application output by intel-
ligently selecting a subset of the available data as
language model training data. This not only pro-
duces a language model better matched to the do-
main of interest (as measured in terms of perplex-
ity on held-out in-domain data), but it reduces the
computational resources needed to exploit a large
amount of non-domain-specific data, since the re-
sources needed to filter a large amount of data are
much less (especially in terms of memory) than
those required to build a language model from all
the data.

2 Approaches to the Problem

Our approach to the problem assumes that we have
enough in-domain data to train a reasonable in-
domain language model, which we then use to
help score text segments from other data sources,
and we select segments based on a score cutoff op-
timized on held-out in-domain data.

We are aware of two comparable previous ap-
proaches. Lin et al. (1997) and Gao et al. (2002)
both used a method similar to ours, in which the
metric used to score text segments is their perplex-
ity according to the in-domain language model.
The candidate text segments with perplexity less
than some threshold are selected.

The second previous approach does not explic-
itly make use of an in-domain language model, but
is still applicable to our scenario. Klakow (2000)
estimates a unigram language model from the
entire non-domain-specific corpus to be selected
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from, and scores each candidate text segment from
that corpus by the change in the log likelihood
of the in-domain data according to the unigram
model, if that segment were removed from the cor-
pus used to estimate the unigram model. Those
segments whose removal would decrease the log
likelihood of the in-domain data more than some
threshold are selected.

Our method is a fairly simple variant of scoring
by perplexity according to an in-domain language
model. First, note that selecting segments based
on a perplexity threshold is equivalent to selecting
based on a cross-entropy threshold. Perplexity and
cross-entropy are monotonically related, since the
perplexity of a strings according to a modelM is
simply bHM (s), whereHM (s) is the cross-entropy
of s according toM and b is the base with re-
spect to which the cross-entropy is measured (e.g.,
bits or nats). However, instead of scoring text seg-
ments by perplexity or cross-entropy according to
the in-domain language model, we score them by
the difference of the cross-entropy of a text seg-
ment according to the in-domain language model
and the cross-entropy of the text segment accord-
ing to a language model trained on a random sam-
ple of the data source from which the text segment
is drawn.

To state this formally, letI be an in-domain data
set andN be a non-domain-specific (or otherwise
not entirely in-domain) data set. LetHI(s) be the
per-word cross-entropy, according to a language
model trained onI, of a text segments drawn from
N . Let HN (s) be the per-word cross-entropy ofs
according to a language model trained on a ran-
dom sample ofN . We partitionN into text seg-
ments (e.g., sentences), and score the segments ac-
cording toHI(s) − HN (s), selecting all text seg-
ments whose score is less than a thresholdT .

This method can be justified by reasoning sim-
liar to that used to derive methods for training
binary text classifiers without labeled negative
examples (Denis et al., 2002; Elkin and Noto,
2008). Let us imagine that our non-domain-
specific corpusN contains an in-domain subcor-
pusNI , drawn from the same distribution as our
in-domain corpusI. SinceNI is statistically just
like our in-domain dataI, it would seem to be a
good candidate for the data that we want to extract
from N . By a simple variant of Bayes rule, the
probabilityP (NI |s,N) of a text segments, drawn
randomly fromN , being inNI is given by

P (NI |s,N) =
P (s|NI , N)P (NI |N)

P (s|N)

Since NI is a subset ofN , P (s|NI , N) =
P (s|NI), and by our assumption about the rela-
tionship ofI andNI , P (s|NI) = P (s|I). Hence,

P (NI |s,N) =
P (s|I)P (NI |N)

P (s|N)

If we could estimate all the probabilities in the
right-hand side of this equation, we could use it
to select text segments that have a high probability
of being inNI .

We can estimateP (s|I) andP (s|N) by train-
ing language models onI and a sample ofN , re-
spectively. That leaves us onlyP (NI |N), to es-
timate, but we really don’t care whatP (NI |N)
is, because knowing that would still leave us won-
dering what threshold to set onP (NI |s,N). We
don’t care about classification accuracy; we care
only about the quality of the resulting language
model, so we might as well just attempt to find
a threshold onP (s|I)/P (s|N) that optimizes the
fit of the resulting language model to held-out in-
domain data.

Equivalently, we can work in the log domain
with the quantity log(P (s|I)) − log(P (s|N)).
This gets us very close to working with the differ-
ence in cross-entropies, becauseHI(s)−HN (s) is
just a length-normalized version oflog(P (s|I))−
log(P (s|N)), with the sign reversed. The rea-
son that we need to normalize for length is that
the value oflog(P (s|I)) − log(P (s|N)) tends to
correlate very strongly with text segment length.
If the candidate text segments vary greatly in
length—e.g., if we partitionN into sentences—
this correlation can be a serious problem.

We estimated this effect on a 1000-sentence
sample of our experimental data described be-
low, and found the correlation between sentence
log probability difference and sentence length to
be r = −0.92, while the cross-entropy differ-
ence was almost uncorrelated with sentence length
(r = 0.04). Hence, using sentence probability ra-
tios or log probability differences as our scoring
function would result in selecting disproportion-
ately very short sentences. We tested this in an
experiment not described here in detail, and found
it not to be significantly better as a selection crite-
rion than random selection.
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Corpus Sentence count Token count
Gigaword 133,310,562 3,445,946,266
Europarl train 1,651,392 48,230,859
Europarl test 2,000 55,566

Table 1: Corpus size statistics

3 Experiments

We have empirically evaluated our proposed
method for selecting data from a non-domain-
specific source to model text in a specific domain.
For the in-domain corpus, we chose the English
side of the English-French parallel text from re-
lease v5 of the Europarl corpus (Koehn, 2005).
This consists of proceedings of the European Par-
liament from 1999 through 2009. We used the
text from 1999 through 2008 as in-domain train-
ing data, and we used the first 2000 sentences
from January 2009 as test data. For the non-
domain-specific corpus, we used the LDC Eng-
lish Gigaword Third Edition (LDC Catalog No.:
LDC2007T07).

We used a simple tokenization scheme on all
data, splitting on white space and on boundaries
between alphanumeric and nonalphanumeric (e.g.,
punctuation) characters. With this tokenization,
the sizes of our data sets in terms of sentences and
tokens are shown in Table 1. The token counts in-
clude added end-of-sentence tokens.

To implement our data selection method we re-
quired one language model trained on the Europarl
training data and one trained on the Gigaword
data. To make these language models comparable,
and to show the feasibility of optimizing the fit to
the in-domain data without training a model on the
entire Gigaword corpus, we trained the Gigaword
language model for data selection on a random
sample of the Gigaword corpus of a similar size to
that of the Europarl training data: 1,874,051 sen-
tences, 48,459,945 tokens.

To further increase the comparability of these
Europarl and Gigaword language models, we re-
stricted the vocabulary of both models to the to-
kens appearing at least twice in the Europarl train-
ing data, treating all other tokens as instances of
<UNK>. With this vocabulary, 4-gram language
models were trained on both the Europarl training
data and the Gigaword random sample using back-
off absolute discounting (Ney et al. 1994), with a
discount of 0.7 used for all N-gram lengths. The

discounted probability mass at the unigram level
was added to the probability of<UNK>. A count
cutoff of 2 occurrences was applied to the trigrams
and 4-grams in estimating these models.

We computed the cross-entropy of each sen-
tence in the Gigaword corpus according to both
models, and scored each sentence by the differ-
ence in cross-entropy,HEp(s)−HGw(s). We then
selected subsets of the Gigaword data correspond-
ing to 8 cutoff points in the cross-entropy differ-
ence scores, and trained 4-gram models (again us-
ing absolute discounting with a discount of 0.7) on
each of these subsets and on the full Gigaword cor-
pus. These language models were estimated with-
out restricting the vocabulary or applying count
cutoffs, but the only parameters computed were
those needed to determine the perplexity of the
held-out Europarl test set, which saves a substan-
tial amount of computation in determining the op-
timal selection threshold.

We compared our selection method to three
other methods. As a baseline, we trained lan-
guage models on random subsets of the Gigaword
corpus of approximately equal size to the data
sets produced by the cutoffs we selected for the
cross-entropy difference scores. Next, we scored
all the Gigaword sentences by the cross-entropy
according to the Europarl-trained model alone.
As we noted above, this is equivalent to the in-
domain perplexity scoring method used by Lin et
al. (1997) and Gao et al. (2002). Finally, we im-
plemented Klakow’s (2000) method, scoring each
Gigaword sentence by removing it from the Giga-
word corpus and computing the difference in the
log likelihood of the Europarl corpus according to
unigram models trained on the Gigaword corpus
with and without that sentence. With the latter two
methods, we chose cutoff points in the resulting
scores to produce data sets approximately equal in
size to those obtained using our selection method.

4 Results

For all four selection methods, plots of test set per-
plexity vs. the number of training data tokens se-
lected are displayed in Figure 1. (Note that the
training data token counts are displayed on a log-
arithmic scale.) The test set perplexity for the lan-
guage model trained on the full Gigaword corpus
is 135. As we might expect, reducing training
data by random sampling always increases per-
plexity. Selecting Gigaword sentences by their
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Figure 1: Test set perplexity vs. training set size

Selection Method Original LM PPL Modified LM PPL
in-domain cross-entropy scoring 124.4 124.8
Klakow’s method 110.5 110.8
cross-entropy difference scoring 100.7 101.9

Table 2: Results adjusted for vocabulary coverage

cross-entropy according to the Europarl-trained
model is effective in reducing both test set perplex-
ity and training corpus size, with an optimum per-
plexity of 124, obtained with a model built from
36% of the Gigaword corpus. Klakow’s method
is even more effective, with an optimum perplex-
ity of 111, obtained with a model built from 21%
of the Gigaword corpus. The cross-entropy differ-
ence selection method, however, is yet more effec-
tive, with an optimum perplexity of 101, obtained
with a model built from less than 7% of the Giga-
word corpus.

The comparisons implied by Figure 1, how-
ever, are only approximate, because each perplex-
ity (even along the same curve) is computed with
respect to a different vocabulary, resulting in a dif-
ferent out-of-vocabulary (OOV) rate. OOV tokens
in the test data are excluded from the perplexity
computation, so the perplexity measurements are
not strictly comparable.

Out of the 55566 test set tokens, the number
of OOV tokens ranges from 418 (0.75%), for the
smallest training set based on in-domain cross-
entropy scoring, to 20 (0.03%), for training on
the full Gigaword corpus. If we consider only

the training sets that appear to produce the lowest
perplexity for each selection method, however, the
spread of OOV counts is much narrower, ranging
53 (0.10%) for best training set based on cross-
entropy difference scoring, to 20 (0.03%), for ran-
dom selection.

To control for the difference in vocabulary, we
estimated a modified 4-gram language model for
each selection method (other than random se-
lection) using the training set that appeared to
produce the lowest perplexity for that selection
method in our initial experiments. In the modified
language models, the unigram model based on the
selected training set is smoothed by absolute dis-
counting, and backed-off to an unsmoothed uni-
gram model based on the full Gigaword corpus.
This produces language models that are normal-
ized over the same vocabulary as a model trained
on the full Gigaword corpus; thus the test set has
the same OOVs for each model.

Test set perplexity for each of these modifed
language models is compared to that of the orig-
inal version of the model in Table 2. It can be
seen that adjusting the vocabulary in this way, so
that all models are based on the same vocabulary,
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yields only very small changes in the measured
test-set perplexity, and these differences are much
smaller than the differences between the different
selection methods, whichever way the vocabulary
of the language models is determined.

5 Conclusions

The cross-entropy difference selection method in-
troduced here seems to produce language mod-
els that are both a better match to texts in a re-
stricted domain, and require less data for train-
ing, than any of the other data selection methods
tested. This study is preliminary, however, in that
we have not yet shown improved end-to-end task
performance applying this approach, such as im-
proved BLEU scores in a machine translation task.
However, we believe there is reason to be opti-
mistic about this. When a language model trained
on non-domain-specific data is used in a statisti-
cal translation model as a separate feature func-
tion (as is often the case), lower perplexity on in-
domain target language test data derived from ref-
erence translations corresponds directly to assign-
ing higher language model feature scores to those
reference translations, which should in turn lead to
translation system output that matches reference
translations better.
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Abstract

Learning a tree substitution grammar is
very challenging due to derivational am-
biguity. Our recent approach used a
Bayesian non-parametric model to induce
good derivations from treebanked input
(Cohn et al., 2009), biasing towards small
grammars composed of small generalis-
able productions. In this paper we present
a novel training method for the model us-
ing a blocked Metropolis-Hastings sam-
pler in place of the previous method’s lo-
cal Gibbs sampler. The blocked sam-
pler makes considerably larger moves than
the local sampler and consequently con-
verges in less time. A core component
of the algorithm is a grammar transforma-
tion which represents an infinite tree sub-
stitution grammar in a finite context free
grammar. This enables efficient blocked
inference for training and also improves
the parsing algorithm. Both algorithms are
shown to improve parsing accuracy.

1 Introduction

Tree Substitution Grammar (TSG) is a compelling
grammar formalism which allows nonterminal
rewrites in the form of trees, thereby enabling
the modelling of complex linguistic phenomena
such as argument frames, lexical agreement and
idiomatic phrases. A fundamental problem with
TSGs is that they are difficult to estimate, even in
the supervised scenario where treebanked data is
available. This is because treebanks are typically
not annotated with their TSG derivations (how to
decompose a tree into elementary tree fragments);
instead the derivation needs to be inferred.

In recent work we proposed a TSG model which
infers an optimal decomposition under a non-
parametric Bayesian prior (Cohn et al., 2009).

This used a Gibbs sampler for training, which re-
peatedly samples for every node in every training
tree a binary value indicating whether the node is
or is not a substitution point in the tree’s deriva-
tion. Aggregated over the whole corpus, these val-
ues and the underlying trees specify the weighted
grammar. Local Gibbs samplers, although con-
ceptually simple, suffer from slow convergence
(a.k.a. poor mixing). The sampler can get easily
stuck because many locally improbable decisions
are required to escape from a locally optimal solu-
tion. This problem manifests itself both locally to
a sentence and globally over the training sample.
The net result is a sampler that is non-convergent,
overly dependent on its initialisation and cannot be
said to be sampling from the posterior.

In this paper we present a blocked Metropolis-
Hasting sampler for learning a TSG, similar to
Johnson et al. (2007). The sampler jointly updates
all the substitution variables in a tree, making
much larger moves than the local single-variable
sampler. A critical issue when developing a
Metroplis-Hastings sampler is choosing a suitable
proposal distribution, which must have the same
support as the true distribution. For our model the
natural proposal distribution is a MAP point esti-
mate, however this cannot be represented directly
as it is infinitely large. To solve this problem we
develop a grammar transformation which can suc-
cinctly represent an infinite TSG in an equivalent
finite Context Free Grammar (CFG). The trans-
formed grammar can be used as a proposal dis-
tribution, from which samples can be drawn in
polynomial time. Empirically, the blocked sam-
pler converges in fewer iterations and in less time
than the local Gibbs sampler. In addition, we also
show how the transformed grammar can be used
for parsing, which yields theoretical and empiri-
cal improvements over our previous method which
truncated the grammar.
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2 Background

A Tree Substitution Grammar (TSG; Bod et
al. (2003)) is a 4-tuple, G = (T,N, S,R), where
T is a set of terminal symbols, N is a set of non-
terminal symbols, S ∈ N is the distinguished root
nonterminal and R is a set of productions (rules).
The productions take the form of tree fragments,
called elementary trees (ETs), in which each in-
ternal node is labelled with a nonterminal and each
leaf is labelled with either a terminal or a nonter-
minal. The frontier nonterminal nodes in each ET
form the sites into which other ETs can be substi-
tuted. A derivation creates a tree by recursive sub-
stitution starting with the root symbol and finish-
ing when there are no remaining frontier nonter-
minals. Figure 1 (left) shows an example deriva-
tion where the arrows denote substitution. A Prob-
abilistic Tree Substitution Grammar (PTSG) as-
signs a probability to each rule in the grammar,
where each production is assumed to be condi-
tionally independent given its root nonterminal. A
derivation’s probability is the product of the prob-
abilities of the rules therein.

In this work we employ the same non-
parametric TSG model as Cohn et al. (2009),
which we now summarise. The inference prob-
lem within this model is to identify the posterior
distribution of the elementary trees e given whole
trees t. The model is characterised by the use of
a Dirichlet Process (DP) prior over the grammar.
We define the distribution over elementary trees e
with root nonterminal symbol c as

Gc|αc, P0 ∼ DP(αc, P0(·|c))
e|c ∼ Gc

where P0(·|c) (the base distribution) is a distribu-
tion over the infinite space of trees rooted with c,
and αc (the concentration parameter) controls the
model’s tendency towards either reusing elemen-
tary trees or creating novel ones as each training
instance is encountered.

Rather than representing the distribution Gc ex-
plicitly, we integrate over all possible values of
Gc. The key result required for inference is that
the conditional distribution of ei, given e−i,=
e1 . . . en\ei and the root category c is:

p(ei|e−i, c, αc, P0)=
n−i

ei,c

n−i
·,c + αc

+
αcP0(ei|c)
n−i
·,c + αc

(1)

where n−i
ei,c is the number number of times ei has

been used to rewrite c in e−i, and n−i
·,c =

∑
e n
−i
e,c
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Figure 1: TSG derivation and its corresponding Gibbs state
for the local sampler, where each node is marked with a bi-
nary variable denoting whether it is a substitution site.

is the total count of rewriting c. Henceforth we
omit the −i sub-/super-script for brevity.

A primary consideration is the definition of P0.
Each ei can be generated in one of two ways:
by drawing from the base distribution, where the
probability of any particular tree is proportional to
αcP0(ei|c), or by drawing from a cache of previ-
ous expansions of c, where the probability of any
particular expansion is proportional to the number
of times that expansion has been used before. In
Cohn et al. (2009) we presented base distributions
that favour small elementary trees which we ex-
pect will generalise well to unseen data. In this
work we show that if P0 is chosen such that it
decomposes with the CFG rules contained within
each elementary tree,1 then we can use a novel dy-
namic programming algorithm to sample deriva-
tions without ever enumerating all the elementary
trees in the grammar.

The model was trained using a local Gibbs sam-
pler (Geman and Geman, 1984), a Markov chain
Monte Carlo (MCMC) method in which random
variables are repeatedly sampled conditioned on
the values of all other random variables in the
model. To formulate the local sampler, we asso-
ciate a binary variable with each non-root inter-
nal node of each tree in the training set, indicat-
ing whether that node is a substitution point or
not (illustrated in Figure 1). The sampler then vis-
its each node in a random schedule and resamples
that node’s substitution variable, where the proba-
bility of the two different configurations are given
by (1). Parsing was performed using a Metropolis-
Hastings sampler to draw derivation samples for
a string, from which the best tree was recovered.
However the sampler used for parsing was biased

1Both choices of base distribution in Cohn et al. (2009)
decompose into CFG rules. In this paper we focus on the
better performing one, PC

0 , which combines a PCFG applied
recursively with a stopping probability, s, at each node.
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because it used as its proposal distribution a trun-
cated grammar which excluded all but a handful
of the unseen elementary trees. Consequently the
proposal had smaller support than the true model,
voiding the MCMC convergence proofs.

3 Grammar Transformation

We now present a blocked sampler using the
Metropolis-Hastings (MH) algorithm to perform
sentence-level inference, based on the work of
Johnson et al. (2007) who presented a MH sampler
for a Bayesian PCFG. This approach repeats the
following steps for each sentence in the training
set: 1) run the inside algorithm (Lari and Young,
1990) to calculate marginal expansion probabil-
ities under a MAP approximation, 2) sample an
analysis top-down and 3) accept or reject using a
Metropolis-Hastings (MH) test to correct for dif-
ferences between the MAP proposal and the true
model. Though our model is similar to John-
son et al. (2007)’s, we have an added complica-
tion: the MAP grammar cannot be estimated di-
rectly. This is a consequence of the base distri-
bution having infinite support (assigning non-zero
probability to infinitely many unseen tree frag-
ments), which means the MAP has an infinite rule
set. For example, if our base distribution licences
the CFG production NP→ NP PP then our TSG
grammar will contain the infinite set of elemen-
tary trees NP→ NP PP, NP→ (NP NP PP) PP,
NP→ (NP (NP NP PP) PP) PP, . . . with decreas-
ing but non-zero probability.

However, we can represent the infinite MAP us-
ing a grammar transformation inspired by Good-
man (2003), which represents the MAP TSG in an
equivalent finite PCFG.2 Under the transformed
PCFG inference is efficient, allowing its use as
the proposal distribution in a blocked MH sam-
pler. We represent the MAP using the grammar
transformation in Table 1 which separates the ne,c

and P0 terms in (1) into two separate CFGs, A and
B. Grammar A has productions for every ET with
ne,c ≥ 1 which are assigned unsmoothed proba-
bilities: omitting the P0 term from (1).3 Grammar
B has productions for every CFG production li-
censed under P0; its productions are denoted using

2Backoff DOP uses a similar packed representation to en-
code the set of smaller subtrees for a given elementary tree
(Sima’an and Buratto, 2003), which are used to smooth its
probability estimate.

3The transform assumes inside inference. For Viterbi re-
place the probability for c→ sign(e) with

n−e,c+αcP0(e|c)

n−·,c+αc
.

For every ET, e, rewriting c with non-zero count:

c→ sign(e)
n−e,c

n−·,c+αc

For every internal node ei in e with children ei,1, . . . , ei,n
sign(ei)→ sign(ei,1) . . . sign(ei,n) 1

For every nonterminal, c:
c→ c′ αc

n−·,c+αc

For every pre-terminal CFG production, c→ t:
c′ → t PCFG(c→ t)

For every unary CFG production, c→ a:
c′ → a PCFG(c→ a)sa
c′ → a′ PCFG(c→ a)(1− sa)

For every binary CFG production, c→ ab:
c′ → ab PCFG(c→ ab)sasb
c′ → ab′ PCFG(c→ ab)sa(1− sb)
c′ → a′b PCFG(c→ ab)(1− sa)sb
c′ → a′b′ PCFG(c→ ab)(1− sa)(1− sb)

Table 1: Grammar transformation rules to map a MAP TSG
into a CFG. Production probabilities are shown to the right of
each rule. The sign(e) function creates a unique string sig-
nature for an ET e (where the signature of a frontier node is
itself) and sc is the Bernoulli probability of c being a substi-
tution variable (and stopping the P0 recursion).

primed (’) nonterminals. The rule c → c′ bridges
from A to B, weighted by the smoothing term
excluding P0, which is computed recursively via
child productions. The remaining rules in gram-
mar B correspond to every CFG production in the
underlying PCFG base distribution, coupled with
the binary decision whether or not nonterminal
children should be substitution sites (frontier non-
terminals). This choice affects the rule probability
by including a s or 1 − s factor, and child sub-
stitution sites also function as a bridge back from
grammar B to A. In this way there are often two
equivalent paths to reach the same chart cell using
the same elementary tree – via grammar A using
observed TSG productions and via grammar B us-
ing P0 backoff; summing these yields the desired
net probability.

Figure 2 shows an example of the transforma-
tion of an elementary tree with non-zero count,
ne,c ≥ 1, into the two types of CFG rules. Both
parts are capable of parsing the string NP, saw, NP
into a S, as illustrated in Figure 3; summing the
probability of both analyses gives the model prob-
ability from (1). Note that although the probabili-
ties exactly match the true model for a single ele-
mentary tree, the probability of derivations com-
posed of many elementary trees may not match
because the model’s caching behaviour has been
suppressed, i.e., the counts, n, are not incremented
during the course of a derivation.

For training we define the MH sampler as fol-
lows. First we estimate the MAP grammar over
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S→ NP VP{V{saw},NP}
n−

e,S

n−·,S+αS

VP{V{saw},NP} → V{saw} NP 1
V{saw} → saw 1

S→ S’ αS

n−·,S+αS

S’→ NP VP’ PCFG(S→ NP VP)sNP (1− sV P )
VP’→ V’ NP PCFG(VP→ V NP)(1− sV )sNP
V’→ saw PCFG(V→ saw)

Figure 2: Example of the transformed grammar for the ET
(S NP (VP (V saw) NP)). Taking the product of the rule
scores above the line yields the left term in (1), and the prod-
uct of the scores below the line yields the right term.
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Figure 3: Example trees under the grammar transform, which
both encode the same TSG derivation from Figure 1. The left
tree encodes that the S→ NP (VP (V hates) NP elementary
tree was drawn from the cache, while for the right tree this
same elementary tree was drawn from the base distribution
(the left and right terms in (1), respectively).

the derivations of training corpus excluding the
current tree, which we represent using the PCFG
transformation. The next step is to sample deriva-
tions for a given tree, for which we use a con-
strained variant of the inside algorithm (Lari and
Young, 1990). We must ensure that the TSG
derivation produces the given tree, and therefore
during inside inference we only consider spans
that are constituents in the tree and are labelled
with the correct nonterminal. Nonterminals are
said to match their primed and signed counter-
parts, e.g., NP′ and NP{DT,NN{car}} both match
NP. Under the tree constraints the time complex-
ity of inside inference is linear in the length of the
sentence. A derivation is then sampled from the
inside chart using a top-down traversal (Johnson
et al., 2007), and converted back into its equiva-
lent TSG derivation. The derivation is scored with
the true model and accepted or rejected using the
MH test; accepted samples then replace the cur-
rent derivation for the tree, and rejected samples
leave the previous derivation unchanged. These
steps are then repeated for another tree in the train-
ing set, and the process is then repeated over the
full training set many times.

Parsing The grammar transform is not only use-
ful for training, but also for parsing. To parse a
sentence we sample a number of TSG derivations
from the MAP which are then accepted or rejected
into the full model using a MH step. The samples
are obtained from the same transformed grammar
but adapting the algorithm for an unsupervised set-
ting where parse trees are not available. For this
we use the standard inside algorithm applied to
the sentence, omitting the tree constraints, which
has time complexity cubic in the length of the sen-
tence. We then sample a derivation from the in-
side chart and perform the MH acceptance test.
This setup is theoretically more appealing than our
previous approach in which we truncated the ap-
proximation grammar to exclude most of the zero
count rules (Cohn et al., 2009). We found that
both the maximum probability derivation and tree
were considerably worse than a tree constructed
to maximise the expected number of correct CFG
rules (MER), based on Goodman’s (2003) algo-
rithm for maximising labelled recall. For this rea-
son we the MER parsing algorithm using sampled
Monte Carlo estimates for the marginals over CFG
rules at each sentence span.

4 Experiments

We tested our model on the Penn treebank using
the same data setup as Cohn et al. (2009). Specifi-
cally, we used only section 2 for training and sec-
tion 22 (devel) for reporting results. Our models
were all sampled for 5k iterations with hyperpa-
rameter inference for αc and sc ∀ c ∈ N , but in
contrast to our previous approach we did not use
annealing which we did not find to help general-
isation accuracy. The MH acceptance rates were
in excess of 99% across both training and parsing.
All results are averages over three runs.

For training the blocked MH sampler exhibits
faster convergence than the local Gibbs sam-
pler, as shown in Figure 4. Irrespective of the
initialisation the blocked sampler finds higher
likelihood states in many fewer iterations (the
same trend continues until iteration 5k). To be
fair, the blocked sampler is slower per iteration
(roughly 50% worse) due to the higher overheads
of the grammar transform and performing dy-
namic programming (despite nominal optimisa-
tion).4 Even after accounting for the time differ-

4The speed difference diminishes with corpus size: on
sections 2–22 the blocked sampler is only 19% slower per
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Figure 4: Training likelihood vs. iteration. Each sampling
method was initialised with both minimal and maximal ele-
mentary trees.

Training truncated transform
Local minimal init 77.63 77.98
Local maximal init 77.19 77.71

Blocked minimal init 77.98 78.40
Blocked maximal init 77.67 78.24

Table 2: Development F1 scores using the truncated pars-
ing algorithm and the novel grammar transform algorithm for
four different training configurations.

ence the blocked sampler is more effective than the
local Gibbs sampler. Training likelihood is highly
correlated with generalisation F1 (Pearson’s cor-
relation efficient of 0.95), and therefore improving
the sampler convergence will have immediate ef-
fects on performance.

Parsing results are shown in Table 2.5 The
blocked sampler results in better generalisation F1
scores than the local Gibbs sampler, irrespective of
the initialisation condition or parsing method used.
The use of the grammar transform in parsing also
yields better scores irrespective of the underlying
model. Together these results strongly advocate
the use of the grammar transform for inference in
infinite TSGs.

We also trained the model on the standard Penn
treebank training set (sections 2–21). We ini-
tialised the model with the final sample from a
run on the small training set, and used the blocked
sampler for 6500 iterations. Averaged over three
runs, the test F1 (section 23) was 85.3 an improve-

iteration than the local sampler.
5Our baseline ‘Local maximal init’ slightly exceeds pre-

viously reported score of 76.89% (Cohn et al., 2009).

ment over our earlier 84.0 (Cohn et al., 2009)
although still well below state-of-the-art parsers.
We conjecture that the performance gap is due to
the model using an overly simplistic treatment of
unknown words, and also a further mixing prob-
lems with the sampler. For the full data set the
counts are much larger in magnitude which leads
to stronger modes. The sampler has difficulty es-
caping such modes and therefore is slower to mix.
One way to solve the mixing problem is for the
sampler to make more global moves, e.g., with
table label resampling (Johnson and Goldwater,
2009) or split-merge (Jain and Neal, 2000). An-
other way is to use a variational approximation in-
stead of MCMC sampling (Wainwright and Jor-
dan, 2008).

5 Discussion

We have demonstrated how our grammar trans-
formation can implicitly represent an exponential
space of tree fragments efficiently, allowing us
to build a sampler with considerably better mix-
ing properties than a local Gibbs sampler. The
same technique was also shown to improve the
parsing algorithm. These improvements are in
no way limited to our particular choice of a TSG
parsing model, many hierarchical Bayesian mod-
els have been proposed which would also permit
similar optimised samplers. In particular mod-
els which induce segmentations of complex struc-
tures stand to benefit from this work; Examples
include the word segmentation model of Goldwa-
ter et al. (2006) for which it would be trivial to
adapt our technique to develop a blocked sampler.
Hierarchical Bayesian segmentation models have
also become popular in statistical machine transla-
tion where there is a need to learn phrasal transla-
tion structures that can be decomposed at the word
level (DeNero et al., 2008; Blunsom et al., 2009;
Cohn and Blunsom, 2009). We envisage similar
representations being applied to these models to
improve their mixing properties.

A particularly interesting avenue for further re-
search is to employ our blocked sampler for un-
supervised grammar induction. While it is diffi-
cult to extend the local Gibbs sampler to the case
where the tree is not observed, the dynamic pro-
gram for our blocked sampler can be easily used
for unsupervised inference by omitting the tree
matching constraints.
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Abstract
Motivated by the recent interest in stream-
ing algorithms for processing large text
collections, we revisit the work of
Ravichandran et al. (2005) on using the
Locality Sensitive Hash (LSH) method of
Charikar (2002) to enable fast, approxi-
mate comparisons of vector cosine simi-
larity. For the common case of feature
updates being additive over a data stream,
we show that LSH signatures can be main-
tained online, without additional approxi-
mation error, and with lower memory re-
quirements than when using the standard
offline technique.

1 Introduction

There has been a surge of interest in adapting re-
sults from the streaming algorithms community to
problems in processing large text collections. The
term streaming refers to a model where data is
made available sequentially, and it is assumed that
resource limitations preclude storing the entirety
of the data for offline (batch) processing. Statis-
tics of interest are approximated via online, ran-
domized algorithms. Examples of text applica-
tions include: collecting approximate counts (Tal-
bot, 2009; Van Durme and Lall, 2009a), finding
top-n elements (Goyal et al., 2009), estimating
term co-occurrence (Li et al., 2008), adaptive lan-
guage modeling (Levenberg and Osborne, 2009),
and building top-k ranklists based on pointwise
mutual information (Van Durme and Lall, 2009b).

Here we revisit the work of Ravichandran et al.
(2005) on building word similarity measures from
large text collections by using the Locality Sensi-
tive Hash (LSH) method of Charikar (2002). For
the common case of feature updates being addi-
tive over a data stream (such as when tracking
lexical co-occurrence), we show that LSH signa-
tures can be maintained online, without additional

approximation error, and with lower memory re-
quirements than when using the standard offline
technique.

We envision this method being used in conjunc-
tion with dynamic clustering algorithms, for a va-
riety of applications. For example, Petrovic et al.
(2010) made use of LSH signatures generated over
individual tweets, for the purpose of first story de-
tection. Streaming LSH should allow for the clus-
tering of Twitter authors, based on the tweets they
generate, with signatures continually updated over
the Twitter stream.

2 Locality Sensitive Hashing

We are concerned with computing the cosine sim-
ilarity of feature vectors, defined for a pair of vec-
tors ~u and ~v as the dot product normalized by their
lengths:

cosine−similarity(~u,~v) =
~u · ~v
|~u||~v|

.

This similarity is the cosine of the angle be-
tween these high-dimensional vectors and attains
a value of one (i.e., cos (0)) when the vectors are
parallel and zero (i.e., cos (π/2)) when orthogo-
nal.

Building on the seminal work of Indyk and
Motwani (1998) on locality sensitive hashing
(LSH), Charikar (2002) presented an LSH that
maps high-dimensional vectors to a much smaller
dimensional space while still preserving (cosine)
similarity between vectors in the original space.
The LSH algorithm computes a succinct signature
of the feature set of the words in a corpus by com-
puting d independent dot products of each feature
vector ~v with a random unit vector ~r, i.e.,

∑
i viri,

and retaining the sign of the d resulting products.
Each entry of ~r is drawn from the distribution
N(0, 1), the normal distribution with zero mean
and unit variance. Charikar’s algorithm makes use
of the fact (proved by Goemans and Williamson
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(1995) for an unrelated application) that the an-
gle between any two vectors summarized in this
fashion is proportional to the expected Hamming
distance of their signature vectors. Hence, we can
retain length d bit-signatures in the place of high
dimensional feature vectors, while preserving the
ability to (quickly) approximate cosine similarity
in the original space.

Ravichandran et al. (2005) made use of this al-
gorithm to reduce the computation in searching
for similar nouns by first computing signatures for
each noun and then computing similarity over the
signatures rather than the original feature space.

3 Streaming Algorithm

In this work, we focus on features that can be
maintained additively, such as raw frequencies.1

Our streaming algorithm for this problem makes
use of the simple fact that the dot product of the
feature vector with random vectors is a linear op-
eration. This permits us to replace the vi · ri op-
eration by vi individual additions of ri, once for
each time the feature is encountered in the stream
(where vi is the frequency of a feature and ri is the
randomly chosen Gaussian-distributed value asso-
ciated with this feature). The result of the final
computation is identical to the dot products com-
puted by the algorithm of Charikar (2002), but
the processing can now be done online. A simi-
lar technique, for stable random projections, was
independently discussed by Li et al. (2008).

Since each feature may appear multiple times
in the stream, we need a consistent way to retrieve
the random values drawn from N(0, 1) associated
with it. To avoid the expense of computing and
storing these values explicitly, as is the norm, we
propose the use of a precomputed pool of ran-
dom values drawn from this distribution that we
can then hash into. Hashing into a fixed pool en-
sures that the same feature will consistently be as-
sociated with the same value drawn from N(0, 1).
This introduces some weak dependence in the ran-
dom vectors, but we will give some analysis show-
ing that this should have very limited impact on
the cosine similarity computation, which we fur-
ther support with experimental evidence (see Ta-
ble 3).

Our algorithm traverses a stream of words and

1Note that Ravichandran et al. (2005) used pointwise mu-
tual information features, which are not additive since they
require a global statistic to compute.

Algorithm 1 STREAMING LSH ALGORITHM
Parameters:
m : size of pool
d : number of bits (size of resultant signature)
s : a random seed
h1, ..., hd : hash functions mapping 〈s, fi〉 to {0, . . . , m−1}
INITIALIZATION:
1: Initialize floating point array P [0, . . . , m− 1]
2: Initialize H , a hashtable mapping words to floating point

arrays of size d
3: for i := 0 . . . m− 1 do
4: P [i] := random sample from N(0, 1), using s as seed

ONLINE:
1: for each word w in the stream do
2: for each feature fi associated with w do
3: for j := 1 . . . d do
4: H[w][j] := H[w][j] + P [hj(s, fi)]

SIGNATURECOMPUTATION:

1: for each w ∈ H do
2: for i := 1 . . . d do
3: if H[w][i] > 0 then
4: S[w][i] := 1
5: else
6: S[w][i] := 0

maintains some state for each possible word that
it encounters (cf. Algorithm 1). In particular, the
state maintained for each word is a vector of float-
ing point numbers of length d. Each element of the
vector holds the (partial) dot product of the feature
vector of the word with a random unit vector. Up-
dating the state for a feature seen in the stream for
a given word simply involves incrementing each
position in the word’s vector by the random value
associated with the feature, accessed by hash func-
tions h1 through hd. At any point in the stream,
the vector for each word can be processed (in time
O(d)) to create a signature computed by checking
the sign of each component of its vector.

3.1 Analysis

The update cost of the streaming algorithm, per
word in the stream, is O(df), where d is the target
signature size and f is the number of features asso-
ciated with each word in the stream.2 This results
in an overall cost of O(ndf) for the streaming al-
gorithm, where n is the length of the stream. The
memory footprint of our algorithm isO(n0d+m),
where n0 is the number of distinct words in the
stream and m is the size of the pool of normally
distributed values. In comparison, the original
LSH algorithm computes signatures at a cost of
O(nf + n0dF ) updates and O(n0F + dF + n0d)
memory, where F is the (large) number of unique

2For the bigram features used in § 4, f = 2.
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features. Our algorithm is superior in terms of
memory (because of the pooling trick), and has the
benefit of supporting similarity queries online.

3.2 Pooling Normally-distributed Values
We now discuss why it is possible to use a
fixed pool of random values instead of generating
unique ones for each feature. Let g be the c.d.f.
of the distribution N(0, 1). It is easy to see that
picking x ∈ (0, 1) uniformly results in g−1(x) be-
ing chosen with distribution N(0, 1). Now, if we
select for our pool the values

g−1(1/m), g−1(2/m), . . . , g−1(1− 1/m),

for some sufficiently large m, then this is identical
to sampling from N(0, 1) with the caveat that the
accuracy of the sample is limited. More precisely,
the deviation from sampling from this pool is off
from the actual value by at most

max
i=1,...,m−2

{g−1((i+ 1)/m)− g−1(i/m)}.

By choosing m to be sufficiently large, we can
bound the error of the approximate sample from
a true sample (i.e., the loss in precision expressed
above) to be a small fraction (e.g., 1%) of the ac-
tual value. This would result in the same relative
error in the computation of the dot product (i.e.,
1%), which would almost never affect the sign of
the final value. Hence, pooling as above should
give results almost identical to the case where all
the random values were chosen independently. Fi-
nally, we make the observation that, for large m,
randomly choosing m values from N(0, 1) results
in a set of values that are distributed very similarly
to the pool described above. An interesting avenue
for future work is making this analysis more math-
ematically precise.

3.3 Extensions
Decay The algorithm can be extended to support
temporal decay in the stream, where recent obser-
vations are given higher relative weight, by mul-
tiplying the current sums by a decay value (e.g.,
0.9) on a regular interval (e.g., once an hour, once
a day, once a week, etc.).

Distributed The algorithm can be easily dis-
tributed across multiple machines in order to pro-
cess different parts of a stream, or multiple differ-
ent streams, in parallel, such as in the context of
the MapReduce framework (Dean and Ghemawat,

(a)

(b)

Figure 1: Predicted versus actual cosine values for 50,000
pairs, using LSH signatures generated online, with d = 32 in
Fig. 1(a) and d = 256 in Fig. 1(b).

2004). The underlying operation is a linear op-
erator that is easily composed (i.e., via addition),
and the randomness between machines can be tied
based on a shared seed s. At any point in process-
ing the stream(s), current results can be aggregated
by summing the d-dimensional vectors for each
word, from each machine.

4 Experiments

Similar to the experiments of Ravichandran et
al. (2005), we evaluated the fidelity of signature
generation in the context of calculating distribu-
tional similarity between words across a large
text collection: in our case, articles taken from
the NYTimes portion of the Gigaword corpus
(Graff, 2003). The collection was processed as a
stream, sentence by sentence, using bigram fea-
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d 16 32 64 128 256
SLSH 0.2885 0.2112 0.1486 0.1081 0.0769

LSH 0.2892 0.2095 0.1506 0.1083 0.0755

Table 1: Mean absolute error when using signatures gener-
ated online (StreamingLSH), compared to offline (LSH).

tures. This gave a stream of 773,185,086 tokens,
with 1,138,467 unique types. Given the number
of types, this led to a (sparse) feature space with
dimension on the order of 2.5 million.

After compiling signatures, fifty-thousand
〈x, y〉 pairs of types were randomly sampled
by selecting x and y each independently, with
replacement, from those types with at least 10 to-
kens in the stream (where 310,327 types satisfied
this constraint). The true cosine values between
each such x and y was computed based on offline
calculation, and compared to the cosine similarity
predicted by the Hamming distance between the
signatures for x and y. Unless otherwise specified,
the random pool size was fixed at m = 10, 000.

Figure 1 visually reaffirms the trade-off in LSH
between the number of bits and the accuracy of
cosine prediction across the range of cosine val-
ues. As the underlying vectors are strictly posi-
tive, the true cosine is restricted to [0, 1]. Figure 2
shows the absolute error between truth and predic-
tion for a similar sample, measured using signa-
tures of a variety of bit lengths. Here we see hori-
zontal bands arising from truly orthogonal vectors
leading to step-wise absolute error values tracked
to Hamming distance.

Table 1 compares the online and batch LSH al-
gorithms, giving the mean absolute error between
predicted and actual cosine values, computed for
the fifty-thousand element sample, using signa-
tures of various lengths. These results confirm that
we achieve the same level of accuracy with online
updates as compared to the standard method.

Figure 3 shows how a pool size as low as m =
100 gives reasonable variation in random values,
and that m = 10, 000 is sufficient. When using a
standard 32 bit floating point representation, this
is just 40 KBytes of memory, as compared to, e.g.,
the 2.5 GBytes required to store 256 random vec-
tors each containing 2.5 million elements.

Table 2 is based on taking an example for each
of three part-of-speech categories, and reporting
the resultant top-5 words as according to approx-
imated cosine similarity. Depending on the in-
tended application, these results indicate a range

Figure 2: Absolute error between predicted and true co-
sine for a sample of pairs, when using signatures of length
log2(d) ∈ {4, 5, 6, 7, 8}, drawn with added jitter to avoid
overplotting.
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Figure 3: Error versus pool size, when using d = 256.

of potentially sufficient signature lengths.

5 Conclusions

We have shown that when updates to a feature vec-
tor are additive, it is possible to convert the offline
LSH signature generation method into a stream-
ing algorithm. In addition to allowing for on-
line querying of signatures, our approach leads to
space efficiencies, as it does not require the ex-
plicit representation of either the feature vectors,
nor the random matrix. Possibilities for future
work include the pairing of this method with algo-
rithms for dynamic clustering, as well as exploring
algorithms for different distances (e.g., L2) and es-
timators (e.g., asymmetric estimators (Dong et al.,
2009)).
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London
Milan.97, Madrid.96, Stockholm.96, Manila.95, Moscow.95

ASHER0, Champaign0, MANS0, NOBLE0, come0

Prague1, Vienna1, suburban1, synchronism1, Copenhagen2

Frankfurt4, Prague4, Taszar5, Brussels6, Copenhagen6

Prague12, Stockholm12, Frankfurt14, Madrid14, Manila14

Stockholm20, Milan22, Madrid24, Taipei24, Frankfurt25
in

during.99, on.98, beneath.98, from.98, onto.97

Across0, Addressing0, Addy0, Against0, Allmon0

aboard0, mishandled0, overlooking0, Addressing1, Rejecting1

Rejecting2, beneath2, during2, from3, hamstringing3

during4, beneath5, of6, on7, overlooking7

during10, on13, beneath15, of17, overlooking17

sold
deployed.84, presented.83, sacrificed.82, held.82, installed.82

Bustin0, Diors0, Draining0, Kosses0, UNA0

delivered2, held2, marks2, seared2, Ranked3

delivered5, rendered5, presented6, displayed7, exhibited7

held18, rendered18, presented19, deployed20, displayed20

presented41, rendered42, held47, leased47, reopened47

Table 2: Top-5 items based on true cosine (bold), then using
minimal Hamming distance, given in top-down order when
using signatures of length log2(d) ∈ {4, 5, 6, 7, 8}. Ties bro-
ken lexicographically. Values given as subscripts.
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Abstract

In this paper we demonstrate that there
is a strong correlation between the Ques-
tion Answering (QA) accuracy and the
log-likelihood of the answer typing com-
ponent of our statistical QA model. We
exploit this observation in a clustering al-
gorithm which optimizes QA accuracy by
maximizing the log-likelihood of a set of
question-and-answer pairs. Experimental
results show that we achieve better QA ac-
curacy using the resulting clusters than by
using manually derived clusters.

1 Introduction

Question Answering (QA) distinguishes itself
from other information retrieval tasks in that the
system tries to return accurate answers to queries
posed in natural language. Factoid QA limits it-
self to questions that can usually be answered with
a few words. Typically factoid QA systems em-
ploy some form of question type analysis, so that
a question such asWhat is the capital of Japan?
will be answered with a geographical term. While
many QA systems use hand-crafted rules for this
task, such an approach is time-consuming and
doesn’t generalize well to other languages. Ma-
chine learning methods have been proposed, such
as question classification using support vector ma-
chines (Zhang and Lee, 2003) and language mod-
eling (Merkel and Klakow, 2007). In these ap-
proaches, question categories are predefined and a
classifier is trained on manually labeled data. This
is an example of supervised learning. In this pa-
per we present an unsupervised method, where we
attempt to cluster question-and-answer (q-a) pairs
without any predefined question categories, hence
no manually class-labeled questions are used.

We use a statistical QA framework, described in
Section 2, where the system is trained with clusters

of q-a pairs. This framework was used in several
TREC evaluations where it placed in the top 10
of participating systems (Whittaker et al., 2006).
In Section 3 we show that answer accuracy is
strongly correlated with the log-likelihood of the
q-a pairs computed by this statistical model. In
Section 4 we propose an algorithm to cluster q-a
pairs by maximizing the log-likelihood of a dis-
joint set of q-a pairs. In Section 5 we evaluate the
QA accuracy by training the QA system with the
resulting clusters.

2 QA system

In our QA framework we choose to model only
the probability of an answerA given a questionQ,
and assume that the answerA depends on two sets
of features:W = W (Q) andX = X(Q):

P (A|Q) = P (A|W, X), (1)

whereW represents a set of|W | features describ-
ing the question-type part ofQ such aswho, when,
where, which, etc., andX is a set of features
which describes the “information-bearing” part of
Q, i.e. what the question is actually about and
what it refers to. For example, in the questions
Where is Mount Fuji? and How high is Mount
Fuji?, the question type featuresW differ, while
the information-bearing featuresX are identical.
Finding the best answer̂A involves a search over
all A for the one which maximizes the probability
of the above model, i.e.:

Â = arg max
A

P (A|W, X). (2)

Given the correct probability distribution, this
will give us the optimal answer in a maximum
likelihood sense. Using Bayes’ rule, assuming
uniform P (A) and thatW and X are indepen-
dent of each other givenA, in addition to ignoring
P (W, X) since it is independent ofA, enables us
to rewrite Eq. (2) as
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Â = arg max
A

P (A | X)
︸ ︷︷ ︸

retrieval
model

· P (W | A)
︸ ︷︷ ︸

filter

model

. (3)

2.1 Retrieval Model

The retrieval modelP (A|X) is essentially a lan-
guage model which models the probability of an
answer sequenceA given a set of information-
bearing featuresX = {x1, . . . , x|X|}. This set
is constructed by extracting single-word features
from Q that are not present in a stop-list of high-
frequency words. The implementation of the re-
trieval model used for the experiments described
in this paper, models the proximity ofA to fea-
tures in X. It is not examined further here;
see (Whittaker et al., 2005) for more details.

2.2 Filter Model

The question-type feature setW = {w1, . . . , w|W |}
is constructed by extractingn-tuples (n = 1, 2, . . .)
such aswhere, in what and when were from the
input questionQ. We limit ourselves to extracting
single-word features. The 2522 most frequent
words in a collection of example questions are
considered in-vocabulary words; all other words
are out-of-vocabulary words, and substituted with
〈UNK〉.

Modeling the complex relationship between
W and A directly is non-trivial. We there-
fore introduce an intermediate variableCE =
{c1, . . . , c|CE |}, representing a set of classes of
example q-a pairs. In order to construct these
classes, given a setE = {t1, . . . , t|E|} of ex-
ample q-a pairs, we define a mapping function
f : E 7→ CE which maps each example q-a pairtj
for j = 1 . . . |E| into a particular classf(tj) = ce.
Thus each classce may be defined as the union of
all component q-a features from eachtj satisfy-
ing f(tj) = ce. Hence each classce constitutes a
cluster of q-a pairs. Finally, to facilitate modeling
we say thatW is conditionally independent ofA
givence so that,

P (W | A) =

|CE |∑

e=1

P (W | ce
W ) · P (ce

A | A), (4)

wherece
W andce

A refer to the subsets of question-
type features and example answers for the classce,
respectively.

P (W | ce
W ) is implemented as trigram langu-

age models with backoff smoothing using absolute
discounting (Huang et al., 2001).

Due to data sparsity, our set of example q-a
pairs cannot be expected to cover all the possi-
ble answers to questions that may ever be asked.
We therefore employ answer class modeling rather
than answer word modeling by expanding Eq. (4)
as follows:

P (W | A) =
|CE |∑

e=1

P (W | ce
W )·

|KA|∑

a=1

P (ce
A | ka)P (ka | A),

(5)

whereka is a concrete class in the set of|KA|
answer classesKA. These classes are generated
using the Kneser-Ney clustering algorithm, com-
monly used for generating class definitions for
class language models (Kneser and Ney, 1993).

In this paper we restrict ourselves to single-
word answers; see (Whittaker et al., 2005) for the
modeling of multi-word answers. We estimate
P (ce

A | kA) as

P (ce
A | kA) =

f(kA, ce
A)

|CE |∑

g=1

f(kA, cg
A)

, (6)

where

f(kA, ce
A) =

∑

∀i:i∈ce

A

δ(i ∈ kA)

|ce
A|

, (7)

and δ(·) is a discrete indicator function which
equals 1 if its argument evaluates true and 0 if
false.

P (ka | A) is estimated as

P (ka | A) =
1

∑

∀j:j∈Ka

δ(A ∈ j)
. (8)

3 The Relationship between Mean
Reciprocal Rank and Log-Likelihood

We use Mean Reciprocal Rank (MRR) as our
metric when evaluating the QA accuracy on a set
of questionsG = {g1...g|G|}:

MRR =

∑|G|
i=1

1/Ri

|G|
, (9)

237



 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

-1.18 -1.16 -1.14 -1.12

M
R

R

LL

ρ = 0.86

Figure 1:MRR vs.LL (average per q-a pair) for
100 random cluster configurations.

whereRi is the rank of the highest ranking correct
candidate answer forgi.

Given a setD = (d1...d|D|) of q-a pairs disjoint
from the q-a pairs inCE , we can, using Eq. (5),
calculate the log-likelihood as

LL =

|D|
∑

d=1

log P (Wd|Ad)

=

|D|
∑

d=1

log

|CE |∑

e=1

P (Wd | c
e
W )·

|KA|∑

a=1

P (ce
A | ka)P (ka | Ad).

(10)

To examine the relationship betweenMRR and
LL, we randomly generate configurationsCE ,
with a fixed cluster size of 4, and plot the result-
ing MRR andLL, computed on the same data set
D, as data points in a scatter plot, as seen in Fig-
ure 1. We find thatLL andMRR are strongly
correlated, with a correlation coefficientρ = 0.86.

This observation indicates that we should be
able to improve the answer accuracy of the QA
system by optimizing theLL of the filter model
in isolation, similar to how, in automatic speech
recognition, theLL of the language model can
be optimized in isolation to improve the speech
recognition accuracy (Huang et al., 2001).

4 Clustering algorithm

Using the observation thatLL is correlated with
MRR on the same data set, we expect that opti-
mizingLL on a development set (LLdev) will also
improveMRR on an evaluation set (MRReval).
Hence we propose the following greedy algorithm
to maximizeLLdev:

init: c1 ∈ CE contains all training pairs|E|
while improvement > threshold do

best LLdev ← −∞
for all j = 1...|E| do

original cluster = f(tj)
Taketj out off(tj)
for e = −1, 1...|CE |, |CE |+ 1 do

Puttj in ce

CalculateLLdev

if LLdev > best LLdev then
best LLdev ← LLdev

best cluster ← e
best pair ← j

end if
Taketj out of ce

end for
Puttj back inoriginal cluster

end for
Taketbest pair out off(tbest pair)
Puttbest pair into cbest cluster

end while

In this algorithm,c−1 indicates the set of train-
ing pairs outside the cluster configuration, thus ev-
ery training pair will not necessarily be included
in the final configuration.c|C|+1 refers to a new,
empty cluster, hence this algorithm automatically
finds the optimal number of clusters as well as the
optimal configuration of them.

5 Experiments

5.1 Experimental Setup

For our data sets, we restrict ourselves to questions
that start withwho, when or where. Furthermore,
we only use q-a pairs which can be answered with
a single word. As training data we use questions
and answers from the Knowledge-Master collec-
tion1. Development/evaluation questions are the
questions from TREC QA evaluations from TREC
2002 to TREC 2006, the answers to which are to
be retrieved from the AQUAINT corpus. In total
we have 2016 q-a pairs for training and 568 ques-
tions for development/evaluation. We are able to
retrieve the correct answer for 317 of the devel-
opment/evaluation questions, thus the theoretical
upper bound for our experiments is an answer ac-
curacy ofMRR = 0.558.

Accuracy is evaluated using 5-fold (rotating)
cross-validation, where in each fold the TREC
QA data is partitioned into a development set of

1http://www.greatauk.com/
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Configuration LLeval MRReval #clusters

manual -1.18 0.262 3
all-in-one -1.32 0.183 1

one-in-each -0.87 0.263 2016

automatic -0.24 0.281 4

Table 1: LLeval (average per q-a pair) and
MRReval (over all held-out TREC years), and
number of clusters (median of the cross-evaluation
folds) for the various configurations.

4 years’ data and an evaluation set of one year’s
data. For each TREC question the top 50 doc-
uments from the AQUAINT corpus are retrieved
using Lucene2. We use the QA system described
in Section 2 for QA evaluation. Our evaluation
metric isMRReval, andLLdev is our optimiza-
tion criterion, as motivated in Section 3.

Our baseline system uses manual clusters.
These clusters are obtained by putting allwho q-a
pairs in one cluster, allwhen pairs in a second and
all where pairs in a third. We compare this baseline
with using clusters resulting from the algorithm
described in Section 4. We run this algorithm until
there are no further improvements inLLdev. Two
other cluster configurations are also investigated:
all q-a pairs in one cluster (all-in-one), and each q-
a pair in its own cluster (one-in-each). The all-in-
one configuration is equivalent to not using the fil-
ter model, i.e. answer candidates are ranked solely
by the retrieval model. The one-in-each configura-
tion was shown to perform well in the TREC 2006
QA evaluation (Whittaker et al., 2006), where it
ranked 9th among 27 participants on the factoid
QA task.

5.2 Results

In Table 1, we see that the manual clusters (base-
line) achieves anMRReval of 0.262, while the
clusters resulting from the clustering algorithm
give anMRReval of 0.281, which is a relative
improvement of 7%. This improvement is sta-
tistically significant at the 0.01 level using the
Wilcoxon signed-rank test. The one-in-each clus-
ter configuration achieves anMRReval of 0.263,
which is not a statistically significant improvement
over the baseline. The all-in-one cluster configura-
tion (i.e. no filter model) has the lowest accuracy,
with anMRReval of 0.183.

2http://lucene.apache.org/
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Figure 2: MRR and LL (average per q-a pair)
vs. number of algorithm iterations for one cross-
validation fold.

6 Discussion

Manual inspection of the automatically derived
clusters showed that the algorithm had constructed
configurations where typicallywho, when and
where q-a pairs were put in separate clusters, as in
the manual configuration. However, in some cases
bothwho andwhere q-a pairs occurred in the same
cluster, so as to better answer questions likeWho
won the World Cup?, where the answer could be a
country name.

As can be seen from Table 1, there are only 4
clusters in the automatic configuration, compared
to 2016 in the one-in-each configuration. Since
the computational complexity of the filter model
described in Section 2.2 is linear in the number of
clusters, a beneficial side effect of our clustering
procedure is a significant reduction in the compu-
tational requirement of the filter model.

In Figure 2 we plotLL andMRR for one of
the cross-validation folds over multiple iterations
(thewhile loop) of the clustering algorithm in Sec-
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tion 4. It can clearly be seen that the optimization
of LLdev leads to improvement inMRReval, and
thatLLeval is also well correlated withMRReval.

7 Conclusions and Future Work

In this paper we have shown that the log-likelihood
of our statistical model is strongly correlated with
answer accuracy. Using this information, we have
clustered training q-a pairs by maximizing log-
likelihood on a disjoint development set of q-a
pairs. The experiments show that with these clus-
ters we achieve better QA accuracy than using
manually clustered training q-a pairs.

In future work we will extend the types of ques-
tions that we consider, and also allow for multi-
word answers.
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Abstract

Many NLP tasks need accurate knowl-
edge for semantic inference. To this end,
mostly WordNet is utilized. Yet Word-
Net is limited, especially for inference be-
tween predicates. To help filling this gap,
we present an algorithm that generates
inference rules between predicates from
FrameNet. Our experiment shows that the
novel resource is effective and comple-
ments WordNet in terms of rule coverage.

1 Introduction

Many text understanding applications, such as
Question Answering (QA) and Information Ex-
traction (IE), need to infer a target textual mean-
ing from other texts. This need was proposed as a
generic semantic inference task under the Textual
Entailment (TE) paradigm (Dagan et al., 2006).

A fundamental component in semantic infer-
ence is the utilization of knowledge resources.
However, a major obstacle to improving semantic
inference performance is the lack of such knowl-
edge (Bar-Haim et al., 2006; Giampiccolo et al.,
2007). We address one prominent type of infer-
ence knowledge known as entailment rules, focus-
ing specifically on rules between predicates, such
as ‘cure X ⇒ X recover’.

We aim at highly accurate rule acquisition,
for which utilizing manually constructed sources
seem appropriate. The most widely used manual
resource is WordNet (Fellbaum, 1998). Yet it is in-
complete for generating entailment rules between
predicates (Section 2.1). Hence, other manual re-
sources should also be targeted.

In this work1, we explore how FrameNet
(Baker et al., 1998) could be effectively used for
generating entailment rules between predicates.

1The detailed description of our work can be found in
(Ben Aharon, 2010).

FrameNet is a manually constructed database
based on Frame Semantics. It models the semantic
argument structure of predicates in terms of proto-
typical situations called frames.

Prior work utilized FrameNet’s argument map-
ping capabilities but took entailment relations
from other resources, namely WordNet. We
propose a novel method for generating entail-
ment rules from FrameNet by detecting the entail-
ment relations implied in FrameNet. We utilize
FrameNet’s annotated sentences and relations be-
tween frames to extract both the entailment rela-
tions and their argument mappings.

Our analysis shows that the rules generated by
our algorithm have a reasonable “per-rule” accu-
racy of about 70%2. We tested the generated rule-
set on an entailment testbed derived from an IE
benchmark and compared it both to WordNet and
to state-of-the-art rule generation from FrameNet.
Our experiment shows that our method outper-
forms prior work. In addition, our rule-set’s per-
formance is comparable to WordNet and it is com-
plementary to WordNet when uniting the two re-
sources. Finally, additional analysis shows that
our rule-set accuracy is 90% in practical use.

2 Background

2.1 Entailment Rules and their Acquisition

To generate entailment rules, two issues should
be addressed: a) identifying the lexical entailment
relations between predicates, e.g. ‘cure ⇒ re-
cover’; b) mapping argument positions, e.g. ‘cure
X ⇒ X recover’. The main approach for gener-
ating highly accurate rule-sets is to use manually
constructed resources. To this end, most systems
mainly utilize WordNet (Fellbaum, 1998), being
the most prominent lexical resource with broad
coverage of predicates. Furthermore, some of its

2The rule-set is available at: http://www.cs.biu.
ac.il/˜nlp/downloads
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relations capture types of entailment relations, in-
cluding synonymy, hypernymy, morphologically-
derived, entailment and cause.

Yet, WordNet is limited for entailment rule gen-
eration. First, many entailment relations, no-
tably for the WordNet entailment and cause re-
lation types, are missing, e.g. ‘elect ⇒ vote’.
Furthermore, WordNet does not include argument
mapping between related predicates. Thus, only
substitutable WordNet relations (synonymy and
hypernymy), for which argument positions are
preserved, could be used to generate entailment
rules. The other non-substitutable relations, e.g.
cause (‘kill ⇒ die’) and morphologically-derived
(‘meet.v⇔ meeting.n’), cannot be used.

2.2 FrameNet
FrameNet (Baker et al., 1998) is a knowledge-
base of frames, describing prototypical situations.
Frames can be related to each other by inter-frame
relations, e.g. Inheritance, Precedence, Usage and
Perspective.

For each frame, several semantic roles are spec-
ified, called frame elements (FEs), denoting the
participants in the situation described. Each FE
may be labeled as core if it is central to the frame.
For example, some core FEs of the Commerce pay
frame are Buyer and Goods, while a non-core FE
is Place. Each FE may also be labeled with a se-
mantic type, e.g. Sentient, Event, and Time.

A frame includes a list of predicates that can
evoke the described situation, called lexical units
(LUs). LUs are mainly verbs but may also be
nouns or adjectives. For example, the frame Com-
merce pay lists the LUs pay.v and payment.n.

Finally, FrameNet contains annotated sentences
that represent typical LU occurrences in texts.
Each annotation refers to one LU in a specific
frame and the FEs of the frame that occur in the
sentence. An example sentence is “IBuyer have to
pay the billsMoney”. Each sentence is accompa-
nied by a valence pattern, which provides, among
other info, grammatical functions of the core FEs
with respect to the LU. The valence pattern of the
above sentence is [(Buyer Subj), (Money Obj)].

2.3 Using FrameNet for Semantic Inference
To the best of our knowledge, the only work that
utilized FrameNet for entailment rule generation
is LexPar (Coyne and Rambow, 2009). LexPar
first identifies lexical entailment relations by go-
ing over all LU pairs which are either in the

same frame or whose frames are related by one of
FrameNet’s inter-frame relations. Each candidate
pair is considered entailing if the two LUs are ei-
ther synonyms or in a direct hypernymy relation in
WordNet (providing the vast majority of LexPar’s
relations), or if their related frames are connected
via the Perspective relation in FrameNet.

Then, argument mappings between each entail-
ing LU pair are extracted based on the core FEs
that are shared between the two LUs. The syntac-
tic positions of the shared FEs are taken from the
valence patterns of the LUs. A LexPar rule exam-
ple is presented in Figure 3 (top part).

Since most of LexPar’s entailment relations
are based on WordNet’s relations, LexPar’s rules
could be viewed as an intersection of WordNet and
FrameNet lexical relations, accompanied with ar-
gument mappings taken from FrameNet.

3 Rule Extraction from FrameNet

The above prior work identified lexical entailment
relations mainly from WordNet, which limits the
use of FrameNet in two ways. First, some rela-
tions that appear in FrameNet are missed because
they do not appear in WordNet. Second, unlike
FrameNet, WordNet does not include argument
mappings for its relations. Thus, prior work for
rule generation considered only substitutable rela-
tions from WordNet (synonyms and hypernyms),
not utilizing FrameNet’s capability to map argu-
ments of non-substitutable relations.

Our goal in this paper is to generate entail-
ment rules solely from the information within
FrameNet. We present a novel algorithm for gen-
erating entailment rules from FrameNet, called
FRED (FrameNet Entailment-rule Derivation),
which operates in three steps: a) extracting tem-
plates for each LU; b) detecting lexical entailment
relations between pairs of LUs; c) generating en-
tailment rules by mapping the arguments between
two LUs in each entailing pair.

3.1 Template Extraction

Many LUs in FrameNet are accompanied by an-
notated sentences (Section 2.2). From each sen-
tence of a given LU, we extract one template for
each annotated FE in the sentence. Each tem-
plate includes the LU, one argument correspond-
ing to the target FE and their syntactic relation
in the sentence parse-tree. We focus on extract-
ing unary templates, as they can describe any ar-
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Figure 1: Template extraction for a sentence con-
taining the LU ‘arrest’.

gument mapping by decomposing templates with
several arguments into unary ones (Szpektor and
Dagan, 2008). Figure 1 exemplifies this process.

As a pre-parsing step, all FE phrases in a given
sentence are replaced by their related FE names,
excluding syntactic information such as preposi-
tions or possessives (step (b) in Figure 1). Then,
the sentence is parsed using the Minipar depen-
dency parser (Lin, 1998) (step (c)). Finally, a
path in the parse-tree is extracted between each FE
node and the node of the LU (step (d)). Each ex-
tracted path is converted into a template by replac-
ing the FE node with an argument variable.

We simplify each extracted path by removing
nodes along the path that are not part of the syn-
tactic relation between the LU and the FE, such
as conjunctions and other FE nodes. For example,

‘Authorities
subj←− enter

conj−→ arrest’ is simplified

into ‘Authorities
subj←− arrest’.

Some templates originated from different anno-
tated sentences share the same LU and syntactic
structure, but differ in their FEs. Usually, one of
these templates is incorrect, due to erroneous parse

(e.g. ‘Suspect
obj←− arrest’ is a correct template, in

contrast to ‘Charges
obj←− arrest’). We thus keep

only the most frequently annotated template out of
the identical templates, assuming it is the correct
one.

3.2 Identifying Lexical Entailment Relations

FrameNet groups LUs in frames and describes re-
lations between frames. However, relations be-
tween LUs are not explicitly defined. We next de-
scribe how we automatically extract several types
of lexical entailment relations between LUs using
two approaches.

In the first approach, LUs in the same frame
that are morphological derivations of each other,
e.g. ‘negotiation.n’ and ‘negotiate.v’, are marked
as paraphrases. We take morphological derivation
information from the CATVAR database (Habash
and Dorr, 2003).

The second approach is based on our observa-
tion that some LUs express the prototypical situ-
ation that their frame describes, which we denote
dominant LUs. For example, the LU ‘recover’ is
dominant for the Recovery frame. We mark LUs
as dominant if they are morphologically derived
from the frame’s name.

Our assumption is that since dominant LUs ex-
press the frame’s generic meaning, their meaning
is likely to be entailed by the other LUs in this
frame. Consequently, we generate such lexical
rules between any dominant LU and any other LU
in a given frame, e.g. ‘heal⇒ recover’ and ‘con-
valescence⇒ recover’ for the Recovery frame.

In addition, we assume that if two frames are
related by some type of entailment relation, their
dominant LUs are also related by the same rela-
tion. Accordingly, we extract entailment relations
between dominant LUs of frames that are con-
nected via the Inheritance, Cause and Perspective
relations, where Inheritance and Cause generate
directional entailment relations (e.g. ‘choose ⇒
decide’ and ‘cure⇒ recover’, respectively) while
Perspective generates bidirectional paraphrase re-
lations (e.g. ‘transfer⇔ receive’).

Finally, we generate the transitive closure of
the set of lexical relations identified by the above
methods. For example, the combination of ‘sell⇔
buy’ and ‘buy⇒ get’ generates ‘sell⇒ get’.

3.3 Generating Entailment Rules

The final step in the FRED algorithm generates
lexical syntactic entailment rules from the ex-
tracted templates and lexical entailment relations.

For each identified lexical relation ‘left⇒ right’
between two LUs, the set of FEs that are shared by
both LUs is collected. Then, for each shared FE,
we take the list of templates that connect this FE
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Lexical Relation:
cure⇒ recovery

Templates:
Patient

obj←− cure (cure Patient)

Affliction
of←− cure (cure of Affliction)

Patient
gen←− recovery (Patient’s recovery)

Patient
of←− recovery (recovery of Patient)

Affliction
from←− recovery (recovery from Affliction)

Intra-LU Entailment Rules:
Patient

gen←− recovery⇐⇒ Patient
of←− recovery

Inter-LU Entailment Rules:
Patient

obj←− cure =⇒ Patient
gen←− recovery

Patient
obj←− cure =⇒ Patient

of←− recovery

Affliction
of←− cure =⇒ Affliction

from←− recovery

Figure 2: Some entailment rules generated for the
lexical relation ‘cure.v⇒ recovery.n’.

Configuration R (%) P (%) F1
No-Rules 13.8 57.7 20.9
LexPar 14.1 42.9 17.4
WordNet 18.3 32.2 17.8
FRED 17.6 55.1 24.6
FRED ∪WordNet 21.8 33.3 20.9

Table 1: Macro average Recall (R), Precision (P)
and F1 results for the tested configurations.

to each of the LUs, denoted by T fe
left and T fe

right.

Finally, for each template pair, l ∈ T fe
left and r ∈

T fe
right, the rule ‘l ⇒ r’ is generated. In addition,

we generate paraphrase rules between the various
templates including the same FE and the same LU.
Figure 2 illustrates this process.

To improve rule quality, we filter out rules that
map FEs of adjunct-like semantic types, such as
Time and Location, since different templates of
such FEs may have different semantic meanings

(e.g. ‘Time
before←− arrive’ ‘Time

after←− arrive’).
Thus, it is hard to identify those template pairs that
correctly map these FEs for entailment.

We manually evaluated a random sample of 250
rules from the resulting rule-set, out of which we
judged 69% as correct.

4 Application-based Evaluation

4.1 Experimental Setup

We would like to evaluate the overall utility of our
resource for NLP applications, assessing the cor-
rectness of the actual rule applications performed

in practice, as well as to compare its performance
to related resources. To this end, we follow the ex-
perimental setup presented in (Szpektor and Da-
gan, 2009), which utilized the ACE 2005 event
dataset3 as a testbed for entailment rule-sets. We
briefly describe this setup here.

The task is to extract argument mentions for
26 events, such as Sue and Attack, from the ACE
annotated corpus, using a given tested entailment
rule-set. Each event is represented by a set of
unary seed templates, one for each event argu-
ment. Some seed templates for Attack are ‘At-

tacker
subj←−attack’ and ‘attack

obj−→Target’.
Argument mentions are found in the ACE cor-

pus by matching either the seed templates or tem-
plates entailing them found in the tested rule-set.
We manually added for each event its relevant
WordNet synset-ids and FrameNet frame-ids, so
only rules fitting the event target meaning will be
extracted from the tested rule-sets.

4.2 Tested Configurations

We evaluated several rule-set configurations:

No-Rules The system matches only the seed
templates directly, without any additional rules.

WordNet Rules are generated from WordNet
3.0, using only the synonymy and hypernymy rela-
tions (see Section 2.1). Transitive chaining of re-
lations is allowed (Moldovan and Novischi, 2002).

LexPar Rules are generated from the publicly
available LexPar database. We generated unary
rules from each LexPar rule based on a manually
constructed mapping from FrameNet grammatical
functions to Minipar dependency relations. Fig-
ure 3 presents an example of this procedure.

FRED Rules are generated by our algorithm.

FRED ∪WordNet The union of the rule-sets of
FRED and WordNet.

4.3 Results

Each configuration was tested on each ACE event.
We measured recall, precision and F1. Table 1
reports macro averages of the three measures over
the 26 ACE events.

As expected, using No-Rules achieves the high-
est precision and the lowest recall compared to all
other configurations. When adding LexPar rules,

3http://projects.ldc.upenn.edu/ace/
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LexPar rule:
Lexemes: arrest −→ apprehend
Valencies: [(Authorities Subj), (Suspect Obj), (Offense (for))] =⇒ [(Authorities Subj), (Suspect Obj), (Offense (in))]

Generated unary rules:
X

subj←− arrest =⇒ X
subj←− apprehend , arrest

obj−→ Y =⇒ apprehend
obj−→ Y , arrest

for−→ Z =⇒ apprehend in−→ Z

Figure 3: An example for generation of unary entailment rules from a LexPar rule.

only a slight increase in recall is gained. This
shows that the subset of WordNet rules captured
by LexPar (Section 2.3) might be too small for the
ACE application setting.

When using all WordNet’s substitutable rela-
tions, a substantial relative increase in recall is
achieved (32%). Yet, precision decreases dramat-
ically (relative decrease of 44%), causing an over-
all decrease in F1. Most errors are due to correct
WordNet rules whose LHS is ambiguous. Since
we do not apply a WSD module, these rules are
also incorrectly applied to other senses of the LHS.
While this phenomenon is common to all rule-sets,
WordNet suffers from it the most since it contains
many infrequent word senses.

Our main result is that using FRED’s rule-set,
recall increases significantly, a relative increase
of 27% compared to No-Rules, while precision
hardly decreases. Hence, overall F1 is the high-
est compared to all other configurations (a rela-
tive increase of 17% compared to No-Rules). The
improvement in F1 is statistically significant com-
pared to all other configurations, according to the
two-sided Wilcoxon signed rank test at the level of
0.01 (Wilcoxon, 1945).

FRED preforms significantly better than LexPar
in both recall, precision and F1 (a relative increase
of 25%, 28% and 41% respectively). For example,
LexPar hardly utilizes FrameNet’s argument map-
ping capabilities since most of its rules are based
on a sub-set of WordNet’s substitutable relations.

FRED’s precision is substantially higher than
WordNet. This mostly results from the fact
that FrameNet mainly contains common senses
of predicates while WordNet includes many rare
word senses; which, as said above, harms preci-
sion when WSD is not applied. Error analysis
showed that only 7.5% of incorrect extractions are
due to erronous rules in FRED, while the majority
of errors are due to sense mismatch or syntactic
matching errors of the seed templates ot entailing
templates in texts.

FRED’s Recall is somewhat lower than Word-

Net, since FrameNet is a much smaller resource.
Yet, its rules are mostly complementary to those
from WordNet. This added value is demon-
strated by the 19% recall increase for the union of
FRED and WordNet rule-sets compared to Word-
Net alone. FRED provides mainly argument map-
pings for non-substitutable WordNet relations, e.g.
‘attack.n on X ⇒ attack.v X’, but also lexical re-
lations that are missing from WordNet, e.g. ‘am-
bush.v⇒ attack.v’.

Overall, our experiment shows that the rule-
base generated by FRED seems an appropri-
ate complementary resource to the widely used
WordNet-based rules in semantic inference and
expansion over predicates. This suggestion is es-
pecially appealing since our rule-set performs well
even when a WSD module is not applied.

5 Conclusions

We presented FRED, a novel algorithm for gener-
ating entailment rules solely from the information
contained in FrameNet. Our experiment showed
that FRED’s rules perform substantially better
than LexPar, the only prior rule-set derived from
FrameNet. In addition, FRED’s rule-set largely
complements the rules generated from WordNet
because it contains argument mappings between
non-substitutable predicates, which are missing
from WordNet, as well as lexical relations that are
not included in WordNet.

In future work we plan to investigate combin-
ing FrameNet and WordNet rule-sets in a transitive
manner, instead of their simple union.
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Abstract

Researchers in textual entailment have
begun to consider inferences involving
downward-entailing operators, an inter-
esting and important class of lexical items
that change the way inferences are made.
Recent work proposed a method for learn-
ing English downward-entailing operators
that requires access to a high-quality col-
lection of negative polarity items (NPIs).
However, English is one of the very few
languages for which such a list exists. We
propose the first approach that can be ap-
plied to the many languages for which
there is no pre-existing high-precision
database of NPIs. As a case study, we
apply our method to Romanian and show
that our method yields good results. Also,
we perform a cross-linguistic analysis that
suggests interesting connections to some
findings in linguistic typology.

1 Introduction
Cristi: “Nicio” ... is that adjective you’ve mentioned.
Anca: A negative pronominal adjective.
Cristi: You mean there are people who analyze that

kind of thing?
Anca: The Romanian Academy.
Cristi: They’re crazy.

—From the movie Police, adjective

Downward-entailing operators are an interest-
ing and varied class of lexical items that change
the default way of dealing with certain types of
inferences. They thus play an important role in
understanding natural language [6, 18–20, etc.].

We explain what downward entailing means by
first demonstrating the “default” behavior, which
is upward entailing. The word ‘observed’ is an
example upward-entailing operator: the statement

(i) ‘Witnesses observed opium use.’
implies
(ii) ‘Witnesses observed narcotic use.’

but not vice versa (we write i ⇒ ( 6⇐) ii). That
is, the truth value is preserved if we replace the

argument of an upward-entailing operator by a su-
perset (a more general version); in our case, the set
‘opium use’ was replaced by the superset ‘narcotic
use’.

Downward-entailing (DE) (also known as
downward monotonic or monotone decreasing)
operators violate this default inference rule: with
DE operators, reasoning instead goes from “sets to
subsets”. An example is the word ‘bans’:

‘The law bans opium use’
6⇒ (⇐)

‘The law bans narcotic use’.

Although DE behavior represents an exception to
the default, DE operators are as a class rather com-
mon. They are also quite diverse in sense and
even part of speech. Some are simple negations,
such as ‘not’, but some other English DE opera-
tors are ‘without’, ‘reluctant to’, ‘to doubt’, and
‘to allow’.1 This variety makes them hard to ex-
tract automatically.

Because DE operators violate the default “sets
to supersets” inference, identifying them can po-
tentially improve performance in many NLP tasks.
Perhaps the most obvious such tasks are those in-
volving textual entailment, such as question an-
swering, information extraction, summarization,
and the evaluation of machine translation [4]. Re-
searchers are in fact beginning to build textual-
entailment systems that can handle inferences in-
volving downward-entailing operators other than
simple negations, although these systems almost
all rely on small handcrafted lists of DE operators
[1–3, 15, 16].2 Other application areas are natural-
language generation and human-computer interac-
tion, since downward-entailing inferences induce

1Some examples showing different constructions for ana-
lyzing these operators: ‘The defendant does not own a blue
car’ 6⇒ (⇐) ‘The defendant does not own a car’; ‘They are
reluctant to tango’ 6⇒ (⇐) ‘They are reluctant to dance’;
‘Police doubt Smith threatened Jones’ 6⇒ (⇐) ‘Police doubt
Smith threatened Jones or Brown’; ‘You are allowed to use
Mastercard’ 6⇒ (⇐) ‘You are allowed to use any credit card’.

2The exception [2] employs the list automatically derived
by Danescu-Niculescu-Mizil, Lee, and Ducott [5], described
later.
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greater cognitive load than inferences in the oppo-
site direction [8].

Most NLP systems for the applications men-
tioned above have only been deployed for a small
subset of languages. A key factor is the lack
of relevant resources for other languages. While
one approach would be to separately develop a
method to acquire such resources for each lan-
guage individually, we instead aim to ameliorate
the resource-scarcity problem in the case of DE
operators wholesale: we propose a single unsuper-
vised method that can extract DE operators in any
language for which raw text corpora exist.

Overview of our work Our approach takes the
English-centric work of Danescu-Niculescu-Mizil
et al. [5] — DLD09 for short — as a starting point,
as they present the first and, until now, only al-
gorithm for automatically extracting DE operators
from data. However, our work departs signifi-
cantly from DLD09 in the following key respect.

DLD09 critically depends on access to a high-
quality, carefully curated collection of negative
polarity items (NPIs) — lexical items such as
‘any’, ‘ever’, or the idiom ‘have a clue’ that tend
to occur only in negative environments (see §2
for more details). DLD09 use NPIs as signals of
the occurrence of downward-entailing operators.
However, almost every language other than En-
glish lacks a high-quality accessible NPI list.

To circumvent this problem, we introduce a
knowledge-lean co-learning approach. Our al-
gorithm is initialized with a very small seed set
of NPIs (which we describe how to generate), and
then iterates between (a) discovering a set of DE
operators using a collection of pseudo-NPIs — a
concept we introduce — and (b) using the newly-
acquired DE operators to detect new pseudo-NPIs.

Why this isn’t obvious Although the algorith-
mic idea sketched above seems quite simple, it is
important to note that prior experiments in that
direction have not proved fruitful. Preliminary
work on learning (German) NPIs using a small
list of simple known DE operators did not yield
strong results [14]. Hoeksema [10] discusses why
NPIs might be hard to learn from data.3 We cir-
cumvent this problem because we are not inter-
ested in learning NPIs per se; rather, for our pur-

3In fact, humans can have trouble agreeing on NPI-hood;
for instance, Lichte and Soehn [14] mention doubts about
over half of Kürschner [12]’s 344 manually collected German
NPIs.

poses, pseudo-NPIs suffice. Also, our prelim-
inary work determined that one of the most fa-
mous co-learning algorithms, hubs and authorities
or HITS [11], is poorly suited to our problem.4

Contributions To begin with, we apply our al-
gorithm to produce the first large list of DE opera-
tors for a language other than English. In our case
study on Romanian (§4), we achieve quite high
precisions at k (for example, iteration achieves a
precision at 30 of 87%).

Auxiliary experiments explore the effects of us-
ing a large but noisy NPI list, should one be avail-
able for the language in question. Intriguingly, we
find that co-learning new pseudo-NPIs provides
better results.

Finally (§5), we engage in some cross-linguistic
analysis based on the results of applying our al-
gorithm to English. We find that there are some
suggestive connections with findings in linguistic
typology.

Appendix available A more complete account
of our work and its implications can be found in a
version of this paper containing appendices, avail-
able at www.cs.cornell.edu/˜cristian/acl2010/.

2 DLD09: successes and challenges

In this section, we briefly summarize those aspects
of the DLD09 method that are important to under-
standing how our new co-learning method works.

DE operators and NPIs Acquiring DE opera-
tors is challenging because of the complete lack of
annotated data. DLD09’s insight was to make use
of negative polarity items (NPIs), which are words
or phrases that tend to occur only in negative con-
texts. The reason they did so is that Ladusaw’s hy-
pothesis [7, 13] asserts that NPIs only occur within
the scope of DE operators. Figure 1 depicts exam-
ples involving the English NPIs ‘any’5 and ‘have
a clue’ (in the idiomatic sense) that illustrate this
relationship. Some other English NPIs are ‘ever’,
‘yet’ and ‘give a damn’.

Thus, NPIs can be treated as clues that a DE
operator might be present (although DE operators
may also occur without NPIs).

4We explored three different edge-weighting schemes
based on co-occurrence frequencies and seed-set member-
ship, but the results were extremely poor; HITS invariably
retrieved very frequent words.

5The free-choice sense of ‘any’, as in ‘I can skim any pa-
per in five minutes’, is a known exception.
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NPIs
DE operators any3 have a clue, idiomatic sense

not or n’t X We do n’t have any apples X We do n’t have a clue
doubt XI doubt they have any apples X I doubt they have a clue

no DE operator × They have any apples × They have a clue

Figure 1: Examples consistent with Ladusaw’s hypothesis that NPIs can only occur within the scope of
DE operators. A X denotes an acceptable sentence; a × denotes an unacceptable sentence.

DLD09 algorithm Potential DE operators are
collected by extracting those words that appear in
an NPI’s context at least once.6 Then, the potential
DE operators x are ranked by

f(x) :=
fraction of NPI contexts that contain x

relative frequency of x in the corpus
,

which compares x’s probability of occurrence
conditioned on the appearance of an NPI with its
probability of occurrence overall.7

The method just outlined requires access to a
list of NPIs. DLD09’s system used a subset of
John Lawler’s carefully curated and “moderately
complete” list of English NPIs.8 The resultant
rankings of candidate English DE operators were
judged to be of high quality.

The challenge in porting to other languages:
cluelessness Can the unsupervised approach of
DLD09 be successfully applied to languages other
than English? Unfortunately, for most other lan-
guages, it does not seem that large, high-quality
NPI lists are available.

One might wonder whether one can circumvent
the NPI-acquisition problem by simply translating
a known English NPI list into the target language.
However, NPI-hood need not be preserved under
translation [17]. Thus, for most languages, we
lack the critical clues that DLD09 depends on.

3 Getting a clue

In this section, we develop an iterative co-
learning algorithm that can extract DE operators
in the many languages where a high-quality NPI

6DLD09 policies: (a) “NPI context” was defined as the
part of the sentence to the left of the NPI up to the first
comma, semi-colon or beginning of sentence; (b) to encour-
age the discovery of new DE operators, those sentences con-
taining one of a list of 10 well-known DE operators were dis-
carded. For Romanian, we treated only negations (‘nu’ and
‘n-’) and questions as well-known environments.

7DLD09 used an additional distilled score, but we found
that the distilled score performed worse on Romanian.

8http://www-personal.umich.edu/∼jlawler/aue/npi.html

database is not available, using Romanian as a
case study.

3.1 Data and evaluation paradigm
We used Rada Mihalcea’s corpus of≈1.45 million
sentences of raw Romanian newswire articles.

Note that we cannot evaluate impact on textual
inference because, to our knowledge, no publicly
available textual-entailment system or evaluation
data for Romanian exists. We therefore examine
the system outputs directly to determine whether
the top-ranked items are actually DE operators or
not. Our evaluation metric is precision at k of a
given system’s ranked list of candidate DE oper-
ators; it is not possible to evaluate recall since no
list of Romanian DE operators exists (a problem
that is precisely the motivation for this paper).

To evaluate the results, two native Romanian
speakers labeled the system outputs as being
“DE”, “not DE” or “Hard (to decide)”. The la-
beling protocol, which was somewhat complex
to prevent bias, is described in the externally-
available appendices (§7.1). The complete system
output and annotations are publicly available at:
http://www.cs.cornell.edu/˜cristian/acl2010/.

3.2 Generating a seed set
Even though, as discussed above, the translation
of an NPI need not be an NPI, a preliminary re-
view of the literature indicates that in many lan-
guages, there is some NPI that can be translated
as ‘any’ or related forms like ‘anybody’. Thus,
with a small amount of effort, one can form a min-
imal NPI seed set for the DLD09 method by us-
ing an appropriate target-language translation of
‘any’. For Romanian, we used ‘vreo’ and ‘vreun’,
which are the feminine and masculine translations
of English ‘any’.

3.3 DLD09 using the Romanian seed set
We first check whether DLD09 with the two-
item seed set described in §3.2 performs well on
Romanian. In fact, the results are fairly poor:
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Figure 2: Left: Number of DE operators in the top k results returned by the co-learning method at each iteration.
Items labeled “Hard” are not included. Iteration 0 corresponds to DLD09 applied to {‘vreo’, ‘vreun’}. Curves for
k = 60 and 70 omitted for clarity. Right: Precisions at k for the results of the 9th iteration. The bar divisions are:
DE (blue/darkest/largest) and Hard (red/lighter, sometimes non-existent).

for example, the precision at 30 is below 50%.
(See blue/dark bars in figure 3 in the externally-
available appendices for detailed results.)

This relatively unsatisfactory performance may
be a consequence of the very small size of the NPI
list employed, and may therefore indicate that it
would be fruitful to investigate automatically ex-
tending our list of clues.

3.4 Main idea: a co-learning approach

Our main insight is that not only can NPIs be used
as clues for finding DE operators, as shown by
DLD09, but conversely, DE operators (if known)
can potentially be used to discover new NPI-like
clues, which we refer to as pseudo-NPIs (or pNPIs
for short). By “NPI-like” we mean, “serve as pos-
sible indicators of the presence of DE operators,
regardless of whether they are actually restricted
to negative contexts, as true NPIs are”. For exam-
ple, in English newswire, the words ‘allegation’ or
‘rumor’ tend to occur mainly in DE contexts, like
‘ denied ’ or ‘ dismissed ’, even though they are
clearly not true NPIs (the sentence ‘I heard a ru-
mor’ is fine). Given this insight, we approach the
problem using an iterative co-learning paradigm
that integrates the search for new DE operators
with a search for new pNPIs.

First, we describe an algorithm that is the “re-
verse” of DLD09 (henceforth rDLD), in that it re-
trieves and ranks pNPIs assuming a given list of
DE operators. Potential pNPIs are collected by ex-
tracting those words that appear in a DE context
(defined here, to avoid the problems of parsing or
scope determination, as the part of the sentence to

the right of a DE operator, up to the first comma,
semi-colon or end of sentence); these candidates x
are then ranked by

fr(x) :=
fraction of DE contexts that contain x

relative frequency of x in the corpus
.

Then, our co-learning algorithm consists of the
iteration of the following two steps:

• (DE learning) Apply DLD09 using a set N
of pseudo-NPIs to retrieve a list of candidate
DE operators ranked by f (defined in Section
2). Let D be the top n candidates in this list.

• (pNPI learning) Apply rDLD using the set D
to retrieve a list of pNPIs ranked by fr; ex-
tend N with the top nr pNPIs in this list. In-
crement n.

Here, N is initialized with the NPI seed set. At
each iteration, we consider the output of the al-
gorithm to be the ranked list of DE operators re-
trieved in the DE-learning step. In our experi-
ments, we initialized n to 10 and set nr to 1.

4 Romanian results

Our results show that there is indeed favorable
synergy between DE-operator and pNPI retrieval.
Figure 2 plots the number of correctly retrieved
DE operators in the top k outputs at each iteration.
The point at iteration 0 corresponds to a datapoint
already discussed above, namely, DLD09 applied
to the two ‘any’-translation NPIs. Clearly, we see
general substantial improvement over DLD09, al-
though the increases level off in later iterations.
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(Determining how to choose the optimal number
of iterations is a subject for future research.)

Additional experiments, described in the
externally-available appendices (§7.2), suggest
that pNPIs can even be more effective clues than
a noisy list of NPIs. (Thus, a larger seed set
does not necessarily mean better performance.)
pNPIs also have the advantage of being derivable
automatically, and might be worth investigating
from a linguistic perspective in their own right.

5 Cross-linguistic analysis
Applying our algorithm to English: connec-
tions to linguistic typology So far, we have
made no assumptions about the language on which
our algorithm is applied. A valid question is, does
the quality of the results vary with choice of appli-
cation language? In particular, what happens if we
run our algorithm on English?

Note that in some sense, this is a perverse ques-
tion: the motivation behind our algorithm is the
non-existence of a high-quality list of NPIs for
the language in question, and English is essen-
tially the only case that does not fit this descrip-
tion. On the other hand, the fact that DLD09 ap-
plied their method for extraction of DE operators
to English necessitates some form of comparison,
for the sake of experimental completeness.

We thus ran our algorithm on the English
BLLIP newswire corpus with seed set {‘any’} .
We observe that, surprisingly, the iterative addi-
tion of pNPIs has very little effect: the precisions
at k are good at the beginning and stay about the
same across iterations (for details see figure 5 in
in the externally-available appendices). Thus, on
English, co-learning does not hurt performance,
which is good news; but unlike in Romanian, it
does not lead to improvements.

Why is English ‘any’ seemingly so “powerful”,
in contrast to Romanian, where iterating beyond
the initial ‘any’ translations leads to better re-
sults? Interestingly, findings from linguistic typol-
ogy may shed some light on this issue. Haspel-
math [9] compares the functions of indefinite pro-
nouns in 40 languages. He shows that English is
one of the minority of languages (11 out of 40)9 in
which there exists an indefinite pronoun series that
occurs in all (Haspelmath’s) classes of DE con-
texts, and thus can constitute a sufficient seed on

9English, Ancash Quechua, Basque, Catalan, French,
Hindi/Urdu, Irish, Portuguese, Swahili, Swedish, Turkish.

its own. In the other languages (including Roma-
nian),10 no indirect pronoun can serve as a suffi-
cient seed. So, we expect our method to be vi-
able for all languages; while the iterative discov-
ery of pNPIs is not necessary (although neither is
it harmful) for the subset of languages for which a
sufficient seed exists, such as English, it is essen-
tial for the languages for which, like Romanian,
‘any’-equivalents do not suffice.

Using translation Another interesting question
is whether directly translating DE operators from
English is an alternative to our method. First, we
emphasize that there exists no complete list of En-
glish DE operators (the largest available collec-
tion is the one extracted by DLD09). Second, we
do not know whether DE operators in one lan-
guage translate into DE operators in another lan-
guage. Even if that were the case, and we some-
how had access to ideal translations of DLD09’s
list, there would still be considerable value in us-
ing our method: 14 (39%) of our top 36 highest-
ranked Romanian DE operators for iteration 9 do
not, according to the Romanian-speaking author,
have English equivalents appearing on DLD09’s
90-item list. Some examples are: ‘abţinut’ (ab-
stained), ‘criticat’ (criticized) and ‘reacţionat’ (re-
acted). Therefore, a significant fraction of the
DE operators derived by our co-learning algorithm
would have been missed by the translation alterna-
tive even under ideal conditions.

6 Conclusions
We have introduced the first method for discov-
ering downward-entailing operators that is univer-
sally applicable. Previous work on automatically
detecting DE operators assumed the existence of
a high-quality collection of NPIs, which renders it
inapplicable in most languages, where such a re-
source does not exist. We overcome this limita-
tion by employing a novel co-learning approach,
and demonstrate its effectiveness on Romanian.

Also, we introduce the concept of pseudo-NPIs.
Auxiliary experiments described in the externally-
available appendices show that pNPIs are actually
more effective seeds than a noisy “true” NPI list.

Finally, we noted some cross-linguistic differ-
ences in performance, and found an interesting
connection between these differences and Haspel-
math’s [9] characterization of cross-linguistic vari-
ation in the occurrence of indefinite pronouns.

10Examples: Chinese, German, Italian, Polish, Serbian.
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Abstract

We establish the following characteris-
tics of the task of perspective classifi-
cation: (a) using term frequencies in a
document does not improve classification
achieved with absence/presence features;
(b) for datasets allowing the relevant com-
parisons, a small number of top features is
found to be as effective as the full feature
set and indispensable for the best achieved
performance, testifying to the existence
of perspective-specific keywords. We re-
late our findings to research on word fre-
quency distributions and to discourse ana-
lytic studies of perspective.

1 Introduction

We address the task of perspective classification.
Apart from the spatial sense not considered here,
perspective can refer to an agent’s role (doctor vs
patient in a dialogue), or understood as “a par-
ticular way of thinking about something, espe-
cially one that is influenced by one’s beliefs or
experiences,” stressing the manifestation of one’s
broader perspective in some specific issue, or “the
state of one’s ideas, the facts known to one, etc.,
in having a meaningful interrelationship,” stress-
ing the meaningful connectedness of one’s stances
and pronouncements on possibly different issues.1

Accordingly, one can talk about, say, opinion
on a particular proposed legislation on abortion
within pro-choice or pro-life perspectives; in this
case, perspective essentially boils down to opi-
nion in a particular debate. Holding the issue con-
stant but relaxing the requirement of a debate on a
specific document, we can consider writings from
pro- and con- perspective, in, for example, the
death penalty controversy over a course of a period
of time. Relaxing the issue specificity somewhat,

1Google English Dictionary, Dictionary.com

one can talk about perspectives of people on two
sides of a conflict; this is not opposition or sup-
port for any particular proposal, but ideas about
a highly related cluster of issues, such as Israeli
and Palestinian perspectives on the conflict in all
its manifestations. Zooming out even further, one
can talk about perspectives due to certain life con-
tingencies, such as being born and raised in a par-
ticular culture, region, religion, or political tradi-
tion, such perspectives manifesting themselves in
certain patterns of discourse on a wide variety of
issues, for example, views on political issues in the
Middle East from Arab vs Western observers.

In this article, we consider perspective at all
the four levels of abstraction. We apply the same
types of models to all, in order to discover any
common properties of perspective classification.
We contrast it with text categorization and with
opinion classification by employing models rou-
tinely used for such tasks. Specifically, we con-
sider models that use term frequencies as features
(usually found to be superior for text categoriza-
tion) and models that use term absence/presence
(usually found to be superior for opinion classi-
fication). We motivate our hypothesis that pre-
sence/absence features would be as good as or
better than frequencies, and test it experimentally.
Secondly, we investigate the question of feature
redundancy often observed in text categorization.

2 Vocabulary Selection

A line of inquiry going back at least to Zipf strives
to characterize word frequency distributions in
texts and corpora; see Baayen (2001) for a sur-
vey. One of the findings in this literature is that
a multinomial (called “urn model” by Baayen)
is not a good model for word frequency distri-
butions. Among the many proposed remedies
(Baayen, 2001; Jansche, 2003; Baroni and Evert,
2007; Bhat and Sproat, 2009), we would like to
draw attention to the following insight articulated
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most clearly in Jansche (2003). Estimation is im-
proved if texts are construed as being generated by
two processes, one choosing which words would
appear at all in the text, and then, for words that
have been chosen to appear, how many times they
would in fact appear. Jansche (2003) describes a
two-stage generation process: (1) Toss a z-biased
coin; if it comes up heads, generate 0; if it comes
up tails, (2) generate according to F (θ), where
F (θ) is a negative binomial distribution and z is a
parameter controlling the extent of zero-inflation.

The postulation of two separate processes is
effective for predicting word frequencies, but is
there any meaning to the two processes? The first
process of deciding on the vocabulary, or word
types, for the text – what is its function? Jansche
(2003) suggests that the zero-inflation component
takes care of the multitude of vocabulary words
that are not “on topic” for the given text, including
taboo words, technical jargon, proper names. This
implies that words that are chosen to appear are
all “on topic”. Indeed, text segmentation studies
show that tracing recurrence of words in a text
permits topical segmentation (Hearst, 1997; Hoey,
1991). Yet, if a person compares abortion to infan-
ticide – are we content with describing this word
as being merely “on topic,” that is, having a certain
probability of occurrence once the topic of abor-
tion comes up? In fact, it is only likely to occur
if the speaker holds a pro-life perspective, while a
pro-choicer would avoid this term.

We therefore hypothesize that the choice of vo-
cabulary is not only a matter of topic but also
of perspective, while word recurrence has mainly
to do with the topical composition of the text.
Therefore, tracing word frequencies is not going to
be effective for perspective classification beyond
noting the mere presence/absence of words, dif-
ferently from the findings in text categorization,
where frequency-based features usually do better
than boolean features for sufficiently large voca-
bulary sizes (McCallum and Nigam, 1998).

3 Data

Partial Birth Abortion (PBA) debates: We use
transcripts of the debates on Partial Birth Abor-
tion Ban Act on the floors of the US House and
Senate in 104-108 Congresses (1995-2003). Simi-
lar legislation was proposed multiple times, passed
the legislatures, and, after having initially been ve-
toed by President Clinton, was signed into law

by President Bush in 2003. We use data from
278 legislators, with 669 speeches in all. We
take only one speech per speaker per year; since
many serve multiple years, each speaker is repre-
sented with 1 to 5 speeches. We perform 10-fold
cross-validation splitting by speakers, so that all
speeches by the same speaker are assigned to the
same fold and testing is always inter-speaker.

When deriving the label for perspective, it is im-
portant to differentiate between a particular leg-
islation and a pro-choice / pro-life perspective.
A pro-choice person might still support the bill:
“I am pro-choice, but believe late-term abortions
are wrong. Abortion is a very personal decision
and a woman’s right to choose whether to ter-
minate a pregnancy subject to the restrictions of
Roe v. Wade must be protected. In my judgment,
however, the use of this particular procedure can-
not be justified.” (Rep. Shays, R-CT, 2003). To
avoid inconsistency between vote and perspective,
we use data from pro-choice and pro-life non-
governmental organizations, NARAL and NRLC,
that track legislators’ votes on abortion-related
bills, showing the percentage of times a legislator
supported the side the organization deems consis-
tent with its perspective. We removed 22 legisla-
tors with a mixed record, that is, those who gave
20-60% support to one of the positions.2

Death Penalty (DP) blogs: We use University
of Maryland Death Penalty Corpus (Greene and
Resnik, 2009) of 1085 texts from a number of pro-
and anti-death penalty websites. We report 4-fold
cross-validation (DP-4) using the folds in Greene
and Resnik (2009), where training and testing data
come from different websites for each of the sides,
as well as 10-fold cross-validation performance on
the entire corpus, irrespective of the site.3

Bitter Lemons (BL): We use the GUEST part
of the BitterLemons corpus (Lin et al., 2006), con-
taining 296 articles published in 2001-2005 on
http://www.bitterlemons.org by more than 200 dif-
ferent Israeli and Palestinian writers on issues re-
lated to the conflict.

Bitter Lemons International (BL-I): We col-
lected 150 documents each by a different per-

2Ratings are from: http://www.OnTheIssues.org/. We fur-
ther excluded data from Rep. James Moran, D-VA, as he
changed his vote over the years. For legislators rated by nei-
ther NRLC nor NARAL, we assumed the vote aligns with the
perspective.

3The 10-fold setting yields almost perfect performance
likely due to site-specific features beyond perspective per se,
hence we do not use this setting in subsequent experiments.
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son from either Arab or Western perspectives
on Middle Eastern affairs in 2003-2009 from
http://www.bitterlemons-international.org/. The
writers and interviewees on this site are usually
former diplomats or government officials, aca-
demics, journalists, media and political analysts.4

The specific issues cover a broad spectrum, includ-
ing public life, politics, wars and conflicts, educa-
tion, trade relations in and between countries like
Lebanon, Jordan, Iraq, Egypt, Yemen, Morocco,
Saudi Arabia, as well as their relations with the
US and members of the European Union.

3.1 Pre-processing

We are interested in perspective manifestations
using common English vocabulary. To avoid the
possibility that artifacts such as names of senators
or states drive the classification, we use as features
words that contain only lowercase letters, possibly
hyphenated. No stemming is performed, and no
stopwords are excluded.5

Table 1: Summary of corpora
Data #Docs #Features # CV folds
PBA 669 9.8 K 10
BL 296 10 K 10
BL-I 150 9 K 10
DP 1085 25 K 4

4 Models

For generative models, we use two versions
of Naive Bayes models termed multi-variate
Bernoulli (here, NB-BOOL) and multinomial (here,
NB-COUNT), respectively, in McCallum and
Nigam (1998) study of event models for text cate-
gorization. The first records presence/absence of a
word in a text, while the second records the num-
ber of occurrences. McCallum and Nigam (1998)
found NB-COUNT to do better than NB-BOOL for
sufficiently large vocabulary sizes for text catego-
rization by topic. For discriminative models, we
use linear SVM, with presence-absence, norma-
lized frequency, and tfidf feature weighting. Both
types of models are commonly used for text clas-
sification tasks. For example, Lin et al. (2006) use

4We excluded Israeli, Turkish, Iranian, Pakistani writers
as not clearly representing either perspective.

5We additionally removed words containing support, op-
pos, sustain, overrid from the PBA data, in order not to in-
flate the performance on perspective classification due to the
explicit reference to the upcoming vote.

NB-COUNT and SVM-NORMF for perspective clas-
sification; Pang et al. (2002) consider most and
Yu et al. (2008) all of the above for related tasks
of movie review and political party classification.
We use SVMlight (Joachims, 1999) for SVM and
WEKA toolkit (Witten and Frank, 2005; Hall et
al., 2009) for both version of Naive Bayes. Param-
eter optimization for all SVM models is performed
using grid search on the training data separately
for each partition into train and test data.6

5 Results

Table 2 summarizes the cross-validation results for
the four datasets discussed above. Notably, the
SVM-BOOL model is either the best or not signif-
icantly different from the best performing model,
although the competitors use more detailed textual
information, namely, the count of each word’s ap-
pearance in the text, either raw (NB-COUNT), nor-
malized (SVM-NORMF), or combined with docu-
ment frequency (SVM-TFIDF).

Table 2: Classification accuracy. Scores sig-
nificantly different from the best performance
(p2t<0.05 on paired t-test) are given an asterisk.

Data NB SVM
BOOL COUNT BOOL NORMF TFIDF

PBA *0.93 0.96 0.96 0.96 0.97
DP-4 0.82 0.82 0.83 0.82 0.727

DP-10 *0.88 *0.93 0.98 *0.97 *0.97
BL 0.89 0.88 0.89 0.86 0.84
BL-I 0.68 0.66 0.73 0.65 0.65

We conclude that there is no evidence for the
relevance of the frequency composition of the
text for perspective classification, for all levels of
venue- and topic-control, from the tightest (PBA
debates) to the loosest (Western vs Arab authors
on Middle Eastern affairs). This result is a clear
indication that perspective classification is quite
different from text categorization by topic, where
count-based features usually perform better than
boolean features. On the other hand, we have not

6Parameter c controlling the trade-off between errors
on training data and margin is optimized for all datasets,
with the grid c = {10−6, 10−5, . . . , 105}. On the DP
data parameter j controlling penalties for misclassification
of positive and negative cases is optimized as well (j =
{10−2, 10−1, . . . , 102}), since datasets are unbalanced (for
example, there is a fold with 27%-73% split).

7Here SVM-TFIDF is doing somewhat better than SVM-
BOOL on one of the folds and much worse on two other folds;
paired t-test with just 4 pairs of observations does not detect
a significant difference.
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observed that boolean features are reliably better
than count-based features, as reported for the sen-
timent classification task in the movie review do-
main (Pang et al., 2002).

We note the low performance on BL-I, which
could testify to a low degree of lexical consolida-
tion in the Arab vs Western perspectives (more on
this below). It is also possible that the small size of
BL-I leads to overfitting and low accuracies. How-
ever, PBA subset with only 151 items (only 2002
and 2003 speeches) is still 96% classifiable, so size
alone does not explain low BL-I performance.

6 Consolidation of perspective

We explore feature redundancy in perspective
classification.We first investigate retention of only
N best features, then elimination thereof. As a
proxy of feature quality, we use the weight as-
signed to the feature by the SVM-BOOL model
based on the training data. Thus, to get the per-
formance with N best features, we take the N

2
highest and lowest weight features, for the posi-
tive and negative classes, respectively, and retrain
SVM-BOOL with these features only.8

Table 3: Consolidation of perspective. Nbest
shows the smallest N and its proportion out of
all features for which the performance of SVM-
BOOL with only the best N features is not sig-
nificantly inferior (p1t>0.1) to that of the full
feature set. No-Nbest shows the largest num-
ber N for which a model without N best fea-
tures is not significantly inferior to the full model.
N={50, 100, 150, . . . , 1000}; for DP and BL-I, ad-
ditionally N={1050, 1100, ..., 1500}; for PBA, ad-
ditionally N={10, 20, 30, 40}.

Data Nbest No-Nbest
N % N %

PBA 250 2.6% 10 <1%
BL 500 4.9% 100 <1%
DP 100 <1% 1250 5.2%
BL-I 200 2.2% 950 11%

We observe that it is generally sufficient to use
a small percentage of the available words to ob-
tain the same classification accuracy as with the
full feature set, even in high-accuracy cases such
as PBA and BL. The effectiveness of a small
subset of features is consistent with the observa-
tion in the discourse analysis studies that rivals

8We experimented with the mutual information based fea-
ture selection as well, with generally worse results.

in long-lasting controversies tend to consolidate
their vocabulary and signal their perspective with
certain stigma words and banner words, that is,
specific keywords used by a discourse commu-
nity to implicate adversaries and to create sym-
pathy with own perspective, respectively (Teubert,
2001). Thus, in abortion debates, using infanti-
cide as a synonym for abortion is a pro-life stigma.
Note that this does not mean the rest of the fea-
tures are not informative for classification, only
that they are redundant with respect to a small per-
centage of top weight features.

When N best features are eliminated, perfor-
mance goes down significantly with even smaller
N for PBA and BL datasets. Thus, top features
are not only effective, they are also crucial for ac-
curate classification, as their discrimination capa-
city is not replicated by any of the other vocabu-
lary words. This finding is consistent with Lin
and Hauptmann (2006) study of perspective vs
topic classification: While topical differences be-
tween two corpora are manifested in difference in
distributions of great many words, they observed
little perspective-based variation in distributions
of most words, apart from certain words that are
preferentially used by adherents of one or the other
perspective on the given topic.

For DP and BL-I datasets, the results seem
to suggest perspectives with more diffused key-
word distribution (No-NBest figures are higher).
We note, however, that feature redundancy exper-
iments are confounded in these cases by either a
low power of the paired t-test with only 4 pairs
(DP) or by a high variance in performance among
the 10 folds (BL-I), both of which lead to nume-
rically large discrepancy in performance that is not
deemed significant, making it easy to “match” the
full set performance with small-N best features as
well as without large-N best features. Better com-
parisons are needed in order to verify the hypo-
thesis of low consolidation.

In future work, we plan to experiment with ad-
ditional features. For example, Greene and Resnik
(2009) reported higher classification accuracies
for the DP-4 data using syntactic frames in which
a selected group of words appeared, rather than
mere presence/absence of the words. Another di-
rection is exploring words as members of seman-
tic fields – while word use might be insufficiently
consistent within a perspective, selection of a se-
mantic domain might show better consistency.
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Abstract

In this paper, we study the problem of
using an annotated corpus in English for
the same natural language processing task
in another language. While various ma-
chine translation systems are available, au-
tomated translation is still far from per-
fect. To minimize the noise introduced
by translations, we propose to use only
key ‘reliable” parts from the translations
and apply structural correspondence learn-
ing (SCL) to find a low dimensional rep-
resentation shared by the two languages.
We perform experiments on an English-
Chinese sentiment classification task and
compare our results with a previous co-
training approach. To alleviate the prob-
lem of data sparseness, we create ex-
tra pseudo-examples for SCL by making
queries to a search engine. Experiments
on real-world on-line review data demon-
strate the two techniques can effectively
improve the performance compared to pre-
vious work.

1 Introduction

In this paper we are interested in the problem of
transferring knowledge gained from data gathered
in one language to another language. A simple and
straightforward solution for this problem might
be to use automatic machine translations. How-
ever, while machine translation has been the sub-
ject of a great deal of development in recent years,
many of the recent gains in performance manifest
as syntactically as opposed to semantically cor-
rect sentences. For example, “PIANYI” is a word
mainly used in positive comments in Chinese but
its translation from the online Google translator is
always “cheap”, a word typically used in a neg-
ative context in English. To reduce this kind of

error introduced by the translator, Wan in (Wan,
2009) applied a co-training scheme. In this setting
classifiers are trained in both languages and the
two classifiers teach each other for the unlabeled
examples. The co-training approach manages to
boost the performance as it allows the text simi-
larity in the target language to compete with the
“fake” similarity from the translated texts. How-
ever, the translated texts are still used as training
data and thus can potentially mislead the classifier.
As we are not really interested in predicting some-
thing on the language created by the translator,
but rather on the real one, it may be better to fur-
ther diminish the role of the translated texts in the
learning process. Motivated by this observation,
we suggest here to view this problem as a special
case of domain adaptation, in the source domain,
we mainly observe English features, while in the
other domain mostly features from Chinese. The
problem we address is how to associate the fea-
tures under a unified setting.

There has been a lot of work in domain adaption
for NLP (Dai et al., 2007)(Jiang and Zhai, 2007)
and one suitable choice for our problem is the ap-
proach based on structural correspondence learn-
ing (SCL) as in (Blitzer et al., 2006) and (Blitzer
et al., 2007b). The key idea of SCL is to identify a
low-dimensional representations that capture cor-
respondence between features from both domains
(xs and xt in our case) by modeling their correla-
tions with some special pivot features. The SCL
approach is a good fit for our problem as it per-
forms knowledge transfer through identifying im-
portant features. In the cross-lingual setting, we
can restrict the translated texts by using them only
through the pivot features. We believe this form is
more robust to errors in the language produced by
the translator.

Adapting language resources and knowledge to
a new language was first studied for general text
categorization and information retrieval as in (Bel
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et al., 2003), where the authors translate a key-
word lexicon to perform cross-lingual text cate-
gorization. In (Mihalcea et al., 2007), different
shortcomings of lexicon-based translation scheme
was discussed for the more semantic-oriented task
subjective analysis, instead the authors proposed
to use a parallel-corpus, apply the classifier in the
source language and use the corresponding sen-
tences in the target language to train a new clas-
sifier. With the rapid development of automatic
machine translations, translating the whole corpus
becomes a plausible option. One can either choose
to translate a corpus in the target language and ap-
ply the classifier in the source language to obtain
labeled data, or directly translated the existing data
set to the new language. Various experiments of
the first strategy are performed in (Banea et al.,
2008) for the subjective analysis task and an aver-
age 65 F1 score was reported. In (Wan, 2008), the
authors propose to combine both strategies with
ensemble learning and train a bi-lingual classifier.

In this paper, we are also interested in explor-
ing whether a search engine can be used to im-
prove the performance of NLP systems through re-
ducing the effect of data sparseness. As the SCL
algorithm we use here is based on co-occurrence
statistics, we adopt a simple approach of creating
pseudo-examples from the query counts returned
by Google.

2 Our Approach

To begin, we give a formal definition of the prob-
lem we are considering. Assume we have two lan-
guages ls and lt and denote features in these two
languages as xs and xt respectively. We also have
text-level translations and we use xt′ for features
in the translations from ls to lt and xs′ for the
other direction. Let y be the output variable we
want to predict, we have labeled examples (y, xs)
and some unlabeled examples (xt). Our task is to
train a classifier for (y, xt). In this paper, we con-
sider the binary sentiment classification (positive
or negative) problem where ls and lt correspond to
English and Chinese (for general sentiment analy-
sis, we refer the readers to the various previous
studies as in (Turney, 2002),(Pang et al., 2002),and
(McDonald et al., 2007)). With these definitions
in place, we now describe our approach in further
detail.

2.1 Structural Correspondence
Learning(SCL)

Due to space limitations, we give a very brief
overview of the SCL framework here. For a
detailed illustration, please refer to (Ando and
Zhang, 2005). When SCL is used in a domain
adaptation problem, one first needs to find a set
of pivot features xp. These pivot features should
behave in a similar manner in both domains, and
can be used as “references” to estimate how much
other features may contribute when used in a clas-
sifier to predict a target variable. These features
can either be identified with heuristics (Blitzer
et al., 2006) or by automatic selection (Blitzer
et al., 2007b). Take sentiment classification as
an example, “very good” and “awful” are good
pivot features, if a certain feature in the target do-
main co-occurs often with “very good” but infre-
quently with “awful”, we could expect this fea-
ture will play a similar role as “very good” in
the final classifier but a different role from “aw-
ful”. We can make this observation purely based
on the co-occurrence between these features. No
hand-labeling is required and this specific feature
doesn’t need to be present in our labeled training
data of the source domain.

The SCL approach of (Ando and Zhang, 2005)
formulates the above idea by constructing a set
of linear predictors for each of the pivot fea-
tures. Each of these linear predictor is binary like
whether “very good” occurs in the text and we
have a set of training instances (1|0, {xi}). The
weight matrix of these linear predictors will en-
code the co-occurrence statistics between an or-
dinary feature and the pivot features. As the co-
occurrence data are generally very sparse for a typ-
ical NLP task, we usually compress the weight
matrix using the singular vector decomposition
and only selects the top k eigenvectors vk. This
matrix w of the k vectors {vk} gives a mapping
from the original feature space to a lower dimen-
sional representation and is shown in (Ando and
Zhang, 2005) to be the optimal choice of dimen-
sion k under common loss functions. In the next
step we can then train a classifier on the extended
feature (x,w ∗ x) in the source domain. As w
groups the features from different domains with
similar behavior relative to the pivot features to-
gether, if such a classifier has good performance
on the source domain, it will likely do well on the
target domain as well.
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2.2 SCL for the Cross-lingual Adaptation

Viewing our task as a domain adaptation prob-
lem. The source domain correspond to English
reviews and the target domain for Chinese ones.
The full feature vector is (xs, xt). The difficulty
we are facing is, due to noise in the translations,
the conditional probabilities p(y|xs) and the one
in the translated texts p(y|xs′) may be quite differ-
ent. Consider the following two straightforward
strategies of using automatic machine translations:
one can translate the original English labeled data
(y, xs) into (y, xt′) in Chinese and train a clas-
sifier, or one can train a classifier on (y, xs) and
translate xt in Chinese into xs′ in English so as to
use the classifier. But as the conditional distribu-
tion can be quite different for the original language
and the pseudo language produced by the machine
translators, these two strategies give poor perfor-
mance as reported in (Wan, 2009).

Our solution to this problem is simple: instead
of using all the features as (xs, xt′) and (xs′ , xt),
we only preserves the pivot features in the trans-
lated texts xs′ and xt′ respectively and discard the
other features produced by the translator. So, now
we will have (xs, xtp) and (xsp, xt) where x(s|t)p
are pivot features in the source and the target lan-
guages. In other words, when we use the SCL on
our problem, the translations are only used to de-
cide if a certain pivot feature occurs or not in the
training of the linear predictors. All the other non-
pivot features in the translators are blocked to re-
duce the noise.

In the original SCL as we mentioned earlier,
the final classifier is trained on the extended fea-
tures (x,w ∗ x). However, as mentioned above
we will only use the pivot features. To represent
this constraint, we can modify the vector to be
(wp ∗ x,w ∗ x) where wp is a constant matrix that
only selects the pivot features. This modification
will not affect the deduction procedure and results
in (Ando and Zhang, 2005). Experiments show
that using only pivot features actually outperforms
the full feature setting.

For the selection of the pivot features, we fol-
low the automatic selection method proposed in
(Blitzer et al., 2007a). We first select some candi-
dates that occur at least some constant number of
times in reviews of the two languages. Then, we
rank these features according to their conditional
entropy to the labels on the training set. In table
1, we give some of the pivot features with English

English Pivot Features
“poor quality”, “not buy”, “easy use”, “very easy”
“excellent”, “perfect”, “still very”, “garbage”,
“poor”, “not work”, “not to”, “very comfortable”
Chinese Pivot Features
wanmei(perfect), xiaoguo hen(effect is very...)
tisheng(improve),feichang hao(very good),
cha(poor), shushi(comfortable), chuse(excellent)

Table 1: Some pivot features.

translations associated with the Chinese pivot fea-
tures. As we can see from the table, although
we only have text-level translations we still get
some features with similar meaning from differ-
ent languages, just like performing an alignment
of words.

2.3 Utilizing the Search Engine

Data sparseness is a common problem in NLP
tasks. On the other hand, search engines nowadays
usually index a huge amount of web pages. We
now show how they can also be used as a valuable
data source in a less obvious way. Previous studies
like (Bollegala, 2007) have shown that search en-
gine results can be comparable to language statis-
tics from a large scale corpus for some NLP tasks
like word sense disambiguation. For our problem,
we use the query counts returned by a search en-
gine to compute the correlations between a normal
feature and the pivot features.

Consider the word “PIANYI” which is mostly
used in positive comments, the query “CHAN-
PIN(product) PING(comment) CHA(bad) PI-
ANYI” has 2,900,000 results, while “CHAN-
PIN(product) PING(comment) HAO(good) PI-
ANYI” returns 57,400,000 pages. The results im-
ply the word “PIANYI” is closer to the pivot fea-
ture “good” and it behaves less similar with the
pivot feature “bad”.

To add the query counts into the SCL scheme,
we create pseudo examples when training lin-
ear predictors for pivot features. To construct a
pseudo-positive example between a certain feature
xi and a certain pivot feature xp, we simply query
the term xixp and get a count c1. We also query
xp alone and get another count c2.Then we can
create an example (1, {0, ..., 0, xi = c1

c2
, 0, ..., 0}).

The pseudo-negative examples are created simi-
larly. These pseudo examples are equivalent to
texts with a single word and the count is used to

260



approximate the empirical expectation. As an ini-
tial experiment, we select 10,000 Chinese features
that occur more than once in the Chinese unla-
beled data set but not frequent enough to be cap-
tured by the original SCL. And we also select the
top 20 most informative Chinese pivot features to
perform the queries.

3 Experiment

3.1 Data Set

For comparsion, we use the same data set in (Wan,
2009):

Test Set(Labeled Chinese Reviews): The data
set contains a total of 886 labeled product reviews
in Chinese (451 positive reviews and 435 negative
ones). These reviews are extracted from a popular
Chinese IT product website IT168 1. The reviews
are mainly about electronic devices like mp3 play-
ers, mobile phones, digital cameras and comput-
ers.

Training Set(Labeled English Reviews): This
is the data set used in the domain adaption exper-
iment of (Blitzer et al., 2007b). It contains four
major categories: books, DVDs, electronics and
kitchen appliances. The data set consists of 8000
reviews with 4000 positive and 4000 negative, It is
a public data set available on the web 2.

Unlabeled Set (Unlabeled Chinese Reviews):
1000 Chinese reviews downloaded from the same
website as the Chinese training set. They are of
the same domain as the test set.

We translate each English review into Chinese
and vice versus through the public Google Trans-
lation service. Also following the setting in (Wan,
2009), we only use the Chinese unlabeled data and
English training sets for our SCL training proce-
dures. The test set is blind to the training stage.

The features we used are bigrams and unigrams
in the two languages as in (Wan, 2009). In Chi-
nese, we first apply the stanford Chinese word seg-
menter 3 to segment the reviews. Bigrams refers
to a single Chinese word and a bigram refers to
two adjacent Chinese words. The features are also
pre-processed and normalized as in (Blitzer et al.,
2007b).

1http://www.it168.com
2http://www.cis.upenn.edu/ mdredze/datasets/sentiment/
3http://nlp.stanford.edu/software/segmenter.shtml

Models Precision Recall F-Score
CoTrain 0.768 0.905 0.831
SCL-B 0.772 0.914 0.837
SCL-C 0.764 0.896 0.825
SCL-O 0.760 0.909 0.828
SCL-E 0.801 0.909 0.851

Table 2: Results on the Positive Reviews

Models Precision Recall F-Score
CoTrain 0.879 0.717 0.790
SCL-B 0.931 0.752 0.833
SCL-C 0.908 0.743 0.817
SCL-O 0.928 0.739 0.823
SCL-E 0.928 0.796 0.857

Table 3: Results on the Negative Reviews

3.2 Comparisons

We compare our procedure with the co-training
scheme reported in (Wan, 2009):

CoTrain: The method with the best perfor-
mance in (Wan, 2009). Two standard SVMs are
trained using the co-training scheme for the Chi-
nese views and the English views. And the results
of the two SVMs are combined to give the final
output.

SCL-B: The basic SCL procedure as explained.
SCL-O: The basic SCL except that we use all

features from the translated texts instead of only
the pivot features.

SCL-C: The training procedure is still the same
as SCL-B except in the test time we only use
the Chinese pivot features and neglect the English
pivot features from translations.

SCL-E: The same as SCL-B except that in the
training of linear pivot predictors, we also use the
pseudo examples constructed from queries of the
search engine.

Table 2 and 3 give results measured on the pos-
itive labeled reviews and negative reviews sep-
arately. Table 4 gives the overall accuracy on
the whole 886 reviews. Our basic SCL approach
SCL-B outperforms the original Co-Training ap-
proach by 2.2% in the overall accuracy. We can

CoTrain SCL-B SCL-O SCL-C SCL-E
0.813 0.835 0.826 0.822 0.854

Table 4: Overall Accuracy of Different Methods
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also notice that using all the features including the
ones from translations actually deteriorate the per-
formance from 0.835 to 0.826.

The model incorporating the co-occurrence
count information from the search engine has the
best overall performance of 0.857. It is interesting
to note that the simple scheme we have adopted in-
creased the recall performance on the negative re-
views significantly. After examining the reviews,
we find the negative part contains some idioms and
words mainly used on the internet and the query
count seems to be able to capture their usage.

Finally, as our final goal is to train a Chinese
sentiment classifier, it will be best if our model
can only rely on the Chinese features. The SCL-
C model improves the performance from the Co-
Training method a little but not as much as the
SCL − B and the SCL − O approaches. This
observation suggests that the translations are still
helpful for the cross-lingual adaptation problem
as the translators perform some implicit semantic
mapping.

4 Conclusion

In this paper, we are interested in adapting ex-
isting knowledge to a new language. We show
that instead of fully relying on automatic trans-
lation, which may be misleading for a highly se-
mantic task like the sentiment analysis, using tech-
niques like SCL to connect the two languages
through feature-level mapping seems a more suit-
able choice. We also perform an initial experiment
using the co-occurrence statistics from a search
engine to handle the data sparseness problem in
the adaptation process, and the result is encourag-
ing.

As future research we believe a promising av-
enue of exploration is to construct a probabilistic
version of the SCL approach which could offer a
more explicit model of the relations between the
two domains and the relations between the search
engine results and the model parameters. Also,
in the current work, we select the pivot features
by simple ranking with mutual information, which
only considers the distribution information. Incor-
porating the confidence from the translator may
further improve the performance.
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Abstract

Current work on automatic opinion min-
ing has ignored opinion targets expressed
by anaphorical pronouns, thereby missing
a significant number of opinion targets. In
this paper we empirically evaluate whether
using an off-the-shelf anaphora resolution
algorithm can improve the performance of
a baseline opinion mining system. We
present an analysis based on two different
anaphora resolution systems. Our exper-
iments on a movie review corpus demon-
strate, that an unsupervised anaphora reso-
lution algorithm significantly improves the
opinion target extraction. We furthermore
suggest domain and task specific exten-
sions to an off-the-shelf algorithm which
in turn yield significant improvements.

1 Introduction

Over the last years the task of opinion mining
(OM) has been the topic of many publications.
It has been approached with different goals in
mind: Some research strived to perform subjec-
tivity analysis at the document or sentence level,
without focusing on what the individual opinions
uttered in the document are about. Other ap-
proaches focused on extracting individual opinion
words or phrases and what they are about. This
aboutness has been referred to as the opinion tar-
get or opinion topic in the literature from the field.
In this work our goal is to extract opinion target
- opinion word pairs from sentences from movie
reviews. A challenge which is frequently encoun-
tered in text mining tasks at this level of gran-
ularity is, that entities are being referred to by
anaphora. In the task of OM, it can therefore also
be necessary to analyze more than the content of
one individual sentence when extracting opinion
targets. Consider this example sentence: “Simply

put, it’s unfathomable that this movie cracks the
Top 250. It is absolutely awful.”. If one wants to
extract what the opinion in the second sentence is
about, an algorithm which resolves the anaphoric
reference to the opinion target is required.
The extraction of such anaphoric opinion targets
has been noted as an open issue multiple times
in the OM context (Zhuang et al., 2006; Hu and
Liu, 2004; Nasukawa and Yi, 2003). It is not a
marginal phenomenon, since Kessler and Nicolov
(2009) report that in their data, 14% of the opin-
ion targets are pronouns. However, the task of re-
solving anaphora to mine opinion targets has not
been addressed and evaluated yet to the best of our
knowledge.
In this work, we investigate whether anaphora res-
olution (AR) can be successfully integrated into
an OM algorithm and whether we can achieve an
improvement regarding the OM in doing so. This
paper is structured as follows: Section 2 discusses
the related work on opinion target identification
and OM on movie reviews. Section 3 outlines the
OM algorithm we employed by us, while in Sec-
tion 4 we discuss two different algorithms for AR
which we experiment with. Finally, in Section 5
we present our experimental work including error
analysis and discussion, and we conclude in Sec-
tion 6.

2 Related Work

We split the description of the related work in two
parts: In Section 2.1 we discuss the related work
on OM with a focus on approaches for opinion
target identification. In Section 2.2 we elaborate
on findings from related OM research which also
worked with movie reviews as this is our target
domain in the present paper.

2.1 Opinion Target Identification
The extraction of opinions and especially opin-
ion targets has been performed with quite diverse
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approaches. Initial approaches combined statisti-
cal information and basic linguistic features such
as part-of-speech tags. The goal was to identify
the opinion targets, here in form of products and
their attributes, without a pre-built knowledge base
which models the domain. For the target candidate
identification, simple part-of-speech patterns were
employed. The relevance ranking and extraction
was then performed with different statistical mea-
sures: Pointwise Mutual Information (Popescu
and Etzioni, 2005), the Likelihood Ratio Test (Yi
et al., 2003) and Association Mining (Hu and Liu,
2004). A more linguistically motivated approach
was taken by Kim and Hovy (2006) through iden-
tifying opinion holders and targets with semantic
role labeling. This approach was promising, since
their goal was to extract opinions from profession-
ally edited content i.e. newswire.
Zhuang et al. (2006) present an algorithm for the
extraction of opinion target - opinion word pairs.
The opinion word and target candidates are iden-
tified in the annotated corpus and their extraction
is then performed by applying possible paths con-
necting them in a dependency graph. These paths
are combined with part-of-speech information and
also learned from the annotated corpus.
To the best of our knowledge, there is currently
only one system which integrates coreference in-
formation in OM. The algorithm by Stoyanov
and Cardie (2008) identifies coreferring targets in
newspaper articles. A candidate selection or ex-
traction step for the opinion targets is not required,
since they rely on manually annotated targets and
focus solely on the coreference resolution. How-
ever they do not resolve pronominal anaphora in
order to achieve that.

2.2 Opinion Mining on Movie Reviews

There is a huge body of work on OM in movie re-
views which was sparked by the dataset from Pang
and Lee (2005). This dataset consists of sen-
tences which are annotated as expressing positive
or negative opinions. An interesting insight was
gained from the document level sentiment analy-
sis on movie reviews in comparison to documents
from other domains: Turney (2002) observes that
the movie reviews are hardest to classify since the
review authors tend to give information about the
storyline of the movie which often contain charac-
terizations, such as “bad guy” or “violent scene”.
These statements however do not reflect any opin-

ions of the reviewers regarding the movie. Zhuang
et al. (2006) also observe that movie reviews are
different from e.g. customer reviews on Ama-
zon.com. This is reflected in their experiments, in
which their system outperforms the system by Hu
and Liu (2004) which attributes an opinion tar-
get to the opinion word which is closest regard-
ing word distance in a sentence. The sentences in
the movie reviews tend to be more complex, which
can also be explained by their origin. The reviews
were taken from the Internet Movie Database1,
on which the users are given a set of guidelines
on how to write a review. Due to these insights,
we are confident that the overall textual quality
of the movie reviews is high enough for linguisti-
cally more advanced technologies such as parsing
or AR to be successfully applied.

3 Opinion Target Identification

3.1 Dataset

Currently the only freely available dataset anno-
tated with opinions including annotated anaphoric
opinion targets is a corpus of movie reviews
by Zhuang et al. (2006). Kessler and Nicolov
(2009) describe a collection of product reviews
in which anaphoric opinion targets are also an-
notated, but it is not available to the public
(yet). Zhuang et al. (2006) used a subset of the
dataset they published (1829 documents), namely
1100 documents, however they do not state which
documents comprise this subset used in their eval-
uation. In our experiments, we therefore use the
complete dataset available, detailed in Table 1. As
shown, roughly 9.5% of the opinion targets are re-
ferred to by pronouns. Table 2 outlines detailed
statistics on which pronouns occur as opinion tar-
gets.

Table 1: Dataset Statistics
# Documents 1829
# Sentences 24918
# Tokens 273715
# Target + Opinion Pairs 5298
# Targets which are Pronouns 504
# Pronouns > 11000

3.2 Baseline Opinion Mining

We reimplemented the algorithm presented
by Zhuang et al. (2006) as the baseline for our

1http://www.imdb.com (IMDB)
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Table 2: Pronouns as Opinion Targets
it 274 he 58 she 22 they 22

this 77 his 26 her 10
him 15

experiments. Their approach is a supervised one.
The annotated dataset is split in five folds, of
which four are used as the training data. In the first
step, opinion target and opinion word candidates
are extracted from the training data. Frequency
counts of the annotated opinion targets and opin-
ion words are extracted from four training folds.
The most frequently occurring opinion targets and
opinion words are selected as candidates. Then
the annotated sentences are parsed and a graph
containing the words of the sentence is created,
which are connected by the dependency relations
between them. For each opinion target - opinion
word pair, the shortest path connecting them is
extracted from the dependency graph. A path
consists of the part-of-speech tags of the nodes
and the dependency types of the edges.
In order to be able to identify rarely occurring
opinion targets which are not in the candidate
list, they expand it by crawling the cast and crew
names of the movies from the IMDB. How this
crawling and extraction is done is not explained.

4 Algorithms for Anaphora Resolution

As pointed out by Charniak and Elsner (2009)
there are hardly any freely available systems
for AR. Although Charniak and Elsner (2009)
present a machine-learning based algorithm for
AR, they evaluate its performance in comparison
to three non machine-learning based algorithms,
since those are the only ones available. They
observe that the best performing baseline algo-
rithm (OpenNLP) is hardly documented. The al-
gorithm with the next-to-highest results in (Char-
niak and Elsner, 2009) is MARS (Mitkov, 1998)
from the GuiTAR (Poesio and Kabadjov, 2004)
toolkit. This algorithm is based on statistical anal-
ysis of the antecedent candidates. Another promis-
ing algorithm for AR employs a rule based ap-
proach for antecedent identification. The Cog-
NIAC algorithm (Baldwin, 1997) was designed
for high-precision AR. This approach seems like
an adequate strategy for our OM task, since in
the dataset used in our experiments only a small
fraction of the total number of pronouns are ac-

tual opinion targets (see Table 1). We extended the
CogNIAC implementation to also resolve “it” and
“this” as anaphora candidates, since off-the-shelf
it only resolves personal pronouns. We will refer
to this extension with [id]. Both algorithms fol-
low the common approach that noun phrases are
antecedent candidates for the anaphora. In our ex-
periments we employed both the MARS and the
CogNIAC algorithm, for which we created three
extensions which are detailed in the following.

4.1 Extensions of CogNIAC

We identified a few typical sources of errors in
a preliminary error analysis. We therefore sug-
gest three extensions to the algorithm which are
on the one hand possible in the OM setting and
on the other hand represent special features of the
target discourse type: [1.] We observed that the
Stanford Named Entity Recognizer (Finkel et al.,
2005) is superior to the Person detection of the
(MUC6 trained) CogNIAC implementation. We
therefore filter out Person antecedent candidates
which the Stanford NER detects for the imper-
sonal and demonstrative pronouns and Location
& Organization candidates for the personal pro-
nouns. This way the input to the AR is optimized.
[2.] The second extension exploits the fact that re-
views from the IMDB exhibit certain contextual
properties. They are gathered and to be presented
in the context of one particular entity (=movie).
The context or topic under which it occurs is there-
fore typically clear to the reader and is therefore
not explicitly introduced in the discourse. This is
equivalent to the situational context we often refer
to in dialogue. In the reviews, the authors often
refer to the movie or film as a whole by a pro-
noun. We exploit this by an additional rule which
resolves an impersonal or demonstrative pronoun
to “movie” or “film” if there is no other (match-
ing) antecedent candidate in the previous two sen-
tences. [3.] The rules by which CogNIAC resolves
anaphora were designed so that anaphora which
have ambiguous antecedents are left unresolved.
This strategy should lead to a high precision AR,
but at the same time it can have a negative impact
on the recall. In the OM context, it happens quite
frequently that the authors comment on the entity
they want to criticize in a series of arguments. In
such argument chains, we try to solve cases of an-
tecedent ambiguity by analyzing the opinions: If
there are ambiguous antecedent candidates for a
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pronoun, we check whether there is an opinion ut-
tered in the previous sentence. If this is the case
and if the opinion target matches the pronoun re-
garding gender and number, we resolve the pro-
noun to the antecedent which was the previous
opinion target.
In the results of our experiments in Section 5, we
will refer to the configurations using these exten-
sions with the numbers attributed to them above.

5 Experimental Work

To integrate AR in the OM algorithm, we add the
antecedents of the pronouns annotated as opinion
targets to the target candidate list. Then we ex-
tract the dependency paths connecting pronouns
and opinion words and add them to the list of valid
paths. When we run the algorithm, we extract
anaphora which were resolved, if they occur with
a valid dependency path to an opinion word. In
such a case, the anaphor is substituted for its an-
tecedent and thus extracted as part of an opinion
target - opinion word pair.
To reproduce the system by Zhuang et al. (2006),
we substitute the cast and crew list employed
by them (see Section 3.2), with a NER compo-
nent (Finkel et al., 2005). One aspect regarding the
extraction of opinion target - opinion word pairs
remains open in Zhuang et al. (2006): The de-
pendency paths only identify connections between
pairs of single words. However, almost 50% of
the opinion target candidates are multiword ex-
pressions. Zhuang et al. (2006) do not explain how
they extract multiword opinion targets with the de-
pendency paths. In our experiments, we require a
dependency path to be found to each word of a
multiword target candidate for it to be extracted.
Furthermore, Zhuang et al. (2006) do not state
whether in their evaluation annotated multiword
targets are treated as a single unit which needs to
be extracted, or whether a partial matching is em-
ployed in such cases. We require all individual
words of a multiword expression to be extracted
by the algorithm. As mentioned above, the depen-
dency path based approach will only identify con-
nections between pairs of single words. We there-
fore employ a merging step, in which we combine
adjacent opinion targets to a multiword expres-
sion. We have compiled two result sets: Table 3
shows the results of the overall OM in a five-fold
cross-validation. Table 4 gives a detailed overview
of the AR for opinion target identification summed

up over all folds. In Table 4, a true positive refers
to an extracted pronoun which was annotated as
an opinion target and is resolved to the correct
antecedent. A false positive subsumes two error
classes: A pronoun which was not annotated as an
opinion target but extracted as such, or a pronoun
which is resolved to an incorrect antecedent.
As shown in Table 3, the recall of our reimplemen-
tation is slightly higher than the recall reported
in Zhuang et al. (2006). However, our precision
and thus f-measure are lower. This can be at-
tributed to the different document sets used in our
experiments (see Section 3.1), or our substitution
of the list of peoples’ names with the NER compo-
nent, or differences regarding the evaluation strat-
egy as mentioned above.
We observe that the MARS algorithm yields an
improvement regarding recall compared to the
baseline system. However, it also extracts a high
number of false positives for both the personal and
impersonal / demonstrative pronouns. This is due
to the fact that the MARS algorithm is designed
for robustness and always resolves a pronoun to
an antecedent.
CogNIAC in its off-the-shelf configuration already
yields significant improvements over the baseline
regarding f-measure2. Our CogNIAC extension
[id] improves recall slightly in comparison to the
off-the-shelf system. As shown in Table 4, the
algorithm extracts impersonal and demonstrative
pronouns with lower precision than personal pro-
nouns. Our error analysis shows that this is mostly
due to the Person / Location / Organization clas-
sification of the CogNIAC implementation. The
names of actors and movies are thus often misclas-
sified. Extension [1] mitigates this problem, since
it increases precision (Table 3 row 6), while not af-
fecting recall. The overall improvement of our ex-
tensions [id] + [1] is however not statistically sig-
nificant in comparison to off-the-shelf CogNIAC.
Our extensions [2] and [3] in combination with
[id] each increase recall at the expense of preci-
sion. The improvement in f-measure of CogNIAC
[id] + [3] over the off-the-shelf system is statisti-
cally significant. The best overall results regard-
ing f-measure are reached if we combine all our
extensions of the CogNIAC algorithm. The re-
sults of this configuration show that the positive
effects of extensions [2] and [3] are complemen-

2Significance of improvements was tested using a paired
two-tailed t-test and p ≤ 0.05 (∗) and p ≤ 0.01 (∗∗)
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Table 3: Op. Target - Op. Word Pair Extraction

Configuration Reca. Prec. F-Meas.
Results in Zhuang et al. 0.548 0.654 0.596
Our Reimplementation 0.554 0.523 0.538

MARS off-the-shelf 0.595 0.467 0.523
CogNIAC off-the-shelf 0.586 0.534 0.559∗∗

CogNIAC+[id] 0.594 0.516 0.552
CogNIAC+[id]+[1] 0.594 0.533 0.561
CogNIAC+[id]+[2] 0.603 0.501 0.547
CogNIAC+[id]+[3] 0.613 0.521 0.563∗

CogNIAC+[id]+[1]+[2]+[3] 0.614 0.531 0.569∗

Table 4: Results of AR for Opinion Targets

Algorithm Pers.1 Imp. & Dem.1

TP2 FP2 TP FP
MARS off-the-shelf 102 164 115 623

CogNIAC off-the-shelf 117 95 0 0
CogNIAC+[id] 117 95 105 180

CogNIAC+[id]+[1] 117 41 105 51
CogNIAC+[id]+[2] 117 95 153 410
CogNIAC+[id]+[3] 131 103 182 206

CogNIAC+[id]+[1]+[2]+[3] 124 64 194 132
1 personal, impersonal & demonstrative pronouns
2 true positives, false positives

tary regarding the extraction of impersonal and
demonstrative pronouns. This configuration yields
statistically significant improvements regarding f-
measure over the off-the-shelf CogNIAC configu-
ration, while also having the overall highest recall.

5.1 Error Analysis
When extracting opinions from movie reviews, we
observe the same challenge as Turney (2002): The
users often characterize events in the storyline or
roles the characters play. These characterizations
contain the same words which are also used to
express opinions. Hence these combinations are
frequently but falsely extracted as opinion target
- opinion word pairs, negatively affecting the
precision. The algorithm cannot distinguish them
from opinions expressing the stance of the author.
Overall, the recall of the baseline is rather low.
This is due to the fact that the algorithm only
learns a subset of the opinion words and opinion
targets annotated in the training data. Currently,
it cannot discover any new opinion words and
targets. This could be addressed by integrating a
component which identifies new opinion targets
by calculating the relevance of a word in the
corpus based on statistical measures.
The AR introduces new sources of errors regard-
ing the extraction of opinion targets: Errors in

gender and number identification can lead to an
incorrect selection of antecedent candidates. Even
if the gender and number identification is correct,
the algorithm might select an incorrect antecedent
if there is more than one possible candidate. A
non-robust algorithm as CogNIAC might leave
a pronoun which is an actual opinion target
unresolved, due to the ambiguity of its antecedent
candidates.
The upper bound for the OM with perfect AR
on top of the baseline would be recall: 0.649,
precision: 0.562, f-measure: 0.602. Our best
configuration reaches∼ 50% of the improvements
which are theoretically possible with perfect AR.

6 Conclusions

We have shown that by extending an OM al-
gorithm with AR for opinion target extraction
significant improvements can be achieved. The
rule based AR algorithm CogNIAC performs well
regarding the extraction of opinion targets which
are personal pronouns. The algorithm does not
yield high precision when resolving impersonal
and demonstrative pronouns. We present a set
of extensions which address this challenge and
in combination yield significant improvements
over the off-the-shelf configuration. A robust
AR algorithm does not yield any improvements
regarding f-measure in the OM task. This type of
algorithm creates many false positives, which are
not filtered out by the dependency paths employed
in the algorithm by Zhuang et al. (2006).
AR could also be employed in other OM algo-
rithms which aim at identifying opinion targets
by means of a statistical analysis. Vicedo and
Ferrández (2000) successfully modified the
relevance ranking of terms in their documents by
replacing anaphora with their antecedents. The
approach can be taken for OM algorithms which
select the opinion target candidates with a rel-
evance ranking (Hu and Liu, 2004; Yi et al., 2003).
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José L. Vicedo and Antonio Ferrández. 2000. Apply-
ing anaphora resolution to question answering and
information retrieval systems. In Proceedings of the
First International Conference on Web-Age Informa-
tion Management, volume 1846 of Lecture Notes In
Computer Science, pages 344–355. Springer, Shang-
hai, China.

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and
Wayne Niblack. 2003. Sentiment analyzer: Extract-
ing sentiments about a given topic using natural lan-
guage processing techniques. In Proceedings of the
3rd IEEE International Conference on Data Mining,
pages 427–434, Melbourne, FL, USA, December.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006.
Movie review mining and summarization. In Pro-
ceedings of the ACM 15th Conference on Informa-
tion and Knowledge Management, pages 43–50, Ar-
lington, VA, USA, November.

268



Proceedings of the ACL 2010 Conference Short Papers, pages 269–274,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Hierarchical Sequential Learning for Extracting Opinions and their
Attributes

Yejin Choi and Claire Cardie

Department of Computer Science

Cornell University

Ithaca, NY 14853

{ychoi,cardie}@cs.cornell.edu

Abstract

Automatic opinion recognition involves a

number of related tasks, such as identi-

fying the boundaries of opinion expres-

sion, determining their polarity, and de-

termining their intensity. Although much

progress has been made in this area, ex-

isting research typically treats each of the

above tasks in isolation. In this paper,

we apply a hierarchical parameter shar-

ing technique using Conditional Random

Fields for fine-grained opinion analysis,

jointly detecting the boundaries of opinion

expressions as well as determining two of

their key attributes — polarity and inten-

sity. Our experimental results show that

our proposed approach improves the per-

formance over a baseline that does not

exploit hierarchical structure among the

classes. In addition, we find that the joint

approach outperforms a baseline that is

based on cascading two separate compo-

nents.

1 Introduction

Automatic opinion recognition involves a number

of related tasks, such as identifying expressions of

opinion (e.g. Kim and Hovy (2005), Popescu and

Etzioni (2005), Breck et al. (2007)), determining

their polarity (e.g. Hu and Liu (2004), Kim and

Hovy (2004), Wilson et al. (2005)), and determin-

ing their strength, or intensity (e.g. Popescu and

Etzioni (2005), Wilson et al. (2006)). Most pre-

vious work treats each subtask in isolation: opin-

ion expression extraction (i.e. detecting the bound-

aries of opinion expressions) and opinion attribute

classification (e.g. determining values for polar-

ity and intensity) are tackled as separate steps in

opinion recognition systems. Unfortunately, er-

rors from individual components will propagate in

systems with cascaded component architectures,

causing performance degradation in the end-to-

end system (e.g. Finkel et al. (2006)) — in our

case, in the end-to-end opinion recognition sys-

tem.

In this paper, we apply a hierarchical param-

eter sharing technique (e.g., Cai and Hofmann

(2004), Zhao et al. (2008)) using Conditional Ran-

dom Fields (CRFs) (Lafferty et al., 2001) to fine-

grained opinion analysis. In particular, we aim to

jointly identify the boundaries of opinion expres-

sions as well as to determine two of their key at-

tributes — polarity and intensity.

Experimental results show that our proposed ap-

proach improves the performance over the base-

line that does not exploit the hierarchical structure

among the classes. In addition, we find that the

joint approach outperforms a baseline that is based

on cascading two separate systems.

2 Hierarchical Sequential Learning

We define the problem of joint extraction of opin-

ion expressions and their attributes as a sequence

tagging task as follows. Given a sequence of to-

kens, x = x1 ... xn, we predict a sequence of

labels, y = y1 ... yn, where yi ∈ {0, ..., 9} are

defined as conjunctive values of polarity labels

and intensity labels, as shown in Table 1. Then

the conditional probability p(y|x) for linear-chain

CRFs is given as (Lafferty et al., 2001)

P (y|x) =
1

Zx

exp
∑

i

(

λ f(yi, x, i)+λ
′

f
′(yi−1, yi, x, i)

)

where Zx is the normalization factor.

In order to apply a hierarchical parameter shar-

ing technique (e.g., Cai and Hofmann (2004),

Zhao et al. (2008)), we extend parameters as fol-

lows.
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Figure 1: The hierarchical structure of classes for opinion expressions with polarity (positive, neutral,

negative) and intensity (high, medium, low)

LABEL 0 1 2 3 4 5 6 7 8 9

POLARITY none positive positive positive neutral neutral neutral negative negative negative

INTENSITY none high medium low high medium low high medium low

Table 1: Labels for Opinion Extraction with Polarity and Intensity

λ f(yi, x, i) = λα gO(α, x, i) (1)

+ λβ gP(β, x, i)

+ λγ gS(γ, x, i)

λ
′

f
′(yi−1, yi, x, i) = λ

′

α,α̂ g
′

O(α, α̂, x, i)

+ λ
′

β,β̂
g
′

P(β, β̂, x, i)

+ λ
′

γ,γ̂ g
′

S(γ, γ̂, x, i)

where gO and g′
O

are feature vectors defined for
Opinion extraction, gP and g′

P
are feature vectors

defined for Polarity extraction, and gS and g′
S

are
feature vectors defined for Strength extraction, and

α, α̂ ∈ {OPINION, NO-OPINION}

β, β̂ ∈ {POSITIVE, NEGATIVE, NEUTRAL, NO-POLARITY}

γ, γ̂ ∈ {HIGH, MEDIUM, LOW, NO-INTENSITY}

For instance, if yi = 1, then

λ f(1, x, i) = λOPINION gO(OPINION, x, i)

+ λPOSITIVE gP(POSITVE, x, i)

+ λHIGH gS(HIGH, x, i)

If yi−1 = 0, yi = 4, then

λ
′

f
′(0, 4, x, i)

= λ
′

NO-OPINION,OPINION g
′

O(NO-OPINION, OPINION, x, i)

+ λ
′

NO-POLARITY, NEUTRAL g
′

P(NO-POLARITY, NEUTRAL, x, i)

+ λ
′

NO-INTENSITY, HIGH g
′

S(NO-INTENSITY, HIGH, x, i)

This hierarchical construction of feature and

weight vectors allows similar labels to share the

same subcomponents of feature and weight vec-

tors. For instance, all λ f(yi, x, i) such that

yi ∈ {1, 2, 3} will share the same compo-

nent λPOSITIVE gP(POSITVE, x, i). Note that there

can be other variations of hierarchical construc-

tion. For instance, one can add λδ gI(δ, x, i)
and λ′

δ,δ̂
g′

I
(δ, δ̂, x, i) to Equation (1) for δ ∈

{0, 1, ..., 9}, in order to allow more individualized

learning for each label.

Notice also that the number of sets of param-

eters constructed by Equation (1) is significantly

smaller than the number of sets of parameters that

are needed without the hierarchy. The former re-

quires (2+ 4+4)+ (2× 2+4× 4+ 4× 4) = 46
sets of parameters, but the latter requires (10) +
(10 × 10) = 110 sets of parameters. Because a

combination of a polarity component and an in-

tensity component can distinguish each label, it is

not necessary to define a separate set of parameters

for each label.

3 Features

We first introduce definitions of key terms that will

be used to describe features.

• PRIOR-POLARITY & PRIOR-INTENSITY:

We obtain these prior-attributes from the polar-

ity lexicon populated by Wilson et al. (2005).

• EXP-POLARITY, EXP-INTENSITY & EXP-SPAN:

Words in a given opinion expression often do

not share the same prior-attributes. Such dis-

continuous distribution of features can make

it harder to learn the desired opinion expres-

sion boundaries. Therefore, we try to obtain

expression-level attributes (EXP-POLARITY and

EXP-INTENSITY) using simple heuristics. In or-

der to derive EXP-POLARITY, we perform simple

270



voting. If there is a word with a negation effect,

such as “never”, “not”, “hardly”, “against”, then

we flip the polarity. For EXP-INTENSITY, we use

the highest PRIOR-INTENSITY in the span. The text

span with the same expression-level attributes

are referred to as EXP-SPAN.

3.1 Per-Token Features

Per-token features are defined in the form of

gO(α, x, i), gP(β, x, i) and gS(γ, x, i). The do-

mains of α, β, γ are as given in Section 3.

Common Per-Token Features

Following features are common for all class labels.

The notation ⊗ indicates conjunctive operation of

two values.

• PART-OF-SPEECH(xi):

based on GATE (Cunningham et al., 2002).

• WORD(xi), WORD(xi−1), WORD(xi+1)

• WORDNET-HYPERNYM(xi):

based on WordNet (Miller, 1995).

• OPINION-LEXICON(xi):

based on opinion lexicon (Wiebe et al., 2002).

• SHALLOW-PARSER(xi):

based on CASS partial parser (Abney, 1996).

• PRIOR-POLARITY(xi) ⊗ PRIOR-INTENSITY(xi)

• EXP-POLARITY(xi) ⊗ EXP-INTENSITY(xi)

• EXP-POLARITY(xi) ⊗ EXP-INTENSITY(xi) ⊗
STEM(xi)

• EXP-SPAN(xi):

boolean to indicate whether xi is in an EXP-SPAN.

• DISTANCE-TO-EXP-SPAN(xi): 0, 1, 2, 3+.

• EXP-POLARITY(xi) ⊗ EXP-INTENSITY(xi) ⊗
EXP-SPAN(xi)

Polarity Per-Token Features

These features are included only for gO(α, x, i)
and gP(β, x, i), which are the feature functions

corresponding to the polarity-based classes.

• PRIOR-POLARITY(xi), EXP-POLARITY((xi)

• STEM(xi) ⊗ EXP-POLARITY(xi)

• COUNT-OF-Polarity:

where Polarity ∈ {positive, neutral, negative}.

This feature encodes the number of positive,

neutral, and negative EXP-POLARITY words re-

spectively, in the current sentence.

• STEM(xi) ⊗ COUNT-OF-Polarity

• EXP-POLARITY(xi) ⊗ COUNT-OF-Polarity

• EXP-SPAN(xi) and EXP-POLARITY(xi)

• DISTANCE-TO-EXP-SPAN(xi) ⊗ EXP-POLARITY(xp)

Intensity Per-Token Features

These features are included only for gO(α, x, i)
and gS(γ, x, i), which are the feature functions cor-

responding to the intensity-based classes.

• PRIOR-INTENSITY(xi), EXP-INTENSITY(xi)

• STEM(xi) ⊗ EXP-INTENSITY(xi)

• COUNT-OF-STRONG, COUNT-OF-WEAK:

the number of strong and weak EXP-INTENSITY

words in the current sentence.

• INTENSIFIER(xi): whether xi is an intensifier,

such as “extremely”, “highly”, “really”.

• STRONGMODAL(xi): whether xi is a strong modal

verb, such as “must”, “can”, “will”.

• WEAKMODAL(xi): whether xi is a weak modal

verb, such as “may”, “could”, “would”.

• DIMINISHER(xi): whether xi is a diminisher, such

as “little”, “somewhat”, “less”.

• PRECEDED-BY-τ (xi),

PRECEDED-BY-τ (xi) ⊗ EXP-INTENSITY(xi):

where τ ∈ { INTENSIFIER, STRONGMODAL, WEAK-

MODAL, DIMINISHER}

• τ (xi) ⊗ EXP-INTENSITY(xi),

τ (xi) ⊗ EXP-INTENSITY(xi−1),

τ (xi−1) ⊗ EXP-INTENSITY(xi+1)

• EXP-SPAN(xi) ⊗ EXP-INTENSITY(xi)

• DISTANCE-TO-EXP-SPAN(xi) ⊗ EXP-INTENSITY(xp)

3.2 Transition Features

Transition features are employed to help with

boundary extraction as follows:

Polarity Transition Features

Polarity transition features are features that are

used only for g′
O
(α, α̂, x, i) and g′

P
(β, β̂, x, i).

• PART-OF-SPEECH(xi) ⊗ PART-OF-SPEECH(xi+1) ⊗
EXP-POLARITY(xi)

• EXP-POLARITY(xi) ⊗ EXP-POLARITY(xi+1)

Intensity Transition Features

Intensity transition features are features that are

used only for g′
O
(α, α̂, x, i) and g′

S
(γ, γ̂, x, i).

• PART-OF-SPEECH(xi) ⊗ PART-OF-SPEECH(xi+1) ⊗
EXP-INTENSITY(xi)

• EXP-INTENSITY(xi) ⊗ EXP-INTENSITY(xi+1)

4 Evaluation

We evaluate our system using the Multi-

Perspective Question Answering (MPQA) cor-

pus1. Our gold standard opinion expressions cor-

1The MPQA corpus can be obtained at
http://nrrc.mitre.org/NRRC/publications.htm.
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Positive Neutral Negative

Method Description r(%) p(%) f(%) r(%) p(%) f(%) r(%) p(%) f(%)

Polarity-Only ∩ Intensity-Only (BASELINE1) 29.6 65.7 40.8 26.5 69.1 38.3 35.5 77.0 48.6

Joint without Hierarchy (BASELINE2) 30.7 65.7 41.9 29.9 66.5 41.2 37.3 77.1 50.3

Joint with Hierarchy 31.8 67.1 43.1 31.9 66.6 43.1 40.4 76.2 52.8

Table 2: Performance of Opinion Extraction with Correct Polarity Attribute

High Medium Low

Method Description r(%) p(%) f(%) r(%) p(%) f(%) r(%) p(%) f(%)

Polarity-Only ∩ Intensity-Only (BASELINE1) 26.4 58.3 36.3 29.7 59.0 39.6 15.4 60.3 24.5

Joint without Hierarchy (BASELINE2) 29.7 54.2 38.4 28.0 57.4 37.6 18.8 55.0 28.0

Joint with Hierarchy 27.1 55.2 36.3 32.0 56.5 40.9 21.1 56.3 30.7

Table 3: Performance of Opinion Extraction with Correct Intensity Attribute

Method Description r(%) p(%) f(%)

Polar-Only ∩ Intensity-Only 43.3 92.0 58.9

Joint without Hierarchy 46.0 88.4 60.5

Joint with Hierarchy 48.0 87.8 62.0

Table 4: Performance of Opinion Extraction

respond to direct subjective expression and expres-

sive subjective element (Wiebe et al., 2005).2

Our implementation of hierarchical sequential

learning is based on the Mallet (McCallum, 2002)

code for CRFs. In all experiments, we use a Gaus-

sian prior of 1.0 for regularization. We use 135

documents for development, and test on a dif-

ferent set of 400 documents using 10-fold cross-

validation. We investigate three options for jointly

extracting opinion expressions with their attributes

as follows:

[Baseline-1] Polarity-Only ∩ Intensity-Only:

For this baseline, we train two separate sequence

tagging CRFs: one that extracts opinion expres-

sions only with the polarity attribute (using com-

mon features and polarity extraction features in

Section 3), and another that extracts opinion ex-

pressions only with the intensity attribute (using

common features and intensity extraction features

in Section 3). We then combine the results from

two separate CRFs by collecting all opinion en-

tities extracted by both sequence taggers.3 This

2Only 1.5% of the polarity annotations correspond to
both; hence, we merge both into the neutral. Similarly, for
gold standard intensity, we merge extremely high into high.

3We collect all entities whose portions of text spans are
extracted by both models.

baseline effectively represents a cascaded compo-

nent approach.

[Baseline-2] Joint without Hierarchy: Here

we use simple linear-chain CRFs without exploit-

ing the class hierarchy for the opinion recognition

task. We use the tags shown in Table 1.

Joint with Hierarchy: Finally, we test the hi-

erarchical sequential learning approach elaborated

in Section 3.

4.1 Evaluation Results

We evaluate all experiments at the opinion entity

level, i.e. at the level of each opinion expression

rather than at the token level. We use three evalua-

tion metrics: recall, precision, and F-measure with

equally weighted recall and precision.

Table 4 shows the performance of opinion ex-

traction without matching any attribute. That is, an

extracted opinion entity is counted as correct if it

overlaps4 with a gold standard opinion expression,

without checking the correctness of its attributes.

Table 2 and 3 show the performance of opinion

extraction with the correct polarity and intensity

respectively.

From all of these evaluation criteria, JOINT WITH

4Overlap matching is a reasonable choice as the annotator
agreement study is also based on overlap matching (Wiebe
et al., 2005). One might wonder whether the overlap match-
ing scheme could allow a degenerative case where extracting
the entire test dataset as one giant opinion expression would
yield 100% recall and precision. Because each sentence cor-
responds to a different test instance in our model, and because
some sentences do not contain any opinion expression in the
dataset, such degenerative case is not possible in our experi-
ments.
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HIERARCHY performs the best, and the least effec-

tive one is BASELINE-1, which cascades two sepa-

rately trained models. It is interesting that the sim-

ple sequential tagging approach even without ex-

ploiting the hierarchy (BASELINE-2) performs better

than the cascaded approach (BASELINE-1).

When evaluating with respect to the polarity at-

tribute, the performance of the negative class is

substantially higher than the that of other classes.

This is not surprising as there is approximately

twice as much data for the negative class. When

evaluating with respect to the intensity attribute,

the performance of the LOW class is substantially

lower than that of other classes. This result reflects

the fact that it is inherently harder to distinguish

an opinion expression with low intensity from no

opinion. In general, we observe that determining

correct intensity attributes is a much harder task

than determining correct polarity attributes.

In order to have a sense of upper bound, we

also report the individual performance of two sep-

arately trained models used for BASELINE-1: for the

Polarity-Only model that extracts opinion bound-

aries only with polarity attribute, the F-scores with

respect to the positive, neutral, negative classes are

46.7, 47.5, 57.0, respectively. For the Intensity-

Only model, the F-scores with respect to the high,

medium, low classes are 37.1, 40.8, 26.6, respec-

tively. Remind that neither of these models alone

fully solve the joint task of extracting boundaries

as well as determining two attributions simultane-

ously. As a result, when conjoining the results

from the two models (BASELINE-1), the final per-

formance drops substantially.

We conclude from our experiments that the sim-

ple joint sequential tagging approach even with-

out exploiting the hierarchy brings a better perfor-

mance than combining two separately developed

systems. In addition, our hierarchical joint se-

quential learning approach brings a further perfor-

mance gain over the simple joint sequential tag-

ging method.

5 Related Work

Although there have been much research for fine-

grained opinion analysis (e.g., Hu and Liu (2004),

Wilson et al. (2005), Wilson et al. (2006), Choi

and Claire (2008), Wilson et al. (2009)),5 none is

5For instance, the results of Wilson et al. (2005) is not
comparable even for our Polarity-Only model used inside
BASELINE-1, because Wilson et al. (2005) does not operate

directly comparable to our results; much of previ-

ous work studies only a subset of what we tackle

in this paper. However, as shown in Section 4.1,

when we train the learning models only for a sub-

set of the tasks, we can achieve a better perfor-

mance instantly by making the problem simpler.

Our work differs from most of previous work in

that we investigate how solving multiple related

tasks affects performance on sub-tasks.

The hierarchical parameter sharing technique

used in this paper has been previously used by

Zhao et al. (2008) for opinion analysis. However,

Zhao et al. (2008) employs this technique only to

classify sentence-level attributes (polarity and in-

tensity), without involving a much harder task of

detecting boundaries of sub-sentential entities.

6 Conclusion

We applied a hierarchical parameter sharing tech-

nique using Conditional Random Fields for fine-

grained opinion analysis. Our proposed approach

jointly extract opinion expressions from unstruc-

tured text and determine their attributes — polar-

ity and intensity. Empirical results indicate that

the simple joint sequential tagging approach even

without exploiting the hierarchy brings a better

performance than combining two separately de-

veloped systems. In addition, we found that the

hierarchical joint sequential learning approach im-

proves the performance over the simple joint se-

quential tagging method.
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Abstract

This paper presents a joint optimization
method of a two-step conditional random
field (CRF) model for machine transliter-
ation and a fast decoding algorithm for
the proposed method. Our method lies in
the category of direct orthographical map-
ping (DOM) between two languages with-
out using any intermediate phonemic map-
ping. In the two-step CRF model, the first
CRF segments an input word into chunks
and the second one converts each chunk
into one unit in the target language. In this
paper, we propose a method to jointly op-
timize the two-step CRFs and also a fast
algorithm to realize it. Our experiments
show that the proposed method outper-
forms the well-known joint source channel
model (JSCM) and our proposed fast al-
gorithm decreases the decoding time sig-
nificantly. Furthermore, combination of
the proposed method and the JSCM gives
further improvement, which outperforms
state-of-the-art results in terms of top-1 ac-
curacy.

1 Introduction

There are more than 6000 languages in the world
and 10 languages of them have more than 100 mil-
lion native speakers. With the information revolu-
tion and globalization, systems that support mul-
tiple language processing and spoken language
translation become urgent demands. The transla-
tion of named entities from alphabetic to syllabary
language is usually performed through translitera-
tion, which tries to preserve the pronunciation in
the original language.

For example, in Chinese, foreign words are
written with Chinese characters; in Japanese, for-
eign words are usually written with special char-

G o o g l e English-to-Japanese

G o o g l e English-to-Chinese

Source Name       Target Name          Note

gu ge Chinese Romanized writing         

guu gu ru Japanese Romanized writing

Figure 1: Transliteration examples

acters called Katakana; examples are given in Fig-
ure 1.

An intuitive transliteration method (Knight and
Graehl, 1998; Oh et al., 2006) is to firstly convert
a source word into phonemes, then find the corre-
sponding phonemes in the target language, and fi-
nally convert them to the target language’s written
system. There are two reasons why this method
does not work well: first, the named entities have
diverse origins and this makes the grapheme-to-
phoneme conversion very difficult; second, the
transliteration is usually not only determined by
the pronunciation, but also affected by how they
are written in the original language.

Direct orthographical mapping (DOM), which
performs the transliteration between two lan-
guages directly without using any intermediate
phonemic mapping, is recently gaining more at-
tention in the transliteration research community,
and it is also the “Standard Run” of the “NEWS
2009 Machine Transliteration Shared Task” (Li et
al., 2009). In this paper, we try to make our system
satisfy the standard evaluation condition, which
requires that the system uses the provided parallel
corpus (without pronunciation) only, and cannot
use any other bilingual or monolingual resources.

The source channel and joint source channel
models (JSCMs) (Li et al., 2004) have been pro-
posed for DOM, which try to modelP (T |S) and
P (T, S) respectively, whereT andS denote the
words in the target and source languages. Ekbal
et al. (2006) modified the JSCM to incorporate
different context information into the model for
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Indian languages. In the “NEWS 2009 Machine
Transliteration Shared Task”, a new two-step CRF
model for transliteration task has been proposed
(Yang et al., 2009), in which the first step is to
segment a word in the source language into char-
acter chunks and the second step is to perform a
context-dependent mapping from each chunk into
one written unit in the target language.

In this paper, we propose to jointly optimize a
two-step CRF model. We also propose a fast de-
coding algorithm to speed up the joint search. The
rest of this paper is organized as follows: Sec-
tion 2 explains the two-step CRF method, fol-
lowed by Section 3 which describes our joint opti-
mization method and its fast decoding algorithm;
Section 4 introduces a rapid implementation of a
JSCM system in the weighted finite state trans-
ducer (WFST) framework; and the last section
reports the experimental results and conclusions.
Although our method is language independent, we
use an English-to-Chinese transliteration task in
all the explanations and experiments.

2 Two-step CRF method

2.1 CRF introduction

A chain-CRF (Lafferty et al., 2001) is an undi-
rected graphical model which assigns a probability
to a label sequenceL = l1l2 . . . lT , given an input
sequenceC = c1c2 . . . cT . CRF training is usually
performed through the L-BFGS algorithm (Wal-
lach, 2002) and decoding is performed by the
Viterbi algorithm. We formalize machine translit-
eration as a CRF tagging problem, as shown in
Figure 2.

T i m o t h y

T/B i/N m/B o/N t/B h/N y/N

Ti/ mo/ thy/

Figure 2: An pictorial description of a CRF seg-
menter and a CRF converter

2.2 CRF segmenter

In the CRF, a feature function describes a co-
occurrence relation, and it is usually a binary func-
tion, taking the value 1 when both an observa-
tion and a label transition are observed. Yang et
al. (2009) used the following features in the seg-
mentation tool:

• Single unit features:C−2, C−1, C0, C1, C2

• Combination features:C−1C0, C0C1

Here,C0 is the current character,C−1 andC1 de-
note the previous and next characters, andC−2 and
C2 are the characters located two positions to the
left and right ofC0.

One limitation of their work is that only top-1
segmentation is output to the following CRF con-
verter.

2.3 CRF converter

Similar to the CRF segmenter, the CRF converter
has the format shown in Figure 2.

For this CRF, Yang et al. (2009) used the fol-
lowing features:

• Single unit features:CK−1, CK0, CK1

• Combination features: CK−1CK0,

CK0CK1

whereCK represents the source language chunk,
and the subscript notation is the same as the CRF
segmenter.

3 Joint optimization and its fast decoding
algorithm

3.1 Joint optimization

We denote a word in the source language byS, a
segmentation ofS by A, and a word in the target
langauge byT . Our goal is to find the best word̂T
in the target language which maximizes the prob-
ability P (T |S).

Yang et al. (2009) used only the best segmen-
tation in the first CRF and the best output in the
second CRF, which is equivalent to

Â = arg max
A

P (A|S)

T̂ = arg max
T

P (T |S, Â), (1)

where P (A|S) and P (T |S,A) represent two
CRFs respectively. This method considers the seg-
mentation and the conversion as two independent
steps. A major limitation is that, if the segmenta-
tion from the first step is wrong, the error propa-
gates to the second step, and the error is very dif-
ficult to recover.

In this paper, we propose a new method to
jointly optimize the two-step CRF, which can be
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written as:

T̂ = arg max
T

P (T |S)

= arg max
T

∑

A

P (T,A|S)

= arg max
T

∑

A

P (A|S)P (T |S,A)

(2)

The joint optimization considers all the segmen-
tation possibilities and sums the probability over
all the alternative segmentations which generate
the same output. It considers the segmentation and
conversion in a unified framework and is robust to
segmentation errors.

3.2 N-best approximation

In the process of finding the best output using
Equation 2, a dynamic programming algorithm for
joint decoding of the segmentation and conversion
is possible, but the implementation becomes very
complicated. Another direction is to divide the de-
coding into two steps of segmentation and conver-
sion, which is this paper’s method. However, exact
inference by listing all possible candidates explic-
itly and summing over all possible segmentations
is intractable, because of the exponential computa-
tion complexity with the source word’s increasing
length.

In the segmentation step, the number of possible
segmentations is2N , whereN is the length of the
source word and 2 is the size of the tagging set. In
the conversion step, the number of possible candi-
dates isMN ′

, whereN ′ is the number of chunks
from the 1st step andM is the size of the tagging
set.M is usually large, e.g., about 400 in Chinese
and 50 in Japanese, and it is impossible to list all
the candidates.

Our analysis shows that beyond the 10th candi-
date, almost all the probabilities of the candidates
in both steps drop below 0.01. Therefore we de-
cided to generate top-10 results for both steps to
approximate the Equation 2.

3.3 Fast decoding algorithm

As introduced in the previous subsection, in the
whole decoding process we have to perform n-best
CRF decoding in the segmentation step and 10 n-
best CRF decoding in the second CRF. Is it really
necessary to perform the second CRF for all the
segmentations? The answer is “No” for candidates

with low probabilities. Here we propose a no-loss
fast decoding algorithm for deciding when to stop
performing the second CRF decoding.

Suppose we have a list of segmentation candi-
dates which are generated by the 1st CRF, ranked
by probabilitiesP (A|S) in descending orderA :
A1, A2, ..., AN and we are performing the 2nd
CRF decoding starting fromA1. Up to Ak,
we get a list of candidatesT : T1, T2, ..., TL,
ranked by probabilities in descending order. If
we can guarantee that, even performing the 2nd
CRF decoding for all the remaining segmentations
Ak+1, Ak+2, ..., AN , the top 1 candidate does not
change, then we can stop decoding.

We can show that the following formula is the
stop condition:

Pk(T1|S) − Pk(T2|S) > 1 −
k∑

j=1

P (Aj |S). (3)

The meaning of this formula is that the prob-
ability of all the remaining candidates is smaller
than the probability difference between the best
and the second best candidates; on the other hand,
even if all the remaining probabilities are added to
the second best candidate, it still cannot overturn
the top candidate. The mathematical proof is pro-
vided in Appendix A.

The stop condition here has no approximation
nor pre-defined assumption, and it is a no-loss fast
decoding algorithm.

4 Rapid development of a JSCM system

The JSCM represents how the source words and
target names are generated simultaneously (Li et
al., 2004):

P (S, T ) = P (s1, s2, ..., sk, t1, t2, ..., tk)

= P (< s, t >1, < s, t >2, ..., < s, t >k)

=

K∏

k=1

P (< s, t >k | < s, t >k−1

1
) (4)

whereS = (s1, s2, ..., sk) is a word in the source
langauge andT = (t1, t2, ..., tk) is a word in the
target language.

The training parallel data without alignment is
first aligned by a Viterbi version EM algorithm (Li
et al., 2004).

The decoding problem in JSCM can be written
as:

T̂ = arg max
T

P (S, T ). (5)
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After the alignments are generated, we use the
MITLM toolkit (Hsu and Glass, 2008) to build a
trigram model with modified Kneser-Ney smooth-
ing. We then convert the n-gram to a WFST
M (Sproat et al., 2000; Caseiro et al., 2002). To al-
low transliteration from a sequence of characters,
a second WFSTT is constructed. The input word
is converted to an acceptorI, and it is then com-
bined withT andM according toO = I ◦ T ◦M

where◦ denotes the composition operator. The
n–best paths are extracted by projecting the out-
put, removing the epsilon labels and applying the
n-shortest paths algorithm with determinization in
the OpenFst Toolkit (Allauzen et al., 2007).

5 Experiments

We use several metrics from (Li et al., 2009) to
measure the performance of our system.

1. Top-1 ACC: word accuracy of the top-1 can-
didate

2. Mean F-score: fuzziness in the top-1 candi-
date, how close the top-1 candidate is to the refer-
ence

3. MRR: mean reciprocal rank, 1/MRR tells ap-
proximately the average rank of the correct result

5.1 Comparison with the baseline and JSCM

We use the training, development and test sets of
NEWS 2009 data for English-to-Chinese in our
experiments as detailed in Table 1. This is a paral-
lel corpus without alignment.

Training data Development data Test data
31961 2896 2896

Table 1: Corpus size (number of word pairs)
We compare the proposed decoding method

with the baseline which uses only the best candi-
dates in both CRF steps, and also with the well
known JSCM. As we can see in Table 2, the pro-
posed method improves the baseline top-1 ACC
from 0.670 to 0.708, and it works as well as, or
even better than the well known JSCM in all the
three measurements.

Our experiments also show that the decoding
time can be reduced significantly via using our fast
decoding algorithm. As we have explained, with-
out fast decoding, we need 11 CRF n-best decod-
ing for each word; the number can be reduced to
3.53 (1 “the first CRF”+2.53 “the second CRF”)
via the fast decoding algorithm.

We should notice that the decoding time is sig-
nificantly shorter than the training time. While

testing takes minutes on a normal PC, the train-
ing of the CRF converter takes up to 13 hours on
an 8-core (8*3G Hz) server.

Measure Top-1 Mean MRR
ACC F-score

Baseline 0.670 0.869 0.750
Joint optimization 0.708 0.885 0.789
JSCM 0.706 0.882 0.789

Table 2: Comparison of the proposed decoding
method with the previous method and the JSCM

5.2 Further improvement

We tried to combine the two-step CRF model and
the JSCM. From the two-step CRF model we get
the conditional probabilityPCRF (T |S) and from
the JSCM we get the joint probabilityP (S, T ).
The conditional probability ofPJSCM(T |S) can
be calculuated as follows:

PJSCM (T |S) =
P (T, S)

P (S)
=

P (T, S)∑
T P (T, S)

. (6)

They are used in our combination method as:

P (T |S) = λPCRF (T |S) + (1 − λ)PJSCM (T |S)
(7)

whereλ denotes the interpolation weight (λ is set
by development data in this paper).

As we can see in Table 3, the linear combination
of two sytems further improves the top-1 ACC to
0.720, and it has outperformed the best reported
“Standard Run” (Li et al., 2009) result 0.717. (The
reported best “Standard Run” result 0.731 used
target language phoneme information, which re-
quires a monolingual dictionary; as a result it is
not a standard run.)

Measure Top-1 Mean MRR
ACC F-score

Baseline+JSCM 0.713 0.883 0.794
Joint optimization
+ JSCM 0.720 0.888 0.797
state-of-the-art 0.717 0.890 0.785
(Li et al., 2009)

Table 3: Model combination results

6 Conclusions and future work

In this paper we have presented our new joint
optimization method for a two-step CRF model
and its fast decoding algorithm. The proposed
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method improved the system significantly and out-
performed the JSCM. Combining the proposed
method with JSCM, the performance was further
improved.

In future work we are planning to combine our
system with multilingual systems. Also we want
to make use of acoustic information in machine
transliteration. We are currently investigating dis-
criminative training as a method to further im-
prove the JSCM. Another issue of our two-step
CRF method is that the training complexity in-
creases quadratically according to the size of the
label set, and how to reduce the training time needs
more research.

Appendix A. Proof of Equation 3

The CRF segmentation provides a list of segmen-
tations: A : A1, A2, ..., AN , with conditional
probabilitiesP (A1|S), P (A2|S), ..., P (AN |S).

N∑

j=1

P (Aj |S) = 1.

The CRF conversion, given a segmenta-
tion Ai, provides a list of transliteration out-
put T1, T2, ..., TM , with conditional probabilities
P (T1|S,Ai), P (T2|S,Ai), ..., P (TM |S,Ai).

In our fast decoding algorithm, we start per-
forming the CRF conversion fromA1, then A2,
and thenA3, etc. Up toAk, we get a list of can-
didatesT : T1, T2, ..., TL, ranked by probabili-
tiesPk(T |S) in descending order. The probability
Pk(Tl|S)(l = 1, 2, ..., L) is accumulated probabil-
ity of P (Tl|S) overA1, A2, ..., Ak , calculated by:

Pk(Tl|S) =

k∑

j=1

P (Aj |S)P (Tl|S,Aj)

If we continue performing the CRF conversion
to cover allN (N ≥ k) segmentations, eventually
we will get:

P (Tl|S) =
N∑

j=1

P (Aj |S)P (Tl|S,Aj)

≥

k∑

j=1

P (Aj |S)P (Tl|S,Aj)

= Pk(Tl|S) (8)

If Equation 3 holds, then for∀i 6= 1,

Pk(T1|S) > Pk(T2|S) + (1 −

k∑

j=1

P (Aj |S))

≥ Pk(Ti|S) + (1 −

k∑

j=1

P (Aj |S))

= Pk(Ti|S) +
N∑

j=k+1

P (Aj |S)

≥ Pk(Ti|S)

+

N∑

j=k+1

P (Aj |S)P (Ti|S,Aj)

= P (Ti|S) (9)

Therefore,P (T1|S) > P (Ti|S)(i 6= 1), andT1

maximizes the probabilityP (T |S).
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Abstract

Building an accurate Named Entity
Recognition (NER) system for languages
with complex morphology is a challeng-
ing task. In this paper, we present research
that explores the feature space using both
gold and bootstrapped noisy features to
build an improved highly accurate Arabic
NER system. We bootstrap noisy features
by projection from an Arabic-English par-
allel corpus that is automatically tagged
with a baseline NER system. The feature
space covers lexical, morphological, and
syntactic features. The proposed approach
yields an improvement of up to 1.64
F-measure (absolute).

1 Introduction
Named Entity Recognition (NER) has earned an
important place in Natural Language Processing
(NLP) as an enabling process for other tasks.
When explicitly taken into account, research
shows that it helps such applications achieve bet-
ter performance levels (Babych and Hartley, 2003;
Thompson and Dozier, 1997). NER is defined as
the computational identification and classification
of Named Entities (NEs) in running text. For in-
stance, consider the following text:

Barack Obama is visiting the Middle East.

A NER system should be able to identify Barack
Obama and Middle East as NEs and classify them
as Person (PER) and Geo-Political Entity (GPE),
respectively. The class-set used to tag NEs may
vary according to user needs. In this research,
we adopt the Automatic Content Extraction (ACE)
2007 nomenclature1.
According to (Nadeau and Sekine, 2007), opti-
mization of the feature set is the key component in
enhancing the performance of a global NER sys-
tem. In this paper we investigate the possibil-
ity of building a high performance Arabic NER
system by using a large space of available feature
sets that go beyond the explored shallow feature
sets used to date in the literature for Arabic NER.

1http://www.nist.gov/speech/tests/ace/index.htm

Given current state-of-the-art syntactic processing
of Arabic text and the relative small size of man-
ually annotated Arabic NER data, we set out to
explore a main concrete research goal: to fully ex-
ploit the level of advancement in Arabic lexical
and syntactic processing to explore deeper linguis-
tic features for the NER task. Realizing that the
gold data available for NER is quite limited in size
especially given the diverse genres in the set, we
devise a method to bootstrap additional instances
for the new features of interest from noisily NER
tagged Arabic data.

2 Our Approach
We use our state-of-the-art NER system described
in (Benajiba et al., 2008) as our baseline sys-
tem (BASE) since it yields, to our knowledge, the
best performance for Arabic NER . BASE em-
ploys Support Vector Machines (SVMs) and Con-
ditional Random Fields (CRFs) as Machine Learn-
ing (ML) approaches. BASE uses lexical, syn-
tactic and morphological features extracted using
highly accurate automatic Arabic POS-taggers.
BASE employs a multi-classifier approach where
each classifier is tagging a NE class separately.
The feature selection is performed by using an in-
cremental approach selecting the top n features
(the features are ranked according to their individ-
ual impact) at each iteration and keeping the set
that yields the best results. In case of conflict - a
word is classified with more than one class/tag si-
multaneously - the global NER system selects the
output of the classifier with the highest precision.

The following is the feature set used in (Bena-
jiba et al., 2008) and accordingly in the BASE sys-
tem. 1. Context: a−/+1 token window; 2. Lex-
ical: character n − grams where n ranges from
1− 3; 3. Gazetteers: automatically harvested and
manually cleaned Person NE class (PER), Geopo-
litical Entity NE class (GPE), and Organization
NE class (ORG) lexica; 4. POS-tag and Base
Phrase Chunk (BPC): automatically tagged us-
ing AMIRA (Diab et al., 2007) which yields F-
measures for both tasks in the high 90’s; 5. Mor-
phological features: automatically tagged using
the Morphological Analysis and Disambiguation
for Arabic (MADA) tool to extract information
about gender, number, person, definiteness and as-
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pect for each word (Habash and Rambow, 2005);
6. Capitalization: derived as a side effect from
running MADA. MADA chooses a specific mor-
phological analysis given the context of a given
word. As part of the morphological information
available in the underlying lexicon that MADA ex-
ploits. As part of the information present, the un-
derlying lexicon has an English gloss associated
with each entry. More often than not, if the word
is a NE in Arabic then the gloss will also be a NE
in English and hence capitalized.
We devise an extended Arabic NER system (EX-
TENDED) that uses the same architecture as
BASE but employs additional features to those in
BASE. EXTENDED defines new additional syn-
tagmatic features.

We specifically investigate the space of the sur-
rounding context for the NEs. We explore gener-
alizations over the kinds of words that occur with
NEs and the syntactic relations NEs engage in. We
use an off-the-shelf Arabic syntactic parser. State-
of-the-art for Arabic syntactic parsing for the most
common genre (with the most training data) of
Arabic data, newswire, is in the low 80%s. Hence,
we acknowledge that some of the derived syntactic
features will be noisy.

Similar to all supervised ML problems, it is de-
sirable to have sufficient training data for the rele-
vant phenomena. The size of the manually anno-
tated gold data typically used for training Arabic
NER systems poses a significant challenge for ro-
bustly exploring deeper syntactic and lexical fea-
tures. Accordingly, we bootstrap more NE tagged
data via projection over Arabic-English parallel
data. The role of this data is simply to give us more
instances of the newly defined features (namely
the syntagmatic features) in the EXTENDED sys-
tem as well as more instances for the Gazetteers
and Context features defined in BASE. It is worth
noting that we do not use the bootstrapped NE
tagged data directly as training data with the gold
data.

2.1 Syntagmatic Features
For deriving our deeper linguistic features, we
parse the Arabic sentences that contain an NE. For
each of the NEs, we extract a number of features
described as follows:

- Syntactic head-word (SHW): The idea here
is to look for a broader relevant context.
Whereas the feature lexical n-gram context fea-
ture used in BASE, and hence here for EX-
TENDED, considers the linearly adjacent neigh-
boring words of a NE, SHW uses a parse tree
to look at farther, yet related, words. For
instance, in the Arabic phrase “SrH Ams An

Figure 1: Example for the head word and syntactic
environment feature

bArAk AwbAma ytrAs”, which means “de-
clared yesterday that Barack Obama governs
...”, glossed “SrH/declared Ams/yesterday An/that
bArAk/Barack AwbAmA/Obama ytrAs/governs
...”, is parsed in Figure 1. According to the phrase
structure parse, the first parent sub-tree headword
of the NE “bArAk AwbAmA” is the verb ‘ytrAs’
(governs), the second one is ‘An’ (that) and the
third one is the verb ‘SrH’ (declared). This exam-
ple illustrates that the word “Ams” is ignored for
this feature set since it is not a syntactic head. This
is a lexicalized feature.
- Syntactic Environment (SE): This follows in the
same spirit as SHW, but expands the idea in that
it looks at the parent non-terminal instead of the
parent head word, hence it is not a lexicalized fea-
ture. The goal being to use a more abstract repre-
sentation level of the context in which a NE ap-
pears. For instance, for the same example pre-
sented in Figure 1, the first, second, and third non-
terminal parents of the NE “bArAk AwbAmA” are
‘S’, ‘SBAR’ and ‘VP’, respectively.
In our experiments we use the Bikel implementa-
tion (Bikel, 2004) of the Collins parser (Collins,
1999) which is freely available on the web2. It is a
head-driven CFG-style parser trained to parse En-
glish, Arabic, and Chinese.

2.2 Bootstrapping Noisy Arabic NER Data

Extracting the syntagmatic features from the
training data yields relatively small number of
instances. Hence the need for additional tagged
data. The new Arabic NER tagged data is derived
via projection exploiting parallel Arabic English
data. The process depends on the availability
of two key components: a large Arabic English
parallel corpus that is sentence and word aligned,
and a robust high performing English NER
system. The process is as follows. We NE tag the

2http://www.cis.upenn.edu/∼dbikel/software.html#stat-
parser
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English side of the parallel corpus. We project
the automatically tagged NER tags from the
English side to the Arabic side of the parallel
corpus. In our case, we have access to a large
manually aligned parallel corpus, therefore the
NER projection is direct. However, the English
side of the parallel corpus is not NER tagged,
hence we use an off-the-shelf competitive robust
automatic English NER system which has a
published performance of 92% (Zitouni and
Florian, 2009). The result of these two processes
is a large Arabic NER, albeit noisy, tagged data
set. As mentioned earlier this data is used only
for deriving additional instances for training
for the syntagmatic features and for the context
and gazetteer features.3 Given this additional
source of data, we changed the lexical features
extracted from the BASE to the EXTENDED. We
added two other lexical features: CBG and NGC,
described as follows: - Class Based Gazetteers
(CBG): This feature focuses on the surface form
of the NEs. We group the NEs encountered on the
Arabic side of the parallel corpus by class as they
are found in different dictionaries. The difference
between this feature and that in BASE is that the
Gazetteers are not restricted to Wikipedia sources.

- N-gram context (NGC): Here we disregard
the surface form of the NE, instead we focus on its
lexical context. For each n, where n varies from 1
to 3, we compile a list of the −n, +n, and −/ + n
words surrounding the NE. Similar to the CBG
feature, these lists are also separated by NE class.
It is worth highlighting that the NCG feature is
different from the Context feature in BASE in
that the window size is different +/ − 1 − 3 for
EXTENDED versus +/− 1 for BASE.

3 Experiments and Results
3.1 Gold Data for training and evaluation
We use the standard sets of ACE 2003, ACE
2004 and ACE 2005.4 The ACE data is annotated
for many tasks: Entity Detection and Tracking
(EDT), Relation Detection and Recognition
(RDR), Event Detection and Recognition (EDR).
All the data sets comprise Broadcast News
(BN) and Newswire (NW) genres. ACE 2004
includes an additional NW data set from the
Arabic TreeBank (ATB). ACE 2005 includes
a different genre of Weblogs (WL). The NE
classes adopted in the annotation of the ACE
2003 data are: Person (PER), Geo Political Entity
(GPE), Organization (ORG) and Facility (FAC).

3Therefore, we did not do the full feature extraction for
the other features described in BASE for this data.

4http://www.nist.gov/speech/tests/ace/

Additionally for the ACE 2004 and 2005 data, two
NE classes are added to the ACE 2003 tag-set:
Vehicles (e.g. Rotterdam Ship) and Weapons (e.g.
Kalashnikof). We use the same split for train, de-
velopment, and test used in (Benajiba et al., 2008).

3.2 Parallel Data
Most of the hand-aligned Arabic-English parallel
data used in our experiments is from the Language
Data Consortium (LDC).5. Another set of the par-
allel data is annotated in-house by professional an-
notators. The corpus has texts of five different gen-
res, namely: newswire, news groups, broadcast
news, broadcast conversation and weblogs corre-
sponding to the data genres in the ACE gold data.
The Arabic side of the parallel corpus contains
941,282 tokens. After projecting the NE tags from
the English side to the Arabic side of the paral-
lel corpus, we obtain a total of 57,290 Arabic NE
instances. Table 1 shows the number of NEs for
each class.

Class Number of NEs Class Number of NEs
FAC 998 PER 17,964
LOC 27,651 VEH 85
ORG 10,572 WEA 20

Table 1: Number of NEs per class in the Arabic
side of the parallel corpus

3.3 Individual Feature Impact
Across the board, all the features yield improved
performance. The highest obtained result is ob-
served where the first non-terminal parent is used
as a feature, a Syntactic Environment (SE) fea-
ture, yielding an improvement of up to 4 points
over the baseline. We experiment with different
sizes for the SE, i.e. taking the first parent versus
adding neighboring non-terminal parents. We note
that even though we observe an overall increase
in performance, considering both the {first, sec-
ond} or the {first, second, and third} non-terminal
parents decreases performance by 0.5 and 1.5 F-
measure points, respectively, compared to consid-
ering the first parent information alone. The head
word features, SHW, show a higher positive im-
pact than the lexical context feature, NGC. Finally,
the Gazetteer feature, CBG, impact is comparable
to the obtained improvement of the lexical context
feature.

3.4 Feature Combination Experiments
Table 2 illustrates the final results. It shows for
each data set and each genre the F-measure ob-
tained using the best feature set and ML approach.
It shows results for both the dev and test data us-
ing the optimal number of features selected from

5All the LDC data are publicly available
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ACE 2003 ACE 2004 ACE 2005
BN NW BN NW ATB BN NW WL

FreqBaseline 73.74 67.61 62.17 51.67 62.94 70.18 57.17 27.66

dev All-Synt. 83.41 79.11 76.90 72.90 74.82 81.42 76.07 54.49
All 83.93 79.72 78.54 72.80 74.97 81.82 75.92 55.65

test All-Synt. 83.50 78.90 76.70 72.40 73.50 81.31 75.30 57.30
All 84.32 79.4 78.12 72.13 74.54 81.73 75.67 58.11

Table 2: Final Results obtained with selected features contrasted against all features combined

the all the features except the syntagmatic ones
(All-Synt.) contrasted against the system in-
cluding the semantic features, i.e. All the features,
per class All . The baseline results, FreqBaseline,
assigns a test token the most frequent tag observed
for it in the gold training data, if a test token is
not observed in the training data, it is assigned the
most frequent tag which is the O tag.

4 Results Discussion
Individual feature impact results show that the
syntagmatic features are helpful for most of the
data sets. The highest improvements are obtained
for the 2003 BN and 2005 WL data-sets. The im-
provement varies significantly from one data-set
to another because it highly depends on the num-
ber of NEs which the model has not been able to
capture using the contextual, lexical, syntactic and
morphological features.
Impact of the features extracted from the paral-
lel corpus per class: The syntagmatic features
have varied in their influence on the different NE
classes. Generally, the LOC and PER classes ben-
efitted more from the head word features, SHW),
than the other classes. On the other hand for the
syntactic environment feature (SE), the PER class
seemed not to benefit much from the presence of
this feature. Weblogs: Our results show that the
random contexts in which the NEs tend to ap-
pear in the WL documents stand against obtain-
ing a significant improvement. Consequently, the
features which use a more global context (syntac-
tic environment, SE, and head word, SHW, fea-
tures) have helped obtain better results than the
ones which we have obtained using local context
namely CBG and NGC.

5 Related Work
Projecting explicit linguistic tags from another
language via parallel corpora has been widely used
in the NLP tasks and has proved to contribute sig-
nificantly to achieving better performance. Dif-
ferent research works report positive results when
using this technique to enhance WSD (Diab and
Resnik, 2002; Ng et al., 2003). In the latter two

works, they augment training data from parallel
data for training supervised systems. In (Diab,
2004), the author uses projections from English
into Arabic to bootstrap a sense tagging system
for Arabic as well as a seed Arabic WordNet
through projection. In (Hwa et al., 2002), the
authors report promising results of inducing Chi-
nese dependency trees from English. The ob-
tained model outperformed the baseline. More re-
cently, in (Chen and Ji, 2009), the authors report
their comparative study between monolingual and
cross-lingual bootstrapping. Finally, in Mention
Detection (MD), a task which includes NER and
adds the identification and classification of nom-
inal and pronominal mentions, (Zitouni and Flo-
rian, 2008) show the impact of using a MT sys-
tem to enhance the performance of an Arabic MD
model. The authors report an improvement of up
to 1.6F when the baseline system uses lexical fea-
tures only. Unlike the work we present here, their
approach requires the availability of an accurate
MT system which is a more expensive process.

6 Conclusion and Future Directions
In this paper we investigate the possibility of
building a high performance Arabic NER system
by using lexical, syntactic and morphological fea-
tures and augmenting the model with deeper lexi-
cal features and more syntagmatic features. These
extra features are extracted from noisy data ob-
tained via projection from an Arabic-English par-
allel corpus. Our results show that we achieve a
significantly high performance for almost all the
data-sets. The greatest impact of the syntagmatic
features (1.64 points of F-measure) is obtained for
the ACE 2004, BN genre. Also, the WL genre
yields an improvement of 1.16 F1 points absolute.
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Abstract
Classical Information Extraction (IE) sys-
tems fill slots in domain-specific frames.
This paper reports on SEQ, a novel
open IE system that leverages a domain-
independent frame to extract ordered se-
quences such as presidents of the United
States or the most common causes of death
in the U.S. SEQ leverages regularities
about sequences to extract a coherent set
of sequences from Web text. SEQ nearly
doubles the area under the precision-recall
curve compared to an extractor that does
not exploit these regularities.

1 Introduction

Classical IE systems fill slots in domain-specific
frames such as the time and location slots in sem-
inar announcements (Freitag, 2000) or the terror-
ist organization slot in news stories (Chieu et al.,
2003). In contrast, open IE systems are domain-
independent, but extract “flat” sets of assertions
that are not organized into frames and slots
(Sekine, 2006; Banko et al., 2007). This paper
reports on SEQ—an open IE system that leverages
a domain-independent frame to extract ordered se-
quences of objects from Web text. We show that
the novel, domain-independent sequence frame in
SEQ substantially boosts the precision and recall
of the system and yields coherent sequences fil-
tered from low-precision extractions (Table 1).

Sequence extraction is distinct from set expan-
sion (Etzioni et al., 2004; Wang and Cohen, 2007)
because sequences are ordered and because the ex-
traction process does not require seeds or HTML
lists as input.

The domain-independent sequence frame con-
sists of a sequence name s (e.g., presidents of the
United States), and a set of ordered pairs (x, k)
where x is a string naming a member of the se-
quence with name s, and k is an integer indicating

Most common cause of death in the United States:
1. heart disease, 2. cancer, 3. stroke, 4. COPD,
5. pneumonia, 6. cirrhosis, 7. AIDS, 8. chronic liver
disease, 9. sepsis, 10. suicide, 11. septic shock.

Largest tobacco company in the world:
1. Philip Morris, 2. BAT, 3. Japan Tobacco,
4. Imperial Tobacco, 5. Altadis.

Largest rodent in the world:
1. Capybara, 2. Beaver, 3. Patagonian Cavies. 4. Maras.

Sign of the zodiac:
1. Aries, 2. Taurus, 3. Gemini, 4. Cancer, 5. Leo,
6. Virgo, 7. Libra, 8. Scorpio, 9. Sagittarius,
10. Capricorn, 11. Aquarius, 12. Pisces, 13. Ophiuchus.

Table 1: Examples of sequences extracted by SEQ

from unstructured Web text.

its position (e.g., (Washington, 1) and (JFK, 35)).
The task of sequence extraction is to automatically
instantiate sequence frames given a corpus of un-
structured text.

By definition, sequences have two properties
that we can leverage in creating a sequence ex-
tractor: functionality and density. Functionality
means position k in a sequence is occupied by a
single real-world entity x. Density means that if
a value has been observed at position k then there
must exist values for all i < k, and possibly more
after it.

2 The SEQ System

Sequence extraction has two parts: identify-
ing possible extractions (x, k, s) from text, and
then classifying those extractions as either cor-
rect or incorrect. In the following section, we
describe a way to identify candidate extractions
from text using a set of lexico-syntactic patterns.
We then show that classifying extractions based
on sentence-level features and redundancy alone
yields low precision, which is improved by lever-
aging the functionality and density properties of
sequences as done in our SEQ system.
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Pattern Example
the ORD the fifth
the RB ORD the very first
the JJS the best
the RB JJS the very best
the ORD JJS the third biggest
the RBS JJ the most popular
the ORD RBS JJ the second least likely

Table 2: The patterns used by SEQ to detect ordi-
nal phrases are noun phrases that begin with one
of the part-of-speech patterns listed above.

2.1 Generating Sequence Extractions

To obtain candidate sequence extractions (x, k, s)
from text, the SEQ system finds sentences in its
input corpus that contain an ordinal phrase (OP).
Table 2 lists the lexico-syntactic patterns SEQ uses
to detect ordinal phrases. The value of k is set to
the integer corresponding to the ordinal number in
the OP.1

Next, SEQ takes each sentence that contains an
ordinal phrase o, and finds candidate items of the
form (x, k) for the sequence with name s. SEQ

constrains x to be an NP that is disjoint from o, and
s to be an NP (which may have post-modifying
PPs or clauses) following the ordinal number in o.

For example, given the sentence “With help
from his father, JFK was elected as the 35th Pres-
ident of the United States in 1960”, SEQ finds
the candidate sequences with names “President”,
“President of the United States”, and “President of
the United States in 1960”, each of which has can-
didate extractions (JFK, 35), (his father, 35), and
(help, 35). We use heuristics to filter out many of
the candidate values (e.g., no value should cross a
sentence-like boundary, and x should be at most
some distance from the OP).

This process of generating candidate ex-
tractions has high coverage, but low preci-
sion. The first step in identifying correct ex-
tractions is to compute a confidence measure
localConf(x, k, s|sentence), which measures
how likely (x, k, s) is given the sentence it came
from. We do this using domain-independent syn-
tactic features based on POS tags and the pattern-
based features “x {is,are,was,were} the kth s” and
“the kth s {is,are,was,were} x”. The features are
then combined using a Naive Bayes classifier.

In addition to the local, sentence-based features,

1Sequences often use a superlative for the first item (k =
1) such as “the deepest lake in Africa”, “the second deepest
lake in Africa” (or “the 2nd deepest ...”), etc.

we define the measure totalConf that takes into
account redundancy in an input corpus C. As
Downey et al. observed (2005), extractions that
occur more frequently in multiple distinct sen-
tences are more likely to be correct.

totalConf(x, k, s|C) =∑
sentence∈C

localConf(x, k, s|sentence) (1)

2.2 Challenges

The scores localConf and totalConf are not suffi-
cient to identify valid sequence extractions. They
tend to give high scores to extractions where the
sequence scope is too general or too specific. In
our running example, the sequence name “Presi-
dent” is too general – many countries and orga-
nizations have a president. The sequence name
“President of the United States in 1960” is too spe-
cific – there were not multiple U.S. presidents in
1960.

These errors can be explained as violations of
functionality and density. The sequence with
name “President” will have many distinct candi-
date extractions in its positions, which is a vio-
lation of functionality. The sequence with name
“President of the United States in 1960” will not
satisfy density, since it will have extractions for
only one position.

In the next section, we present the details of how
SEQ incorporates functionality and density into its
assessment of a candidate extraction.

Given an extraction (x, k, s), SEQ must clas-
sify it as either correct or incorrect. SEQ breaks
this problem down into two parts: (1) determining
whether s is a correct sequence name, and (2) de-
termining whether (x, k) is an item in s, assuming
s is correct.

A joint probabilistic model of these two deci-
sions would require a significant amount of la-
beled data. To get around this problem, we repre-
sent each (x, k, s) as a vector of features and train
two Naive Bayes classifiers: one for classifying s
and one for classifying (x, k). We then rank ex-
tractions by taking the product of the two classi-
fiers’ confidence scores.

We now describe the features used in the two
classifiers and how the classifiers are trained.

Classifying Sequences To classify a sequence
name s, SEQ uses features to measure the func-
tionality and density of s. Functionality means
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that a correct sequence with name s has one cor-
rect value x at each position k, possibly with ad-
ditional noise due to extraction errors and synony-
mous values of x. For a fixed sequence name s
and position k, we can weight each of the candi-
date x values in that position by their normalized
total confidence:

w(x|k, s, C) =
totalConf(x, k, s|C)∑
x′ totalConf(x′, k, s|C)

For overly general sequences, the distribution of
weights for a position will tend to be more flat,
since there are many equally-likely candidate x
values. To measure this property, we use a func-
tion analogous to information entropy:

H(k, s|C) = −
∑

x

w(x|k, s, C) log2 w(x|k, s, C)

Sequences s that are too general will tend to have
high values of H(k, s|C) for many values of k.
We found that a good measure of the overall non-
functionality of s is the average value of H(k, s|C)
for k = 1, 2, 3, 4.

For a sequence name s that is too specific, we
would expect that there are only a few filled-in po-
sitions. We model the density of s with two met-
rics. The first is numFilledPos(s|C), the num-
ber of distinct values of k such that there is some
extraction (x, k) for s in the corpus. The second
is totalSeqConf(s|C), which is the sum of the
scores of most confident x in each position:

totalSeqConf(s|C) =∑
k

max
x

totalConf(x, k, s|C) (2)

The functionality and density features are com-
bined using a Naive Bayes classifier. To train the
classifier, we use a set of sequence names s labeled
as either correct or incorrect, which we describe in
Section 3.

Classifying Sequence Items To classify (x, k)
given s, SEQ uses two features: the total con-
fidence totalConf(x, k, s|C) and the same total
confidence normalized to sum to 1 over all x, hold-
ing k and s constant. To train the classifier, we use
a set of extractions (x, k, s) where s is known to
be a correct sequence name.

3 Experimental Results

This section reports on two experiments. First, we
measured how the density and functionality fea-
tures improve performance on the sequence name
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Figure 1: Using density or functionality features
alone is effective in identifying correct sequence
names. Combining both types of features outper-
forms either by a statistically significant margin
(paired t-test, p < 0.05).

classification sub-task (Figure 1). Second, we
report on SEQ’s performance on the sequence-
extraction task (Figure 2).

To create a test set, we selected all sentences
containing ordinal phrases from Banko’s 500M
Web page corpus (2008). To enrich this set O,
we obtained additional sentences from Bing.com
as follows. For each sequence name s satis-
fying localConf(x, k, s|sentence) ≥ 0.5 for
some sentence in O, we queried Bing.com for
“the kth s” for k = 1, 2, . . . until no more hits
were returned.2 For each query, we downloaded
the search snippets and added them to our cor-
pus. This procedure resulted in making 95, 611
search engine queries. The final corpus contained
3, 716, 745 distinct sentences containing an OP.

Generating candidate extractions using the
method from Section 2.1 resulted in a set of over
40 million distinct extractions, the vast majority
of which are incorrect. To get a sample with
a significant number of correct extractions, we
filtered this set to include only extractions with
totalConf(x, k, s|C) ≥ 0.8 for some sentence,
resulting in a set of 2, 409, 211 extractions.

We then randomly sampled and manually la-
beled 2, 000 of these extractions for evaluation.
We did a Web search to verify the correctness of
the sequence name s and that x is the kth item in
the sequence. In some cases, the ordering rela-
tion of the sequence name was ambiguous (e.g.,

2We queried for both the numeric form of the ordinal and
the number spelled out (e.g “the 2nd ...” and “the second ...”).
We took up to 100 results per query.
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Figure 2: SEQ outperforms the baseline systems,
increasing the area under the curve by 247% rela-
tive to LOCAL and by 90% relative to REDUND.

“largest state in the US” could refer to land area or
population), which could lead to merging two dis-
tinct sequences. In practice, we found that most
ordering relations were used in a consistent way
(e.g., “largest city in” always means largest by
population) and only about 5% of the sequence
names in our sample have an ambiguous ordering
relation.

We compute precision-recall curves relative to
this random sample by changing a confidence
threshold. Precision is the percentage of correct
extractions above a threshold, while recall is the
percentage correct above a threshold divided by
the total number of correct extractions. Because
SEQ requires training data, we used 15-fold cross
validation on the labeled sample.

The functionality and density features boost
SEQ’s ability to correctly identify sequence
names. Figure 1 shows how well SEQ can iden-
tify correct sequence names using only functional-
ity, only density, and using functionality and den-
sity in concert. The baseline used is the maximum
value of localConf(x, k, s) over all (x, k). Both
the density features and the functionality features
are effective at this task, but using both types of
features resulted in a statistically significant im-
provement over using either type of feature in-
dividually (paired t-test of area under the curve,
p < 0.05).

We measure SEQ’s efficacy on the complete
sequence-extraction task by contrasting it with two
baseline systems. The first is LOCAL, which
ranks extractions by localConf .3 The second is

3If an extraction arises from multiple sentences, we use

REDUND, which ranks extractions by totalConf .
Figure 2 shows the precision-recall curves for each
system on the test data. The area under the curves
for SEQ, REDUND, and LOCAL are 0.59, 0.31,
and 0.17, respectively. The low precision and flat
curve for LOCAL suggests that localConf is not
informative for classifying extractions on its own.

REDUND outperformed LOCAL, especially at
the high-precision part of the curve. On the subset
of extractions with correct s, REDUND can iden-
tify x as the kth item with precision of 0.85 at re-
call 0.80. This is consistent with previous work on
redundancy-based extractors on the Web. How-
ever, REDUND still suffered from the problems
of over-specification and over-generalization de-
scribed in Section 2. SEQ reduces the negative ef-
fects of these problems by decreasing the scores
of sequence names that appear too general or too
specific.

4 Related Work

There has been extensive work in extracting lists
or sets of entities from the Web. These extrac-
tors rely on either (1) HTML features (Cohen
et al., 2002; Wang and Cohen, 2007) to extract
from structured text or (2) lexico-syntactic pat-
terns (Hearst, 1992; Etzioni et al., 2005) to ex-
tract from unstructured text. SEQ is most similar
to this second type of extractor, but additionally
leverages the sequence regularities of functionality
and density. These regularities allow the system to
overcome the poor performance of the purely syn-
tactic extractor LOCAL and the redundancy-based
extractor REDUND.

5 Conclusions

We have demonstrated that an extractor leveraging
sequence regularities can greatly outperform ex-
tractors without this knowledge. Identifying likely
sequence names and then filling in sequence items
proved to be an effective approach to sequence ex-
traction.

One line of future research is to investigate
other types of domain-independent frames that ex-
hibit useful regularities. Other examples include
events (with regularities about actor, location, and
time) and a generic organization-role frame (with
regularities about person, organization, and role
played).

the maximal localConf .
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Abstract

We present a generative model of
template-filling in which coreference
resolution and role assignment are jointly
determined. Underlying template roles
first generate abstract entities, which in
turn generate concrete textual mentions.
On the standard corporate acquisitions
dataset, joint resolution in our entity-level
model reduces error over a mention-level
discriminative approach by up to 20%.

1 Introduction

Template-filling information extraction (IE) sys-
tems must merge information across multiple sen-
tences to identify all role fillers of interest. For
instance, in the MUC4 terrorism event extrac-
tion task, the entity filling the individual perpetra-
tor role often occurs multiple times, variously as
proper, nominal, or pronominal mentions. How-
ever, most template-filling systems (Freitag and
McCallum, 2000; Patwardhan and Riloff, 2007)
assign roles to individual textual mentions using
only local context as evidence, leaving aggrega-
tion for post-processing. While prior work has
acknowledged that coreference resolution and dis-
course analysis are integral to accurate role identi-
fication, to our knowledge no model has been pro-
posed which jointly models these phenomena.

In this work, we describe an entity-centered ap-
proach to template-filling IE problems. Our model
jointly merges surface mentions into underlying
entities (coreference resolution) and assigns roles
to those discovered entities. In the generative pro-
cess proposed here, document entities are gener-
ated for each template role, along with a set of
non-template entities. These entities then generate
mentions in a process sensitive to both lexical and
structural properties of the mention. Our model
outperforms a discriminative mention-level base-
line. Moreover, since our model is generative, it

[S CSR] has said that [S it] has sold [S its]  [B oil 
interests] held in  [A Delhi Fund].  [P Esso Inc.] did not 
disclose how much [P they] paid for [A Dehli].

(a)

(b)

Document
Esso Inc.

PURCHASERACQUIRED

Delhi FundOil and Gas

BUSINESS

CSR Limited

SELLER

Template

Figure 1: Example of the corporate acquisitions role-filling
task. In (a), an example template specifying the entities play-
ing each domain role. In (b), an example document with
coreferent mentions sharing the same role label. Note that
pronoun mentions provide direct clues to entity roles.

can naturally incorporate unannotated data, which
further increases accuracy.

2 Problem Setting

Figure 1(a) shows an example template-filling
task from the corporate acquisitions domain (Fre-
itag, 1998).1 We have a template of K roles
(PURCHASER, AMOUNT, etc.) and we must iden-
tify which entity (if any) fills each role (CSR Lim-
ited, etc.). Often such problems are modeled at the
mention level, directly labeling individual men-
tions as in Figure 1(b). Indeed, in this data set,
the mention-level perspective is evident in the gold
annotations, which ignore pronominal references.
However, roles in this domain appear in several lo-
cations throughout the document, with pronominal
mentions often carrying the critical information
for template filling. Therefore, Section 3 presents
a model in which entities are explicitly modeled,
naturally merging information across all mention
types and explicitly representing latent structure
very much like the entity-level template structure
from Figure 1(a).

1In Freitag (1998), some of these fields are split in two to
distinguish a full versus abbreviated name, but we ignore this
distinction. Also we ignore the status field as it doesn’t apply
to entities and its meaning is not consistent.
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Figure 2: Graphical model depiction of our generative model described in Section 3. Sample values are illustrated for key
parameters and latent variables.

3 Model

We describe our generative model for a document,
which has many similarities to the coreference-
only model of Haghighi and Klein (2010), but
which integrally models template role-fillers. We
briefly describe the key abstractions of our model.

Mentions: A mention is an observed textual
reference to a latent real-world entity. Mentions
are associated with nodes in a parse tree and are
typically realized as NPs. There are three ba-
sic forms of mentions: proper (NAM), nominal
(NOM), and pronominal (PRO). Each mention M
is represented as collection of key-value pairs.
The keys are called properties and the values are
words. The set of properties utilized here, de-
noted R, are the same as in Haghighi and Klein
(2010) and consist of the mention head, its depen-
dencies, and its governor. See Figure 2 for a con-
crete example. Mention types are trivially deter-
mined from mention head POS tag. All mention
properties and their values are observed.

Entities: An entity is a specific individual or
object in the world. Entities are always latent in
text. Where a mention has a single word for each
property, an entity has a list of signature words.
Formally, entities are mappings from properties
r ∈ R to lists Lr of “canonical” words which that
entity uses for that property.

Roles: The elements we have described so far
are standard in many coreference systems. Our
model performs role-filling by assuming that each
entity is drawn from an underlying role. These

roles include theK template roles as well as ‘junk’
roles to represent entities which do not fill a tem-
plate role (see Section 5.2). Each role R is rep-
resented as a mapping between properties r and
pairs of multinomials (θr, fr). θr is a unigram dis-
tribution of words for property r that are seman-
tically licensed for the role (e.g., being the sub-
ject of “acquired” for the ACQUIRED role). fr is a
“fertility” distribution over the integers that char-
acterizes entity list lengths. Together, these distri-
butions control the lists Lr for entities which in-
stantiate the role.

We first present a broad sketch of our model’s
components and then detail each in a subsequent
section. We temporarily assume that all men-
tions belong to a template role-filling entity; we
lift this restriction in Section 5.2. First, a se-
mantic component generates a sequence of enti-
ties E = (E1, . . . , EK), where each Ei is gen-
erated from a corresponding role Ri. We use
R = (R1, . . . , RK) to denote the vector of tem-
plate role parameters. Note that this work assumes
that there is a one-to-one mapping between entities
and roles; in particular, at most one entity can fill
each role. This assumption is appropriate for the
domain considered here.

Once entities have been generated, a dis-
course component generates which entities will be
evoked in each of the n mention positions. We
represent these choices using entity indicators de-
noted by Z = (Z1, . . . , Zn). This component uti-
lizes a learned global prior φ over roles. The Zi in-
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dicators take values in 1, . . . ,K indicating the en-
tity number (and thereby the role) underlying the
ith mention position. Finally, a mention genera-
tion component renders each mention conditioned
on the underlying entity and role. Formally:
P (E,Z,M|R, φ) =(

K∏
i=1

P (Ei|Ri)

)
[Semantic, Sec. 3.1] n∏

j=1

P (Zj |Z<j , φ)

 [Discourse, Sec. 3.2]

 n∏
j=1

P (Mj |EZj , RZj )

 [Mention, Sec. 3.3]

3.1 Semantic Component
Each role R generates an entity E as follows: for
each mention property r, a word list, Lr, is drawn
by first generating a list length from the corre-
sponding fr distribution in R.2 This list is then
populated by an independent draw from R’s uni-
gram distribution θr. Formally, for each r ∈ R, an
entity word list is drawn according to,3

P (Lr|R) = P (len(Lr)|fr)
∏

w∈Lr

P (w|θr)

3.2 Discourse Component
The discourse component draws the entity indica-
tor Zj for the jth mention according to,

P (Zj |Z<j , φ) =

{
P (Zj |φ), if non-pronominal∑

j′ 1[Zj = Zj′ ]P (j′|j), o.w.

When the jth mention is non-pronominal, we draw
Zj from φ, a global prior over the K roles. When
Mj is a pronoun, we first draw an antecedent men-
tion position j′, such that j′ < j, and then we set
Zj = Zj′ . The antecedent position is selected ac-
cording to the distribution,

P (j′|j) ∝ exp{−γTREEDIST(j′, j)}

where TREEDIST(j′,j) represents the tree distance
between the parse nodes forMj andMj′ .4 Mass is

2There is one exception: the sizes of the proper and nom-
inal head property lists are jointly generated, but their word
lists are still independently populated.

3While, in principle, this process can yield word lists with
duplicate words, we constrain the model during inference to
not allow that to occur.

4Sentence parse trees are merged into a right-branching
document parse tree. This allows us to extend tree distance to
inter-sentence nodes.

restricted to antecedent mention positions j′ which
occur earlier in the same sentence or in the previ-
ous sentence.5

3.3 Mention Generation
Once the entity indicator has been drawn, we gen-
erate words associated with mention conditioned
on the underlying entity E and role R. For each
mention property r associated with the mention,
a word w is drawn utilizing E’s word list Lr as
well as the multinomials (fr, θr) from roleR. The
word w is drawn according to,

P (w|E,R)=(1− αr)
1 [w ∈ Lr]

len(Lr)
+ αrP (w|θr)

For each property r, there is a hyper-parameter αr

which interpolates between selecting a word uni-
formly from the entity list Lr and drawing from
the underlying role distribution θr. Intuitively, a
small αr indicates that an entity prefers to re-use a
small number of words for property r. This is typi-
cally the case for proper and nominal heads as well
as modifiers. At the other extreme, setting αr to 1
indicates the property isn’t particular to the entity
itself, but rather always drawn from the underly-
ing role distribution. We set αr to 1 for pronoun
heads as well as for the governor properties.

4 Learning and Inference

Since we will make use of unannotated data (see
Section 5), we utilize a variational EM algorithm
to learn parameters R and φ. The E-Step re-
quires the posterior P (E,Z|R,M, φ), which is
intractable to compute exactly. We approximate
it using a surrogate variational distribution of the
following factored form:

Q(E,Z) =

(
K∏

i=1

qi(Ei)

) n∏
j=1

rj(Zj)


Each rj(Zj) is a distribution over the entity in-
dicator for mention Mj , which approximates the
true posterior of Zj . Similarly, qi(Ei) approxi-
mates the posterior over entity Ei which is asso-
ciated with role Ri. As is standard, we iteratively
update each component distribution to minimize
KL-divergence, fixing all other distributions:

qi ← argmin
qi

KL(Q(E,Z)|P (E,Z|M,R, φ)

∝ exp{EQ/qi
lnP (E,Z|M,R, φ))}

5The sole parameter γ is fixed at 0.1.
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Ment Acc. Ent. Acc.
INDEP 60.0 43.7
JOINT 64.6 54.2
JOINT+PRO 68.2 57.8

Table 1: Results on corporate acquisition tasks with given
role mention boundaries. We report mention role accuracy
and entity role accuracy (correctly labeling all entity men-
tions).

For example, the update for a non-pronominal
entity indicator component rj(·) is given by:6

ln rj(z) ∝ EQ/rj
lnP (E,Z,M|R, φ)

∝ Eqz ln (P (z|φ)P (Mj |Ez, Rz))

= lnP (z|φ) + Eqz lnP (Mj |Ez, Rz)

A similar update is performed on pronominal en-
tity indicator distributions, which we omit here for
space. The update for variational entity distribu-
tion is given by:

ln qi(ei) ∝ EQ/qi
lnP (E,Z,M|R, φ)

∝ E{rj} ln

P (ei|Ri)
∏

j:Zj=i

P (Mj |ei, Ri)


= lnP (ei|Ri) +

∑
j

rj(i) lnP (Mj |ei, Ri)

It is intractable to enumerate all possible entities
ei (each consisting of several sets of words). We
instead limit the support of qi(ei) to several sam-
pled entities. We obtain entity samples by sam-
pling mention entity indicators according to rj .
For a given sample, we assume that Ei consists
of the non-pronominal head words and modifiers
of mentions such that Zj has sampled value i.

During the E-Step, we perform 5 iterations of
updating each variational factor, which results in
an approximate posterior distribution. Using ex-
pectations from this approximate posterior, our M-
Step is relatively straightforward. The role param-
eters Ri are computed from the qi(ei) and rj(z)
distributions, and the global role prior φ from the
non-pronominal components of rj(z).

5 Experiments

We present results on the corporate acquisitions
task, which consists of 600 annotated documents
split into a 300/300 train/test split. We use 50
training documents as a development set. In all

6For simplicity of exposition, we omit terms where Mj is
an antecedent to a pronoun.

documents, proper and (usually) nominal men-
tions are annotated with roles, while pronouns are
not. We preprocess each document identically to
Haghighi and Klein (2010): we sentence-segment
using the OpenNLP toolkit, parse sentences with
the Berkeley Parser (Petrov et al., 2006), and ex-
tract mention properties from parse trees and the
Stanford Dependency Extractor (de Marneffe et
al., 2006).

5.1 Gold Role Boundaries

We first consider the simplified task where role
mention boundaries are given. We map each la-
beled token span in training and test data to a parse
tree node that shares the same head. In this set-
ting, the role-filling task is a collective classifica-
tion problem, since we know each mention is fill-
ing some role.

As our baseline, INDEP, we built a maxi-
mum entropy model which independently classi-
fies each mention’s role. It uses features as similar
as possible to the generative model (and more), in-
cluding the head word, typed dependencies of the
head, various tree features, governing word, and
several conjunctions of these features as well as
coarser versions of lexicalized features. This sys-
tem yields 60.0 mention labeling accuracy (see Ta-
ble 1). The primary difficulty in classification is
the disambiguation amongst the acquired, seller,
and purchaser roles, which have similar internal
structure, and differ primarily in their semantic
contexts. Our entity-centered model, JOINT in Ta-
ble 1, has no latent variables at training time in this
setting, since each role maps to a unique entity.
This model yields 64.6, outperforming INDEP.7

During development, we noted that often the
most direct evidence of the role of an entity was
associated with pronoun usage (see the first “it”
in Figure 1). Training our model with pronominal
mentions, whose roles are latent variables at train-
ing time, improves accuracy to 68.2.8

5.2 Full Task

We now consider the more difficult setting where
role mention boundaries are not provided at test
time. In this setting, we automatically extract
mentions from a parse tree using a heuristic ap-

7We use the mode of the variational posteriors rj(Zj) to
make predictions (see Section 4).

8While this approach incorrectly assumes that all pro-
nouns have antecedents amongst our given mentions, this did
not appear to degrade performance.
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ROLE ID OVERALL

P R F1 P R F1

INDEP 79.0 65.5 71.6 48.6 40.3 44.0
JOINT+PRO 80.3 69.2 74.3 53.4 46.4 49.7
BEST 80.1 70.1 74.8 57.3 49.2 52.9

Table 2: Results on corporate acquisitions data where men-
tion boundaries are not provided. Systems must determine
which mentions are template role-fillers as well as label them.
ROLE ID only evaluates the binary decision of whether a
mention is a template role-filler or not. OVERALL includes
correctly labeling mentions. Our BEST system, see Sec-
tion 5, adds extra unannotated data to our JOINT+PRO sys-
tem.

proach. Our mention extraction procedure yields
95% recall over annotated role mentions and 45%
precision.9 Using extracted mentions as input, our
task is to label some subset of the mentions with
template roles. Since systems can label mentions
as non-role bearing, only recall is critical to men-
tion extraction. To adapt INDEP to this setting, we
first use a binary classifier trained to distinguish
role-bearing mentions. The baseline then classi-
fies mentions which pass this first phase as before.
We add ‘junk’ roles to our model to flexibly model
entities that do not correspond to annotated tem-
plate roles. During training, extracted mentions
which are not matched in the labeled data have
posteriors which are constrained to be amongst the
‘junk’ roles.

We first evaluate role identification (ROLE ID in
Table 2), the task of identifying mentions which
play some role in the template. The binary clas-
sifier for INDEP yields 71.6 F1. Our JOINT+PRO

system yields 74.3. On the task of identifying and
correctly labeling role mentions, our model out-
performs INDEP as well (OVERALL in Table 2). As
our model is generative, it is straightforward to uti-
lize totally unannotated data. We added 700 fully
unannotated documents from the mergers and ac-
quisitions portion of the Reuters 21857 corpus.
Training JOINT+PRO on this data as well as our
original training data yields the best performance
(BEST in Table 2).10

To our knowledge, the best previously pub-
lished results on this dataset are from Siefkes
(2008), who report 45.9 weighted F1. Our BEST

system evaluated in their slightly stricter way
yields 51.1.

9Following Patwardhan and Riloff (2009), we match ex-
tracted mentions to labeled spans if the head of the mention
matches the labeled span.

10We scaled expected counts from the unlabeled data so
that they did not overwhelm those from our (partially) labeled
data.

6 Conclusion

We have presented a joint generative model of
coreference resolution and role-filling information
extraction. This model makes role decisions at
the entity, rather than at the mention level. This
approach naturally aggregates information across
multiple mentions, incorporates unannotated data,
and yields strong performance.

Acknowledgements: This project is funded in
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Grant No. N000140911081.
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Abstract 

It is a fundamental and important task to ex-

tract key phrases from documents. Generally, 

phrases in a document are not independent in 

delivering the content of the document. In or-

der to capture and make better use of their re-
lationships in key phrase extraction, we sug-

gest exploring the Wikipedia knowledge to 

model a document as a semantic network, 

where both n-ary and binary relationships 

among phrases are formulated. Based on a 

commonly accepted assumption that the title 

of a document is always elaborated to reflect 

the content of a document and consequently 

key phrases tend to have close semantics to the 

title, we propose a novel semi-supervised key 

phrase extraction approach in this paper by 

computing the phrase importance in the se-
mantic network, through which the influence 

of title phrases is propagated to the other 

phrases iteratively. Experimental results dem-

onstrate the remarkable performance of this 

approach. 

1 Introduction 

Key phrases are defined as the phrases that ex-

press the main content of a document. Guided by 
the given key phrases, people can easily under-

stand what a document describes, saving a great 

amount of time reading the whole text. Conse-
quently, automatic key phrase extraction is in 

high demand. Meanwhile, it is also fundamental 

to many other natural language processing appli-
cations, such as information retrieval, text clus-

tering and so on.  

Key phrase extraction can be normally cast as 

a ranking problem solved by either supervised or 
unsupervised methods. Supervised learning re-

quires a large amount of expensive training data, 

whereas unsupervised learning totally ignores 
human knowledge. To overcome the deficiencies 

of these two kinds of methods, we propose a 

novel semi-supervised key phrase extraction ap-

proach in this paper, which explores title phrases 

as the source of knowledge.  
It is well agreed that the title has a similar role 

to the key phrases. They are both elaborated to 

reflect the content of a document. Therefore, 
phrases in the titles are often appropriate to be 

key phrases. That is why position has been a 

quite effective feature in the feature-based key 
phrase extraction methods (Witten, 1999), i.e., if 

a phrase is located in the title, it is ranked higher.  

However, one can only include a couple of 

most important phrases in the title prudently due 
to the limitation of the title length, even though 

many other key phrases are all pivotal to the un-

derstanding of the document. For example, when 
we read the title “China Tightens Grip on the 

Web”, we can only have a glimpse of what the 

document says. On the other hand, the key 
phrases, such as “China”, “Censorship”, “Web”, 

“Domain name”, “Internet”, and “CNNIC”, etc. 

can tell more details about the main topics of the 

document. In this regard, title phrases are often 
good key phrases but they are far from enough. 

If we review the above example again, we will 

find that the key phrase “Internet” can be in-
ferred from the title phrase “Web”. As a matter 

of fact, key phrases often have close semantics to 

title phrases. Then a question comes to our minds: 

can we make use of these title phrases to infer 
the other key phrases?  

To provide a foundation of inference, a seman-

tic network that captures the relationships among 
phrases is required. In the previous works (Tur-

dakov and Velikhov, 2008), semantic networks 

are constructed based on the binary relations, and 
the semantic relatedness between a pair of phras-

es is formulated by the weighted edges that con-

nects them. The deficiency of these approaches is 

the incapability to capture the n-ary relations 
among multiple phrases. For example, a group of 
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phrases may collectively describe an entity or an 

event.  

In this study, we propose to model a semantic 

network as a hyper-graph, where vertices 
represent phrases and weighted hyper-edges 

measure the semantic relatedness of both binary 

relations and n-ary relations among phrases. We 
explore a universal knowledge base – Wikipedia 

– to compute the semantic relatedness. Yet our 

major contribution is to develop a novel semi-
supervised key phrase extraction approach by 

computing the phrase importance in the semantic 

network, through which the influence of title 

phrases is propagated to the other phrases itera-
tively.  

The goal of the semi-supervised learning is to 

design a function that is sufficiently smooth with 
respect to the intrinsic structure revealed by title 

phrases and other phrases. Based on the assump-

tion that semantically related phrases are likely 
to have similar scores, the function to be esti-

mated is required to assign title phrases a higher 

score and meanwhile locally smooth on the con-

structed hyper-graph. Zhou et al.’s work (Zhou 
2005) lays down a foundation for our semi-

supervised phrase ranking algorithm introduced 

in Section 3. Experimental results presented in 
Section 4 demonstrate the effectiveness of this 

approach. 

2 Wikipedia-based Semantic Network 

Construction  

Wikipedia
1
 is a free online encyclopedia, which 

has unarguably become the world’s largest col-
lection of encyclopedic knowledge. Articles are 

the basic entries in the Wikipedia, with each ar-

ticle explaining one Wikipedia term. Articles 
contain links pointing from one article to another. 

Currently, there are over 3 million articles and 90 

million links in English Wikipedia. In addition to 
providing a large vocabulary, Wikipedia articles 

also contain a rich body of lexical semantic in-

formation expressed via the extensive number of 

links. During recent years, Wikipedia has been 
used as a powerful tool to compute semantic re-

latedness between terms in a good few of works 

(Turdakov 2008).   
We consider a document composed of the 

phrases that describe various aspects of entities 

or events with different semantic relationships. 
We then model a document as a semantic net-

work formulated by a weighted hyper-graph 

                                                
1 www.wikipedia.org 
 

G=(V, E, W), where each vertex viV (1in) 

represents a phrase, each hyper-edge ejE 

(1jm) is a subset of V, representing binary re-
lations or n-ary relations among phrases, and the 

weight w(ej) measures the semantic relatedness 
of ej.  

By applying the WSD technique proposed by 

(Turdakov and Velikhov, 2008), each phrase is 
assigned with a single Wikipedia article that de-

scribes its meaning. Intuitively, if the fraction of 

the links that the two articles have in common to 
the total number of the links in both articles is 

high, the two phrases corresponding to the two 

articles are more semantically related. Also, an 

article contains different types of links, which are 
relevant to the computation of semantic related-

ness to different extent. Hence we adopt the 

weighted Dice metric proposed by (Turdakov 
2008) to compute the semantic relatedness of 

each binary relation, resulting in the edge weight  

w(eij), where eij is an edge connecting the phrases 

vi and vj. 
To define the n-ary relations in the semantic 

network, a proper graph clustering technique is 

needed. We adopt the weighted Girvan-Newman 
algorithm (Newman 2004) to cluster phrases (in-

cluding title phrases) by computing their bet-

weenness centrality. The advantage of this algo-
rithm is that it need not specify a pre-defined 

number of clusters. Then the phrases, within 

each cluster, are connected by a n-ary relation. n-

ary relations among the phrases in the same clus-
ter are then measured based on binary relations. 

The weight of a hyper-edge e is defined as: 

( ) ( )
| |

ij

ij

e e

w e w e
e





    (1) 

where |e| is the number of the vertices in e, eij is 

an edge with two vertices included in e and  ≥ 0 

is a parameter balancing the relative importance 
of n-ary hyper-edges compared with binary ones.  

3 Semi-supervised Learning from Title 

Given the document semantic network 

represented as a phrase hyper-graph, one way to 

make better use of the semantic information is to 

rank phrases with a semi-supervised learning 
strategy, where the title phrases are regarded as 

labeled samples, while the other phrases as unla-

beled ones. That is, the information we have at 
the beginning about how to rank phrases is that 

the title phrases are the most important phrases. 

Initially, the title phrases are assigned with a pos-
itive score of 1 indicating its importance and oth-
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er phrases are assigned zero. Then the impor-

tance scores of the phrases are learned iteratively 

from the title phrases through the hyper-graph. 

The key idea behind hyper-graph based semi-
supervised ranking is that the vertices which 

usually belong to the same hyper-edges should 

be assigned with similar scores. Then, we have 
the following two constraints: 

1. The phrases which have many incident hy-

per-edges in common should be assigned similar 
scores. 

2. The given initial scores of the title phrases 

should be changed as little as possible. 

Given a weighted hyper-graph G, assume a 
ranking function f over V, which assigns each 

vertex v an importance score f(v). f can be 

thought as a vector in Euclid space R
|V|

. For the 
convenience of computation, we use an inci-

dence matrix H to represent the hypergraph, de-

fined as: 

0, if 
( , )

1, if 

v e
h v e

v e


 


   (2) 

Based on the incidence matrix, we define the 

degrees of the vertex v and the hyper-edge e as 

   (3) 

and 

   (4) 

Then, to formulate the above-mentioned con-

straints, let  denote the initial score vector, then 
the importance scores of the phrases are learned 

iteratively by solving the following optimization 

problem: 

| |

2
arg min { ( ) }Vf R

f f y


    (5) 

2

{ , }

1 1 ( ) ( )
( ) ( )

2 ( ) ( ) ( )e E u v e

f u f v
f w e

e d u d v 

 
    

 
   (6) 

where > 0 is the parameter specifying the 
tradeoff between the two competitive items. Let 

Dv and De denote the diagonal matrices contain-

ing the vertex and the hyper-edge degrees re-
spectively, W denote the diagonal matrix con-

taining the hyper-edge weights, f
*
 denote the so-

lution of (6).  Zhou has given the solution (Zhou, 

2005) as. 
* * (1 )f f y        (7) 

where 1/2 1 1/2T

v e vD HWD H D     and 1/ ( 1)   . 

Using an approximation algorithm (e.g. Algo-

rithm 1), we can finally get a vector f 
representing the approximate phrase scores. 

Algorithm 1: PhraseRank(V, T, a, b) 

Input: Title phrase set = {v1,v2,…,vt},the set of other 

phrases ={vt+1,vt+2,…,vn}, parameters  and , con-

vergence threshold  

Output: The approximate phrase scores f  
Construct a document semantic network for all the 

phrases {v1,v2,…,vn} using the method described  in 

section 2. 

Let 1/2 1 1/2T

v e vD HWD H D    ;  

Initialize the score vector y as 1,1iy i t   , and  

0,jy t j n   ; 

Let , k = 0; 
REPEAT  

1 (1 )k kf f y     ; 

, ; 

; 

UNTIL  

END 

Finally we rank phrases in descending order of 
the calculated importance scores and select those 

highest ranked phrases as key phrases. Accord-

ing to the number of all the candidate phrases, 
we choose an appropriate proportion, i.e. 10%, of 

all the phrases as key phrases. 

4 Evaluation 

4.1 Experiment Set-up  

We first collect all the Wikipedia terms to com-

pose of a dictionary. The word sequences that 
occur in the dictionary are identified as phrases. 

Here we use a finite-state automaton to accom-

plish this task to avoid the imprecision of pre-

processing by POS tagging or chunking. Then, 
we adopt the WSD technique proposed by (Tur-

dakov and Velikhov 2008) to find the corres-

ponding Wikipedia article for each phrase. As 
mentioned in Section 2, a document semantic 

network in the form of a hyper-graph is con-

structed, on which Algorithm 1 is applied to rank 
the phrases.  

To evaluate our proposed approach, we select 

200 pieces of news from well-known English 

media. 5 to 10 key phrases are manually labeled 
in each news document and the average number 

of the key phrases is 7.2 per document. Due to 

the abbreviation and synonymy phenomena, we 
construct a thesaurus and convert all manual and 

automatic phrases into their canonical forms 

when evaluated. The traditional Recall, Precision 

and F1-measure metrics are adopted for evalua-
tion. This section conducts two sets of experi-

ment: (1) to examine the influence of two para-

meters:  and , on the key phrase extraction 
performance; (2) to compare with other well 
known state-of-art key phrase extraction ap-

proaches. 
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4.2 Parameter tuning  

The approach involves two parameters:  (0) 
is a relation factor balancing the influence of n-

ary relations and binary relations;  (01) is a 
learning factor tuning the influence from the title 

phrases. It is hard to find a global optimized so-

lution for the combination of these two factors. 
So we apply a gradient search strategy. At first, 

the learning factor is set to =0.8. Different val-

ues of  ranging from 0 to 3 are examined. Then, 

given that  is set to the value with the best per-
formance, we conduct experiments to find an 

appropriate value for . 

4.2.1 : Relation Factor 

First, we fix the learning factor  as 0.8 random-

ly and evaluate the performance by varying  
value from 0 to 3. When =0, it means that the 
weight of n-ary relations is zero and only binary 

relations are considered. As we can see from 

Figure 1, the performance is improved in most 
cases in terms of F1-measure and reaches a peak 

at =1.8. This justifies the rational to incorpo-
rate n-ary relations with binary relations in the 

document semantic network. 

 
Figure 1. F1-measures with  in [0 3] 

4.2.2 : Learning factor  

Next, we set the relation factor =1.8, we in-

spect the performance with the learning factor  

ranging from 0 to 1. =1 means that the ranking 
scores learn from the semantic network without 
any consideration of title phrases. As shown in 

Figure 2, we find that the performance almost 

keep a smooth fluctuation as  increases from 0 

to 0.9, and then a diving when =1. This proves 
that title phrases indeed provide valuable infor-

mation for learning.  

 
Figure 2. F1-measure with  in [0,1] 

4.3 Comparison with Other Approaches  

Our approach aims at inferring important key 
phrases from title phrases through a semantic 

network. Here we take a method of synonym 

expansion as the baseline, called WordNet ex-
pansion here. The WordNet

2
 expansion approach 

selects all the synonyms of the title phrases in the 

document as key phrases. Afterwards, our ap-

proach is evaluated against two existing ap-
proaches, which rely on the conventional seman-

tic network and are able to capture binary rela-

tions only. One approach combines the title in-
formation into the Grineva’s community-based 

method (Grineva et al., 2009), called title-

community approach. The title-community ap-
proach uses the Girvan-Newman algorithm to 

cluster phrases into communities and selects 

those phrases in the communities containing the 

title phrases as key phrases. We do not limit the 
number of key phrases selected. The other one is 

based on topic-sensitive LexRank (Otterbacher et 

al., 2005), called title-sensitive PageRank here. 
The title-sensitive PageRank approach makes use 

of title phrases to re-weight the transitions be-

tween vertices and picks up 10% top-ranked 

phrases as key phrases.  

Approach Precision Recall F1 

Title-sensitive Pa-

geRank (d=0.15) 
34.8% 39.5% 37.0% 

Title-community 29.8% 56.9% 39.1% 

Our approach 

(=1.8, =0.5) 
39.4% 44.6% 41.8% 

WordNet expansion 

(baseline) 
7.9%  32.9% 12.5% 

Table 1. Comparison with other approaches 

Table 1 summarizes the performance on the 

test data. The results presented in the table show 

that our approach exhibits the best performance 
among all the four approaches. It follows that the 

key phrases inferred from a document semantic 

network are not limited to the synonyms of title 
phrases. As the title-sensitive PageRank ap-

                                                
2 http://wordnet.princeton.edu 
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proach totally ignores the n-ary relations, its per-

formance is the worst. Based on binary relations, 

the title-community approach clusters phrases 

into communities and each community can be 
considered as an n-ary relation. However, this 

approach lacks of an importance propagation 

process. Consequently, it has the highest recall 
value but the lowest precision. In contrast, our 

approach achieves the highest precision, due to 

its ability to infer many correct key phrases using 
importance propagation among n-ary relations.  

5 Conclusion  

This work is based on the belief that key phrases 
tend to have close semantics to the title phrases. 

In order to make better use of phrase relations in 

key phrase extraction, we explore the Wikipedia 
knowledge to model one document as a semantic 

network in the form of hyper-graph, through 

which the other phrases learned their importance 

scores from the title phrases iteratively. Experi-
mental results demonstrate the effectiveness and 

robustness of our approach. 
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Abstract

We investigate a recently proposed
Bayesian adaptation method for building
style-adapted maximum entropy language
models for speech recognition, given a
large corpus of written language data
and a small corpus of speech transcripts.
Experiments show that the method con-
sistently outperforms linear interpolation
which is typically used in such cases.

1 Introduction

In large vocabulary speech recognition, a language
model (LM) is typically estimated from large
amounts of written text data. However, recogni-
tion is typically applied to speech that is stylisti-
cally different from written language. For exam-
ple, in an often-tried setting, speech recognition is
applied to broadcast news, that includes introduc-
tory segments, conversations and spontaneous in-
terviews. To decrease the mismatch between train-
ing and test data, often a small amount of speech
data is human-transcribed. A LM is then built
by interpolating the models estimated from large
corpus of written language and the small corpus
of transcribed data. However, in practice, differ-
ent models might be of different importance de-
pending on the word context. Global interpola-
tion doesn’t take such variability into account and
all predictions are weighted across models identi-
cally, regardless of the context.

In this paper we investigate a recently proposed
Bayesian adaptation approach (Daume III, 2007;
Finkel and Manning, 2009) for adapting a con-
ditional maximum entropy (ME) LM (Rosenfeld,
1996) to a new domain, given a large corpus of
out-of-domain training data and a small corpus
of in-domain data. The main contribution of this

∗Currently with Tallinn University of Technology, Esto-
nia

paper is that we show how the suggested hierar-
chical adaptation can be used with suitable pri-
ors and combined with the class-based speedup
technique (Goodman, 2001) to adapt ME LMs
in large-vocabulary speech recognition when the
amount of target data is small. The results outper-
form the conventional linear interpolation of back-
ground and target models in both N -grams and
ME models. It seems that with the adapted ME
models, the same recognition accuracy for the tar-
get evaluation data can be obtained with 50% less
adaptation data than in interpolated ME models.

2 Review of Conditional Maximum
Entropy Language Models

Maximum entropy (ME) modeling is a framework
that has been used in a wide area of natural lan-
guage processing (NLP) tasks. A conditional ME
model has the following form:

P (x|h) =
e
∑

i λifi(x,h)∑
x′ e

∑
j λjfj(x′,h)

(1)

where x is an outcome (in case of a LM, a word),
h is a context (the word history), and x′ a set of all
possible outcomes (words). The functions fi are
(typically binary) feature functions. During ME
training, the optimal weights λi corresponding to
features fi(x, h) are learned. More precisely, find-
ing the ME model is equal to finding weights that
maximize the log-likelihood L(X; Λ) of the train-
ing data X . The weights are learned via improved
iterative scaling algorithm or some of its modern
fast counterparts (i.e., conjugate gradient descent).

Since LMs typically have a vocabulary of tens
of thousands of words, the use of a normalization
factor over all possible outcomes makes estimat-
ing a ME LM very memory and time consuming.
Goodman (2001) proposed a class-based method
that drastically reduces the resource requirements
for training such models. The idea is to cluster
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words in the vocabulary into classes (e.g., based
on their distributional similarity). Then, we can
decompose the prediction of a word given its his-
tory into prediction of its class given the history,
and prediction of the word given the history and
its class :

P (w|h) = P (C(w)|h)·P (w|h,C(w)) (2)

Using such decomposition, we can create two ME
models: one corresponding to P (C(w)|h) and the
other corresponding to P (w|h,C(w)). It is easy to
see that computing the normalization factor of the
first component model now requires only looping
over all classes. It turns out that normalizing the
second model is also easier: for a context h,C(w),
we only need to normalize over words that belong
to class C(w), since other words cannot occur in
this context. This decomposition can be further
extended by using hierarchical classes.

To avoid overfitting, ME models are usually
smoothed (regularized). The most widely used
smoothing method for ME LMs is Gaussian pri-
ors (Chen and Rosenfeld, 2000): a zero-mean
prior with a given variance is added to all feature
weights, and the model optimization criteria be-
comes:

L′(X; Λ) = L(X; Λ)−
F∑
i=1

λ2
i

2σ2
i

(3)

where F is the number of feature functions. Typi-
cally, a fixed hyperparameter σi = σ is used for
all parameters. The optimal variance is usually
estimated on a development set. Intuitively, this
method encourages feature weights to be smaller,
by penalizing weights with big absolute values.

3 Domain Adaptation of Maximum
Entropy Models

Recently, a hierarchical Bayesian adaptation
method was proposed that can be applied to a large
family of discriminative learning tasks (such as
ME models, SVMs) (Daume III, 2007; Finkel and
Manning, 2009). In NLP problems, data often
comes from different sources (e.g., newspapers,
web, textbooks, speech transcriptions). There are
three classic approaches for building models from
multiple sources. We can pool all training data and
estimate a single model, and apply it for all tasks.
The second approach is to “unpool” the data, i.e,
only use training data from the test domain. The

third and often the best performing approach is to
train separate models for each data source, apply
them to test data and interpolate the results.

The hierarchical Bayesian adaptation method
is a generalization of the three approaches de-
scribed above. The hierarchical model jointly
optimizes global and domain-specific parameters,
using parameters built from pooled data as priors
for domain-specific parameters. In other words,
instead of using smoothing to encourage param-
eters to be closer to zero, it encourages domain-
specific model parameters to be closer to the
corresponding global parameters, while a zero
mean Gaussian prior is still applied for global pa-
rameters. For processing test data during run-
time, the domain-specific model is applied. Intu-
itively, this approach can be described as follows:
the domain-specific parameters are largely deter-
mined by global data, unless there is good domain-
specific evidence that they should be different.
The key to this approach is that the global and
domain-specific parameters are learned jointly, not
hierarchically. This allows domain-specific pa-
rameters to influence the global parameters, and
vice versa. Formally, the joint optimization crite-
ria becomes:

Lhier(X; Λ) =∑
d

(
Lorig(Xd,Λd)−

F∑
i=1

(λd,i − λ∗,i)2

2σ2
d

)

−
F∑
i=1

λ2
∗,i

2σ2
∗

(4)

where Xd is data for domain d, λ∗,i the global
parameters, λd,i the domain-specific parameters,
σ2
∗ the global variance and σ2

d the domain-specific
variances. The global and domain-specific vari-
ances are optimized on the heldout data. Usually,
larger values are used for global parameters and
for domains with more data, while for domains
with less data, the variance is typically set to be
smaller, encouraging the domain-specific parame-
ters to be closer to global values.

This adaptation scheme is very similar to the ap-
proaches proposed by (Chelba and Acero, 2006)
and (Chen, 2009b): both use a model estimated
from background data as a prior when learning
a model from in-domain data. The main differ-
ence is the fact that in this method, the models are
estimated jointly while in the other works, back-
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ground model has to be estimated before learning
the in-domain model.

4 Experiments

In this section, we look at experimental results
over two speech recognition tasks.

4.1 Tasks

Task 1: English Broadcast News. This recog-
nition task consists of the English broadcast news
section of the 2003 NIST Rich Transcription Eval-
uation Data. The data includes six news record-
ings from six different sources with a total length
of 176 minutes.

As acoustic models, the CMU Sphinx open
source triphone HUB4 models for wideband
(16kHz) speech1 were used. The models have
been trained using 140 hours of speech.

For training the LMs, two sources were used:
first 5M sentences from the Gigaword (2nd ed.)
corpus (99.5M words), and broadcast news tran-
scriptions from the TDT4 corpus (1.19M words).
The latter was treated as in-domain data in the
adaptation experiments. A vocabulary of 26K
words was used. It is a subset of a bigger 60K
vocabulary, and only includes words that occurred
in the training data. The OOV rate against the test
set was 2.4%.

The audio used for testing was segmented
into parts of up to 20 seconds in length.
Speaker diarization was applied using the
LIUM SpkDiarization toolkit (Deléglise et al.,
2005). The CMU Sphinx 3.7 was used for
decoding. A three-pass recognition strategy was
applied: the first pass recognition hypotheses
were used for calculating MLLR-adapted models
for each speaker. In the second pass, the adapted
acoustic models were used for generating a
5000-best list of hypotheses for each segment. In
the third pass, the ME LM was used to re-rank the
hypotheses and select the best one. During decod-
ing, a trigram LM model was used. The trigram
model was an interpolation of source-specific
models which were estimated using Kneser-Ney
discounting.

Task 2: Estonian Broadcast Conversations.
The second recognition task consists of four
recordings from different live talk programs from

1http://www.speech.cs.cmu.edu/sphinx/
models/

three Estonian radio stations. Their format con-
sists of hosts and invited guests, spontaneously
discussing current affairs. There are 40 minutes
of transcriptions, with 11 different speakers.

The acoustic models were trained on various
wideband Estonian speech corpora: the BABEL
speech database (9h), transcriptions of Estonian
broadcast news (7.5h) and transcriptions of radio
live talk programs (10h). The models are triphone
HMMs, using MFCC features.

For training the LMs, two sources were used:
about 10M sentences from various Estonian news-
papers, and manual transcriptions of 10 hours of
live talk programs from three Estonian radio sta-
tions. The latter is identical in style to the test data,
although it originates from a different time period
and covers a wider variety of programs, and was
treated as in-domain data.

As Estonian is a highly inflective language,
morphemes are used as basic units in the LM.
We use a morphological analyzer (Kaalep and
Vaino, 2001) for splitting the words into mor-
phemes. After such processing, the newspaper
corpus includes of 185M tokens, and the tran-
scribed data 104K tokens. A vocabulary of 30K
tokens was used for this task, with an OOV rate
of 1.7% against the test data. After recognition,
morphemes were concatenated back to words.

As with English data, a three-pass recognition
strategy involving MLLR adaptation was applied.

4.2 Results

For both tasks, we rescored the N-best lists in
two different ways: (1) using linear interpolation
of source-specific ME models and (2) using hi-
erarchically domain-adapted ME model (as de-
scribed in previous chapter). The English ME
models had a three-level and Estonian models a
four-level class hierarchy. The classes were de-
rived using the word exchange algorithm (Kneser
and Ney, 1993). The number of classes at each
level was determined experimentally so as to op-
timize the resource requirements for training ME
models (specifically, the number of classes was
150, 1000 and 5000 for the English models and
20, 150, 1000 and 6000 for the Estonian models).
We used unigram, bigram and trigram features that
occurred at least twice in the training data. The
feature cut-off was applied in order to accommo-
date the memory requirements. The feature set
was identical for interpolated and adapted models.
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Interp. models Adapted models
Adapta-
tion data
(No of
words)

σ2
OD σ2

ID σ2
∗ σ2

OD σ2
ID

English Broadcast News
147K 2e8 3e5 5e7 2e7 2e6
292K 2e8 5e5 5e7 2e7 2e6
591K 2e8 1e6 5e7 2e7 2e6
1119K 2e8 2e6 5e7 2e7 5e6

Estonian Broadcast Conversations
104K 5e8 3e5 5e7 1e7 2e6

Table 1: The unnormalized values of Gaus-
sian prior variances for interpolated out-of-domain
(OD) and in-domain (ID) ME models, and hierar-
chically adapted global (*), out-of-odomain (OD)
and in-domain (ID) models that were used in the
experiments.

For the English task, we also explored the ef-
ficiency of these two approaches with varying
size of adaptation data: we repeated the exper-
iments when using one eighth, one quarter, half
and all of the TDT4 transcription data for interpo-
lation/adaptation. The amount of used Gigaword
data was not changed. In all cases, interpolation
weights were re-optimized and new Gaussian vari-
ance values were heuristically determined.

The TADM toolkit2 was used for estimating ME
models, utilizing its implementation of the conju-
gate gradient algorithm.

The models were regularized using Gaussian
priors. The variance parameters were chosen
heuristically based on light tuning on develop-
ment set perplexity. For the source-specific ME
models, the variance was fixed on per-model ba-
sis. For the adapted model, that jointly models
global and domain-specific data, the Gaussian pri-
ors were fixed for each hierarchy node (i.e., the
variance was fixed across global, out-of-domain,
and in-domain parameters). Table 1 lists values
for the variances of Gaussian priors (as in equa-
tions 3 and 4) that we used in the experiments. In
other publications, the variance values are often
normalized to the size of the data. We chose not
to normalize the values, since in the hierarchical
adaptation scheme, also data from other domains
have impact on the learned model parameters, thus

2http://tadm.sourceforge.net/

it’s not possible to simply normalize the variances.
The experimental results are presented in Table

2. Perplexity and word error rate (WER) results of
the interpolated and adapted models are compared.
For the Estonian task, letter error rate (LER) is
also reported, since it tends to be a more indicative
measure of speech recognition quality for highly
inflected languages. In all experiments, using the
adapted models resulted in lower perplexity and
lower error rate. Improvements in the English ex-
periment were less evident than in the Estonian
system, with under 10% improvement in perplex-
ity and 1-3% in WER, against 15% and 4% for the
Estonian experiment. In most cases, there was a
significant improvement in WER when using the
adapted ME model (according to the Wilcoxon
test), with and exception of the English experi-
ments on the 292K and 591K data sets.

The comparison between N -gram models and
ME models is not entirely fair since ME models
are actually class-based. Such transformation in-
troduces additional smoothing into the model and
can improve model perplexity, as also noticed by
Goodman (2001).

5 Discussion

In this paper we have tested a hierarchical adapta-
tion method (Daume III, 2007; Finkel and Man-
ning, 2009) on building style-adapted LMs for
speech recognition. We showed that the method
achieves consistently lower error rates than when
using linear interpolation which is typically used
in such scenarios.

The tested method is ideally suited for language
modeling in speech recognition: we almost always
have access to large amounts of data from written
sources but commonly the speech to be recognized
is stylistically noticeably different. The hierarchi-
cal adaptation method enables to use even a small
amount of in-domain data to modify the parame-
ters estimated from out-of-domain data, if there is
enough evidence.

As Finkel and Manning (2009) point out, the
hierarchical nature of the method makes it possi-
ble to estimate highly specific models: we could
draw style-specific models from general high-level
priors, and topic-and-style specific models from
style-specific priors. Furthermore, the models
don’t have to be hierarchical: it is easy to gen-
eralize the method to general multilevel approach
where a model is drawn from multiple priors. For
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Perplexity WER LER
Adaptation
data (No.
of words)

Pooled
N-

gram

Interp.
N-

gram

Interp.
ME

Adapted
ME

Interp.
N-

gram

Interp.
ME

Adapted
ME

Interp.
N-

gram

Interp.
ME

Adapted
ME

English Broadcast News
147K 290 255 243 230 27.2 26.3 25.9
292K 286 250 236 223 26.7 25.8 25.6
591K 280 243 228 215 26.6 25.9 25.6
1119K 272 232 217 204 26.2 25.6 24.9

Estonian Broadcast Conversations
104K 237 197 200 169 40.5 38.9 37.4 17.7 17.3 16.6

Table 2: Perplexity, WER and LER results comparing pooled and interpolated N -gram models and
interpolated and adapted ME models, with changing amount of available in-domain data.

instance, we could build a model for recognizing
computer science lectures, given data from text-
books, including those about computer science,
and transcripts of lectures on various topics (which
don’t even need to include lectures about computer
science).

The method has some considerable shortcom-
ings from the practical perspective. First, train-
ing ME LMs in general has much higher resource
requirements than training N -gram models which
are typically used in speech recognition. More-
over, training hierarchical ME models requires
even more memory than training simple ME mod-
els, proportional to the number of nodes in the hi-
erarchy. However, it should be possible to allevi-
ate this problem by profiting from the hierarchi-
cal nature of n-gram features, as proposed in (Wu
and Khudanpur, 2002). It is also difficult to deter-
mine good variance values σ2

i for the global and
domain-specific priors. While good variance val-
ues for simple ME models can be chosen quite re-
liably based on the size of the training data (Chen,
2009a), we have found that it is more demand-
ing to find good hyperparameters for hierarchical
models since weights for the same feature in dif-
ferent nodes in the hierarchy are all related to each
other. We plan to investigate this problem in the
future since the choice of hyperparameters has a
strong impact on the performance of the model.
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Abstract
We investigate hierarchical graphical
models (HGMs) for automatically detect-
ing decisions in multi-party discussions.
Several types of dialogue act (DA) are
distinguished on the basis of their roles in
formulating decisions. HGMs enable us
to model dependencies between observed
features of discussions, decision DAs, and
subdialogues that result in a decision. For
the task of detecting decision regions, an
HGM classifier was found to outperform
non-hierarchical graphical models and
support vector machines, raising the
F1-score to 0.80 from 0.55.

1 Introduction

In work environments, people share information
and make decisions in multi-party conversations
known as meetings. The demand for systems that
can automatically process information contained
in audio and video recordings of meetings is grow-
ing rapidly. Our own research, and that of other
contemporary projects (Janin et al., 2004) aim at
meeting this demand.

We are currently investigating the automatic de-
tection of decision discussions. Our approach in-
volves distinguishing between different dialogue
act (DA) types based on their role in the decision-
making process. These DA types are called De-
cision Dialogue Acts (DDAs). Groups of DDAs
combine to form a decision region.

Recent work (Bui et al., 2009) showed that
Directed Graphical Models (DGMs) outperform
other machine learning techniques such as Sup-
port Vector Machines (SVMs) for detecting in-
dividual DDAs. However, the proposed mod-
els, which were non-hierarchical, did not signifi-
cantly improve identification of decision regions.
This paper tests whether giving DGMs hierarchi-
cal structure (making them HGMs) can improve

their performance at this task compared with non-
hierarchical DGMs.

We proceed as follows. Section 2 discusses re-
lated work, and section 3 our data set and anno-
tation scheme for decision discussions. Section
4 summarizes previous decision detection exper-
iments using DGMs. Section 5 presents the HGM
approach, and section 6 describes our HGM exper-
iments. Finally, section 7 draws conclusions and
presents ideas for future work.

2 Related work

User studies (Banerjee et al., 2005) have con-
firmed that meeting participants consider deci-
sions to be one of the most important meeting
outputs, and Whittaker et al. (2006) found that
the development of an automatic decision de-
tection component is critical for re-using meet-
ing archives. With the new availability of sub-
stantial meeting corpora such as the AMI cor-
pus (McCowan et al., 2005), recent years have
seen an increasing amount of research on decision-
making dialogue. This research has tackled is-
sues such as the automatic detection of agreement
and disagreement (Galley et al., 2004), and of
the level of involvement of conversational partic-
ipants (Gatica-Perez et al., 2005). Recent work
on automatic detection of decisions has been con-
ducted by Hsueh and Moore (2007), Fernández et
al. (2008), and Bui et al. (2009).

Fernández et al. (2008) proposed an approach
to modeling the structure of decision-making di-
alogue. These authors designed an annotation
scheme that takes account of the different roles
that utterances can play in the decision-making
process—for example it distinguishes between
DDAs that initiate a decision discussion by rais-
ing an issue, those that propose a resolution of the
issue, and those that express agreement to a pro-
posed resolution. The authors annotated a por-
tion of the AMI corpus, and then applied what
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they refer to as “hierarchical classification.” Here,
one sub-classifier per DDA class hypothesizes oc-
currences of that type of DDA and then, based
on these hypotheses, a super-classifier determines
which regions of dialogue are decision discus-
sions. All of the classifiers, (sub and super), were
linear kernel binary SVMs. Results were bet-
ter than those obtained with (Hsueh and Moore,
2007)’s approach—the F1-score for detecting de-
cision discussions in manual transcripts was 0.58
vs. 0.50. Purver et al. (2007) had earlier detected
action items with the approach Fernández et al.
(2008) extended to decisions.

Bui et al. (2009) built on the promising results
of (Fernández et al., 2008), by employing DGMs
in place of SVMs. DGMs are attractive because
they provide a natural framework for modeling se-
quence and dependencies between variables, in-
cluding the DDAs. Bui et al. (2009) were espe-
cially interested in whether DGMs better exploit
non-lexical features. Fernández et al. (2008) ob-
tained much more value from lexical than non-
lexical features (and indeed no value at all from
prosodic features), but lexical features have limi-
tations. In particular, they can be domain specific,
increase the size of the feature space dramatically,
and deteriorate more in quality than other features
when automatic speech recognition (ASR) is poor.
More detail about decision detection using DGMs
will be presented in section 4.

Beyond decision detection, DGMs are used for
labeling and segmenting sequences of observa-
tions in many different fields—including bioin-
formatics, ASR, Natural Language Processing
(NLP), and information extraction. In particular,
Dynamic Bayesian Networks (DBNs) are a pop-
ular model for probabilistic sequence modeling
because they exploit structure in the problem to
compactly represent distributions over multi-state
and observation variables. Hidden Markov Mod-
els (HMMs), a special case of DBNs, are a classi-
cal method for important NLP applications such
as unsupervised part-of-speech tagging (Gael et
al., 2009) and grammar induction (Johnson et al.,
2007) as well as for ASR. More complex DBNs
have been used for applications such as DA recog-
nition (Crook et al., 2009) and activity recogni-
tion (Bui et al., 2002).

Undirected graphical models (UGMs) are also
valuable for building probabilistic models for seg-
menting and labeling sequence data. Conditional

Random Fields (CRFs), a simple UGM case, can
avoid the label bias problem (Lafferty et al., 2001)
and outperform maximum entropy Markov mod-
els and HMMs.

However, the graphical models used in these
applications are mainly non-hierarchical, includ-
ing those in Bui et al. (2009). Only Sutton et al.
(2007) proposed a three-level HGM (in the form of
a dynamic CRF) for the joint noun phrase chunk-
ing and part of speech labeling problem; they
showed that this model performs better than a non-
hierarchical counterpart.

3 Data

For the experiments reported in this study, we
used 17 meetings from the AMI Meeting Corpus1,
a freely available corpus of multi-party meetings
with both audio and video recordings, and a wide
range of annotated information including DAs and
topic segmentation. The meetings last around 30
minutes each, and are scenario-driven, wherein
four participants play different roles in a com-
pany’s design team: project manager, marketing
expert, interface designer and industrial designer.

We use the same annotation scheme as
Fernández et al. (2008) to model decision-making
dialogue. As stated in section 2, this scheme dis-
tinguishes between a small number of DA types
based on the role which they perform in the for-
mulation of a decision. Besides improving the de-
tection of decision discussions (Fernández et al.,
2008), such a scheme also aids in summarization
of them, because it indicates which utterances pro-
vide particular types of information.

The annotation scheme is based on the observa-
tion that a decision discussion typically contains
the following main structural components: (a) A
topic or issue requiring resolution is raised; (b)
One or more possible resolutions are considered;
(c) A particular resolution is agreed upon, and so
adopted as the decision. Hence the scheme dis-
tinguishes between three main DDA classes: issue
(I), resolution (R), and agreement (A). Class R is
further subdivided into resolution proposal (RP)
and resolution restatement (RR). I utterances in-
troduce the topic of the decision discussion, ex-
amples being “Are we going to have a backup?”
and “But would a backup really be necessary?” in
Table 1. In comparison, R utterances specify the
resolution which is ultimately adopted as the deci-

1http://corpus.amiproject.org/
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(1) A: Are we going to have a backup? Or we do
just–
B: But would a backup really be necessary?
A: I think maybe we could just go for the

kinetic energy and be bold and innovative.
C: Yeah.
B: I think– yeah.
A: It could even be one of our selling points.
C: Yeah –laugh–.
D: Environmentally conscious or something.
A: Yeah.
B: Okay, fully kinetic energy.
D: Good.

Table 1: An excerpt from the AMI dialogue
ES2015c. It has been modified slightly for pre-
sentation purposes.

sion. RP utterances propose this resolution (e.g. “I
think maybe we could just go for the kinetic energy
. . . ”), while RR utterances close the discussion by
confirming/summarizing the decision (e.g. “Okay,
fully kinetic energy”). Finally, A utterances agree
with the proposed resolution, signaling that it is
adopted as the decision, (e.g. “Yeah”, “Good” and
“Okay”). Unsurprisingly, an utterance may be as-
signed to more than one DDA class; and within a
decision discussion, more than one utterance can
be assigned to the same DDA class.

We use manual transcripts in the experiments
described here. Inter-annotator agreement was sat-
isfactory, with kappa values ranging from .63 to
.73 for the four DDA classes. The manual tran-
scripts contain a total of 15,680 utterances, and on
average 40 DDAs per meeting. DDAs are sparse
in the transcripts: for all DDAs, 6.7% of the total-
ity of utterances; for I,1.6%; for RP, 2%; for RR,
0.5%; and for A, 2.6%. In all, 3753 utterances (i.e.,
23.9%) are tagged as decision-related utterances,
and on average there are 221 decision-related ut-
terances per meeting.

4 Prior Work on Decision Detection
using Graphical Models

To detect each individual DDA class, Bui et al.
(2009) examined the four simple DGMs shown
in Fig. 1. The DDA node is binary valued, with
value 1 indicating the presence of a DDA and 0
its absence. The evidence node (E) is a multi-
dimensional vector of observed values of non-
lexical features. These include utterance features

(UTT) such as length in words2, duration in mil-
liseconds, position within the meeting (as percent-
age of elapsed time), manually annotated dialogue
act (DA) features3 such as inform, assess, suggest,
and prosodic features (PROS) such as energy and
pitch. These features are the same as the non-
lexical features used by Fernández et al. (2008).
The hidden component node (C) in the -mix mod-
els represents the distribution of observable evi-
dence E as a mixture of Gaussian distributions.
The number of Gaussian components was hand-
tuned during the training phase.

DDA

E

a) BN-sim

DDA

E

b) BN-mix

C

DDA

time t-1 time t

E

DDA

E

c) DBN-sim

DDA

time t-1 time t

E

DDA

E

d) DBN-mix

CC

Figure 1: Simple DGMs for individual decision
dialogue act detection. The clear nodes are hidden,
and the shaded nodes are observable.

More complex models were constructed from
the four simple models in Fig. 1 to allow for de-
pendencies between different DDAs. For exam-
ple, the model in Fig. 2 generalizes Fig. 1c with
arcs connecting the DDA classes based on analy-
sis of the annotated AMI data.

A

time t-1 time t

E E

I RP RR AI RP RR

Figure 2: A DGM that takes the dependencies be-
tween decision dialogue acts into account.

Decision discussion regions were identified us-
ing the DGM output and the following two simple
rules: (1) A decision discussion region begins with
an Issue DDA; (2) A decision discussion region
contains at least one Issue DDA and one Resolu-
tion DDA.

2This feature is a manual count of lexical tokens; but word
count was extracted automatically from ASR output by Bui
et al. (2009). We plan experiments to determine how much
using ASR output degrades detection of decision regions.

3The authors used the AMI DA annotations.
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The authors conducted experiments using the
AMI corpus and found that when using non-
lexical features, the DGMs outperform the hierar-
chical SVM classification method of (Fernández et
al., 2008). The F1-score for the four DDA classes
increased between 0.04 and 0.19 (p < 0.005),
and for identifying decision discussion regions, by
0.05 (p > 0.05).

5 Hierarchical graphical models

Although the results just discussed showed graph-
ical models are better than SVMs for detecting de-
cision dialogue acts (Bui et al., 2009), two-level
graphical models like those shown in Figs. 1 and 2
cannot exploit dependencies between high-level
discourse items such as decision discussions and
DDAs; and the “superclassifier” rule (Bui et al.,
2009) used for detecting decision regions did not
significantly improve the F1-score for decisions.

We thus investigate whether HGMs (structured
as three or more levels) are superior for discov-
ering the structure and learning the parameters
of decision recognition. Our approach composes
graphical models to increase hierarchy with an ad-
ditional level above or below previous ones, or in-
serts a new level such as for discourse topics into
the interior of a given model.

Fig. 3 shows a simple structure for three-level
HGMs. The top level corresponds to high-level
discourse regions such as decision discussions.
The segmentation into these regions is represented
in terms of a random variable (at each DR node)
that takes on discrete values: {positive, negative}
(the utterance belongs to a decision region or not)
or {begin, middle, end, outside} (indicating the
position of the utterance relative to a decision dis-
cussion region). The middle level corresponds to
mid-level discourse items such as issues, resolu-
tion proposals, resolution restatements, and agree-
ments. These classes (C1, C2, ..., Cn nodes) are
represented as a collection of random variables,
each corresponding to an individual mid-level ut-
terance class. For example, the middle level of the
three-level HGM Fig. 3 could be the top-level of
the two-level DGM in Fig. 2, each middle level
node containing random variables for the DDA
classes I, RP, RR, and A. The bottom level cor-
responds to vectors of observed features as before,
e.g. lexical, utterance, and prosodic features.

Cn

C

Cn

C

DR DR

C1

E ELevel 1

Level 2

Level 3

current utterance next utterance

C1

Figure 3: A simple structure of a three-level
HGM: DRs are high-level discourse regions;
C1, C2, ..., Cn are mid-level utterance classes; and
Es are vectors of observed features.

6 Experiments

The HGM classifier in Figure 3 was implemented
in Matlab using the BNT software4. The classifier
hypothesizes that an utterance belongs to a deci-
sion region if the marginal probability of the ut-
terance’s DR node is above a hand-tuned thresh-
old. The threshold is selected using the ROC curve
analysis5 to obtain the highest F1-score. To evalu-
ate the accuracy of hypothesized decision regions,
we divided the dialogue into 30-second windows
and evaluated on a per window basis.

The best model structure was selected by com-
paring the performance of various handcrafted
structures. For example, the model in Fig. 4b out-
performs the one in Fig. 4a. Fig. 4b explicitly
models the dependency between the decision re-
gions and the observed features.

I RP RR A

DR

E

I RP RR A

DR

E

a) b)

Figure 4: Three-level HGMs for recognition of de-
cisions. This illustrates the choice of the structure
for each time slice of the HGM sequence models.

Table 2 shows the results of 17-fold cross-
validation for the hierarchical SVM classifica-
tion (Fernández et al., 2008), rule-based classifi-
cation with DGM output (Bui et al., 2009), and
our HGM classification using the best combina-
tion of non-lexical features. All three methods

4http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html
5http://en.wikipedia.org/wiki/Receiver operating characteristic
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were implemented by us using exactly the same
data and 17-fold cross-validation. The features
were selected based on the best combination of
non-lexical features for each method. The HGM
classifier outperforms both its SVM and DGM
counterparts (p < 0.0001)6. In fact, even when the
SVM uses lexical as well as non-lexical features,
its F1-score is still lower than the HGM classifier.

Classifier Pr Re F1
SVM 0.35 0.88 0.50
DGM 0.39 0.93 0.55
HGM 0.69 0.96 0.80

Table 2: Results for detection of decision dis-
cussion regions by the SVM super-classifier,
rule-based DGM classifier, and HGM clas-
sifier, each using its best combination of
non-lexical features: SVM (UTT+DA), DGM
(UTT+DA+PROS), HGM (UTT+DA).

In contrast with the hierarchical SVM and rule-
based DGM methods, the HGM method identifies
decision-related utterances by exploiting not just
DDAs but also direct dependencies between deci-
sion regions and UTT, DA, and PROS features. As
mentioned in the second paragraph of this section,
explicitly modeling the dependency between deci-
sion regions and observable features helps to im-
prove detection of decision regions. Furthermore,
a three-level HGM can straightforwardly model
the composition of each high-level decision region
as a sequence of mid-level DDA utterances. While
the hierarchical SVM method can also take depen-
dency between successive utterances into account,
it has no principled way to associate this depen-
dency with more extended decision regions. In
addition, this dependency is only meaningful for
lexical features (Fernández et al., 2008).

The HGM result presented in Table 2 was
computed using the three-level DBN model (see
Fig. 4b) using the combination of UTT and DA
features. Without DA features, the F1-score de-
grades from 0.8 to 0.78. However, this difference
is not statistically significant (i.e., p > 0.5).

7 Conclusions and Future Work

To detect decision discussions in multi-party dia-
logue, we investigated HGMs as an extension of

6We used the paired t test for computing statistical signif-
icance. http://www.graphpad.com/quickcalcs/ttest1.cfm

the DGMs studied in (Bui et al., 2009). When
using non-lexical features, HGMs outperform the
non-hierarchical DGMs of (Bui et al., 2009) and
also the hierarchical SVM classification method
of Fernández et al. (2008). The F1-score for
identifying decision discussion regions increased
to 0.80 from 0.55 and 0.50 respectively (p <
0.0001).

In future work, we plan to (a) investigate cas-
caded learning methods (Sutton et al., 2007) to
improve the detection of DDAs further by using
detected decision regions and (b) extend HGMs
beyond three levels in order to integrate useful se-
mantic information such as topic structure.
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Abstract 

Speech recognition affords automobile 

drivers a hands-free, eyes-free method of 

replying to Short Message Service (SMS) 

text messages. Although a voice search 

approach based on template matching has 

been shown to be more robust to the chal-

lenging acoustic environment of automo-

biles than using dictation, users may have 

difficulties verifying whether SMS re-

sponse templates match their intended 

meaning, especially while driving. Using a 

high-fidelity driving simulator, we com-

pared dictation for SMS replies versus 

voice search in increasingly difficult driv-

ing conditions. Although the two ap-

proaches did not differ in terms of driving 

performance measures, users made about 

six times more errors on average using 

dictation than voice search. 

1 Introduction 

Users love Short Message Service (SMS) text 

messaging; so much so that 3 trillion SMS mes-

sages are expected to have been sent in 2009 

alone (Stross, 2008). Because research has 

shown that SMS messaging while driving results 

in 35% slower reaction time than being intox-

icated (Reed & Robbins, 2008), campaigns have 

been launched by states, governments and even 

cell phone carriers to discourage and ban SMS 

messaging while driving (DOT, 2009). Yet, au-

tomobile manufacturers have started to offer in-

fotainment systems, such as the Ford Sync, 

which feature the ability to listen to incoming 

SMS messages using text-to-speech (TTS). Au-

tomatic speech recognition (ASR) affords users a 

hands-free, eyes-free method of replying to SMS 

messages. However, to date, manufacturers have 

not established a safe and reliable method of le-

veraging ASR, though some researchers have 

begun to explore techniques. In previous re-

search (Ju & Paek, 2009), we examined three 

ASR approaches to replying to SMS messages: 

dictation using a language model trained on SMS 

responses, canned responses using a probabilistic 

context-free grammar (PCFG), and a “voice 

search” approach based on template matching. 

Voice search proceeds in two steps (Natarajan et 

al., 2002): an utterance is first converted into 

text, which is then used as a search query to 

match the most similar items of an index using 

IR techniques (Yu et al., 2007). For SMS replies, 

we created an index of SMS response templates, 

with slots for semantic concepts such as time and 

place, from a large SMS corpus. After convolv-

ing recorded SMS replies so that the audio would 

exhibit the acoustic characteristics of in-car rec-

ognition, they compared how the three approach-

es handled the convolved audio with respect to 

the top n-best reply candidates. The voice search 

approach consistently outperformed dictation and 

canned responses, achieving as high as 89.7% 

task completion with respect to the top 5 reply 

candidates. 

Even if the voice search approach may be 

more robust to in-car noise, this does not guaran-

tee that it will be more usable. Indeed, because 

voice search can only match semantic concepts 

contained in the templates (which may or may 

not utilize the same wording as the reply), users 

must verify that a retrieved template matches the 

semantics of their intended reply. For example, 

suppose a user replies to the SMS message “how 

about lunch” with “can’t right now running er-

rands”. Voice search may find “nope, got er-

rands to run” as the closest template match, in 

which case, users will have to decide whether 

this response has the same meaning as their re-

ply. This of course entails cognitive effort, which 

is very limited in the context of driving. On the 

other hand, a dictation approach to replying to 

SMS messages may be far worse due to misre-

cognitions. For example, dictation may interpret 

“can’t right now running errands” as “can right 
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now fun in errands”. We posited that voice 

search has the advantage because it always gene-

rates intelligible SMS replies (since response 

templates are manually filtered), as opposed to 

dictation, which can sometimes result in unpre-

dictable and nonsensical misrecognitions. How-

ever, this advantage has not been empirically 

demonstrated in a user study. This paper presents 

a user study investigating how the two approach-

es compare when users are actually driving – that 

is, when usability matters most. 

2 Driving Simulator Study 

Although ASR affords users hands-free, eyes-

free interaction, the benefits of leveraging speech 

can be forfeit if users are expending cognitive 

effort judging whether the speech interface cor-

rectly interpreted their utterances. Indeed, re-

search has shown that the cognitive demands of 

dialogue seem to play a more important role in 

distracting drivers than physically handling cell 

phones (Nunes & Recarte, 2002; Strayer & 

Johnston, 2001). Furthermore, Kun et al. (2007) 

have found that when in-car speech interfaces 

encounter recognition problems, users tend to 

drive more dangerously as they attempt to figure 

out why their utterances are failing. Hence, any 

approach to replying to SMS messages in auto-

mobiles must avoid distracting drivers with er-

rors and be highly usable while users are en-

gaged in their primary task, driving. 

2.1 Method 

To assess the usability and performance of both 

the voice search approach and dictation, we con-

ducted a controlled experiment using the STISIM 

Drive™ simulator. Our simulation setup con-

sisted of a central console with a steering wheel 

and two turn signals, surrounded by three 47’’ 

flat panels placed at a 45° angle to immerse the 

driver. Figure 1 displays the setup. 

We recruited 16 participants (9 males, 7 fe-

males) through an email sent to employees of our 

organization. The mean age was 38.8. All partic-

ipants had a driver’s license and were compen-

sated for their time.  

We examined two independent variables: SMS 

Reply Approach, consisting of voice search and 

dictation, and Driving Condition, consisting of 

no driving, easy driving and difficult driving. We 

included Driving Condition as a way of increas-

ing cognitive demand (see next section). Overall, 

we conducted a 2 (SMS Reply Approach) × 3 

(Driving Condition) repeated measures, within-

subjects design experiment in which the order of 

SMS Reply for each Driving Condition was coun-

ter-balanced. Because our primary variable of 

interest was SMS Reply, we had users experience 

both voice search and dictation with no driving 

first, then easy driving, followed by difficult 

driving. This gave users a chance to adjust them-

selves to increasingly difficult road conditions. 

 

Driving Task: As the primary task, users were 

asked to drive two courses we developed with 

easy driving and difficult driving conditions 

while obeying all rules of the road, as they would 

in real driving and not in a videogame. With 

speed limits ranging from 25 mph to 55 mph, 

both courses contained five sequential sections 

which took about 15-20 minutes to complete: a 

residential area, a country highway, and a small 

city with a downtown area as well as a busi-

ness/industrial park. Although both courses were 

almost identical in the number of turns, curves, 

stops, and traffic lights, the easy course consisted 

mostly of simple road segments with relatively 

no traffic, whereas the difficult course had four 

times as many vehicles, cyclists, and pedestrians. 

The difficult course also included a foggy road 

section, a few busy construction sites, and many 

unexpected events, such as a car in front sudden-

ly breaking, a parked car merging into traffic, 

and a pedestrian jaywalking. In short, the diffi-

cult course was designed to fully engage the at-

tention and cognitive resources of drivers.  

 

SMS Reply Task: As the secondary task, we 

asked users to listen to an incoming SMS mes-

sage together with a formulated reply, such as: 

(1) Message Received: “Are you lost?” Your 

Reply: “No, never with my GPS” 

The users were asked to repeat the reply back to 

the system. For Example (1) above, users would 

have to utter “No, never with my GPS”. Users 

 

Figure 1. Driving simulator setup. 
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could also say “Repeat” if they had any difficul-

ties understanding the TTS rendering or if they 

experienced lapses in attention. For each course, 

users engaged in 10 SMS reply tasks. SMS mes-

sages were cued every 3000 feet, roughly every 

90 seconds, which provided enough time to 

complete each SMS dialogue. Once users uttered 

the formulated reply, they received a list of 4 

possible reply candidates (each labeled as “One”, 

“Two”, etc.), from which they were asked to ei-

ther pick the correct reply (by stating its number 

at any time) or reject them all (by stating “All 

wrong”). We did not provide any feedback about 

whether the replies they picked were correct or 

incorrect in order to avoid priming users to pay 

more or less attention in subsequent messages. 

Users did not have to finish listening to the entire 

list before making their selection.  

 

Stimuli: Because we were interested in examin-

ing which was worse, verifying whether SMS 

response templates matched the meaning of an 

intended reply, or deciphering the sometimes 

nonsensical misrecognitions of dictation, we de-

cided to experimentally control both the SMS 

reply uttered by the user as well as the 4-best list 

generated by the system. However, all SMS rep-

lies and 4-best lists were derived from the logs of 

an actual SMS Reply interface which imple-

mented the dictation and the voice search ap-

proaches (see Ju & Paek, 2009). For each course, 

5 of the SMS replies were short (with 3 or fewer 

words) and 5 were long (with 4 to 7 words). The 

mean length of the replies was 3.5 words (17.3 

chars). The order of the short and long replies 

was randomized. 

We selected 4-best lists where the correct an-

swer was in each of four possible positions (1-4) 

or All Wrong; that is, there were as many 4-best 

lists with the first choice correct as there were 

with the second choice correct, and so forth. We 

then randomly ordered the presentation of differ-

ent 4-best lists. Although one might argue that 

the four positions are not equally likely and that 

the top item of a 4-best list is most often the cor-

rect answer, we decided to experimentally con-

trol the position for two reasons: first, our pre-

vious research (Ju & Paek, 2009) had already 

demonstrated the superiority of the voice search 

approach with respect to the top position (i.e., 1-

best), and second, our experimental design 

sought to identify whether the voice search ap-

proach was more usable than the dictation ap-

proach even when the ASR accuracy of the two 

approaches was the same. 

In the dictation condition, the correct answer 

was not always an exact copy of the reply in 0-2 

of the 10 SMS messages. For instance, a correct 

dictation answer for Example (1) above was “no 

I’m never with my GPS”. On the other hand, the 

voice search condition had more cases (2-4 mes-

sages) in which the correct answer was not an 

exact copy (e.g., “no I have GPS”) due to the 

nature of the template approach. To some degree, 

this could be seen as handicapping the voice 

search condition, though the results did not re-

flect the disadvantage, as we discuss later. 

 

Measures: Performance for both the driving task 

and the SMS reply tasks were recorded. For the 

driving task, we measured the numbers of colli-

sions, speeding (exceeding 10 mph above the 

limit), traffic light and stop sign violations, and 

missed or incorrect turns. For the SMS reply 

task, we measured duration (i.e., time elapsed 

between the beginning of the 4-best list and 

when users ultimately provided their answer) and 

the number of times users correctly identified 

which of the 4 reply candidates contained the 

correct answer. 

Originally, we had an independent rater verify 

the position of the correct answer in all 4-best 

lists, however, we considered that some partici-

pants might be choosing replies that are semanti-

cally sufficient, even if they are not exactly cor-

rect. For example, a 4-best list generated by the 

dictation approach for Example (1) had: “One: 

no I’m never want my GPS. Two: no I’m never 

with my GPS. Three: no I’m never when my 

GPS. Or Four: no no I’m in my GPS.” Although 

the rater identified the second reply as being 

“correct”, a participant might view the first or 

third replies as sufficient. In order to avoid am-

biguity about correctness, after the study, we 

showed the same 16 participants the SMS mes-

sages and replies as well as the 4-best lists they 

received during the study and asked them to se-

lect, for each SMS reply, any 4-best list items 

they felt sufficiently conveyed the same mean-

ing, even if the items were ungrammatical. Par-

ticipants were explicitly told that they could se-

lect multiple items from the 4-best list. We did 

not indicate which item they selected during the 

experiment and because this selection task oc-

curred months after the experiment, it was un-

likely that they would remember anyway. Partic-

ipants were compensated with a cafeteria vouch-

er. 

In computing the number of “correct” an-

swers, for each SMS reply, we counted an an-
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swer to be correct if it was included among the 

participants’ set of semantically sufficient 4-best 

list items. Hence, we calculated the number of 

correct items in a personalized fashion for every 

participant. 

2.2 Results 

We conducted a series of repeated measures 

ANOVAs on all driving task and SMS reply task 

measures. For the driving task, we did not find 

any statistically significant differences between 

the voice search and dictation conditions. In oth-

er words, we could not reject the null hypothesis 

that the two approaches were the same in terms 

of their influence on driving performance. How-

ever, for the SMS reply task, we did find a main 

effect for SMS Reply Approach (F1,47 = 81.28, p < 

.001, µDictation = 2.13 (.19), µVoiceSearch = .38 (.10)). 

As shown in Figure 2, the average number of 

errors per driving course for dictation is roughly 

6 times that for voice search. We also found a 

main effect for total duration (F1,47 = 11.94, p < 

.01, µDictation = 113.75 sec (3.54) or 11.4 sec/reply, 

µVoiceSearch = 125.32 sec (3.37) or 12.5 sec/reply). 

We discuss our explanation for the shorter dura-

tion below. For both errors and duration, we did 

not find any interaction effects with Driving 

Conditions. 

3 Discussion 

We conducted a simulator study in order to ex-

amine which was worse while driving: verifying 

whether SMS response templates matched the 

meaning of an intended reply, or deciphering the 

sometimes nonsensical misrecognitions of dicta-

tion. Our results suggest that deciphering dicta-

tion results under the duress of driving leads to 

more errors. In conducting a post-hoc error anal-

ysis, we noticed that participants tended to err 

when the 4-best lists generated by the dictation 

approach contained phonetically similar candi-

date replies. Because it is not atypical for the dic-

tation approach to have n-best list candidates 

differing from each other in this way, we rec-

ommend not utilizing this approach in speech-

only user interfaces, unless the n-best list candi-

dates can be made as distinct from each other as 

possible, phonetically, syntactically and most 

importantly, semantically. The voice search ap-

proach circumvents this problem in two ways: 1) 

templates were real responses and manually se-

lected and cleaned up during the development 

phase so there were no grammatical mistakes, 

and 2) semantically redundant templates can be 

further discarded to only present the distinct con-

cepts at the rendering time using the paraphrase 

detection algorithms reported in (Wu et al., 

2010). 

Given that users committed more errors in the 

dictation condition, we initially expected that 

dictation would exhibit higher duration than 

voice search since users might be spending more 

time figuring out the differences between the 

similar 4-best list candidates generated by the 

dictation approach. However, in our error analy-

sis we observed that most likely users did not 

discover the misrecognitions, and prematurely 

selected a reply candidate, resulting in shorter 

durations. The slightly higher duration for the 

voice search approach does not constitute a prob-

lem if users are listening to all of their choices 

and correctly selecting their intended SMS reply. 

Note that the duration did not bring about any 

significant driving performance differences. 

Although we did not find any significant driv-

ing performance differences, users experienced 

more difficulties confirming whether the dicta-

tion approach correctly interpreted their utter-

ances than they did with the voice search ap-

proach. As such, if a user deems it absolutely 

necessary to respond to SMS messages while 

driving, our simulator study suggests that the 

most reliable (i.e., least error-prone) way to re-

spond may just well be the voice search ap-

proach. 
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Abstract

This paper addresses the issue of how lin-
guistic feedback expressions, prosody and
head gestures, i.e. head movements and
face expressions, relate to one another in
a collection of eight video-recorded Dan-
ish map-task dialogues. The study shows
that in these data, prosodic features and
head gestures significantly improve auto-
matic classification of dialogue act labels
for linguistic expressions of feedback.

1 Introduction

Several authors in communication studies have
pointed out that head movements are relevant to
feedback phenomena (see McClave (2000) for an
overview). Others have looked at the application
of machine learning algorithms to annotated mul-
timodal corpora. For example, Jokinen and Ragni
(2007) and Jokinen et al. (2008) find that machine
learning algorithms can be trained to recognise
some of the functions of head movements, while
Reidsma et al. (2009) show that there is a depen-
dence between focus of attention and assignment
of dialogue act labels. Related are also the stud-
ies by Rieks op den Akker and Schulz (2008) and
Murray and Renals (2008): both achieve promis-
ing results in the automatic segmentation of dia-
logue acts using the annotations in a large multi-
modal corpus.

Work has also been done on prosody and ges-
tures in the specific domain of map-task dialogues,
also targeted in this paper. Sridhar et al. (2009)
obtain promising results in dialogue act tagging
of the Switchboard-DAMSL corpus using lexical,
syntactic and prosodic cues, while Gravano and
Hirschberg (2009) examine the relation between
particular acoustic and prosodic turn-yielding cues
and turn taking in a large corpus of task-oriented
dialogues. Louwerse et al. (2006) and Louwerse

et al. (2007) study the relation between eye gaze,
facial expression, pauses and dialogue structure
in annotated English map-task dialogues (Ander-
son et al., 1991) and find correlations between the
various modalities both within and across speak-
ers. Finally, feedback expressions (head nods and
shakes) are successfully predicted from speech,
prosody and eye gaze in interaction with Embod-
ied Communication Agents as well as human com-
munication (Fujie et al., 2004; Morency et al.,
2005; Morency et al., 2007; Morency et al., 2009).

Our work is in line with these studies, all of
which focus on the relation between linguistic
expressions, prosody, dialogue content and ges-
tures. In this paper, we investigate how feedback
expressions can be classified into different dia-
logue act categories based on prosodic and ges-
ture features. Our data are made up by a collec-
tion of eight video-recorded map-task dialogues in
Danish, which were annotated with phonetic and
prosodic information. We find that prosodic fea-
tures improve the classification of dialogue acts
and that head gestures, where they occur, con-
tribute to the semantic interpretation of feedback
expressions. The results, which partly confirm
those obtained on a smaller dataset in Paggio and
Navarretta (2010), must be seen in light of the
fact that our gesture annotation scheme comprises
more fine-grained categories than most of the stud-
ies mentioned earlier for both head movements
and face expressions. The classification results
improve, however, if similar categories such as
head nods and jerks are collapsed into a more gen-
eral category.

In Section 2 we describe the multimodal Dan-
ish corpus. In Section 3, we describe how the
prosody of feedback expressions is annotated, how
their content is coded in terms of dialogue act, turn
and agreement labels, and we provide inter-coder
agreement measures. In Section 4 we account for
the annotation of head gestures, including inter-
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coder agreements results. Section 5 contains a de-
scription of the resulting datasets and a discussion
of the results obtained in the classification experi-
ments. Section 6 is the conclusion.

2 The multimodal corpus

The Danish map-task dialogues from the Dan-
PASS corpus (Grønnum, 2006) are a collection
of dialogues in which 11 speaker pairs cooper-
ate on a map task. The dialogue participants
are seated in different rooms and cannot see each
other. They talk through headsets, and one of them
is recorded with a video camera. Each pair goes
through four different sets of maps, and changes
roles each time, with one subject giving instruc-
tions and the other following them. The material
is transcribed orthographically with an indication
of stress, articulatory hesitations and pauses. In
addition to this, the acoustic signals are segmented
into words, syllables and prosodic phrases, and an-
notated with POS-tags, phonological and phonetic
transcriptions, pitch and intonation contours.

Phonetic and prosodic segmentation and anno-
tation were performed independently and in paral-
lel by two annotators and then an agreed upon ver-
sion was produced with the supervision of an ex-
pert annotator, for more information see Grønnum
(2006). The Praat tool was used (Boersma and
Weenink, 2009).

The feedback expressions we analyse here are
Yes and No expressions, i.e. in Danish words like
ja (yes), jo (yes in a negative context), jamen (yes
but, well), nej (no), næh (no). They can be single
words or multi-word expressions.

Yes and No feedback expressions represent
about 9% of the approximately 47,000 running
words in the corpus. This is a rather high pro-
portion compared to other corpora, both spoken
and written, and a reason why we decided to use
the DanPASS videos in spite of the fact that the
gesture behaviour is relatively limited given the
fact that the two dialogue participants cannot see
each other. Furthermore, the restricted contexts
in which feedback expressions occur in these di-
alogues allow for a very fine-grained analysis of
the relation of these expressions with prosody and
gestures. Feedback behaviour, both in speech and
gestures, can be observed especially in the person
who is receiving the instructions (the follower).
Therefore, we decided to focus our analysis only
on the follower’s part of the interaction. Because

of time restrictions, we limited the study to four
different subject pairs and two interactions per
pair, for a total of about an hour of video-recorded
interaction.

3 Annotation of feedback expressions

As already mentioned, all words in DanPASS are
phonetically and prosodically annotated. In the
subset of the corpus considered here, 82% of the
feedback expressions bear stress or tone informa-
tion, and 12% are unstressed; 7% of them are
marked with onset or offset hesitation, or both.
For this study, we added semantic labels – includ-
ing dialogue acts – and gesture annotation. Both
kinds of annotation were carried out using ANVIL
(Kipp, 2004). To distinguish among the various
functions that feedback expressions have in the di-
alogues, we selected a subset of the categories de-
fined in the emerging ISO 24617-2 standard for
semantic annotation of language resources. This
subset comprises the categories Accept, Decline,
RepeatRephrase and Answer. Moreover, all feed-
back expressions were annotated with an agree-
ment feature (Agree, NonAgree) where relevant.
Finally, the two turn management categories Turn-
Take and TurnElicit were also coded.

It should be noted that the same expression may
be annotated with a label for each of the three se-
mantic dimensions. For example, a yes can be an
Answer to a question, an Agree and a TurnElicit at
the same time, thus making the semantic classifi-
cation very fine-grained. Table 1 shows how the
various types are distributed across the 466 feed-
back expressions in our data.

Dialogue Act
Answer 70 15%
RepeatRephrase 57 12%
Accept 127 27%
None 212 46%
Agreement
Agree 166 36%
NonAgree 14 3%
None 286 61%
Turn Management
TurnTake 113 24%
TurnElicit 85 18%
None 268 58%

Table 1: Distribution of semantic categories
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3.1 Inter-coder agreement on feedback
expression annotation

In general, dialogue act, agreement and turn anno-
tations were coded by an expert annotator and the
annotations were subsequently checked by a sec-
ond expert annotator. However, one dialogue was
coded independently and in parallel by two expert
annotators to measure inter-coder agreement. A
measure was derived for each annotated feature
using the agreement analysis facility provided in
ANVIL. Agreement between two annotation sets
is calculated here in terms of Cohen’s kappa (Co-
hen, 1960)1 and corrected kappa (Brennan and
Prediger, 1981)2. Anvil divides the annotations in
slices and compares each slice. We used slices of
0.04 seconds. The inter-coder agreement figures
obtained for the three types of annotation are given
in Table 2.

feature Cohen’s k corrected k
agreement 73.59 98.74
dial act 84.53 98.87
turn 73.52 99.16

Table 2: Inter-coder agreement on feedback ex-
pression annotation

Although researchers do not totally agree on
how to measure agreement in various types of an-
notated data and on how to interpret the resulting
figures, see Artstein and Poesio (2008), it is usu-
ally assumed that Cohen’s kappa figures over 60
are good while those over 75 are excellent (Fleiss,
1971). Looking at the cases of disagreement we
could see that many of these are due to the fact
that the annotators had forgotten to remove some
of the features automatically proposed by ANVIL
from the latest annotated element.

4 Gesture annotation

All communicative head gestures in the videos
were found and annotated with ANVIL using a
subset of the attributes defined in the MUMIN an-
notation scheme (Allwood et al., 2007). The MU-
MIN scheme is a general framework for the study
of gestures in interpersonal communication. In
this study, we do not deal with functional classi-
fication of the gestures in themselves, but rather

1(Pa− Pe)/(1− Pe).
2(Po − 1/c)/(1 − 1/c) where c is the number of cate-

gories.

with how gestures contribute to the semantic in-
terpretations of linguistic expressions. Therefore,
only a subset of the MUMIN attributes has been
used, i.e. Smile, Laughter, Scowl, FaceOther for
facial expressions, and Nod, Jerk, Tilt, SideTurn,
Shake, Waggle, Other for head movements.

A link was also established in ANVIL between
the gesture under consideration and the relevant
speech sequence where appropriate. The link was
then used to extract gesture information together
with the relevant linguistic annotations on which
to apply machine learning.

The total number of head gestures annotated is
264. Of these, 114 (43%) co-occur with feedback
expressions, with Nod as by far the most frequent
type (70 occurrences) followed by FaceOther as
the second most frequent (16). The other tokens
are distributed more or less evenly, with a few oc-
currences (2-8) per type. The remaining 150 ges-
tures, linked to different linguistic expressions or
to no expression at all, comprise many face ex-
pressions and a number of tilts. A rough prelim-
inary analysis shows that their main functions are
related to focusing or to different emotional atti-
tudes. They will be ignored in what follows.

4.1 Measuring inter-coder agreement on
gesture annotation

The head gestures in the DanPASS data have been
coded by non expert annotators (one annotator
per video) and subsequently controlled by a sec-
ond annotator, with the exception of one video
which was annotated independently and in parallel
by two annotators. The annotations of this video
were then used to measure inter-coder agreement
in ANVIL as it was the case for the annotations
on feedback expressions. In the case of gestures
we also measured agreement on gesture segmen-
tation. The figures obtained are given in Table 3.

feature Cohen’s k corrected k
face segment 69.89 91.37
face annotate 71.53 94.25
head mov segment 71.21 91.75
head mov annotate 71.65 95.14

Table 3: Inter-coder agreement on head gesture
annotation

These results are slightly worse than those ob-
tained in previous studies using the same annota-
tion scheme (Jokinen et al., 2008), but are still sat-
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isfactory given the high number of categories pro-
vided by the scheme.

A distinction that seemed particularly difficult
was that between nods and jerks: although the
direction of the two movement types is different
(down-up and up-down, respectively), the move-
ment quality is very similar, and makes it difficult
to see the direction clearly. We return to this point
below, in connection with our data analysis.

5 Analysis of the data

The multimodal data we obtained by combining
the linguistic annotations from DanPASS with the
gesture annotation created in ANVIL, resulted into
two different groups of data, one containing all Yes
and No expressions, and the other the subset of
those that are accompanied by a face expression
or a head movement, as shown in Table 4.

Expression Count %
Yes 420 90
No 46 10
Total 466 100
Yes with gestures 102 90
No with gestures 12 10
Total with gestures 114 100

Table 4: Yes and No datasets

These two sets of data were used for automatic
dialogue act classification, which was run in the
Weka system (Witten and Frank, 2005). We exper-
imented with various Weka classifiers, compris-
ing Hidden Naive Bayes, SMO, ID3, LADTree
and Decision Table. The best results on most of
our data were obtained using Hidden Naive Bayes
(HNB) (Zhang et al., 2005). Therefore, here we
show the results of this classifier. Ten-folds cross-
validation was applied throughout.

In the first group of experiments we took into
consideration all the Yes and No expressions (420
Yes and 46 No) without, however, considering ges-
ture information. The purpose was to see how
prosodic information contributes to the classifica-
tion of dialogue acts. We started by totally leav-
ing out prosody, i.e. only the orthographic tran-
scription (Yes and No expressions) was consid-
ered; then we included information about stress
(stressed or unstressed); in the third run we added
tone attributes, and in the fourth information on
hesitation. Agreement and turn attributes were
used in all experiments, while Dialogue act anno-

tation was only used in the training phase. The
baseline for the evaluation are the results provided
by Weka’s ZeroR classifier, which always selects
the most frequent nominal class.

In Table 5 we provide results in terms of preci-
sion (P), recall (R) and F-measure (F). These are
calculated in Weka as weighted averages of the re-
sults obtained for each class.

dataset Algor P R F
YesNo ZeroR 27.8 52.8 36.5

HNB 47.2 53 46.4
+stress HNB 47.5 54.1 47.1
+stress+tone HNB 47.8 54.3 47.4
+stress+tone+hes HNB 47.7 54.5 47.3

Table 5: Classification results with prosodic fea-
tures

The results indicate that prosodic information
improves the classification of dialogue acts with
respect to the baseline in all four experiments with
improvements of 10, 10.6, 10.9 and 10.8%, re-
spectively. The best results are obtained using
information on stress and tone, although the de-
crease in accuracy when hesitations are introduced
is not significant. The confusion matrices show
that the classifier is best at identifying Accept,
while it is very bad at identifying RepeatRephrase.
This result if not surprising since the former type
is much more frequent in the data than the latter,
and since prosodic information does not correlate
with RepeatRephrase in any systematic way.

The second group of experiments was con-
ducted on the dataset where feedback expressions
are accompanied by gestures (102 Yes and 12 No).
The purpose this time was to see whether ges-
ture information improves dialogue act classifica-
tion. We believe it makes sense to perform the
test based on this restricted dataset, rather than the
entire material, because the portion of data where
gestures do accompany feedback expressions is
rather small (about 20%). In a different domain,
where subjects are less constrained by the techni-
cal setting, we expect gestures would make for a
stronger and more widespread effect.

The Precision, Recall and F-measure of the Ze-
roR classifier on these data are 31.5, 56.1 and 40.4,
respectively. For these experiments, however, we
used as a baseline the results obtained based on
stress, tone and hesitation information, the com-
bination that gave the best results on the larger
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dataset. Together with the prosodic information,
Agreement and turn attributes were included just
as earlier, while the dialogue act annotation was
only used in the training phase. Face expression
and head movement attributes were disregarded
in the baseline. We then added face expression
alone, head movement alone, and finally both ges-
ture types together. The results are shown in Ta-
ble 6.

dataset Algor P R F
YesNo HNB 43.1 56.1 46.4
+face HNB 43.7 56.1 46.9
+headm HNB 44.7 55.3 48.2
+face+headm HNB 49.9 57 50.3

Table 6: Classification results with head gesture
features

These results indicate that adding head ges-
ture information improves the classification of di-
alogue acts in this reduced dataset, although the
improvement is not impressive. The best results
are achieved when both face expressions and head
movements are taken into consideration.

The confusion matrices show that although the
recognition of both Answer and None improve, it
is only the None class which is recognised quite
reliably. We already explained that in our annota-
tion a large number of feedback utterances have an
agreement or turn label without necessarily having
been assigned to one of our task-related dialogue
act categories. This means that head gestures
help distinguishing utterances with an agreement
or turn function from other kinds. Looking closer
at these utterances, we can see that nods and jerks
often occur together with TurnElicit, while tilts,
side turns and smiles tend to occur with Agree.

An issue that worries us is the granularity of
the annotation categories. To investigate this, in
a third group of experiments we collapsed Nod
and Jerk into a more general category: the distinc-
tion had proven difficult for the annotators, and we
don’t have many jerks in the data. The results, dis-
played in Table 7, show as expected an improve-
ment. The class which is recognised best is still
None.

6 Conclusion

In this study we have experimented with the au-
tomatic classification of feedback expressions into
different dialogue acts in a multimodal corpus of

dataset Algor P R F
YesNo HNB 43.1 56.1 46.4
+face HNB 43.7 56.1 46.9
+headm HNB 47 57.9 51
+face+headm HNB 51.6 57.9 53.9

Table 7: Classification results with fewer head
movements

Danish. We have conducted three sets of experi-
ments, first looking at how prosodic features con-
tribute to the classification, then testing whether
the use of head gesture information improved the
accuracy of the classifier, finally running the clas-
sification on a dataset in which the head move-
ment types were slightly more general. The re-
sults indicate that prosodic features improve the
classification, and that in those cases where feed-
back expressions are accompanied by head ges-
tures, gesture information is also useful. The re-
sults also show that using a more coarse-grained
distinction of head movements improves classifi-
cation in these data.

Slightly more than half of the head gestures in
our data co-occur with other linguistic utterances
than those targeted in this study. Extending our in-
vestigation to those, as we plan to do, will provide
us with a larger dataset and therefore presumably
with even more interesting and reliable results.

The occurrence of gestures in the data stud-
ied here is undoubtedly limited by the technical
setup, since the two speakers do not see each other.
Therefore, we want to investigate the role played
by head gestures in other types of video and larger
materials. Extending the analysis to larger datasets
will also shed more light on whether our gesture
annotation categories are too fine-grained for au-
tomatic classification.
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Abstract

We propose a novel algorithm for senti-
ment summarization that takes account of
informativeness and readability, simulta-
neously. Our algorithm generates a sum-
mary by selecting and ordering sentences
taken from multiple review texts according
to two scores that represent the informa-
tiveness and readability of the sentence or-
der. The informativeness score is defined
by the number of sentiment expressions
and the readability score is learned from
the target corpus. We evaluate our method
by summarizing reviews on restaurants.
Our method outperforms an existing al-
gorithm as indicated by its ROUGE score
and human readability experiments.

1 Introduction

The Web holds a massive number of reviews de-
scribing the sentiments of customers about prod-
ucts and services. These reviews can help the user
reach purchasing decisions and guide companies’
business activities such as product improvements.
It is, however, almost impossible to read all re-
views given their sheer number.

These reviews are best utilized by the devel-
opment of automatic text summarization, partic-
ularly sentiment summarization. It enables us to
efficiently grasp the key bits of information. Senti-
ment summarizers are divided into two categories
in terms of output style. One outputs lists of
sentences (Hu and Liu, 2004; Blair-Goldensohn
et al., 2008; Titov and McDonald, 2008), the
other outputs texts consisting of ordered sentences
(Carenini et al., 2006; Carenini and Cheung, 2008;
Lerman et al., 2009; Lerman and McDonald,
2009). Our work lies in the latter category, and
a typical summary is shown in Figure 1. Although
visual representations such as bar or rader charts

This restaurant offers customers delicious foods and a

relaxing atmosphere. The staff are very friendly but the

price is a little high.

Figure 1: A typical summary.

are helpful, such representations necessitate some
simplifications of information to presentation. In
contrast, text can present complex information that
can’t readily be visualized, so in this paper we fo-
cus on producing textual summaries.

One crucial weakness of existing text-oriented
summarizers is the poor readability of their results.
Good readability is essential because readability
strongly affects text comprehension (Barzilay et
al., 2002).

To achieve readable summaries, the extracted
sentences must be appropriately ordered (Barzilay
et al., 2002; Lapata, 2003; Barzilay and Lee, 2004;
Barzilay and Lapata, 2005). Barzilay et al. (2002)
proposed an algorithm for ordering sentences ac-
cording to the dates of the publications from which
the sentences were extracted. Lapata (2003) pro-
posed an algorithm that computes the probability
of two sentences being adjacent for ordering sen-
tences. Both methods delink sentence extraction
from sentence ordering, so a sentence can be ex-
tracted that cannot be ordered naturally with the
other extracted sentences.

To solve this problem, we propose an algorithm
that chooses sentences and orders them simulta-
neously in such a way that the ordered sentences
maximize the scores of informativeness and read-
ability. Our algorithm efficiently searches for the
best sequence of sentences by using dynamic pro-
gramming and beam search. We verify that our
method generates summaries that are significantly
better than the baseline results in terms of ROUGE
score (Lin, 2004) and subjective readability mea-
sures. As far as we know, this is the first work to
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simultaneously achieve both informativeness and
readability in the area of multi-document summa-
rization.

This paper is organized as follows: Section 2
describes our summarization method. Section 3
reports our evaluation experiments. We conclude
this paper in Section 4.

2 Optimizing Sentence Sequence

Formally, we define a summaryS∗ =
〈s0, s1, . . . , sn, sn+1〉 as a sequence consist-
ing of n sentences wheres0 andsn+1 are symbols
indicating the beginning and ending of the se-
quence, respectively. SummaryS∗ is also defined
as follows:

S∗ = argmax
S∈T

[Info(S) + λRead(S)] (1)

s.t. length(S) ≤ K

where Info(S) indicates the informativeness
score of S, Read(S) indicates the readability
score ofS, T indicates possible sequences com-
posed of sentences in the target documents,λ
is a weight parameter balancing informativeness
against readability,length(S) is the length ofS,
andK is the maximum size of the summary.

We introduce the informativeness score and the
readability score, then describe how to optimize a
sequence.

2.1 Informativeness Score

Since we attempt to summarize reviews, we as-
sume that a good summary must involve as many
sentiments as possible. Therefore, we define the
informativeness score as follows:

Info(S) =
∑

e∈E(S)

f(e) (2)

wheree indicates sentimente = 〈a, p〉 as the tu-
ple ofaspecta andpolarity p = {−1, 0, 1}, E(S)
is the set of sentiments containedS, andf(e) is the
score of sentimente. Aspecta represents a stand-
point for evaluating products and services. With
regard to restaurants, aspects includefood, atmo-
sphereandstaff. Polarity represents whether the
sentiment is positive or negative. In this paper, we
definep = −1 as negative,p = 0 as neutral and
p = 1 as positive sentiment.

Notice that Equation 2 defines the informative-
ness score of a summary as the sum of the score
of the sentiments contained inS. To avoid du-
plicative sentences, each sentiment is counted only

once for scoring. In addition, the aspects are clus-
tered and similar aspects (e.g.air, ambience) are
treated as the same aspect (e.g.atmosphere). In
this paper we definef(e) as the frequency ofe in
the target documents.

Sentiments are extracted using a sentiment lex-
icon and pattern matched from dependency trees
of sentences. The sentiment lexicon1 consists of
pairs ofsentiment expressionsand their polarities,
for example,delicious, friendly andgoodare pos-
itive sentiment expressions,badandexpensiveare
negative sentiment expressions.

To extract sentiments from given sentences,
first, we identify sentiment expressions among
words consisting of parsed sentences. For ex-
ample, in the case of the sentence “This restau-
rant offers customers delicious foods and a relax-
ing atmosphere.” in Figure 1,deliciousand re-
laxing are identified as sentiment expressions. If
the sentiment expressions are identified, the ex-
pressions and its aspects are extracted as aspect-
sentiment expression pairs from dependency tree
using some rules. In the case of the example sen-
tence,foodsanddelicious, atmosphereandrelax-
ing are extracted as aspect-sentiment expression
pairs. Finally extracted sentiment expressions are
converted to polarities, we acquire the set of sen-
timents from sentences, for example,〈 foods, 1〉
and〈 atmosphere, 1〉.

Note that since our method relies on only senti-
ment lexicon, extractable aspects are unlimited.

2.2 Readability Score

Readability consists of various elements such as
conciseness, coherence, and grammar. Since it
is difficult to model all of them, we approximate
readability as the natural order of sentences.

To order sentences, Barzilay et al. (2002)
used the publication dates of documents to catch
temporally-ordered events, but this approach is not
really suitable for our goal because reviews focus
on entities rather than events. Lapata (2003) em-
ployed the probability of two sentences being ad-
jacent as determined from a corpus. If the cor-
pus consists of reviews, it is expected that this ap-
proach would be effective for sentiment summa-
rization. Therefore, we adopt and improve Lap-
ata’s approach to order sentences. We define the

1Since we aim to summarize Japanese reviews, we utilize
Japanese sentiment lexicon (Asano et al., 2008). However,
our method is, except for sentiment extraction, language in-
dependent.
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readability score as follows:

Read(S) =
n∑

i=0

w>φ(si, si+1) (3)

where, given two adjacent sentencessi and
si+1, w>φ(si, si+1), which measures the connec-
tivity of the two sentences, is the inner product of
w and φ(si, si+1), w is a parameter vector and
φ(si, si+1) is a feature vector of the two sentences.
That is, the readability score of sentence sequence
S is the sum of the connectivity of all adjacent sen-
tences in the sequence.

As the features, Lapata (2003) proposed the
Cartesian product of content words in adjacent
sentences. To this, we add named entity tags (e.g.
LOC, ORG) and connectives. We observe that the
first sentence of a review of a restaurant frequently
contains named entities indicating location. We
aim to reproduce this characteristic in the order-
ing.

We also define feature vectorΦ(S) of the entire
sequenceS = 〈s0, s1, . . . , sn, sn+1〉 as follows:

Φ(S) =
n∑

i=0

φ(si, si+1) (4)

Therefore, the score of sequenceS is w>Φ(S).
Given a training set, if a trained parameterw as-
signs a scorew>Φ(S+) to an correct orderS+

that is higher than a scorew>Φ(S−) to an incor-
rect orderS−, it is expected that the trained pa-
rameter will give higher score to naturally ordered
sentences than to unnaturally ordered sentences.

We use Averaged Perceptron (Collins, 2002) to
find w. Averaged Perceptron requires an argmax
operation for parameter estimation. Since we at-
tempt to order a set of sentences, the operation is
regarded as solving the Traveling Salesman Prob-
lem; that is, we locate the path that offers maxi-
mum score through alln sentences ass0 andsn+1

are starting and ending points, respectively. Thus
the operation is NP-hard and it is difficult to find
the global optimal solution. To alleviate this, we
find an approximate solution by adopting the dy-
namic programming technique of the Held and
Karp Algorithm (Held and Karp, 1962) and beam
search.

We show the search procedure in Figure 2.S
indicates intended sentences andM is a distance
matrix of the readability scores of adjacent sen-
tence pairs.Hi(C, j) indicates the score of the
hypothesis that has covered the set ofi sentences
C and has the sentencej at the end of the path,

Sentences:S = {s1, . . . , sn}
Distance matrix:M = [ai,j ]i=0...n+1,j=0...n+1

1: H0({s0}, s0) = 0

2: for i : 0 . . . n− 1

3: for j : 1 . . . n

4: foreach Hi(C\{j}, k) ∈ b

5: Hi+1(C, j) = maxHi(C\{j},k)∈b Hi(C\{j}, k)

6: +Mk,j

7: H∗ = maxHn(C,k) H
n(C, k) + Mk,n+1

Figure 2: Held and Karp Algorithm.

i.e. the last sentence of the summary being gener-
ated. For example,H2({s0, s2, s5}, s2) indicates
a hypothesis that coverss0, s2, s5 and the last sen-
tence iss2. Initially, H0({s0}, s0) is assigned the
score of 0, and new sentences are then added one
by one. In the search procedure, our dynamic pro-
gramming based algorithm retains just the hypoth-
esis with maximum score among the hypotheses
that have the same sentences and the same last sen-
tence. Since this procedure is still computationally
hard, only the topb hypotheses are expanded.

Note that our method learnsw from texts auto-
matically annotated by a POS tagger and a named
entity tagger. Thus manual annotation isn’t re-
quired.

2.3 Optimization

The argmax operation in Equation 1 also involves
search, which is NP-hard as described in Section
2.2. Therefore, we adopt the Held and Karp Algo-
rithm and beam search to find approximate solu-
tions. The search algorithm is basically the same
as parameter estimation, except for its calculation
of the informativeness score and size limitation.
Therefore, when a new sentence is added to a hy-
pothesis, both the informativeness and the read-
ability scores are calculated. The size of the hy-
pothesis is also calculated and if the size exceeds
the limit, the sentence can’t be added. A hypoth-
esis that can’t accept any more sentences is re-
moved from the search procedure and preserved
in memory. After all hypotheses are removed,
the best hypothesis is chosen from among the pre-
served hypotheses as the solution.

3 Experiments

This section evaluates our method in terms of
ROUGE score and readability. We collected 2,940
reviews of 100 restaurants from a website. The
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R-2 R-SU4 R-SU9

Baseline 0.089 0.068 0.062

Method1 0.157 0.096 0.089

Method2 0.172 0.107 0.098

Method3 0.180 0.110 0.101

Human 0.258 0.143 0.131

Table 1: Automatic ROUGE evaluation.

average size of each document set (corresponds to
one restaurant) was 5,343 bytes. We attempted
to generate 300 byte summaries, so the summa-
rization rate was about 6%. We used CRFs-
based Japanese dependency parser (Imamura et
al., 2007) and named entity recognizer (Suzuki et
al., 2006) for sentiment extraction and construct-
ing feature vectors for readability score, respec-
tively.

3.1 ROUGE

We used ROUGE (Lin, 2004) for evaluating the
content of summaries. We chose ROUGE-2,
ROUGE-SU4 and ROUGE-SU9. We prepared
four reference summaries for each document set.

To evaluate the effects of the informativeness
score, the readability score and the optimization,
we compared the following five methods.

Baseline: employs MMR (Carbonell and Gold-
stein, 1998). We designed the score of a sentence
as term frequencies of the content words in a doc-
ument set.

Method1: uses optimization without the infor-
mativeness score or readability score. It also used
term frequencies to score sentences.

Method2: uses the informativeness score and
optimization without the readability score.

Method3: the proposed method. Following
Equation 1, the summarizer searches for a se-
quence with high informativeness and readability
score. The parameter vectorw was trained on the
same 2,940 reviews in 5-fold cross validation fash-
ion. λ was set to 6,000 using a development set.

Human is the reference summaries. To com-
pare our summarizer to human summarization, we
calculated ROUGE scores between each reference
and the other references, and averaged them.

The results of these experiments are shown in
Table 1. ROUGE scores increase in the order of
Method1, Method2 and Method3 but no method
could match the performance of Human. The
methods significantly outperformed Baseline ac-

Numbers

Baseline 1.76

Method1 4.32

Method2 10.41

Method3 10.18

Human 4.75

Table 2: Unique sentiment numbers.

cording to the Wilcoxon signed-rank test.
We discuss the contribution of readability to

ROUGE scores. Comparing Method2 to Method3,
ROUGE scores of the latter were higher for all cri-
teria. It is interesting that the readability criterion
also improved ROUGE scores.

We also evaluated our method in terms of sen-
timents. We extracted sentiments from the sum-
maries using the above sentiment extractor, and
averaged the unique sentiment numbers. Table 2
shows the results.

The references (Human) have fewer sentiments
than the summaries generated by our method. In
other words, the references included almost as
many other sentences (e.g. reasons for the senti-
ments) as those expressing sentiments. Carenini
et al. (2006) pointed out that readers wanted “de-
tailed information” in summaries, and the reasons
are one of such piece of information. Including
them in summaries would greatly improve sum-
marizer appeal.

3.2 Readability

Readability was evaluated by human judges.
Three different summarizers generated summaries
for each document set. Ten judges evaluated the
thirty summaries for each. Before the evalua-
tion the judges read evaluation criteria and gave
points to summaries using a five-point scale. The
judges weren’t informed of which method gener-
ated which summary.

We compared three methods; Ordering sen-
tences according to publication dates and posi-
tions in which sentences appear after sentence
extraction (Method2), Ordering sentences us-
ing the readability score after sentence extrac-
tion (Method2+) and searching a document set
to discover the sequence with the highest score
(Method3).

Table 3 shows the results of the experiment.
Readability increased in the order of Method2,
Method2+ and Method3. According to the
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Readability point

Method2 3.45

Method2+ 3.54

Method3 3.74

Table 3: Readability evaluation.

Wilcoxon signed-rank test, there was no signifi-
cance difference between Method2 and Method2+
but the difference between Method2 and Method3
was significant,p < 0.10.

One important factor behind the higher read-
ability of Method3 is that it yields longer sen-
tences on average (6.52). Method2 and Method2+
yielded averages of 7.23 sentences. The difference
is significant as indicated byp < 0.01. That is,
Method2 and Method2+ tended to select short sen-
tences, which made their summaries less readable.

4 Conclusion

This paper proposed a novel algorithm for senti-
ment summarization that takes account of infor-
mativeness and readability, simultaneously. To
summarize reviews, the informativeness score is
based on sentiments and the readability score is
learned from a corpus of reviews. The preferred
sequence is determined by using dynamic pro-
gramming and beam search. Experiments showed
that our method generated better summaries than
the baseline in terms of ROUGE score and read-
ability.

One future work is to include important infor-
mation other than sentiments in the summaries.
We also plan to model the order of sentences glob-
ally. Although the ordering model in this paper is
local since it looks at only adjacent sentences, a
model that can evaluate global order is important
for better summaries.
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Abstract 

 

Two psycholinguistic and psychophysical ex-
periments show that in order to efficiently ex-
tract polarity of written texts such as customer-
reviews on the Internet, one should concentrate 
computational efforts on messages in the final 
position of the text.  

1 Introduction 
The ever-growing field of polarity-classification 
of written texts may benefit greatly from lin-
guistic insights and tools that will allow to effi-
ciently (and thus economically) extract the po-
larity of written texts, in particular, online cus-
tomer reviews. 

Many researchers interpret “efficiently” as us-
ing better computational methods to resolve the 
polarity of written texts. We suggest that text 
units should be handled with tools of discourse 
linguistics too in order to reveal where, within 
texts, their polarity is best manifested. Specifi-
cally, we propose to focus on the last sentence 
of the given text in order to efficiently extract 
the polarity of the whole text. This will reduce 
computational costs, as well as improve the 
quality of polarity detection and classification 
when large databases of text units are involved.  

This paper aims to provide psycholinguistic 
support to the hypothesis (which psycholinguis-
tic literature lacks) that the last sentence of a 
customer review is a better predictor for the po-
larity of the whole review than other sentences 
in the review, in order to be later used for auto-
matic polarity-classification. Therefore, we first 
briefly review the well-established structure of 

text units while comparing notions of topic-
extraction vs. our notion of polarity-
classification. We then report the psycholinguis-
tic experiments that we ran in order to support 
our prediction as to the role of the last sentence 
in polarity manifestation. Finally, we discuss 
the experimental results. 

2 Topic-extraction  
One of the basic features required to perform 
automatic topic-extraction is sentence position. 
The importance of sentence position for compu-
tational purposes was first indicated by Baxen-
dale in the late 1950s (Baxendale, 1958): Bax-
endale hypothesized that the first and the last 
sentence of a given text are the potential topic-
containing sentences. He tested this hypothesis 
on a corpus of 200 paragraphs extracted out of 6 
technical articles. He found that in 85% of the 
documents, the first sentence was the topic sen-
tence, whereas in only 7% of the documents, it 
was the last sentence. A large scale study sup-
porting Baxendale’s hypothesis was conducted 
by Lin and Hovy (Lin and Hovy, 1997) who ex-
amined 13,000 documents of the Ziff-Davis 
newswire corpus of articles reviewing computer 
hardware and software. In this corpus, each 
document was accompanied by a set of topic 
keywords and a small abstract of six sentences. 
Lin and Hovy measured the yield of each sen-
tence against the topic keywords and ranked the 
sentences by their average yield. They con-
cluded that in ~2/3 of the documents, the topic 
keywords are indeed mentioned in the title and 
first five sentences of the document.  

Baxendale’s theory gained further psycholin-
guistic support by the experimental results of 
Kieras (Kieras, 1978, Kieras, 1980) who 
showed that subjects re-constructed the content 
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of paragraphs they were asked to read by rely-
ing on sentences in initial positions. These find-
ing subsequently gained extensive theoretical 
and experimental support by Giora (Giora, 
1983, Giora, 1985) who correlated the position 
of a sentence within a text with its degree of in-
formativeness. 

Giora (Giora, 1985, Giora, 1988) defined a 
discourse topic (DT) as the least informative 
(most uninformative) yet dominant proposition 
of a text. The DT best represents the redun-
dancy structure of the text. As such, this propo-
sition functions as a reference point for process-
ing the rest of the propositions. The text posi-
tion which best benefits such processing is text 
initial; it facilitates processing of oncoming 
propositions (with respect to the DT) relative to 
when the DT is placed in text final position. 

Furthermore, Giora and Lee showed (Giora 
and Lee, 1996) that when the DT appears also 
at the end of a text it is somewhat information-
ally redundant. However, functionally, it plays a 
role in wrapping the text up and marking its 
boundary. Authors often make reference to the 
DT at the end of a text in order to summarize 
and deliberately recapitulate what has been 
written up to that point while also signaling the 
end of discourse topic segment. 

3 Polarity-classification vs. Topic-
extraction 

When dealing with polarity-classification (as 
with topic-extraction), one should again identify 
the most uninformative yet dominant proposi-
tion of the text. However, given the cognitive 
prominence of discourse final position in terms 
of memorability, known as “recency effect” (see 
below and see also (Giora, 1988)), we predict 
that when it comes to polarity-classification, the 
last proposition of a given text should be of 
greater importance than the first one (contrary 
to topic-extraction).  

Based on preliminary investigations, we sug-
gest that the DT of any customer review is the 
customer’s evaluation, whether negative or 
positive, of a product that s/he has purchased or 
a service s/he has used, rather than the details of 
the specific product or service. The message 
that customer reviews try to get across is, there-
fore, of evaluative nature. To best communicate 
this affect, the DT should appear at the end of 
the review (instead of the beginning of the re-
view) as a means of recapitulating the point of 
the message, thereby guaranteeing that it is fully 
understood by the readership. 

Indeed, the cognitive prominence of informa-
tion in final position - the recency-effect - has 
been well established in numerous psychologi-
cal experiments (see, for example, (Murdock, 
1962)). Thus, the most frequent evaluation of 
the product (which is the most uninformative 
one) also should surface at the end of the text 
due to the ease of its retrieval, which is pre-
sumably what product review readers would re-
fer to as “the bottom line”. 

To the best of our knowledge, this psycholin-
guistic prediction has not been supported by psy-
cholinguistic evidence to date. However, it has 
been somewhat supported by the computational 
results of Yang, Lin and Chen (Yang et al., 
2007a, Yang et al., 2007b) who classified emo-
tions of posts in blog corpora. Yang, Lin & Chen 
realized that bloggers tend to emphasize their 
feelings by using emoticons (such as: ☺," and 
#) and that these emoticons frequently appear in 
final sentences. Thus, they first focused on the 
last sentence of posts as representing the polarity 
of the entire posts. Then, they divided the posi-
tive category into 2 sub-categories - happy and 
joy, and the negative category - into angry and 
sad. They showed that extracting polarity and 
consequently sentiments from last sentences out-
performs all other computational strategies. 

4 Method 
We aim to show that the last sentence of a cus-
tomer review is a better predictor for the polarity 
of the whole review than any other sentence (as-
suming that the first sentence is devoted to pre-
senting the product or service). To test our pre-
diction, we ran two experiments and compared 
their results. In the first experiment we exam-
ined the readers’ rating of the polarity of reviews 
in their entirety, while in the second experiment 
we examined the readers’ rating of the same re-
views based on reading single sentences ex-
tracted from these reviews: the last sentence or 
the second one. The second sentence could have 
been replaced by any other sentence, but the first 
one, as our preliminary investigations clearly 
show that the first sentence is in many cases de-
voted to presenting the product or service dis-
cussed and does not contain any polarity con-
tent. For example: "I read Isaac’s storm, by Erik 
Larson, around 1998. Recently I had occasion to 
thumb through it again which has prompted this 
review…..All in all a most interesting and re-
warding book, one that I would recommend 
highly.” (Gerald T. Westbrook, “GTW”) 
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4.1     Materials 
Sixteen customer-reviews were extracted from 
Blitzer, Dredze, and Pereira’s sentiment data-
base (Blitzer et al., 2007). This database con-
tains product-reviews taken from Amazon 1 
where each review is rated by its author on a 1-
5 star scale. The database covers 4 product 
types (domains): Kitchen, Books, DVDs, and 
Electronics. Four reviews were selected from 
each domain. Of the 16 extracted reviews, 8 
were positive (4-5 star rating) and the other 8 – 
negative (1-2 star rating). 

Given that in this experiment we examine the 
polarity of the last sentence relative to that of the 
whole review or to a few other sentences, we 
focused on the first reviews (as listed in the 
aforementioned database) of at least 5 sentences 
or longer, rather than on too-short reviews. By 
“too-short” we refer to reviews in which such 
comparison would be meaningless; for example, 
ones that range between 1-3 sentences will not 
allow to compare the last sentence with any of 
the others. 

4.2     Participants 

Thirty-five subjects participated in the first ex-
periment: 14 women and 21 men, ranging in age 
from 22 to 73. Thirty-six subjects participated in 
the second experiment: 23 women and 13 men 
ranging in age from 20 to 59. All participants 
were native speakers of English, had an aca-
demic education, and had normal or corrected-to-
normal eye-vision.  

4.3     Procedure 
In the first experiment, subjects were asked to 
read 16 reviews; in the second experiment sub-
jects were asked to read 32 single sentences ex-
tracted from the same 16 reviews: the last sen-
tence and the second sentence of each review. 
The last and the second sentence of each review 
were not presented together but individually. 

In both experiments subjects were asked to 
guess the ratings of the texts which were given 
by the authors on a 1-5 star scale, by clicking on 
a radio-button: “In each of the following screens 
you will be asked to read a customer review (or a 
sentence extracted out of a customer review). All 
the reviews were extracted from the 
www.amazon.com customer review section. 
Each review (or sentence) describes a different 
product. At the end of each review (or sentence) 

                                                 
1 http://www.amazon.com 

you will be asked to decide whether the reviewer 
who wrote the review recommended or did not 
recommend the reviewed product on a 1-5 scale: 
Number 5 indicates that the reviewer highly rec-
ommended the product, while number 1 indicates 
that the reviewer was unsatisfied with the prod-
uct and did not recommend it.” 

In the second experiment, in addition to the 
psychological experiment, the latencies follow-
ing reading of the texts up until the clicking of 
the mouse, as well as the biometric measure-
ments of the mouse’s trajectories, were recorded. 

In both experiments each subject was run in an 
individual session and had an unlimited time to 
reflect and decide on the polarity of each text. 
Five seconds after a decision was made (as to 
whether the reviewer was in favor of the product 
or not), the subject was presented with the next 
text. The texts were presented in random order so 
as to prevent possible interactions between them. 

In the initial design phase of the experiment 
we discussed the idea of adding an “irrelevant” 
option in addition to the 5-star scale of polarity. 
This option was meant to be used for sentences 
that carry no evaluation at all. Such an addition 
would have necessitated locating the extra-
choice radio button at a separated remote place 
from the 5-star scale radio buttons, since concep-
tually it cannot be located on a nearby position. 
From the user interaction point of view, the 
mouse movement to that location would have 
been either considerably shorter or longer (de-
pending on its distance from the initial location 
of the mouse curser at the beginning of each 
trial), and the mouse trajectory and click time 
would have been, thus, very different and diffi-
cult to analyze. 

Although the reviews were randomly selected, 
32 sentences extracted out of 16 reviews might 
seem like a small sample. However, the upper 
time limit for reliable psycholinguistic experi-
ments is 20-25 minute.  Although tempted to ex-
tend the experiments in order to acquire more 
data, longer times result in subject impatience, 
which shows on lower scoring rates. Therefore, 
we chose to trade sample size for accuracy. Ex-
perimental times in both experiments ranged be-
tween 15-35 minutes. 

5   Results 

Results of the distribution of differences be-
tween the authors’ and the readers’ ratings of 
the texts are presented in Figure 1: The distribu-
tion of differences for whole reviews is (un-
surprisingly) the narrowest (Figure 1a). The dis-
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tribution of differences for last sentences (Fig-
ure 1b) is somewhat wider than (but still quite 
similar to) the distribution of differences for 
whole reviews. The distribution of differences 
for second sentences is the widest of the three 
(Figure 1c). 

Pearson correlation coefficient calculations 
(Table 1) show that both the correlation be-
tween authors’ ratings and readers’ rating for 
whole reviews and the correlation between au-
thors’ rating and readers’ rating upon reading 
the last sentence are similar, while the correla-
tion between authors’ rating and readers ’ rating 
when presented with the second sentence of 
each review is significantly lower. Moreover, 
when correlating readers’ rating of whole re-
views with readers’ rating of single sentences, 
the correlation coefficient for last sentences is 
significantly higher than for second sentences.  

As for the biometric measurements per-
formed in the second experiment, since all sub-
jects were computer-skilled, hesitation revealed 
through mouse-movements was assumed to be 
attributed to difficulty of decision-making rather 
than to problems in operating the mouse. As 
previously stated, we recorded mouse latency 
times following the reading of the texts up until 
clicking the mouse. Mouse latency times were 
not normalized for each subject due to the lim-
ited number of results. However, the average 
latency time is shorter for last sentences 
(19.61±12.23s) than for second sentences 
(22.06±14.39s). Indeed, the difference between 
latency times is not significant, as a paired t-test 
could not reject the null hypothesis that those 
distributions have equal means, but might show 
some tendency. 

We also used the WizWhy software (Meidan, 

2005) to perform combined analyses of readers’ 
rating and response times. The analyses showed 
that when the difference between authors’ and 
readers’ ratings was ≤1and the response time 
much shorter than average (<14.1 sec), then 
96% of the sentences were last sentences. Due 
to the small sample size, we cautiously infer 
that last sentences express polarity better than 
second sentences, bearing in mind that the sec-
ond sentence in our experiment represents any 
other sentence in the text except for the first 
one.  

We also predicted that hesitation in making a 
decision would effect not only latency times but 
also mouse trajectories. Namely, hesitation will 
be accompanied by moving the mouse here and 
there, while decisiveness will show a firm 
movement.  However, no such difference be-
tween the responses to last sentences or to sec-
ond sentences appeared in our analysis; most 
subjects laid their hand still while reading the 
texts and while reflecting upon their answers. 
They moved the mouse only to rate the texts. 

6 Conclusions and Future Work 
In 2 psycholinguistic and psychophysical ex-

periments, we showed that rating whole cus-
tomer-reviews as compared to rating final sen-
tences of these reviews showed an (expected) 
insignificant difference. In contrast, rating whole 
customer-reviews as compared to rating second 
sentences of these reviews, showed a consider-
able difference. Thus, instead of focusing on 
whole texts, computational linguists should focus 
on the last sentences for efficient and accurate 
automatic polarity-classification.  Indeed, last but 
definitely not least! 

We are currently running experiments that 
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Figure 1. Histograms of the rating differences between the authors of reviews and their
readers: for whole reviews (a), for last sentence only (b), and  for second sentence only (c).  
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include hundreds of subjects in order to draw a 
profile of polarity evolvement throughout cus-
tomer reviews. Specifically, we present our sub-
jects with sentences in various locations in cus-
tomer reviews asking them to rate them. As the 
expanded experiment is not psychophysical, we 
added an additional remote radio button named 
“irrelevant” where subjects can judge a given 
text as lacking any evident polarity. Based on the 
rating results we will draw polarity profiles in 
order to see where, within customer reviews, po-
larity is best manifested and whether there are 
other “candidates” sentences that would serve as 
useful polarity indicators. The profiles will be 
used as a feature in our computational analysis.  
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Readers’ star rating of: Correlated with: Pearson Correlation Coefficient (P<0.0001)
Whole reviews 0.7891 
Last sentences 0.7616 
Second sentences 

Authors’ star rating 
of whole reviews 

0.4705 
Last sentences 0.8463 
Second sentences 

Readers’ star rating 
of whole reviews 0.6563 

 
Table 1. Pearson Correlation Coefficients 

 

335



Proceedings of the ACL 2010 Conference Short Papers, pages 336–341,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Automatically generating annotator rationales
to improve sentiment classification

Ainur Yessenalina Yejin Choi Claire Cardie

Department of Computer Science, Cornell University, Ithaca NY, 14853 USA

{ainur, ychoi, cardie}@cs.cornell.edu

Abstract

One of the central challenges in sentiment-

based text categorization is that not ev-

ery portion of a document is equally in-

formative for inferring the overall senti-

ment of the document. Previous research

has shown that enriching the sentiment la-

bels with human annotators’ “rationales”

can produce substantial improvements in

categorization performance (Zaidan et al.,

2007). We explore methods to auto-

matically generate annotator rationales for

document-level sentiment classification.

Rather unexpectedly, we find the automat-

ically generated rationales just as helpful

as human rationales.

1 Introduction

One of the central challenges in sentiment-based

text categorization is that not every portion of

a given document is equally informative for in-

ferring its overall sentiment (e.g., Pang and Lee

(2004)). Zaidan et al. (2007) address this prob-

lem by asking human annotators to mark (at least

some of) the relevant text spans that support each

document-level sentiment decision. The text spans

of these “rationales” are then used to construct ad-

ditional training examples that can guide the learn-

ing algorithm toward better categorization models.

But could we perhaps enjoy the performance

gains of rationale-enhanced learning models with-

out any additional human effort whatsoever (be-

yond the document-level sentiment label)? We hy-

pothesize that in the area of sentiment analysis,

where there has been a great deal of recent re-

search attention given to various aspects of the task

(Pang and Lee, 2008), this might be possible: us-

ing existing resources for sentiment analysis, we

might be able to construct annotator rationales au-

tomatically.

In this paper, we explore a number of methods

to automatically generate rationales for document-

level sentiment classification. In particular, we in-

vestigate the use of off-the-shelf sentiment analy-

sis components and lexicons for this purpose. Our

approaches for generating annotator rationales can

be viewed as mostly unsupervised in that we do not

require manually annotated rationales for training.

Rather unexpectedly, our empirical results show

that automatically generated rationales (91.78%)

are just as good as human rationales (91.61%) for

document-level sentiment classification of movie

reviews. In addition, complementing the hu-

man annotator rationales with automatic rationales

boosts the performance even further for this do-

main, achieving 92.5% accuracy. We further eval-

uate our rationale-generation approaches on prod-

uct review data for which human rationales are not

available: here we find that even randomly gener-

ated rationales can improve the classification accu-

racy although rationales generated from sentiment

resources are not as effective as for movie reviews.

The rest of the paper is organized as follows.

We first briefly summarize the SVM-based learn-

ing approach of Zaidan et al. (2007) that allows the

incorporation of rationales (Section 2). We next

introduce three methods for the automatic gener-

ation of rationales (Section 3). The experimental

results are presented in Section 4, followed by re-

lated work (Section 5) and conclusions (Section

6).

2 Contrastive Learning with SVMs

Zaidan et al. (2007) first introduced the notion of

annotator rationales — text spans highlighted by

human annotators as support or evidence for each

document-level sentiment decision. These ratio-

nales, of course, are only useful if the sentiment

categorization algorithm can be extended to ex-

ploit the rationales effectively. With this in mind,

Zaidan et al. (2007) propose the following con-
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trastive learning extension to the standard SVM

learning algorithm.

Let ~xi be movie review i, and let {~rij} be the

set of annotator rationales that support the posi-

tive or negative sentiment decision for ~xi. For each

such rationale ~rij in the set, construct a contrastive

training example ~vij , by removing the text span

associated with the rationale ~rij from the original

review ~xi. Intuitively, the contrastive example ~vij

should not be as informative to the learning algo-

rithm as the original review ~xi, since one of the

supporting regions identified by the human anno-

tator has been deleted. That is, the correct learned

model should be less confident of its classifica-

tion of a contrastive example vs. the corresponding

original example, and the classification boundary

of the model should be modified accordingly.

Zaidan et al. (2007) formulate exactly this intu-

ition as SVM constraints as follows:

(∀i, j) : yi (~w~xi − ~w~vij) ≥ µ(1 − ξij)

where yi ∈ {−1, +1} is the negative/positive sen-

timent label of document i, ~w is the weight vector,

µ ≥ 0 controls the size of the margin between the

original examples and the contrastive examples,

and ξij are the associated slack variables. After

some re-writing of the equations, the resulting ob-

jective function and constraints for the SVM are as

follows:

1

2
||~w||2 + C

∑

i

ξi + Ccontrast

∑

ij

ξij (1)

subject to constraints:

(∀i) : yi ~w · ~xi ≥ 1 − ξi, ξi ≥ 0

(∀i, j) : yi ~w · ~xij ≥ 1 − ξij ξij ≥ 0

where ξi and ξij are the slack variables for ~xi

(the original examples) and ~xij (~xij are named as

pseudo examples and defined as ~xij =
~xi−~vij

µ
), re-

spectively. Intuitively, the pseudo examples (~xij)

represent the difference between the original ex-

amples (~xi) and the contrastive examples (~vij),

weighted by a parameter µ. C and Ccontrast are

parameters to control the trade-offs between train-

ing errors and margins for the original examples ~xi

and pseudo examples ~xij respectively. As noted in

Zaidan et al. (2007), Ccontrast values are generally

smaller than C for noisy rationales.

In the work described below, we similarly em-

ploy Zaidan et al.’s (2007) contrastive learning

method to incorporate rationales for document-

level sentiment categorization.

3 Automatically Generating Rationales

Our goal in the current work, is to generate anno-

tator rationales automatically. For this, we rely on

the following two assumptions:

(1) Regions marked as annotator rationales are

more subjective than unmarked regions.

(2) The sentiment of each annotator rationale co-

incides with the document-level sentiment.

Note that assumption 1 was not observed in the

Zaidan et al. (2007) work: annotators were asked

only to mark a few rationales, leaving other (also

subjective) rationale sections unmarked.

And at first glance, assumption (2) might seem

too obvious. But it is important to include as there

can be subjective regions with seemingly conflict-

ing sentiment in the same document (Pang et al.,

2002). For instance, an author for a movie re-

view might express a positive sentiment toward

the movie, while also discussing a negative sen-

timent toward one of the fictional characters ap-

pearing in the movie. This implies that not all sub-

jective regions will be relevant for the document-

level sentiment classification — rather only those

regions whose polarity matches that of the docu-

ment should be considered.

In order to extract regions that satisfy the above

assumptions, we first look for subjective regions

in each document, then filter out those regions that

exhibit a sentiment value (i.e., polarity) that con-

flicts with polarity of the document. Assumption

2 is important as there can be subjective regions

with seemingly conflicting sentiment in the same

document (Pang et al., 2002).

Because our ultimate goal is to reduce human

annotation effort as much as possible, we do not

employ supervised learning methods to directly

learn to identify good rationales from human-

annotated rationales. Instead, we opt for methods

that make use of only the document-level senti-

ment and off-the-shelf utilities that were trained

for slightly different sentiment classification tasks

using a corpus from a different domain and of a

different genre. Although such utilities might not

be optimal for our task, we hoped that these ba-

sic resources from the research community would

constitute an adequate source of sentiment infor-

mation for our purposes.

We next describe three methods for the auto-

matic acquisition of rationales.
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3.1 Contextual Polarity Classification

The first approach employs OpinionFinder (Wil-

son et al., 2005a), an off-the-shelf opinion anal-

ysis utility.1 In particular, OpinionFinder identi-

fies phrases expressing positive or negative opin-

ions. Because OpinionFinder models the task as

a word-based classification problem rather than a

sequence tagging task, most of the identified opin-

ion phrases consist of a single word. In general,

such short text spans cannot fully incorporate the

contextual information relevant to the detection of

subjective language (Wilson et al., 2005a). There-

fore, we conjecture that good rationales should ex-

tend beyond short phrases.2 For simplicity, we

choose to extend OpinionFinder phrases to sen-

tence boundaries.

In addition, to be consistent with our second op-

erating assumption, we keep only those sentences

whose polarity coincides with the document-level

polarity. In sentences where OpinionFinder marks

multiple opinion words with opposite polarities

we perform a simple voting — if words with pos-

itive (or negative) polarity dominate, then we con-

sider the entire sentence as positive (or negative).

We ignore sentences with a tie. Each selected sen-

tence is considered as a separate rationale.

3.2 Polarity Lexicons

Unfortunately, domain shift as well as task mis-

match could be a problem with any opinion util-

ity based on supervised learning.3 Therefore, we

next consider an approach that does not rely on su-

pervised learning techniques but instead explores

the use of a manually constructed polarity lexicon.

In particular, we use the lexicon constructed for

Wilson et al. (2005b), which contains about 8000

words. Each entry is assigned one of three polarity

values: positive, negative, neutral. We construct

rationales from the polarity lexicon for every in-

stance of positive and negative words in the lexi-

con that appear in the training corpus.

As in the OpinionFinder rationales, we extend

the words found by the PolarityLexicon approach

to sentence boundaries to incorporate potentially

1Available at www.cs.pitt.edu/mpqa/opinionfinderrelease/.
2This conjecture is indirectly confirmed by the fact that

human-annotated rationales are rarely a single word.
3It is worthwhile to note that OpinionFinder is trained on a

newswire corpus whose prevailing sentiment is known to be
negative (Wiebe et al., 2005). Furthermore, OpinionFinder
is trained for a task (word-level sentiment classification) that
is different from marking annotator rationales (sequence tag-
ging or text segmentation).

relevant contextual information. We retain as ra-

tionales only those sentences whose polarity co-

incides with the document-level polarity as deter-

mined via the voting scheme of Section 3.1.

3.3 Random Selection

Finally, we generate annotator rationales ran-

domly, selecting 25% of the sentences from each

document4 and treating each as a separate ratio-

nale.

3.4 Comparison of Automatic vs.

Human-annotated Rationales

Before evaluating the performance of the au-

tomatically generated rationales, we summarize

in Table 1 the differences between automatic

vs. human-generated rationales. All computa-

tions were performed on the same movie review

dataset of Pang and Lee (2004) used in Zaidan et

al. (2007). Note, that the Zaidan et al. (2007) an-

notation guidelines did not insist that annotators

mark all rationales, only that some were marked

for each document. Nevertheless, we report pre-

cision, recall, and F-score based on overlap with

the human-annotated rationales of Zaidan et al.

(2007), so as to demonstrate the degree to which

the proposed approaches align with human intu-

ition. Overlap measures were also employed by

Zaidan et al. (2007).

As shown in Table 1, the annotator rationales

found by OpinionFinder (F-score 49.5%) and the

PolarityLexicon approach (F-score 52.6%) match

the human rationales much better than those found

by random selection (F-score 27.3%).

As expected, OpinionFinder’s positive ratio-

nales match the human rationales at a significantly

lower level (F-score 31.9%) than negative ratio-

nales (59.5%). This is due to the fact that Opinion-

Finder is trained on a dataset biased toward nega-

tive sentiment (see Section 3.1 - 3.2). In contrast,

all other approaches show a balanced performance

for positive and negative rationales vs. human ra-

tionales.

4 Experiments

For our contrastive learning experiments we use

SV M light (Joachims, 1999). We evaluate the use-

fulness of automatically generated rationales on

4We chose the value of 25% to match the percentage of
sentences per document, on average, that contain human-
annotated rationales in our dataset (24.7%).

338



% of sentences Precision Recall F-Score

Method selected ALL POS NEG ALL POS NEG ALL POS NEG

OPINIONFINDER 22.8% 54.9 56.1 54.6 45.1 22.3 65.3 49.5 31.9 59.5

POLARITYLEXICON 38.7% 45.2 42.7 48.5 63.0 71.8 55.0 52.6 53.5 51.6

RANDOM 25.0% 28.9 26.0 31.8 25.9 24.9 26.7 27.3 25.5 29.0

Table 1: Comparison of Automatic vs. Human-annotated Rationales.

five different datasets. The first is the movie re-

view data of Pang and Lee (2004), which was

manually annotated with rationales by Zaidan et

al. (2007)5; the remaining are four product re-

view datasets from Blitzer et al. (2007).6 Only

the movie review dataset contains human annota-

tor rationales. We replicate the same feature set

and experimental set-up as in Zaidan et al. (2007)

to facilitate comparison with their work.7

The contrastive learning method introduced in

Zaidan et al. (2007) requires three parameters: (C,

µ, Ccontrast). To set the parameters, we use a grid

search with step 0.1 for the range of values of each

parameter around the point (1,1,1). In total, we try

around 3000 different parameter triplets for each

type of rationales.

4.1 Experiments with the Movie Review Data

We follow Zaidan et al. (2007) for the training/test

data splits. The top half of Table 2 shows the

performance of a system trained with no anno-

tator rationales vs. two variations of human an-

notator rationales. HUMANR treats each rationale

in the same way as Zaidan et al. (2007). HU-

MANR@SENTENCE extends the human annotator

rationales to sentence boundaries, and then treats

each such sentence as a separate rationale. As

shown in Table 2, we get almost the same per-

formance from these two variations (91.33% and

91.61%).8 This result demonstrates that locking

rationales to sentence boundaries was a reasonable

5Available at http://www.cs.jhu.edu/∼ozaidan/rationales/.
6http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/.
7We use binary unigram features corresponding to the un-

stemmed words or punctuation marks with count greater or
equal to 4 in the full 2000 documents, then we normalize the
examples to the unit length. When computing the pseudo ex-

amples ~xij =
~xi−~vij

µ
we first compute (~xi − ~vij) using the

binary representation. As a result, features (unigrams) that
appeared in both vectors will be zeroed out in the resulting
vector. We then normalize the resulting vector to a unit vec-
tor.

8The performance of HUMANR reported by Zaidan et al.
(2007) is 92.2% which lies between the performance we get
(91.61%) and the oracle accuracy we get if we knew the best
parameters for the test set (92.67%).

Method Accuracy

NORATIONALES 88.56

HUMANR 91.61•

HUMANR@SENTENCE 91.33• †

OPINIONFINDER 91.78• †

POLARITYLEXICON 91.39• †

RANDOM 90.00∗

OPINIONFINDER+HUMANR@SENTENCE 92.50• 4

Table 2: Experimental results for the movie
review data.

– The numbers marked with • (or ∗) are statistically
significantly better than NORATIONALES according to a
paired t-test with p < 0.001 (or p < 0.01).
– The numbers marked with 4 are statistically significantly
better than HUMANR according to a paired t-test with
p < 0.01.
– The numbers marked with † are not statistically signifi-
cantly worse than HUMANR according to a paired t-test with
p > 0.1.

choice.

Among the approaches that make use of only

automatic rationales (bottom half of Table 2), the

best is OPINIONFINDER, reaching 91.78% accu-

racy. This result is slightly better than results

exploiting human rationales (91.33-91.61%), al-

though the difference is not statistically signifi-

cant. This result demonstrates that automatically

generated rationales are just as good as human

rationales in improving document-level sentiment

classification. Similarly strong results are ob-

tained from the POLARITYLEXICON as well.

Rather unexpectedly, RANDOM also achieves

statistically significant improvement over NORA-

TIONALES (90.0% vs. 88.56%). However, notice

that the performance of RANDOM is statistically

significantly lower than those based on human ra-

tionales (91.33-91.61%).

In our experiments so far, we observed that

some of the automatic rationales are just as

good as human rationales in improving the

document-level sentiment classification. Could

we perhaps achieve an even better result if we

combine the automatic rationales with human
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rationales? The answer is yes! The accuracy

of OPINIONFINDER+HUMANR@SENTENCE

reaches 92.50%, which is statistically signifi-

cantly better than HUMANR (91.61%). In other

words, not only can our automatically generated

rationales replace human rationales, but they can

also improve upon human rationales when they

are available.

4.2 Experiments with the Product Reviews

We next evaluate our approaches on datasets for

which human annotator rationales do not exist.

For this, we use some of the product review data

from Blitzer et al. (2007): reviews for Books,

DVDs, Videos and Kitchen appliances. Each

dataset contains 1000 positive and 1000 negative

reviews. The reviews, however, are substantially

shorter than those in the movie review dataset:

the average number of sentences in each review

is 9.20/9.13/8.12/6.37 respectively vs. 30.86 for

the movie reviews. We perform 10-fold cross-

validation, where 8 folds are used for training, 1

fold for tuning parameters, and 1 fold for testing.

Table 3 shows the results. Rationale-based

methods perform statistically significantly bet-

ter than NORATIONALES for all but the Kitchen

dataset. An interesting trend in product re-

view datasets is that RANDOM rationales are just

as good as other more sophisticated rationales.

We suspect that this is because product reviews

are generally shorter and more focused than the

movie reviews, thereby any randomly selected

sentence is likely to be a good rationale. Quantita-

tively, subjective sentences in the product reviews

amount to 78% (McDonald et al., 2007), while

subjective sentences in the movie review dataset

are only about 25% (Mao and Lebanon, 2006).

4.3 Examples of Annotator Rationales

In this section, we examine an example to com-

pare the automatically generated rationales (using

OPINIONFINDER) with human annotator ratio-

nales for the movie review data. In the following

positive document snippet, automatic rationales

are underlined, while human-annotated ratio-

nales are in bold face.

...But a little niceness goes a long way these days, and

there’s no denying the entertainment value of that thing

you do! It’s just about impossible to hate. It’s an

inoffensive, enjoyable piece ofnostalgia that is sure to leave

audiences smiling and humming, if not singing, “that thing

you do!” –quite possibly for days...

Method Books DVDs Videos Kitchen

NORATIONALES 80.20 80.95 82.40 87.40

OPINIONFINDER 81.65∗ 82.35∗ 84.00∗ 88.40

POLARITYLEXICON 82.75• 82.85• 84.55• 87.90

RANDOM 82.05• 82.10• 84.15• 88.00

Table 3: Experimental results for subset of
Product Review data

– The numbers marked with • (or ∗) are statistically
significantly better than NORATIONALES according to a
paired t-test with p < 0.05 (or p < 0.08).

Notice that, although OPINIONFINDER misses

some human rationales, it avoids the inclusion of

“impossible to hate”, which contains only negative

terms and is likely to be confusing for the con-

trastive learner.

5 Related Work

In broad terms, constructing annotator rationales

automatically and using them to formulate con-

trastive examples can be viewed as learning with

prior knowledge (e.g., Schapire et al. (2002), Wu

and Srihari (2004)). In our task, the prior knowl-

edge corresponds to our operating assumptions

given in Section 3. Those assumptions can be

loosely connected to recognizing and exploiting

discourse structure (e.g., Pang and Lee (2004),

Taboada et al. (2009)). Our automatically gener-

ated rationales can be potentially combined with

other learning frameworks that can exploit anno-

tator rationales, such as Zaidan and Eisner (2008).

6 Conclusions

In this paper, we explore methods to automatically

generate annotator rationales for document-level

sentiment classification. Our study is motivated

by the desire to retain the performance gains of

rationale-enhanced learning models while elimi-

nating the need for additional human annotation

effort. By employing existing resources for sen-

timent analysis, we can create automatic annota-

tor rationales that are as good as human annotator

rationales in improving document-level sentiment

classification.
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Abstract

We describe an approach to simultaneous
tokenization and part-of-speech tagging
that is based on separating the closed and
open-class items, and focusing on the like-
lihood of the possible stems of the open-
class words. By encoding some basic lin-
guistic information, the machine learning
task is simplified, while achieving state-
of-the-art tokenization results and compet-
itive POS results, although with a reduced
tag set and some evaluation difficulties.

1 Introduction

Research on the problem of morphological disam-
biguation of Arabic has noted that techniques de-
veloped for lexical disambiguation in English do
not easily transfer over, since the affixation present
in Arabic creates a very different tag set than for
English, in terms of the number and complexity
of tags. In additional to inflectional morphology,
the POS tags encode more complex tokenization
sequences, such as preposition + noun or noun +
possessive pronoun.

One approach taken to this problem is to use
a morphological analyzer such as BAMA-v2.0
(Buckwalter, 2004) or SAMA-v3.1 (Maamouri et
al., 2009c)1, which generates a list of all possi-
ble morphological analyses for a given token. Ma-
chine learning approaches can model separate as-
pects of a solution (e.g., “has a pronominal clitic”)
and then combine them to select the most appro-
priate solution from among this list. A benefit
of this approach is that by picking a single solu-
tion from the morphological analyzer, the part-of-
speech and tokenization comes as a unit (Habash
and Rambow, 2005; Roth et al., 2008).

1SAMA-v3.1 is an updated version of BAMA, with many
significant differences in analysis.

In contrast, other approaches have used a
pipelined approach, with separate models to first
do tokenization and then part-of-speech tagging
(Diab et al., 2007; Diab, 2009). While these ap-
proaches have somewhat lower performance than
the joint approach, they have the advantage that
they do not rely on the presence of a full-blown
morphological analyzer, which may not always be
available or appropriate as the data shifts to differ-
ent genres or Arabic dialects.

In this work we present a novel approach to
this problem that allows us to do simultaneous to-
kenization and core part-of-speech tagging with
a simple classifier, without using a full-blown
morphological analyzer. We distinguish between
closed-class and open-class categories of words,
and encode regular expressions that express the
morphological patterns for the former, and simple
regular expressions for the latter that provide only
the generic templates for affixation. We find that a
simple baseline for the closed-class words already
works very well, and for the open-class words we
classify only the possible stems for all such ex-
pressions. This is however sufficient for tokeniza-
tion and core POS tagging, since the stem identi-
fies the appropriate regular expression, which then
in turn makes explicit, simultaneously, the tok-
enization and part-of-speech information.

2 Background

The Arabic Treebank (ATB) contains a full mor-
phological analysis of each “source token”, a
whitespace/punctuation-delimited string from the
source text. The SAMA analysis includes four
fields, as shown in the first part of Table 1.2 TEXT
is the actual source token text, to be analyzed. VOC
is the vocalized form, including diacritics. Each
VOC segment has associated with it a POS tag and

2This is the analysis for one particular instance of ktbh.
The same source token may receive another analysis else-
where in the treebank.
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ATB analysis for one source token:
TEXT: ktbh
VOC: kutub u hu
POS: NOUN CASE NOM POSS PRON 3MS

GLOSS: books [def.nom.] its/his
Results in two ATB tree tokens:

TEXT: ktb h
VOC: kutub+u hu
POS: NOUN+CASE NOM POSS PRON 3MS

Current work recovers:
TEXT: ktb h
POS: NOA POSS PRON

Table 1: Example analysis of one source token

NOUN, ADJ, NOUN.VN, NOA
ADJ.VN, NOUN NUM, ADJ NUM, (Noun or

NOUN QUANT, ADJ COMP, ABBREV Adjective)
IV, IV PASS IV
PV, PV PASS PV

IVSUFF DO, PVSUFF DO OBJ PRON

Table 2: Collapsing of ATB core tags into reduced
core tags

GLOSS. While “tokenization” can be done in dif-
ferent ways on top of this analysis, the ATB splits
the VOC/POS/GLOSS segments up based on the
POS tags to form the “tree tokens” necessary for
treebanking. As shown in the second part of Table
1, the first two segments remain together as one
tree token, and the pronoun is separated as a sep-
arate tree token. In addition, the input TEXT is
separated among the two tree tokens.3

Each tree token’s POS tag therefore consists
of what can be considered an “ATB core tag”,
together with inflectional material (case, gender,
number). For example, in Table 1, the “core tag”
of the first tree token is NOUN. In this work, we aim
to recover the separation of a source token TEXT
into the corresponding separate tree token TEXTs,
together with a “reduced core tag” for each tree to-
ken. By “reduced core tag”, we mean an ATB core
tag that has been reduced in two ways:

(1) All inflectional material [infl] is stripped
off six ATB core tags: PRON[infl], POSS PRON[infl],

DEM[infl], [IV|PV|CV]SUFF DO[infl]

(2) Collapsing of some ATB core tags, as listed
in Table 2.

These two steps result in a total of 40 reduced
core tags, and each tree token has exactly one such
reduced core tag. We work with the ATB3-v3.2 re-
lease of the ATB (Maamouri et al., 2009b), which

3See (Kulick et al., 2010) for a detailed discussion of
how this splitting is done and how the tree token TEXT field
(called INPUT STRING in the ATB releases) is created.

NOA 173938 PART 288
PREP 49894 RESTRIC PART 237
PUNC 41398 DET 215
NOUN PROP 29423 RC PART 192
CONJ 28257 FOCUS PART 191
PV 16669 TYPO 188
IV 15361 INTERROG PART 187
POSS PRON 9830 INTERROG ADV 169
SUB CONJ 8200 INTERROG PRON 112
PRON 6995 CV 106
REL PRON 5647 VOC PART 74
DEM 3673 VERB 62
OBJ PRON 2812 JUS PART 56
NEG PART 2649 FOREIGN 46
PSEUDO VERB 1505 DIALECT 41
FUT PART 1099 INTERJ 37
ADV 1058 EMPHATIC PART 19
VERB PART 824 CVSUFF DO 15
REL ADV 414 GRAMMAR PROB 4
CONNEC PART 405 LATIN 1

Table 3: The 40 “reduced core tags”, and their fre-
quencies in ATB3-v3.2. The total count is 402291,
which is the number of tree tokens in ATB3-v3.2.

has 339710 source tokens and 402291 tree tokens,
where the latter are derived from the former as dis-
cussed above. Table 3 lists the 40 reduced tags
we use, and their frequency among the ATB3-v3.2
tree tokens.

3 Description of Approach

Given a source token, we wish to recover (1) the
tree tokens (which amounts to recovering the ATB
tokenization), and (2) the reduced core POS tag for
each tree token. For example, in Table 1, given the
input source token TEXT ktbh, we wish to recover
the tree tokens ktb/NOA and h/POSS PRON.

As mentioned in the introduction, we use reg-
ular expressions that encode all the tokenization
and POS tag possibilities. Each “group” (substring
unit) in a regular expression (regex) is assigned an
internal name, and a list is maintained of the pos-
sible reduced core POS tags that can occur with
that regex group. It is possible, and indeed usu-
ally the case for groups representing affixes, that
more than one such POS tag is possible. How-
ever, it is crucial for our approach that while some
given source token TEXT may match many regu-
lar expressions (regexes), when the POS tag is also
taken into account, there can be only one match
among all the (open or closed-class) regexes. We
say a source token “pos-matches” a regex if the
TEXT matches and POS tags match, and “text-
matches” if the TEXT matches the regex regard-
less of the POS. During training, the pos-matching

343



(REGEX #1) [w|f]lm
w: [PART, CONJ, SUB CONJ, PREP]

f: [CONJ, SUB CONJ, CONNEC PART, RC PART]

lm: [NEG PART]

(REGEX #2) [w|f]lm
w: and f: same as above
lm: [REL ADV,INTERROG ADV]

Figure 1: Two sample closed-class regexes

regex for a source token TEXT is stored as the
gold solution for closed-class patterns, or used to
create the gold label for the open-class classifier.

We consider the open-class tags in Table 3 to be:
NOUN PROP, NOA, IV, CV, PV, VERB. A source
token is considered to have an open-class solution
if any of the tree tokens in that solution have an
open-class tag. For example, ktbh in Table 1 has
an open-class solution because one of the tree to-
kens has an open-class tag (NOA), even though the
other is closed-class (POSS PRON).

We encode the possible solutions for closed-
class source tokens using the lists in the ATB mor-
phological guidelines (Maamouri et al., 2009a).
For example, Figure 1 shows two of the closed-
class regexes. The text wlm can text-match either
REGEX #1 or #2, but when the POS tag for lm is
taken into account, only one can pos-match. We
return to the closed-class regexes in Section 4.

We also encode regular expression for the open-
class source tokens, but these are simply generic
templates expressing the usual affix possibilities,
such as:
[wf] [blk] stem NOA poss pronoun
where there is no list of possible strings for
stem_NOA, but which instead can match any-
thing. While all parts except for the stem are op-
tional, we do not make such parts optional in a
single expression. Instead, we multiple out the
possibilities into different expressions with differ-
ent parts (e.g., [wf]) being obligatory). The reason
for this is that we give different names to the stem
in each case, and this is the basis of the features
for the classifier. As with the closed-class regexes,
we associate a list of possible POS tags for each
named group within a regular expression. Here
the stem NOA group can only have the tag NOA.

We create features for a classifier for the open-
class words as follows. Each word is run through
all of the open-class regular expressions. For each
expression that text-matches, we make a feature

which is the name of the stem part of the regular
expression, along with the characters that match
the stem. The stem name encodes whether there
is a prefix or suffix, but does not include a POS
tag. However, the source token pos-matches ex-
actly one of the regular expressions, and the pos
tag for the stem is appended to the named stem for
that expression to form the gold label for training
and the target for testing.

For example, Table 4 lists the matching regular
expression for three words. The first, yjry, text-
matches the generic regular expressions for any
string/NOA, any string/IV, etc. These are sum-
marized in one listing, yjry/all. The name of the
stem for all these expressions is the same, just
stem, and so they all give rise to the same feature,
stem=yjry. It also matches the expression for
a NOA with a possessive pronoun4, and in this
case the stem name in the regular expression is
stem_spp (which stands for “stem with a pos-
sessive pronoun suffix”), and this gives rise to the
feature stem_spp=yjr. Similarly, for wAfAdt
the stem of the second expression has the name
p_stem, for a prefix. The third example shows
the different stem names that occur when there are
both prefix and suffix possibilities. For each exam-
ple, there is exactly one regex that not only text-
matches, but also pos-matches. The combination
of the stem name in these cases together with the
gold tag forms the gold label, as indicated in col-
umn 3.

Therefore, for each source token TEXT, the
features include the ones arising from the named
stems of all the regexes that text-match that TEXT,
as shown in column 4, and the gold label is the
appropriate stem name together with the POS
tag, as shown in column 3. We also include
some typical features for each stem, such as first
and last two letters of each stem, etc. For ex-
ample, wAfAdt would also have the features
stem_fl=w, p_stem_fl=A, indicating that the
first letter of stem is w and the first letter of
p_stem is A. We also extract a list of proper
nouns from SAMA-v3.1 as a temporary proxy for
a named entity list, and include a feature for a
stem if that stem is in the list (stem_in_list,
p_stem_in_list, etc.)

We do not model separate classifiers for prefix
possibilities. There is a dependency between the

4The regex listed is slightly simplified. It actually con-
tains a reference to the list of all possessive pronouns, not
just y.
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source TEXT text-matching regular expressions gold label feature
yjry yjry/all (happens) stem:IV stem=yjry

yjr/NOA+y/POSS PRON stem spp=yjr
wAfAdt wAfAdt/all stem=wAfAdt

w + AfAdt/all (and+reported) p stem:PV p stem=AfAdt
lAstyDAHhm lAstyDAHhm/all stem=lAstyDAHhm

l/PREP + AstyDAHhm/NOA p stem=AstyDAHhm
l/PREP + AstyDAH/NOA + hm/POSS PRON p stem spp:NOA p stem spp=AstyDAH
for + request for clarification + their
lAstyDAH/NOA + hm/POSS PRON stem spp=lAstyDAH
lAstyDAH/IV,PV,CV + hm/OBJ PRON stem svop=lAstyDAH
l/PREP,JUS PART + AstyDAH/IV,PV,CV + p stem svop=AstyDAH

hm/OBJ PRON

Table 4: Example features and gold labels for three words. Each text-matching regex gives rise to one
feature shown in column 4, based on the stem of that regular expression. A p before a stem means that
it has a prefix, spp after means that it has a possessive pronouns suffix, and svop means that it has
a (verbal) object pronoun suffix. “all” in the matching regular expression is shorthand for text-matching
all the corresponding regular expressions with NOA, IV, etc. For each word, exactly one regex also
pos-matches, which results in the gold label, shown in column 3.

possibility of a prefix and the likelihood of the re-
maining stem, and so we focus on the likelihood of
the possible stems, where the open-class regexes
enumerate the possible stems. A gold label to-
gether with the source token TEXT maps back to
a single regex, and so for a given label, the TEXT
is parsed by that regular expression, resulting in a
tokenization along with list of possible POS tags
for each affix group in the regex.5

During training and testing, we run each word
through all the open and closed regexes. Text-
matches for an open-class regex give rise to fea-
tures as just described. Also, if the word matches
any closed-class regex, it receives the feature
MATCHES CLOSED. During training, if the cor-
rect match for the word is one of the closed-class
expressions, then the gold label is CLOSED. The
classifier is used only to get solutions for the open-
class words, although we wish to give the classifier
all the words for the sentence. The cross-product
of the stem name and (open-class) reduced core
POS tags, plus the CLOSED tag, yields 24 labels
for a CRF classifier in Mallet (McCallum, 2002).

4 Experiments and Evaluation

We worked with ATB3-v3.2, following the train-
ing/devtest split in (Roth et al., 2008) on a pre-
vious release of the same data. We keep a list-
ing (List #1) of all (source token TEXT, solution)
pairs seen during training. For an open-class so-
lution, “solution” is the gold label as described in

5In Section 4 we discuss how these are narrowed down to
one POS tag.

Section 3. For a closed-class solution, “solution”
is the name of the single pos-matching regex. In
addition, for every regex seen during training that
pos-matches some source token TEXT, we keep a
listing (List #2) of all ((regex-group-name, text),
POS-tag) tuples. We use the information in List
#1 to choose a solution for all words seen in train-
ing in the Baseline and Run 2 below, and in Run
3, for words text-matching a closed-class expres-
sion. We use List #2 to disambiguate all remain-
ing cases of POS ambiguity, wherever a solution
comes from.

For example, if wlm is seen during testing, List
#1 will be consulted to find the most common so-
lution (REGEX #1 or #2), and in either case, List
#2 will be consulted to determine the most fre-
quent tag for w as a prefix. While there is certainly
room for improvement here, this works quite well
since the tags for the affixes do not vary much.

We score the solution for a source token in-
stance as correct for tokenization if it exactly
matches the TEXT split for the tree tokens derived
from that source token instance in the ATB. It is
correct for POS if correct for tokenization and if
each tree token has the same POS tag as the re-
duced core tag for that tree token in the ATB.

For a simple baseline, if a source token TEXT
is in List #1 then we simply use the most fre-
quent stored solution. Otherwise we run the TEXT
through all the regexes. If it text-matches any
closed-class expression, we pick a random choice
from among those regexes and otherwise from the
open-class regexes that it text-matches. Any POS
ambiguities for a regex group are disambiguated
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Solution Baseline Run 2 Run 3
Origin # tokens Tok POS # tokens Tok POS # tokens Tok POS

All 51664 96.0% 87.4% 51664 99.4% 95.1% 51664 99.3% 95.1%
Stored 46072 99.8% 96.6% 46072 99.8% 96.6% 16145 99.6% 96.4%
Open 5565 64.6% 11.6% 10 10.0% 0.0% 11 54.5% 0.0%

Closed 27 81.5% 59.3% 27 81.5% 63.0% 27 81.5% 63.0%
Mallet 0 5555 96.0% 83.8% 35481 99.1% 94.5%

Table 5: Results for Baseline and two runs. Origin “stored” means that the appropriate regex came from
the list stored during training. Origins “open” and “closed” are random choices from the open or closed
regexes for the source token. “Mallet” means that it comes from the label output by the CRF classifier.

using List #2, as discussed above. The results
are shown in Table 5. The score is very high for
the words seen during training, but much lower
for open-class words that were not. As expected,
almost all (except 27) instances of closed-class
words were seen during training.

For run 2, we continue to use the stored solution
if the token was seen in training. If not, then if the
TEXT matches one or more closed-class regexes,
we randomly choose one. Otherwise, if the CRF
classifier has produced an open-class match for
that token, we use that (and otherwise, in only 10
cases, use a random open-class match). There is a
significant improvement in the score for the open-
class items, and therefore in the overall results.

For run 3, we put more of a burden on the clas-
sifier. If a word matches any closed-class expres-
sion, we either use the most frequent occurence
during training (if it was seen), or use a random
maching closed-class expression (if not). If the
word doesn’t match a closed-class expression, we
use the mallet result. The mallet score goes up, al-
most certainly because the score is now including
results on words that were seen during training.
The overall POS result for run 3 is slightly less
than run 2. (95.099% compared to 95.147%).

It is not a simple matter to compare results with
previous work, due to differing evaluation tech-
niques, data sets, and POS tag sets. With differ-
ent data sets and training sizes, Habash and Ram-
bow (2005) report 99.3% word accuracy on tok-
enization, and Diab et al. (2007) reports a score
of 99.1%. Habash and Rambow (2005) reported
97.6% on the LDC-supplied reduced tag set, and
Diab et al. (2007) reported 96.6%. The LDC-
supplied tag set used is smaller than the one in
this paper (24 tags), but does distinguish between
NOUN and ADJ. However, both (Habash and
Rambow, 2005; Diab et al., 2007) assume gold

tokenization for evaluation of POS results, which
we do not. The “MorphPOS” task in (Roth et al.,
2008), 96.4%, is somewhat similar to ours in that
it scores on a “core tag”, but unlike for us there is
only one such tag for a source token (easier) but it
distinguishes between NOUN and ADJ (harder).

We would like to do a direct comparison by sim-
ply runing the above systems on the exact same
data and evaluating them the same way. However,
this unfortunately has to wait until new versions
are released that work with the current version of
the SAMA morphological analyzer and ATB.

5 Future Work

Obvious future work starts with the need to in-
clude determiner information in the POS tags and
the important NOUN/ADJ distinction. There are
various possibilities for recovering this informa-
tion, such as (1) using a different module combin-
ing NOUN/ADJ disambiguation together with NP
chunking, or (2) simply including NOUN/ADJ in
the current classifier instead of NOA. We will be
implementing and comparing these alternatives.
We also will be using this system as a preprocess-
ing step for a parser, as part of a complete Arabic
NLP pipeline.
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Abstract

Hierarchical A∗ (HA∗) uses of a hierarchy
of coarse grammars to speed up parsing
without sacrificing optimality. HA∗ pri-
oritizes search in refined grammars using
Viterbi outside costs computed in coarser
grammars. We present Bridge Hierarchi-
cal A∗ (BHA∗), a modified Hierarchial A∗

algorithm which computes a novel outside
cost called a bridge outside cost. These
bridge costs mix finer outside scores with
coarser inside scores, and thus consti-
tute tighter heuristics than entirely coarse
scores. We show that BHA∗ substan-
tially outperforms HA∗ when the hierar-
chy contains only very coarse grammars,
while achieving comparable performance
on more refined hierarchies.

1 Introduction

The Hierarchical A∗ (HA∗) algorithm of Felzen-
szwalb and McAllester (2007) allows the use of a
hierarchy of coarse grammars to speed up pars-
ing without sacrificing optimality. Pauls and
Klein (2009) showed that a hierarchy of coarse
grammars outperforms standard A∗ parsing for a
range of grammars. HA∗ operates by computing
Viterbi inside and outside scores in an agenda-
based way, using outside scores computed under
coarse grammars as heuristics which guide the
search in finer grammars. The outside scores com-
puted by HA∗ are auxiliary quantities, useful only
because they form admissible heuristics for search
in finer grammars.

We show that a modification of the HA∗ algo-
rithm can compute modified bridge outside scores
which are tighter bounds on the true outside costs
in finer grammars. These bridge outside scores
mix inside and outside costs from finer grammars
with inside costs from coarser grammars. Because
the bridge costs represent tighter estimates of the

true outside costs, we expect them to reduce the
work of computing inside costs in finer grammars.
At the same time, because bridge costs mix com-
putation from coarser and finer levels of the hier-
archy, they are more expensive to compute than
purely coarse outside costs. Whether the work
saved by using tighter estimates outweighs the ex-
tra computation needed to compute them is an em-
pirical question.

In this paper, we show that the use of bridge out-
side costs substantially outperforms the HA∗ al-
gorithm when the coarsest levels of the hierarchy
are very loose approximations of the target gram-
mar. For hierarchies with tighter estimates, we
show that BHA∗ obtains comparable performance
to HA∗. In other words, BHA∗ is more robust to
poorly constructed hierarchies.

2 Previous Work

In this section, we introduce notation and review
HA∗. Our presentation closely follows Pauls and
Klein (2009), and we refer the reader to that work
for a more detailed presentation.

2.1 Notation

Assume we have input sentence s0 . . . sn−1 of
length n, and a hierarchy of m weighted context-
free grammars G1 . . .Gm. We call the most refined
grammar Gm the target grammar, and all other
(coarser) grammars auxiliary grammars. Each
grammar Gt has a set of symbols denoted with cap-
ital letters and a subscript indicating the level in
the hierarchy, including a distinguished goal (root)
symbol Gt. Without loss of generality, we assume
Chomsky normal form, so each non-terminal rule
r in Gt has the form r = At → Bt Ct with weight
wr.

Edges are labeled spans e = (At, i, j). The
weight of a derivation is the sum of rule weights
in the derivation. The weight of the best (mini-
mum) inside derivation for an edge e is called the
Viterbi inside score β(e), and the weight of the
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(a) (b) Gt

s0 s2 sn-1

VPt

Gt

s3 s4 s5 .. s0 s2 sn-1s3 s4 s5 ..

VPt

.. ..

Figure 1: Representations of the different types of items
used in parsing and how they depend on each other. (a)
In HA∗, the inside item I(VPt, 3, 5) relies on the coarse
outside item O(πt(VPt), 3, 5) for outside estimates. (b) In
BHA∗, the same inside item relies on the bridge outside item
Õ(VPt, 3, 5), which mixes coarse and refined outside costs.
The coarseness of an item is indicated with dotted lines.

best derivation of G → s0 . . . si−1 At sj . . . sn−1

is called the Viterbi outside score α(e). The goal
of a 1-best parsing algorithm is to compute the
Viterbi inside score of the edge (Gm, 0, n); the
actual best parse can be reconstructed from back-
pointers in the standard way.

We assume that each auxiliary grammar Gt−1

forms a relaxed projection of Gt. A grammar Gt−1

is a projection of Gt if there exists some many-
to-one onto function πt which maps each symbol
in Gt to a symbol in Gt−1; hereafter, we will use
A′t to represent πt(At). A projection is relaxed
if, for every rule r = At → Bt Ct with weight
wr the projection r′ = A′t → B′t C

′
t has weight

wr′ ≤ wr in Gt−1. In other words, the weight of r′

is a lower bound on the weight of all rules r in Gt

which project to r′.

2.2 Deduction Rules

HA∗ and our modification BHA∗ can be formu-
lated in terms of prioritized weighted deduction
rules (Shieber et al., 1995; Felzenszwalb and
McAllester, 2007). A prioritized weighted deduc-
tion rule has the form

φ1 : w1, . . . , φn : wn
p(w1,...,wn)−−−−−−−−→ φ0 : g(w1, . . . , wn)

where φ1, . . . , φn are the antecedent items of the
deduction rule and φ0 is the conclusion item. A
deduction rule states that, given the antecedents
φ1, . . . , φn with weights w1, . . . , wn, the conclu-
sion φ0 can be formed with weight g(w1, . . . , wn)
and priority p(w1, . . . , wn).

These deduction rules are “executed” within
a generic agenda-driven algorithm, which con-
structs items in a prioritized fashion. The algo-
rithm maintains an agenda (a priority queue of

items), as well as a chart of items already pro-
cessed. The fundamental operation of the algo-
rithm is to pop the highest priority item φ from
the agenda, put it into the chart with its current
weight, and form using deduction rules any items
which can be built by combining φ with items al-
ready in the chart. If new or improved, resulting
items are put on the agenda with priority given by
p(·). Because all antecedents must be constructed
before a deduction rule is executed, we sometimes
refer to particular conclusion item as “waiting” on
an other item(s) before it can be built.

2.3 HA∗

HA∗ can be formulated in terms of two types of
items. Inside items I(At, i, j) represent possible
derivations of the edge (At, i, j), while outside
items O(At, i, j) represent derivations of G →
s1 . . . si−1 At sj . . . sn rooted at (Gt, 0, n). See
Figure 1(a) for a graphical depiction of these
edges. Inside items are used to compute Viterbi in-
side scores under grammar Gt, while outside items
are used to compute Viterbi outside scores.

The deduction rules which construct inside and
outside items are given in Table 1. The IN deduc-
tion rule combines two inside items over smaller
spans with a grammar rule to form an inside item
over larger spans. The weight of the resulting item
is the sum of the weights of the smaller inside
items and the grammar rule. However, the IN rule
also requires that an outside score in the coarse
grammar1 be computed before an inside item is
built. Once constructed, this coarse outside score
is added to the weight of the conclusion item to
form the priority of the resulting item. In other
words, the coarse outside score computed by the
algorithm plays the same role as a heuristic in stan-
dard A∗ parsing (Klein and Manning, 2003).

Outside scores are computed by the OUT-L and
OUT-R deduction rules. These rules combine an
outside item over a large span and inside items
over smaller spans to form outside items over
smaller spans. Unlike the IN deduction, the OUT
deductions only involve items from the same level
of the hierarchy. That is, whereas inside scores
wait on coarse outside scores to be constructed,
outside scores wait on inside scores at the same
level in the hierarchy.

Conceptually, these deduction rules operate by

1For the coarsest grammar G1, the IN rule builds rules
using 0 as an outside score.
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HA∗

IN: I(Bt, i, l) : w1 I(Ct, l, j) : w2 O(A′t, i, j) : w3

w1+w2+wr+w3−−−−−−−−−−→ I(At, i, j) : w1 + w2 + wr

OUT-L: O(At, i, j) : w1 I(Bt, i, l) : w2 I(Ct, l, j) : w3
w1+w3+wr+w2−−−−−−−−−−→ O(Bt, i, l) : w1 + w3 + wr

OUT-R: O(At, i, j) : w1 I(Bt, i, l) : w2 I(Ct, l, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ O(Ct, l, j) : w1 + w2 + wr

Table 1: HA∗ deduction rules. Red underline indicates items constructed under the previous grammar in the hierarchy.

BHA∗

B-IN: I(Bt, i, l) : w1 I(Ct, l, j) : w2 Õ(At, i, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ I(At, i, j) : w1 + w2 + wr

B-OUT-L: Õ(At, i, j) : w1 I(B′t, i, l) : w2 I(C′t, l, j) : w3

w1+wr+w2+w3−−−−−−−−−−→ Õ(Bt, i, l) : w1 + wr + w3

B-OUT-R: Õ(At, i, j) : w1 I(Bt, i, l) : w2 I(C′t, l, j) : w3

w1+w2+wr+w3−−−−−−−−−−→ Õ(Ct, l, j) : w1 + w2 + wr

Table 2: BHA∗ deduction rules. Red underline indicates items constructed under the previous grammar in the hierarchy.

first computing inside scores bottom-up in the
coarsest grammar, then outside scores top-down
in the same grammar, then inside scores in the
next finest grammar, and so on. However, the cru-
cial aspect of HA∗ is that items from all levels
of the hierarchy compete on the same queue, in-
terleaving the computation of inside and outside
scores at all levels. The HA∗ deduction rules come
with three important guarantees. The first is a
monotonicity guarantee: each item is popped off
the agenda in order of its intrinsic priority p̂(·).
For inside items I(e) over edge e, this priority
p̂(I(e)) = β(e) + α(e′) where e′ is the projec-
tion of e. For outside items O(·) over edge e, this
priority is p̂(O(e)) = β(e) + α(e).

The second is a correctness guarantee: when
an inside/outside item is popped of the agenda, its
weight is its true Viterbi inside/outside cost. Taken
together, these two imply an efficiency guarantee,
which states that only items x whose intrinsic pri-
ority p̂(x) is less than or equal to the Viterbi inside
score of the goal are removed from the agenda.

2.4 HA∗ with Bridge Costs

The outside scores computed by HA∗ are use-
ful for prioritizing computation in more refined
grammars. The key property of these scores is
that they form consistent and admissible heuristic
costs for more refined grammars, but coarse out-
side costs are not the only quantity which satisfy
this requirement. As an alternative, we propose
a novel “bridge” outside cost α̃(e). Intuitively,
this cost represents the cost of the best deriva-
tion where rules “above” and “left” of an edge e
come from Gt, and rules “below” and “right” of
the e come from Gt−1; see Figure 2 for a graph-
ical depiction. More formally, let the spine of
an edge e = (At, i, j) for some derivation d be

VPt

NPt
Xt-1

s1 s2 s3

Gt

s0

NNt

NPt

s4 s5

VPt

VPt

St

Xt-1Xt-1 Xt-1

NPt
Xt-1

NPt
Xt-1

sn-1

Figure 2: A concrete example of a possible bridge outside
derivation for the bridge item Õ(VPt, 1, 4). This edge is
boxed for emphasis. The spine of the derivation is shown
in bold and colored in blue. Rules from a coarser grammar
are shown with dotted lines, and colored in red. Here we have
the simple projection πt(A) = X , ∀A.

the sequence of rules between e and the root edge
(Gt, 0, n). A bridge outside derivation of e is a
derivation d of G → s1 . . . si At sj+1 . . . sn such
that every rule on or left of the spine comes from
Gt, and all other rules come from Gt−1. The score
of the best such derivation for e is the bridge out-
side cost α̃(e).

Like ordinary outside costs, bridge outside costs
form consistent and admissible estimates of the
true Viterbi outside score α(e) of an edge e. Be-
cause bridge costs mix rules from the finer and
coarser grammar, bridge costs are at least as good
an estimate of the true outside score as entirely
coarse outside costs, and will in general be much
tighter. That is, we have

α(e′) ≤ α̃(e) ≤ α(e)

In particular, note that the bridge costs become
better approximations farther right in the sentence,
and the bridge cost of the last word in the sentence
is equal to the Viterbi outside cost of that word.

To compute bridge outside costs, we introduce
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bridge outside items Õ(At, i, j), shown graphi-
cally in Figure 1(b). The deduction rules which
build both inside items and bridge outside items
are shown in Table 2. The rules are very simi-
lar to those which define HA∗, but there are two
important differences. First, inside items wait for
bridge outside items at the same level, while out-
side items wait for inside items from the previous
level. Second, the left and right outside deductions
are no longer symmetric – bridge outside items
can extended to the left given two coarse inside
items, but can only be extended to the right given
an exact inside item on the left and coarse inside
item on the right.

2.5 Guarantees
These deduction rules come with guarantees anal-
ogous to those of HA∗. The monotonicity guaran-
tee ensures that inside and (bridge) outside items
are processed in order of:

p̂(I(e)) = β(e) + α̃(e)

p̂(Õ(e)) = α̃(e) + β(e′)

The correctness guarantee ensures that when an
item is removed from the agenda, its weight will
be equal to β(e) for inside items and α̃(e) for
bridge items. The efficiency guarantee remains the
same, though because the intrinsic priorities are
different, the set of items processed will be differ-
ent from those processed by HA∗.

A proof of these guarantees is not possible
due to space restrictions. The proof for BHA∗

follows the proof for HA∗ in Felzenszwalb and
McAllester (2007) with minor modifications. The
key property of HA∗ needed for these proofs is
that coarse outside costs form consistent and ad-
missible heuristics for inside items, and exact in-
side costs form consistent and admissible heuris-
tics for outside items. BHA∗ also has this prop-
erty, with bridge outside costs forming admissi-
ble and consistent heuristics for inside items, and
coarse inside costs forming admissible and consis-
tent heuristics for outside items.

3 Experiments

The performance of BHA∗ is determined by the
efficiency guarantee given in the previous sec-
tion. However, we cannot determine in advance
whether BHA∗ will be faster than HA∗. In fact,
BHA∗ has the potential to be slower – BHA∗
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Figure 3: Performance of HA∗ and BHA∗ as a function of
increasing refinement of the coarse grammar. Lower is faster.
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Figure 4: Performance of BHA∗ on hierarchies of varying
size. Lower is faster. Along the x-axis, we show which coarse
grammars were used in the hierarchy. For example, 3-5 in-
dicates the 3-,4-, and 5-split grammars were used as coarse
grammars.

builds both inside and bridge outside items under
the target grammar, where HA∗ only builds inside
items. It is an empirical, grammar- and hierarchy-
dependent question whether the increased tight-
ness of the outside estimates outweighs the addi-
tional cost needed to compute them. We demon-
strate empirically in this section that for hier-
archies with very loosely approximating coarse
grammars, BHA∗ can outperform HA∗, while
for hierarchies with good approximations, perfor-
mance of the two algorithms is comparable.

We performed experiments with the grammars
of Petrov et al. (2006). The training procedure for
these grammars produces a hierarchy of increas-
ingly refined grammars through state-splitting, so
a natural projection function πt is given. We used
the Berkeley Parser2 to learn such grammars from
Sections 2-21 of the Penn Treebank (Marcus et al.,
1993). We trained with 6 split-merge cycles, pro-
ducing 7 grammars. We tested these grammars on
300 sentences of length ≤ 25 of Section 23 of the
Treebank. Our “target grammar” was in all cases
the most split grammar.

2http://berkeleyparser.googlecode.com
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In our first experiment, we construct 2-level hi-
erarchies consisting of one coarse grammar and
the target grammar. By varying the coarse gram-
mar from the 0-split (X-bar) through 5-split gram-
mars, we can investigate the performance of each
algorithm as a function of the coarseness of the
coarse grammar. We follow Pauls and Klein
(2009) in using the number of items pushed as
a machine- and implementation-independent mea-
sure of speed. In Figure 3, we show the perfor-
mance of HA∗ and BHA∗ as a function of the
total number of items pushed onto the agenda.
We see that for very coarse approximating gram-
mars, BHA∗ substantially outperforms HA∗, but
for more refined approximating grammars the per-
formance is comparable, with HA∗ slightly out-
performing BHA∗ on the 3-split grammar.

Finally, we verify that BHA∗ can benefit from
multi-level hierarchies as HA∗ can. We con-
structed two multi-level hierarchies: a 4-level hier-
archy consisting of the 3-,4-,5-, and 6- split gram-
mars, and 7-level hierarchy consisting of all gram-
mars. In Figure 4, we show the performance of
BHA∗ on these multi-level hierarchies, as well as
the best 2-level hierarchy from the previous exper-
iment. Our results echo the results of Pauls and
Klein (2009): although the addition of the rea-
sonably refined 4- and 5-split grammars produces
modest performance gains, the addition of coarser
grammars can actually hurt overall performance.
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Abstract

We evaluate the effect of adding parse fea-
tures to a leading model of preposition us-
age. Results show a significant improve-
ment in the preposition selection task on
native speaker text and a modest increment
in precision and recall in an ESL error de-
tection task. Analysis of the parser output
indicates that it is robust enough in the face
of noisy non-native writing to extract use-
ful information.

1 Introduction

The task of preposition error detection has re-
ceived a considerable amount of attention in re-
cent years because selecting an appropriate prepo-
sition poses a particularly difficult challenge to
learners of English as a second language (ESL).
It is not only ESL learners that struggle with En-
glish preposition usage — automatically detecting
preposition errors made by ESL speakers is a chal-
lenging task for NLP systems. Recent state-of-the-
art systems have precision ranging from 50% to
80% and recall as low as 10% to 20%.

To date, the conventional wisdom in the error
detection community has been to avoid the use
of statistical parsers under the belief that a WSJ-
trained parser’s performance would degrade too
much on noisy learner texts and that the tradi-
tionally hard problem of prepositional phrase at-
tachment would be even harder when parsing ESL
writing. However, there has been little substantial
research to support or challenge this view. In this
paper, we investigate the following research ques-
tion: Are parser output features helpful in mod-
eling preposition usage in well-formed text and
learner text?

We recreate a state-of-the-art preposition usage
system (Tetreault and Chodorow (2008), hence-
forth T&C08) originally trained with lexical fea-
tures and augment it with parser output features.
We employ the Stanford parser in our experiments
because it consists of a competitive phrase struc-
ture parser and a constituent-to-dependency con-
version tool (Klein and Manning, 2003a; Klein
and Manning, 2003b; de Marneffe et al., 2006;
de Marneffe and Manning, 2008). We com-
pare the original model with the parser-augmented
model on the tasks of preposition selection in well-
formed text (fluent writers) and preposition error
detection in learner texts (ESL writers).

This paper makes the following contributions:

• We demonstrate that parse features have a
significant impact on preposition selection in
well-formed text. We also show which fea-
tures have the greatest effect on performance.

• We show that, despite the noisiness of learner
text, parse features can actually make small,
albeit non-significant, improvements to the
performance of a state-of-the-art preposition
error detection system.

• We evaluate the accuracy of parsing and
especially preposition attachment in learner
texts.

2 Related Work

T&C08, De Felice and Pulman (2008) and Ga-
mon et al. (2008) describe very similar preposi-
tion error detection systems in which a model of
correct prepositional usage is trained from well-
formed text and a writer’s preposition is com-
pared with the predictions of this model. It is
difficult to directly compare these systems since
they are trained and tested on different data sets

353



but they achieve accuracy in a similar range. Of
these systems, only the DAPPER system (De Fe-
lice and Pulman, 2008; De Felice and Pulman,
2009; De Felice, 2009) uses a parser, the C&C
parser (Clark and Curran, 2007)), to determine
the head and complement of the preposition. De
Felice and Pulman (2009) remark that the parser
tends to be misled more by spelling errors than
by grammatical errors. The parser is fundamental
to their system and they do not carry out a com-
parison of the use of a parser to determine the
preposition’s attachments versus the use of shal-
lower techniques. T&C08, on the other hand, re-
ject the use of a parser because of the difficulties
they foresee in applying one to learner data. Her-
met et al. (2008) make only limited use of the
Xerox Incremental Parser in their preposition er-
ror detection system. They split the input sentence
into the chunks before and after the preposition,
and parse both chunks separately. Only very shal-
low analyses are extracted from the parser output
because they do not trust the full analyses.

Lee and Knutsson (2008) show that knowl-
edge of the PP attachment site helps in the task
of preposition selection by comparing a classifier
trained on lexical features (the verb before the
preposition, the noun between the verb and the
preposition, if any, and the noun after the preposi-
tion) to a classifier trained on attachment features
which explicitly state whether the preposition is
attached to the preceding noun or verb. They also
argue that a parser which is capable of distinguish-
ing between arguments and adjuncts is useful for
generating the correct preposition.

3 Augmenting a Preposition Model with
Parse Features

To test the effects of adding parse features to
a model of preposition usage, we replicated the
lexical and combination feature model used in
T&C08, training on 2M events extracted from a
corpus of news and high school level reading ma-
terials. Next, we added the parse features to this
model to create a new model “+Parse”. In 3.1 we
describe the T&C08 system and features, and in
3.2 we describe the parser output features used to
augment the model. We illustrate our features us-
ing the example phrase many local groups around
the country. Fig. 1 shows the phrase structure tree
and dependency triples returned by the Stanford
parser for this phrase.

3.1 Baseline System

The work of Chodorow et al. (2007) and T&C08
treat the tasks of preposition selection and er-
ror detection as a classification problem. That
is, given the context around a preposition and a
model of correct usage, a classifier determines
which of the 34 prepositions covered by the model
is most appropriate for the context. A model of
correct preposition usage is constructed by train-
ing a Maximum Entropy classifier (Ratnaparkhi,
1998) on millions of preposition contexts from
well-formed text.

A context is represented by 25 lexical features
and 4 combination features:

Lexical Token and POS n-grams in a 2 word
window around the preposition, plus the head verb
in the preceding verb phrase (PV), the head noun
in the preceding noun phrase (PN) and the head
noun in the following noun phrase (FN) when
available (Chodorow et al., 2007). Note that these
are determined not through full syntactic parsing
but rather through the use of a heuristic chun-
ker. So, for the phrase many local groups around
the country, examples of lexical features for the
preposition around include: FN = country, PN =
groups, left-2-word-sequence = local-groups, and
left-2-POS-sequence = JJ-NNS.

Combination T&C08 expand on the lexical fea-
ture set by combining the PV, PN and FN fea-
tures, resulting in features such as PN-FN and
PV-PN-FN. POS and token versions of these fea-
tures are employed. The intuition behind creat-
ing combination features is that the Maximum En-
tropy classifier does not automatically model the
interactions between individual features. An ex-
ample of the PN-FN feature is groups-country.

3.2 Parse Features

To augment the above model we experimented
with 14 features divided among five main classes.
Table 1 shows the features and their values for
our around example. The Preposition Head and
Complement feature represents the two basic at-
tachment relations of the preposition, i.e. its head
(what it is attached to) and its complement (what
is attached to it). Relation specifies the relation
between the head and complement. The Preposi-
tion Head and Complement Combined features
are similar to the T&C08 Combination features
except that they are extracted from parser output.
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amod(groups-3, local-2)
prep(groups-3, around-4)
det(country-6, the-5)
pobj(around-4, country-6)

Figure 1: Phrase structure tree and dependency
triples produced by the Stanford parser for the
phrase many local groups around the country

Prep. Head & Complement
1. head of the preposition: groups
2. POS of the head: NNS
3. complement of the preposition: country
4. POS of the complement: NN
Prep. Head & Complement Relation
5. Prep-Head relation name: prep
6. Prep-Comp relation name: pobj
Prep. Head & Complement Combined
7. Head-Complement tokens: groups-country
8. Head-Complement tags: NNS-NN
Prep. Head & Complement Mixed
9. Head Tag and Comp Token: NNS-country
10. Head Token and Comp Tag: groups-NN
Phrase Structure
11. Preposition Parent: PP
12. Preposition Grandparent: NP
13. Left context of preposition parent: NP
14. Right context of preposition parent: -

Table 1: Parse Features

Model Accuracy
combination only 35.2
parse only 60.6
combination+parse 61.9
lexical only 64.4
combination+lexical (T&C08) 65.2
lexical+parse 68.1
all features (+Parse) 68.5

Table 2: Accuracy on preposition selection task
for various feature combinations

The Preposition Head and Complement Mixed
features are created by taking the first feature in
the previous set and backing-off either the head
or the complement to its POS tag. This mix of
tags and tokens in a word-word dependency has
proven to be an effective feature in sentiment anal-
ysis (Joshi and Penstein-Rosé, 2009). All the fea-
tures described so far are extracted from the set of
dependency triples output by the Stanford parser.
The final set of features (Phrase Structure), how-
ever, is extracted directly from the phrase structure
trees themselves.

4 Evaluation

In Section 4.1, we compare the T&C08 and +Parse
models on the task of preposition selection on
well-formed texts written by native speakers. For
every preposition in the test set, we compare the
system’s top preposition for that context to the
writer’s preposition, and report accuracy rates. In
Section 4.2, we evaluate the two models on ESL
data. The task here is slightly different - if the
most likely preposition according to the model dif-
fers from the likelihood of the writer’s preposition
by a certain threshold amount, a preposition error
is flagged.

4.1 Native Speaker Test Data

Our test set consists of 259K preposition events
from the same source as the original training data.
The T&C08 model performs at 65.2% and when
the parse features are added, the +Parse model im-
proves performance by more than 3% to 68.5%.1

The improvement is statistically significant.

1Prior research has shown preposition selection perfor-
mance accuracy ranging from 65% to nearly 80%. The dif-
ferences are largely due to different test sets and also training
sizes. Given the time required to train large models, we report
here experiments with a relatively small model.
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Model Accuracy
T&C08 65.2
+Phrase Structure Only 67.1
+Dependency Only 68.2
+Parse 68.5
+head-tag+comp-tag 66.9
+left 66.8
+grandparent 66.6
+head-token+comp-tag 66.6
+head-tag 66.5
+head-token 66.4
+head-tag+comp-token 66.1

Table 3: Which parse features are important? Fea-
ture Addition Experiment

Table 2 shows the effect of various feature class
combinations on prediction accuracy. The results
are clear: a significant performance improvement
is obtained on the preposition selection task when
features from parser output are added. The two
best models in Table 2 contain parse features. The
table also shows that the non-parser-based feature
classes are not entirely subsumed by the parse fea-
tures but rather provide, to varying degrees, com-
plementary information.

Having established the effectiveness of parse
features, we investigate which parse feature
classes contribute the most. To test each contri-
bution, we perform a feature addition experiment,
separately adding features to the T&C08 model
(see Table 3). We make three observations. First,
while there is overlapping information between
the dependency features and the phrase structure
features, the phrase structure features are mak-
ing a contribution. This is interesting because
it suggests that a pure dependency parser might
be less useful than a parser which explicitly pro-
duces both constituent and dependency informa-
tion. Second, using a parser to identify the prepo-
sition head seems to be more useful than using it to
identify the preposition complement.2 Finally, as
was the case for the T&C08 features, the combina-
tion parse features are also important (particularly
the tag-tag or tag/token pairs).

4.2 ESL Test Data

Our test data consists of 5,183 preposition events
extracted from a set of essays written by non-

2De Felice (2009) observes the same for the DAPPER sys-
tem.

Method Precision Recall
T&C08 0.461 0.215
+Parse 0.486 0.225

Table 4: ESL Error Detection Results

native speakers for the Test of English as a Foreign
Language (TOEFL R©). The prepositions were
judged by two trained annotators and checked
by the authors using the preposition annotation
scheme described in Tetreault and Chodorow
(2008b). 4,881 of the prepositions were judged to
be correct and the remaining 302 were judged to
be incorrect.

The writer’s preposition is flagged as an error by
the system if its likelihood according to the model
satisfied a set of criteria (e.g., the difference be-
tween the probability of the system’s choice and
the writer’s preposition is 0.8 or higher). Un-
like the selection task where we use accuracy as
the metric, we use precision and recall with re-
spect to error detection. To date, performance
figures that have been reported in the literature
have been quite low, reflecting the difficulty of the
task. Table 4 shows the performance figures for
the T&C08 and +Parse models. Both precision
and recall are higher for the +Parse model, how-
ever, given the low number of errors in our an-
notated test set, the difference is not statistically
significant.

5 Parser Accuracy on ESL Data

To evaluate parser performance on ESL data,
we manually inspected the phrase structure trees
and dependency graphs produced by the Stanford
parser for 210 ESL sentences, split into 3 groups:
the sentences in the first group are fluent and con-
tain no obvious grammatical errors, those in the
second contain at least one preposition error and
the sentences in the third are clearly ungrammati-
cal with a variety of error types. For each preposi-
tion we note whether the parser was successful in
determining its head and complement. The results
for the three groups are shown in Table 5. The
figures in the first row are for correct prepositions
and those in the second are for incorrect ones.

The parser tends to do a better job of de-
termining the preposition’s complement than its
head which is not surprising given the well-known
problem of PP attachment ambiguity. Given the
preposition, the preceding noun, the preceding
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OK
Head Comp

Prep Correct 86.7% (104/120) 95.0% (114/120)
Prep Incorrect - -

Preposition Error
Head Comp

Prep Correct 89.0% (65/73) 97.3% (71/73)
Prep Incorrect 87.1% (54/62) 96.8% (60/62)

Ungrammatical
Head Comp

Prep Correct 87.8% (115/131) 89.3% (117/131)
Prep Incorrect 70.8% (17/24) 87.5% (21/24)

Table 5: Parser Accuracy on Prepositions in a
Sample of ESL Sentences

verb and the following noun, Collins (1999) re-
ports an accuracy rate of 84.5% for a PP attach-
ment classifier. When confronted with the same
information, the accuracy of three trained annota-
tors is 88.2%. Assuming 88.2% as an approximate
PP-attachment upper bound, the Stanford parser
appears to be doing a good job. Comparing the
results over the three sentence groups, its ability
to identify the preposition’s head is quite robust to
grammatical noise.

Preposition errors in isolation do not tend to
mislead the parser: in the second group which con-
tains sentences which are largely fluent apart from
preposition errors, there is little difference be-
tween the parser’s accuracy on the correctly used
prepositions and the incorrectly used ones. Exam-
ples are

(S (NP I)
(VP had

(NP (NP a trip)
(PP for (NP Italy))

)
)

)

in which the erroneous preposition for is correctly
attached to the noun trip, and

(S (NP A scientist)
(VP devotes

(NP (NP his prime part)
(PP of (NP his life))

)
(PP in (NP research))

)
)

in which the erroneous preposition in is correctly
attached to the verb devotes.

6 Conclusion

We have shown that the use of a parser can boost
the accuracy of a preposition selection model
tested on well-formed text. In the error detection
task, the improvement is less marked. Neverthe-
less, examination of parser output shows the parse
features can be extracted reliably from ESL data.

For our immediate future work, we plan to carry
out the ESL evaluation on a larger test set to bet-
ter gauge the usefulness of a parser in this context,
to carry out a detailed error analysis to understand
why certain parse features are effective and to ex-
plore a larger set of features.

In the longer term, we hope to compare different
types of parsers in both the preposition selection
and error detection tasks, i.e. a task-based parser
evaluation in the spirit of that carried out by Miyao
et al. (2008) on the task of protein pair interaction
extraction. We would like to further investigate
the role of parsing in error detection by looking at
other error types and other text types, e.g. machine
translation output.
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Abstract 

Distributional similarity is a classic tech-
nique for entity set expansion, where the 
system is given a set of seed entities of a 
particular class, and is asked to expand the 
set using a corpus to obtain more entities 
of the same class as represented by the 
seeds. This paper shows that a machine 
learning model called positive and unla-
beled learning (PU learning) can model 
the set expansion problem better. Based 
on the test results of 10 corpora, we show 
that a PU learning technique outperformed 
distributional similarity significantly.   

1 Introduction 

The entity set expansion problem is defined as 
follows: Given a set S of seed entities of a partic-
ular class, and a set D of candidate entities (e.g., 
extracted from a text corpus), we wish to deter-
mine which of the entities in D belong to S. In 
other words, we “expand” the set S based on the 
given seeds. This is clearly a classification prob-
lem which requires arriving at a binary decision 
for each entity in D (belonging to S or not). 
However, in practice, the problem is often solved 
as a ranking problem, i.e., ranking the entities in 
D based on their likelihoods of belonging to S.  

The classic method for solving this problem is 
based on distributional similarity (Pantel et al. 
2009; Lee, 1998). The approach works by com-
paring the similarity of the surrounding word 
distributions of each candidate entity with the 
seed entities, and then ranking the candidate enti-
ties using their similarity scores.   

In machine learning, there is a class of semi-
supervised learning algorithms that learns from 
positive and unlabeled examples (PU learning for 
short). The key characteristic of PU learning is 
that there is no negative training example availa-
ble for learning. This class of algorithms is less 
known to the natural language processing (NLP) 
community compared to some other semi-
supervised learning models and algorithms.  

PU learning is a two-class classification mod-
el. It is stated as follows (Liu et al. 2002): Given 
a set P of positive examples of a particular class 
and a set U of unlabeled examples (containing 
hidden positive and negative cases), a classifier 
is built using P and U for classifying the data in 
U or future test cases. The results can be either 
binary decisions (whether each test case belongs 
to the positive class or not), or a ranking based 
on how likely each test case belongs to the posi-
tive class represented by P. Clearly, the set ex-
pansion problem can be mapped into PU learning 
exactly, with S and D as P and U respectively. 

This paper shows that a PU learning method 
called S-EM (Liu et al. 2002) outperforms distri-
butional similarity considerably based on the 
results from 10 corpora. The experiments in-
volved extracting named entities (e.g., product 
and organization names) of the same type or 
class as the given seeds. Additionally, we also 
compared S-EM with a recent method, called 
Bayesian Sets (Ghahramani and Heller, 2005), 
which was designed specifically for set expan-
sion. It also does not perform as well as PU 
learning. We will explain why PU learning per-
forms better than both methods in Section 5. We 
believe that this finding is of interest to the NLP 
community.  
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There is another approach used in the Web 
environment for entity set expansion. It exploits 
Web page structures to identify lists of items us-
ing wrapper induction or other techniques. The 
idea is that items in the same list are often of the 
same type. This approach is used by Google Sets 
(Google, 2008) and Boo!Wa! (Wang and Cohen, 
2008). However, as it relies on Web page struc-
tures, it is not applicable to general free texts.  

2 Three Different Techniques  

2.1 Distributional Similarity 

Distributional similarity is a classic technique for 
the entity set expansion problem. It is based on 
the hypothesis that words with similar meanings 
tend to appear in similar contexts (Harris, 1985). 
As such, a method based on distributional simi-
larity typically fetches the surrounding contexts 
for each term (i.e. both seeds and candidates) and 
represents them as vectors by using TF-IDF or 
PMI (Pointwise Mutual Information) values (Lin, 
1998; Gorman and Curran, 2006; Paşca et al. 
2006; Agirre et al. 2009; Pantel et al. 2009). Si-
milarity measures such as Cosine, Jaccard, Dice, 
etc, can then be employed to compute the simi-
larities between each candidate vector and the 
seeds centroid vector (one centroid vector for all 
seeds). Lee (1998) surveyed and discussed vari-
ous distribution similarity measures.  

2.2 PU Learning and S-EM 

PU learning is a semi-supervised or partially su-
pervised learning model. It learns from positive 
and unlabeled examples as opposed to the model 
of learning from a small set of labeled examples 
of every class and a large set of unlabeled exam-
ples, which we call LU learning (L and U stand 
for labeled and unlabeled respectively) (Blum 
and Mitchell, 1998; Nigam et al. 2000)  

There are several PU learning algorithms (Liu 
et al. 2002; Yu et al. 2002; Lee and Liu, 2003; Li 
et al. 2003; Elkan and Noto, 2008). In this work, 
we used the S-EM algorithm given in (Liu et al. 
2002). S-EM is efficient as it is based on naïve 
Bayesian (NB) classification and also performs 
well. The main idea of S-EM is to use a spy 
technique to identify some reliable negatives 
(RN) from the unlabeled set U, and then use an 
EM algorithm to learn from P, RN and U–RN.  

The spy technique in S-EM works as follows 
(Figure 1): First, a small set of positive examples 
(denoted by SP) from P is randomly sampled 
(line 2). The default sampling ratio in S-EM is s 
= 15%, which we also used in our experiments. 

The positive examples in SP are called “spies”. 
Then, a NB classifier is built using the set P– SP 
as positive and the set U∪SP as negative (line 3, 
4, and 5). The NB classifier is applied to classify 
each u ∈ U∪SP, i.e., to assign a probabilistic 
class label p(+|u) (+ means positive). The proba-
bilistic labels of the spies are then used to decide 
reliable negatives (RN). In particular, a probabili-
ty threshold t is determined using the probabilis-
tic labels of spies in SP and the input parameter l 
(noise level). Due to space constraints, we are 
unable to explain l. Details can be found in (Liu 
et al. 2002). t is then used to find RN from U 
(lines 8-10). The idea of the spy technique is 
clear. Since spy examples are from P and are put 
into U in building the NB classifier, they should 
behave similarly to the hidden positive cases in 
U. Thus, they can help us find the set RN.  
Algorithm Spy(P, U, s, l) 
1.  RN ← ∅;            // Reliable negative set 
2.  SP ← Sample(P, s%); 
3.  Assign each example in P – SP the class label +1; 
4.  Assign each example in U ∪ SP the class label -1; 
5.  C ←NB(P – S, U∪SP); // Produce a NB classifier  
6.  Classify each u ∈U∪SP using C; 
7.  Decide a probability threshold t using SP and l; 
8.  for each u ∈U do 
9.       if its probability p(+|u) < t then 
10.          RN ← RN ∪ {u}; 

Figure 1. Spy technique for extracting reliable 
negatives (RN) from U. 

Given the positive set P, the reliable negative 
set RN and the remaining unlabeled set U–RN, an 
Expectation-Maximization (EM) algorithm is 
run. In S-EM, EM uses the naïve Bayesian clas-
sification as its base method. The detailed algo-
rithm is given in (Liu et al. 2002). 

2.3 Bayesian Sets 

Bayesian Sets, as its name suggests, is based on 
Bayesian inference, and was designed specifical-
ly for the set expansion problem (Ghahramani 
and Heller, 2005). The algorithm learns from a 
seeds set (i.e., a positive set P) and an unlabeled 
candidate set U. Although it was not designed as 
a PU learning method, it has similar characteris-
tics and produces similar results as PU learning. 
However, there is a major difference. PU learn-
ing is a classification model, while Bayesian Sets 
is a ranking method. This difference has a major 
implication on the results that they produce as we 
will discuss in Section 5.3.  

In essence, Bayesian Sets learns a score func-
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tion using P and U to generate a score for each 
unlabeled case u ∈ U. The function is as follows:  

                    
)(

)|()(
up

Pupuscore =  (1) 

where p(u|P) represents how probable u belongs 
to the positive class represented by P. p(u) is the 
prior probability of u. Using the Bayes’ rule, eq-
uation (1) can be re-written as:              
               

)()(
),()(
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Pupuscore =                    (2)  

Following the idea, Ghahramani and Heller 
(2005) proposed a computable score function. 
The scores can be used to rank the unlabeled 
candidates in U to reflect how likely each u ∈ U 
belongs to P. The mathematics for computing the 
score is involved. Due to the limited space, we 
cannot discuss it here. See (Ghahramani and Hel-
ler, 2005) for details. In (Heller and Ghahramani, 
2006), Bayesian Sets was also applied to an im-
age retrieval application.  

3 Data Generation for Distributional 
Similarity, Bayesian Sets and S-EM 

Preparing the data for distributional similarity is 
fairly straightforward. Given the seeds set S, a 
seeds centroid vector is produced using the sur-
rounding word contexts (see below) of all occur-
rences of all the seeds in the corpus (Pantel et al, 
2009). In a similar way, a centroid is also pro-
duced for each candidate (or unlabeled) entity.  
Candidate entities: Since we are interested in 
named entities, we select single words or phrases 
as candidate entities based on their correspond-
ing part-of-speech (POS) tags. In particular, we 
choose the following POS tags as entity indica-
tors — NNP (proper noun), NNPS (plural proper 
noun), and CD (cardinal number). We regard a 
phrase (could be one word) with a sequence of 
NNP, NNPS and CD POS tags as one candidate 
entity (CD cannot be the first word unless it 
starts with a letter), e.g., “Windows/NNP 7/CD” 
and “Nokia/NNP N97/CD” are regarded as two 
candidates “Windows 7” and “Nokia N97”. 
Context: For each seed or candidate occurrence, 
the context is its set of surrounding words within 
a window of size w, i.e. we use w words right 
before the seed or the candidate and w words 
right after it. Stop words are removed.  

For S-EM and Bayesian Sets, both the posi-
tive set P (based on the seeds set S) and the unla-
beled candidate set U are generated differently. 
They are not represented as centroids.  

Positive and unlabeled sets: For each seed si ∈S, 
each occurrence in the corpus forms a vector as a 
positive example in P. The vector is formed 
based on the surrounding words context (see 
above) of the seed mention. Similarly, for each 
candidate d ∈ D (see above; D denotes the set of 
all candidates), each occurrence also forms a 
vector as an unlabeled example in U. Thus, each 
unique seed or candidate entity may produce 
multiple feature vectors, depending on the num-
ber of times that it appears in the corpus. 

The components in the feature vectors are 
term frequencies for S-EM as S-EM uses naïve 
Bayesian classification as its base classifier. For 
Bayesian Sets, they are 1’s and 0’s as Bayesian 
Sets only takes binary vectors based on whether 
a term occurs in the context or not.  

4 Candidate Ranking 
For distributional similarity, ranking is done us-
ing the similarity value of each candidate’s cen-
troid and the seeds’ centroid (one centroid vector 
for all seeds). Rankings for S-EM and Bayesian 
Sets are more involved. We discuss them below.  

After it ends, S-EM produces a Bayesian clas-
sifier C, which is used to classify each vector u ∈ 
U and to assign a probability p(+|u) to indicate 
the likelihood that u belongs to the positive class. 
Similarly, Bayesian Sets produces a score 
score(u) for each u (not a probability).  

Recall that for both S-EM and Bayesian Sets, 
each unique candidate entity may generate mul-
tiple feature vectors, depending on the number of 
times that the candidate entity occurs in the cor-
pus. As such, the rankings produced by S-EM 
and Bayesian Sets are not the rankings of the 
entities, but rather the rankings of the entities’ 
occurrences. Since different vectors representing 
the same candidate entity can have very different 
probabilities (for S-EM) or scores (for Bayesian 
Sets), we need to combine them and compute a 
single score for each unique candidate entity for 
ranking.  

To this end, we also take the entity frequency 
into consideration. Typically, it is highly desira-
ble to rank those correct and frequent entities at 
the top because they are more important than the 
infrequent ones in applications. With this in 
mind, we define a ranking method. 

Let the probabilities (or scores) of a candidate 
entity d ∈ D be Vd = {v1 , v2 …, vn} for the n fea-
ture vectors of the candidate. Let Md be the me-
dian of Vd. The final score (fs) for d is defined as:  
    )1log()( nMdfs d +×=         (3) 
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The use of the median of Vd can be justified 
based on the statistical skewness (Neter et al. 
1993). If the values in Vd are skewed towards the 
high side (negative skew), it means that the can-
didate entity is very likely to be a true entity, and 
we should take the median as it is also high 
(higher than the mean). However, if the skew is 
towards the low side (positive skew), it means 
that the candidate entity is unlikely to be a true 
entity and we should again use the median as it is 
low (lower than the mean) under this condition.  

Note that here n is the frequency count of 
candidate entity d in the corpus. The constant 1 is 
added to smooth the value. The idea is to push 
the frequent candidate entities up by multiplying 
the logarithm of frequency. log is taken in order 
to reduce the effect of big frequency counts. 

The final score fs(d) indicates candidate d’s 
overall likelihood to be a relevant entity. A high 
fs(d) implies a high likelihood that d is in the 
expanded entity set. We can then rank all the 
candidates based on their fs(d) values.  

5 Experimental Evaluation 

We empirically evaluate the three techniques in 
this section. We implemented distribution simi-
larity and Bayesian Sets. S-EM was downloaded 
from http://www.cs.uic.edu/~liub/S-EM/S-EM-
download.html. For both Bayesian Sets and S-
EM, we used their default parameters. EM in S-
EM ran only two iterations. For distributional 
similarity, we tested TF-IDF and PMI as feature 
values of vectors, and Cosine and Jaccard as si-
milarity measures. Due to space limitations, we 
only show the results of the PMI and Cosine 
combination as it performed the best. This com-
bination was also used in (Pantel et al., 2009). 

5.1 Corpora and Evaluation Metrics 

We used 10 diverse corpora to evaluate the tech-
niques. They were obtained from a commercial 
company. The data were crawled and extracted 
from multiple online message boards and blogs 
discussing different products and services. We 
split each message into sentences, and the sen-
tences were POS-tagged using Brill’s tagger 
(Brill, 1995). The tagged sentences were used to 
extract candidate entities and their contexts. Ta-
ble 1 shows the domains and the number of sen-
tences in each corpus, as well as the three seed 
entities used in our experiments for each corpus. 
The three seeds for each corpus were randomly 
selected from a set of common entities in the ap-
plication domain.  

Table 1. Descriptions of the 10 corpora 

Domains # Sentences Seed Entities 
 Bank 17394 Citi, Chase, Wesabe 
 Blu-ray 7093 S300, Sony, Samsung 
 Car 2095 Honda, A3, Toyota 
 Drug 1504 Enbrel, Hurmia, Methotrexate 
 Insurance 12419 Cobra, Cigna, Kaiser 
 LCD 1733 PZ77U, Samsung, Sony 
 Mattress 13191 Simmons, Serta, Heavenly 
 Phone 14884 Motorola, Nokia, N95 
 Stove 25060 Kenmore, Frigidaire, GE 
 Vacuum 13491 Dc17, Hoover, Roomba 

The regular evaluation metrics for named enti-
ty recognition such as precision and recall are not 
suitable for our purpose as we do not have the 
complete sets of gold standard entities to com-
pare with. We adopt rank precision, which is 
commonly used for evaluation of entity set ex-
pansion techniques (Pantel et al., 2009):  

Precision @ N: The percentage of correct enti-
ties among the top N entities in the ranked list.  

5.2 Experimental Results 

The detailed experimental results for window 
size 3 (w=3) are shown in Table 2 for the 10 cor-
pora. We present the precisions at the top 15-, 
30- and 45-ranked positions (i.e., precisions 
@15, 30 and 45) for each corpus, with the aver-
age given in the last column. For distributional 
similarity, to save space Table 2 only shows the 
results of Distr-Sim-freq, which is the distribu-
tional similarity method with term frequency 
considered in the same way as for Bayesian Sets 
and S-EM, instead of the original distributional 
similarity, which is denoted by Distr-Sim. This 
is because on average, Distr-Sim-freq performs 
better than Distr-Sim. However, the summary 
results of both Distr-Sim-freq and Distr-Sim are 
given in Table 3.  

From Table 2, we observe that on average S-
EM outperforms Distr-Sim-freq by about 12 – 
20% in terms of Precision @ N. Bayesian-Sets 
is also more accurate than Distr-Sim-freq, but S-
EM outperforms Bayesian-Sets by 9 – 10%. 

To test the sensitivity of window size w, we 
also experimented with w = 6 and w = 9. Due to 
space constraints, we present only their average 
results in Table 3. Again, we can see the same 
performance pattern as in Table 2 (w = 3): S-EM 
performs the best, Bayesian-Sets the second, and 
the two distributional similarity methods the 
third and the fourth, with Distr-Sim-freq slightly 
better than Distr-Sim.  
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5.3 Why does S-EM Perform Better? 

From the tables, we can see that both S-EM and 
Bayesian Sets performed better than distribution-
al similarity. S-EM is better than Bayesian Sets. 
We believe that the reason is as follows: Distri-
butional similarity does not use any information 
in the candidate set (or the unlabeled set U). It 
tries to rank the candidates solely through simi-
larity comparisons with the given seeds (or posi-
tive cases). Bayesian Sets is better because it 
considers U. Its learning method produces a 
weight vector for features based on their occur-
rence differences in the positive set P and the 
unlabeled set U (Ghahramani and Heller 2005). 
This weight vector is then used to compute the 
final scores used in ranking. In this way, Baye-
sian Sets is able to exploit the useful information 
in U that was ignored by distributional similarity. 
S-EM also considers these differences in its NB 
classification; in addition, it uses the reliable 
negative set (RN) to help distinguish negative 
and positive cases, which both Bayesian Sets and 
distributional similarity do not do. We believe 
this balanced attempt by S-EM to distinguish the 
positive and negative cases is the reason for the 
better performance of S-EM. This raises an inter-
esting question. Since Bayesian Sets is a ranking 
method and S-EM is a classification method, can 
we say even for ranking (our evaluation is based 

on ranking) classification methods produce better 
results than ranking methods? Clearly, our single 
experiment cannot answer this question. But in-
tuitively, classification, which separates positive 
and negative cases by pulling them towards two 
opposite directions, should perform better than 
ranking which only pulls the data in one direc-
tion. Further research on this issue is needed. 

6 Conclusions and Future Work 

Although distributional similarity is a classic 
technique for entity set expansion, this paper 
showed that PU learning performs considerably 
better on our diverse corpora. In addition, PU 
learning also outperforms Bayesian Sets (de-
signed specifically for the task). In our future 
work, we plan to experiment with various other 
PU learning methods (Liu et al. 2003; Lee and 
Liu, 2003; Li et al. 2007; Elkan and Noto, 2008) 
on this entity set expansion task, as well as other 
tasks that were tackled using distributional simi-
larity. In addition, we also plan to combine some 
syntactic patterns (Etzioni et al. 2005; Sarmento 
et al. 2007) to further improve the results.  
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Research Grant 2009-1062-1-A, and would like 
to thank Suk Hwan Lim and Eamonn O'Brien- 
Strain for many helpful discussions.   

Table 2.  Precision @ top N (with 3 seeds, and window size w = 3) 

 Bank Blu-ray Car  Drug Insurance LCD Mattress Phone Stove  Vacuum Avg. 
 Top 15 
Distr-Sim-freq 0.466 0.333 0.800 0.666 0.666 0.400 0.666 0.533 0.666 0.733 0.592
Bayesian-Sets 0.533 0.266 0.600 0.666 0.600 0.733 0.666 0.533 0.800 0.800 0.617

S-EM 0.600 0.733 0.733 0.733 0.533 0.666 0.933 0.533 0.800 0.933 0.720 
 Top 30 

Distr-Sim-freq 0.466 0.266 0.700 0.600 0.500 0.333 0.500 0.466 0.600 0.566 0.499 
Bayesian-Sets 0.433 0.300 0.633 0.666 0.400 0.566 0.700 0.333 0.833 0.700 0.556 

S-EM 0.500 0.700 0.666 0.666 0.566 0.566 0.733 0.600 0.600 0.833 0.643 
 Top 45 

Distr-Sim-freq 0.377 0.288 0.555 0.500 0.377 0.355 0.444 0.400 0.533 0.400 0.422 
Bayesian-Sets 0.377 0.333 0.666 0.555 0.377 0.511 0.644 0.355 0.733 0.600 0.515 

S-EM 0.466 0.688 0.644 0.733 0.533 0.600 0.644 0.555 0.644 0.688 0.620 

Table 3. Average precisions over the 10 corpora of different window size (3 seeds) 

Window-size w = 3   Window-size  w = 6  Window-size  w = 9 
Top Results Top 15 Top 30 Top 45  Top 15 Top 30 Top 45  Top 15 Top 30 Top 45
Distr-Sim 0.579 0.466 0.410  0.553 0.483 0.439  0.519 0.473 0.412 

Distr-Sim-freq 0.592 0.499 0.422  0.553 0.492 0.441  0.559 0.476 0.410 
Bayesian-Sets 0.617 0.556 0.515  0.593 0.539 0.524  0.539 0.522 0.497 

S-EM 0.720 0.643 0.620  0.666 0.606 0.597  0.666 0.620 0.604 
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Abstract
Semi-supervised word alignment aims to
improve the accuracy of automatic word
alignment by incorporating full or par-
tial manual alignments. Motivated by
standard active learning query sampling
frameworks like uncertainty-, margin- and
query-by-committee sampling we propose
multiple query strategies for the alignment
link selection task. Our experiments show
that by active selection of uncertain and
informative links, we reduce the overall
manual effort involved in elicitation of
alignment link data for training a semi-
supervised word aligner.

1 Introduction

Corpus-based approaches to machine translation
have become predominant, with phrase-based sta-
tistical machine translation (PB-SMT) (Koehn et
al., 2003) being the most actively progressing area.
The success of statistical approaches to MT can
be attributed to the IBM models (Brown et al.,
1993) that characterize word-level alignments in
parallel corpora. Parameters of these alignment
models are learnt in an unsupervised manner us-
ing the EM algorithm over sentence-level aligned
parallel corpora. While the ease of automati-
cally aligning sentences at the word-level with
tools like GIZA++ (Och and Ney, 2003) has en-
abled fast development of SMT systems for vari-
ous language pairs, the quality of alignment is typ-
ically quite low for language pairs like Chinese-
English, Arabic-English that diverge from the in-
dependence assumptions made by the generative
models. Increased parallel data enables better es-
timation of the model parameters, but a large num-
ber of language pairs still lack such resources.

Two directions of research have been pursued
for improving generative word alignment. The
first is to relax or update the independence as-
sumptions based on more information, usually
syntactic, from the language pairs (Cherry and
Lin, 2006; Fraser and Marcu, 2007a). The sec-
ond is to use extra annotation, typically word-level
human alignment for some sentence pairs, in con-
junction with the parallel data to learn alignment
in a semi-supervised manner. Our research is in
the direction of the latter, and aims to reduce the
effort involved in hand-generation of word align-
ments by using active learning strategies for care-
ful selection of word pairs to seek alignment.

Active learning for MT has not yet been ex-
plored to its full potential. Much of the litera-
ture has explored one task – selecting sentences
to translate and add to the training corpus (Haf-
fari and Sarkar, 2009). In this paper we explore
active learning for word alignment, where the in-
put to the active learner is a sentence pair (S, T )
and the annotation elicited from human is a set of
links {aij , ∀si ∈ S, tj ∈ T}. Unlike previous ap-
proaches, our work does not require elicitation of
full alignment for the sentence pair, which could
be effort-intensive. We propose active learning
query strategies to selectively elicit partial align-
ment information. Experiments in Section 5 show
that our selection strategies reduce alignment error
rates significantly over baseline.

2 Related Work

Researchers have begun to explore models that
use both labeled and unlabeled data to build
word-alignment models for MT. Fraser and Marcu
(2006) pose the problem of alignment as a search
problem in log-linear space with features com-
ing from the IBM alignment models. The log-
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linear model is trained on available labeled data
to improve performance. They propose a semi-
supervised training algorithm which alternates be-
tween discriminative error training on the la-
beled data to learn the weighting parameters and
maximum-likelihood EM training on unlabeled
data to estimate the parameters. Callison-Burch
et al. (2004) also improve alignment by interpolat-
ing human alignments with automatic alignments.
They observe that while working with such data
sets, alignments of higher quality should be given
a much higher weight than the lower-quality align-
ments. Wu et al. (2006) learn separate models
from labeled and unlabeled data using the standard
EM algorithm. The two models are then interpo-
lated to use as a learner in the semi-supervised
algorithm to improve word alignment. To our
knowledge, there is no prior work that has looked
at reducing human effort by selective elicitation of
partial word alignment using active learning tech-
niques.

3 Active Learning for Word Alignment

Active learning attempts to optimize performance
by selecting the most informative instances to la-
bel where ‘informativeness’ is defined as maximal
expected improvement in accuracy. The objective
is to select optimal instance for an external expert
to label and then run the learning method on the
newly-labeled and previously-labeled instances to
minimize prediction or translation error, repeat-
ing until either the maximal number of external
queries is reached or a desired accuracy level is
achieved. Several studies (Tong and Koller, 2002;
Nguyen and Smeulders, 2004; Donmez and Car-
bonell, 2008) show that active learning greatly
helps to reduce the labeling effort in various clas-
sification tasks.

3.1 Active Learning Setup

We discuss our active learning setup for word
alignment in Algorithm 1. We start with an un-
labeled dataset U = {(Sk, Tk)}, indexed by k,
and a seed pool of partial alignment links A0 =
{ak

ij , ∀si ∈ Sk, tj ∈ Tk}. This is usually an empty
set at iteration t = 0. We iterate for T itera-
tions. We take a pool-based active learning strat-
egy, where we have access to all the automatically
aligned links and we can score the links based
on our active learning query strategy. The query
strategy uses the automatically trained alignment

model Mt from current iteration t for scoring the
links. Re-training and re-tuning an SMT system
for each link at a time is computationally infeasi-
ble. We therefore perform batch learning by se-
lecting a set of N links scored high by our query
strategy. We seek manual corrections for the se-
lected links and add the alignment data to the
current labeled data set. The word-level aligned
labeled data is provided to our semi-supervised
word alignment algorithm for training an align-
ment model Mt+1 over U .

Algorithm 1 AL FOR WORD ALIGNMENT

1: Unlabeled Data Set: U = {(Sk, Tk)}
2: Manual Alignment Set : A0 = {ak

ij ,∀si ∈
Sk, tj ∈ Tk}

3: Train Semi-supervised Word Alignment using
(U , A0)→M0

4: N : batch size
5: for t = 0 to T do
6: Lt = LinkSelection(U ,At,Mt,N )
7: Request Human Alignment for Lt

8: At+1 = At + Lt

9: Re-train Semi-Supervised Word Align-
ment on (U,At+1)→Mt+1

10: end for

We can iteratively perform the algorithm for a
defined number of iterations T or until a certain
desired performance is reached, which is mea-
sured by alignment error rate (AER) (Fraser and
Marcu, 2007b) in the case of word alignment. In
a more typical scenario, since reducing human ef-
fort or cost of elicitation is the objective, we iterate
until the available budget is exhausted.

3.2 Semi-Supervised Word Alignment
We use an extended version of MGIZA++ (Gao
and Vogel, 2008) to perform the constrained semi-
supervised word alignment. Manual alignments
are incorporated in the EM training phase of these
models as constraints that restrict the summation
over all possible alignment paths. Typically in the
EM procedure for IBM models, the training pro-
cedure requires for each source sentence position,
the summation over all positions in the target sen-
tence. The manual alignments allow for one-to-
many alignments and many-to-many alignments
in both directions. For each position i in the source
sentence, there can be more than one manually
aligned target word. The restricted training will
allow only those paths, which are consistent with
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the manual alignments. Therefore, the restriction
of the alignment paths reduces to restricting the
summation in EM.

4 Query Strategies for Link Selection

We propose multiple query selection strategies for
our active learning setup. The scoring criteria is
designed to select alignment links across sentence
pairs that are highly uncertain under current au-
tomatic translation models. These links are diffi-
cult to align correctly by automatic alignment and
will cause incorrect phrase pairs to be extracted in
the translation model, in turn hurting the transla-
tion quality of the SMT system. Manual correc-
tion of such links produces the maximal benefit to
the model. We would ideally like to elicit the least
number of manual corrections possible in order to
reduce the cost of data acquisition. In this section
we discuss our link selection strategies based on
the standard active learning paradigm of ‘uncer-
tainty sampling’(Lewis and Catlett, 1994). We use
the automatically trained translation model θt for
scoring each link for uncertainty, which consists of
bidirectional translation lexicon tables computed
from the bidirectional alignments.

4.1 Uncertainty Sampling: Bidirectional
Alignment Scores

The automatic Viterbi alignment produced by
the alignment models is used to obtain transla-
tion lexicons. These lexicons capture the condi-
tional distributions of source-given-target P (s/t)
and target-given-source P (t/s) probabilities at the
word level where si ∈ S and tj ∈ T . We de-
fine certainty of a link as the harmonic mean of the
bidirectional probabilities. The selection strategy
selects the least scoring links according to the for-
mula below which corresponds to links with max-
imum uncertainty:

Score(aij/s
I
1, t1

J) =
2 ∗ P (tj/si) ∗ P (si/tj)
P (tj/si) + P (si/tj)

(1)

4.2 Confidence Sampling: Posterior
Alignment probabilities

Confidence estimation for MT output is an in-
teresting area with meaningful initial exploration
(Blatz et al., 2004; Ueffing and Ney, 2007). Given
a sentence pair (sI

1, t
J
1 ) and its word alignment,

we compute two confidence metrics at alignment
link level – based on the posterior link probability
as seen in Equation 5. We select the alignment

links that the initial word aligner is least confi-
dent according to our metric and seek manual cor-
rection of the links. We use t2s to denote com-
putation using higher order (IBM4) target-given-
source models and s2t to denote source-given-
target models. Targeting some of the uncertain
parts of word alignment has already been shown
to improve translation quality in SMT (Huang,
2009). We use confidence metrics as an active
learning sampling strategy to obtain most informa-
tive links. We also experimented with other con-
fidence metrics as discussed in (Ueffing and Ney,
2007), especially the IBM 1 model score metric,
but it did not show significant improvement in this
task.

Pt2s(aij , t
J
1 /s

I
1) = pt2s(tj/si,aij∈A)∑M

i pt2s(tj/si)
(2)

Ps2t(aij , s
I
1/t

J
1 ) = ps2t(si/tj ,aij∈A)∑N

i ps2t(si/tj)
(3)

Conf1(aij/S, T ) = 2∗Pt2s∗Ps2t
Pt2s+Ps2t

(4)

(5)

4.3 Query by Committee
The generative alignments produced differ based
on the choice of direction of the language pair. We
useAs2t to denote alignment in the source to target
direction and At2s to denote the target to source
direction. We consider these alignments to be two
experts that have two different views of the align-
ment process. We formulate our query strategy
to select links where the agreement differs across
these two alignments. In general query by com-
mittee is a standard sampling strategy in active
learning(Freund et al., 1997), where the commit-
tee consists of any number of experts, in this case
alignments, with varying opinions. We formulate
a query by committee sampling strategy for word
alignment as shown in Equation 6. In order to
break ties, we extend this approach to select the
link with higher average frequency of occurrence
of words involved in the link.

Score(aij) = α (6)

where α =


2 aij ∈ As2t ∩At2s

1 aij ∈ As2t ∪At2s

0 otherwise

4.4 Margin Sampling
The strategy for confidence based sampling only
considers information about the best scoring link
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conf(aij/S, T ). However we could benefit from
information about the second best scoring link as
well. In typical multi-class classification prob-
lems, earlier work shows success using such a
‘margin based’ approach (Scheffer et al., 2001),
where the difference between the probabilities as-
signed by the underlying model to the first best
and second best labels is used as a sampling cri-
teria. We adapt such a margin-based approach to
link-selection using the Conf1 scoring function
discussed in the earlier sub-section. Our margin
technique is formulated below, where â1ij and
â2ij are potential first best and second best scor-
ing alignment links for a word at position i in the
source sentence S with translation T . The word
with minimum margin value is chosen for human
alignment. Intuitively such a word is a possible
candidate for mis-alignment due to the inherent
confusion in its target translation.

Margin(i) =
Conf1(â1ij/S, T ) −Conf1(â2ij/S, T )

5 Experiments

5.1 Data Setup
Our aim in this paper is to show that active learn-
ing can help select the most informative alignment
links that have high uncertainty according to a
given automatically trained model. We also show
that fixing such alignments leads to the maximum
reduction of error in word alignment, as measured
by AER. We compare this with a baseline where
links are selected at random for manual correction.
To run our experiments iteratively, we automate
the setup by using a parallel corpus for which the
gold-standard human alignment is already avail-
able. We select the Chinese-English language pair,
where we have access to 21,863 sentence pairs
along with complete manual alignment.

5.2 Results
We first automatically align the Cn-En corpus us-
ing GIZA++ (Och and Ney, 2003). We then
use the learned model in running our link selec-
tion algorithm over the entire corpus to determine
the most uncertain links according to each active
learning strategy. The links are then looked up in
the gold-standard human alignment database and
corrected. In case a link is not present in the
gold-standard data, we introduce a NULL align-
ment, else we propose the alignment as given in

Figure 1: Performance of active sampling strate-
gies for link selection

the gold standard. We select the partial align-
ment as a set of alignment links and provide it to
our semi-supervised word aligner. We plot per-
formance curves as number of links used in each
iteration vs. the overall reduction of AER on the
corpus.

Query by committee performs worse than ran-
dom indicating that two alignments differing in
direction are not sufficient in deciding for uncer-
tainty. We will be exploring alternative formula-
tions to this strategy. We observe that confidence
based metrics perform significantly better than the
baseline. From the scatter plots in Figure 1 1 we
can say that using our best selection strategy one
achieves similar performance to the baseline, but
at a much lower cost of elicitation assuming cost
per link is uniform.

We also perform end-to-end machine transla-
tion experiments to show that our improvement
of alignment quality leads to an improvement of
translation scores. For this experiment, we train
a standard phrase-based SMT system (Koehn et
al., 2007) over the entire parallel corpus. We tune
on the MT-Eval 2004 dataset and test on a subset
of MT-Eval 2004 dataset consisting of 631 sen-
tences. We first obtain the baseline score where
no manual alignment was used. We also train a
configuration using gold standard manual align-
ment data for the parallel corpus. This is the max-
imum translation accuracy that we can achieve by
any link selection algorithm. We now take the
best link selection criteria, which is the confidence

1X axis has number of links elicited on a log-scale
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System BLEU METEOR
Baseline 18.82 42.70

Human Alignment 19.96 44.22
Active Selection 20% 19.34 43.25

Table 1: Alignment and Translation Quality

based method and train a system by only selecting
20% of all the links. We observe that at this point
we have reduced the AER from 37.09 AER to
26.57 AER. The translation accuracy as measured
by BLEU (Papineni et al., 2002) and METEOR
(Lavie and Agarwal, 2007) also shows improve-
ment over baseline and approaches gold standard
quality. Therefore we achieve 45% of the possible
improvement by only using 20% elicitation effort.

5.3 Batch Selection

Re-training the word alignment models after elic-
iting every individual alignment link is infeasible.
In our data set of 21,863 sentences with 588,075
links, it would be computationally intensive to re-
train after eliciting even 100 links in a batch. We
therefore sample links as a discrete batch, and train
alignment models to report performance at fixed
points. Such a batch selection is only going to be
sub-optimal as the underlying model changes with
every alignment link and therefore becomes ‘stale’
for future selections. We observe that in some sce-
narios while fixing one alignment link could po-
tentially fix all the mis-alignments in a sentence
pair, our batch selection mechanism still samples
from the rest of the links in the sentence pair. We
experimented with an exponential decay function
over the number of links previously selected, in
order to discourage repeated sampling from the
same sentence pair. We performed an experiment
by selecting one of our best performing selection
strategies (conf ) and ran it in both configurations
- one with the decay parameter (batchdecay) and
one without it (batch). As seen in Figure 2, the
decay function has an effect in the initial part of
the curve where sampling is sparse but the effect
gradually fades away as we observe more samples.
In the reported results we do not use batch decay,
but an optimal estimation of ‘staleness’ could lead
to better gains in batch link selection using active
learning.

Figure 2: Batch decay effects on Conf-posterior
sampling strategy

6 Conclusion and Future Work

Word-Alignment is a particularly challenging
problem and has been addressed in a completely
unsupervised manner thus far (Brown et al., 1993).
While generative alignment models have been suc-
cessful, lack of sufficient data, model assump-
tions and local optimum during training are well
known problems. Semi-supervised techniques use
partial manual alignment data to address some of
these issues. We have shown that active learning
strategies can reduce the effort involved in elicit-
ing human alignment data. The reduction in ef-
fort is due to careful selection of maximally un-
certain links that provide the most benefit to the
alignment model when used in a semi-supervised
training fashion. Experiments on Chinese-English
have shown considerable improvements. In future
we wish to work with word alignments for other
language pairs like Arabic and English. We have
tested out the feasibility of obtaining human word
alignment data using Amazon Mechanical Turk
and plan to obtain more data reduce the cost of
annotation.
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Abstract

We present a novel system that helps non-
experts find sets of similar words. The
user begins by specifying one or more seed
words. The system then iteratively sug-
gests a series of candidate words, which
the user can either accept or reject. Cur-
rent techniques for this task typically boot-
strap a classifier based on a fixed seed
set. In contrast, our system involves
the user throughout the labeling process,
using active learning to intelligently ex-
plore the space of similar words. In
particular, our system can take advan-
tage of negative examples provided by the
user. Our system combines multiple pre-
existing sources of similarity data (a stan-
dard thesaurus, WordNet, contextual sim-
ilarity), enabling it to capture many types
of similarity groups (“synonyms of crash,”
“types of car,” etc.). We evaluate on a
hand-labeled evaluation set; our system
improves over a strong baseline by 36%.

1 Introduction
Set expansion is a well-studied NLP problem
where a machine-learning algorithm is given a
fixed set of seed words and asked to find additional
members of the implied set. For example, given
the seed set {“elephant,” “horse,” “bat”}, the al-
gorithm is expected to return other mammals. Past
work, e.g. (Roark & Charniak, 1998; Ghahramani
& Heller, 2005; Wang & Cohen, 2007; Pantel
et al., 2009), generally focuses on semi-automatic
acquisition of the remaining members of the set by
mining large amounts of unlabeled data.

State-of-the-art set expansion systems work
well for well-defined sets of nouns, e.g. “US Pres-
idents,” particularly when given a large seed set.
Set expansions is more difficult with fewer seed
words and for other kinds of sets. The seed words
may have multiple senses and the user may have in
mind a variety of attributes that the answer must
match. For example, suppose the seed word is

“jaguar”. First, there is sense ambiguity; we could
be referring to either a “large cat” or a “car.” Be-
yond this, we might have in mind various more (or
less) specific groups: “Mexican animals,” “preda-
tors,” “luxury cars,” “British cars,” etc.

We propose a system which addresses sev-
eral shortcomings of many set expansion systems.
First, these systems can be difficult to use. As ex-
plored by Vyas et al. (2009), non-expert users
produce seed sets that lead to poor quality expan-
sions, for a variety of reasons including ambiguity
and lack of coverage. Even for expert users, con-
structing seed sets can be a laborious and time-
consuming process. Second, most set expansion
systems do not use negative examples, which can
be very useful for weeding out other bad answers.
Third, many set expansion systems concentrate on
noun classes such as “US Presidents” and are not
effective or do not apply to other kinds of sets.

Our system works as follows. The user initially
thinks of at least one seed word belonging to the
desired set. One at a time, the system presents can-
didate words to the user and asks whether the can-
didate fits the concept. The user’s answer is fed
back into the system, which takes into account this
new information and presents a new candidate to
the user. This continues until the user is satisfied
with the compiled list of “Yes” answers. Our sys-
tem uses both positive and negative examples to
guide the search, allowing it to recover from ini-
tially poor seed words. By using multiple sources
of similarity data, our system captures a variety of
kinds of similarity. Our system replaces the poten-
tially difficult problem of thinking of many seed
words with the easier task of answering yes/no
questions. The downside is a possibly increased
amount of user interaction (although standard set
expansion requires a non-trivial amount of user in-
teraction to build the seed set).

There are many practical uses for such a sys-
tem. Building a better, more comprehensive the-
saurus/gazetteer is one obvious application. An-
other application is in high-precision query expan-
sion, where a human manually builds a list of ex-
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pansion terms. Suppose we are looking for pages
discussing “public safety.” Then synonyms (or
near-synonyms) of “safety” would be useful (e.g.
“security”) but also non-synonyms such as “pre-
cautions” or “prevention” are also likely to return
good results. In this case, the concept we are inter-
ested in is “Words which imply that safety is being
discussed.” Another interesting direction not pur-
sued in this paper is using our system as part of
a more-traditional set expansion system to build
seed sets more quickly.

2 Set Expansion
As input, we are provided with a small set of seed
words s. The desired output is a target set of
words G, consisting of all words that fit the de-
sired concept. A particular seed set s can belong
to many possible goal sets G, so additional infor-
mation may be required to do well.

Previous work tries to do as much as possible
using only s. Typically s is assumed to contain at
least 2 words and often many more. Pantel et al.
(2009) discusses the issue of seed set size in detail,
concluding that 5-20 seed words are often required
for good performance.

There are several problems with the fixed seed
set approach. It is not always easy to think of
even a single additional seed word (e.g., the user is
trying to find “German automakers” and can only
think of “Volkswagen”). Even if the user can think
of additional seed words, time and effort might be
saved by using active learning to find good sug-
gestions. Also, as Vyas et al. (2009) show, non-
expert users often produce poor-quality seed sets.

3 Active Learning System
Any system for this task relies on information
about similarity between words. Our system takes
as input a rectangular matrix M . Each column
corresponds to a particular word. Each row cor-
responds to a unique dimension of similarity; the
jth entry in row i mij is a number between 0 and
1 indicating the degree to which wj belongs to the
ith similarity group. Possible similarity dimen-
sions include “How similar is word wj to the verb
jump?” “Is wj a type of cat?” and “Are the words
which appear in the context of wj similar to those
that appear in the context of boat?” Each row ri

of M is labeled with a word li. This may follow
intuitively from the similarity axis (e.g., “jump,”
“cat,” and “boat”, respectively), or it can be gen-
erated automatically (e.g. the word wj with the
highest membership mij).

Let θ be a vector of weights, one per row, which

correspond to how well each row aligns with the
goal set G. Thus, θi should be large and positive if
row i has large entries for positive but not negative
examples; and it should be large and negative if
row i has large entries for negative but not positive
examples. Suppose that we have already chosen
an appropriate weight vector θ. We wish to rank
all possible words (i.e., the columns of M ) so that
the most promising word gets the highest score.
A natural way to generate a score zj for column
j is to take the dot product of θ with column j,
zj =

∑
i θimij . This rewards word wj for having

high membership in rows with positive θ, and low
membership in rows with negative θ.

Our system uses a “batch” approach to active
learning. At iteration i, it chooses a new θ based
on all data labeled so far (for the 1st iteration,
this data consists of the seed set s). It then
chooses the column (word) with the highest score
(among words not yet labeled) as the candidate
word wi. The user answers “Yes” or “No,” indicat-
ing whether or not wi belongs to G. wi is added
to the positive set p or the negative set n based
on the user’s answer. Thus, we have a labeled data
set that grows from iteration to iteration as the user
labels each candidate word. Unlike set expansion,
this procedure generates (and uses) both positive
and negative examples.

We explore two options for choosing θ. Recall
that each row i is associated with a label li. The
first method is to set θi = 1 if li ∈ p (that is, the
set of positively labeled words includes label li),
θi = −1 if li ∈ n, and θi = 0 otherwise. We
refer to this method as “Untrained”, although it is
still adaptive — it takes into account the labeled
examples the user has provided so far.

The second method uses a standard machine
learning algorithm, logistic regression. As be-
fore, the final ranking over words is based on the
score zj . However, zj is passed through the lo-
gistic function to produce a score between 0 and
1, z′j = 1

1+e−zj
. We can interpret this score

as the probability that wj is a positive example,
Pθ(Y |wj). This leads to the objective function

L(θ) = log(
∏

wj∈p

Pθ(Y |wj)
∏

wj∈n

(1−Pθ(Y |wj))).

This objective is convex and can be optimized us-
ing standard methods such as L-BFGS (Liu & No-
cedal, 1989). Following standard practice we add
an L2 regularization term − θT θ

2σ2 to the objective.
This method does not use the row labels li.
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Data Word Similar words
Moby arrive accomplish, achieve, achieve success, advance, appear, approach, arrive at, arrive in, attain,...
WordNet factory (plant,-1.9);(arsenal,-2.8);(mill,-2.9);(sweatshop,-4.1);(refinery,-4.2);(winery,-4.5);...
DistSim watch (jewerly,.137),(wristwatch,.115),(shoe,0.09),(appliance,0.09),(household appliance,0.089),...

Table 1: Examples of unprocessed similarity entries from each data source.

4 Data Sources
We consider three similarity data sources: the
Moby thesaurus1, WordNet (Fellbaum, 1998), and
distributional similarity based on a large corpus
of text (Lin, 1998). Table 1 shows similarity lists
from each. These sources capture different kinds
of similarity information, which increases the rep-
resentational power of our system. For all sources,
the similarity of a word with itself is set to 1.0.

It is worth noting that our system is not strictly
limited to choosing from pre-existing groups. For
example, if we have a list of luxury items, and an-
other list of cars, our system can learn weights so
that it prefers items in the intersection, luxury cars.

Moby thesaurus consists of a list of word-
based thesaurus entries. Each word wi has a list of
similar words simi

j . Moby has a total of about 2.5
million related word pairs. Unlike some other the-
sauri (such as WordNet and thesaurus.com), en-
tries are not broken down by word sense.

In the raw format, the similarity relation is not
symmetric; for example, there are many words
that occur only in similarity lists but do not have
their own entries. We augmented the thesaurus to
make it symmetric: if “dog” is in the similarity en-
try for “cat,” we add “cat” to the similarity entry
for “dog” (creating an entry for “dog” if it does not
exist yet). We then have a row i for every similar-
ity entry in the augmented thesaurus; mij is 1 if
wj appears in the similarity list of wi, and 0 other-
wise. The label li of row i is simply word wi. Un-
like some other thesauri (including WordNet and
thesaurus.com), the entries are not broken down
by word sense or part of speech. For polysemic
words, there will be a mix of the words similar to
each sense and part of speech.

WordNet is a well-known dictionary/thesaurus/
ontology often used in NLP applications. It con-
sists of a large number of synsets; a synset is a set
of one or more similar word senses. The synsets
are then connected with hypernym/hyponym links,
which represent IS-A relationships. We focused
on measuring similarity in WordNet using the hy-
pernym hierarchy.2. There are many methods for

1Available at icon.shef.ac.uk/Moby/.
2A useful similarity metric we did not explore in this pa-

per is similarity between WordNet dictionary definitions

converting this hierarchy into a similarity score;
we chose to use the Jiang-Conrath distance (Jiang
& Conrath, 1997) because it tends to be more ro-
bust to the exact structure of WordNet. The num-
ber of types of similarity in WordNet tends to be
less than that captured by Moby, because synsets
in WordNet are (usually) only allowed to have a
single parent. For example, “murder” is classified
as a type of killing, but not as a type of crime.

The Jiang-Conrath distance gives scores for
pairs of word senses, not pairs of words. We han-
dle this by adding one row for every word sense
with the right part of speech (rather than for ev-
ery word); each row measures the similarity of ev-
ery word to a particular word sense. The label of
each row is the (undisambiguated) word; multiple
rows can have the same label. For the columns, we
do need to collapse the word senses into words;
for each word, we take a maximum across all of
its senses. For example, to determine how similar
(the only sense of) “factory” is to the word “plant,”
we compute the similarity of “factory” to the “in-
dustrial plant” sense of “plant” and to the “living
thing” sense of “plant” and take the higher of the
two (in this case, the former).

The Jiang-Conrath distance is a number be-
tween −∞ and 0. By examination, we determined
that scores below −12.0 indicate virtually no sim-
ilarity. We cut off scores below this point and
linearly mapped each score x to the range 0 to
1, yielding a final similarity of min(0,x+12)

12 . This
greatly sparsified the similarity matrix M .

Distributional similarity. We used Dekang
Lin’s dependency-based thesaurus, available at
www.cs.ualberta.ca/˜lindek/downloads.htm.
This resource groups words based on the words
they co-occur with in normal text. The words
most similar to “cat” are “dog,” “animal,” and
“monkey,” presumably because they all “eat,”
“walk,” etc. Like Moby, similarity entries are not
divided by word sense; usually, only the dominant
sense of each word is represented. This type of
similarity is considerably different from the other
two types, tending to focus less on minor details
and more on broad patterns.

Each similarity entry corresponds to a single
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word wi and is a list of scored similar words simi
j .

The scores vary between 0 and 1, but usually the
highest-scored word in a similarity list gets a score
of no more than 0.3. To calibrate these scores
with the previous two types, we divided all scores
by the score of the highest-scored word in that
list. Since each row is normalized individually,
the similarity matrix M is not symmetric. Also,
there are separate similarity lists for each of nouns,
verbs, and modifiers; we only used the lists match-
ing the seed word’s part of speech.

5 Experimental Setup
Given a seed set s and a complete target set G, it is
easy to evaluate our system; we say “Yes” to any-
thing in G, “No” to everything else, and see how
many of the candidate words are in G. However,
building a complete gold-standard G is in practice
prohibitively difficult; instead, we are only capa-
ble of saying whether or not a word belongs to G
when presented with that word.

To evaluate a particular active learning algo-
rithm, we can just run the algorithm manually, and
see how many candidate words we say “Yes” to
(note that this will not give us an accurate estimate
of the recall of our algorithm). Evaluating several
different algorithms for the same s and G is more
difficult. We could run each algorithm separately,
but there are several problems with this approach.
First, we might unconsciously (or consciously)
bias the results in favor of our preferred algo-
rithms. Second, it would be fairly difficult to be
consistent across multiple runs. Third, it would be
inefficient, since we would label the same words
multiple times for different algorithms.

We solved this problem by building a labeling
system which runs all algorithms that we wish to
test in parallel. At each step, we pick a random al-
gorithm and either present its current candidate to
the user or, if that candidate has already been la-
beled, we supply that algorithm with the given an-
swer. We do NOT ever give an algorithm a labeled
training example unless it actually asks for it – this
guarantees that the combined system is equivalent
to running each algorithm separately. This pro-
cedure has the property that the user cannot tell
which algorithms presented which words.

To evaluate the relative contribution of active
learning, we consider a version of our system
where active learning is disabled. Instead of re-
training the system every iteration, we train it once
on the seed set s and keep the weight vector θ fixed
from iteration to iteration.

We evaluated our algorithms along three axes.
First, the method for choosing θ: Untrained and
Logistic (U and L). Second, the data sources used:
each source separately (M for Moby, W for Word-
Net, D for distributional similarity), and all three
in combination (MWD). Third, whether active
learning is used (+/-). Thus, logistic regression us-
ing Moby and no active learning is L(M,-). For lo-
gistic regression, we set the regularization penalty
σ2 to 1, based on qualitative analysis during devel-
opment (before seeing the test data).

We also compared the performance of our
algorithms to the popular online thesaurus
http://thesaurus.com. The entries in this
thesaurus are similar to Moby, except that each
word may have multiple sense-disambiguated en-
tries. For each seed word w, we downloaded the
page for w and extracted a set of synonyms en-
tries for that word. To compare fairly with our al-
gorithms, we propose a word-by-word method for
exploring the thesaurus, intended to model a user
scanning the thesaurus. This method checks the
first 3 words from each entry; if none of these are
labeled “Yes,” it moves on to the next entry. We
omit details for lack of space.

6 Experimental Results
We designed a test set containing different types
of similarity. Table 2 shows each category, with
examples of specific similarity queries. For each
type, we tested on five different queries. For each
query, the first author built the seed set by writ-
ing down the first three words that came to mind.
For most queries this was easy. However, for the
similarity type Hard Synonyms, coming up with
more than one seed word was considerably more
difficult. To build seed sets for these queries, we
ran our evaluation system using a single seed word
and took the first two positive candidates; this en-
sured that we were not biasing our seed set in favor
of a particular algorithm or data set.

For each query, we ran our evaluation system
until each algorithm had suggested 25 candidate
words, for a total of 625 labeled words per algo-
rithm. We measured performance using mean av-
erage precision (MAP), which corresponds to area
under the precision-recall curve. It gives an over-
all assessment across different stopping points.

Table 3 shows results for an informative sub-
set of the tested algorithms. There are many con-
clusions we can draw. Thesaurus.Com performs
poorly overall; our best system, L(MWD,+),
outscores it by 164%. The next group of al-
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Category Name Example Similarity Queries
Simple Groups (SG) car brands, countries, mammals, crimes
Complex Groups (CG) luxury car brands, sub-Saharan countries
Synonyms (Syn) syn of {scandal, helicopter, arrogant, slay}
Hard Synonyms (HS) syn of {(stock-market) crash, (legal) maneuver}
Meronym/Material (M) parts of a car, things made of wood

Table 2: Categories and examples

Algorithm MAP
Thesaurus.Com .122
U(M,-) .176
U(W,-) .182
U(D,-) .211
L(D,-) .236
L(D,+) .288
U(MWD,-) .233
U(MWD,+) .271
L(MWD,-) .286
L(MWD,+) .322

Table 3: Comparison of algorithms
SG CG Syn HS M

Thesaurus.Com .041 .060 .275 .173 .060
L(D,+) .377 .344 .211 .329 .177
L(M,-) .102 .118 .393 .279 .119
U(W,+) .097 .136 .296 .277 .165
U(MWD,+) .194 .153 .438 .357 .213
L(MWD,-) .344 .207 .360 .345 .173
L(MWD,+) .366 .335 .379 .372 .158

Table 4: Results by category

gorithms, U(*,-), add together the similarity en-
tries of the seed words for a particular similarity
source. The best of these uses distributional simi-
larity; L(MWD,+) outscores it by 53%. Combin-
ing all similarity types, U(MWD,-) improves by
10% over U(D,-). L(MWD,+) improves over the
best single-source, L(D,+), by a similar margin.

Using logistic regression instead of the un-
trained weights significantly improves perfor-
mance. For example, L(MWD,+) outscores
U(MWD,+) by 19%. Using active learning also
significantly improves performance: L(MWD,+)
outscores L(MWD,-) by 13%. This shows that
active learning is useful even when a reasonable
amount of initial information is available (three
seed words for each test case). The gains from
logistic regression and active learning are cumula-
tive; L(MWD,+) outscores U(MWD,-) by 38%.

Finally, our best system, L(MWD,+) improves
over L(D,-), the best system using a single data
source and no active learning, by 36%. We con-
sider L(D,-) to be a strong baseline; this compari-
son demonstrates the usefulness of the main con-
tributions of this paper, the use of multiple data
sources and active learning. L(D,-) is still fairly
sophisticated, since it combines information from
the similarity entries for different words.

Table 4 shows the breakdown of results by cat-
egory. For this chart, we chose the best set-
ting for each similarity type. Broadly speaking,
the thesauri work reasonably well for synonyms,
but poorly for groups. Meronyms were difficult

across the board. Neither logistic regression nor
active learning always improved performance, but
L(MWD,+) performs near the top for every cate-
gory. The complex groups category is particularly
interesting, because achieving high performance
on this category required using both logistic re-
gression and active learning. This makes sense
since negative evidence is particularly important
for this category.

7 Discussion and Related Work
The biggest difference between our system and
previous work is the use of active learning, espe-
cially in allowing the use of negative examples.
Most previous set expansion systems use boot-
strapping from a small set of positive examples.
Recently, the use of negative examples for set ex-
pansion was proposed by Vyas and Pantel (2009),
although in a different way. First, set expansion is
run as normal using a fixed seed set. Then, human
annotators label a small number of negative exam-
ples from the returned results, which are used to
weed out other bad answers. Our method incorpo-
rates negative examples at an earlier stage. Also,
we use a logistic regression model to robustly in-
corporate negative information, rather than deter-
ministically ruling out words and features.

Our system is limited by our data sources. Sup-
pose we want actors who appeared in Star Wars. If
we only know that Harrison Ford and Mark Hamill
are actors, we have little to go on. There has
been a large amount of work on other sources of
word-similarity. Hughes and Ramage (2007) use
random walks over WordNet, incorporating infor-
mation such as meronymy and dictionary glosses.
Snow et al. (2006) extract hypernyms from free
text. Wang and Cohen (2007) exploit web-page
structure, while Pasca and Durme (2008) exam-
ine query logs. We expect that adding these types
of data would significantly improve our system.
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Abstract

We initiate a study comparing effective-
ness of the transformed spaces learned by
recently proposed supervised, and semi-
supervised metric learning algorithms
to those generated by previously pro-
posed unsupervised dimensionality reduc-
tion methods (e.g., PCA). Through a va-
riety of experiments on different real-
world datasets, we find IDML-IT, a semi-
supervised metric learning algorithm to be
the most effective.

1 Introduction

Because of the high-dimensional nature of NLP
datasets, estimating a large number of parameters
(a parameter for each dimension), often from a
limited amount of labeled data, is a challenging
task for statistical learners. Faced with this chal-
lenge, various unsupervised dimensionality reduc-
tion methods have been developed over the years,
e.g., Principal Components Analysis (PCA).

Recently, several supervised metric learning al-
gorithms have been proposed (Davis et al., 2007;
Weinberger and Saul, 2009). IDML-IT (Dhillon et
al., 2010) is another such method which exploits
labeled as well as unlabeled data during metric
learning. These methods learn a Mahalanobis dis-
tance metric to compute distance between a pair
of data instances, which can also be interpreted as
learning a transformation of the input data, as we
shall see in Section 2.1.

In this paper, we make the following contribu-
tions:

Even though different supervised and semi-
supervised metric learning algorithms have
recently been proposed, effectiveness of the
transformed spaces learned by them in NLP
∗ Research carried out while at the University of Penn-

sylvania, Philadelphia, PA, USA.

datasets has not been studied before. In
this paper, we address that gap: we com-
pare effectiveness of classifiers trained on the
transformed spaces learned by metric learn-
ing methods to those generated by previ-
ously proposed unsupervised dimensionality
reduction methods. We find IDML-IT, a
semi-supervised metric learning algorithm to
be the most effective.

2 Metric Learning

2.1 Relationship between Metric Learning
and Linear Projection

We first establish the well-known equivalence be-
tween learning a Mahalanobis distance measure
and Euclidean distance in a linearly transformed
space of the data (Weinberger and Saul, 2009). Let
A be a d×d positive definite matrix which param-
eterizes the Mahalanobis distance, dA(xi, xj), be-
tween instances xi and xj , as shown in Equation
1. Since A is positive definite, we can decompose
it as A = P>P , where P is another matrix of size
d× d.

dA(xi, xj) = (xi − xj)>A(xi − xj) (1)

= (Pxi − Pxj)>(Pxi − Pxj)
= dEuclidean(Pxi, Pxj)

Hence, computing Mahalanobis distance pa-
rameterized by A is equivalent to first projecting
the instances into a new space using an appropriate
transformation matrix P and then computing Eu-
clidean distance in the linearly transformed space.
In this paper, we are interested in learning a better
representation of the data (i.e., projection matrix
P ), and we shall achieve that goal by learning the
corresponding Mahalanobis distance parameterA.

We shall now review two recently proposed
metric learning algorithms.
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2.2 Information-Theoretic Metric Learning
(ITML): Supervised

Information-Theoretic Metric Learning (ITML)
(Davis et al., 2007) assumes the availability of
prior knowledge about inter-instance distances. In
this scheme, two instances are considered simi-
lar if the Mahalanobis distance between them is
upper bounded, i.e., dA(xi, xj) ≤ u, where u
is a non-trivial upper bound. Similarly, two in-
stances are considered dissimilar if the distance
between them is larger than certain threshold l,
i.e., dA(xi, xj) ≥ l. Similar instances are rep-
resented by set S, while dissimilar instances are
represented by set D.

In addition to prior knowledge about inter-
instance distances, sometimes prior information
about the matrix A, denoted by A0, itself may
also be available. For example, Euclidean dis-
tance (i.e., A0 = I) may work well in some do-
mains. In such cases, we would like the learned
matrixA to be as close as possible to the prior ma-
trix A0. ITML combines these two types of prior
information, i.e., knowledge about inter-instance
distances, and prior matrix A0, in order to learn
the matrix A by solving the optimization problem
shown in (2).

min
A�0

Dld(A,A0) (2)

s.t. tr{A(xi − xj)(xi − xj)>} ≤ u,
∀(i, j) ∈ S

tr{A(xi − xj)(xi − xj)>} ≥ l,
∀(i, j) ∈ D

whereDld(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )
−n, is the LogDet divergence.

To handle situations where exactly solving the
problem in (2) is not possible, slack variables may
be introduced to the ITML objective. To solve this
optimization problem, an algorithm involving re-
peated Bregman projections is presented in (Davis
et al., 2007), which we use for the experiments re-
ported in this paper.

2.3 Inference-Driven Metric Learning
(IDML): Semi-Supervised

Notations: We first define the necessary notations.
Let X be the d × n matrix of n instances in a
d-dimensional space. Out of the n instances, nl
instances are labeled, while the remaining nu in-
stances are unlabeled, with n = nl +nu. Let S be
a n × n diagonal matrix with Sii = 1 iff instance

xi is labeled. m is the total number of labels. Y
is the n×m matrix storing training label informa-
tion, if any. Ŷ is the n×m matrix of estimated la-
bel information, i.e., output of any classifier, with
Ŷil denoting score of label l at node i. .

The ITML metric learning algorithm, which we
reviewed in Section 2.2, is supervised in nature,
and hence it does not exploit widely available un-
labeled data. In this section, we review Infer-
ence Driven Metric Learning (IDML) (Algorithm
1) (Dhillon et al., 2010), a recently proposed met-
ric learning framework which combines an exist-
ing supervised metric learning algorithm (such as
ITML) along with transductive graph-based la-
bel inference to learn a new distance metric from
labeled as well as unlabeled data combined. In
self-training styled iterations, IDML alternates be-
tween metric learning and label inference; with
output of label inference used during next round
of metric learning, and so on.

IDML starts out with the assumption that ex-
isting supervised metric learning algorithms, such
as ITML, can learn a better metric if the number
of available labeled instances is increased. Since
we are focusing on the semi-supervised learning
(SSL) setting with nl labeled and nu unlabeled
instances, the idea is to automatically label the
unlabeled instances using a graph based SSL al-
gorithm, and then include instances with low as-
signed label entropy (i.e., high confidence label
assignments) in the next round of metric learning.
The number of instances added in each iteration
depends on the threshold β1. This process is con-
tinued until no new instances can be added to the
set of labeled instances, which can happen when
either all the instances are already exhausted, or
when none of the remaining unlabeled instances
can be assigned labels with high confidence.

The IDML framework is presented in Algo-
rithm 1. In Line 3, any supervised metric
learner, such as ITML, may be used as the
METRICLEARNER. Using the distance metric
learned in Line 3, a new k-NN graph is constructed
in Line 4 , whose edge weight matrix is stored in
W . In Line 5 , GRAPHLABELINF optimizes over
the newly constructed graph, the GRF objective
(Zhu et al., 2003) shown in (3).

min
Ŷ ′

tr{Ŷ ′>LŶ ′}, s.t. ŜŶ = ŜŶ
′

(3)

where L = D −W is the (unnormalized) Lapla-
1During the experiments in Section 3, we set β = 0.05
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Algorithm 1: Inference Driven Metric Learn-
ing (IDML)
Input: instancesX , training labels Y , training
instance indicator S, label entropy threshold β,
neighborhood size k
Output: Mahalanobis distance parameter A

1: Ŷ ← Y , Ŝ ← S
2: repeat
3: A← METRICLEARNER(X, Ŝ, Ŷ )
4: W ← CONSTRUCTKNNGRAPH(X,A, k)
5: Ŷ

′ ← GRAPHLABELINF(W, Ŝ, Ŷ )
6: U ← SELECTLOWENTINST(Ŷ

′
, Ŝ, β)

7: Ŷ ← Ŷ + UŶ
′

8: Ŝ ← Ŝ + U
9: until convergence (i.e., Uii = 0, ∀i)

10: return A

cian, and D is a diagonal matrix with Dii =∑
jWij . The constraint, ŜŶ = ŜŶ

′
, in (3)

makes sure that labels on training instances are not
changed during inference. In Line 6, a currently
unlabeled instance xi (i.e., Ŝii = 0) is consid-
ered a new labeled training instance, i.e., Uii = 1,
for next round of metric learning if the instance
has been assigned labels with high confidence in
the current iteration, i.e., if its label distribution
has low entropy (i.e., ENTROPY(Ŷ

′
i:) ≤ β). Fi-

nally in Line 7, training instance label information
is updated. This iterative process is continued till
no new labeled instance can be added, i.e., when
Uii = 0 ∀i. IDML returns the learned matrix A
which can be used to compute Mahalanobis dis-
tance using Equation 1.

3 Experiments

3.1 Setup

Dataset Dimension Balanced
Electronics 84816 Yes

Books 139535 Yes
Kitchen 73539 Yes
DVDs 155465 Yes

WebKB 44261 Yes

Table 1: Description of the datasets used in Sec-
tion 3. All datasets are binary with 1500 total in-
stances in each.

Description of the datasets used during experi-
ments in Section 3 are presented in Table 1. The

first four datasets – Electronics, Books, Kitchen,
and DVDs – are from the sentiment domain and
previously used in (Blitzer et al., 2007). WebKB
is a text classification dataset derived from (Sub-
ramanya and Bilmes, 2008). For details regard-
ing features and data pre-processing, we refer the
reader to the origin of these datasets cited above.
One extra preprocessing that we did was that we
only considered features which occurred more 20
times in the entire dataset to make the problem
more computationally tractable and also since the
infrequently occurring features usually contribute
noise. We use classification error (lower is better)
as the evaluation metric. We experiment with the
following ways of estimating transformation ma-
trix P :

Original2: We set P = I , where I is the
d × d identity matrix. Hence, the data is not
transformed in this case.

RP: The data is first projected into a lower
dimensional space using the Random Pro-
jection (RP) method (Bingham and Mannila,
2001). Dimensionality of the target space
was set at d

′
= logn

ε2log 1
ε

, as prescribed in

(Bingham and Mannila, 2001). We use the
projection matrix constructed by RP as P . ε
was set to 0.25 for the experiments in Sec-
tion 3, which has the effect of projecting the
data into a much lower dimensional space
(84 for the experiments in this section). This
presents an interesting evaluation setting as
we already run evaluations in much higher di-
mensional space (e.g., Original).

PCA: Data instances are first projected into
a lower dimensional space using Principal
Components Analysis (PCA) (Jolliffe, 2002)
. Following (Weinberger and Saul, 2009), di-
mensionality of the projected space was set
at 250 for all experiments. In this case, we
used the projection matrix generated by PCA
as P .

ITML: A is learned by applying ITML (see
Section 2.2) on the Original space (above),
and then we decompose A as A = P>P to
obtain P .

2Note that “Original” in the results tables refers to orig-
inal space with features occurring more than 20 times. We
also ran experiments with original set of features (without
any thresholding) and the results were worse or comparable
to the ones reported in the tables.
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Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 31.3± 0.9 42.5± 1.0 46.4± 2.0 33.0± 1.0 30.7±0.7
Books 37.5± 1.1 45.0± 1.1 34.8± 1.4 35.0± 1.1 32.0±0.9

Kitchen 33.7± 1.0 43.0± 1.1 34.0± 1.6 30.9± 0.7 29.0±1.0
DVDs 39.0± 1.2 47.7± 1.2 36.2± 1.6 37.0± 0.8 33.9±1.0

WebKB 31.4± 0.9 33.0± 1.0 27.9± 1.3 28.9± 1.0 25.5±1.0

Table 2: Comparison of SVM % classification errors (lower is better), with 50 labeled instances (Sec.
3.2). nl=50. and nu = 1450. All results are averaged over ten trials. All hyperparameters are tuned on a
separate random split.

Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 27.0± 0.9 40.0± 1.0 41.2± 1.0 27.5± 0.8 25.3±0.8
Books 31.0± 0.7 42.9± 0.6 31.3± 0.7 29.9± 0.5 27.7±0.7

Kitchen 26.3± 0.5 41.9± 0.7 27.0± 0.9 26.1± 0.8 24.8±0.9
DVDs 34.7± 0.4 46.8± 0.6 32.9± 0.8 34.0± 0.8 31.8±0.9

WebKB 25.7± 0.5 31.1± 0.5 24.9± 0.6 25.6± 0.4 23.9±0.4

Table 3: Comparison of SVM % classification errors (lower is better), with 100 labeled instances (Sec.
3.2). nl=100. and nu = 1400. All results are averaged over ten trials. All hyperparameters are tuned on
a separate random split.

IDML-IT: A is learned by applying IDML
(Algorithm 1) (see Section 2.3) on the Orig-
inal space (above); with ITML used as
METRICLEARNER in IDML (Line 3 in Al-
gorithm 1). In this case, we treat the set of
test instances (without their gold labels) as
the unlabeled data. In other words, we essen-
tially work in the transductive setting (Vap-
nik, 2000). Once again, we decompose A as
A = P>P to obtain P .

We also experimented with the supervised
large-margin metric learning algorithm (LMNN)
presented in (Weinberger and Saul, 2009). We
found ITML to be more effective in practice than
LMNN, and hence we report results based on
ITML only. Each input instance, x, is now pro-
jected into the transformed space as Px. We
now train different classifiers on this transformed
space. All results are averaged over ten random
trials.

3.2 Supervised Classification
We train a SVM classifier, with an RBF kernel, on
the transformed space generated by the projection
matrix P . SVM hyperparameter, C and RBF ker-
nel bandwidth, were tuned on a separate develop-
ment split. Experimental results with 50 and 100

labeled instances are shown in Table 2, and Ta-
ble 3, respectively. From these results, we observe
that IDML-IT consistently achieves the best per-
formance across all experimental settings. We also
note that in Table 3, performance difference be-
tween ITML and IDML-IT in the Electronics and
Kitchen domains are statistically significant.

3.3 Semi-Supervised Classification

In this section, we trained the GRF classifier (see
Equation 3), a graph-based semi-supervised learn-
ing (SSL) algorithm (Zhu et al., 2003), using
Gaussian kernel parameterized by A = P>P to
set edge weights. During graph construction, each
node was connected to its k nearest neighbors,
with k treated as a hyperparameter and tuned on
a separate development set. Experimental results
with 50 and 100 labeled instances are shown in
Table 4, and Table 5, respectively. As before, we
experimented with nl = 50 and nl = 100. Once
again, we observe that IDML-IT is the most effec-
tive method, with the GRF classifier trained on the
data representation learned by IDML-IT achieving
best performance in all settings. Here also, we ob-
serve that IDML-IT achieves the best performance
across all experimental settings.
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Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 47.9± 1.1 49.0± 1.2 43.2± 0.9 34.9± 0.5 34.0±0.5
Books 50.0± 1.0 49.4± 1.0 47.9± 0.7 42.1± 0.7 40.6±0.7

Kitchen 49.8± 1.1 49.6± 0.9 48.6± 0.8 31.1± 0.5 30.0±0.5
DVDs 50.1± 0.5 49.9± 0.7 49.4± 0.6 42.1± 0.4 41.2±0.5

WebKB 33.1± 0.4 33.1± 0.3 33.1± 0.3 30.0± 0.4 28.7±0.5

Table 4: Comparison of transductive % classification errors (lower is better) over graphs constructed
using different methods (see Section 3.3), with nl = 50 and nu = 1450. All results are averaged over
ten trials. All hyperparameters are tuned on a separate random split.

Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 43.5± 0.7 47.2± 0.8 39.1± 0.7 31.3± 0.2 30.8±0.3
Books 48.3± 0.5 48.9± 0.3 43.3± 0.4 35.2± 0.5 33.3±0.6

Kitchen 45.3± 0.6 48.2± 0.5 41.0± 0.7 30.7± 0.6 29.9±0.3
DVDs 48.6± 0.3 49.3± 0.5 45.9± 0.5 42.6± 0.4 41.7±0.3

WebKB 33.4± 0.4 33.4± 0.4 33.4± 0.3 30.4± 0.5 28.6±0.7

Table 5: Comparison of transductive % classification errors (lower is better) over graphs constructed
using different methods (see Section 3.3), with nl = 100 and nu = 1400. All results are averaged over
ten trials. All hyperparameters are tuned on a separate random split.

4 Conclusion

In this paper, we compared the effectiveness
of the transformed spaces learned by recently
proposed supervised, and semi-supervised metric
learning algorithms to those generated by previ-
ously proposed unsupervised dimensionality re-
duction methods (e.g., PCA). To the best of our
knowledge, this is the first study of its kind in-
volving NLP datasets. Through a variety of ex-
periments on different real-world NLP datasets,
we demonstrated that supervised as well as semi-
supervised classifiers trained on the space learned
by IDML-IT consistently result in the lowest clas-
sification errors. Encouraged by these early re-
sults, we plan to explore further the applicability
of IDML-IT in other NLP tasks (e.g., entity classi-
fication, word sense disambiguation, polarity lexi-
con induction, etc.) where better representation of
the data is a pre-requisite for effective learning.
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Abstract

The main focus of this work is to investi-
gate robust ways for generating summaries
from summary representations without re-
curring to simple sentence extraction and
aiming at more human-like summaries.
This is motivated by empirical evidence
from TAC 2009 data showing that human
summaries contain on average more and
shorter sentences than the system sum-
maries. We report encouraging prelimi-
nary results comparable to those attained
by participating systems at TAC 2009.

1 Introduction

In this paper we adopt the general framework
for summarization put forward by Spärck-Jones
(1999) – which views summarization as a three-
fold process: interpretation, transformation and
generation – and attempt to provide a clean in-
stantiation for each processing phase, with a par-
ticular emphasis on the last, summary-generation
phase often omitted or over-simplified in the main-
stream work on summarization.

The advantages of looking at the summarization
problem in terms of distinct processing phases are
numerous. It not only serves as a common ground
for comparing different systems and understand-
ing better the underlying logic and assumptions,
but it also provides a neat framework for devel-
oping systems based on clean and extendable de-
signs. For instance, Gong and Liu (2002) pro-
posed a method based on Latent Semantic Anal-
ysis (LSA) and later J. Steinberger et al. (2007)
showed that solely by enhancing the first source
interpretation phase, one is already able to pro-
duce better summaries.

There has been limited work on the last sum-
mary generation phase due to the fact that it is
unarguably a very challenging problem. The vast

amount of approaches assume simple sentence se-
lection, a type of extractive summarization, where
often the summary representation and the end
summary are, indeed, conflated.

The main focus of this work is, thus, to in-
vestigate robust ways for generating summaries
from summary representations without recurring
to simple sentence extraction and aiming at more
human-like summaries. This decision is also mo-
tivated by empirical evidence from TAC 2009 data
(see table 1) showing that human summaries con-
tain on average more and shorter sentences than
the system summaries. The intuition behind this is
that, by containing more sentences, a summary is
able to capture more of the important content from
the source.

Our initial experimental results show that our
approach is feasible, since it produces summaries,
which when evaluated against the TAC 2009 data1

yield ROUGE scores (Lin and Hovy, 2003) com-
parable to the participating systems in the Sum-
marization task at TAC 2009. Taking into account
that our approach is completely unsupervised and
language-independent, we find our preliminary re-
sults encouraging.

The remainder of the paper is organised as fol-
lows: in the next section we briefly survey the
related work, in §3 we describe our approach to
summarization, in §4 we explain how we tackle
the generation step, in §5 we present and discuss
our experimental results and towards the end we
conclude and give pointers to future work.

2 Related Work

There is a large body of literature on summariza-
tion (Hovy, 2005; Erkan and Radev, 2004; Kupiec
et al., 1995). The most closely related work to the
approach presented hereby is work on summariza-
tion attempting to go beyond simple sentence ex-

1http://www.nist.gov/tac/
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traction and to a lesser degree work on sentence
compression. We survey below work along these
lines.

Although our approach is related to sentence
compression (Knight and Marcu, 2002; Clarke
and Lapata, 2008), it is subtly different. Firstly, we
reduce the number of terms to be used in the sum-
mary at a global level, not at a local per-sentence
level. Secondly, we directly exploit the resulting
structures from the SVD making the last genera-
tion step fully aware of previous processing stages,
as opposed to tackling the problem of sentence
compression in isolation.

A similar approach to our sentence reconstruc-
tion method has been developed by Quirk et al.
(2004) for paraphrase generation. In their work,
training and test sets contain sentence pairs that
are composed of two different proper English sen-
tences and a paraphrase of a source sentence is
generated by finding the optimal path through a
paraphrases lattice.

Finally, it is worth mentioning that we are aware
of the ‘capsule overview’ summaries proposed by
Boguraev and Kennedy (1997) which is similar to
our TSR (see below), however, as opposed to their
emphasis on a suitable browsing interface rather
than producing a readable summary, we precisely
attempt the latter.

3 Three-fold Summarization:
Interpretation, Transformation and
Generation

We chose the LSA paradigm for summarization,
since it provides a clear and direct instantiation of
Spärck-Jones’ three-stage framework.

In LSA-based summarization the interpreta-
tion phase takes the form of building a term-by-
sentence matrix A = [A1, A2, . . . , An], where
each column Aj = [a1j , a2j , . . . , anj ]

T represents
the weighted term-frequency vector of sentence j
in a given set of documents. We adopt the same
weighting scheme as the one described in (Stein-
berger et al., 2007), as well as their more general
definition of term entailing not only unigrams and
bigrams, but also named entities.

The transformation phase is done by applying
singular value decomposition (SVD) to the initial
term-by-sentence matrix defined as A = UΣV T .

The generation phase is where our main contri-
bution comes in. At this point we depart from stan-
dard LSA-based approaches and aim at produc-

ing a succinct summary representation comprised
only of salient terms – Term Summary Represen-
tation (TSR). Then this TSR is passed on to an-
other module which attempts to produce complete
sentences. The module for sentence reconstruc-
tion is described in detail in section 4, in what fol-
lows we explain the method for producing a TSR.

3.1 Term Summary Representation
To explain how a term summary representation
(TSR) is produced, we first need to define two con-
cepts: salience score of a given term and salience
threshold. Salience score for each term in matrix
A is given by the magnitude of the corresponding
vector in the matrix resulting from the dot product
of the matrix of left singular vectors with the diag-
onal matrix of singular values. More formally, let
T = U · Σ and then for each term i, the salience
score is given by |~Ti|. Salience threshold is equal
to the salience score of the top kth term, when all
terms are sorted in descending order on the basis
of their salience scores and a cutoff is defined as a
percentage (e.g., top 15%). In other words, if the
total number of terms is n, then 100∗k/n must be
equal to the percentage cutoff specified.

The generation of a TSR is performed in two
steps. First, an initial pool of sentences is selected
by using the same technique as in (Steinberger and
Jez̆ek, 2009) which exploits the dot product of the
diagonal matrix of singular values with the right
singular vectors: Σ · V T .2 This initial pool of sen-
tences is the output of standard LSA approaches.

Second, the terms from the source matrix A are
identified in the initial pool of sentences and those
terms whose salience score is above the salience
threshold are copied across to the TSR. Thus, the
TSR is formed by the most (globally) salient terms
from each one of the sentences. For example:

• Extracted Sentence: “Irish Prime Minister Bertie

Ahern admitted on Tuesday that he had held a series of

private one-on-one meetings on the Northern Ireland

peace process with Sinn Fein leader Gerry Adams, but

denied they had been secret in any way.”

• TSR Sentence at 10%: “Irish Prime Minister

Bertie Ahern Tuesday had held one-on-one meetings

Northern Ireland peace process Sinn Fein leader Gerry

Adams”3

2Due to space constraints, full details on that step are
omitted here, see (Steinberger and Jez̆ek, 2009).

3The TSR sentence is stemmed just before feeding it to
the reconstruction module discussed in the next section.
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Average Human System At 100% At 15% At 10% At 5% At 1%
number of: Summaries Summaries
Sentences/summary 6.17 3.82 3.8 3.95 4.39 5.18 12.58
Words/sentence 15.96 25.01 26.24 25.1 22.61 19.08 7.55
Words/summary 98.46 95.59 99.59 99.25 99.18 98.86 94.96

Table 1: Summary statistics on TAC’09 data (initial summaries).

Metric LSAextract At 100% At 15% At 10% At 5% At 1%
ROUGE-1 0.371 0.361 0.362 0.365 0.372 0.298
ROUGE-2 0.096 0.08 0.081 0.083 0.083 0.083
ROUGE-SU4 0.131 0.125 0.126 0.128 0.131 0.104

Table 2: Summarization results on TAC’09 data (initial summaries).

4 Noisy-channel model for sentence
reconstruction

This section describes a probabilistic approach to
the reconstruction problem. We adopt the noisy-
channel framework that has been widely used in a
number of other NLP applications. Our interpre-
tation of the noisy channel consists of looking at a
stemmed string without stopwords and imagining
that it was originally a long string and that some-
one removed or stemmed some text from it. In our
framework, reconstruction consists of identifying
the original long string.

To model our interpretation of the noisy chan-
nel, we make use of one of the most popular
classes of SMT systems: the Phrase Based Model
(PBM) (Zens et al., 2002; Och and Ney, 2001;
Koehn et al., 2003). It is an extension of the noisy-
channel model and was introduced by Brown et al.
(1994), using phrases rather than words. In PBM,
a source sentence f is segmented into a sequence
of I phrases f I = [f1, f2, . . . fI ] and the same is
done for the target sentence e, where the notion of
phrase is not related to any grammatical assump-
tion; a phrase is an n-gram. The best translation
ebest of f is obtained by:

ebest = argmax
e
p(e|f) = argmax

e

I∏
i=1

φ(fi|ei)λφ

d(ai − bi−1)λd
|e|∏
i=1

pLM (ei|e1 . . . ei−1)λLM

where φ(fi|ei) is the probability of translating
a phrase ei into a phrase fi. d(ai − bi−1) is
the distance-based reordering model that drives
the system to penalize substantial reorderings of
words during translation, while still allowing some
flexibility. In the reordering model, ai denotes the

start position of the source phrase that was trans-
lated into the ith target phrase, and bi−1 denotes
the end position of the source phrase translated
into the (i−1th) target phrase. pLM (ei|e1 . . . ei−1)
is the language model probability that is based on
the Markov chain assumption. It assigns a higher
probability to fluent/grammatical sentences. λφ,
λLM and λd are used to give a different weight to
each element (for more details see (Koehn et al.,
2003)).

In our reconstruction problem, the difference
between the source and target sentences is not in
terms of languages, but in terms of forms. In fact,
our source sentence f is a stemmed sentence with-
out stopwords, while the target sentence e is a
complete English sentence. “Translate” means to
reconstruct the most probable sentence e given f
inserting new words and reproducing the inflected
surface forms of the source words.

4.1 Training of the model

In Statistical Machine Translation, a PBM system
is trained using parallel sentences, where each sen-
tence in a language is paired with another sentence
in a different language and one is the translation of
the other.

In the reconstruction problem, we use a set, S1

of 2,487,414 English sentences extracted from the
news. This set is duplicated, S2, and for each sen-
tence in S2, stopwords are removed and the re-
maining words are stemmed using Porter’s stem-
mer (Porter, 1980). Our stopword list contains 488
words. Verbs are not included in this list, because
they are relevant for the reconstruction task. To
optimize the lambda parameters, we select 2,000
pairs as development set.
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An example of training sentence pair is:

• Source Sentence: “royal mail ha doubl profit 321

million huge fall number letter post”

• Target Sentence: “royal mail has doubled its prof-

its to 321 million despite a huge fall in the number of

letters being posted”

In this work we use Moses (Koehn et al., 2007),
a complete phrase-based translation toolkit for
academic purposes. It provides all the state-of-the-
art components needed to create a phrase-based
machine translation system. It contains different
modules to preprocess data, train the Language
Models and the Translation Models.

5 Experimental Results
For our experiments we made use of the TAC
2009 data which conveniently contains human-
produced summaries against which we could eval-
uate the output of our system (NIST, 2009).

To begin our inquiry we carried out a phase
of exploratory data analysis, in which we mea-
sured the average number of sentences per sum-
mary, words per sentence and words per summary
in human vs. system summaries in the TAC 2009
data. Additionally, we also measured these statis-
tics of summaries produced by our system at five
different percentage cutoffs: 100%, 15%, 10%,
5% and 1%. 4 The results from this exploration
are summarised in table 1. The most notable thing
is that human summaries contain on average more
and shorter sentences than the system summaries
(see 2nd and 3rd column from left to right). Sec-
ondly, we note that as the percentage cutoff de-
creases (from 4th column rightwards) the charac-
teristics of the summaries produced by our system
are increasingly more similar to those of the hu-
man summaries. In other words, within the 100-
word window imposed by the TAC guidelines, our
system is able to fit more (and hence shorter) sen-
tences as we decrease the percentage cutoff.

Summarization performance results are shown
in table 2. We used the standard ROUGE evalu-
ation (Lin and Hovy, 2003) which has been also
used for TAC. We include the usual ROUGE met-
rics: R1 is the maximum number of co-occurring
unigrams, R2 is the maximum number of co-
occurring bigrams and RSU4 is the skip bigram
measure with the addition of unigrams as counting

4Recall from section §3 that the salience threshold is a
function of the percentage cutoff.

unit. The last five columns of table 2 (from left to
right) correspond to summaries produced by our
system at various percentage cutoffs. The 2nd col-
umn, LSAextract, corresponds to the performance
of our system at producing summaries by sentence
extraction only.5

In the light of the above, the decrease in per-
formance from column LSAextract to column ‘At
100%’ can be regarded as reconstruction error.6

Then, as we decrease the percentage cutoff (from
4th column rightwards) we are increasingly cover-
ing more of the content comprised by the human
summaries (as far as the ROUGE metrics are able
to gauge this, of course). In other words, the im-
provement of content coverage makes up for the
reconstruction error, and at 5% cutoff we already
obtain ROUGE scores comparable to LSAextract.
This suggests that if we improve the quality of our
sentence reconstruction we would potentially end
up with a better performing system than a typical
LSA system based on sentence selection. Hence,
we find these results very encouraging.

Finally, we admittedly note that by applying a
percentage cutoff on the initial term set and further
performing the sentence reconstruction we gain in
content coverage, to a certain extent, on the ex-
pense of sentence readability.

6 Conclusion
In this paper we proposed a novel approach to
summary generation from summary representa-
tion based on the LSA summarization framework
and on a machine-translation-inspired technique
for sentence reconstruction.

Our preliminary results show that our approach
is feasible, since it produces summaries which re-
semble better human summaries in terms of the av-
erage number of sentences per summary and yield
ROUGE scores comparable to the participating
systems in the Summarization task at TAC 2009.
Bearing in mind that our approach is completely
unsupervised and language-independent, we find
our results promising.

In future work we plan on working towards im-
proving the quality of our sentence reconstruction
step in order to produce better and more readable
sentences.

5These are, effectively, what we called initial pool of sen-
tences in section 3, before the TSR generation.

6The only difference between the two types of summaries
is the reconstruction step, since we are including 100% of the
terms.
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Alumäe, Tanel, 301
Ambati, Vamshi, 365
Asahara, Masayuki, 98

Baker, Collin, 68
Becker, Israela, 331
Beigman Klebanov, Beata, 253
Beigman, Eyal, 253
Ben Aharon, Roni, 241
Benajiba, Yassine, 281
Bienenstock, Elie, 215
Blackwood, Graeme, 27
Blunsom, Phil, 225
Bojar, Ondřej, 86
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