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Preface: General Chair

Welcome to the 12th Conference of the European Chapter of the Association for Computational
Linguistics—EACL 2009. This is the largest ever EACL in terms of the number of papers being
presented. There are also ten workshops, four tutorials, a demos session and a student research workshop.
I hope that you will enjoy this full and diverse programme.

This is the first time that an EACL conference that is not held jointly with ACL has had a General Chair.
Having a General Chair is the EACL Board’s strategy for ensuring continuity in the organisation of their
conferences, now that the triennial EACLs are not synchronised with the biennial changes to personnel
on the board. My job as General Chair is to liaise between the organising team and the EACL board, and
to offer advice when needed. What an easy job it has been! And that is thanks wholly to the fantastic
people who have done all the hard work to make this conference happen. I could not have asked for a
better team of people. I would like to thank them all.

First, the Programme Committee, chaired by Claire Gardent and Joakim Nivre, attracted a record number
of submissions. Thanks to their efforts, we have our largest ever main programme. I am very excited
by the sheer breadth of topics and methodologies that are to be presented at this conference. It was a
total pleasure to deal with the Programme Chairs – Joakim especially often offered me valuable advice
on many matters concerning the conference, particularly electronic publication. I can’t thank Claire and
Joakim enough for all they have done to make this EACL conference a success. I would also like to
thank Ann Copestake and Franciska de Jong for agreeing to be the keynote speakers.

For the first time, the three ACL conferences coordinated the call for workshop proposals. This gave
proposers more flexibility in choosing the location for their workshops. The Workshop Chairs for EACL,
Miriam Butt and Steve Clark, coordinated with the workshop chairs for NAACL 2009 and ACL 2009 in
reviewing all the workshop proposals. This coordination inevitably makes the task more complex. But
the whole process ran very smoothly thanks to their careful and diligent work. I’m very grateful to Steve
and Miriam for putting together a very exciting and broad workshop programme for EACL.

As is traditional, the student research workshop was organised by the student members of the EACL
board – Vera Demberg, Yanjun Ma and Nils Reiter. Their job is very demanding; they essentially do
everything that programme chairs do, only on a slightly smaller scale. They issued the call, organised
a fantastic team of reviewers, assigned papers, coordinated and mediated among reviewers, and finally
constructed a schedule consisting of four parallel sessions. They did a brilliant job, and with very little
help from me. I owe them a huge debt of thanks.

The Tutorial Chairs, Emiel Krahmer and David Weir, could be viewed as victims of their own success!
Their efforts to attract tutorial proposals produced a record number of submissions; many more excellent
proposals than we could accommodate. We have a very strong programme of four tutorials, and I thank
the tutorials team for all their careful and thoughtful work.

The task of producing both the electronic and hard copy versions of the conference materials has become
extremely complex as the conference has increased in size and diversity. The Publications Chairs, Kemal
Oflazer and David Schlangen, somehow make it look easy. Thanks to them and Ion Androutsopoulous,
the member of the local organising team who liaised with them, we have all the materials delivered on
time and in good order.

In these depressing economic times, being a Sponsorship Chair is a challenging task, and for the most
part a thankless one. This year, for the first time, the three ACL conferences coordinated applications for
sponsorship funds. This allowed companies to sponsor ACL, EACL and NAACL in one package. The
Sponsorship Chairs are Josef van Genabith and Philipp Koehn for Europe, Hitoshi Isahara and Kim-Teng
Lua for Asia, and Nicolas Nikolov for the US. They issued hundreds of applications to companies all
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over the world. While sponsorship income is generally lower than in previous years, I am convinced it
would be much lower still, if they had not coordinated their efforts this way, and done such a thorough
job of asking everyone and anyone for money. I am really grateful to them.

We received a record number of submissions to the demos session, making it necessary for the Demos
Chair, Jörn Kreutel, to recruit additional reviewers at the last minute. I would like to thank him for
overcoming the reviewing problems so quickly and efficiently, and thank also the team of reviewers for
doing such a great job.

I would also like to thank Priscilla Rassmussen, who has been a very valuable source of information and
advice for me over the last 3 years. I have really appreciated her thoughtful suggestions and her help in
keeping me informed about ACL protocols.

Last, but definitely not least, the local organising team have been nothing short of spectacular. The
Local Chair, Vangelis Karkaletsis, has been working for over two years on an overwhelming number of
tasks, ranging from finding the conference venue and liaising with its management, through dealing with
special dietary requirements, to acquiring local sponsorship. Vangelis has always been accessible to me,
to other members of the organising team, and to delegates. I simply don’t know where he gets his energy
from, but I wish he could bottle it and sell it. Thanks to him, my job as General Chair has been stress
free. I owe him a huge debt.

Vangelis has been backed by the Co-chairs Stelios Piperidis and Ion Androutsopoulos. Stelios also has
boundless energy and his effortless charm makes him very effective at persuading people to part with
money (what an asset!). I am particularly impressed with the achievements of Vangelis and Stelios
in attracting local sponsors, achieving their sponsorship targets even in the current financial climate.
Ion’s responsibilities have centred largely on publications and publicity, in particular liaising with the
Publications Chairs. In spite of the sheer complexity of the task, thanks to him everything has run
smoothly. Ion’s careful attention to detail has been a really valuable asset on many fronts. The Local
Chair and Co-chairs have been backed up by a strong team of local organisers; there are just too many
of them for me to thank individually here. I have always felt that the conference has been in excellent
hands; every member of the local organising team is highly competent, unflappable, and professional to
the last. I thank them all.

We have also received unwavering support from the academic institutions to which our three local co-
chairs belong: NCSR Demokritos, Athens University of Economics and Business, and the Institute for
Language and Speech Processing. These institutions have subsidised expenses directly that are associated
with secretarial work and the travel costs of invited speakers and tutors. They have also provided all sorts
of support that are essentially hidden costs, in administration, publicity, web design and maintenance,
and much much more. This conference simply wouldn’t happen without this help, and I thank them all.

I very much hope that EACL 2009 offers you the opportunity to engage in stimulating debate with fellow
researchers in computational linguisitcs. And I hope to see you again next year in Uppsala at the jointly
held meeting with ACL.

Alex Lascarides
General Chair
March 2009
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Preface: Program Chairs

We are delighted to present you with this volume containing the papers accepted for presentation at
the 12th Conference of the European Chapter of the Association for Computational Linguistics, held in
Athens, Greece, from March 30th till April 3rd 2009.

EACL 2009 received yet another record-breaking number of submissions, with 360 valid submissions
against 264 for EACL 2006 and 181 for EACL 2003. Thanks to the new policy adopted by EACL
regarding modes of presentation, we were nonetheless able to accept 100 papers (of which 2 were
later withdrawn), achieving a healthy acceptance rate of 28% against only 20% in 2006 and 27% in
2003. Indeed, in 2009, the EACL conference will renew its format by having the main conference
papers presented either as regular talks or as posters, with posters getting both a ten-minute quick-fire
presentation in a thematic session and a one-hour discussion period in a traditional poster session. EACL
2009 will thus feature 41 posters and 57 talks, all with equal status in terms of quality and appearance
in the proceedings. Not only does this move towards a balanced mix of traditional talks, quick-fire
presentations and poster sessions allow us to maintain a reasonable acceptance rate, we also believe that
it will increase interaction between researchers and contribute to a more lively scientific exchange.

The increased number of submissions naturally comes with an increased reviewing load and we are
greatly indebted to the 11 area chairs who recruited 449 reviewers and managed the reviewing process in
their areas. Each paper submission was reviewed by three reviewers, who were furthermore encouraged
to discuss any divergences they might have, and the papers in each area were ranked by the area chair.
The final selection was made by the program co-chairs after an independent check of all reviews and
discussions with the area chairs.

In addition to the main conference program, EACL 2009 will feature the now traditional Student
Research Workshop, 10 workshops, 4 tutorials and a demo session with 18 presentations. We are also
fortunate to have Ann Copestake, University of Cambridge, and Franciska de Jong, University of Twente,
as invited speakers. Ann Copestake will speak about “Slacker semantics: why superficiality, dependency
and avoidance of commitment can be the right way to go” and Franciska de Jong will discuss “NLP and
the humanities: the revival of an old liaison.”

An event of this size is a highly collaborative effort and we are grateful to all those who helped us
construct the main conference program: the authors for submitting their research results; the reviewers
for delivering their reviews and discussing them whenever there was some disagreement; and the area
chairs for managing the review process in their area.

Thanks are due to the START people, Rich Gerber and Paolo Gai, for responding to questions quickly
and for modifying START whenever this was needed, and to the local organizing committee chairs,
Vangelis Karkaletsis, Ion Androutsopoulos and Stelios Piperidis, for their patient cooperation with us
over many organisational issues. We are also grateful to the Student Research Workshop chairs, Vera
Demberg, Yanjun Ma and Nils Reiter, and to the NAACL HLT program chairs, Michael Collins, Lucy
Vanderwende, Doug Oard and Shri Narayanan, for smooth collaboration in the handling of double
submissions.

Finally, we are indebted to the General Chair, Alex Lascarides, for her lively guidance and support
throughout the whole process, and to the two Publication Chairs, David Schlangen and Kemal Oflazer,
for putting together the conference proceedings.

Wishing you a very enjoyable time at EACL 2009!

Claire Gardent and Joakim Nivre
EACL 2009 Program Chairs
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Abstract

This paper discusses computational com-
positional semantics from the perspective
of grammar engineering, in the light of ex-
perience with the use of Minimal Recur-
sion Semantics in DELPH-IN grammars.
The relationship between argument index-
ation and semantic role labelling is ex-
plored and a semantic dependency nota-
tion (DMRS) is introduced.

1 Introduction

The aim of this paper is to discuss work on com-
positional semantics from the perspective of gram-
mar engineering, which I will take here as the de-
velopment of (explicitly) linguistically-motivated
computational grammars. The paper was written
to accompany an invited talk: it is intended to pro-
vide background and further details for those parts
of the talk which are not covered in previous pub-
lications. It consists of an brief introduction to our
approach to computational compositional seman-
tics, followed by details of two contrasting topics
which illustrate the grammar engineering perspec-
tive. The first of these is argument indexing and its
relationship to semantic role labelling, the second
is semantic dependency structure.

Standard linguistic approaches to compositional
semantics require adaptation for use in broad-
coverage computational processing. Although
some of the adaptations are relatively trivial, oth-
ers have involved considerable experimentation by
various groups of computational linguists. Per-
haps the most important principle is that semantic
representations should be a good match for syn-
tax, in the sense of capturing all and only the in-
formation available from syntax and productive
morphology, while nevertheless abstracting over
semantically-irrelevant idiosyncratic detail. Com-
pared to much of the linguistics literature, our
analyses are relatively superficial, but this is essen-
tially because the broad-coverage computational

approach prevents us from over-committing on the
basis of the information available from the syntax.
One reflection of this are the formal techniques
for scope underspecification which have been de-
veloped in computational linguistics. The im-
plementational perspective, especially when com-
bined with a requirement that grammars can be
used for generation as well as parsing, also forces
attention to details which are routinely ignored in
theoretical linguistic studies. This is particularly
true when there are interactions between phenom-
ena which are generally studied separately. Fi-
nally, our need to produce usable systems disal-
lows some appeals to pragmatics, especially those
where analyses are radically underspecified to al-
low for syntactic and morphological effects found
only in highly marked contexts.1

In a less high-minded vein, sometimes it is right
to be a slacker: life (or at least, project funding) is
too short to implement all ideas within a grammar
in their full theoretical glory. Often there is an easy
alternative which conveys the necessary informa-
tion to a consumer of the semantic representations.
Without this, grammars would never stabilise.

Here I will concentrate on discussing work
which has used Minimal Recursion Semantics
(MRS: Copestake et al. (2005)) or Robust Min-
imal Recursion Semantics (RMRS: Copestake
(2003)). The (R)MRS approach has been adopted
as a common framework for the DELPH-IN ini-
tiative (Deep Linguistic Processing with HPSG:
http://www.delph-in.net) and the work dis-
cussed here has been done by and in collaboration
with researchers involved in DELPH-IN.

The programme of developing computational
compositional semantics has a large number of
aspects. It is important that the semantics
has a logically-sound interpretation (e.g., Koller
and Lascarides (2009), Thater (2007)), is cross-

1For instance, we cannot afford to underspecify number
on nouns because of examples such as The hash browns is
getting angry (from Pollard and Sag (1994) p.85).

1



linguistically adequate (e.g., Bender (2008)) and
is compatible with generation (e.g., Carroll et al.
(1999), Carroll and Oepen (2005)). Ideally, we
want support for shallow as well as deep syn-
tactic analysis (which was the reason for devel-
oping RMRS), enrichment by deeper analysis (in-
cluding lexical semantics and anaphora resolution,
both the subject of ongoing work), and (robust) in-
ference. The motivation for the development of
dependency-style representations (including De-
pendency MRS (DMRS) discussed in §4) has been
to improve ease of use for consumers of the repre-
sentation and human annotators, as well as use in
statistical ranking of analyses/realisations (Fujita
et al. (2007), Oepen and Lønning (2006)). Inte-
gration with distributional semantic techniques is
also of interest.

The belated ‘introduction’ to MRS in Copestake
et al. (2005) primarily covered formal represen-
tation of complete utterances. Copestake (2007a)
described uses of (R)MRS in applications. Copes-
take et al. (2001) and Copestake (2007b) concern
the algebra for composition. What I want to do
here is to concentrate on less abstract issues in
the syntax-semantics interface. I will discuss two
cases where the grammar engineering perspective
is important and where there are some conclusions
about compositional semantics which are relevant
beyond DELPH-IN. The first, argument indexing
(§3), is a relatively clear case in which the con-
straints imposed by grammar engineering have a
significant effect on choice between plausible al-
ternatives. I have chosen to talk about this both
because of its relationship with the currently pop-
ular task of semantic role labelling and because
the DELPH-IN approach is now fairly stable af-
ter a quite considerable degree of experimentation.
What I am reporting is thus a perspective on work
done primarily by Flickinger within the English
Resource Grammar (ERG: Flickinger (2000)) and
by Bender in the context of the Grammar Matrix
(Bender et al., 2002), though I’ve been involved in
many of the discussions. The second main topic
(§4) is new work on a semantic dependency rep-
resentation which can be derived from MRS, ex-
tending the previous work by Oepen (Oepen and
Lønning, 2006). Here, the motivation came from
an engineering perspective, but the nature of the
representation, and indeed the fact that it is possi-
ble at all, reveals some interesting aspects of se-
mantic composition in the grammars.

2 The MRS and RMRS languages

This paper concerns only representations which
are output by deep grammars, which use MRS, but
it will be convenient to talk in terms of RMRS and
to describe the RMRSs that are constructed under
those assumptions. Such RMRSs are interconvert-
ible with MRSs.2 The description is necessarily
terse and contains the minimal detail necessary to
follow the remainder of the paper.

An RMRS is a description of a set of trees cor-
responding to scoped logical forms. Fig 1 shows
an example of an RMRS and its corresponding
scoped form (only one for this example). RMRS

is a ‘flat’ representation, consisting of a bag of el-
ementary predications (EP), a set of argument
relations, and a set of constraints on the possi-
ble linkages of the EPs when the RMRS is resolved
to scoped form. Each EP has a predicate, a la-
bel and a unique anchor and may have a distin-
guished (ARG0) argument (EPs are written here as
label:anchor:pred(arg0)). Label sharing between
EPs indicates conjunction (e.g., in Fig 1, big, an-
gry and dog share the label l2). Argument relations
relate non-arg0 arguments to the corresponding EP

via the anchor. Argument names are taken from a
fixed set (discussed in §3). Argument values may
be variables (e.g., e8, x4: variables are the only
possibility for values of ARG0), constants (strings
such as “London”), or holes (e.g. h5), which in-
dicate scopal relationships. Variables have sortal
properties, indicating tense, number and so on, but
these are not relevant for this paper. Variables cor-
responding to unfilled (syntactically optional) ar-
guments are unique in the RMRS, but otherwise
variables must correspond to the ARG0 of an EP

(since I am only considering RMRSs from deep
grammars here).

Constraints on possible scopal relationships be-
tween EPs may be explicitly specified in the gram-
mar via relationships between holes and labels. In
particular qeq constraints (the only type consid-
ered here) indicate that, in the scoped forms, a
label must either plug a hole directly or be con-
nected to it via a chain of quantifiers. Hole argu-
ments (other than the BODY of a quantifier) are al-
ways linked to a label via a qeq or other constraint
(in a deep grammar RMRS). Variables survive in
the models of RMRSs (i.e., the fully scoped trees)
whereas holes and labels do not.

2See Flickinger and Bender (2003) and Flickinger et al.
(2003) for the use of MRS in DELPH-IN grammars.
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l1:a1: some q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), h5 qeq l2,
l2:a2: big a 1(e8), ARG1(a2,x4), l2:a3: angry a 1(e9), ARG1(a3,x4), l2:a4: dog n 1(x4),
l4:a5: bark v 1(e2), ARG1(a5,x4), l4:a6: loud a 1(e10), ARG1(a6,e2)

some q(x4, big a 1(e8,x4) ∧ angry a 1(e9, x4) ∧ dog n 1(x4), bark v 1(e2,x4) ∧ loud a 1(e10,e2))

Figure 1: RMRS and scoped form for ‘Some big angry dogs bark loudly’. Tense and number are omitted.

The naming convention for predicates corre-
sponding to lexemes is: stem major sense tag,
optionally followed by and minor sense tag (e.g.,
loud a 1). Major sense tags correspond roughly

to traditional parts of speech. There are also non-
lexical predicates such as ‘poss’ (though none oc-
cur in Fig 1).3 MRS varies from RMRS in that the
arguments are all directly associated with the EP

and thus no anchors are necessary.
I have modified the definition of RMRS given

in Copestake (2007b) to make the ARG0 argument
optional. Here I want to add the additional con-
straint that the ARG0 of an EP is unique to it (i.e.,
not the ARG0 of any other EP). I will term this
the characteristic variable property. This means
that, for every variable, there is a unique EP which
has that variable as its ARG0. I will assume for this
paper that all EPs, apart from quantifier EPs, have
such an ARG0.4 The characteristic variable prop-
erty is one that has emerged from working with
large-scale constraint-based grammars.

A few concepts from the MRS algebra are also
necessary to the discussion. Composition can
be formalised as functor-argument combination
where the argument phrase’s hook fills a slot in
the functor phrase, thus instantiating an RMRS ar-
gument relation. The hook consists of an index
(a variable), an external argument (also a vari-
able) and an ltop (local top: the label correspond-
ing to the topmost node in the current partial tree,
ignoring quantifiers). The syntax-semantics inter-
face requires that the appropriate hook and slots be
set up (mostly lexically in a DELPH-IN grammar)
and that each application of a rule specifies the slot
to be used (e.g., MOD for modification). In a lex-
ical entry, the ARG0 of the EP provides the hook

3In fact, most of the choices about semantics made by
grammar writers concern the behaviour of constructions and
thus these non-lexical predicates, but this would require an-
other paper to discuss.

4I am simplifying for expository convenience. In current
DELPH-IN grammars, quantifiers have an ARG0 which corre-
sponds to the bound variable. This should not be the charac-
teristic variable of the quantifier (it is the characteristic vari-
able of a nominal EP), since its role in the scoped forms is as
a notational convenience to avoid lambda expressions. I will
call it the BV argument here.

index, and, apart from quantifiers, the hook ltop
is the EP’s label. In intersective combination, the
ltops of the hooks will be equated. In scopal com-
bination, a hole argument in a slot is specified to
be qeq to the ltop of the argument phrase and the
ltop of the functor phrase supplies the new hook’s
ltop.

By thinking of qeqs as links in an RMRS graph
(rather than in terms of their logical behaviour
as constraints on the possible scoped forms), an
RMRS can be treated as consisting of a set of trees
with nodes consisting of EPs grouped via intersec-
tive relationships: there will be a backbone tree
(headed by the overall ltop and including the main
verb if there is one), plus a separate tree for each
quantified NP. For instance, in Fig 1, the third
line contains the EPs corresponding to the (single
node) backbone tree and the first two lines show
the EPs comprising the tree for the quantified NP
(one node for the quantifier and one for the N′

which it connects to via the RSTR and its qeq).

3 Arguments and roles

I will now turn to the representation of arguments
in MRS and their relationship to semantic roles. I
want to discuss the approach to argument labelling
in some detail, because it is a reasonably clear
case where the desiderata for broad-coverage se-
mantics which were discussed in §1 led us to a
syntactically-driven approach, as opposed to using
semantically richer roles such as AGENT, GOAL

and INSTRUMENT.
An MRS can, in fact, be written using a conven-

tional predicate-argument representation. A repre-
sentation which uses ordered argument labels can
be recovered from this in the obvious way. E.g.,
l:like v 1(e,x,y) is equivalent to l:a:like v 1(e),
ARG1(a,x), ARG2(a,y). A fairly large inventory of
argument labels is actually used in the DELPH-IN

grammars (e.g., RSTR, BODY). To recover these
from the conventional predicate-argument nota-
tion requires a look up in a semantic interface
component (the SEM-I, Flickinger et al. (2005)).
But open-class predicates use the ARGn conven-
tion, where n is 0,1,2,3 or 4 and the discussion here
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only concerns these.5

Arguably, the DELPH-IN approach is Davidso-
nian rather than neo-Davidsonian in that, even in
the RMRS form, the arguments are related to the
predicate via the anchor which plays no other role
in the semantics. Unlike the neo-Davidsonian use
of the event variable to attach arguments, this al-
lows the same style of representation to be used
uniformly, including quantifiers, for instance. Ar-
guments can omitted completely without syntactic
ill-formedness of the RMRS, but this is primarily
relevant to shallower grammars. A semantic pred-
icate, such as like v 1, is a logical predicate and as
such is expected to have the same arity wherever it
occurs in the DELPH-IN grammars. Thus models
for an MRS may be defined in a language with or
without argument labels.

The ordering of arguments for open class lex-
emes is lexically specified on the basis of the
syntactic obliqueness hierarchy (Pollard and Sag,
1994). ARG1 corresponds to the subject in the
base (non-passivised) form (‘deep subject’). Ar-
gument numbering is consecutive in the base form,
so no predicate with an ARG3 is lexically missing
an ARG2, for instance. An ARG3 may occur with-
out an instantiated ARG2 when a syntactically op-
tional argument is missing (e.g., Kim gave to the
library), but this is explicit in the linearised form
(e.g., give v(e,x,u,y)).

The full statement of how the obliqueness hi-
erarchy (and thus the labelling) is determined for
lexemes has to be made carefully and takes us too
far into discussion of syntax to explain in detail
here. While the majority of cases are straightfor-
ward, a few are not (e.g., because they depend
on decisions about which form is taken as the
base in an alternation). However, all decisions are
made at the level of lexical types: adding an en-
try for a lexeme for a DELPH-IN grammar only
requires working out its lexical type(s) (from syn-
tactic behaviour and very constrained semantic no-
tions, e.g., control). The actual assignment of ar-
guments to an utterance is just a consequence of
parsing. Argument labelling is thus quite different
from PropBank (Palmer et al., 2005) role labelling
despite the unfortunate similarity of the PropBank
naming scheme.

It follows from the fixed arity of predicates
that lexemes with different numbers of argu-

5ARG4 occurs very rarely, at least in English (the verb bet
being perhaps the clearest case).

ments should be given different predicate symbols.
There is usually a clear sense distinction when this
occurs. For instance, we should distinguish be-
tween the ‘depart’ and ‘bequeath’ senses of leave
because the first takes an ARG1 and an ARG2 (op-
tional) and the second ARG1, ARG2 (optional),
ARG3. We do not draw sense distinctions where
there is no usage which the grammar could disam-
biguate.

Of course, there are obvious engineering rea-
sons for preferring a scheme that requires mini-
mal additional information in order to assign argu-
ment labels. Not only does this simplify the job of
the grammar writer, but it makes it easier to con-
struct lexical entries automatically and to integrate
RMRSs derived from shallower systems. However,
grammar engineers respond to consumers: if more
detailed role labelling had a clear utility and re-
quired an analysis at the syntax level, we would
want to do it in the grammar. The question is
whether it is practically possible.

Detailed discussion of the linguistics literature
would be out of place here. I will assume that
Dowty (1991) is right in the assertion that there
is no small (say, less than 10) set of role labels
which can also be used to link the predicate to its
arguments in compositionally constructed seman-
tics (i.e., argument-indexing in Dowty’s terminol-
ogy) such that each role label can be given a con-
sistent individual semantic interpretation. For our
purposes, a consistent semantic interpretation in-
volves entailment of one or more useful real world
propositions (allowing for exceptions to the entail-
ment for unusual individual sentences).

This is not a general argument against rich role
labels in semantics, just their use as the means
of argument-indexation. It leaves open uses for
grammar-internal purposes, e.g., for defining and
controlling alternations. The earliest versions of
the ERG experimented with a version of Davis’s
(2001) approach to roles for such reasons: this
was not continued, but for reasons irrelevant here.
Roles are still routinely used for argument index-
ation in linguistics papers (without semantic inter-
pretation). The case is sometimes made that more
mnemonic argument labelling helps human inter-
pretation of the notation. This may be true of se-
mantics papers in linguistics, which tend to con-
cern groups of similar lexemes. It is not true of a
collaborative computational linguistics project in
which broad coverage is being attempted: names
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can only be mnemonic if they carry some meaning
and if the meaning cannot be consistently applied
this leads to endless trouble.

What I want to show here is how problems
arise even when very limited semantic generalisa-
tions are attempted about the nature of just one or
two argument labels, when used in broad-coverage
grammars. Take the quite reasonable idea that a
semantically consistent labelling for intransitives
and related causatives is possible (cf PropBank).
For instance, water might be associated with the
same argument label in the following examples:

(1) Kim boiled the water.

(2) The water boiled.

Using (simplified) RMRS representations, this
might amount to:

(3) l:a:boil v(e), a:ARG1(k), a:ARG2(x), water(x)

(4) l:a:boil v(e), a:ARG2(x), water(x)

Such an approach was used for a time in the ERG

with unaccusatives. However, it turns out to be im-
possible to carry through consistently for causative
alternations.

Consider the following examples of gallop: 6

(5) Michaela galloped the horse to the far end of
the meadow, . . .

(6) With that Michaela nudged the horse with her
heels and off the horse galloped.

(7) Michaela declared, “I shall call him Lightning
because he runs as fast as lightning.” And with
that, off she galloped.

If only a single predicate is involved, e.g., gal-
lop v, and the causative has an ARG1 and an
ARG2, then what about the two intransitive cases?
If the causative is treated as obligatorily transi-
tive syntactically, then (6) and (7) presumably both
have an ARG2 subject. This leads to Michaela
having a different role label in (5) and (7), de-
spite the evident similarity of the real world situ-
ation. Furthermore, the role labels for intransitive
movement verbs could only be predicted by a con-
sumer of the semantics who knew whether or not
a causative form existed. The causative may be
rare, as with gallop, where the intransitive use is
clearly the base case. Alternatively, if (7) is treated

6http://www.thewestcoast.net/bobsnook/kid/horses.htm.

as a causative intransitive, and thus has a subject
labelled ARG1, there is a systematic unresolvable
ambiguity and the generalisation that the subjects
in both intransitive sentences are moving is lost.

Gallop is an not isolated case in having a vo-
litional intransitive use: it applies to most (if not
all) motion verbs which undergo the causative al-
ternation. To rescue this account, we would need
to apply it only to true lexical anti-causatives. It is
not clear whether this is doable (even the standard
example sink can be used intransitively of deliber-
ate movement) but from a slacker perspective, at
this point we should decide to look for an easier
approach.

The current ERG captures the causative relation-
ship by using systematic sense labelling:

(8) Kim boiled the water.
l:a:boil v cause(e), a:ARG1(k), a:ARG2(x),
water(x)

(9) The water boiled.
l:a:boil v 1(e), a:ARG1(x), water(x)

This is not perfect, but it has clear advantages.
It allows inferences to be made about ARG1 and
ARG2 of cause verbs. In general, inferences about
arguments may be made with respect to particular
verb classes. This lends itself to successive refine-
ment in the grammars: the decision to add a stan-
dardised sense label, such as cause, does not re-
quire changes to the type system, for instance. If
we decide that we can identify true anti-causatives,
we can easily make them a distinguished class via
this convention. Conversely, in the situation where
causation has not been recognised, and the verb
has been treated as a single lexeme having an op-
tional ARG2, the semantics is imperfect but at least
the imperfection is local.

In fact, determining argument labelling by the
obliqueness hierarchy still allows generalisations
to be made for all verbs. Dowty (1991) argues
for the notion of proto-agent (p-agt) and proto-
patient (p-pat) as cluster concepts. Proto-agent
properties include volitionality, sentience, causa-
tion of an event and movement relative to another
participant. Proto-patient properties include be-
ing causally affected and being stationary relative
to another participant. Dowty claims that gener-
alisations about which arguments are lexicalised
as subject, object and indirect object/oblique can
be expressed in terms of relative numbers of p-agt
and p-pat properties. If this is correct, then we can,

5



for example, predict that the ARG1 of any predi-
cate in a DELPH-IN grammar will not have fewer
p-agt properties than the ARG2 of that predicate.7

As an extreme alternative, we could use la-
bels which were individual to each predicate,
such as LIKER and LIKED (e.g., Pollard and Sag
(1994)). For such role labels to have a consistent
meaning, they would have to be lexeme-specific:
e.g., LEAVER1 (‘departer’) versus LEAVER2 (‘be-
queather’). However this does nothing for seman-
tic generalisation, blocks the use of argument la-
bels in syntactic generalisations and leads to an
extreme proliferation of lexical types when us-
ing typed feature structure formalisms (one type
would be required per lexeme). The labels add
no additional information and could trivially be
added automatically to an RMRS if this were use-
ful for human readers. Much more interesting is
the use of richer lexical semantic generalisations,
such as those employed in FrameNet (Baker et al.,
1998). In principle, at least, we could (and should)
systematically link the ERG to FrameNet, but this
would be a form of semantic enrichment mediated
via the SEM-I (cf Roa et al. (2008)), and not an
alternative technique for argument indexation.

4 Dependency MRS

The second main topic I want to address is a
form of semantic dependency structure (DMRS:
see wiki.delph-in.net for the evolving details).
There are good engineering reasons for producing
a dependency style representation with links be-
tween predicates and no variables: ease of read-
ability for consumers of the representation and for
human annotators, parser comparison and integra-
tion with distributional lexical semantics being the
immediate goals. Oepen has previously produced
elementary dependencies from MRSs but the pro-
cedure (partially sketched in Oepen and Lønning
(2006)) was not intended to produce complete rep-
resentations. It turns out that a DMRS can be con-
structed which can be demonstrated to be inter-
convertible with RMRS, has a simple graph struc-
ture and minimises redundancy in the representa-
tion. What is surprising is that this can be done
for a particular class of grammars without mak-

7Sanfilippo (1990) originally introduced Dowty’s ideas
into computational linguistics, but this relative behaviour
cannot be correctly expressed simply by using p-agt and p-
pat directly for argument indexation as he suggested. It is
incorrect for examples like (2) to be labelled as p-agt, since
they have no agentive properties.

ing use of the evident clues to syntax in the pred-
icate names. The characteristic variable property
discussed in §2 is crucial: its availability allows
a partial replication of composition, with DMRS

links being relatable to functor-argument combi-
nations in the MRS algebra. I should emphasize
that, unlike MRS and RMRS, DMRS is not intended
to have a direct logical interpretation.

An example of a DMRS is given in Fig 2. Links
relate nodes corresponding to RMRS predicates.
Nodes have unique identifiers, not shown here. Di-
rected link labels are of the form ARG/H, ARG/EQ

or ARG/NEQ, where ARG corresponds to an RMRS

argument label. H indicates a qeq relationship,
EQ label equality and NEQ label inequality, as ex-
plained more fully below. Undirected /EQ arcs
also sometimes occur (see §4.3). The ltop is in-
dicated with a *.

4.1 RMRS-to-DMRS

In order to transform an RMRS into a DMRS, we
will treat the RMRS as made up of three subgraphs:

Label equality graph. Each EP in an RMRS

has a label, which may be shared with any number
of other EPs. This can be captured in DMRS via
a graph linking EPs: if this is done exhaustively,
there would be n(n− 1)/2 binary non-directional
links. E.g., for the RMRS in Fig 1, we need to link
big a 1, angry a 1 and dog n 1 and this takes

3 links. Obviously the effect of equality could be
captured by a smaller number of links, assuming
transitivity: but to make the RMRS-to-DMRS con-
version deterministic, we need a method for se-
lecting canonical links.

Hole-to-label qeq graph. A qeq in RMRS links
a hole to a label which labels a set of EPs. There
is thus a 1 : 1 mapping between holes and la-
bels which can be converted to a 1 : n mapping
between holes and the EPs which share the la-
bel. By taking the EP with the hole as the origin,
we can construct an EP-to-EP graph, using the ar-
gument name as a label for the link: of course,
such links are asymmetric and thus the graph is
directed. e.g., some q has RSTR links to each of
big a 1, angry a 1 and dog n 1. Reducing this

to a 1 : 1 mapping between EPs, which we would
ideally like for DMRS, requires a canonical method
of selecting a head EP from the set of target EPs (as
does the selection of the ltop).

Variable graph. For the conversion to DMRS,
we will rely on the characteristic variable prop-
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some q big a 1 angry a at dog n 1 bark v 1* loud a 1
-

ARG1/EQ
�
ARG1/EQ

�
ARG1/NEQ

-
ARG1/EQ

-
RSTR/H

Figure 2: DMRS for ‘Some big angry dogs bark loudly.’

erty, that every variable has a unique EP associated
with it via its ARG0. Any non-hole argument of an
EP will have a value which is the ARG0 of some
other EP, or which is unbound (i.e., not found else-
where in the RMRS) in which case we ignore it.
Thus we can derive a graph between EPs, such
that each link is labelled with an argument posi-
tion and points to a unique EP. I will talk about an
EP’s ‘argument EPs’, to refer to the set of EPs its
arguments point to in this graph.

The three EP graphs can be combined to form
a dependency structure. But this has an excessive
number of links due to the label equality and qeq
components. We need deterministic techniques for
removing the redundancy. These can utilise the
variable graph, since this is already minimal.

The first strategy is to combine the label equal-
ity and variable links when they connect the same
two EPs. For instance, we combine the ARG1
link between big a 1, and dog n 1 with the la-
bel equality link to give a link labelled ARG1/EQ.
We then test the connectivity of the ARG/EQ links
on the assumption of transitivity and remove any
redundant links from the label graph. This usually
removes all label equality links: one case where
it does not is discussed in §4.3. Variable graph
links with no corresponding label equality are an-
notated ARG/NEQ, while links arising from the
qeq graph are labelled ARG/H. This retains suf-
ficient information to allow the reconstruction of
the three graphs in DMRS-to-RMRS conversion.

In order to reduce the number of links arising
from the qeq graph, we make use of the variable
graph to select a head from a set of EPs sharing
a label. It is not essential that there should be a
unique head, but it is desirable. The next section
outlines how head selection works: despite not us-
ing any directly syntactic properties, it generally
recovers the syntactic head.

4.2 Head selection in the qeq graph
Head selection uses one principle and one heuris-
tic, both of which are motivated by the composi-
tional properties of the grammar. The principle is
that qeq links from an EP should parallel any com-

parable variable links. If an EP has two arguments,
one of which is a variable argument which links
to EP′ and the other a hole argument which has a
value corresponding to a set of EPs including EP′,
EP′ is chosen as the head of that set.

This essentially follows from the composition
rules: in an algebra operation giving rise to a qeq,
the argument phrase supplies a hook consisting
of an index (normally, the ARG0 of the head EP)
and an ltop (normally, the label of the head EP).
Thus if a variable argument corresponds to EP′,
EP′ will have been the head of the corresponding
phrase and is thus the choice of head in the DMRS.
This most frequently arises with quantifiers, which
have both a BV and a RSTR argument: the RSTR

argument can be taken as linking to the EP which
has an ARG0 equal to the BV (i.e., the head of the
N′). If this principle applies, it will select a unique
head. In fact, in this special case, we drop the BV

link from the final DMRS because it is entirely pre-
dictable from the RSTR link.

In the case where there is no variable argu-
ment, we use the heuristic which generally holds
in DELPH-IN grammars that the EPs which we
wish to distinguish as heads in the DMRS do not
share labels with their DMRS argument EPs (in
contrast to intersective modifiers, which always
share labels with their argument EPs). Heads may
share labels with PPs which are syntactically ar-
guments, but these have a semantics like PP mod-
ifiers, where the head is the preposition’s EP ar-
gument. NP arguments are generally quantified
and quantifiers scope freely. AP, VP and S syn-
tactic arguments are always scopal. PPs which are
not modifier-like are either scopal (small clauses)
or NP-like (case marking Ps) and free-scoping.
Thus, somewhat counter-intuitively, we can select
the head EP from the set of EPs which share a label
by looking for an EP which has no argument EPs
in that set.

4.3 Some properties of DMRS
The MRS-to-DMRS procedure deterministically
creates a unique DMRS. A converse DMRS-to-MRS

procedure recreates the MRS (up to label, anchor
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the q dog n 1 def explicit q poss toy n 1 the q cat n 1 bite v 1 bark v 1*
�

ARG2/EQ
�
ARG1/NEQ

-
RSTR/H

-
RSTR/H

-
ARG1/NEQ

�
ARG2/NEQ

-
RSTR/H

/EQ
�

ARG1/NEQ

Figure 3: DMRS for ‘The dog whose toy the cat bit barked.’

and variable renaming), though requiring the SEM-
I to add the uninstantiated optional arguments.

I claimed above that DMRSs are an idealisa-
tion of semantic composition. A pure functor-
argument application scheme would produce a tree
which could be transformed into a structure where
no dependent had more than one head. But in
DMRS the notion of functor/head is more complex
as determiners and modifiers provide slots in the
RMRS algebra but not the index of the result. Com-
position of a verb (or any other functor) with an
NP argument gives rise to a dependency between
the verb and the head noun in the N′. The head
noun provides the index of the NP’s hook in com-
position, though it does not provide the ltop, which
comes from the quantifier. However, because this
ltop is not equated with any label, there is no direct
link between the verb and the determiner. Thus the
noun will have a link from the determiner and from
the verb.

Similarly, if the constituents in composition
were continuous, the adjacency condition would
hold, but this does not apply because of the mech-
anisms for long-distance dependencies and the
availability of the external argument in the hook.8

DMRS indirectly preserves the information
about constituent structure which is essential for
semantic interpretation, unlike some syntactic de-
pendency schemes. In particular, it retains infor-
mation about a quantifier’s N′, since this forms the
restrictor of the generalised quantifier (for instance
Most white cats are deaf has different truth condi-
tions from Most deaf cats are white). An inter-
esting example of nominal modification is shown
in Fig 3. Notice that whose has a decomposed
semantics combining two non-lexeme predicates
def explicit q and poss. Unusually, the relative
clause has a gap which is not an argument of its
semantic head (it’s an argument of poss rather than
bite v 1). This means that when the relative clause

8Given that non-local effects are relatively circumscribed,
it is possible to require adjacency in some parts of the DMRS.
This leads to a technique for recording underspecification of
noun compound bracketing, for instance.

is combined with the gap filler, the label equality
and the argument instantiation correspond to dif-
ferent EPs. Thus there is a label equality which
cannot be combined with an argument link and has
to be represented by an undirected /EQ arc.

5 Related work and conclusion

Hobbs (1985) described a philosophy of computa-
tional compositional semantics that is in some re-
spects similar to that presented here. But, as far as
I am aware, the Core Language Engine book (Al-
shawi, 1992) provided the first detailed descrip-
tion of a truly computational approach to com-
positional semantics: in any case, Steve Pulman
provided my own introduction to the idea. Cur-
rently, the ParGram project also undertakes large-
scale multilingual grammar engineering work: see
Crouch and King (2006) and Crouch (2006) for an
account of the semantic composition techniques
now being used. I am not aware of any other
current grammar engineering activities on the Par-
Gram or DELPH-IN scale which build bidirectional
grammars for multiple languages.

Overall, what I have tried to do here is to give a
flavour of how compositional semantics and syn-
tax interact in computational grammars. Analy-
ses which look simple have often taken consider-
able experimentation to arrive at when working on
a large-scale, especially when attempting cross-
linguistic generalisations. The toy examples that
can be given in papers like this one do no justice to
this, and I would urge readers to try out the gram-
mars and software and, perhaps, to join in.
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Abstract

This paper present an overview of some
emerging trends in the application of NLP
in the domain of the so-called Digital Hu-
manities and discusses the role and nature
of metadata, the annotation layer that is so
characteristic of documents that play a role
in the scholarly practises of the humani-
ties. It is explained how metadata are the
key to the added value of techniques such
as text and link mining, and an outline is
given of what measures could be taken to
increase the chances for a bright future for
the old ties between NLP and the humani-
ties. There is no data like metadata!

1 Introduction

The humanities and the field of natural language
processing (NLP) have always had common play-
grounds. The liaison was never constrained to lin-
guistics; also philosophical, philological and lit-
erary studies have had their impact on NLP , and
there have always been dedicated conferences and
journals for the humanities and the NLP com-
munity of which the journal Computers and the
Humanities (1966-2004) is probably known best.
Among the early ideas on how to use machines to
do things with text that had been done manually
for ages is the plan to build a concordance for an-
cient literature, such as the works of St Thomas
Aquinas (Schreibman et al., 2004). which was ex-
pressed already in the late 1940s. Later on hu-
manities researchers started thinking about novel
tasks for machines, things that were not feasible
without the power of computers, such as author-
ship discovery. For NLP the units of process-
ing gradually became more complex and shifted
from the character level to units for which string
processing is an insufficient basis. At some stage
syntactic parsers and generators were seen as a

method to prove the correctness of linguistic the-
ories. Nowadays semantic layers can be analysed
at much more complex levels of granularity. Not
just phrases and sentences are processed, but also
entire documents or even document collections in-
cluding those involving multimodal features. And
in addition to NLP for information carriers, also
language-based interaction has grown into a ma-
tured field, and applications in other domains than
the humanities now seem more dominant. The
impact of the wide range of functionalities that
involve NLP in all kinds of information process-
ing tasks is beyond what could be imagined 60
years ago and has given rise to the outreach of
NLP in many domains, but during a long period
the humanities were one of the few valuable play-
grounds.

Even though the humanities have been able
to conduct NLP-empowered research that would
have been impossible without the the early tools
and resources already for many decades, the more
recent introduction of statistical methods in lan-
gauge is affecting research practises in the human-
ities at yet another scale. An important explana-
tion for this development is of course the wide
scale digitisation that is taken up in the humani-
ties. All kinds of initiatives for converting ana-
logue resources into data sets that can be stored
in digital repositories have been initiated. It is
widely known that ”There is no data like more
data” (Mercer, 1985), and indeed the volumes of
digital humanities resources have reached the level
required for adequate performance of all kinds of
tasks that require the training of statistical mod-
els. In addition, ICT-enabled methodologies and
types of collaboration are being developed and
have given rise to new epistemic cultures. Digital
Humanities (sometimes also referred to as Com-
putational Humanities) are a trend, and digital
scholarship seems a prerequisite for a successful
research career. But in itself the growth of digi-
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tal resources is not the main factor that makes the
humanities again a good testbed for NLP. A key
aspect is the nature and role of metadata in the hu-
manities. In the next section the role of metadata
in the humanities and the the ways in which they
can facilitate and enhance the application of text
and data mining tools will be described in more
detail. The paper takes the position that for the hu-
manities a variant of Mercer’s saying is even more
true. There is no data like metadata!

The relation between NLP and the humanities
is worth reviewing, as a closer look into the way
in which techniques such as text and link mining
can demonstrate that the potential for mutual im-
pact has gained in strength and diversity, and that
important lessons can be learned for other appli-
cation areas than the humanities. This renewed
liaison with the now digital humanities can help
NLP to set up an innovative research agenda which
covers a wide range of topics including semantic
analysis, integration of multimodal information,
language-based interaction, performance evalua-
tion, service models, and usability studies. The
further and combined exploration of these topics
will help to develop an infrastructure that will also
allow content and data-driven research domains in
the humanities to renew their field and to exploit
the additional potential coming from the ongoing
and future digitisation efforts, as well as the rich-
ness in terms of available metadata. To name a
few fields of scholarly research: art history, media
studies, oral history, archeology, archiving stud-
ies, they all have needs that can be served in novel
ways by the mature branches that NLP offers to-
day. After a sketch in section 2 of the role of
metadata, so crucial for the interaction between
the humanities and NLP, a rough overview of rel-
evant initiatives will be given. Inspired by some
telling examples, it will be outlined what could be
done to increase the chances for a bright future for
the old ties, and how other domains can benefit as
well from the reinvention of the old common play-
ground between NLP and the humanities.

2 Metadata in the Humanities

Digital text, but also multimedia content, can be
mined for the occurrence of patterns at all kinds
of layers, and based on techniques for information
extraction and classification, documents can be an-
notated automatically with a variety of labels, in-
cluding indications of topic, event types, author-

ship, stylistics, etc. Automatically generated an-
notations can be exploited to support to what is
often called the semantic access to content, which
is typically seen as more powerful than plain full
text search, but in principle also includes concep-
tual search and navigation.

The data used in research in the domain of
the humanities comes from a variety of sources:
archives, musea (or in general cultural heritage
collections), libraries, etc. As a testbed for NLP
these collections are particularly challenging be-
cause of the combination of complexity increas-
ing features, such as language and spelling change
over time, diversity in orthography, noisy content
(due to errors introduced during data conversion,
e.g., OCR or transcription of spoken word ma-
terial), wider than average stylistic variation and
cross-lingual and cross-media links. They are
also particularly attractive because of the avail-
able metadata or annotation records, which are the
reflection of analytical and comparative scholarly
processes. In addition, there is a wide diversity
of annotation types to be found in the domain (cf.
the annotation dimensions distinguished by (Mar-
shall, 1998)), and the field has developed mod-
elling procedures to exploit this diversity (Mc-
Carty, 2005) and visualisation tools (Unsworth,
2005).

2.1 Metadata for Text

For many types of textual data automatically gen-
erated annotations are the sole basis for seman-
tic search, navigation and mining. For human-
ities and cultural heritage collections, automati-
cally generated annotation is often an addition to
the catalogue information traditionally produced
by experts in the field. The latter kind of manu-
ally produced metadataa is often specified in ac-
cordance to controlled key word lists and meta-
data schemata agreed for the domain. NLP tag-
ging is then an add on to a semantic layer that in
itself can already be very rich and of high qual-
ity. More recently initiatives and support tools for
so-called social tagging have been proposed that
can in principle circumvent the costly annotation
by experts, and that could be either based on free
text annotation or on the application of so-called
folksonomies as a replacement for the traditional
taxonomies. Digital librarians have initiated the
development of platforms aiming at the integration
of the various annotation processes and at sharing
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tools that can help to realise an infrastructure for
distributed annotation. But whatever the genesis is
of annotations capturing the semantics of an entire
document, they are a very valuable source for the
training of automatic classifiers. And traditionally,
textual resources in the humanities have lots of it,
partly because the mere art of annotating texts has
been invented in this domain.

2.2 Metadata for Multimedia

Part of the resources used as basis for scholarly
research is non-textual. Apart from numeric data
resources, which are typically strongly structured
in database-like environments, there is a growing
amount of audiovisual material that is of interest
to humanities researchers. Various kinds of multi-
media collections can be a primary source of infor-
mation for humanities researchers, in particular if
there is a substantial amount of spoken word con-
tent, e.g., broadcast news archives, and even more
prominently: oral history collections.

It is commonly agreed that accessibility of het-
erogeneous audiovisual archives can be boosted
by indexing not just via the classical metadata,
but by enhancing indexing mechanisms through
the exploitation of the spoken audio. For sev-
eral types of audiovisual data, transcription of the
speech segments can be a good basis for a time-
coded index. Research has shown that the quality
of the automatically generated speech transcrip-
tions, and as a consequence also the index quality,
can increase if the language models applied have
been optimised to both the available metadata (in
particular on the named entities in the annotations)
and the collateral sources available (Huijbregts et
al., 2007). ‘Collateral data is the term used for
secondary information objects that relate to the
primary documents, e.g., reviews, program guide
summaries, biographies, all kinds of textual pub-
lications, etc. This requires that primary sources
have been annotated with links to these secondary
materials. These links can be pointers to source
locations within the collection, but also links to re-
lated documents from external sources. In labora-
tory settings the amount of collateral data is typi-
cally scarce, but in real life spoken word archives,
experts are available to identify and collect related
(textual) content that can help to turn generic lan-
guage models into domain specific models with
higher accuracy.

2.3 Metadata for Surprise Data

The quality of automatically generated content an-
notations in real life settings is lagging behind in
comparison to experimental settings. This is of
course an obstacle for the uptake of technology,
but a number of pilot projects with collections
from the humanities domain show us what can be
done to overcome the obstacles. This can be illus-
trated again with the situation in the field of spo-
ken document retrieval.

For many A/V collections with a spoken au-
dio track, metadata is not or only sparsely avail-
able, which is why this type of collection is often
only searchable by linear exploration. Although
there is common agreement that speech-based, au-
tomatically generated annotation of audiovisual
archives may boost the semantic access to frag-
ments of spoken word archives enormously (Gold-
man et al., 2005; Garofolo et al., 2000; Smeaton
et al., 2006), success stories for real life archives
are scarce. (Exceptions can be found in research
projects in the broadcast news and cultural her-
itage domains, such as MALACH (Byrne et al.,
2004), and systems such as SpeechFind (Hansen
et al., 2005).) In lab conditions the focus is usu-
ally on data that (i) have well-known characteris-
tics (e.g, news content), often learned along with
annual benchmark evaluations,1 (ii) form a rela-
tively homogeneous collection, (iii) are based on
tasks that hardly match the needs of real users, and
(iv) are annotated in large quantities for training
purposes. In real life however, the exact character-
istics of archival data are often unknown, and are
far more heterogeneous in nature than those found
in laboratory settings. Language models for real-
istic audio sets, sometimes referred to as surprise
data (Huijbregts, 2008), can benefit from a clever
use of this contextual information.

Surprise data sets are increasingly being taken
into account in research agendas in the field focus-
ing on multimedia indexing and search (de Jong
et al., 2008). In addition to the fact that they are
less homogenous, and may come with links to re-
lated documents, real user needs may be available
from query logs, and as a consequence they are
an interesting challenge for cross-media indexing
strategies targeting aggregated collections. Sur-

1E.g., evaluation activities such as those organised by
NIST, the National Institute of Standards, e.g., TREC for
search tasks involving text, TRECVID for video search, Rich
Transcription for the analysis of speech data, etc. http:
//www.nist.gov/
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prise data are therefore an ideal source for the de-
velopment of best practises for the application of
tools for exploiting collateral content and meta-
data. The exploitation of available contextual in-
formation for surprise content and the organisation
of this dual annotation process can be improved,
but in principle joining forces between NLP tech-
nologies and the capacity of human annotators is
attractive. On the one hand for the improved ac-
cess to the content, on the other hand for an inno-
vation of the NLP research agenda.

3 Ingredients for a Novel
Knowledge-driven Workflow

A crucial condition for the revival of the com-
mon playground for NLP and the humanities is
the availability of representatives of communities
that could use the outcome, either in the devel-
opment of services to their users or as end users.
These representatives may be as diverse and in-
clude e.g., archivists, scholars with a research in-
terest in a collection, collection keepers in libraries
and musea, developers of educational materials,
but in spite of the divergence that can be attributed
to such groups, they have a few important charac-
teristics in common: they have a deep understand-
ing of the structure, semantic layers and content
of collections, and in developing new road maps
and novel ways of working, the pressure they en-
counter to be cost-effective is modest. They are
the first to understand that the technical solutions
and business models of the popular web search en-
gines are not directly applicable to their domain
in which the workflow is typically knowledge-
driven and labour-intensive. Though with the in-
troduction of new technologies the traditional role
of documentalists as the primary source of high
quality annotations may change, the availability of
their expertise is likely to remain one of the major
success factors in the realisation of a digital in-
frastructure that is as rich source as the reposito-
ries from the analogue era used to be.

All kinds of coordination bodies and action
plans exist to further the field of Digital Hu-
manities, among which The Alliance of Dig-
ital Humanities Organizations http://www.
digitalhumanities.org/ and HASTAC
(https://www.hastac.org/) and Digital
Arts an Humanities www.arts-humanities.
net, and dedicated journals and events have
emerged, such as the LaTeCH workshop series. In

part they can build on results of initiatives for col-
laboration and harmonisation that were started ear-
lier, e.g., as Digital Libraries support actions or as
coordinated actions for the international commu-
nity of cultural heritage institutions. But in order
to reinforce the liaison between NLP and the hu-
manities continued attention, support and funding
is needed for the following:

Coordination of coherent platforms (both lo-
cal and international) for the interaction be-
tween the communities involved that stim-
ulate the exchange of expertise, tools, ex-
perience and guidelines. Good examples
hereof exist already in several domains,
e.g., the field of broadcast archiving (IST
project PrestoSpace; www.prestospace.
org/), the research area of Oral History, all
kinds of communities and platforms targeting
the accessibility of cultural heritage collec-
tions (e.g., CATCH; http://www.nwo.
nl/catch), but the long-term sustainability
of accessible interoperable institutional net-
works remains a concern.

Infrastructural facilities for the support of re-
searchers and developers of NLP tools; such
facilities should support them in finetuning
the instruments they develop to the needs
of scholarly research. CLARIN (http://
www.clarin.eu/) is a promising initia-
tive in the EU context that is aiming to cover
exactly this (and more) for the social sciences
and the humanities.

Open access, source and standards to increase
the chances for inter-institutional collabora-
tion and exchange of content and tools in
accordance with the policies of the de facto
leading bodies, such as TEI (http://www.
tei-c.org/) and OAI (http://www.
openarchives.org/).

Metadata schemata that can accommodate
NLP-specific features:

• automatically generated labels and sum-
maries

• reliability scores
• indications of the suitability of items for

training purposes

Exchange mechanisms for best practices e.g.,
of building and updating training data, the
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use of annotation tools and the analysis of
query logs.

Protocols and tools for the mark-up of content,
the specification of links between collections,
the handling of IPR and privacy issues, etc.

Service centers that can offer heavy processing
facilities (e.g. named entity extraction or
speech transcription) for collections kept in
technically modestly equipped environments
hereof.

User Interfaces that can flexibly meet the needs
of scholarly users for expressing their infor-
mation needs, and for visualising relation-
ships between interactive information ele-
ments (e.g., timelines and maps).

Pilot projects in which researchers from vari-
ous backgrounds collaborate in analysing
a specific digital resource as a central
object in order to learn to understand
how the interfaces between their fields
can be opened up. An interesting ex-
ample is the the project Veteran Tapes
(http://www.surffoundation.nl/
smartsite.dws?id=14040). This
initiative is linked to the interview collection
which is emerging as a result for the Dutch
Veterans Interview-project, which aims at
collecting 1000 interviews with a represen-
tative group of veterans of all conflicts and
peace-missions in which The Netherlands
were involved. The research results will be
integrated in a web-based fashion to form
what is called an enriched publication.

Evaluation frameworks that will trigger contri-
butions to the enhancement en tuning of what
NLP has to offer to the needs of the hu-
manities. These frameworks should include
benchmarks addressing tasks and user needs
that are more realistic than most of the ex-
isting performance evaluation frameworks.
This will require close collaboration between
NLP developers and scholars.

4 Conclusion

The assumption behind presenting these issues as
priorities is that NLP-empowered use of digital
content by humanities scholars will be beneficial
to both communities. NLP can use the testbed

of the Digital Humanities for the further shaping
of that part of the research agenda that covers the
role of NLP in information handling, and in par-
ticular those avenues that fall under the concept of
mining. By focussing on the integration of meta-
data in the models underlying the mining tools and
searching for ways to increase the involvement of
metadata generators, both experts and ‘amateurs’,
important insights are likely to emerge that could
help to shape agendas for the role of NLP in other
disciplines. Examples are the role of NLP in the
study of recorded meeting content, in the field of
social studies, or the organisation and support of
tagging communities in the biomedical domain,
both areas where manual annotation by experts
used to be common practise, and both areas where
mining could be done with aggregated collections.

Equally important are the benefits for the hu-
manities. The added value of metadata-based min-
ing technology for enhanced indexing is not so
much in the cost-reduction as in the wider usabil-
ity of the materials, and in the impulse this may
bring for sharing collections that otherwise would
too easily be considered as of no general impor-
tance. Furthermore the evolution of digital texts
from ‘book surrogates’ towards the rich semantic
layers and networks generated by text and/or me-
dia mining tools that take all available metadata
into account should help the fields involved in not
just answering their research questions more effi-
ciently, but also in opening up grey literature for
research purposes and in scheduling entirely new
questions for which the availability of such net-
works are a conditio sine qua non.
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Abstract

We present a simple and effective method
for extracting parallel sentences from
comparable corpora. We employ a sta-
tistical machine translation (SMT) system
built from small amounts of parallel texts
to translate the source side of the non-
parallel corpus. The target side texts are
used, along with other corpora, in the lan-
guage model of this SMT system. We
then use information retrieval techniques
and simple filters to create French/English
parallel data from a comparable news cor-
pora. We evaluate the quality of the ex-
tracted data by showing that it signifi-
cantly improves the performance of an
SMT systems.

1 Introduction

Parallel corpora have proved be an indispens-
able resource in Statistical Machine Translation
(SMT). A parallel corpus, also called bitext, con-
sists in bilingual texts aligned at the sentence level.
They have also proved to be useful in a range of
natural language processing applications like au-
tomatic lexical acquisition, cross language infor-
mation retrieval and annotation projection.

Unfortunately, parallel corpora are a limited re-
source, with insufficient coverage of many lan-
guage pairs and application domains of inter-
est. The performance of an SMT system heav-
ily depends on the parallel corpus used for train-
ing. Generally, more bitexts lead to better per-
formance. Current resources of parallel corpora
cover few language pairs and mostly come from
one domain (proceedings of the Canadian or Eu-
ropean Parliament, or of the United Nations). This
becomes specifically problematic when SMT sys-
tems trained on such corpora are used for general
translations, as the language jargon heavily used in

these corpora is not appropriate for everyday life
translations or translations in some other domain.

One option to increase this scarce resource
could be to produce more human translations, but
this is a very expensive option, in terms of both
time and money. In recent work less expensive but
very productive methods of creating such sentence
aligned bilingual corpora were proposed. These
are based on generating “parallel” texts from al-
ready available “almost parallel” or “not much
parallel” texts. The term “comparable corpus” is
often used to define such texts.

A comparable corpus is a collection of texts
composed independently in the respective lan-
guages and combined on the basis of similarity
of content (Yang and Li, 2003). The raw mate-
rial for comparable documents is often easy to ob-
tain but the alignment of individual documents is a
challenging task (Oard, 1997). Multilingual news
reporting agencies like AFP, Xinghua, Reuters,
CNN, BBC etc. serve to be reliable producers
of huge collections of such comparable corpora.
Such texts are widely available from LDC, in par-
ticular the Gigaword corpora, or over the WEB
for many languages and domains, e.g. Wikipedia.
They often contain many sentences that are rea-
sonable translations of each other, thus potential
parallel sentences to be identified and extracted.

There has been considerable amount of work on
bilingual comparable corpora to learn word trans-
lations as well as discovering parallel sentences.
Yang and Lee (2003) use an approach based on
dynamic programming to identify potential paral-
lel sentences in title pairs. Longest common sub
sequence, edit operations and match-based score
functions are subsequently used to determine con-
fidence scores. Resnik and Smith (2003) pro-
pose their STRAND web-mining based system
and show that their approach is able to find large
numbers of similar document pairs.

Works aimed at discovering parallel sentences
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French: Au total, 1,634 million d’́electeurs doivent d́esigner les 90 d́eput́es de la prochaine législature
parmi 1.390 candidats présent́es par 17 partis, dont huit sont représent́es au parlement.
Query: In total, 1,634 million voters will designate the 90 membersof the next parliament among 1.390
candidates presented by 17 parties, eight of which are represented in parliament.
Result: Some 1.6 million voters were registered to elect the 90 members of the legislature from 1,390
candidates from 17 parties, eight of which are represented in parliament, several civilian organisations
and independent lists.

French: ”Notre implication en Irak rend possible que d’autres pays membres de l’Otan, comme
l’Allemagne par exemple, envoient un plus gros contingent”en Afghanistan, a estiḿe M.Belka au cours
d’une conf́erence de presse.
Query: ”Our involvement in Iraq makes it possible that other countries members of NATO, such
as Germany, for example, send a larger contingent in Afghanistan, ”said Mr.Belka during a press
conference.
Result: ”Our involvement in Iraq makes it possible for other NATO members, like Germany for
example, to send troops, to send a bigger contingent to your country, ”Belka said at a press conference,
with Afghan President Hamid Karzai.

French: De son ĉoté, Mme Nicola Duckworth, directrice d’Amnesty International pour l’Europe et
l’Asie centrale, a d́eclaŕe que les ONG demanderaientà M.Poutine de mettre fin aux violations des
droits de l’Homme dans le Caucase du nord.
Query: For its part, Mrs Nicole Duckworth, director of Amnesty International for Europe and Central
Asia, said that NGOs were asking Mr Putin to put an end to humanrights violations in the northern
Caucasus.
Result: Nicola Duckworth, head of Amnesty International’s Europe and Central Asia department, said
the non-governmental organisations (NGOs) would call on Putin to put an end to human rights abuses
in the North Caucasus, including the war-torn province of Chechnya.

Figure 1: Some examples of a French source sentence, the SMT translation used as query and the poten-
tial parallel sentence as determined by information retrieval. Bold parts are the extra tails at the end of
the sentences which we automatically removed.

include (Utiyama and Isahara, 2003), who use
cross-language information retrieval techniques
and dynamic programming to extract sentences
from an English-Japanese comparable corpus.
They identify similar article pairs, and then, treat-
ing these pairs as parallel texts, align their sen-
tences on a sentence pair similarity score and use
DP to find the least-cost alignment over the doc-
ument pair. Fung and Cheung (2004) approach
the problem by using a cosine similarity measure
to match foreign and English documents. They
work on “very non-parallel corpora”. They then
generate all possible sentence pairs and select the
best ones based on a threshold on cosine simi-
larity scores. Using the extracted sentences they
learn a dictionary and iterate over with more sen-
tence pairs. Recent work by Munteanu and Marcu
(2005) uses a bilingual lexicon to translate some
of the words of the source sentence. These trans-
lations are then used to query the database to find

matching translations using information retrieval
(IR) techniques. Candidate sentences are deter-
mined based on word overlap and the decision
whether a sentence pair is parallel or not is per-
formed by a maximum entropy classifier trained
on parallel sentences. Bootstrapping is used and
the size of the learned bilingual dictionary is in-
creased over iterations to get better results.

Our technique is similar to that of (Munteanu
and Marcu, 2005) but we bypass the need of the
bilingual dictionary by using proper SMT transla-
tions and instead of a maximum entropy classifier
we use simple measures like the word error rate
(WER) and the translation error rate (TER) to de-
cide whether sentences are parallel or not. Using
the full SMT sentences, we get an added advan-
tage of being able to detect one of the major errors
of this technique, also identified by (Munteanu and
Marcu, 2005), i.e, the cases where the initial sen-
tences are identical but the retrieved sentence has
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a tail of extra words at sentence end. We try to
counter this problem as detailed in 4.1.

We apply this technique to create a parallel cor-
pus for the French/English language pair using the
LDC Gigaword comparable corpus. We show that
we achieve significant improvements in the BLEU
score by adding our extracted corpus to the already
available human-translated corpora.

This paper is organized as follows. In the next
section we first describe the baseline SMT system
trained on human-provided translations only. We
then proceed by explaining our parallel sentence
selection scheme and the post-processing. Sec-
tion 4 summarizes our experimental results and
the paper concludes with a discussion and perspec-
tives of this work.

2 Baseline SMT system

The goal of SMT is to produce a target sentence
e from a source sentencef . Among all possible
target language sentences the one with the highest
probability is chosen:

e∗ = arg max
e

Pr(e|f) (1)

= arg max
e

Pr(f |e) Pr(e) (2)

where Pr(f |e) is the translation model and
Pr(e) is the target language model (LM). This ap-
proach is usually referred to as thenoisy source-
channelapproach in SMT (Brown et al., 1993).
Bilingual corpora are needed to train the transla-
tion model and monolingual texts to train the tar-
get language model.

It is today common practice to use phrases as
translation units (Koehn et al., 2003; Och and
Ney, 2003) instead of the original word-based ap-
proach. A phrase is defined as a group of source
words f̃ that should be translated together into a
group of target words̃e. The translation model in
phrase-based systems includes the phrase transla-
tion probabilities in both directions, i.e.P (ẽ|f̃)
andP (f̃ |ẽ). The use of a maximum entropy ap-
proach simplifies the introduction of several addi-
tional models explaining the translation process :

e∗ = arg max Pr(e|f)

= arg max
e

{exp(
∑

i

λihi(e, f))} (3)

The feature functionshi are the system mod-
els and theλi weights are typically optimized to
maximize a scoring function on a development

SMT baseline
system

phrase
table

3.3G

4−gram
LM

Fr En

automatic
translations

En

words

words
275M
up to

Fr En

human translations

words
116M
up to

Figure 2: Using an SMT system used to translate
large amounts of monolingual data.

set (Och and Ney, 2002). In our system fourteen
features functions were used, namely phrase and
lexical translation probabilities in both directions,
seven features for the lexicalized distortion model,
a word and a phrase penalty, and a target language
model.

The system is based on the Moses SMT
toolkit (Koehn et al., 2007) and constructed as fol-
lows. First, Giza++ is used to perform word align-
ments in both directions. Second, phrases and
lexical reorderings are extracted using the default
settings of the Moses SMT toolkit. The 4-gram
back-off target LM is trained on the English part
of the bitexts and the Gigaword corpus of about
3.2 billion words. Therefore, it is likely that the
target language model includes at least some of
the translations of the French Gigaword corpus.
We argue that this is a key factor to obtain good
quality translations. The translation model was
trained on the news-commentary corpus (1.56M
words)1 and a bilingual dictionary of about 500k
entries.2 This system uses only a limited amount
of human-translated parallel texts, in comparison
to the bitexts that are available in NIST evalua-
tions. In a different versions of this system, the
Europarl (40M words) and the Canadian Hansard
corpus (72M words) were added.

In the framework of the EuroMatrix project, a
test set of general news data was provided for the
shared translation task of the third workshop on

1Available at http://www.statmt.org/wmt08/
shared-task.html

2The different conjugations of a verb and the singular and
plural form of adjectives and nouns are counted as multiple
entries.
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Figure 3: Architecture of the parallel sentence extractionsystem.

SMT (Callison-Burch et al., 2008), callednew-
stest2008in the following. The size of this cor-
pus amounts to 2051 lines and about 44 thousand
words. This data was randomly split into two parts
for development and testing. Note that only one
reference translation is available. We also noticed
several spelling errors in the French source texts,
mainly missing accents. These were mostly auto-
matically corrected using the Linux spell checker.
This increased the BLEU score by about 1 BLEU
point in comparison to the results reported in the
official evaluation (Callison-Burch et al., 2008).
The system tuned on this development data is used
translate large amounts of text of French Gigaword
corpus (see Figure 2). These translations will be
then used to detect potential parallel sentences in
the English Gigaword corpus.

3 System Architecture

The general architecture of our parallel sentence
extraction system is shown in figure 3. Start-
ing from comparable corpora for the two lan-
guages, French and English, we propose to trans-
late French to English using an SMT system as de-
scribed above. These translated texts are then used
to perform information retrieval from the English
corpus, followed by simple metrics like WER and
TER to filter out good sentence pairs and even-
tually generate a parallel corpus. We show that a
parallel corpus obtained using this technique helps
considerably to improve an SMT system.

We shall also be trying to answer the following
question over the course of this study: do we need

to use the best possible SMT systems to be able to
retrieve the correct parallel sentences or any ordi-
nary SMT system will serve the purpose ?

3.1 System for Extracting Parallel Sentences
from Comparable Corpora

LDC provides large collections of texts from mul-
tilingual news reporting agencies. We identified
agencies that provided news feeds for the lan-
guages of our interest and chose AFP for our
study.3

We start by translating the French AFP texts to
English using the SMT systems discussed in sec-
tion 2. In our experiments we considered only
the most recent texts (2002-2006, 5.5M sentences;
about 217M French words). These translations are
then treated as queries for the IR process. The de-
sign of our sentence extraction process is based on
the heuristic that considering the corpus at hand,
we can safely say that a news item reported on
day X in the French corpus will be most proba-
bly found in the day X-5 and day X+5 time pe-
riod. We experimented with several window sizes
and found the window size of±5 days to be the
most accurate in terms of time and the quality of
the retrieved sentences.

Using the ID and date information for each sen-
tence of both corpora, we first collect all sentences
from the SMT translations corresponding to the
same day (query sentences) and then the corre-
sponding articles from the English Gigaword cor-

3LDC corpora LDC2007T07 (English) and LDC2006T17
(French).
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pus (search space for IR). These day-specific files
are then used for information retrieval using a ro-
bust information retrieval system. The Lemur IR
toolkit (Ogilvie and Callan, 2001) was used for
sentence extraction. The top 5 scoring sentences
are returned by the IR process. We found no evi-
dence that retrieving more than 5 top scoring sen-
tences helped get better sentences. At the end of
this step, we have for each query sentence 5 po-
tentially matching sentences as per the IR score.

The information retrieval step is the most time
consuming task in the whole system. The time
taken depends upon various factors like size of the
index to search in, length of the query sentence
etc. To give a time estimate, using a±5 day win-
dow required 9 seconds per query vs 15 seconds
per query when a±7 day window was used. The
number of results retrieved per sentence also had
an impact on retrieval time with 20 results tak-
ing 19 seconds per query, whereas 5 results taking
9 seconds per query. Query length also affected
the speed of the sentence extraction process. But
with the problem at we could differentiate among
important and unimportant words as nouns, verbs
and sometimes even numbers (year, date) could be
the keywords. We, however did place a limit of
approximately 90 words on the queries and the in-
dexed sentences. This choice was motivated by the
fact that the word alignment toolkit Giza++ does
not process longer sentences.

A Krovetz stemmer was used while building the
index as provided by the toolkit. English stop
words, i.e. frequently used words, such as “a” or
“the”, are normally not indexed because they are
so common that they are not useful to query on.
The stop word list provided by the IR Group of
University of Glasgow4 was used.

The resources required by our system are min-
imal : translations of one side of the comparable
corpus. We will be showing later in section 4.2
of this paper that with an SMT system trained on
small amounts of human-translated data we can
’retrieve’ potentially good parallel sentences.

3.2 Candidate Sentence Pair Selection

Once we have the results from information re-
trieval, we proceed on to decide whether sentences
are parallel or not. At this stage we choose the
best scoring sentence as determined by the toolkit

4http://ir.dcs.gla.ac.uk/resources/
linguistic utils/stop words

and pass the sentence pair through further filters.
Gale and Church (1993) based their align program
on the fact that longer sentences in one language
tend to be translated into longer sentences in the
other language, and that shorter sentences tend to
be translated into shorter sentences. We also use
the same logic in our initial selection of the sen-
tence pairs. A sentence pair is selected for fur-
ther processing if the length ratio is not more than
1.6. A relaxed factor of 1.6 was chosen keeping
in consideration the fact that French sentences are
longer than their respective English translations.
Finally, we discarded all sentences that contain a
large fraction of numbers. Typically, those are ta-
bles of sport results that do not carry useful infor-
mation to train an SMT.

Sentences pairs conforming to the previous cri-
teria are then judged based on WER (Levenshtein
distance) and translation error rate (TER). WER
measures the number of operations required to
transform one sentence into the other (insertions,
deletions and substitutions). A zero WER would
mean the two sentences are identical, subsequently
lower WER sentence pairs would be sharing most
of the common words. However two correct trans-
lations may differ in the order in which the words
appear, something that WER is incapable of tak-
ing into account as it works on word to word ba-
sis. This shortcoming is addressed by TER which
allows block movements of words and thus takes
into account the reorderings of words and phrases
in translation (Snover et al., 2006). We used both
WER and TER to choose the most suitable sen-
tence pairs.

4 Experimental evaluation

Our main goal was to be able to create an addi-
tional parallel corpus to improve machine transla-
tion quality, especially for the domains where we
have less or no parallel data available. In this sec-
tion we report the results of adding these extracted
parallel sentences to the already available human-
translated parallel sentences.

We conducted a range of experiments by adding
our extracted corpus to various combinations of al-
ready available human-translated parallel corpora.
We experimented with WER and TER as filters to
select the best scoring sentences. Generally, sen-
tences selected based on TER filter showed better
BLEU and TER scores than their WER counter
parts. So we chose TER filter as standard for
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Figure 4: BLEU scores on the Test data using an
WER or TER filter.

our experiments with limited amounts of human
translated corpus. Figure 4 shows this WER vs
TER comparison based on BLEU and TER scores
on the test data in function of the size of train-
ing data. These experiments were performed with
only 1.56M words of human-provided translations
(news-commentary corpus).

4.1 Improvement by sentence tail removal

Two main classes of errors common in such
tasks: firstly, cases where the two sentences share
many common words but actually convey differ-
ent meaning, and secondly, cases where the two
sentences are (exactly) parallel except at sentence
ends where one sentence has more information
than the other. This second case of errors can be
detected using WER as we have both the sentences
in English. We detected the extra insertions at the
end of the IR result sentence and removed them.
Some examples of such sentences along with tails
detected and removed are shown in figure 1. This
resulted in an improvement in the SMT scores as
shown in table 1.

This technique worked perfectly for sentences
having TER greater than 30%. Evidently these
are the sentences which have longer tails which
result in a lower TER score and removing them
improves performance significantly. Removing
sentence tails evidently improved the scores espe-
cially for larger data, for example for the data size
of 12.5M we see an improvement of 0.65 and 0.98
BLEU points on dev and test data respectively and
1.00 TER points on test data (last line table 1).

The best BLEU score on the development data
is obtained when adding 9.4M words of automat-
ically aligned bitexts (11M in total). This corre-

Limit Word BLEU BLEU TER
TER tail Words Dev Test Test
filter removal (M) data data data

0 1.56 19.41 19.53 63.17

10
no

1.58
19.62 19.59 63.11

yes 19.56 19.51 63.24

20
no

1.7
19.76 19.89 62.49

yes 19.81 19.75 62.80

30
no

2.1
20.29 20.32 62.16

yes 20.16 20.22 62.02

40
no

3.5
20.93 20.81 61.80

yes 21.23 21.04 61.49

45
no

4.9
20.98 20.90 62.18

yes 21.39 21.49 60.90

50
no

6.4
21.12 21.07 61.31

yes 21.70 21.70 60.69

55
no

7.8
21.30 21.15 61.23

yes 21.90 21.78 60.41

60
no

9.8
21.42 20.97 61.46

yes 21.96 21.79 60.33

65
no

11
21.34 21.20 61.02

yes 22.29 21.99 60.10

70
no

12.2
21.21 20.84 61.24

yes 21.86 21.82 60.24

Table 1: Effect on BLEU score of removing extra
sentence tails from otherwise parallel sentences.

sponds to an increase of about 2.88 points BLEU
on the development set and an increase of 2.46
BLEU points on the test set (19.53→ 21.99) as
shown in table 2, first two lines. The TER de-
creased by 3.07%.

Adding the dictionary improves the baseline
system (second line in Table 2), but it is not nec-
essary any more once we have the automatically
extracted data.

Having had very promising results with our pre-
vious experiments, we proceeded onto experimen-
tation with larger human-translated data sets. We
added our extracted corpus to the collection of
News-commentary (1.56M) and Europarl (40.1M)
bitexts. The corresponding SMT experiments
yield an improvement of about 0.2 BLEU points
on the Dev and Test set respectively (see table 2).

4.2 Effect of SMT quality

Our motivation for this approach was to be able
to improve SMT performance by ’creating’ paral-
lel texts for domains which do not have enough
or any parallel corpora. Therefore only the news-
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total BLEU score TER

Bitexts words Dev Test Test

News 1.56M 19.41 19.53 63.17
News+Extracted 11M 22.29 21.99 60.10

News+dict 2.4M 20.44 20.18 61.16
News+dict+Extracted 13.9M 22.40 21.98 60.11

News+Eparl+dict 43.3M 22.27 22.35 59.81
News+Eparl+dict+Extracted 51.3M 22.47 22.56 59.83

Table 2: Summary of BLEU scores for the best systems on the Dev-data with the news-commentary
corpus and the bilingual dictionary.
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Figure 5: BLEU scores when using news-
commentary bitexts and our extracted bitexts fil-
tered using TER.

commentary bitext and the bilingual dictionary
were used to train an SMT system that produced
the queries for information retrieval. To investi-
gate the impact of the SMT quality on our sys-
tem, we built another SMT system trained on large
amounts of human-translated corpora (116M), as
detailed in section 2. Parallel sentence extrac-
tion was done using the translations performed by
this big SMT system as IR queries. We found
no experimental evidence that the improved au-
tomatic translations yielded better alignments of
the comaprable corpus. It is however interesting to
note that we achieve almost the same performance
when we add 9.4M words of autoamticallly ex-
tracted sentence as with 40M of human-provided
(out-of domain) translations (second versus fifth
line in Table 2).

5 Conclusion and discussion

Sentence aligned parallel corpora are essential for
any SMT system. The amount of in-domain paral-
lel corpus available accounts for the quality of the

translations. Not having enough or having no in-
domain corpus usually results in bad translations
for that domain. This need for parallel corpora,
has made the researchers employ new techniques
and methods in an attempt to reduce the dire need
of this crucial resource of the SMT systems. Our
study also contributes in this regard by employing
an SMT itself and information retrieval techniques
to produce additional parallel corpora from easily
available comparable corpora.

We use automatic translations of comparable
corpus of one language (source) to find the cor-
responding parallel sentence from the comparable
corpus in the other language (target). We only
used a limited amount of human-provided bilin-
gual resources. Starting with about a total 2.6M
words of sentence aligned bilingual data and a
bilingual dictionary, large amounts of monolin-
gual data are translated. These translations are
then employed to find the corresponding match-
ing sentences in the target side corpus, using infor-
mation retrieval methods. Simple filters are used
to determine whether the retrieved sentences are
parallel or not. By adding these retrieved par-
allel sentences to already available human trans-
lated parallel corpora we were able to improve the
BLEU score on the test set by almost 2.5 points.
Almost one point BLEU of this improvement was
obtained by removing additional words at the end
of the aligned sentences in the target language.

Contrary to the previous approaches as in
(Munteanu and Marcu, 2005) which used small
amounts of in-domain parallel corpus as an initial
resource, our system exploits the target language
side of the comparable corpus to attain the same
goal, thus the comparable corpus itself helps to
better extract possible parallel sentences. The Gi-
gaword comparable corpora were used in this pa-
per, but the same approach can be extended to ex-
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tract parallel sentences from huge amounts of cor-
pora available on the web by identifying compara-
ble articles using techniques such as (Yang and Li,
2003) and (Resnik and Y, 2003).

This technique is particularly useful for lan-
guage pairs for which very little parallel corpora
exist. Other probable sources of comparable cor-
pora to be exploited include multilingual ency-
clopedias like Wikipedia, encyclopedia Encarta
etc. There also exist domain specific compara-
ble corpora (which are probably potentially par-
allel), like the documentations that are done in the
national/regional language as well as English, or
the translations of many English research papers in
French or some other language used for academic
proposes.

We are currently working on several extensions
of the procedure described in this paper. We will
investigate whether the same findings hold for
other tasks and language pairs, in particular trans-
lating from Arabic to English, and we will try to
compare our approach with the work of Munteanu
and Marcu (2005). The simple filters that we are
currently using seem to be effective, but we will
also test other criteria than the WER and TER. Fi-
nally, another interesting direction is to iterate the
process. The extracted additional bitexts could be
used to build an SMT system that is better opti-
mized on the Gigaword corpus, to translate again
all the sentence from French to English, to per-
form IR and the filtering and to extract new, po-
tentially improved, parallel texts. Starting with
some million words of bitexts, this process may
allow to build at the end an SMT system that
achieves the same performance than we obtained
using about 40M words of human-translated bi-
texts (news-commentary + Europarl).
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Abstract
We present a classifier to predict con-
textual polarity of subjective phrases in
a sentence. Our approach features lexi-
cal scoring derived from the Dictionary of
Affect in Language (DAL) and extended
through WordNet, allowing us to automat-
ically score the vast majority of words in
our input avoiding the need for manual la-
beling. We augment lexical scoring with
n-gram analysis to capture the effect of
context. We combine DAL scores with
syntactic constituents and then extract n-
grams of constituents from all sentences.
We also use the polarity of all syntactic
constituents within the sentence as fea-
tures. Our results show significant im-
provement over a majority class baseline
as well as a more difficult baseline consist-
ing of lexical n-grams.

1 Introduction

Sentiment analysis is a much-researched area that
deals with identification of positive, negative and
neutral opinions in text. The task has evolved from
document level analysis to sentence and phrasal
level analysis. Whereas the former is suitable for
classifying news (e.g., editorials vs. reports) into
positive and negative, the latter is essential for
question-answering and recommendation systems.
A recommendation system, for example, must be
able to recommend restaurants (or movies, books,
etc.) based on a variety of features such as food,
service or ambience. Any single review sentence
may contain both positive and negative opinions,
evaluating different features of a restaurant. Con-
sider the following sentence (1) where the writer
expresses opposing sentiments towards food and
service of a restaurant. In tasks such as this, there-
fore, it is important that sentiment analysis be done
at the phrase level.

(1) The Taj has great food but I found their ser-
vice to be lacking.

Subjective phrases in a sentence are carriers of
sentiments in which an experiencer expresses an
attitude, often towards a target. These subjective
phrases may express neutral or polar attitudes de-
pending on the context of the sentence in which
they appear. Context is mainly determined by con-
tent and structure of the sentence. For example, in
the following sentence (2), the underlined subjec-
tive phrase seems to be negative, but in the larger
context of the sentence, it is positive.1

(2) The robber entered the store but his efforts

were crushed when the police arrived on time.

Our task is to predict contextual polarity of sub-
jective phrases in a sentence. A traditional ap-
proach to this problem is to use a prior polarity
lexicon of words to first set priors on target phrases
and then make use of the syntactic and semantic
information in and around the sentence to make
the final prediction. As in earlier approaches, we
also use a lexicon to set priors, but we explore
new uses of a Dictionary of Affect in Language
(DAL) (Whissel, 1989) extended using WordNet
(Fellbaum, 1998). We augment this approach with
n-gram analysis to capture the effect of context.
We present a system for classification of neutral
versus positive versus negative and positive versus
negative polarity (as is also done by (Wilson et al.,
2005)). Our approach is novel in the use of fol-
lowing features:

• Lexical scores derived from DAL and ex-
tended through WordNet: The Dictionary
of Affect has been widely used to aid in in-
terpretation of emotion in speech (Hirschberg

1We assign polarity to phrases based on Wiebe (Wiebe et
al., 2005); the polarity of all examples shown here is drawn
from annnotations in the MPQA corpus. Clearly the assign-
ment of polarity chosen in this corpus depends on general
cultural norms.
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et al., 2005). It contains numeric scores as-
signed along axes of pleasantness, activeness
and concreteness. We introduce a method for
setting numerical priors on words using these
three axes, which we refer to as a “scoring
scheme” throughout the paper. This scheme
has high coverage of the phrases for classi-
fication and requires no manual intervention
when tagging words with prior polarities.

• N-gram Analysis: exploiting automatically
derived polarity of syntactic constituents
We compute polarity for each syntactic con-
stituent in the input phrase using lexical af-
fect scores for its words and extract n-grams
over these constituents. N-grams of syntactic
constituents tagged with polarity provide pat-
terns that improve prediction of polarity for
the subjective phrase.

• Polarity of Surrounding Constituents: We
use the computed polarity of syntactic con-
stituents surrounding the phrase we want to
classify. These features help to capture the
effect of context on the polarity of the sub-
jective phrase.

We show that classification of subjective
phrases using our approach yields better accuracy
than two baselines, a majority class baseline and a
more difficult baseline of lexical n-gram features.

We also provide an analysis of how the differ-
ent component DAL scores contribute to our re-
sults through the introduction of a “norm” that
combines the component scores, separating polar
words that are less subjective (e.g., Christmas ,
murder) from neutral words that are more subjec-
tive (e.g., most, lack).

Section 2 presents an overview of previous
work, focusing on phrasal level sentiment analy-
sis. Section 3 describes the corpus and the gold
standard we used for our experiments. In sec-
tion 4, we give a brief description of DAL, dis-
cussing its utility and previous uses for emotion
and for sentiment analysis. Section 5 presents, in
detail, our polarity classification framework. Here
we describe our scoring scheme and the features
we extract from sentences for classification tasks.
Experimental set-up and results are presented in
Section 6. We conclude with Section 7 where we
also look at future directions for this research.

2 Literature Survey

The task of sentiment analysis has evolved from
document level analysis (e.g., (Turney., 2002);
(Pang and Lee, 2004)) to sentence level analy-
sis (e.g., (Hu and Liu., 2004); (Kim and Hovy.,
2004); (Yu and Hatzivassiloglou, 2003)). These
researchers first set priors on words using a prior
polarity lexicon. When classifying sentiment at
the sentence level, other types of clues are also
used, including averaging of word polarities or
models for learning sentence sentiment.

Research on contextual phrasal level sentiment
analysis was pioneered by Nasukawa and Yi
(2003), who used manually developed patterns to
identify sentiment. Their approach had high preci-
sion, but low recall. Wilson et al., (2005) also ex-
plore contextual phrasal level sentiment analysis,
using a machine learning approach that is closer to
the one we present. Both of these researchers also
follow the traditional approach and first set priors
on words using a prior polarity lexicon. Wilson
et al. (2005) use a lexicon of over 8000 subjec-
tivity clues, gathered from three sources ((Riloff
and Wiebe, 2003); (Hatzivassiloglou and McKe-
own, 1997) and The General Inquirer2). Words
that were not tagged as positive or negative were
manually labeled. Yi et al. (2003) acquired words
from GI, DAL and WordNet. From DAL, only
words whose pleasantness score is one standard
deviation away from the mean were used. Na-
sukawa as well as other researchers (Kamps and
Marx, 2002)) also manually tag words with prior
polarities. All of these researchers use categorical
tags for prior lexical polarity; in contrast, we use
quantitative scores, making it possible to use them
in computation of scores for the full phrase.

While Wilson et al. (2005) aim at phrasal level
analysis, their system actually only gives “each
clue instance its own label” [p. 350]. Their gold
standard is also at the clue level and assigns a
value based on the clue’s appearance in different
expressions (e.g., if a clue appears in a mixture of
negative and neutral expressions, its class is neg-
ative). They note that they do not determine sub-
jective expression boundaries and for this reason,
they classify at the word level. This approach is
quite different from ours, as we compute the po-
larity of the full phrase. The average length of
the subjective phrases in the corpus was 2.7 words,
with a standard deviation of 2.3. Like Wilson et al.

2http://www.wjh.harvard.edu/ inquirer
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(2005) we do not attempt to determine the bound-
ary of subjective expressions; we use the labeled
boundaries in the corpus.

3 Corpus

We used the Multi-Perspective Question-
Answering (MPQA version 1.2) Opinion corpus
(Wiebe et al., 2005) for our experiments. We
extracted a total of 17,243 subjective phrases
annotated for contextual polarity from the corpus
of 535 documents (11,114 sentences). These
subjective phrases are either “direct subjective”
or “expressive subjective”. “Direct subjective”
expressions are explicit mentions of a private state
(Quirk et al., 1985) and are much easier to clas-
sify. ”Expressive subjective” phrases are indirect
or implicit mentions of private states and therefore
are harder to classify. Approximately one third of
the phrases we extracted were direct subjective
with non-neutral expressive intensity whereas the
rest of the phrases were expressive subjective. In
terms of polarity, there were 2779 positive, 6471
negative and 7993 neutral expressions. Our Gold
Standard is the manual annotation tag given to
phrases in the corpus.

4 DAL

DAL is an English language dictionary built to
measure emotional meaning of texts. The samples
employed to build the dictionary were gathered
from different sources such as interviews, adoles-
cents’ descriptions of their emotions and univer-
sity students’ essays. Thus, the 8742 word dictio-
nary is broad and avoids bias from any one par-
ticular source. Each word is given three kinds of
scores (pleasantness – also called evaluation, ee,
activeness, aa and imagery, ii) on a scale of 1 (low)
to 3 (high). Pleasantness is a measure of polarity.
For example, in Table 1, affection is given a pleas-
antness score of 2.77 which is closer to 3.0 and
is thus a highly positive word. Likewise, active-
ness is a measure of the activation or arousal level
of a word, which is apparent from the activeness
scores of slug and energetic in the table. The third
score, imagery, is a measure of the ease with which
a word forms a mental picture. For example, af-
fect cannot be imagined easily and therefore has a
score closer to 1, as opposed to flower which is a
very concrete and therefore has an imagery score
of 3.

A notable feature of the dictionary is that it has

different scores for various inflectional forms of a
word ( affect and affection) and thus, morphologi-
cal parsing, and the possibility of resulting errors,
is avoided. Moreover, Cowie et al., (2001) showed
that the three scores are uncorrelated; this implies
that each of the three scores provide complemen-
tary information.

Word ee aa ii
Affect 1.75 1.85 1.60
Affection 2.77 2.25 2.00
Slug 1.00 1.18 2.40
Energetic 2.25 3.00 3.00
Flower 2.75 1.07 3.00

Table 1: DAL scores for words

The dictionary has previously been used for de-
tecting deceptive speech (Hirschberg et al., 2005)
and recognizing emotion in speech (Athanaselis et
al., 2006).

5 The Polarity Classification Framework

In this section, we present our polarity classifi-
cation framework. The system takes a sentence
marked with a subjective phrase and identifies the
most likely contextual polarity of this phrase. We
use a logistic regression classifier, implemented
in Weka, to perform two types of classification:
Three way (positive, negative, vs. neutral) and
binary (positive vs. negative). The features we
use for classification can be broadly divided into
three categories: I. Prior polarity features com-
puted from DAL and augmented using WordNet
(Section 5.1). II. lexical features including POS
and word n-gram features (Section 5.3), and III.
the combination of DAL scores and syntactic fea-
tures to allow both n-gram analysis and polarity
features of neighbors (Section 5.4).

5.1 Scoring based on DAL and WordNet
DAL is used to assign three prior polarity scores
to each word in a sentence. If a word is found in
DAL, scores of pleasantness (ee), activeness (aa),
and imagery (ii) are assigned to it. Otherwise, a
list of the word’s synonyms and antonyms is cre-
ated using WordNet. This list is sequentially tra-
versed until a match is found in DAL or the list
ends, in which case no scores are assigned. For
example, astounded, a word absent in DAL, was
scored by using its synonym amazed. Similarly,
in-humane was scored using the reverse polarity of
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its antonym humane, present in DAL. These scores
are Z-Normalized using the mean and standard de-
viation measures given in the dictionary’s manual
(Whissel, 1989). It should be noted that in our cur-
rent implementation all function words are given
zero scores since they typically do not demonstrate
any polarity. The next step is to boost these nor-
malized scores depending on how far they lie from
the mean. The reason for doing this is to be able
to differentiate between phrases like “fairly decent
advice” and “excellent advice”. Without boosting,
the pleasantness scores of both phrases are almost
the same. To boost the score, we multiply it by
the number of standard deviations it lies from the
mean.

After the assignment of scores to individual
words, we handle local negations in a sentence by
using a simple finite state machine with two states:
RETAIN and INVERT. In the INVERT state, the
sign of the pleasantness score of the current word
is inverted, while in the RETAIN state the sign of
the score stays the same. Initially, the first word in
a given sentence is fed to the RETAIN state. When
a negation (e.g., not, no, never, cannot, didn’t)
is encountered, the state changes to the INVERT
state. While in the INVERT state, if ‘but’ is en-
countered, it switches back to the RETAIN state.
In this machine we also take care of “not only”
which serves as an intensifier rather than nega-
tion (Wilson et al., 2005). To handle phrases like
“no better than evil” and “could not be clearer”,
we also switch states from INVERT to RETAIN
when a comparative degree adjective is found after
‘not’. For example, the words in phrase in Table
(2) are given positive pleasantness scores labeled
with positive prior polarity.

Phrase has no greater desire
POS VBZ DT JJR NN
(ee) 0 0 3.37 0.68

State RETAIN INVERT RETAIN RETAIN

Table 2: Example of scoring scheme using DAL

We observed that roughly 74% of the content
words in the corpus were directly found in DAL.
Synonyms of around 22% of the words in the cor-
pus were found to exist in DAL. Antonyms of
only 1% of the words in the corpus were found in
DAL. Our system failed to find prior semantic ori-
entations of roughly 3% of the total words in the
corpus. These were rarely occurring words like
apartheid, apocalyptic and ulterior. We assigned

zero scores for these words.
In our system, we assign three DAL scores, us-

ing the above scheme, for the subjective phrase
in a given sentence. The features are (1) µee, the
mean of the pleasantness scores of the words in the
phrase, (2) µaa, the mean of the activeness scores
of the words in the phrase, and similarly (3) µii,
the mean of the imagery scores.

5.2 Norm
We gave each phrase another score, which we call
the norm, that is a combination of the three scores
from DAL. Cowie et al. (2001) suggest a mecha-
nism of mapping emotional states to a 2-D contin-
uous space using an Activation-Evaluation space
(AE) representation. This representation makes
use of the pleasantness and activeness scores from
DAL and divides the space into four quadrants:
“delightful”, “angry”, “serene”, and “depressed”.
Whissel (2008), observes that tragedies, which
are easily imaginable in general, have higher im-
agery scores than comedies. Drawing on these ap-
proaches and our intuition that neutral expressions
tend to be more subjective, we define the norm in
the following equation (1).

norm =
√
ee2 + aa2

ii
(1)

Words of interest to us may fall into the follow-
ing four broad categories:

1. High AE score and high imagery: These
are words that are highly polar and less sub-
jective (e.g., angel and lively).

2. Low AE score and low imagery: These are
highly subjective neutral words (e.g., gener-
ally and ordinary).

3. High AE score and low imagery: These are
words that are both highly polar and subjec-
tive (e.g., succeed and good).

4. Low AE score and high imagery: These are
words that are neutral and easily imaginable
(e.g., car and door).

It is important to differentiate between these
categories of words, because highly subjective
words may change orientation depending on con-
text; less subjective words tend to retain their prior
orientation. For instance, in the example sentence
from Wilson et al.(2005)., the underlined phrase
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seems negative, but in the context it is positive.
Since a subjective word like succeed depends on
“what” one succeeds in, it may change its polar-
ity accordingly. In contrast, less subjective words,
like angel, do not depend on the context in which
they are used; they evoke the same connotation as
their prior polarity.

(3) They haven’t succeeded and will never succeed
in breaking the will of this valiant people.

As another example, AE space scores of good-
ies and good turn out to be the same. What differ-
entiates one from the another is the imagery score,
which is higher for the former. Therefore, value of
the norm is lower for goodies than for good. Un-
surprisingly, this feature always appears in the top
10 features when the classification task contains
neutral expressions as one of the classes.

5.3 Lexical Features

We extract two types of lexical features, part of
speech (POS) tags and n-gram word features. We
count the number of occurrences of each POS in
the subjective phrase and represent each POS as
an integer in our feature vector.3 For each subjec-
tive phrase, we also extract a subset of unigram,
bigrams, and trigrams of words (selected automat-
ically, see Section 6). We represent each n-gram
feature as a binary feature. These types of features
were used to approximate standard n-gram lan-
guage modeling (LM). In fact, we did experiment
with a standard trigram LM, but found that it did
not improve performance. In particular, we trained
two LMs, one on the polar subjective phrases and
another on the neutral subjective phrases. Given a
sentence, we computed two perplexities of the two
LMs on the subjective phrase in the sentence and
added them as features in our feature vectors. This
procedure provided us with significant improve-
ment over a chance baseline but did not outper-
form our current system. We speculate that this
was caused by the split of training data into two
parts, one for training the LMs and another for
training the classifier. The resulting small quantity
of training data may be the reason for bad perfor-
mance. Therefore, we decided to back off to only
binary n-gram features as part of our feature vec-
tor.

3We use the Stanford Tagger to assign parts of speech tags
to sentences. (Toutanova and Manning, 2000)

5.4 Syntactic Features

In this section, we show how we can combine the
DAL scores with syntactic constituents. This pro-
cess involves two steps. First, we chunk each
sentence to its syntactic constituents (NP, VP,
PP, JJP, and Other) using a CRF Chunker.4 If
the marked-up subjective phrase does not contain
complete chunks (i.e., it partially overlaps with
other chunks), we expand the subjective phrase to
include the chunks that it overlaps with. We term
this expanded phrase as the target phrase, see Fig-
ure 1.

Second, each chunk in a sentence is then as-
signed a 2-D AE space score as defined by Cowie
et al., (2001) by adding the individual AE space
scores of all the words in the chunk and then nor-
malizing it by the number of words. At this point,
we are only concerned with the polarity of the
chunk (i.e., whether it is positive or negative or
neutral) and imagery will not help in this task; the
AE space score is determined from pleasantness
and activeness alone. A threshold, determined
empirically by analyzing the distributions of posi-
tive (pos), negative (neg) and neutral (neu) expres-
sions, is used to define ranges for these classes of
expressions. This enables us to assign each chunk
a prior semantic polarity. Having the semantic ori-
entation (positive, negative, neutral) and phrasal
tags, the sentence is then converted to a sequence
of encodings [Phrasal − Tag]polarity. We mark
each phrase that we want to classify as a “target” to
differentiate it from the other chunks and attach its
encoding. As mentioned, if the target phrase par-
tially overlaps with chunks, it is simply expanded
to subsume the chunks. This encoding is illus-
trated in Figure 1.

After these two steps, we extract a set of fea-
tures that are used in classifying the target phrase.
These include n-grams of chunks from the all
sentences, minimum and maximum pleasantness
scores from the chunks in the target phrase itself,
and the syntactic categories that occur in the con-
text of the target phrase. In the remainder of this
section, we describe how these features are ex-
tracted.

We extract unigrams, bigrams and trigrams of
chunks from all the sentences. For example, we
may extract a bigram from Figure 1 of [V P ]neu

followed by [PP ]target
neg . Similar to the lexical

4Xuan-Hieu Phan, “CRFChunker: CRF English Phrase
Chunker”, http://crfchunker.sourceforge.net/, 2006.
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Figure 1: Converting a sentence with a subjective phrase to a sequence of chunks with their types and polarities

n-grams, for the sentence containing the target
phrase, we add binary values in our feature vec-
tor such that the value is 1 if the sentence contains
that chunk n-gram.

We also include two features related to the tar-
get phrase. The target phrase often consists of
many chunks. To detect if a chunk of the target
phrase is highly polar, minimum and maximum
pleasantness scores over all the chunks in the tar-
get phrase are noted.

In addition, we add features which attempt to
capture contextual information using the prior se-
mantic polarity assigned to each chunk both within
the target phrase itself and within the context of the
target phrase. In cases where the target phrase is
in the beginning of the sentence or at the end, we
simply assign zero scores. Then we compute the
frequency of each syntactic type (i.e., NP, VP, PP,
JJP) and polarity (i.e., positive, negative, neutral)
to the left of the target, to the right of the target
and for the target. This additional set of contextual
features yields 36 features in total: three polari-
ties: {positive, negative, neutral} * three contexts:
{left, target, right} * four chunk syntactic types:
{NP, VP, PP, JJP}.

The full set of features captures different types
of information. N-grams look for certain patterns
that may be specific to either polar or neutral senti-
ments. Minimum and maximum scores capture in-
formation about the target phrase standalone. The
last set of features incorporate information about
the neighbors of the target phrase. We performed
feature selection on this full set of n-gram related
features and thus, a small subset of these n-gram
related features, selected automatically (see sec-
tion 6) were used in the experiments.

6 Experiments and Results

Subjective phrases from the MPQA corpus were
used in 10-fold cross-validation experiments. The
MPQA corpus includes gold standard tags for each

Feature Types Accuracy Pos.* Neg.* Neu.*
Chance baseline 33.33% - - -
N-gram baseline 59.05% 0.602 0.578 0.592
DAL scores only 59.66% 0.635 0.635 0.539
+ POS 60.55% 0.621 0.542 0.655
+ Chunks 64.72% 0.681 0.665 0.596
+ N-gram (all) 67.51% 0.703 0.688 0.632
All (unbalanced) 70.76% 0.582 0.716 0.739

Table 3: Results of 3 way classification (Positive, Negative,
and Neutral). In the unbalanced case, majority class baseline

is 46.3% (*F-Measure).

Feature Types Accuracy Pos.* Neg.*
Chance baseline 50% - -
N-gram baseline 73.21% 0.736 0.728
DAL scores only 77.02% 0.763 0.728
+ POS 79.02% 0.788 0.792
+ Chunks 80.72% 0.807 0.807
+ N-gram (all) 82.32% 0.802 0.823
All (unbalanced) 84.08% 0.716 0.889

Table 4: Positive vs. Negative classification results. Baseline
is the majority class. In the unbalanced case, majority class

baseline is 69.74%. (* F-Measure)

phrase. A logistic classifier was used for two po-
larity classification tasks, positive versus negative
versus neutral and positive versus negative. We
report accuracy, and F-measure for both balanced
and unbalanced data.

6.1 Positive versus Negative versus Neutral

Table 3 shows results for a 3-way classifier. For
the balanced data-set, each class has 2799 in-
stances and hence the chance baseline is 33%. For
the unbalanced data-set, there are 2799 instances
of positive, 6471 instances of negative and 7993
instances of neutral phrases and thus the baseline
is about 46%. Results show that the accuracy in-
creases as more features are added. It may be
seen from the table that prior polarity scores do
not do well alone, but when used in conjunction
with other features they play an important role
in achieving an accuracy much higher than both
baselines (chance and lexical n-grams). To re-
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Figure 2: (a) An example sentence with three annotated subjective phrases in the same sentence. (b) Part of the sentence with
the target phrase (B) and their chunks with prior polarities.

confirm if prior polarity scores add value, we ex-
perimented by using all features except the prior
polarity scores and noticed a drop in accuracy by
about 4%. This was found to be true for the
other classification task as well. The table shows
that parts of speech and lexical n-grams are good
features. A significant improvement in accuracy
(over 4%, p-value = 4.2e-15) is observed when
chunk features (i.e., n-grams of constituents and
polarity of neighboring constituents) are used in
conjunction with prior polarity scores and part of
speech features.5 This improvement may be ex-
plained by the following observation. The bi-
gram “[Other]target

neu [NP ]neu” was selected as a
top feature by the Chi-square feature selector. So
were unigrams, [Other]target

neu and [Other]target
neg .

We thus learned n-gram patterns that are char-
acteristic of neutral expressions (the just men-
tioned bigram and the first of the unigrams) as
well as a pattern found mostly in negative ex-
pressions (the latter unigram). It was surpris-
ing to find another top chunk feature, the bigram
“[Other]target

neu [NP ]neg” (i.e., a neutral chunk of
syntactic type “Other” preceding a negative noun
phrase), present in neutral expressions six times
more than in polar expressions. An instance where
these chunk features could have been responsi-
ble for the correct prediction of a target phrase is
shown in Figure 2. Figure 2(a) shows an exam-
ple sentence from the MPQA corpus, which has
three annotated subjective phrases. The manually
labeled polarity of phrases (A) and (C) is negative
and that of (B) is neutral. Figure 2(b) shows the

5We use the binomial test procedure to test statistical sig-
nificance throughout the paper.

relevant chunk bigram which is used to predict the
contextual polarity of the target phrase (B).

It was interesting to see that the top 10 features
consisted of all categories (i.e., prior DAL scores,
lexical n-grams and POS, and syntactic) of fea-
tures. In this and the other experiment, pleasant-
ness, activation and the norm were among the top
5 features. We ran a significance test to show the
importance of the norm feature in our classifica-
tion task and observed that it exerted a significant
increase in accuracy (2.26%, p-value = 1.45e-5).

6.2 Positive versus Negative

Table 4 shows results for positive versus negative
classification. We show results for both balanced
and unbalanced data-sets. For balanced, there are
2779 instances of each class. For the unbalanced
data-set, there are 2779 instances of positive and
6471 instances of neutral, thus our chance base-
line is around 70%. As in the earlier classification,
accuracy and F-measure increase as we add fea-
tures. While the increase of adding the chunk fea-
tures, for example, is not as great as in the previous
classification, it is nonetheless significant (p-value
= 0.0018) in this classification task. The smaller
increase lends support to our hypothesis that po-
lar expressions tend to be less subjective and thus
are less likely to be affected by contextual polar-
ity. Another thing that supports our hypothesis that
neutral expressions are more subjective is the fact
that the rank of imagery (ii), dropped significantly
in this classification task as compared to the previ-
ous classification task. This implies that imagery
has a much lesser role to play when we are dealing
with non-neutral expressions.

30



7 Conclusion and Future Work

We present new features (DAL scores, norm
scores computed using DAL, n-gram over chunks
with polarity) for phrasal level sentiment analysis.
They work well and help in achieving high accu-
racy in a three-way classification of positive, neg-
ative and neutral expressions. We do not require
any manual intervention during feature selection,
and thus our system is fully automated. We also
introduced a 3-D representation that maps differ-
ent classes to spatial coordinates.

It may seem to be a limitation of our system that
it requires accurate expression boundaries. How-
ever, this is not true for the following two reasons:
first, Wiebe et al., (2005) declare that while mark-
ing the span of subjective expressions and hand
annotating the MPQA corpus, the annotators were
not trained to mark accurate expression bound-
aries. The only constraint was that the subjective
expression should be within the mark-ups for all
annotators. Second, we expanded the marked sub-
jective phrase to subsume neighboring phrases at
the time of chunking.

A limitation of our scoring scheme is that it
does not handle polysemy, since words in DAL
are not provided with their parts of speech. Statis-
tics show, however, that most words occurred with
primarily one part of speech only. For example,
“will” occurred as modal 1272 times in the corpus,
whereas it appeared 34 times as a noun. The case
is similar for “like” and “just”, which mostly occur
as a preposition and an adverb, respectively. Also,
in our state machine, we haven’t accounted for the
impact of connectives such as “but” or “although”;
we propose drawing on work in argumentative ori-
entation to do so ((Anscombre and Ducrot, 1983);
(Elhadad and McKeown, 1990)).

For future work, it would be interesting to do
subjectivity and intensity classification using the
same scheme and features. Particularly, for the
task of subjectivity analysis, we speculate that the
imagery score might be useful for tagging chunks
with “subjective” and “objective” instead of posi-
tive, negative, and neutral.
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Abstract

In this paper we propose a new graph-
based method that uses the knowledge in
a LKB (based on WordNet) in order to
perform unsupervised Word Sense Disam-
biguation. Our algorithm uses the full
graph of the LKB efficiently, performing
better than previous approaches in English
all-words datasets. We also show that the
algorithm can be easily ported to other lan-
guages with good results, with the only re-
quirement of having a wordnet. In addi-
tion, we make an analysis of the perfor-
mance of the algorithm, showing that it is
efficient and that it could be tuned to be
faster.

1 Introduction

Word Sense Disambiguation (WSD) is a key
enabling-technology that automatically chooses
the intended sense of a word in context. Super-
vised WSD systems are the best performing in
public evaluations (Palmer et al., 2001; Snyder
and Palmer, 2004; Pradhan et al., 2007) but they
need large amounts of hand-tagged data, which is
typically very expensive to build. Given the rela-
tively small amount of training data available, cur-
rent state-of-the-art systems only beat the simple
most frequent sense (MFS) baseline1 by a small
margin. As an alternative to supervised systems,
knowledge-based WSD systems exploit the infor-
mation present in a lexical knowledge base (LKB)
to perform WSD, without using any further corpus
evidence.

1This baseline consists of tagging all occurrences in the
test data with the sense of the word that occurs more often in
the training data

Traditional knowledge-based WSD systems as-
sign a sense to an ambiguous word by comparing
each of its senses with those of the surrounding
context. Typically, some semantic similarity met-
ric is used for calculating the relatedness among
senses (Lesk, 1986; McCarthy et al., 2004). One
of the major drawbacks of these approaches stems
from the fact that senses are compared in a pair-
wise fashion and thus the number of computa-
tions can grow exponentially with the number of
words. Although alternatives like simulated an-
nealing (Cowie et al., 1992) and conceptual den-
sity (Agirre and Rigau, 1996) were tried, most of
past knowledge based WSD was done in a subop-
timal word-by-word process, i.e., disambiguating
words one at a time.

Recently, graph-based methods for knowledge-
based WSD have gained much attention in the
NLP community (Sinha and Mihalcea, 2007; Nav-
igli and Lapata, 2007; Mihalcea, 2005; Agirre
and Soroa, 2008). These methods use well-known
graph-based techniques to find and exploit the
structural properties of the graph underlying a par-
ticular LKB. Because the graph is analyzed as a
whole, these techniques have the remarkable prop-
erty of being able to find globally optimal solu-
tions, given the relations between entities. Graph-
based WSD methods are particularly suited for
disambiguating word sequences, and they man-
age to exploit the interrelations among the senses
in the given context. In this sense, they provide
a principled solution to the exponential explosion
problem, with excellent performance.

Graph-based WSD is performed over a graph
composed by senses (nodes) and relations between
pairs of senses (edges). The relations may be of
several types (lexico-semantic, coocurrence rela-
tions, etc.) and may have some weight attached to
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them. The disambiguation is typically performed
by applying a ranking algorithm over the graph,
and then assigning the concepts with highest rank
to the corresponding words. Given the compu-
tational cost of using large graphs like WordNet,
many researchers use smaller subgraphs built on-
line for each target context.

In this paper we present a novel graph-based
WSD algorithm which uses the full graph of
WordNet efficiently, performing significantly bet-
ter that previously published approaches in En-
glish all-words datasets. We also show that the
algorithm can be easily ported to other languages
with good results, with the only requirement of
having a wordnet. The algorithm is publicly avail-
able2 and can be applied easily to sense invento-
ries and knowledge bases different from WordNet.
Our analysis shows that our algorithm is efficient
compared to previously proposed alternatives, and
that a good choice of WordNet versions and rela-
tions is fundamental for good performance.

The paper is structured as follows. We first de-
scribe the PageRank and Personalized PageRank
algorithms. Section 3 introduces the graph based
methods used for WSD. Section 4 shows the ex-
perimental setting and the main results, and Sec-
tion 5 compares our methods with related exper-
iments on graph-based WSD systems. Section 6
shows the results of the method when applied to
a Spanish dataset. Section 7 analyzes the perfor-
mance of the algorithm. Finally, we draw some
conclusions in Section 8.

2 PageRank and Personalized PageRank

The celebrated PageRank algorithm (Brin and
Page, 1998) is a method for ranking the vertices
in a graph according to their relative structural
importance. The main idea of PageRank is that
whenever a link fromvi to vj exists in a graph, a
vote from nodei to nodej is produced, and hence
the rank of nodej increases. Besides, the strength
of the vote fromi to j also depends on the rank
of nodei: the more important nodei is, the more
strength its votes will have. Alternatively, PageR-
ank can also be viewed as the result of a random
walk process, where the final rank of nodei rep-
resents the probability of a random walk over the
graph ending on nodei, at a sufficiently large time.

Let G be a graph withN verticesv1, . . . , vN

and di be the outdegree of nodei; let M be a

2http://ixa2.si.ehu.es/ukb

N×N transition probability matrix, whereMji =
1

di
if a link from i to j exists, and zero otherwise.

Then, the calculation of thePageRank vector Pr

overG is equivalent to resolving Equation (1).

Pr = cMPr + (1 − c)v (1)

In the equation,v is aN × 1 vector whose ele-
ments are1

N
andc is the so calleddamping factor,

a scalar value between0 and1. The first term of
the sum on the equation models the voting scheme
described in the beginning of the section. The sec-
ond term represents, loosely speaking, the proba-
bility of a surfer randomly jumping to any node,
e.g. without following any paths on the graph.
The damping factor, usually set in the[0.85..0.95]
range, models the way in which these two terms
are combined at each step.

The second term on Eq. (1) can also be seen as
a smoothing factor that makes any graph fulfill the
property of being aperiodic and irreducible, and
thus guarantees that PageRank calculation con-
verges to a unique stationary distribution.

In the traditional PageRank formulation the vec-
tor v is a stochastic normalized vector whose ele-
ment values are all1

N
, thus assigning equal proba-

bilities to all nodes in the graph in case of random
jumps. However, as pointed out by (Haveliwala,
2002), the vectorv can be non-uniform and assign
stronger probabilities to certain kinds of nodes, ef-
fectively biasing the resulting PageRank vector to
prefer these nodes. For example, if we concen-
trate all the probability mass on a unique nodei,
all random jumps on the walk will return toi and
thus its rank will be high; moreover, the high rank
of i will make all the nodes in its vicinity also re-
ceive a high rank. Thus, the importance of nodei
given by the initial distribution ofv spreads along
the graph on successive iterations of the algorithm.

In this paper, we will usetraditional PageRank
to refer to the case when a uniformv vector is used
in Eq. (1); and whenever a modifiedv is used, we
will call it Personalized PageRank. The next sec-
tion shows how we define a modifiedv.

PageRank is actually calculated by applying an
iterative algorithm which computes Eq. (1) suc-
cessively until convergence below a given thresh-
old is achieved, or, more typically, until a fixed
number of iterations are executed.

Regarding PageRank implementation details,
we chose a damping value of0.85 and finish the
calculation after30 iterations. We did not try other
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damping factors. Some preliminary experiments
with higher iteration counts showed that although
sometimes the node ranks varied, the relative order
among particular word synsets remained stable af-
ter the initial iterations (cf. Section 7 for further
details). Note that, in order to discard the effect
of dangling nodes (i.e. nodes without outlinks) we
slightly modified Eq. (1). For the sake of brevity
we omit the details, which the interested reader
can check in (Langville and Meyer, 2003).

3 Using PageRank for WSD

In this section we present the application of
PageRank to WSD. If we were to apply the tra-
ditional PageRank over the whole WordNet we
would get a context-independent ranking of word
senses, which is not what we want. Given an input
piece of text (typically one sentence, or a small set
of contiguous sentences), we want to disambiguate
all open-class words in the input taken the rest as
context. In this framework, we need to rank the
senses of the target words according to the other
words in the context. Theare two main alternatives
to achieve this:

• To create a subgraph of WordNet which con-
nects the senses of the words in the input text,
and then apply traditional PageRank over the
subgraph.

• To use Personalized PageRank, initializingv

with the senses of the words in the input text

The first method has been explored in the lit-
erature (cf. Section 5), and we also presented a
variant in (Agirre and Soroa, 2008) but the second
method is novel in WSD. In both cases, the algo-
rithms return a list of ranked senses for each target
word in the context. We will see each of them in
turn, but first we will present some notation and a
preliminary step.

3.1 Preliminary step

A LKB is formed by a set of concepts and relations
among them, and a dictionary, i.e., a list of words
(typically, word lemmas) each of them linked to
at least one concept of the LKB. Given any such
LKB, we build an undirected graphG = (V, E)
where nodes represent LKB concepts (vi), and
each relation between conceptsvi andvj is rep-
resented by an undirected edgeei,j .

In our experiments we have tried our algorithms
using three different LKBs:

• MCR16 + Xwn: The Multilingual Central
Repository (Atserias et al., 2004b) is a lexical
knowledge base built within the MEANING
project3. This LKB comprises the original
WordNet 1.6 synsets and relations, plus some
relations from other WordNet versions auto-
matically mapped4 into version 1.6: WordNet
2.0 relations and eXtended WordNet relations
(Mihalcea and Moldovan, 2001) (gold, silver
and normal relations). The resulting graph
has99, 632 vertices and637, 290 relations.

• WNet17 + Xwn: WordNet 1.7 synset and
relations and eXtended WordNet relations.
The graph has109, 359 vertices and620, 396
edges

• WNet30 + gloss: WordNet 3.0 synset and
relations, including manually disambiguated
glosses . The graph has117, 522 vertices and
525, 356 relations.

Given an input text, we extract the listWi i =
1 . . .m of content words (i.e. nouns, verbs, ad-
jectives and adverbs) which have an entry in the
dictionary, and thus can be related to LKB con-
cepts. LetConcepts i = {v1, . . . , vim} be the
im associated concepts of wordWi in the LKB
graph. Note that monosemous words will be re-
lated to just one concept, whereas polysemous
words may be attached to several. As a result
of the disambiguation process, every concept in
Concepts i, i = 1, . . . , m receives a score. Then,
for each target word to be disambiguated, we just
choose its associated concept inG with maximal
score.

In our experiments we build a context of at least
20 content words for each sentence to be disam-
biguated, taking the sentences immediately before
and after it in the case that the original sentence
was too short.

3.2 Traditional PageRank over Subgraph
(Spr)

We follow the algorithm presented in (Agirre and
Soroa, 2008), which we explain here for complete-
ness. The main idea of the subgraph method is to
extract the subgraph ofGKB whose vertices and
relations are particularly relevant for a given input

3http://nipadio.lsi.upc.es/nlp/meaning
4We use the freely available WordNet mappings from

http://www.lsi.upc.es/˜nlp/tools/download-map.php
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context. Such a subgraph is called a “disambigua-
tion subgraph”GD, and it is built in the following
way. For each wordWi in the input context and
each conceptvi ∈ Concepts i, a standard breath-
first search (BFS) overGKB is performed, start-
ing at nodevi. Each run of the BFS calculates the
minimum distance paths betweenvi and the rest of
concepts ofGKB . In particular, we are interested
in the minimum distance paths betweenvi and the
concepts associated to the rest of the words in the
context,vj ∈

⋃
j 6=i Conceptsj . Let mdpvi

be the
set of these shortest paths.

This BFS computation is repeated for every
concept of every word in the input context, stor-
ing mdpvi

accordingly. At the end, we obtain a
set of minimum length paths each of them hav-
ing a different concept as a source. The disam-
biguation graphGD is then just the union of the
vertices and edges of the shortest paths,GD =
⋃m

i=1
{mdpvj

/vj ∈ Concepts i}.
The disambiguation graphGD is thus a sub-

graph of the originalGKB graph obtained by com-
puting the shortest paths between the concepts of
the words co-occurring in the context. Thus, we
hypothesize that it captures the most relevant con-
cepts and relations in the knowledge base for the
particular input context.

Once theGD graph is built, we compute the tra-
ditional PageRank algorithm over it. The intuition
behind this step is that the vertices representing
the correct concepts will be more relevant inGD

than the rest of the possible concepts of the context
words, which should have less relations on average
and be more isolated.

As usual, the disambiguation step is performed
by assigning to each wordWi the associated con-
cept inConcepts i which has maximum rank. In
case of ties we assign all the concepts with maxi-
mum rank. Note that the standard evaluation script
provided in the Senseval competitions treats mul-
tiple senses as if one was chosen at random, i.e.
for evaluation purposes our method is equivalent
to breaking ties at random.

3.3 Personalized PageRank (Ppr and
Ppr w2w)

As mentioned before, personalized PageRank al-
lows us to use the full LKB. We first insert the
context words into the graphG as nodes, and link
them with directed edges to their respective con-
cepts. Then, we compute the personalized PageR-

ank of the graphG by concentrating the initial
probability mass uniformly over the newly intro-
duced word nodes. As the words are linked to
the concepts by directed edges, they act as source
nodes injecting mass into the concepts they are as-
sociated with, which thus become relevant nodes,
and spread their mass over the LKB graph. There-
fore, the resulting personalized PageRank vector
can be seen as a measure of the structural rele-
vance of LKB concepts in the presence of the input
context.

One problem with Personalized PageRank is
that if one of the target words has two senses
which are related by semantic relations, those
senses reinforce each other, and could thus
dampen the effect of the other senses in the con-
text. With this observation in mind we devised
a variant (dubbedPpr w2w), where we build the
graph for each target word in the context: for each
target wordWi, we concentrate the initial proba-
bility mass in the senses of the words surrounding
Wi, but not in the senses of the target word itself,
so that context words increase its relative impor-
tance in the graph. The main idea of this approach
is to avoid biasing the initial score of concepts as-
sociated to target wordWi, and let the surround-
ing words decide which concept associated toWi

has more relevance. Contrary to the other two ap-
proaches,Ppr w2w does not disambiguate all tar-
get words of the context in a single run, which
makes it less efficient (cf. Section 7).

4 Evaluation framework and results

In this paper we will use two datasets for com-
paring graph-based WSD methods, namely, the
Senseval-2 (S2AW) and Senseval-3 (S3AW) all
words datasets (Snyder and Palmer, 2004; Palmer
et al., 2001), which are both labeled with WordNet
1.7 tags. We did not use the Semeval dataset, for
the sake of comparing our results to related work,
none of which used Semeval data. Table 1 shows
the results as recall of the graph-based WSD sys-
tem over these datasets on the different LKBs. We
detail overall results, as well as results per PoS,
and the confidence interval for the overall results.
The interval was computed using bootstrap resam-
pling with 95% confidence.

The table shows thatPpr w2w is consistently
the best method in both datasets and for all LKBs.
Ppr andSpr obtain comparable results, which is
remarkable, given the simplicity of thePpr algo-
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Senseval-2 All Words dataset
LKB Method All N V Adj. Adv. Conf. interval
MCR16 + Xwn Ppr 51.1 64.9 38.1 57.4 47.5 [49.3, 52.6]
MCR16 + Xwn Pprw2w 53.3 64.5 38.6 58.3 48.1 [52.0, 55.0]
MCR16 + Xwn Spr 52.7 64.8 35.3 56.8 50.2 [51.3, 54.4]
WNet17 + Xwn Ppr 56.8 71.1 33.4 55.9 67.1 [55.0, 58.7]
WNet17 + Xwn Pprw2w 58.6 70.4 38.9 58.3 70.1 [56.7, 60.3]
WNet17 + Xwn Spr 56.7 66.8 37.7 57.6 70.8 [55.0, 58.2]
WNet30 + gloss Ppr 53.5 70.0 28.6 53.9 55.1 [51.8, 55.2]
WNet30 + gloss Pprw2w 55.8 71.9 34.4 53.8 57.5 [54.1, 57.8]
WNet30 + gloss Spr 54.8 68.9 35.1 55.2 56.5 [53.2, 56.3]
MFS 60.1 71.2 39.0 61.1 75.4 [58.6, 61.9]
SMUaw 68.6 78.0 52.9 69.9 81.7

Senseval-3 All Words dataset
LKB Method All N V Adj. Adv.
MCR16 + Xwn Ppr 54.3 60.9 45.4 56.5 92.9 [52.3, 56.1]
MCR16 + Xwn Pprw2w 55.8 63.2 46.2 57.5 92.9 [53.7, 57.7]
MCR16 + Xwn Static 53.7 59.5 45.0 57.8 92.9 [51.8, 55.7]
WNet17 + Xwn Ppr 56.1 62.6 46.0 60.8 92.9 [54.0, 58.1]
WNet17 + Xwn Pprw2w 57.4 64.1 46.9 62.6 92.9 [55.5, 59.3]
WNet17 + Xwn Spr 56.20 61.6 47.3 61.8 92.9 [54.8, 58.2]
WNet30 + gloss Ppr 48.5 52.2 41.5 54.2 78.6 [46.7, 50.6]
WNet30 + gloss Pprw2w 51.6 59.0 40.2 57.2 78.6 [49.9, 53.3]
WNet30 + gloss Spr 45.4 54.1 31.4 52.5 78.6 [43.7, 47.4]
MFS 62.3 69.3 53.6 63.7 92.9 [60.2, 64.0]
GAMBL 65.2 70.8 59.3 65.3 100

Table 1: Results (as recall) on Senseval-2 and Senseval-3 all words tasks. We also include the MFS
baseline and the best results of supervised systems at competition time (SMUaw,GAMBL).

rithm, compared to the more elaborate algorithm
to construct the graph. The differences between
methods are not statistically significant, which is a
common problem on this relatively small datasets
(Snyder and Palmer, 2004; Palmer et al., 2001).

Regarding LKBs, the best results are obtained
using WordNet 1.7 and eXtended WordNet. Here
the differences are in many cases significant.
These results are surprising, as we would ex-
pect that the manually disambiguated gloss re-
lations from WordNet 3.0 would lead to bet-
ter results, compared to the automatically disam-
biguated gloss relations from the eXtended Word-
Net (linked to version 1.7). The lower perfor-
mance of WNet30+gloss can be due to the fact
that the Senseval all words data set is tagged using
WordNet 1.7 synsets. When using a different LKB
for WSD, a mapping to WordNet 1.7 is required.
Although the mapping is cited as having a correct-
ness on the high 90s (Daude et al., 2000), it could
have introduced sufficient noise to counteract the
benefits of the hand-disambiguated glosses.

Table 1 also shows the most frequent sense
(MFS), as well as the best supervised sys-
tems (Snyder and Palmer, 2004; Palmer et
al., 2001) that participated in each competition
(SMUaw and GAMBL, respectively). The MFS is
a baseline for supervised systems, but it is consid-

ered a difficult competitor for unsupervised sys-
tems, which rarely come close to it. In this case
the MFS baseline was computed using previously
availabel training data like SemCor. Our best re-
sults are close to the MFS in both Senseval-2 and
Senseval-3 datasets. The results for the supervised
system are given for reference, and we can see that
the gap is relatively small, specially for Senseval-
3.

5 Comparison to Related work

In this section we will briefly describe some
graph-based methods for knowledge-based WSD.
The methods here presented cope with the prob-
lem of sequence-labeling, i.e., they disambiguate
all the words coocurring in a sequence (typically,
all content words of a sentence). All the meth-
ods rely on the information represented on some
LKB, which typically is some version of Word-
Net, sometimes enriched with proprietary rela-
tions. The results on our datasets, when available,
are shown in Table 2. The table also shows the
performance of supervised systems.

The TexRank algorithm (Mihalcea, 2005) for
WSD creates a complete weighted graph (e.g. a
graph where every pair of distinct vertices is con-
nected by a weighted edge) formed by the synsets
of the words in the input context. The weight
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Senseval-2 All Words dataset
System All N V Adj. Adv.
Mih05 54.2 57.5 36.5 56.7 70.9
Sihna07 56.4 65.6 32.3 61.4 60.2
Tsatsa07 49.2 – – – –
Spr 56.6 66.7 37.5 57.6 70.8
Ppr 56.8 71.1 33.4 55.9 67.1
Ppr w2w 58.6 70.4 38.9 58.3 70.1
MFS 60.1 71.2 39.0 61.1 75.4

Senseval-3 All Words dataset
System All N V Adj. Adv.
Mih05 52.2 - - - -
Sihna07 52.4 60.5 40.6 54.1 100.0
Nav07 - 61.9 36.1 62.8 -
Spr 56.2 61.6 47.3 61.8 92.9
Ppr 56.1 62.6 46.0 60.8 92.9
Ppr w2w 57.4 64.1 46.9 62.6 92.9
MFS 62.3 69.3 53.6 63.7 92.9
Nav05 60.4 - - - -

Table 2: Comparison with related work. Note that
Nav05 uses the MFS.

of the links joining two synsets is calculated by
executing Lesk’s algorithm (Lesk, 1986) between
them, i.e., by calculating the overlap between the
words in the glosses of the correspongind senses.
Once the complete graph is built, the PageRank al-
gorithm is executed over it and words are assigned
to the most relevant synset. In this sense, PageR-
ank is used an alternative to simulated annealing
to find the optimal pairwise combinations. The
method was evaluated on the Senseval-3 dataset,
as shown in row Mih05 on Table 2.

(Sinha and Mihalcea, 2007) extends their pre-
vious work by using a collection of semantic sim-
ilarity measures when assigning a weight to the
links across synsets. They also compare differ-
ent graph-based centrality algorithms to rank the
vertices of the complete graph. They use differ-
ent similarity metrics for different POS types and
a voting scheme among the centrality algorithm
ranks. Here, the Senseval-3 corpus was used as
a development data set, and we can thus see those
results as the upper-bound of their method.

We can see in Table 2 that the methods pre-
sented in this paper clearly outperform both Mih05
and Sin07. This result suggests that analyzing the
LKB structure as a whole is preferable than com-
puting pairwise similarity measures over synsets.
The results of various in-house made experiments
replicating (Mihalcea, 2005) also confirm this ob-
servation. Note also that our methods are simpler
than the combination strategy used in (Sinha and
Mihalcea, 2007), and that we did not perform any
parameter tuning as they did.

In (Navigli and Velardi, 2005) the authors de-
velop a knowledge-based WSD method based on
lexical chains called structural semantic intercon-
nections (SSI). Although the system was first de-
signed to find the meaning of the words in Word-
Net glosses, the authors also apply the method for
labeling text sequences. Given a text sequence,
SSI first identifies monosemous words and assigns
the corresponding synset to them. Then, it iter-
atively disambiguates the rest of terms by select-
ing the senses that get the strongest interconnec-
tion with the synsets selected so far. The inter-
connection is calculated by searching for paths on
the LKB, constrained by some hand-made rules of
possible semantic patterns. The method was eval-
uated on the Senseval-3 dataset, as shown in row
Nav05 on Table 2. Note that the method labels
an instance with the most frequent sense of the
word if the algorithm produces no output for that
instance, which makes comparison to our system
unfair, specially given the fact that the MFS per-
forms better than SSI. In fact it is not possible to
separate the effect of SSI from that of the MFS.
For this reason we place this method close to the
MFS baseline in Table 2.

In (Navigli and Lapata, 2007), the authors per-
form a two-stage process for WSD. Given an input
context, the method first explores the whole LKB
in order to find a subgraph which is particularly
relevant for the words of the context. Then, they
study different graph-based centrality algorithms
for deciding the relevance of the nodes on the sub-
graph. As a result, every word of the context is
attached to the highest ranking concept among its
possible senses. TheSpr method is very similar
to (Navigli and Lapata, 2007), the main differ-
ence lying on the initial method for extracting the
context subgraph. Whereas (Navigli and Lapata,
2007) apply a depth-first search algorithm over the
LKB graph —and restrict the depth of the subtree
to a value of3—, Spr relies on shortest paths be-
tween word synsets. Navigli and Lapata don’t re-
port overall results and therefore, we can’t directly
compare our results with theirs. However, we can
see that on a PoS-basis evaluation our results are
consistently better for nouns and verbs (especially
thePpr w2w method) and rather similar for adjec-
tives.

(Tsatsaronis et al., 2007) is another example of
a two-stage process, the first one consisting on
finding a relevant subgraph by performing a BFS
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Spanish Semeval07
LKB Method Acc.
Spanish Wnet + Xnet∗ Ppr 78.4
Spanish Wnet + Xnet∗ Ppr w2w 79.3
– MFS 84.6
– Supervised 85.10

Table 3: Results (accuracy) on Spanish Semeval07
dataset, including MFS and the best supervised
system in the competition.

search over the LKB. The authors apply a spread-
ing activation algorithm over the subgraph for
node ranking. Edges of the subgraph are weighted
according to its type, following a tf.idf like ap-
proach. The results show that our methods clearly
outperform Tsatsa07. The fact that theSpr method
works better suggests that the traditional PageR-
ank algorithm is a superior method for ranking the
subgraph nodes.

As stated before, all methods presented here
use some LKB for performing WSD. (Mihalcea,
2005) and (Sinha and Mihalcea, 2007) use Word-
Net relations as a knowledge source, but neither
of them specify which particular version did they
use. (Tsatsaronis et al., 2007) uses WordNet 1.7
enriched with eXtended WordNet relations, just
as we do. Both (Navigli and Velardi, 2005; Nav-
igli and Lapata, 2007) use WordNet 2.0 as the un-
derlying LKB, albeit enriched with several new
relations, which are manually created. Unfor-
tunately, those manual relations are not publicly
available, so we can’t directly compare their re-
sults with the rest of the methods. In (Agirre and
Soroa, 2008) we experiment with different LKBs
formed by combining relations of different MCR
versions along with relations extracted from Sem-
Cor, which we call supervised and unsupervised
relations, respectively. The unsupervised relations
that yielded bests results are also used in this paper
(c.f Section 3.1).

6 Experiments on Spanish

Our WSD algorithm can be applied over non-
english texts, provided that a LKB for this partic-
ular language exists. We have tested the graph-
algorithms proposed in this paper on a Spanish
dataset, using the Spanish WordNet as knowledge
source (Atserias et al., 2004a).

We used the Semeval-2007 Task 09 dataset as
evaluation gold standard (M̀arquez et al., 2007).
The dataset contains examples of the150 most
frequent nouns in the CESS-ECE corpus, manu-

Method Time
Ppr 26m46
Spr 119m7
Ppr w2w 164m4

Table 4: Elapsed time (in minutes) of the algo-
rithms when applied to the Senseval-2 dataset.

ally annotated with Spanish WordNet synsets. It
is split into a train and test part, and has an “all
words” shape i.e. input consists on sentences,
each one having at least one occurrence of a tar-
get noun. We ran the experiment over the test part
(792 instances), and used the train part for cal-
culating the MFS baseline. We used the Span-
ish WordNet as LKB, enriched with eXtended
WordNet relations. It contains105, 501 nodes and
623, 316 relations. The results in Table 3 are con-
sistent with those for English, with our algorithm
approaching MFS performance. Note that for this
dataset the supervised algorithm could barely im-
prove over the MFS, suggesting that for this par-
ticular dataset MFS is particularly strong.

7 Performance analysis

Table 4 shows the time spent by the different al-
gorithms when applied to the Senseval-2 all words
dataset, using the WNet17 + Xwn as LKB. The
dataset consists on2473 word instances appear-
ing on 476 different sentences. The experiments
were done on a computer with four 2.66 Ghz pro-
cessors and 16 Gb memory. The table shows that
the time elapsed by the algorithms varies between
30 minutes for thePpr method (which thus dis-
ambiguates circa 82 instances per minute) to al-
most3 hours spent by thePpr w2w method (circa
15 instances per minute). TheSpr method lies
in between, requiring2 hours for completing the
task, but its overall performance is well below the
PageRank basedPpr w2w method. Note that the
algorithm is coded in C++ for greater efficiency,
and uses the Boost Graph Library.

Regarding PageRank calculation, we have tried
different numbers of iterations, and analyze the
rate of convergence of the algorithm. Figure 1 de-
picts the performance of thePpr w2w method for
different iterations of the algorithm. As before, the
algorithm is applied over the MCR17 + Xwn LKB,
and evaluated on the Senseval-2 all words dataset.
The algorithm converges very quickly: one sole it-
eration suffices for achieving a relatively high per-
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Figure 1: Rate of convergence of PageRank algo-
rithm over the MCR17 + Xwn LKB.

formance, and20 iterations are enough for achiev-
ing convergence. The figure shows that, depend-
ing on the LKB complexity, the user can tune the
algorithm and lower the number of iterations, thus
considerably reducing the time required for disam-
biguation.

8 Conclusions

In this paper we propose a new graph-based
method that uses the knowledge in a LKB (based
on WordNet) in order to perform unsupervised
Word Sense Disambuation. Our algorithm uses the
full graph of the LKB efficiently, performing bet-
ter than previous approaches in English all-words
datasets. We also show that the algorithm can be
easily ported to other languages with good results,
with the only requirement of having a wordnet.
Both for Spanish and English the algorithm attains
performances close to the MFS.

The algorithm is publicly available5 and can be
applied easily to sense inventories and knowledge
bases different from WordNet. Our analysis shows
that our algorithm is efficient compared to previ-
ously proposed alternatives, and that a good choice
of WordNet versions and relations is fundamental
for good performance.
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Abstract

The lack of positive results on super-
vised domain adaptation for WSD have
cast some doubts on the utility of hand-
tagging general corpora and thus devel-
oping generic supervised WSD systems.
In this paper we show for the first time
that our WSD system trained on a general
source corpus (BNC) and the target corpus,
obtains up to 22% error reduction when
compared to a system trained on the tar-
get corpus alone. In addition, we show
that as little as 40% of the target corpus
(when supplemented with the source cor-
pus) is sufficient to obtain the same results
as training on the full target data. The key
for success is the use of unlabeled data
with SVD, a combination of kernels and
SVM.

1 Introduction

In many Natural Language Processing (NLP)
tasks we find that a large collection of manually-
annotated text is used to train and test supervised
machine learning models. While these models
have been shown to perform very well when tested
on the text collection related to the training data
(what we call the source domain), the perfor-
mance drops considerably when testing on text
from other domains (called target domains).

In order to build models that perform well in
new (target) domains we usually find two settings
(Daumé III, 2007). In the semi-supervised setting,
the training hand-annotated text from the source
domain is supplemented with unlabeled data from
the target domain. In the supervised setting, we
use training data from both the source and target
domains to test on the target domain.

In (Agirre and Lopez de Lacalle, 2008) we
studied semi-supervised Word Sense Disambigua-

tion (WSD) adaptation, and in this paper we fo-
cus on supervised WSD adaptation. We compare
the performance of similar supervised WSD sys-
tems on three different scenarios. In the source
to target scenario the WSD system is trained on
the source domain and tested on the target do-
main. In the target scenario the WSD system
is trained and tested on the target domain (using
cross-validation). In the adaptation scenario the
WSD system is trained on both source and target
domain and tested in the target domain (also using
cross-validation over the target data). The source
to target scenario represents a weak baseline for
domain adaptation, as it does not use any exam-
ples from the target domain. The target scenario
represents the hard baseline, and in fact, if the do-
main adaptation scenario does not yield better re-
sults, the adaptation would have failed, as it would
mean that the source examples are not useful when
we do have hand-labeled target examples.

Previous work shows that current state-of-the-
art WSD systems are not able to obtain better re-
sults on the adaptation scenario compared to the
target scenario (Escudero et al., 2000; Agirre and
Martı́nez, 2004; Chan and Ng, 2007). This would
mean that if a user of a generic WSD system (i.e.
based on hand-annotated examples from a generic
corpus) would need to adapt it to a specific do-
main, he would be better off throwing away the
generic examples and hand-tagging domain exam-
ples directly. This paper will show that domain
adaptation is feasible, even for difficult domain-
related words, in the sense that generic corpora
can be reused when deploying WSD systems in
specific domains. We will also show that, given
the source corpus, our technique can save up to
60% of effort when tagging domain-related occur-
rences.

We performed on a publicly available corpus
which was designed to study the effect of domains
in WSD (Koeling et al., 2005). It comprises 41
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nouns which are highly relevant in the SPORTS

and FINANCES domains, with 300 examples for
each. The use of two target domains strengthens
the conclusions of this paper.

Our system uses Singular Value Decomposi-
tion (SVD) in order to find correlations between
terms, which are helpful to overcome the scarcity
of training data in WSD (Gliozzo et al., 2005).
This work explores how this ability of SVD and
a combination of the resulting feature spaces im-
proves domain adaptation. We present two ways
to combine the reduced spaces: kernel combina-
tion with Support Vector Machines (SVM), and k
Nearest-Neighbors (k-NN) combination.

The paper is structured as follows. Section 2 re-
views prior work in the area. Section 3 presents
the data sets used. In Section 4 we describe
the learning features, including the application of
SVD, and in Section 5 the learning methods and
the combination. The experimental results are pre-
sented in Section 6. Section 7 presents the discus-
sion and some analysis of this paper and finally
Section 8 draws the conclusions.

2 Prior work

Domain adaptation is a practical problem attract-
ing more and more attention. In the supervised
setting, a recent paper by Daumé III (2007) shows
that a simple feature augmentation method for
SVM is able to effectively use both labeled tar-
get and source data to provide the best domain-
adaptation results in a number of NLP tasks. His
method improves or equals over previously ex-
plored more sophisticated methods (Daumé III
and Marcu, 2006; Chelba and Acero, 2004). The
feature augmentation consists in making three ver-
sion of the original features: a general, a source-
specific and a target-specific versions. That way
the augmented source contains the general and
source-specific version and the augmented target
data general and specific versions. The idea be-
hind this is that target domain data has twice the
influence as the source when making predictions
about test target data. We reimplemented this
method and show that our results are better.

Regarding WSD, some initial works made a ba-
sic analysis of domain adaptation issues. Escud-
ero et al. (2000) tested the supervised adaptation
scenario on the DSO corpus, which had examples
from the Brown corpus and Wall Street Journal
corpus. They found that the source corpus did

not help when tagging the target corpus, show-
ing that tagged corpora from each domain would
suffice, and concluding that hand tagging a large
general corpus would not guarantee robust broad-
coverage WSD. Agirre and Martı́nez (2000) used
the DSO corpus in the supervised scenario to show
that training on a subset of the source corpora that
is topically related to the target corpus does allow
for some domain adaptation.

More recently, Chan and Ng (2007) performed
supervised domain adaptation on a manually se-
lected subset of 21 nouns from the DSO corpus.
They used active learning, count-merging, and
predominant sense estimation in order to save tar-
get annotation effort. They showed that adding
just 30% of the target data to the source exam-
ples the same precision as the full combination of
target and source data could be achieved. They
also showed that using the source corpus allowed
to significantly improve results when only 10%-
30% of the target corpus was used for training.
Unfortunately, no data was given about the target
corpus results, thus failing to show that domain-
adaptation succeeded. In followup work (Zhong et
al., 2008), the feature augmentation approach was
combined with active learning and tested on the
OntoNotes corpus, on a large domain-adaptation
experiment. They reduced significantly the ef-
fort of hand-tagging, but only obtained domain-
adaptation for smaller fractions of the source and
target corpus. Similarly to these works we show
that we can save annotation effort on the target
corpus, but, in contrast, we do get domain adap-
tation when using the full dataset. In a way our
approach is complementary, and we could also ap-
ply active learning to further reduce the number of
target examples to be tagged.

Though not addressing domain adaptation,
other works on WSD also used SVD and are
closely related to the present paper. Ando (2006)
used Alternative Structured Optimization. She
first trained one linear predictor for each target
word, and then performed SVD on 7 carefully se-
lected submatrices of the feature-to-predictor ma-
trix of weights. The system attained small but
consistent improvements (no significance data was
given) on the Senseval-3 lexical sample datasets
using SVD and unlabeled data.

Gliozzo et al. (2005) used SVD to reduce the
space of the term-to-document matrix, and then
computed the similarity between train and test
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instances using a mapping to the reduced space
(similar to our SMA method in Section 4.2). They
combined other knowledge sources into a complex
kernel using SVM. They report improved perfor-
mance on a number of languages in the Senseval-
3 lexical sample dataset. Our present paper dif-
fers from theirs in that we propose an additional
method to use SVD (the OMT method), and that
we focus on domain adaptation.

In the semi-supervised setting, Blitzer et al.
(2006) used Structural Correspondence Learning
and unlabeled data to adapt a Part-of-Speech tag-
ger. They carefully select so-called ‘pivot fea-
tures’ to learn linear predictors, perform SVD on
the weights learned by the predictor, and thus learn
correspondences among features in both source
and target domains. Our technique also uses SVD,
but we directly apply it to all features, and thus
avoid the need to define pivot features. In prelim-
inary work we unsuccessfully tried to carry along
the idea of pivot features to WSD. On the contrary,
in (Agirre and Lopez de Lacalle, 2008) we show
that methods closely related to those presented in
this paper produce positive semi-supervised do-
main adaptation results for WSD.

The methods used in this paper originated in
(Agirre et al., 2005; Agirre and Lopez de Lacalle,
2007), where SVD over a feature-to-documents
matrix improved WSD performance with and
without unlabeled data. The use of several k-
NN classifiers trained on a number of reduced and
original spaces was shown to get the best results
in the Senseval-3 dataset and ranked second in the
SemEval 2007 competition. The present paper ex-
tends this work and applies it to domain adapta-
tion.

3 Data sets

The dataset we use was designed for domain-
related WSD experiments by Koeling et al. (2005),
and is publicly available. The examples come
from the BNC (Leech, 1992) and the SPORTS and
FINANCES sections of the Reuters corpus (Rose
et al., 2002), comprising around 300 examples
(roughly 100 from each of those corpora) for each
of the 41 nouns. The nouns were selected be-
cause they were salient in either the SPORTS or
FINANCES domains, or because they had senses
linked to those domains. The occurrences were
hand-tagged with the senses from WordNet (WN)
version 1.7.1 (Fellbaum, 1998). In our experi-

ments the BNC examples play the role of general
source corpora, and the FINANCES and SPORTS

examples the role of two specific domain target
corpora.

Compared to the DSO corpus used in prior work
(cf. Section 2) this corpus has been explicitly cre-
ated for domain adaptation studies. DSO con-
tains texts coming from the Brown corpus and the
Wall Street Journal, but the texts are not classi-
fied according to specific domains (e.g. Sports,
Finances), which make DSO less suitable to study
domain adaptation. The fact that the selected
nouns are related to the target domain makes
the (Koeling et al., 2005) corpus more demanding
than the DSO corpus, because one would expect
the performance of a generic WSD system to drop
when moving to the domain corpus for domain-
related words (cf. Table 1), while the performance
would be similar for generic words.

In addition to the labeled data, we also use
unlabeled data coming from the three sources
used in the labeled corpus: the ’written’ part
of the BNC (89.7M words), the FINANCES part
of Reuters (32.5M words), and the SPORTS part
(9.1M words).

4 Original and SVD features

In this section, we review the features and two
methods to apply SVD over the features.

4.1 Features

We relied on the usual features used in previous
WSD work, grouped in three main sets. Local
collocations comprise the bigrams and trigrams
formed around the target word (using either lem-
mas, word-forms, or PoS tags) , those formed
with the previous/posterior lemma/word-form in
the sentence, and the content words in a ±4-word
window around the target. Syntactic dependen-
cies use the object, subject, noun-modifier, prepo-
sition, and sibling lemmas, when available. Fi-
nally, Bag-of-words features are the lemmas of
the content words in the whole context, plus the
salient bigrams in the context (Pedersen, 2001).
We refer to these features as original features.

4.2 SVD features

Apart from the original space of features, we have
used the so called SVD features, obtained from
the projection of the feature vectors into the re-
duced space (Deerwester et al., 1990). Basically,
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we set a term-by-document or feature-by-example
matrix M from the corpus (see section below for
more details). SVD decomposes M into three ma-
trices, M = UΣV T . If the desired number of
dimensions in the reduced space is p, we select p
rows from Σ and V , yielding Σp and Vp respec-
tively. We can map any feature vector ~t (which
represents either a train or test example) into the
p-dimensional space as follows: ~tp = ~tT VpΣ−1

p .
Those mapped vectors have p dimensions, and
each of the dimensions is what we call a SVD fea-
ture. We have explored two different variants in
order to build the reduced matrix and obtain the
SVD features, as follows.

Single Matrix for All target words (SVD-
SMA). The method comprises the following steps:
(i) extract bag-of-word features (terms in this case)
from unlabeled corpora, (ii) build the term-by-
document matrix, (iii) decompose it with SVD, and
(iv) map the labeled data (train/test). This tech-
nique is very similar to previous work on SVD

(Gliozzo et al., 2005; Zelikovitz and Hirsh, 2001).
The dimensionality reduction is performed once,
over the whole unlabeled corpus, and it is then ap-
plied to the labeled data of each word. The re-
duced space is constructed only with terms, which
correspond to bag-of-words features, and thus dis-
cards the rest of the features. Given that the WSD
literature shows that all features are necessary for
optimal performance (Pradhan et al., 2007), we
propose the following alternative to construct the
matrix.

One Matrix per Target word (SVD-OMT). For
each word: (i) construct a corpus with its occur-
rences in the labeled and, if desired, unlabeled cor-
pora, (ii) extract all features, (iii) build the feature-
by-example matrix, (iv) decompose it with SVD,
and (v) map all the labeled training and test data
for the word. Note that this variant performs one
SVD process for each target word separately, hence
its name.

When building the SVD-OMT matrices we can
use only the training data (TRAIN) or both the train
and unlabeled data (+UNLAB). When building the
SVD-SMA matrices, given the small size of the in-
dividual word matrices, we always use both the
train and unlabeled data (+UNLAB). Regarding the
amount of data, based also on previous work, we
used 50% of the available data for OMT, and the
whole corpora for SMA. An important parameter
when doing SVD is the number of dimensions in

the reduced space (p). We tried two different val-
ues for p (25 and 200) in the BNC domain, and
set a dimension for each classifier/matrix combi-
nation.

4.3 Motivation

The motivation behind our method is that although
the train and test feature vectors overlap suffi-
ciently in the usual WSD task, the domain dif-
ference makes such overlap more scarce. SVD

implicitly finds correlations among features, as it
maps related features into nearby regions in the re-
duced space. In the case of SMA, SVD is applied
over the joint term-by-document matrix of labeled
(and possibly unlabeled corpora), and it thus can
find correlations among closely related words (e.g.
cat and dog). These correlations can help reduce
the gap among bag-of-words features from the
source and target examples. In the case of OMT,
SVD over the joint feature-by-example matrix of
labeled and unlabeled examples of a word allows
to find correlations among features that show sim-
ilar occurrence patterns in the source and target
corpora for the target word.

5 Learning methods

k-NN is a memory based learning method, where
the neighbors are the k most similar labeled exam-
ples to the test example. The similarity among in-
stances is measured by the cosine of their vectors.
The test instance is labeled with the sense obtain-
ing the maximum sum of the weighted vote of the
k most similar contexts. We set k to 5 based on
previous results published in (Agirre and Lopez de
Lacalle, 2007).

Regarding SVM, we used linear kernels, but
also purpose-built kernels for the reduced spaces
and the combinations (cf. Section 5.2). We used
the default soft margin (C=0). In previous ex-
periments we learnt that C is very dependent on
the feature set and training data used. As we
will experiment with different features and train-
ing datasets, it did not make sense to optimize it
across all settings.

We will now detail how we combined the origi-
nal and SVD features in each of the machine learn-
ing methods.

5.1 k-NN combinations

Our k-NN combination method (Agirre et al.,
2005; Agirre and Lopez de Lacalle, 2007) takes
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advantage of the properties of k-NN classifiers and
exploit the fact that a classifier can be seen as
k points (number of nearest neighbor) each cast-
ing one vote. This makes easy to combine sev-
eral classifiers, one for each feature space. For in-
stance, taking two k-NN classifiers of k = 5, C1

and C2, we can combine them into a single k = 10
classifier, where five votes come from C1 and five
from C2. This allows to smoothly combine classi-
fiers from different feature spaces.

In this work we built three single k-NN classi-
fiers trained on OMT, SMA and the original fea-
tures, respectively. In order to combine them we
weight each vote by the inverse ratio of its position
in the rank of the single classifier, (k − ri + 1)/k,
where ri is the rank.

5.2 Kernel combination
The basic idea of kernel methods is to find a suit-
able mapping function (φ) in order to get a better
generalization. Instead of doing this mapping ex-
plicitly, kernels give the chance to do it inside the
algorithm. We will formalize it as follows. First,
we define the mapping function φ : X → F . Once
the function is defined, we can use it in the kernel
function in order to become an implicit function
K(x, z) = 〈φ(x) · φ(z)〉, where 〈·〉 denotes a in-
ner product between vectors in the feature space.
This way, we can very easily define mappings
representing different information sources and use
this mappings in several machine learning algo-
rithm. In our work we use SVM.

We defined three individual kernels (OMT, SMA

and original features) and the combined kernel.
The original feature kernel (KOrig) is given by

the identity function over the features φ : X → X ,
defining the following kernel:

KOrig(xi,xj) =
〈xi · xj〉√

〈xi · xi〉 〈xj · xj〉
where the denominator is used to normalize and
avoid any kind of bias in the combination.

The OMT kernel (KOmt) and SMA kernel
(KSma) are defined using OMT and SMA projec-
tion matrices, respectively (cf. Section 4.2). Given
the OMT function mapping φomt : Rm → Rp,
where m is the number of the original features
and p the reduced dimensionality, then we define
KOmt(xi,xj) as follows (KSma is defined simi-
larly):

〈φomt(xi) · φomt(xj)〉√
〈φomt(xi) · φomt(xi)〉 〈φomt(xj) · φomt(xj)〉

BNC → X SPORTS FINANCES

MFS 39.0 51.2
k-NN 51.7 60.4
SVM 53.9 62.9

Table 1: Source to target results: Train on BNC,
test on SPORTS and FINANCES.

Finally, we define the kernel combination:

KComb(xi,xj) =
n∑

l=1

Kl(xi,xj)√
Kl(xi,xi)Kl(xj,xj)

where n is the number of single kernels explained
above, and l the index for the kernel type.

6 Domain adaptation experiments

In this section we present the results in our two ref-
erence scenarios (source to target, target) and our
reference scenario (domain adaptation). Note that
all methods presented here have full coverage, i.e.
they return a sense for all test examples, and there-
fore precision equals recall, and suffices to com-
pare among systems.

6.1 Source to target scenario: BNC → X
In this scenario our supervised WSD systems are
trained on the general source corpus (BNC) and
tested on the specific target domains separately
(SPORTS and FINANCES). We do not perform any
kind of adaptation, and therefore the results are
those expected for a generic WSD system when
applied to domain-specific texts.

Table 1 shows the results for k-NN and SVM

trained with the original features on the BNC. In
addition, we also show the results for the Most
Frequent Sense baseline (MFS) taken from the
BNC. The second column denotes the accuracies
obtained when testing on SPORTS, and the third
column the accuracies for FINANCES. The low ac-
curacy obtained with MFS, e.g. 39.0 of precision
in SPORTS, shows the difficulty of this task. Both
classifiers improve over MFS. These classifiers are
weak baselines for the domain adaptation system.

6.2 Target scenario X → X
In this scenario we lay the harder baseline which
the domain adaptation experiments should im-
prove on (cf. next section). The WSD systems
are trained and tested on each of the target cor-
pora (SPORTS and FINANCES) using 3-fold cross-
validation.
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SPORTS FINANCES
X → X TRAIN +UNLAB TRAIN +UNLAB
MFS 77.8 - 82.3 -
k-NN 84.5 - 87.1 -
SVM 85.1 - 87.0 -
k-NN-OMT 85.0 86.1 87.3 87.6
SVM-OMT 82.9 85.1 85.3 86.4
k-NN-SMA - 81.1 - 83.2
SVM-SMA - 81.3 - 84.1
k-NN-COMB 86. 0 86.7 87.9 88.6
SVM-COMB - 86.5 - 88.5

Table 2: Target results: train and test on SPORTS,
train and test on FINANCES, using 3-fold cross-
validation.

Table 2 summarizes the results for this scenario.
TRAIN denotes that only tagged data was used to
train, +UNLAB denotes that we added unlabeled
data related to the source corpus when computing
SVD. The rows denote the classifier and the feature
spaces used, which are organized in four sections.
On the top rows we show the three baseline clas-
sifiers on the original features. The two sections
below show the results of those classifiers on the
reduced dimensions, OMT and SMA (cf. Section
4.2). Finally, the last rows show the results of the
combination strategies (cf. Sections 5.1 and 5.2).
Note that some of the cells have no result, because
that combination is not applicable (e.g. using the
train and unlabeled data in the original space).

First of all note that the results for the base-
lines (MFS, SVM, k-NN) are much larger than
those in Table 1, showing that this dataset is spe-
cially demanding for supervised WSD, and partic-
ularly difficult for domain adaptation experiments.
These results seem to indicate that the examples
from the source general corpus could be of little
use when tagging the target corpora. Note spe-
cially the difference in MFS performance. The pri-
ors of the senses are very different in the source
and target corpora, which is a well-known short-
coming for supervised systems. Note the high re-
sults of the baseline classifiers, which leave small
room for improvement.

The results for the more sophisticated methods
show that SVD and unlabeled data helps slightly,
except for k-NN-OMT on SPORTS. SMA de-
creases the performance compared to the classi-
fiers trained on original features. The best im-
provements come when the three strategies are
combined in one, as both the kernel and k-NN

combinations obtain improvements over the re-
spective single classifiers. Note that both the k-NN

BNC + X SPORTS FINANCES
→ X TRAIN + UNLAB TRAIN + UNLAB
BNC → X 53.9 - 62.9 -
X → X 86.0 86.7 87.9 88.5
MFS 68.2 - 73.1 -
k-NN 81.3 - 86.0 -
SVM 84.7 - 87.5 -
k-NN-OMT 84.0 84.7 87.5 86.0
SVM-OMT 85.1 84.7 84.2 85.5
k-NN-SMA - 77.1 - 81.6
SVM-SMA - 78.1 - 80.7
k-NN-COMB 84.5 87.2 88.1 88.7
SVM-COMB - 88.4 - 89.7
SVM-AUG 85.9 - 88.1 -

Table 3: Domain adaptation results: Train on
BNC and SPORTS, test on SPORTS (same for FI-
NANCES).

and SVM combinations perform similarly.
In the combination strategy we show that unla-

beled data helps slightly, because instead of only
combining OMT and original features we have the
opportunity to introduce SMA. Note that it was not
our aim to improve the results of the basic classi-
fiers on this scenario, but given the fact that we are
going to apply all these techniques in the domain
adaptation scenario, we need to show these results
as baselines. That is, in the next section we will try
to obtain results which improve significantly over
the best results in this section.

6.3 Domain adaptation scenario
BNC + X → X
In this last scenario we try to show that our WSD
system trained on both source (BNC) and tar-
get (SPORTS and FINANCES) data performs better
than the one trained on the target data alone. We
also use 3-fold cross-validation for the target data,
but the entire source data is used in each turn. The
unlabeled data here refers to the combination of
unlabeled source and target data.

The results are presented in table 3. Again, the
columns denote if unlabeled data has been used in
the learning process. The rows correspond to clas-
sifiers and the feature spaces involved. The first
rows report the best results in the previous scenar-
ios: BNC → X for the source to target scenario,
and X → X for the target scenario. The rest
of the table corresponds to the domain adaptation
scenario. The rows below correspond to MFS and
the baseline classifiers, followed by the OMT and
SMA results, and the combination results. The last
row shows the results for the feature augmentation
algorithm (Daumé III, 2007).
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SPORTS FINANCES
BNC → X
MFS 39.0 51.2
SVM 53.9 62.9
X → X
MFS 77.8 82.3
SVM 85.1 87.0
k-NN-COMB (+UNLAB) 86.7 88.6
BNC +X → X
MFS 68.2 73.1
SVM 84.7 87.5
SVM-AUG 85.9 88.1
SVM-COMB (+UNLAB) 88.4 89.7

Table 4: The most important results in each sce-
nario.

Focusing on the results, the table shows that
MFS decreases with respect to the target scenario
(cf. Table 2) when the source data is added, prob-
ably caused by the different sense distributions in
BNC and the target corpora. The baseline classi-
fiers (k-NN and SVM) are not able to improve over
the baseline classifiers on the target data alone,
which is coherent with past research, and shows
that straightforward domain adaptation does not
work.

The following rows show that our reduction
methods on themselves (OMT, SMA used by k-
NN and SVM) also fail to perform better than in
the target scenario, but the combinations using
unlabeled data (k-NN-COMB and specially SVM-
COMB) do manage to improve the best results for
the target scenario, showing that we were able to
attain domain adaptation. The feature augmenta-
tion approach (SVM-AUG) does improve slightly
over SVM in the target scenario, but not over the
best results in the target scenario, showing the dif-
ficulty of domain adaptation for WSD, at least on
this dataset.

7 Discussion and analysis

Table 4 summarizes the most important results.
The kernel combination method with unlabeled
data on the adaptation scenario reduces the error
on 22.1% and 17.6% over the baseline SVM on
the target scenario (SPORTS and FINANCES re-
spectively), and 12.7% and 9.0% over the k-NN

combination method on the target scenario. These
gains are remarkable given the already high base-
line, specially taking into consideration that the
41 nouns are closely related to the domains. The
differences, including SVM-AUG, are statistically
significant according to the Wilcoxon test with
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SVM-AUG (BNC + SPORTS -> SPORTS)
SVM-ORIG (SPORTS -> SPORTS)
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Figure 1: Learning curves for SPORTS. The X
axis denotes the amount of SPORTS data and the
Y axis corresponds to accuracy.
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Figure 2: Learning curves for FINANCES. The X
axis denotes the amount of FINANCES data and Y
axis corresponds to the accuracy.

p < 0.01.
In addition, we carried extra experiments to ex-

amine the learning curves, and to check, given
the source examples, how many additional ex-
amples from the target corpus are needed to ob-
tain the same results as in the target scenario us-
ing all available examples. We fixed the source
data and used increasing amounts of target data.
We show the original SVM on the target scenario,
and SVM-COMB (+UNLAB) and SVM-AUG as the
domain adaptation approaches. The results are
shown in figure 1 for SPORTS and figure 2 for FI-
NANCES. The horizontal line corresponds to the
performance of SVM on the target domain. The
point where the learning curves cross the horizon-
tal line show that our domain adaptation method
needs only around 40% of the target data in order
to get the same performance as the baseline SVM

on the target data. The learning curves also shows
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that the domain adaptation kernel combination ap-
proach, no matter the amount of target data, is al-
ways above the rest of the classifiers, showing the
robustness of our approach.

8 Conclusion and future work

In this paper we explore supervised domain adap-
tation for WSD with positive results, that is,
whether hand-labeling general domain (source)
text is worth the effort when training WSD sys-
tems that are to be applied to specific domains (tar-
gets). We performed several experiments in three
scenarios. In the first scenario (source to target
scenario), the classifiers were trained on source
domain data (the BNC) and tested on the target do-
mains, composed by the SPORTS and FINANCES

sections of Reuters. In the second scenario (tar-
get scenario) we set the main baseline for our do-
main adaptation experiment, training and testing
our classifiers on the target domain data. In the last
scenario (domain adaptation scenario), we com-
bine both source and target data for training, and
test on the target data.

We report results in each scenario for k-NN and
SVM classifiers, for reduced features obtained us-
ing SVD over the training data, for the use of un-
labeled data, and for k-NN and SVM combinations
of all.

Our results show that our best domain adap-
tation strategy (using kernel combination of SVD

features and unlabeled data related to the training
data) yields statistically significant improvements:
up to 22% error reduction compared to SVM on
the target domain data alone. We also show that
our domain adaptation method only needs 40% of
the target data (in addition to the source data) in
order to get the same results as SVM on the target
alone.

We obtain coherent results in two target scenar-
ios, and consistent improvement at all levels of
the learning curves, showing the robustness or our
findings. We think that our dataset, which com-
prises examples for 41 nouns that are closely re-
lated to the target domains, is specially demand-
ing, as one would expect the performance of a
generic WSD system to drop when moving to
the domain corpus, specially on domain-related
words, while we could expect the performance to
be similar for generic or unrelated words.

In the future we would like to evaluate
our method on other datasets (e.g. DSO or

OntoNotes), to test whether the positive results are
confirmed. We would also like to study word-by-
word behaviour, in order to assess whether target
examples are really necessary for words which are
less related to the domain.
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Abstract

We propose a system which builds, in a
semi-supervised manner, a resource that
aims at helping a NER system to anno-
tate corpus-specific named entities. This
system is based on a distributional ap-
proach which uses syntactic dependen-
cies for measuring similarities between
named entities. The specificity of the
presented method however, is to combine
a clique-based approach and a clustering
technique that amounts to a soft clustering
method. Our experiments show that the
resource constructed by using this clique-
based clustering system allows to improve
different NER systems.

1 Introduction

In Information Extraction domain, named entities
(NEs) are one of the most important textual units
as they express an important part of the meaning
of a document. Named entity recognition (NER)
is not a new domain (see MUC1 and ACE2 confer-
ences) but some new needs appeared concerning
NEs processing. For instance the NE Oxford illus-
trates the different ambiguity types that are inter-
esting to address:
• intra-annotation ambiguity: Wikipedia lists

more than 25 cities named Oxford in the world
• systematic inter-annotation ambiguity: the

name of cities could be used to refer to the uni-
versity of this city or the football club of this
city. This is the case for Oxford or Newcastle
• non-systematic inter-annotation ambiguity:

Oxford is also a company unlike Newcastle.
The main goal of our system is to act in a com-

plementary way with an existing NER system, in
order to enhance its results. We address two kinds

1http://www-nlpir.nist.gov/related projects/muc/
2http://www.nist.gov/speech/tests/ace

of issues: first, we want to detect and correctly
annotate corpus-specific NEs3 that the NER sys-
tem could have missed; second, we want to correct
some wrong annotations provided by the existing
NER system due to ambiguity. In section 3, we
give some examples of such corrections.

The paper is organized as follows. We present,
in section 2, the global architecture of our system
and from §2.1 to §2.6, we give details about each
of its steps. In section 3, we present the evalu-
ation of our approach when it is combined with
other classic NER systems. We show that the re-
sulting hybrid systems perform better with respect
to F-measure. In the best case, the latter increased
by 4.84 points. Furthermore, we give examples of
successful correction of NEs annotation thanks to
our approach. Then, in section 4, we discuss about
related works. Finally we sum up the main points
of this paper in section 5.

2 Description of the system

Given a corpus, the main objectives of our system
are: to detect potential NEs; to compute the possi-
ble annotations for each NE and then; to annotate
each occurrence of these NEs with the right anno-
tation by analyzing its local context.

We assume that this corpus dependent approach
allows an easier NE annotation. Indeed, even if
a NE such as Oxford can have many annotation
types, it will certainly have less annotation possi-
bilities in a specific corpus.

Figure 1 presents the global architecture of our
system. The most important part concerns steps
3 (§2.3) and 4 (§2.4). The aim of these sub-
processes is to group NEs which have the same
annotation with respect to a given context. On
the one hand, clique-based methods (see §2.3 for

3In our definition a corpus-specific NE is the one which
does not appear in a classic NEs lexicon. Recent news articles
for instance, are often constituted of NEs that are not in a
classic NEs lexicon.
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Figure 1: General description of our system

details on cliques) are interesting as they allow
the same NE to be in different cliques. In other
words, cliques allow to represent the different pos-
sible annotations of a NE. The clique-based ap-
proach drawback however, is the over production
of cliques which corresponds to an artificial over
production of possible annotations for a NE. On
the other hand, clustering methods aim at struc-
turing a data set and such techniques can be seen
as data compression processes. However, a sim-
ple NEs hard clustering doesn’t allow a NE to be
in several clusters and thus to express its differ-
ent annotations. Then, our proposal is to combine
both methods in a clique-based clustering frame-
work. This combination leads to a soft-clustering
approach that we denote CBC system. The fol-
lowing paragraphs, from 2.1 to 2.6, describe the
respective steps mentioned in Figure 1.

2.1 Detection of potential Named Entities

Different methods exist for detecting potential
NEs. In our system, we used some lexico-
syntactic constraints to extract expressions from a
corpus because it allows to detect some corpus-
specific NEs. In our approach, a potential NE is a
noun starting with an upper-case letter or a noun
phrase which is (see (Ehrmann and Jacquet, 2007)
for similar use):
• a governor argument of an attribute syntactic

relation with a noun as governee argument (e.g.
president attribute−−−−→ George Bush)
• a governee argument of a modifier syntactic re-

lation with a noun as a governor argument (e.g.

company
modifier←−−−− Coca-Cola).

The list of potential NEs extracted from the cor-
pus will be denoted NE and the number of NEs
|NE|.

2.2 Distributional space of NEs
The distributional approach aims at evaluating a
distance between words based on their syntac-
tic distribution. This method assumes that words
which appear in the same contexts are semanti-
cally similar (Harris, 1951).

To construct the distributional space associated
to a corpus, we use a robust parser (in our ex-
periments, we used XIP parser (Aı̈t et al., 2002))
to extract chunks (i.e. nouns, noun phrases, . . . )
and syntactic dependencies between these chunks.
Given this parser’s output, we identify triple in-
stances. Each triple has the form w1.R.w2 where
w1 and w2 are chunks and R is a syntactic relation
(Lin, 1998), (Kilgarriff et al., 2004).

One triple gives two contexts (1.w1.R and
2.w2.R) and two chunks (w1 and w2). Then, we
only select chunks w which belong to NE. Each
point in the distributional space is a NE and each
dimension is a syntactic context. CT denotes the
set of all syntactic contexts and |CT| represents its
cardinal.

We illustrate this construction on the sentence
“provide Albania with food aid”. We obtain the
three following triples (note that aid and food aid
are considered as two different chunks):

provide VERB•I-OBJ•Albania NOUN
provide VERB•PREP WITH•aid NOUN

provide VERB•PREP WITH•food aid NP

From these triples, we have the following
chunks and contexts4:

Chunks: Contexts:
provide VERB 1.provide VERB.I-OBJ
Albania NOUN 1.provide VERB.PREP WITH
aid NOUN 2.Albania NOUN.I-OBJ
food aid NP 2.aid NOUN.PREP WITH

2.food aid NP.PREP WITH

According to the NEs detection method de-
scribed previously, we only keep the chunks and
contexts which are in bold in the above table.

4In the context 1.VERB:provide.I-OBJ, the figure 1
means that the verb provide is the governor argument of the
Indirect OBJect relation.
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We also use an heuristic in order to reduce the
over production of chunks and contexts: in our ex-
periments for example, each NE and each context
should appear more than 10 times in the corpus for
being considered.

D is the resulting (|NE| × |CT|) NE-Context
matrix where ei : i = 1, . . . , |NE| is a NE and
cj : j = 1, . . . , |CT| is a syntactic context. Then
we have:

D(ei, cj) = Nb. of occ. of cj associated to ei (1)

2.3 Cliques of NEs computation
A clique in a graph is a set of pairwise adja-
cent nodes which is equivalent to a complete sub-
graph. A maximal clique is a clique that is not a
subset of any other clique. Maximal cliques com-
putation was already employed for semantic space
representation (Ploux and Victorri, 1998). In this
work, cliques of lexical units are used to represent
a precise meaning. Similarly, we compute cliques
of NEs in order to represent a precise annotation.

For example, Oxford is an ambiguous NE
but a clique such as <Cambridge, Oxford, Ed-
inburgh University, Edinburgh, Oxford Univer-
sity> allows to focus on the specific annota-
tion <organization> (see (Ehrmann and Jacquet,
2007) for similar use).

Given the distributional space described in the
previous paragraph, we use a probabilistic frame-
work for computing similarities between NEs.
The approach that we propose is inspired from
the language modeling framework introduced in
the information retrieval field (see for example
(Lavrenko and Croft, 2003)). Then, we construct
cliques of NEs based on these similarities.

2.3.1 Similarity measures between NEs
We first compute the maximum likelihood esti-
mation for a NE ei to be associated with a con-
text cj : Pml(cj |ei) = D(ei,cj)

|ei| , where |ei| =∑|CT|
j=1 D(ei, cj) is the total occurrences of the NE

ei in the corpus.
This leads to sparse data which is not suitable

for measuring similarities. In order to counter
this problem, we use the Jelinek-Mercer smooth-
ing method: D′(ei, cj) = λPml(cj |ei) + (1 −
λ)Pml(cj |CORP) where CORP is the corpus and
Pml(cj |CORP) =

P
i D(ei,cj)P

i,j D(ei,cj)
. In our experi-

ments we took λ = 0.5.
Given D′, we then use the cross-entropy as a

similarity measure between NEs. Let us denote by

s this similarity matrix, we have:

s(ei, e
′
i) = −

∑
cj∈CT

D′(ei, cj) log(D′(ei′ , cj)) (2)

2.3.2 From similarity matrix to adjacency
matrix

Next, we convert s into an adjacency matrix de-
noted ŝ. In a first step, we binarize s as fol-
lows. Let us denote {ei

1, . . . , e
i
|NE|}, the list of NEs

ranked according to the descending order of their
similarity with ei. Then, L(ei) is the list of NEs
which are considered as the nearest neighbors of
ei according to the following definition:

L(ei) = (3)

{ei
1, ..., e

i
p :
∑p

i′=1 s(ei, e
i
i′)∑|NE|

i′=1 s(ei, ei′)
≤ a; p ≤ b}

where a ∈ [0, 1] and b ∈ {1, . . . , |NE|}. L(ei)
gathers the most significant nearest neighbors of ei

by choosing the ones which bring the a most rele-
vant similarities providing that the neighborhood’s
size doesn’t exceed b. This approach can be seen
as a flexible k-nearest neighbor method. In our
experiments we chose a = 20% and b = 10.

Finally, we symmetrize the similarity matrix as
follows and we obtain ŝ:

ŝ(ei, ei′) =
{

1 if ei′ ∈ L(ei) or ei ∈ L(ei′)
0 otherwise

(4)

2.3.3 Cliques computation
Given ŝ, the adjacency matrix between NEs, we
compute the set of maximal cliques of NEs de-
noted CLI. Then, we construct the matrix T of
general term:

T (clik, ei) =
{

1 if ei ∈ clik
0 otherwise

(5)

where clik is an element of CLI. T will be the
input matrix for the clustering method.

In the following, we also use clik
for denoting the vector represented by
(T (clik, e1), . . . , T (clik, e|NE|)).

Figure 2 shows some cliques which contain Ox-
ford that we can obtain with this method. This fig-
ure also illustrates the over production of cliques
since at least cli8, cli10 and cli12 can be annotated
as <organization>.
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Figure 2: Examples of cliques containing Oxford

2.4 Cliques clustering
We use a clustering technique in order to group
cliques of NEs which are mutually highly simi-
lar. The clusters of cliques which contain a NE
allow to find the different possible annotations of
this NE.

This clustering technique must be able to con-
struct “pure” clusters in order to have precise an-
notations. In that case, it is desirable to avoid
fixing the number of clusters. That’s the reason
why we propose to use the Relational Analysis ap-
proach described below.

2.4.1 The Relational Analysis approach
We propose to apply the Relational Analysis ap-
proach (RA) which is a clustering model that
doesn’t require to fix the number of clusters
(Michaud and Marcotorchino, 1980), (Bédécarrax
and Warnesson, 1989). This approach takes as in-
put a similarity matrix. In our context, since we
want to cluster cliques of NEs, the correspond-
ing similarity matrix S between cliques is given
by the dot products matrix taken from T : S =
T · T ′. The general term of this similarity matrix
is: S(clik, clik′) = Skk′ = 〈clik, clik′〉. Then, we
want to maximize the following clustering func-
tion:

∆(S, X) = (6)
|CLI|∑

k,k′=1

(
Skk′ −

∑
(k′′,k′′′)∈S+ Sk′′k′′′

|S+|

)
︸ ︷︷ ︸

contkk′

Xkk′

where S+ = {(clik, clik′) : Skk′ > 0}.
In other words, clik and clik′ have more chances

to be in the same cluster providing that their sim-
ilarity measure, Skk′ , is greater or equal to the
mean average of positive similarities.

X is the solution we are looking for. It is a bi-
nary relational matrix with general term: Xkk′ =

1, if clik is in the same cluster as clik′ ; and Xkk′ =
0, otherwise. X represents an equivalence rela-
tion. Thus, it must respect the following proper-
ties:
• binarity: Xkk′ ∈ {0, 1};∀k, k′,
• reflexivity: Xkk = 1;∀k,
• symmetry: Xkk′ −Xk′k = 0;∀k, k′,
• transitivity: Xkk′ + Xk′k′′ − Xkk′′ ≤

1;∀k, k′, k′′.
As the objective function is linear with respect

to X and as the constraints that X must respect are
linear equations, we can solve the clustering prob-
lem using an integer linear programming solver.
However, this problem is NP-hard. As a result, in
practice, we use heuristics for dealing with large
data sets.

2.4.2 The Relational Analysis heuristic
The presented heuristic is quite similar to another
algorithm described in (Hartigan, 1975) known as
the “leader” algorithm. But unlike this last ap-
proach which is based upon euclidean distances
and inertial criteria, the RA heuristic aims at max-
imizing the criterion given in (6). A sketch of this
heuristic is given in Algorithm 1, (see (Marco-
torchino and Michaud, 1981) for further details).

Algorithm 1 RA heuristic
Require: nbitr = number of iterations; κmax = maximal

number of clusters; S the similarity matrix

m←
P

(k,k′)∈S+ Skk′

|S+|
Take the first clique clik as the first element of the first
cluster
κ = 1 where κ is the current number of cluster
for q = 1 to nbitr do

for k = 1 to |CLI| do
for l = 1 to κ do

Compute the contribution of clique clik with clus-
ter clul: contl =

P
clik′∈clul

(Skk′ −m)

end for
clul∗ is the cluster id which has the highest contribu-
tion with clique clik and contl∗ is the corresponding
contribution value
if (contl∗ < (Skk −m)) ∧ (κ < κmax) then

Create a new cluster where clique clik is the first
element and κ← κ + 1

else
Assign clique clik to cluster clul∗

if the cluster where was taken clik before its new
assignment, is empty then

κ← κ− 1
end if

end if
end for

end for

We have to provide a number of iterations
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or/and a delta threshold in order to have an approx-
imate solution in a reasonable processing time.
Besides, it is also required a maximum number of
clusters but since we don’t want to fix this param-
eter, we put by default κmax = |CLI|.

Basically, this heuristic has a O(nbitr×κmax×
|CLI|) computation cost. In general terms, we can
assume that nbitr << |CLI|, but not κmax <<
|CLI|. Thus, in the worst case, the algorithm has
a O(κmax × |CLI|) computation cost.

Figure 3 gives some examples of clusters of
cliques5 obtained using the RA approach.

Figure 3: Examples of clusters of cliques (only the
NEs are represented) and their associated contexts

2.5 NE resource construction using the CBC
system’s outputs

Now, we want to exploit the clusters of cliques in
order to annotate NE occurrences. Then, we need
to construct a NE resource where for each pair (NE
x syntactic context) we have an annotation. To this
end, we need first, to assign a cluster to each pair
(NE x syntactic context) (§2.5.1) and second, to
assign each cluster an annotation (§2.5.2).

2.5.1 Cluster assignment to each pair (NE x
syntactic context)

For each cluster clul we provide a score
Fc(cj , clul) for each context cj and a score

5We only represent the NEs and their frequency in the
cluster which corresponds to the number of cliques which
contain the NEs. Furthermore, we represent the most relevant
contexts for this cluster according to equation (7) introduced
in the following.

Fe(ei, clul) for each NE ei. These scores6 are
given by:

Fc(cj , clul) = (7)∑
ei∈clul

D(ei, cj)∑|NE|
i=1 D(ei, cj)

∑
ei∈clul

1{D(ei,cj) 6=0}

where 1{P} equals 1 if P is true and 0 otherwise.

Fe(ei, clul) = #(clul, ei) (8)

Given a NE ei and a syntactic context
cj , we now introduce the contextual clus-
ter assignment matrix Actxt(ei, cj) as fol-
lows: Actxt(ei, cj) = clu∗ where: clu∗ =
Argmax{clul:clul3ei;Fe(ei,clul)>1}Fc(cj , clul).

In other words, clu∗ is the cluster for which we
find more than one occurrence of ei and the high-
est score related to the context cj .

Furthermore, we compute a default cluster as-
signment matrix Adef , which does not depend on
the local context: Adef (ei) = clu• where: clu• =
Argmax{clul:clul3{clik:clik3ei}}|clik|.

In other words, clu• is the cluster containing the
biggest clique clik containing ei.

2.5.2 Clusters annotation
So far, the different steps that we have introduced
were unsupervised. In this paragraph, our aim is to
give a correct annotation to each cluster (hence, to
all NEs in this cluster). To this end, we need some
annotation seeds and we propose two different
semi-supervised approaches (regarding the classi-
fication given in (Nadeau and Sekine, 2007)). The
first one is the manual annotation of some clusters.
The second one proposes an automatic cluster an-
notation and assumes that we have some NEs that
are already annotated.

Manual annotation of clusters This method is
fastidious but it is the best way to match the cor-
pus data with a specific guidelines for annotating
NEs. It also allows to identify new types of an-
notation. We used the ACE2007 guidelines for
manually annotating each cluster. However, our
CBC system leads to a high number of clusters of
cliques and we can’t annotate each of them. For-
tunately, it also leads to a distribution of the clus-
ters’ size (number of cliques by cluster) which is

6For data fusion tasks in information retrieval field, the
scoring method in equation (7) is denoted CombMNZ (Fox
and Shaw, 1994). Other scoring approaches can be used see
for example (Cucchiarelli and Velardi, 2001).
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similar to a Zipf distribution. Consequently, in our
experiments, if we annotate the 100 biggest clus-
ters, we annotate around eighty percent of the de-
tected NEs (see §3).

Automatic annotation of clusters We suppose
in this context that many NEs in NE are already
annotated. Thus, under this assumption, we have
in each cluster provided by the CBC system, both
annotated and non-annotated NEs. Our goal is to
exploit the available annotations for refining the
annotation of a cluster by implicitly taking into
account the syntactic contexts and for propagating
the available annotations to NEs which have no
annotation.

Given a cluster clul of cliques, #(clul, ei) is the
weight of the NE ei in this cluster: it is the number
of cliques in clul that contain ei. For all annota-
tions ap in the set of all possible annotations AN,
we compute its associated score in cluster clul: it
is the sum of the weights of NEs in clul that is
annotated ap.

Then, if the maximal annotation score is greater
than a simple majority (half) of the total votes7, we
assign the corresponding annotation to the clus-
ter. We precise that the annotation <none>8 is
processed in the same way as any other annota-
tions. Thus, a cluster can be globally annotated
<none>. The limit of this automatic approach is
that it doesn’t allow to annotate new NE types than
the ones already available.

In the following, we will denote by Aclu(clul)
the annotation of the cluster clul.

The cluster annotation matrix Aclu associated
to the contextual cluster assignment matrix Actxt

and the default cluster assignment matrix Adef in-
troduced previously will be called the CBC sys-
tem’s NE resource (or shortly the NE resource).

2.6 NEs annotation processes using the NE
resource

In this paragraph, we describe how, given the CBC
system’s NE resource, we annotate occurrences of
NEs in the studied corpus with respect to its local
context. We precise that for an occurrence of a NE
ei its associated local context is the set of syntac-
tical dependencies cj in which ei is involved.

7The total votes number is given byP
ei∈clul

#(clul, ei).
8The NEs which don’t have any annotation.

2.6.1 NEs annotation process for the CBC
system

Given a NE occurrence and its local context we
can use Actxt(ei, cj) and Adef (ei) in order to get
the default annotation Aclu(Adef (ei)) and the list
of contextual annotations {Aclu(Actxt(ei, cj))}j .

Then for annotating this NE occurrence using
our NE resource, we apply the following rules:
• if the list of contextual annotations
{Aclu(Actxt(ei, cj))}j is conflictual, we
annotate the NE occurrence as <none>,
• if the list of contextual annotations is non-

conflictual, then we use the corresponding an-
notation to annotate the NE occurrence
• if the list of contextual annotations is empty,

we use the default annotation Aclu(Adef (ei)).
The NE resource plus the annotation process de-

scribed in this paragraph lead to a NER system
based on the CBC system. This NER system will
be called CBC-NER system and it will be tested in
our experiments both alone and as a complemen-
tary resource.

2.6.2 NEs annotation process for an hybrid
system

We place ourselves into an hybrid situation where
we have two NER systems (NER 1 + NER 2)
which provide two different lists of annotated
NEs. We want to combine these two systems when
annotating NEs occurrences.

Therefore, we resolve any conflicts by applying
the following rules:
• If the same NE occurrence has two different an-

notations from the two systems then there are
two cases. If one of the two system is CBC-
NER system then we take its annotation; oth-
erwise we take the annotation provided by the
NER system which gave the best precision.
• If a NE occurrence is included in another one

we only keep the biggest one and its annota-
tion. For example, if Jacques Chirac is anno-
tated <person> by one system and Chirac by
<person> by the other system, then we only
keep the first annotation.
• If two NE occurrences are contiguous and have

the same annotation, we merge the two NEs in
one NE occurrence.

3 Experiments

The system described in this paper rather target
corpus-specific NE annotation. Therefore, our ex-
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periments will deal with a corpus of recent news
articles (see (Shinyama and Sekine, 2004) for
motivations regarding our corpus choice) rather
than well-known annotated corpora. Our corpus
is constituted of news in English published on
the web during two weeks in June 2008. This
corpus is constituted of around 300,000 words
(10Mb) which doesn’t represent a very large cor-
pus. These texts were taken from various press
sources and they involve different themes (sports,
technology, . . . ). We extracted randomly a sub-
set of articles and manually annotated 916 NEs (in
our experiments, we deal with three types of an-
notation namely <person>, <organization> and
<location>). This subset constitutes our test set.

In our experiments, first, we applied the XIP
parser (Aı̈t et al., 2002) to the whole corpus in or-
der to construct the frequency matrix D given by
(1). Next, we computed the similarity matrix be-
tween NEs according to (2) in order to obtain ŝ de-
fined by (4). Using the latter, we computed cliques
of NEs that allow us to obtain the assignment ma-
trix T given by (5). Then we applied the clustering
heuristic described in Algorithm 1. At this stage,
we want to build the NE resource using the clus-
ters of cliques. Therefore, as described in §2.5,
we applied two kinds of clusters annotations: the
manual and the automatic processes. For the first
one, we manually annotated the 100 biggest clus-
ters of cliques. For the second one, we exploited
the annotations provided by XIP NER (Brun and
Hagège, 2004) and we propagated these annota-
tions to the different clusters (see §2.5.2).

The different materials that we obtained consti-
tute the CBC system’s NE resource. Our aim now
is to exploit this resource and to show that it allows
to improve the performances of different classic
NER systems.

The different NER systems that we tested are
the following ones:

• CBC-NER system M (in short CBC M) based
on the CBC system’s NE resource using the
manual cluster annotation (line 1 in Table 1),
• CBC-NER system A (in short CBC A) based

on the CBC system’s NE resource using the au-
tomatic cluster annotation (line 1 in Table 1),
• XIP NER or in short XIP (Brun and Hagège,

2004) (line 2 in Table 1),
• Stanford NER (or in short Stanford) associ-

ated to the following model provided by the
tool and which was trained on different news

Systems Prec. Rec. F-me.

1 CBC-NER system M 71.67 23.47 35.36
CBC-NER system A 70.66 32.86 44.86

2
XIP NER 77.77 56.55 65.48

XIP + CBC M 78.41 60.26 68.15
XIP + CBC A 76.31 60.48 67.48

3
Stanford NER 67.94 68.01 67.97

Stanford + CBC M 69.40 71.07 70.23
Stanford + CBC A 70.09 72.93 71.48

4
GATE NER 63.30 56.88 59.92

GATE + CBC M 66.43 61.79 64.03
GATE + CBC A 66.51 63.10 64.76

5
Stanford + XIP 72.85 75.87 74.33

Stanford + XIP + CBC M 72.94 77.70 75.24
Stanford + XIP + CBC A 73.55 78.93 76.15

6
GATE + XIP 69.38 66.04 67.67

GATE + XIP + CBC M 69.62 67.79 68.69
GATE + XIP + CBC A 69.87 69.10 69.48

7
GATE + Stanford 63.12 69.32 66.07

GATE + Stanford + CBC M 65.09 72.05 68.39
GATE + Stanford + CBC A 65.66 73.25 69.25

Table 1: Results given by different hybrid NER
systems and coupled with the CBC-NER system

corpora (CoNLL, MUC6, MUC7 and ACE):
ner-eng-ie.crf-3-all2008-distsim.ser.gz (Finkel
et al., 2005) (line 3 in Table 1),
• GATE NER or in short GATE (Cunningham et

al., 2002) (line 4 in Table 1),
• and several hybrid systems which are given by

the combination of pairs taken among the set
of the three last-mentioned NER systems (lines
5 to 7 in Table 1). Notice that these baseline
hybrid systems use the annotation combination
process described in §2.6.1.

In Table 1 we first reported in each line, the re-
sults given by each system when they are applied
alone (figures in italics). These performances rep-
resent our baselines. Second, we tested for each
baseline system, an extended hybrid system that
integrates the CBC-NER systems (with respect to
the combination process detailed in §2.6.2).

The first two lines of Table 1 show that the
two CBC-NER systems alone lead to rather poor
results. However, our aim is to show that the
CBC-NER system is, despite its low performances
alone, complementary to other basic NER sys-
tems. In other words, we want to show that the
exploitation of the CBC system’s NE resource is
beneficial and non-redundant compared to other
baseline NER systems.

This is actually what we obtained in Table 1 as
for each line from 2 to 7, the extended hybrid sys-
tems that integrate the CBC-NER systems (M or
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A) always perform better than the baseline either
in terms of precision9 or recall. For each line, we
put in bold the best performance according to the
F-measure.

These results allow us to show that the NE re-
source built using the CBC system is complemen-
tary to any baseline NER systems and that it al-
lows to improve the results of the latter.

In order to illustrate why the CBC-NER systems
are beneficial, we give below some examples taken
from the test corpus for which the CBC system A
had allowed to improve the performances by re-
spectively disambiguating or correcting a wrong
annotation or detecting corpus-specific NEs.

First, in the sentence “From the start, his par-
ents, Lourdes and Hemery, were with him.”, the
baseline hybrid system Stanford + XIP anno-
tated the ambiguous NE “Lourdes” as <location>
whereas Stanford + XIP + CBC A gave the correct
annotation <person>.

Second, in the sentence “Got 3 percent chance
of survival, what ya gonna do?” The back read,
”A) Fight Through, b) Stay Strong, c) Overcome
Because I Am a Warrior.”, the baseline hybrid
system Stanford + XIP annotated “Warrior” as
<organization> whereas Stanford + XIP + CBC
A corrected this annotation with <none>.

Finally, in the sentence “Matthew, also a fa-
vorite to win in his fifth and final appearance,
was stunningly eliminated during the semifinal
round Friday when he misspelled “secernent”.”,
the baseline hybrid system Stanford + XIP didn’t
give any annotation to “Matthew” whereas Stan-
ford + XIP + CBC A allowed to give the annota-
tion <person>.

4 Related works

Many previous works exist in NEs recognition and
classification. However, most of them do not build
a NEs resource but exploit external gazetteers
(Bunescu and Pasca, 2006), (Cucerzan, 2007).

A recent overview of the field is given in
(Nadeau and Sekine, 2007). According to this pa-
per, we can classify our method in the category
of semi-supervised approaches. Our proposal is
close to (Cucchiarelli and Velardi, 2001) as it uses
syntactic relations (§2.2) and as it relies on exist-
ing NER systems (§2.6.2). However, the partic-
ularity of our method concerns the clustering of

9Except for XIP+CBC A in line 2 where the precision is
slightly lower than XIP’s one.

cliques of NEs that allows both to represent the
different annotations of the NEs and to group the
latter with respect to one precise annotation ac-
cording to a local context.

Regarding this aspect, (Lin and Pantel, 2001)
and (Ngomo, 2008) also use a clique computa-
tion step and a clique merging method. However,
they do not deal with ambiguity of lexical units
nor with NEs. This means that, in their system, a
lexical unit can be in only one merged clique.

From a methodological point of view, our pro-
posal is also close to (Ehrmann and Jacquet, 2007)
as the latter proposes a system for NEs fine-
grained annotation, which is also corpus depen-
dent. However, in the present paper we use all
syntactic relations for measuring the similarity be-
tween NEs whereas in the previous mentioned
work, only specific syntactic relations were ex-
ploited. Moreover, we use clustering techniques
for dealing with the issue related to over produc-
tion of cliques.

In this paper, we construct a NE resource from
the corpus that we want to analyze. In that con-
text, (Pasca, 2004) presents a lightly supervised
method for acquiring NEs in arbitrary categories
from unstructured text of Web documents. How-
ever, Pasca wants to improve web search whereas
we aim at annotating specific NEs of an ana-
lyzed corpus. Besides, as we want to focus on
corpus-specific NEs, our work is also related to
(Shinyama and Sekine, 2004). In this work, the
authors found a significant correlation between the
similarity of the time series distribution of a word
and the likelihood of being a NE. This result mo-
tivated our choice to test our approach on recent
news articles rather than on well-known annotated
corpora.

5 Conclusion

We propose a system that allows to improve NE
recognition. The core of this system is a clique-
based clustering method based upon a distribu-
tional approach. It allows to extract, analyze and
discover highly relevant information for corpus-
specific NEs annotation. As we have shown in our
experiments, this system combined with another
one can lead to strong improvements. Other appli-
cations are currently addressed in our team using
this approach. For example, we intend to use the
concept of clique-based clustering as a soft clus-
tering method for other issues.
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sémantiques à l’aide de dictionnaires de synonymes.
TAL, 39(1).

Y. Shinyama and S. Sekine. 2004. Named Entity Dis-
covery using comparable news articles. In Proceed-
ings of COLING 2004, Geneva.

59



Proceedings of the 12th Conference of the European Chapter of the ACL, pages 60–68,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Correcting Automatic Translations through Collaborations between MT
and Monolingual Target-Language Users

Joshua S. Albrecht and Rebecca Hwa and G. Elisabeta Marai
Department of Computer Science

University of Pittsburgh
{jsa8,hwa,marai}@cs.pitt.edu

Abstract

Machine translation (MT) systems have
improved significantly; however, their out-
puts often contain too many errors to com-
municate the intended meaning to their
users. This paper describes a collabora-
tive approach for mediating between an
MT system and users who do not under-
stand the source language and thus cannot
easily detect translation mistakes on their
own. Through a visualization of multi-
ple linguistic resources, this approach en-
ables the users to correct difficult transla-
tion errors and understand translated pas-
sages that were otherwise baffling.

1 Introduction

Recent advances in machine translation (MT) have
given us some very good translation systems.
They can automatically translate between many
languages for a variety of texts; and they are
widely accessible to the public via the web. The
quality of the MT outputs, however, is not reliably
high. People who do not understand the source
language may be especially baffled by the MT out-
puts because they have little means to recover from
translation mistakes.

The goal of this work is to help monolingual
target-language users to obtain better translations
by enabling them to identify and overcome er-
rors produced by the MT system. We argue for a
human-computer collaborative approach because
both the users and the MT system have gaps in
their abilities that the other could compensate. To
facilitate this collaboration, we propose an inter-
face that mediates between the user and the MT
system. It manages additional NLP tools for the

source language and translation resources so that
the user can explore this extra information to gain
enough understanding of the source text to correct
MT errors. The interactions between the users and
the MT system may, in turn, offer researchers in-
sights into the translation process and inspirations
for better translation models.

We have conducted an experiment in which we
asked non-Chinese speakers to correct the outputs
of a Chinese-English MT system for several short
passages of different genres. They performed the
correction task both with the help of the visual-
ization interface and without. Our experiment ad-
dresses the following questions:

• To what extent can the visual interface help
the user to understand the source text?

• In what way do factors such as the user’s
backgrounds, the properties of source text,
and the quality of the MT system and other
NLP resources impact that understanding?

• What resources or strategies are more help-
ful to the users? What research directions
do these observations suggest in terms of im-
proving the translation models?

Through qualitative and quantitative analysis of
the user actions and timing statistics, we have
found that users of the interface achieved a more
accurate understanding of the source texts and
corrected more difficult translation mistakes than
those who were given the MT outputs alone. Fur-
thermore, we observed that some users made bet-
ter use of the interface for certain genres, such
as sports news, suggesting that the translation
model may be improved by a better integration of
document-level contexts.
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2 Collaborative Translation

The idea of leveraging human-computer collab-
orations to improve MT is not new; computer-
aided translation, for instance, was proposed by
Kay (1980). The focus of these efforts has been on
improving the performance of professional trans-
lators. In contrast, our intended users cannot read
the source text.

These users do, however, have the world knowl-
edge and the language model to put together co-
herent sentences in the target-language. From the
MT research perspective, this raises an interesting
question: given that they are missing a transla-
tion model, what would it take to make these users
into effective “decoders?” While some transla-
tion mistakes are recoverable from a strong lan-
guage model alone, and some might become read-
ily apparent if one can choose from some possi-
ble phrasal translations; the most difficult mistakes
may require greater contextual knowledge about
the source. Consider the range of translation re-
sources available to an MT decoder–which ones
might the users find informative, handicapped as
they are for not knowing the source language?
Studying the users’ interactions with these re-
sources may provide insights into how we might
build a better translation model and a better de-
coder.

In exploring the collaborative approach, the de-
sign considerations for facilitating human com-
puter interaction are crucial. We chose to make
available relatively few resources to prevent the
users from becoming overwhelmed by the options.
We also need to determine how to present the in-
formation from the resources so that the users can
easily interpret them. This is a challenge because
the Chinese processing tools and the translation
resources are imperfect themselves. The informa-
tion should be displayed in such a way that con-
flicting analyses between different resources are
highlighted.

3 Prototype Design

We present an overview of our prototype for a col-
laborative translation interface, named The Chi-
nese Room1. A screen-shot is shown in Figure 1. It

1The inspiration for the name of our system came from
Searle’s thought experiment(Searle, 1980). We realize that
there are major differences between our system and Searle’s
description. Importantly, our users get to insert their knowl-
edge rather than purely operate based on instructions. We felt

Figure 1: A screen-shot of the visual interface. It
consists of two main regions. The left pane is a
workspace for users to explore the sentence; the
right pane provides multiple tabs that offer addi-
tional functionalities.

is a graphical environment that supports five main
sources of information and functionalities. The
space separates into two regions. On the left pane
is a large workspace for the user to explore the
source text one sentence at a time. On the right
pane are tabbed panels that provide the users with
access to a document view of the MT outputs as
well as additional functionalities for interpreting
the source. In our prototype, the MT output is ob-
tained by querying Google’s Translation API2. In
the interest of exploiting user interactions as a di-
agnostic tool for improving MT, we chose infor-
mation sources that are commonly used by mod-
ern MT systems.

First, we display the word alignments between
MT output and segmented Chinese3. Even with-
out knowing the Chinese characters, the users
can visually detect potential misalignments and
poor word reordering. For instance, the automatic
translation shown in Figure 1 begins: Two years
ago this month... It is fluent but incorrect. The
crossed alignments offer users a clue that “two”
and “months” should not have been split up. Users
can also explore alternative orderings by dragging
the English tokens around.

Second, we make available the glosses for
words and characters from a bilingual dictionary4.

the name was nonetheless evocative in that the user requires
additional resources to process the input “squiggles.”

2http://code.google.com/apis/translate/
research

3The Chinese segmentation is obtained as a by-product of
Google’s translation process.

4We used the Chinese-English Translation Lexi-
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The placement of the word gloss presents a chal-
lenge because there are often alternative Chi-
nese segmentations. We place glosses for multi-
character words in the column closer to the source.
When the user mouses over each definition, the
corresponding characters are highlighted, helping
the user to notice potential mis-segmentation in
the Chinese.

Third, the Chinese sentence is annotated with
its parse structure5. Constituents are displayed
as brackets around the source sentence. They
have been color-coded into four major types (noun
phrase, verb phrases, prepositional phrases, and
other). Users can collapse and expand the brack-
ets to keep the workspace uncluttered as they work
through the Chinese sentence. This also indicates
to us which fragments held the user’s focus.

Fourth, based on previous studies reporting
that automatic translations may improve when
given decomposed source inputs (Mellebeek et al.,
2005), we allow the users to select a substring
from the source text for the MT system to trans-
late. We display the N -best alternatives in the
Translation Tab. The list is kept short; its purpose
is less for reranking but more to give the users a
sense of the kinds of hypotheses that the MT sys-
tem is considering.

Fifth, users can select a substring from the
source text and search for source sentences from
a bilingual corpus and a monolingual corpus that
contain phrases similar to the query6. The re-
trieved sentences are displayed in the Example
Tab. For sentences from the bilingual corpus, hu-
man translations for the queried phrase are high-
lighted. For sentences retrieved from the monolin-
gual corpus, their automatic translations are pro-
vided. If the users wished to examine any of the
retrieved translation pairs in detail, they can push
it onto the sentence workspace.

4 Experimental Methodology

We asked eight non-Chinese speakers to correct
the machine translations of four short Chinese pas-

con released by the LDC; for a handful of char-
acters that serve as function words, we added the
functional definitions using an online dictionary
http://www.mandarintools.com/worddict.html.

5It is automatically generated by the Stanford Parser for
Chinese (Klein and Manning, 2003).

6We used Lemur (2006) for the information retrieval
back-end; the parallel corpus is from the Federal Broadcast
Information Service corpus; the monolingual corpus is from
the Chinese Gigaword corpus.

Figure 2: The interface for users who are correct-
ing translations without help; they have access to
the document view, but they do not have access to
any of the other resources.

sages, with an average length of 11.5 sentences.
Two passages are news articles and two are ex-
cerpts of a fictional work. Each participant was
instructed to correct the translations for one news
article and one fictional passage using all the re-
sources made available by The Chinese Room and
the other two passages without. To keep the ex-
perimental conditions as similar as possible, we
provided them with a restricted version of the in-
terface (see Figure 2 for a screen-shot) in which all
additional functionalities except for the Document
View Tab are disabled. We assigned each person
to alternate between working with the full and the
restricted versions of the system; half began with-
out, and the others began with. Thus, every pas-
sage received four sets of corrections made collab-
oratively with the system and four sets of correc-
tions made based solely on the participants’ inter-
nal language models. All together, there are 184
participant corrected sentences (11.5 sentences ×
4 passages × 4 participants) for each condition.

The participants were asked to complete each
passage in one sitting. Within a passage, they
could work on the sentences in any arbitrary order.
They could also elect to “pass” any part of a sen-
tence if they found it too difficult to correct. Tim-
ing statistics were automatically collected while
they made their corrections. We interviewed each
participant for qualitative feedbacks after all four
passages were corrected.

Next, we asked two bilingual speakers to eval-
uate all the corrected translations. The outcomes
between different groups of users are compared,
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and the significance of the difference is deter-
mined using the two-sample t-test assuming un-
equal variances. We require 90% confidence (al-
pha=0.1) as the cut-off for a difference to be con-
sidered statistically significant; when the differ-
ence can be established with higher confidence,
we report that value. In the following subsections,
we describe the conditions of this study in more
details.

Participants’ Background For this study, we
strove to maintain a relatively heterogeneous pop-
ulation; participants were selected to be varied in
their exposures to NLP, experiences with foreign
languages, as well as their age and gender. A sum-
mary of their backgrounds is shown in Table 1.

Prior to the start of the study, the participants
received a 20 minute long presentational tutorial
about the basic functionalities supported by our
system, but they did not have an opportunity to ex-
plore the system on their own. This helps us to de-
termine whether our interface is intuitive enough
for new users to pick up quickly.

Data The four passages used for this study were
chosen to span a range of difficulties and genre
types. The easiest of the four is a news arti-
cle about a new Tamagotchi-like product from
Bandai. It was taken from a webpage that offers
bilingual news to help Chinese students to learn
English. A harder news article is taken from a
past NIST Chinese-English MT Evaluation; it is
about Michael Jordan’s knee injury. For a dif-
ferent genre, we considered two fictional excerpts
from the first chapter of Martin Eden, a novel by
Jack London that has been professionally trans-
lated into Chinese7. One excerpt featured a short
dialog, while the other one was purely descriptive.

Evaluation of Translations Bilingual human
judges are presented with the source text as well as
the parallel English text for reference. Each judge
is then shown a set of candidate translations (the
original MT output, an alternative translation by
a bilingual speaker, and corrected translations by
the participants) in a randomized order. Since the
human corrected translations are likely to be flu-
ent, we have instructed the judges to concentrate
more on the adequacy of the meaning conveyed.
They are asked to rate each sentence on an abso-

7We chose an American story so as to not rely on a
user’s knowledge about Chinese culture. The participants
confirmed that they were not familiar with the chosen story.

Table 2: The guideline used by bilingual judges
for evaluating the translation quality of the MT
outputs and the participants’ corrections.

9-10 The meaning of the Chinese sentence
is fully conveyed in the translation.

7-8 Most of the meaning is conveyed.
5-6 Misunderstands the sentence in a

major way; or has many small mistakes.
3-4 Very little meaning is conveyed.
1-2 The translation makes no sense at all.

lute scale of 1-10 using the guideline in Table 2.
To reduce the biases in the rating scales of differ-
ent judges, we normalized the judges’ scores, fol-
lowing standard practices in MT evaluation (Blatz
et al., 2003). Post normalization, the correlation
coefficient between the judges is 0.64. The final
assessment score for each translated sentence is
the average of judges’ scores, on a scale of 0-1.

5 Results

The results of human evaluations for the user ex-
periment are summarized in Table 3, and the corre-
sponding timing statistics (average minutes spent
editing a sentence) is shown in Table 4. We ob-
served that typical MT outputs contain a range of
errors. Some are primarily problems in fluency
such that the participants who used the restricted
interface, which provided no additional resources
other than the Document View Tab, were still able
to improve the MT quality from 0.35 to 0.42. On
the other hand, there are also a number of more
serious errors that require the participants to gain
some level of understanding of the source in order
to correct them. The participants who had access
to the full collaborative interface were able to im-
prove the quality from 0.35 to 0.53, closing the
gap between the MT and the bilingual translations
by 36.9%. These differences are all statistically
significant (with >98% confidence).

The higher quality of corrections does require
the participants to put in more time. Overall, the
participants took 2.5 times as long when they have
the interface than when they do not. This may be
partly because the participants have more sources
of information to explore and partly because the
participants tended to “pass” on fewer sentences.
The average Levenshtein edit distance (with words
as the atomic unit, and with the score normalized
to the interval [0,1]) between the original MT out-
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Table 1: A summary of participants’ background. ‡User5 recognizes some simple Kanji characters, but
does not have enough knowledge to gain any additional information beyond what the MT system and the
dictionary already provided.

User1 User2 User3 User4 User5‡ User6 User7 User8
NLP background intro grad none none intro grad intro none
Native English yes no yes yes yes yes yes yes
Other Languages French multiple none none Japanese none none Greek

(beginner) (fluent) (beginner) (beginner)
Gender M F F M M M F M
Education Ugrad PhD PhD Ugrad Ugrad PhD Ugrad Ugrad

puts and the corrected sentences made by partic-
ipants using The Chinese Room is 0.59; in con-
trast, the edit distance is shorter, at 0.40, when par-
ticipants correct MT outputs directly. The timing
statistics are informative, but they reflect the inter-
actions of many factors (e.g., the difficulty of the
source text, the quality of the machine translation,
the background and motivation of the user). Thus,
in the next few subsections, we examine how these
factors correlate with the quality of the participant
corrections.

5.1 Impact of Document Variation

Since the quality of MT varies depending on the
difficulty and genre of the source text, we inves-
tigate how these factors impact our participants’
performances. Columns 3-6 of Table 3 (and Ta-
ble 4) compare the corrected translations on a per-
document basis.

Of the four documents, the baseline MT sys-
tem performed the best on the product announce-
ment. Because the article is straight-forward, par-
ticipants found it relatively easy to guess the in-
tended translation. The major obstacle is in de-
tecting and translating Chinese transliteration of
Japanese names, which stumped everyone. The
quality difference between the two groups of par-
ticipants on this document was not statistically sig-
nificant. Relatedly, the difference in the amount of
time spent is the smallest for this document; par-
ticipants using The Chinese Room took about 1.5
times longer.

The other news article was much more difficult.
The baseline MT made many mistakes, and both
groups of participants spent longer on sentences
from this article than the others. Although sports
news is fairly formulaic, participants who only
read MT outputs were baffled, whereas those who
had access to additional resources were able to re-
cover from MT errors and produced good quality

translations.
Finally, as expected, the two fictional excerpts

were the most challenging. Since the participants
were not given any information about the story,
they also have little context to go on. In both cases,
participants who collaborated with The Chinese
Room made higher quality corrections than those
who did not. The difference is statistically signif-
icant at 97% confidence for the first excerpt, and
93% confidence for the second. The differences in
time spent between the two groups are greater for
these passages because the participants who had
to make corrections without help tended to give
up more often.

5.2 Impact of Participants’ Background

We further analyze the results by separating the
participants into two groups according to four
factors: whether they were familiar with NLP,
whether they studied another language, their gen-
der, and their education level.

Exposure to NLP One of our design objectives
for The Chinese Room is accessibility by a diverse
population of end-users, many of whom may not
be familiar with human language technologies. To
determine how prior knowledge of NLP may im-
pact a user’s experience, we analyze the exper-
imental results with respect to the participants’
background. In columns 2 and 3 of Table 5, we
compare the quality of the corrections made by
the two groups. When making corrections on their
own, participants who had been exposed to NLP
held a significant edge (0.35 vs. 0.47). When both
groups of participants used The Chinese Room, the
difference is reduced (0.51 vs. 0.54) and is not sta-
tistically significant. Because all the participants
were given the same short tutorial prior to the start
of the study, we are optimistic that the interface is
intuitive for many users.

None of the other factors distinguished one
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Table 3: Averaged human judgments of the translation quality of the four different approaches: automatic
MT, corrections by participants without help, corrections by participants using The Chinese Room, and
translation produced by a bilingual speaker. The second column reports score for all documents; columns
3-6 show the per-document scores.

Overall News (product) News (sports) Story1 Story2
Machine translation 0.35 0.45 0.30 0.25 0.26
Corrections without The Chinese Room 0.42 0.56 0.35 0.33 0.41
Corrections with The Chinese Room 0.53 0.55 0.62 0.42 0.49
Bilingual translation 0.83 0.83 0.73 0.92 0.88

Table 4: The average amount of time (minutes) participants spent on correcting a sentence.
Overall News (product) News (sports) Story1 Story2

Corrections without The Chinese Room 2.5 1.9 3.2 2.9 2.3
Corrections with The Chinese Room 6.3 2.9 8.7 6.5 8.5

Table 6: The quality of the corrections produced
by four participants using The Chinese Room for
the sports news article.

User1 0.57
User2 0.46
User5 0.70
User6 0.73
bilingual translator 0.73

group of participants from the others. The results
are summarized in columns 4-9 of Table 5. In each
case, the two groups had similar levels of perfor-
mance, and the differences between their correc-
tions were not statistically significant. This trend
holds for both when they were collaborating with
the system and when editing on their own.

Prior Knowledge Another factor that may im-
pact the success of the outcome is the user’s
knowledge about the domain of the source text.
An example from our study is the sports news ar-
ticle. Table 6 lists the scores that the four partic-
ipants who used The Chinese Room received for
their corrected translations for that passage (aver-
aged over sentences). User5 and User6 were more
familiar with the basketball domain; with the help
of the system, they produced translations that were
comparable to those from the bilingual translator
(the differences are not statistically significant).

5.3 Impact of Available Resources

Post-experiment, we asked the participants to de-
scribe the strategies they developed for collaborat-
ing with the system. Their responses fall into three
main categories:

Figure 3: This graph shows the average counts of
access per sentence for different resources.

Divide and Conquer Some users found the syn-
tactic trees helpful in identifying phrasal units for
N -best re-translations or example searches. For
longer sentences, they used the constituent col-
lapse feature to help them reduce clutter and focus
on a portion of the sentence.

Example Retrieval Using the search interface,
users examined the highlighted query terms to de-
termine whether the MT system made any seg-
mentation errors. Sometimes, they used the exam-
ples to arbitrate whether they should trust any of
the dictionary glosses or the MT’s lexical choices.
Typically, though, they did not attempt to inspect
the example translations in detail.

Document Coherence and Word Glosses
Users often referred to the document view to
determine the context for the sentence they are
editing. Together with the word glosses and other
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Table 5: A comparison of translation quality, grouped by four characteristics of participant backgrounds:
their level of exposure to NLP, exposure to another language, their gender, and education level.

No NLP NLP No 2nd Lang. 2nd Lang. Female Male Ugrad PhD
without The Chinese Room 0.35 0.47 0.41 0.43 0.41 0.43 0.41 0.45
with The Chinese Room 0.51 0.54 0.56 0.51 0.50 0.55 0.52 0.54

resources, the discourse level clues helped to
guide users to make better lexical choices than
when they made corrections without the full
system, relying on sentence coherence alone.

Figure 3 compares the average access counts
(per sentence) of different resources (aggregated
over all participants and documents). The option
of inspect retrieved examples in detail (i.e., bring
them up on the sentence workspace) was rarely
used. The inspiration for this feature was from
work on translation memory (Macklovitch et al.,
2000); however, it was not as informative for our
participants because they experienced a greater de-
gree of uncertainty than professional translators.

6 Discussion

The results suggest that collaborative translation
is a promising approach. Participant experiences
were generally positive. Because they felt like
they understood the translations better, they did
not mind putting in the time to collaborate with
the system. Table 7 shows some of the partici-
pants’ outputs. Although there are some transla-
tion errors that cannot be overcome with our cur-
rent system (e.g., transliterated names), the partic-
ipants taken as a collective performed surprisingly
well. For many mistakes, even when the users can-
not correct them, they recognized a problem; and
often, one or two managed to intuit the intended
meaning with the help of the available resources.
As an upper-bound for the effectiveness of the sys-
tem, we construct a combined “oracle” user out of
all 4 users that used the interface for each sentence.
The oracle user’s average score is 0.70; in contrast,
an oracle of users who did not use the system is
0.54 (cf. the MT’s overall of 0.35 and the bilin-
gual translator’s overall of 0.83). This suggests
The Chinese Room affords a potential for human-
human collaboration as well.

The experiment also made clear some limita-
tions of the current resources. One is domain de-
pendency. Because NLP technologies are typi-
cally trained on news corpora, their bias toward
the news domain may mislead our users. For ex-

ample, there is a Chinese character (pronounced
mei3) that could mean either “beautiful” or “the
United States.” In one of the passages, the in-
tended translation should have been: He was re-
sponsive to beauty... but the corresponding MT
output was He was sensitive to the United States...
Although many participants suspected that it was
wrong, they were unable to recover from this mis-
take because the resources (the searchable exam-
ples, the part-of-speech tags, and the MT system)
did not offer a viable alternative. This suggests
that collaborative translation may serve as a useful
diagnostic tool to help MT researchers verify ideas
about what types of models and data are useful in
translation. It may also provide a means of data
collection for MT training. To be sure, there are
important challenges to be addressed, such as par-
ticipation incentive and quality assurance, but sim-
ilar types of collaborative efforts have been shown
fruitful in other domains (Cosley et al., 2007). Fi-
nally, the statistics of user actions may be useful
for translation evaluation. They may be informa-
tive features for developing automatic metrics for
sentence-level evaluations (Kulesza and Shieber,
2004).

7 Related Work

While there have been many successful computer-
aided translation systems both for research and as
commercial products (Bowker, 2002; Langlais et
al., 2000), collaborative translation has not been
as widely explored. Previous efforts such as
DerivTool (DeNeefe et al., 2005) and Linear B
(Callison-Burch, 2005) placed stronger emphasis
on improving MT. They elicited more in-depth in-
teractions between the users and the MT system’s
phrase tables. These approaches may be more ap-
propriate for users who are MT researchers them-
selves. In contrast, our approach focuses on pro-
viding intuitive visualization of a variety of in-
formation sources for users who may not be MT-
savvy. By tracking the types of information they
consulted, the portions of translations they se-
lected to modify, and the portions of the source
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Table 7: Some examples of translations corrected by the participants and their scores.
Score Translation

MT 0.34 He is being discovered almost hit an arm in the pile of books on the desktop, just
like frightened horse as a Lieju Wangbangbian almost Pengfan the piano stool.

without The Chinese Room 0.26 Startled, he almost knocked over a pile of book on his desk, just like a frightened
horse as a Lieju Wangbangbian almost Pengfan the piano stool.

with The Chinese Room 0.78 He was nervous, and when one of his arms nearly hit a stack of books on the
desktop, he startled like a horse, falling back and almost knocking over the piano
stool.

Bilingual Translator 0.93 Feeling nervous, he discovered that one of his arms almost hit the pile of books
on the table. Like a frightened horse, he stumbled aside, almost turning over a
piano stool.

MT 0.50 Bandai Group, a spokeswoman for the U.S. to be SIN-West said: “We want to
bring women of all ages that ’the flavor of life’.”

without The Chinese Room 0.67 SIN-West, a spokeswoman for the U.S. Bandai Group declared: “We want to
bring to women of all ages that ’flavor of life’.”

with The Chinese Room 0.68 West, a spokeswoman for the U.S. Toy Manufacturing Group, and soon to be
Vice President-said: “We want to bring women of all ages that ’flavor of life’.”

Bilingual Translator 0.75 “We wanted to let women of all ages taste the ’flavor of life’,” said Bandai’s
spokeswoman Kasumi Nakanishi.

text they attempted to understand, we may alter
the design of our translation model. Our objective
is also related to that of cross-language informa-
tion retrieval (Resnik et al., 2001). This work can
be seen as providing the next step in helping users
to gain some understanding of the information in
the documents once they are retrieved.

By facilitating better collaborations between
MT and target-language readers, we can naturally
increase human annotated data for exploring al-
ternative MT models. This form of symbiosis is
akin to the paradigm proposed by von Ahn and
Dabbish (2004). They designed interactive games
in which the player generated data could be used
to improve image tagging and other classification
tasks (von Ahn, 2006). While our interface does
not have the entertainment value of a game, its
application serves a purpose. Because users are
motivated to understand the documents, they may
willingly spend time to collaborate and make de-
tailed corrections to MT outputs.

8 Conclusion

We have presented a collaborative approach for
mediating between an MT system and monolin-
gual target-language users. The approach encour-
ages users to combine evidences from comple-
mentary information sources to infer alternative
hypotheses based on their world knowledge. Ex-
perimental evidences suggest that the collabora-
tive effort results in better translations than ei-
ther the original MT or uninformed human ed-
its. Moreover, users who are knowledgeable in the

document domain were enabled to correct transla-
tions with a quality approaching that of a bilin-
gual speaker. From the participants’ feedbacks,
we learned that the factors that contributed to their
understanding include: document coherence, syn-
tactic constraints, and re-translation at the phrasal
level. We believe that the collaborative translation
approach can provide insights about the transla-
tion process and help to gather training examples
for future MT development.
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Göteborg, Sweden
krasimir@chalmers.se

Abstract

Parallel Multiple Context-Free Grammar
(PMCFG) is an extension of context-free
grammar for which the recognition problem is
still solvable in polynomial time. We describe
a new parsing algorithm that has the advantage
to be incremental and to support PMCFG
directly rather than the weaker MCFG formal-
ism. The algorithm is also top-down which
allows it to be used for grammar based word
prediction.

1 Introduction

Parallel Multiple Context-Free Grammar (PMCFG)
(Seki et al., 1991) is one of the grammar formalisms
that have been proposed for the syntax of natural lan-
guages. It is an extension of context-free grammar
(CFG) where the right hand side of the production rule
is a tuple of strings instead of only one string. Using tu-
ples the grammar can model discontinuous constituents
which makes it more powerful than context-free gram-
mar. In the same time PMCFG has the advantage to be
parseable in polynomial time which makes it attractive
from computational point of view.

A parsing algorithm is incremental if it reads the in-
put one token at the time and calculates all possible
consequences of the token, before the next token is
read. There is substantial evidence showing that hu-
mans process language in an incremental fashion which
makes the incremental algorithms attractive from cog-
nitive point of view.

If the algorithm is also top-down then it is possible
to predict the next word from the sequence of preced-
ing words using the grammar. This can be used for
example in text based dialog systems or text editors for
controlled language where the user might not be aware
of the grammar coverage. In this case the system can
suggest the possible continuations.

A restricted form of PMCFG that is still stronger
than CFG is Multiple Context-Free Grammar (MCFG).
In Seki and Kato (2008) it has been shown that
MCFG is equivalent to string-based Linear Context-
Free Rewriting Systems and Finite-Copying Tree
Transducers and it is stronger than Tree Adjoining
Grammars (Joshi and Schabes, 1997). Efficient recog-

nition and parsing algorithms for MCFG have been de-
scribed in Nakanishi et al. (1997), Ljunglöf (2004) and
Burden and Ljunglöf (2005). They can be used with
PMCFG also but it has to be approximated with over-
generating MCFG and post processing is needed to fil-
ter out the spurious parsing trees.

We present a parsing algorithm that is incremental,
top-down and supports PMCFG directly. The algo-
rithm exploits a view of PMCFG as an infinite context-
free grammar where new context-free categories and
productions are generated during parsing. It is trivial to
turn the algorithm into statistical by attaching probabil-
ities to each rule.

In Ljunglöf (2004) it has been shown that the Gram-
matical Framework (GF) formalism (Ranta, 2004) is
equivalent to PMCFG. The algorithm was implemented
as part of the GF interpreter and was evaluated with the
resource grammar library (Ranta, 2008) which is the
largest collection of grammars written in this formal-
ism. The incrementality was used to build a help sys-
tem which suggests the next possible words to the user.

Section 2 gives a formal definition of PMCFG. In
section 3 the procedure for “linearization” i.e. the
derivation of string from syntax tree is defined. The
definition is needed for better understanding of the for-
mal proofs in the paper. The algorithm introduction
starts with informal description of the idea in section
4 and after that the formal rules are given in section
5. The implementation details are outlined in section 6
and after that there are some comments on the evalua-
tion in section 7. Section 8 gives a conclusion.

2 PMCFG definition

Definition 1 A parallel multiple context-free grammar
is an 8-tuple G = (N,T, F, P, S, d, r, a) where:

• N is a finite set of categories and a positive integer
d(A) called dimension is given for each A ∈ N .

• T is a finite set of terminal symbols which is dis-
joint with N .

• F is a finite set of functions where the arity a(f)
and the dimensions r(f) and di(f) (1 ≤ i ≤
a(f)) are given for every f ∈ F . For every posi-
tive integer d, (T ∗)d denote the set of all d-tuples
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of strings over T . Each function f ∈ F is a to-
tal mapping from (T ∗)d1(f) × (T ∗)d2(f) × · · · ×
(T ∗)da(f)(f) to (T ∗)r(f), defined as:

f := (α1, α2, . . . , αr(f))

Here αi is a sequence of terminals and 〈k; l〉
pairs, where 1 ≤ k ≤ a(f) is called argument
index and 1 ≤ l ≤ dk(f) is called constituent
index.

• P is a finite set of productions of the form:

A→ f [A1, A2, . . . , Aa(f)]

where A ∈ N is called result category,
A1, A2, . . . , Aa(f) ∈ N are called argument cat-
egories and f ∈ F is the function symbol. For
the production to be well formed the conditions
di(f) = d(Ai) (1 ≤ i ≤ a(f)) and r(f) = d(A)
must hold.

• S is the start category and d(S) = 1.

We use the same definition of PMCFG as is used by
Seki and Kato (2008) and Seki et al. (1993) with the
minor difference that they use variable names like xkl

while we use 〈k; l〉 to refer to the function arguments.
As an example we will use the anbncn language:

S → c[N ]
N → s[N ]
N → z[]

c := (〈1; 1〉 〈1; 2〉 〈1; 3〉)
s := (a 〈1; 1〉, b 〈1; 2〉, c 〈1; 3〉)
z := (ε, ε, ε)

Here the dimensions are d(S) = 1 and d(N) = 3 and
the arities are a(c) = a(s) = 1 and a(z) = 0. ε is the
empty string.

3 Derivation

The derivation of a string in PMCFG is a two-step pro-
cess. First we have to build a syntax tree of a category
S and after that to linearize this tree to string. The defi-
nition of a syntax tree is recursive:

Definition 2 (f t1 . . . ta(f)) is a tree of category A if
ti is a tree of category Bi and there is a production:
A→ f [B1 . . . Ba(f)]
The abstract notation for “t is a tree of category A”

is t : A. When a(f) = 0 then the tree does not have
children and the node is called leaf.

The linearization is bottom-up. The functions in the
leaves do not have arguments so the tuples in their defi-
nitions already contain constant strings. If the function
has arguments then they have to be linearized and the
results combined. Formally this can be defined as a

function L applied to the syntax tree:

L(f t1 t2 . . . ta(f)) = (x1, x2 . . . xr(f))
where xi = K(L(t1),L(t2) . . .L(ta(f))) αi

and f := (α1, α2 . . . αr(f)) ∈ F

The function uses a helper function K which takes the
already linearized arguments and a sequence αi of ter-
minals and 〈k; l〉 pairs and returns a string. The string
is produced by simple substitution of each 〈k; l〉 with
the string for constituent l from argument k:

K σ (β1〈k1; l1〉β2〈k2; l2〉 . . . βn) = β1σk1l1β2σk2l2 . . . βn

where βi ∈ T ∗. The recursion in L terminates when a
leaf is reached.

In the example anbncn language the function z does
not have arguments and it corresponds to the base case
when n = 0. Every application of s over another tree
t : N increases n by one. For example the syntax tree
(s (s z)) will produce the tuple (aa, bb, cc). Finally the
application of c combines all elements in the tuple in
a single string i.e. c (s (s z)) will produce the string
aabbcc.

4 The Idea
Although PMCFG is not context-free it can be approx-
imated with an overgenerating context-free grammar.
The problem with this approach is that the parser pro-
duces many spurious parse trees that have to be filtered
out. A direct parsing algorithm for PMCFG should
avoid this and a careful look at the difference between
PMCFG and CFG gives an idea. The context-free ap-
proximation of anbncn is the language a∗b∗c∗ with
grammar:

S → ABC

A→ ε | aA
B → ε | bB
C → ε | cC

The string ”aabbcc” is in the language and it can be
derived with the following steps:

S

⇒ ABC

⇒ aABC

⇒ aaABC

⇒ aaBC

⇒ aabBC

⇒ aabbBC

⇒ aabbC

⇒ aabbcC

⇒ aabbccC

⇒ aabbcc
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The grammar is only an approximation because there
is no enforcement that we will use only equal number
of reductions for A, B and C. This can be guaranteed
if we replace B and C with new categories B′ and C ′

after the derivation of A:

B′ → bB′′ C ′ → cC ′′

B′′ → bB′′′ C ′′ → cC ′′′

B′′′ → ε C ′′′ → ε

In this case the only possible derivation from aaB′C ′

is aabbcc.
The PMCFG parser presented in this paper works

like context-free parser, except that during the parsing
it generates fresh categories and rules which are spe-
cializations of the originals. The newly generated rules
are always versions of already existing rules where
some category is replaced with new more specialized
category. The generation of specialized categories pre-
vents the parser from recognizing phrases that are oth-
erwise withing the scope of the context-free approxi-
mation of the original grammar.

5 Parsing
The algorithm is described as a deductive process in
the style of (Shieber et al., 1995). The process derives
a set of items where each item is a statement about the
grammatical status of some substring in the input.

The inference rules are in natural deduction style:

X1 . . . Xn

Y
< side conditions on X1, . . . , Xn >

where the premises Xi are some items and Y is the
derived item. We assume that w1 . . . wn is the input
string.

5.1 Deduction Rules
The deduction system deals with three types of items:
active, passive and production items.

Productions In Shieber’s deduction systems the
grammar is a constant and the existence of a given pro-
duction is specified as a side condition. In our case the
grammar is incrementally extended at runtime, so the
set of productions is part of the deduction set. The pro-
ductions from the original grammar are axioms and are
included in the initial deduction set.

Active Items The active items represent the partial
parsing result:

[kjA→ f [ ~B]; l : α • β] , j ≤ k
The interpretation is that there is a function f with a

corresponding production:

A→ f [ ~B]
f := (γ1, . . . γl−1, αβ, . . . γr(f))

such that the tree (f t1 . . . ta(f)) will produce the sub-
string wj+1 . . . wk as a prefix in constituent l for any

INITIAL PREDICT

S → f [ ~B]

[00S → f [ ~B]; 1 : •α]
S - start category, α = rhs(f, 1)

PREDICT

Bd → g[~C] [kjA→ f [ ~B]; l : α • 〈d; r〉 β]

[kkBd → g[~C]; r : •γ]
γ = rhs(g, r)

SCAN

[kjA→ f [ ~B]; l : α • s β]

[k+1
j A→ f [ ~B]; l : α s • β]

s = wk+1

COMPLETE

[kjA→ f [ ~B]; l : α•]
N → f [ ~B] [kjA; l;N ]

N = (A, l, j, k)

COMBINE

[ujA→ f [ ~B]; l : α • 〈d; r〉 β] [kuBd; r;N ]

[kjA→ f [ ~B{d := N}]; l : α 〈d; r〉 • β]

Figure 1: Deduction Rules

sequence of arguments ti : Bi. The sequence α is the
part that produced the substring:

K(L(t1),L(t2) . . .L(ta(f))) α = wj+1 . . . wk

and β is the part that is not processed yet.

Passive Items The passive items are of the form:
[kjA; l;N ] , j ≤ k

and state that there exists at least one production:

A→ f [ ~B]
f := (γ1, γ2, . . . γr(f))

and a tree (f t1 . . . ta(f)) : A such that the constituent
with index l in the linearization of the tree is equal to
wj+1 . . . wk. Contrary to the active items in the passive
the whole constituent is matched:

K(L(t1),L(t2) . . .L(ta(f))) γl = wj+1 . . . wk

Each time when we complete an active item, a pas-
sive item is created and at the same time we cre-
ate a new category N which accumulates all produc-
tions forA that produce thewj+1 . . . wk substring from
constituent l. All trees of category N must produce
wj+1 . . . wk in the constituent l.

There are six inference rules (see figure 1).
The INITIAL PREDICT rule derives one item spanning

the 0 − 0 range for each production with the start cat-
egory S on the left hand side. The rhs(f, l) function
returns the constituent with index l of function f .

In the PREDICT rule, for each active item with dot be-
fore a 〈d; r〉 pair and for each production for Bd, a new
active item is derived where the dot is in the beginning
of constituent r in g.

When the dot is before some terminal s and s is equal
to the current terminal wk then the SCAN rule derives a
new item where the dot is moved to the next position.
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When the dot is at the end of an active item then it
is converted to passive item in the COMPLETE rule. The
category N in the passive item is a fresh category cre-
ated for each unique (A, l, j, k) quadruple. A new pro-
duction is derived for N which has the same function
and arguments as in the active item.

The item in the premise of COMPLETE was at some
point predicted in PREDICT from some other item. The
COMBINE rule will later replace the occurence A in the
original item (the premise of PREDICT) with the special-
ization N .

The COMBINE rule has two premises: one active item
and one passive. The passive item starts from position
u and the only inference rule that can derive items with
different start positions is PREDICT. Also the passive
item must have been predicted from active item where
the dot is before 〈d; r〉, the category for argument num-
ber d must have been Bd and the item ends at u. The
active item in the premise of COMBINE is such an item
so it was one of the items used to predict the passive
one. This means that we can move the dot after 〈d; r〉
and the d-th argument is replaced with its specialization
N .

If the string β contains another reference to the d-th
argument then the next time when it has to be predicted
the rule PREDICT will generate active items, only for
those productions that were successfully used to parse
the previous constituents. If a context-free approxima-
tion was used this would have been equivalent to unifi-
cation of the redundant subtrees. Instead this is done at
runtime which also reduces the search space.

The parsing is successful if we had derived the
[n0S; 1;S′] item, where n is the length of the text, S is
the start category and S′ is the newly created category.

The parser is incremental because all active items
span up to position k and the only way to move to the
next position is the SCAN rule where a new symbol from
the input is consumed.

5.2 Soundness
The parsing system is sound if every derivable item rep-
resents a valid grammatical statement under the inter-
pretation given to every type of item.

The derivation in INITIAL PREDICT and PREDICT is
sound because the item is derived from existing pro-
duction and the string before the dot is empty so:

K σ ε = ε

The rationale for SCAN is that if

K σ α = wj−1 . . . wk

and s = wk+1 then

K σ (α s) = wj−1 . . . wk+1

If the item in the premise is valid then it is based on
existing production and function and so will be the item
in the consequent.

In the COMPLETE rule the dot is at the end of the
string. This means that wj+1 . . . wk will be not just
a prefix in constituent l of the linearization but the full
string. This is exactly what is required in the semantics
of the passive item. The passive item is derived from
a valid active item so there is at least one production
for A. The category N is unique for each (A, l, j, k)
quadruple so it uniquely identifies the passive item in
which it is placed. There might be many productions
that can produce the passive item but all of them should
be able to generate wj+1 . . . wk and they are exactly
the productions that are added to N . From all this ar-
guments it follows that COMPLETE is sound.

The COMBINE rule is sound because from the active
item in the premise we know that:

K σ α = wj+1 . . . wu

for every context σ built from the trees:

t1 : B1; t2 : B2; . . . ta(f) : Ba(f)

From the passive item we know that every production
forN produces thewu+1 . . . wk in r. From that follows
that

K σ′ (α〈d; r〉) = wj+1 . . . wk

where σ′ is the same as σ except that Bd is replaced
withN . Note that the last conclusion will not hold if we
were using the original context because Bd is a more
general category and can contain productions that does
not derive wu+1 . . . wk.

5.3 Completeness
The parsing system is complete if it derives an item
for every valid grammatical statement. In our case we
have to prove that for every possible parse tree the cor-
responding items will be derived.

The proof for completeness requires the following
lemma:

Lemma 1 For every possible syntax tree

(f t1 . . . ta(f)) : A

with linearization

L(ft1 . . . ta(f)) = (x1, x2 . . . xd(A))

where xl = wj+1 . . . wk, the system will derive an item
[kjA; l;A′] if the item [kjA → f [ ~B]; l : •αl] was pre-
dicted before that. We assume that the function defini-
tion is:

f := (α1, α2 . . . αr(f))

The proof is by induction on the depth of the tree.
If the tree has only one level then the function f does
not have arguments and from the linearization defini-
tion and from the premise in the lemma it follows that
αl = wj+1 . . . wk. From the active item in the lemma
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by applying iteratively the SCAN rule and finally the
COMPLETE rule the system will derive the requested
item.

If the tree has subtrees then we assume that the
lemma is true for every subtree and we prove it for the
whole tree. We know that

K σ αl = wj+1 . . . wk

Since the function K does simple substitution it is pos-
sible for each 〈d; s〉 pair in αl to find a new range in the
input string j′−k′ such that the lemma to be applicable
for the corresponding subtree td : Bd. The terminals in
αl will be processed by the SCAN rule. Rule PREDICT

will generate the active items required for the subtrees
and the COMBINE rule will consume the produced pas-
sive items. Finally the COMPLETE rule will derive the
requested item for the whole tree.

From the lemma we can prove the completeness of
the parsing system. For every possible tree t : S such
that L(t) = (w1 . . . wn) we have to prove that the
[n0S; 1;S′] item will be derived. Since the top-level
function of the tree must be from production for S the
INITIAL PREDICT rule will generate the active item in
the premise of the lemma. From this and from the as-
sumptions for t it follows that the requested passive
item will be derived.

5.4 Complexity
The algorithm is very similar to the Earley (1970) algo-
rithm for context-free grammars. The similarity is even
more apparent when the inference rules in this paper
are compared to the inference rules for the Earley al-
gorithm presented in Shieber et al. (1995) and Ljunglöf
(2004). This suggests that the space and time complex-
ity of the PMCFG parser should be similar to the com-
plexity of the Earley parser which is O(n2) for space
and O(n3) for time. However we generate new cate-
gories and productions at runtime and this have to be
taken into account.

Let theP(j) function be the maximal number of pro-
ductions generated from the beginning up to the state
where the parser has just consumed terminal number
j. P(j) is also the upper limit for the number of cat-
egories created because in the worst case there will be
only one production for each new category.

The active items have two variables that directly de-
pend on the input size - the start index j and the end
index k. If an item starts at position j then there are
(n − j + 1) possible values for k because j ≤ k ≤ n.
The item also contains a production and there are P(j)
possible choices for it. In total there are:

n∑
j=0

(n− j + 1)P(j)

possible choices for one active item. The possibilities
for all other variables are only a constant factor. The
P(j) function is monotonic because the algorithm only

adds new productions and never removes. From that
follows the inequality:

n∑
j=0

(n− j + 1)P(j) ≤ P(n)
n∑

i=0

(n− j + 1)

which gives the approximation for the upper limit:

P(n)
n(n+ 1)

2

The same result applies to the passive items. The only
difference is that the passive items have only a category
instead of a full production. However the upper limit
for the number of categories is the same. Finally the
upper limit for the total number of active, passive and
production items is:

P(n)(n2 + n+ 1)

The expression for P(n) is grammar dependent but
we can estimate that it is polynomial because the set
of productions corresponds to the compact representa-
tion of all parse trees in the context-free approximation
of the grammar. The exponent however is grammar de-
pendent. From this we can expect that asymptotic space
complexity will be O(ne) where e is some parameter
for the grammar. This is consistent with the results in
Nakanishi et al. (1997) and Ljunglöf (2004) where the
exponent also depends on the grammar.

The time complexity is proportional to the number
of items and the time needed to derive one item. The
time is dominated by the most complex rule which in
this algorithm is COMBINE. All variables that depend
on the input size are present both in the premises and
in the consequent except u. There are n possible values
for u so the time complexity is O(ne+1).

5.5 Tree Extraction
If the parsing is successful we need a way to extract the
syntax trees. Everything that we need is already in the
set of newly generated productions. If the goal item is
[n0S; 0;S′] then every tree t of category S′ that can be
constructed is a syntax tree for the input sentence (see
definition 2 in section 3 again).

Note that the grammar can be erasing; i.e., there
might be productions like this:

S → f [B1, B2, B3]
f := (〈1; 1〉〈3; 1〉)

There are three arguments but only two of them are
used. When the string is parsed this will generate a
new specialized production:

S′ → f [B′1, B2, B
′
3]

Here S,B1 and B3 are specialized to S′, B′1 and B′3
but the B2 category is still the same. This is correct
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because actually any subtree for the second argument
will produce the same result. Despite this it is some-
times useful to know which parts of the tree were used
and which were not. In the GF interpreter such un-
used branches are replaced by meta variables. In this
case the tree extractor should check whether the cate-
gory also exists in the original set of categories N in
the grammar.

Just like with the context-free grammars the parsing
algorithm is polynomial but the chart can contain ex-
ponential or even infinite number of trees. Despite this
the chart is a compact finite representation of the set of
trees.

6 Implementation
Every implementation requires a careful design of the
data structures in the parser. For efficient access the set
of items is split into four subsets: A, Sj , C and P. A
is the agenda i.e. the set of active items that have to be
analyzed. Sj contains items for which the dot is before
an argument reference and which span up to position j.
C is the set of possible continuations i.e. a set of items
for which the dot is just after a terminal. P is the set
of productions. In addition the set F is used internally
for the generatation of fresh categories. The sets C,
Sj and F are used as association maps. They contain
associations like k 7→ v where k is the key and v is the
value. All maps except F can contain more than one
value for one and the same key.

The pseudocode of the implementation is given in
figure 2. There are two procedures Init and Compute.

Init computes the initial values of S, P and A. The
initial agenda A is the set of all items that can be pre-
dicted from the start category S (INITIAL PREDICT rule).

Compute consumes items from the current agenda
and applies the SCAN, PREDICT, COMBINE or COMPLETE

rule. The case statement matches the current item
against the patterns of the rules and selects the proper
rule. The PREDICT and COMBINE rules have two
premises so they are used in two places. In both cases
one of the premises is related to the current item and a
loop is needed to find item matching the other premis.

The passive items are not independent entities but
are just the combination of key and value in the set F.
Only the start position of every item is kept because the
end position for the interesting passive items is always
the current position and the active items are either in
the agenda if they end at the current position or they
are in the Sj set if they end at position j. The active
items also keep only the dot position in the constituent
because the constituent definition can be retrieved from
the grammar. For this reason the runtime representation
of the items is [j;A → f [ ~B]; l; p] where j is the start
position of the item and p is the dot position inside the
constituent.

The Compute function returns the updated S and P
sets and the set of possible continuations C. The set of
continuations is a map indexed by a terminal and the

Language Productions Constituents
Bulgarian 3516 75296
English 1165 8290
German 8078 21201
Swedish 1496 8793

Table 1: GF Resource Grammar Library size in number
of PMCFG productions and discontinuous constituents
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Figure 3: Parser performance in miliseconds per token

values are active items. The parser computes the set of
continuations at each step and if the current terminal is
one of the keys the set of values for it is taken as an
agenda for the next step.

7 Evaluation

The algorithm was evaluated with four languages from
the GF resource grammar library (Ranta, 2008): Bul-
garian, English, German and Swedish. These gram-
mars are not primarily intended for parsing but as a
resource from which smaller domain dependent gram-
mars are derived for every application. Despite this, the
resource grammar library is a good benchmark for the
parser because these are the biggest GF grammars.

The compiler converts a grammar written in the
high-level GF language to a low-level PMCFG gram-
mar which the parser can use directly. The sizes of
the grammars in terms of number of productions and
number of unique discontinuous constituents are given
on table 1. The number of constituents roughly cor-
responds to the number of productions in the context-
free approximation of the grammar. The parser per-
formance in terms of miliseconds per token is shown in
figure 3. In the evaluation 34272 sentences were parsed
and the average time for parsing a given number of to-
kens is drawn in the chart. As it can be seen, although
the theoretical complexity is polynomial, the real-time
performance for practically interesting grammars tends
to be linear.

8 Conclusion

The algorithm has proven useful in the GF system. It
accomplished the initial goal to provide suggestions
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procedure Init() {
k = 0
Si = ∅, for every i
P = the set of productions P in the grammar

A = ∅
forall S → f [ ~B] ∈ P do // INITIAL PREDICT

A = A + [0;S → f [ ~B]; 1; 0]

return (S,P,A)
}

procedure Compute(k, (S,P,A)) {
C = ∅
F = ∅
while A 6= ∅ do {

let x ∈ A, x ≡ [j;A→ f [ ~B]; l; p]
A = A− x
case the dot in x is {

before s ∈ T ⇒ C = C + (s 7→ [j;A→ f [ ~B]; l; p+ 1]) // SCAN

before 〈d; r〉 ⇒ if ((Bd, r) 7→ (x, d)) 6∈ Sk then {
Sk = Sk + ((Bd, r) 7→ (x, d))
forall Bd → g[~C] ∈ P do // PREDICT

A = A + [k;Bd → g[~C]; r; 0]
}
forall (k;Bd, r) 7→ N ∈ F do // COMBINE

A = A + [j;A→ f [ ~B{d := N}]; l; p+ 1]

at the end ⇒ if ∃N.((j, A, l) 7→ N ∈ F) then {
forall (N, r) 7→ (x′, d′) ∈ Sk do // PREDICT

A = A + [k;N → f [ ~B]; r; 0]
} else {

generate fresh N // COMPLETE

F = F + ((j, A, l) 7→ N)
forall (A, l) 7→ ([j′;A′ → f ′[ ~B′]; l′; p′], d) ∈ Sj do // COMBINE

A = A + [j′;A′ → f ′[ ~B′{d := N}]; l′; p′ + 1]
}
P = P + (N → f [ ~B])

}
}

return (S,P,C)
}

Figure 2: Pseudocode of the parser implementation

75



in text based dialog systems and in editors for con-
trolled languages. Additionally the algorithm has prop-
erties that were not envisaged in the beginning. It
works with PMCFG directly rather that by approxima-
tion with MCFG or some other weaker formalism.

Since the Linear Context-Free Rewriting Systems,
Finite-Copying Tree Transducers and Tree Adjoining
Grammars can be converted to PMCFG, the algorithm
presented in this paper can be used with the converted
grammar. The approach to represent context-dependent
grammar as infinite context-free grammar might be ap-
plicable to other formalisms as well. This will make it
very attractive in applications where some of the other
formalisms are already in use.
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Abstract

Syntactic Reordering of the source lan-
guage to better match the phrase struc-
ture of the target language has been
shown to improve the performance of
phrase-based Statistical Machine Transla-
tion. This paper applies syntactic reorder-
ing to English-to-Arabic translation. It in-
troduces reordering rules, and motivates
them linguistically. It also studies the ef-
fect of combining reordering with Ara-
bic morphological segmentation, a pre-
processing technique that has been shown
to improve Arabic-English and English-
Arabic translation. We report on results in
the news text domain, the UN text domain
and in the spoken travel domain.

1 Introduction

Phrase-based Statistical Machine Translation has
proven to be a robust and effective approach to
machine translation, providing good performance
without the need for explicit linguistic informa-
tion. Phrase-based SMT systems, however, have
limited capabilities in dealing with long distance
phenomena, since they rely on local alignments.
Automatically learned reordering models, which
can be conditioned on lexical items from both the
source and the target, provide some limited re-
ordering capability when added to SMT systems.

One approach that explicitly deals with long
distance reordering is to reorder the source side
to better match the target side, using predefined
rules. The reordered source is then used as input
to the phrase-based SMT system. This approach
indirectly incorporates structure information since
the reordering rules are applied on the parse trees

of the source sentence. Obviously, the same re-
ordering has to be applied to both training data and
test data. Despite the added complexity of parsing
the data, this technique has shown improvements,
especially when good parses of the source side ex-
ist. It has been successfully applied to German-to-
English and Chinese-to-English SMT (Collins et
al., 2005; Wang et al., 2007).

In this paper, we propose the use of a similar
approach for English-to-Arabic SMT. Unlike most
other work on Arabic translation, our work is in
the direction of the more morphologically com-
plex language, which poses unique challenges. We
propose a set of syntactic reordering rules on the
English source to align it better to the Arabic tar-
get. The reordering rules exploit systematic differ-
ences between the syntax of Arabic and the syntax
of English; they specifically address two syntac-
tic constructs. The first is the Subject-Verb order
in independent sentences, where the preferred or-
der in written Arabic is Verb-Subject. The sec-
ond is the noun phrase structure, where many dif-
ferences exist between the two languages, among
them the order of adjectives, compound nouns
and genitive constructs, as well as the way defi-
niteness is marked. The implementation of these
rules is fairly straightforward since they are ap-
plied to the parse tree. It has been noted in previ-
ous work (Habash, 2007) that syntactic reordering
does not improve translation if the parse quality is
not good enough. Since in this paper our source
language is English, the parses are more reliable,
and result in more correct reorderings. We show
that using the reordering rules results in gains in
the translation scores and study the effect of the
training data size on those gains.

This paper also investigates the effect of using
morphological segmentation of the Arabic target
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in combination with the reordering rules. Mor-
phological segmentation has been shown to benefit
Arabic-to-English (Habash and Sadat, 2006) and
English-to-Arabic (Badr et al., 2008) translation,
although the gains tend to decrease with increas-
ing training data size.

Section 2 provides linguistic motivation for the
paper. It describes the rich morphology of Arabic,
and its implications on SMT. It also describes the
syntax of the verb phrase and noun phrase in Ara-
bic, and how they differ from their English coun-
terparts. In Section 3, we describe some of the rel-
evant previous work. In Section 4, we present the
preprocessing techniques used in the experiments.
Section 5 describes the translation system, the data
used, and then presents and discusses the experi-
mental results from three domains: news text, UN
data and spoken dialogue from the travel domain.
The final section provides a brief summary and
conclusion.

2 Arabic Linguistic Issues

2.1 Arabic Morphology

Arabic has a complex morphology compared to
English. The Arabic noun and adjective are in-
flected for gender and number; the verb is inflected
in addition for tense, voice, mood and person.
Various clitics can attach to words as well: Con-
junctions, prepositions and possessive pronouns
attach to nouns, and object pronouns attach to
verbs. The example below shows the decompo-
sition into stems and clitics of the Arabic verb
phrase wsyqAblhm1 and noun phrase wbydh, both
of which are written as one word:

(1) a. w+
and

s+
will

yqAbl
meet-3SM

+hm
them

and he will meet them

b. w+
and

b+
with

yd
hand

+h
his

and with his hand

An Arabic corpus will, therefore, have more
surface forms than an equivalent English corpus,
and will also be sparser. In the LDC news corpora
used in this paper (see Section 5.2), the average
English sentence length is 33 words compared to
the Arabic 25 words.

1All examples in this paper are writ-
ten in the Buckwalter Transliteration System
(http://www.qamus.org/transliteration.htm)

Although the Arabic language family consists
of many dialects, none of them has a standard
orthography. This affects the consistency of the
orthography of Modern Standard Arabic (MSA),
the only written variety of Arabic. Certain char-
acters are written inconsistently in different data
sources: Final ’y’ is sometimes written as ’Y’ (Alif
mqSwrp), and initial Alif hamza (The Buckwal-
ter characters ’<’ and ’{’) are written as bare alif
(A). Arabic is usually written without the diacritics
that denote short vowels. This creates an ambigu-
ity at the word level, since a word can have more
than one reading. These factors adversely affect
the performance of Arabic-to-English SMT, espe-
cially in the English-to-Arabic direction.

Simple pattern matching is not enough to per-
form morphological analysis and decomposition,
since a certain string of characters can, in princi-
ple, be either an affixed morpheme or part of the
base word itself. Word-level linguistic information
as well as context analysis are needed. For exam-
ple the written form wly can mean either ruler or
and for me, depending on the context. Only in the
latter case should it be decomposed.

2.2 Arabic Syntax

In this section, we describe a number of syntactic
facts about Arabic which are relevant to the
reordering rules described in Section 4.2.

Clause Structure
In Arabic, the main sentence usually has

the order Verb-Subject-Object (VSO). The order
Subject-Verb-Object (SVO) also occurs, but is less
frequent than VSO. The verb agrees with the sub-
ject in gender and number in the SVO order, but
only in gender in the VSO order (Examples 2c and
2d).

(2) a. Akl
ate-3SM

Alwld
the-boy

AltfAHp
the-apple

the boy ate the apple

b. Alwld
the-boy

Akl
ate-3SM

AltfAHp
the-apple

the boy ate the apple

c. Akl
ate-3SM

AlAwlAd
the-boys

AltfAHAt
the-apples

the boys ate the apples

d. AlAwlAd
the-boys

AklwA
ate-3PM

AltfAHAt
the-apples

the boys ate the apples

87



In a dependent clause, the order must be SVO,
as illustrated by the ungrammaticality of Exam-
ple 3b below. As we discuss in more detail later,
this distinction between dependent and indepen-
dent clauses has to be taken into account when the
syntactic reordering rules are applied.

(3) a. qAl
said-3SM

An
that

Alwld
the-boy

Akl
ate

AltfAHp
the-apple

he said that the boy ate the apple
b. *qAl

said-3SM
An
that

Akl
ate

Alwld
the-boy

AltfAHp
the-apple

he said that the boy ate the apple

Another pertinent fact is that the negation parti-
cle has to always preceed the verb:

(4) lm
not

yAkl
eat-3SM

Alwld
the-boy

AltfAHp
the-apple

the boy did not eat the apple

Noun Phrase
The Arabic noun phrase can have constructs

that are quite different from English. The adjective
in Arabic follows the noun that it modifies, and it
is marked with the definite article, if the head noun
is definite:

(5) AlbAb
the-door

Alkbyr
the-big

the big door

The Arabic equivalent of the English posses-
sive, compound nouns and the of -relationship is
the Arabic idafa construct, which compounds two
or more nouns. Therefore, N1’s N2 and N2 of N1

are both translated as N2 N1 in Arabic. As Exam-
ple 6b shows, this construct can also be chained
recursively.

(6) a. bAb
door

Albyt
the-house

the house’s door
b. mftAH

key
bAb
door

Albyt
the-house

The key to the door of the house

Example 6 also shows that an idafa construct is
made definite by adding the definite article Al- to
the last noun in the noun phrase. Adjectives follow
the idafa noun phrase, regardless of which noun in
the chain they modify. Thus, Example 7 is am-
biguous in that the adjective kbyr (big) can modify
any of the preceding three nouns. The same is true
for relative clauses that modify a noun.

(7) mftAH
key

bAb
door

Albyt
the-house

Alkbyr
the-big

These and other differences between the Arabic
and English syntax are likely to affect the qual-
ity of automatic alignments, since corresponding
words will occupy positions in the sentence that
are far apart, especially when the relevant words
(e.g. the verb and its subject) are separated by sub-
ordinate clauses. In such cases, the lexicalized dis-
tortion models used in phrase-based SMT do not
have the capability of performing reorderings cor-
rectly. This limitation adversely affects the trans-
lation quality.

3 Previous Work

Most of the work in Arabic machine translation
is done in the Arabic-to-English direction. The
other direction, however, is also important, since
it opens the wealth of information in different do-
mains that is available in English to the Arabic
speaking world. Also, since Arabic is a morpho-
logically richer language, translating into Arabic
poses unique issues that are not present in the
opposite direction. The only works on English-
to-Arabic SMT that we are aware of are Badr et
al. (2008), and Sarikaya and Deng (2007). Badr
et al. show that using segmentation and recom-
bination as pre- and post- processing steps leads
to significant gains especially for smaller train-
ing data corpora. Sarikaya and Deng use Joint
Morphological-Lexical Language Models to re-
rank the output of an English-to-Arabic MT sys-
tem. They use regular expression-based segmen-
tation of the Arabic so as not to run into recombi-
nation issues on the output side.

Similarly, for Arabic-to-English, Lee (2004),
and Habash and Sadat (2006) show that vari-
ous segmentation schemes lead to improvements
that decrease with increasing parallel corpus size.
They use a trigram language model and the Ara-
bic morphological analyzer MADA (Habash and
Rambow, 2005) respectively, to segment the Ara-
bic side of their corpora. Other work on Arabic-
to-English SMT tries to address the word reorder-
ing problem. Habash (2007) automatically learns
syntactic reordering rules that are then applied to
the Arabic side of the parallel corpora. The words
are aligned in a sentence pair, then the Arabic sen-
tence is parsed to extract reordering rules based on
how the constituents in the parse tree are reordered
on the English side. No significant improvement is

88



shown with reordering when compared to a base-
line that uses a non-lexicalized distance reordering
model. This is attributed in the paper to the poor
quality of parsing.

Syntax-based reordering as a preprocessing step
has been applied to many language pairs other
than English-Arabic. Most relevant to the ap-
proach in this paper are Collins et al. (2005)
and Wang et al. (2007). Both parse the source
side and then reorder the sentence based on pre-
defined, linguistically motivated rules. Signifi-
cant gain is reported for German-to-English and
Chinese-to-English translation. Both suggest that
reordering as a preprocessing step results in bet-
ter alignment, and reduces the reliance on the dis-
tortion model. Popovic and Ney (2006) use sim-
ilar methods to reorder German by looking at the
POS tags for German-to-English and German-to-
Spanish. They show significant improvements on
test set sentences that do get reordered as well
as those that don’t, which is attributed to the im-
provement of the extracted phrases. (Xia and
McCord, 2004) present a similar approach, with
a notable difference: the re-ordering rules are au-
tomatically learned from aligning parse trees for
both the source and target sentences. They report
a 10% relative gain for English-to-French trans-
lation. Although target-side parsing is optional
in this approach, it is needed to take full advan-
tage of the approach. This is a bigger issue when
no reliable parses are available for the target lan-
guage, as is the case in this paper. More generally,
the use of automatically-learned rules has the ad-
vantage of readily applicable to different language
pairs. The use of deterministic, pre-defined rules,
however, has the advantage of being linguistically
motivated, since differences between the two lan-
guages are addressed explicitly. Moreover, the im-
plementation of pre-defined transfer rules based
on target-side parses is relatively easy and cheap
to implement in different language pairs.

Generic approaches for translating from En-
glish to more morphologically complex languages
have been proposed. Koehn and Hoang (2007)
propose Factored Translation Models, which ex-
tend phrase-based statistical machine translation
by allowing the integration of additional morpho-
logical features at the word level. They demon-
strate improvements for English-to-German and
English-to-Czech. Tighter integration of fea-
tures is claimed to allow for better modeling of

the morphology and hence is better than using
pre-processing and post-processing techniques.
Avramidis and Koehn (2008) enrich the English
side by adding a feature to the Factored Model that
models noun case agreement and verb person con-
jugation, and show that it leads to a more gram-
matically correct output for English-to-Greek and
English-to-Czech translation. Although Factored
Models are well equipped for handling languages
that differ in terms of morphology, they still use
the same distortion reordering model as a phrase-
based MT system.

4 Preprocessing Techniques

4.1 Arabic Segmentation and Recombination

It has been shown previously work (Badr et al.,
2008; Habash and Sadat, 2006) that morphologi-
cal segmentation of Arabic improves the transla-
tion performance for both Arabic-to-English and
English-to-Arabic by addressing the problem of
sparsity of the Arabic side. In this paper, we use
segmented and non-segmented Arabic on the tar-
get side, and study the effect of the combination of
segmentation with reordering.

As mentioned in Section 2.1, simple pattern
matching is not enough to decompose Arabic
words into stems and affixes. Lexical information
and context are needed to perform the decompo-
sition correctly. We use the Morphological Ana-
lyzer MADA (Habash and Rambow, 2005) to de-
compose the Arabic source. MADA uses SVM-
based classifiers of features (such as POS, num-
ber, gender, etc.) to score the different analyses
of a given word in context. We apply morpho-
logical decomposition before aligning the training
data. We split the conjunction and preposition pre-
fixes, as well as possessive and object pronoun suf-
fixes. We then glue the split morphemes into one
prefix and one suffix, such that any given word is
split into at most three parts: prefix+ stem +suffix.
Note that plural markers and subject pronouns are
not split. For example, the word wlAwlAdh (’and
for his children’) is segmented into wl+ AwlAd
+P:3MS.

Since training is done on segmented Arabic, the
output of the decoder must be recombined into its
original surface form. We follow the approach of
Badr et. al (2008) in combining the Arabic out-
put, which is a non-trivial task for several reasons.
First, the ending of a stem sometimes changes
when a suffix is attached to it. Second, word end-

89



ings are normalized to remove orthographic incon-
sistency between different sources (Section 2.1).
Finally, some words can recombine into more than
one grammatically correct form. To address these
issues, a lookup table is derived from the training
data that maps the segmented form of the word to
its original form. The table is also useful in re-
combining words that are erroneously segmented.
If a certain word does not occur in the table, we
back off to a set of manually defined recombina-
tion rules. Word ambiguity is resolved by picking
the more frequent surface form.

4.2 Arabic Reordering Rules

This section presents the syntax-based rules used
for re-ordering the English source to better match
the syntax of the Arabic target. These rules are
motivated by the Arabic syntactic facts described
in Section 2.2.

Much like Wang et al. (2007), we parse the En-
glish side of our corpora and reorder using prede-
fined rules. Reordering the English can be done
more reliably than other source languages, such
as Arabic, Chinese and German, since the state-
of-the-art English parsers are considerably better
than parsers of other languages. The following
rules for reordering at the sentence level and the
noun phrase level are applied to the English parse
tree:

1. NP: All nouns, adjectives and adverbs in the
noun phrase are inverted. This rule is moti-
vated by the order of the adjective with re-
spect to its head noun, as well as the idafa
construct (see Examples 6 and 7 in Section
2.2. As a result of applying this rule, the
phrase the blank computer screen becomes
the screen computer blank .

2. PP: All prepositional phrases of the form
N1ofN2 ...ofNn are transformed to
N1N2 ...Nn . All N i are also made indefi-
nite, and the definite article is added to Nn ,
the last noun in the chain. For example, the
phrase the general chief of staff of the armed
forces becomes general chief staff the armed
forces. We also move all adjectives in the
top noun phrase to the end of the construct.
So the real value of the Egyptian pound
becomes value the Egyptian pound real. This
rule is motivated by the idafa construct and
its properties (see Example 6).

3. the: The definite article the is replicated be-
fore adjectives (see Example 5 above). So the
blank computer screen becomes the blank the
computer the screen. This rule is applied af-
ter NP rule abote. Note that we do not repli-
cate the before proper names.

4. VP: This rule transforms SVO sentences to
VSO. All verbs are reordered on the condi-
tion that they have their own subject noun
phrase and are not in the participle form,
since in these cases the Arabic subject occurs
before the verb participle. We also check that
the verb is not in a relative clause with a that
complementizer (Example 3 above). The fol-
lowing example illustrates all these cases: the
health minister stated that 11 police officers
were wounded in clashes with the demonstra-
tors→ stated the health minister that 11 po-
lice officers were wounded in clashes with the
demonstrators. If the verb is negated, the
negative particle is moved with the verb (Ex-
ample 4. Finally, if the object of the reordered
verb is a pronoun, it is reordered with the
verb. Example: the authorities gave us all
the necessary help becomes gave us the au-
thorities all the necessary help.

The transformation rules 1, 2 and 3 are applied
in this order, since they interact although they do
not conflict. So, the real value of the Egyptian
pound → value the Egyptian the pound the real
The VP reordering rule is independent.

5 Experiments

5.1 System description
For the English source, we first tokenize us-
ing the Stanford Log-linear Part-of-Speech Tag-
ger (Toutanova et al., 2003). We then proceed
to split the data into smaller sentences and tag
them using Ratnaparkhi’s Maximum Entropy Tag-
ger (Ratnaparkhi, 1996). We parse the data us-
ing the Collins Parser (Collins, 1997), and then
tag person, location and organization names us-
ing the Stanford Named Entity Recognizer (Finkel
et al., 2005). On the Arabic side, we normalize
the data by changing final ’Y’ to ’y’, and chang-
ing the various forms of Alif hamza to bare Alif,
since these characters are written inconsistently in
some Arabic sources. We then segment the data
using MADA according to the scheme explained
in Section 4.1.
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The English source is aligned to the seg-
mented Arabic target using the standard
MOSES (MOSES, 2007) configuration of
GIZA++ (Och and Ney, 2000), which is IBM
Model 4, and decoding is done using the phrase-
based SMT system MOSES. We use a maximum
phrase length of 15 to account for the increase
in length of the segmented Arabic. We also
use a lexicalized bidirectional reordering model
conditioned on both the source and target sides,
with a distortion limit set to 6. We tune using
Och’s algorithm (Och, 2003) to optimize weights
for the distortion model, language model, phrase
translation model and word penalty over the
BLEU metric (Papineni et al., 2001). For the
segmented Arabic experiments, we experiment
with tuning using non-segmented Arabic as a
reference. This is done by recombining the output
before each tuning iteration is scored and has been
shown by Badr et. al (2008) to perform better than
using segmented Arabic as reference.

5.2 Data Used

We report results on three domains: newswire text,
UN data and spoken dialogue from the travel do-
main. It is important to note that the sentences
in the travel domain are much shorter than in the
news domain, which simplifies the alignment as
well as reordering during decoding. Also, since
the travel domain contains spoken Arabic, it is
more biased towards the Subject-Verb-Object sen-
tence order than the Verb-Subject-Object order
more common in the news domain. Also note
that since most of our data was originally intended
for Arabic-to-English translation, our test and tun-
ing sets have only one reference, and therefore,
the BLEU scores we report are lower than typi-
cal scores reported in the literature on Arabic-to-
English.

The news training data consists of several LDC
corpora2. We construct a test set by randomly
picking 2000 sentences. We pick another 2000
sentences randomly for tuning. Our final training
set consists of 3 million English words. We also
test on the NIST MT 05 “test set while tuning on
both the NIST MT 03 and 04 test sets. We use the
first English reference of the NIST test sets as the
source, and the Arabic source as our reference. For

2LDC2003E05 LDC2003E09 LDC2003T18
LDC2004E07 LDC2004E08 LDC2004E11 LDC2004E72
LDC2004T18 LDC2004T17 LDC2005E46 LDC2005T05
LDC2007T24

Scheme RandT MT 05
S NoS S NoS

Baseline 21.6 21.3 23.88 23.44
VP 21.9 21.5 23.98 23.58
NP 21.9 21.8
NP+PP 21.8 21.5 23.72 23.68
NP+PP+VP 22.2 21.8 23.74 23.16
NP+PP+VP+The 21.3 21.0

Table 1: Translation Results for the News Domain
in terms of the BLEU Metric.

the language model, we use 35 million words from
the LDC Arabic Gigaword corpus, plus the Arabic
side of the 3 million word training corpus. Exper-
imentation with different language model orders
shows that the optimal model orders are 4-grams
for the baseline system and 6-grams for the seg-
mented Arabic. The average sentence length is 33
for English, 25 for non-segmented Arabic and 36
for segmented Arabic.

To study the effect of syntactic reordering on
larger training data sizes, we use the UN English-
Arabic parallel text (LDC2003T05). We experi-
ment with two training data sizes: 30 million and
3 million words. The test and tuning sets are
comprised of 1500 and 500 sentences respectively,
chosen at random.

For the spoken domain, we use the BTEC 2007
Arabic-English corpus. The training set consists
of 200K words, the test set has 500 sentences and
the tuning set has 500 sentences. The language
model consists of the Arabic side of the training
data. Because of the significantly smaller data
size, we use a trigram LM for the baseline, and
a 4-gram for segmented Arabic. In this case, the
average sentence length is 9 for English, 8 for Ara-
bic, and 10 for segmented Arabic.

5.3 Translation Results
The translation scores for the News domain are
shown in Table 1. The notation used in the table is
as follows:

• S: Segmented Arabic
• NoS: Non-Segmented Arabic
• RandT: Scores for test set where sentences

were picked at random from NEWS data
• MT 05: Scores for the NIST MT 05 test set

The reordering notation is explained in Section
4.2. All results are in terms of the BLEU met-
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S NoS
Short Long Short Long

Baseline 22.57 25.22 22.40 24.33
VP 22.95 25.05 22.95 24.02
NP+PP 22.71 24.76 23.16 24.067
NP+PP+VP 22.84 24.62 22.53 24.56

Table 2: Translation Results depending on sen-
tence length for NIST test set.

Scheme Score % Oracle reord
VP 25.76 59%
NP+PP 26.07 58%
NP+PP+VP 26.17 53%

Table 3: Oracle scores for combining baseline sys-
tem with other reordered systems.

ric. It is important to note that the gain that we
report in terms of BLEU are more significant that
comparable gains on test sets that have multiple
references, since our test sets have only one refer-
ence. Any amount of gain is a result of additional
n-gram precision with one reference. We note that
the gain achieved from the reordering of the non-
segmented and segmented systems are compara-
ble. Replicating the before adjectives hurts the
scores, possibly because it increases the sentence
length noticeably, and thus deteriorates the align-
ments’ quality. We note that the gains achieved by
reordering on the NIST test set are smaller than
the improvements on the random test set. This is
due to the fact that the sentences in the NIST test
set are longer, which adversely affects the parsing
quality. The average English sentence length is 33
words in the NIST test set, while the random test
set has an average sentence length of 29 words.
Table 2 shows the reordering gains of the non-
segmented Arabic by sentence length. Short sen-
tences are sentences that have less that 40 words of
English, while long sentences have more than 40
words. Out of the 1055 sentence in the NIST test
set 719 are short and 336 are long. We also report
oracle scores in Table 3 for combining the base-
line system with the reordering systems, as well
as the percentage of oracle sentences produced by
the reordered system. The oracle score is com-
puted by starting with the reordered system’s can-
didate translations and iterating over all the sen-
tences one by one: we replace each sentence with
its corresponding baseline system translation then

Scheme 30M 3M
Baseline 32.17 28.42
VP 32.46 28.60
NP+PP 31.73 28.80

Table 4: Translation Results on segmentd UN data
in terms of the BLEU Metric.

compute the total BLEU score of the entire set. If
the score improves, then the sentence in question
is replaced with the baseline system’s translation,
otherwise it remains unchanged and we move on
to the next one.

In Table 4, we report results on the UN corpus
for different training data sizes. It is important to
note that although gains from VP reordering stay
constant when scaled to larger training sets, gains
from NP+PP reordering diminish. This is due to
the fact that NP reordering tend to be more local-
ized then VP reorderings. Hence with more train-
ing data the lexicalized reordering model becomes
more effective in reordering NPs.

In Table 5, we report results on the BTEC
corpus for different segmentation and reordering
scheme combinations. We should first point out
that all sentences in the BTEC corpus are short,
simple and easy to align. Hence, the gain intro-
duced by reordering might not be enough to offset
the errors introduced by the parsing. We also note
that spoken Arabic usually prefers the Subject-
Verb-Object sentence order, rather than the Verb-
Subject-Object sentence order of written Arabic.
This explains the fact that no gain is observed
when the verb phrase is reordered. Noun phrase
reordering produces a significant gain with non-
segmented Arabic. Replicating the definite arti-
cle the in the noun phrase does not create align-
ment problems as is the case with the newswire
data, since the sentences are considerably shorter,
and hence the 0.74 point gain observed on the seg-
mented Arabic system. That gain does not trans-
late to the non-segmented Arabic system since in
that case the definite article Al remains attached to
its head word.

6 Conclusion

This paper presented linguistically motivated rules
that reorder English to look like Arabic. We
showed that these rules produce significant gains.
We also studied the effect of the interaction be-
tween Arabic morphological segmentation and
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Scheme S NoS
Baseline 29.06 25.4
VP 26.92 23.49
NP 27.94 26.83
NP+PP 28.59 26.42
The 29.8 25.1

Table 5: Translation Results for the Spoken Lan-
guage Domain in the BLEU Metric.

syntactic reordering on translation results, as well
as how they scale to bigger training data sizes.
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Abstract

In this paper, we present an integrated
model of the two central tasks of dialog
management: interpreting user actions and
generating system actions. We model the
interpretation task as a classication prob-
lem and the generation task as a predic-
tion problem. These two tasks are inter-
leaved in an incremental parsing-based di-
alog model. We compare three alterna-
tive parsing methods for this dialog model
using a corpus of human-human spoken
dialog from a catalog ordering domain
that has been annotated for dialog acts
and task/subtask information. We contrast
the amount of context provided by each
method and its impact on performance.

1 Introduction

Corpora of spoken dialog are now widely avail-
able, and frequently come with annotations for
tasks/games, dialog acts, named entities and ele-
ments of syntactic structure. These types of infor-
mation provide rich clues for building dialog mod-
els (Grosz and Sidner, 1986). Dialog models can
be built ofine (for dialog mining and summariza-
tion), or online (for dialog management).

A dialog manager is the component of a dia-
log system that is responsible for interpreting user
actions in the dialog context, and for generating
system actions. Needless to say, a dialog manager
operates incrementally as the dialog progresses. In
typical commercial dialog systems, the interpre-
tation and generation processes operate indepen-
dently of each other, with only a small amount of
shared context. By contrast, in this paper we de-
scribe a dialog model that (1) tightly integrates in-
terpretation and generation, (2) makes explicit the
type and amount of shared context, (3) includes
the task structure of the dialog in the context, (4)
can be trained from dialog data, and (5) runs in-
crementally, parsing the dialog as it occurs and in-
terleaving generation and interpretation.

At the core of our model is a parser that in-
crementally builds the dialog task structure as the

dialog progresses. In this paper, we experiment
with three different incremental tree-based parsing
methods. We compare these methods using a cor-
pus of human-human spoken dialogs in a catalog
ordering domain that has been annotated for dialog
acts and task/subtask information. We show that
all these methods outperform a baseline method
for recovering the dialog structure.

The rest of this paper is structured as follows:
In Section 2, we review related work. In Sec-
tion 3, we present our view of the structure of task-
oriented human-human dialogs. In Section 4, we
present the parsing approaches included in our ex-
periments. In Section 5, we describe our data and
experiments. Finally, in Section 6, we present con-
clusions and describe our current and future work.

2 Related Work

There are two threads of research that are relevant
to our work: work on parsing (written and spoken)
discourse, and work on plan-based dialog models.

Discourse Parsing Discourse parsing is the pro-
cess of building a hierarchical model of a dis-
course from its basic elements (sentences or
clauses), as one would build a parse of a sen-
tence from its words. There has now been con-
siderable work on discourse parsing using statisti-
cal bottom-up parsing (Soricut and Marcu, 2003),
hierarchical agglomerative clustering (Sporleder
and Lascarides, 2004), parsing from lexicalized
tree-adjoining grammars (Cristea, 2000), and rule-
based approaches that use rhetorical relations and
discourse cues (Forbes et al., 2003; Polanyi et al.,
2004; LeThanh et al., 2004). With the exception of
Cristea (2000), most of this research has been lim-
ited to non-incremental parsing of textual mono-
logues where, in contrast to incremental dialog
parsing, predicting a system action is not relevant.

The work on discourse parsing that is most
similar to ours is that of Baldridge and Las-
carides (2005). They used a probabilistic head-
driven parsing method (described in (Collins,
2003)) to construct rhetorical structure trees for a
spoken dialog corpus. However, their parser was
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Dialog

Task

Topic/SubtaskTopic/Subtask

Task Task

Clause

UtteranceUtteranceUtterance

Topic/Subtask

DialogAct,Pred!Args DialogAct,Pred!Args DialogAct,Pred!Args

Figure 1: A schema of a shared plan tree for a
dialog.

not incremental; it used global features such as the
number of turn changes. Also, it focused strictly
in interpretation of input utterances; it could not
predict actions by either dialog partner.

In contrast to other work on discourse parsing,
we wish to use the parsing process directly for di-
alog management (rather than for information ex-
traction or summarization). This inuences our
approach to dialog modeling in two ways. First,
the subtask tree we build represents the functional
task structure of the dialog (rather than the rhetor-
ical structure of the dialog). Second, our dialog
parser must be entirely incremental.

Plan-Based Dialog Models Plan-based ap-
proaches to dialog modeling, like ours, operate di-
rectly on the dialog’s task structure. The process
of task-oriented dialog is treated as a special case
of AI-style plan recognition (Sidner, 1985; Litman
and Allen, 1987; Rich and Sidner, 1997; Carberry,
2001; Bohus and Rudnicky, 2003; Lochbaum,
1998). Plan-based dialog models are used for both
interpretation of user utterances and prediction of
agent actions. In addition to the hand-crafted mod-
els listed above, researchers have built stochastic
plan recognition models for interaction, includ-
ing ones based on Hidden Markov Models (Bui,
2003; Blaylock and Allen, 2006) and on proba-
bilistic context-free grammars (Alexandersson and
Reithinger, 1997; Pynadath and Wellman, 2000).

In this area, the work most closely related to
ours is that of Barrett and Weld (Barrett and Weld,
1994), who build an incremental bottom-up parser

Opening

Order Placement

Contact Info

Delivery InfoShipping Info

ClosingSummaryPayment InfoOrder Item

Figure 2: Sample output (subtask tree) from a
parse-based model for the catalog ordering do-
main.

to parse plans. Their parser, however, was not
probabilistic or targeted at dialog processing.

3 Dialog Structure

We consider a task-oriented dialog to be the re-
sult of incremental creation of a shared plan by
the participants (Lochbaum, 1998). The shared
plan is represented as a single tree T that incorpo-
rates the task/subtask structure, dialog acts, syn-
tactic structure and lexical content of the dialog,
as shown in Figure 1. A task is a sequence of sub-
tasks ST ∈ S. A subtask is a sequence of dialog
acts DA ∈ D. Each dialog act corresponds to one
clause spoken by one speaker, customer (cu) or
agent (ca) (for which we may have acoustic, lexi-
cal, syntactic and semantic representations).

Figure 2 shows the subtask tree for a sample di-
alog in our domain (catalog ordering). An order
placement task is typically composed of the se-
quence of subtasks opening, contact-information,
order-item, related-offers, summary. Subtasks can
be nested; the nesting can be as deep as ve lev-
els in our data. Most often the nesting is at the
leftmost or rightmost frontier of the subtask tree.

As the dialog proceeds, an utterance from a par-
ticipant is accommodated into the subtask tree in
an incremental manner, much like an incremen-
tal syntactic parser accommodates the next word
into a partial parse tree (Alexandersson and Rei-
thinger, 1997). An illustration of the incremental
evolution of dialog structure is shown in Figure 4.
However, while a syntactic parser processes in-
put from a single source, our dialog parser parses
user-system exchanges: user utterances are inter-
preted, while system utterances are generated. So
the steps taken by our dialog parser to incorpo-
rate an utterance into the subtask tree depend on
whether the utterance was produced by the agent
or the user (as shown in Figure 3).
User utterances Each user turn is split into
clauses (utterances). Each clause is supertagged
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Interpretation of a user’s utterance:

DAC : dau
i = argmax

du∈D
P (du|cu

i , ST i−1
i−k , DAi−1

i−k, ci−1
i−k)

(1)

STC : stu
i = argmax

su∈S
P (su|dau

i , cu
i , ST i−1

i−k , DAi−1
i−k, ci−1

i−k)

(2)

Generation of an agent’s utterance:

STP : sta
i = argmax

sa∈S
P (sa|ST i−1

i−k , DAi−1
i−k, ci−1

i−k)

(3)

DAP : daa
i = argmax

da∈D
P (da|sta

i , ST i−1
i−k , DAi−1

i−k, ci−1
i−k)

(4)

Table 1: Equations used for modeling dialog act and sub-
task labeling of agent and user utterances. cu

i /ca
i = the

words, syntactic information and named entities associated
with the ith utterance of the dialog, spoken by user/agent
u/a. dau

i /daa
i = the dialog act of the ith utterance, spoken

by user/agent u/a. stu
i /sta

i = the subtask label of the ith ut-
terance, spoken by user/agent u/a. DAi−1

i−k represents the
dialog act tags for utterances i − 1 to i − k.

and labeled with named entities1. Interpretation of
the clause (cu

i ) involves assigning a dialog act la-
bel (dau

i ) and a subtask label (stui ). We use ST i−1
i−k ,

DAi−1
i−k, and ci−1

i−k to represent the sequence of pre-
ceeding k subtask labels, dialog act labels and
clauses respectively. The dialog act label dau

i is
determined from information about the clause and
(a kth order approximation of) the subtask tree so
far (Ti−1 = (ST i−1

i−k , DAi−1
i−k, c

i−1
i−k)), as shown in

Equation 1 (Table 1). The subtask label stui is de-
termined from information about the clause, its di-
alog act and the subtask tree so far, as shown in
Equation 2. Then, the clause is incorporated into
the subtask tree.
Agent utterances In contrast, a dialog sys-
tem starts planning an agent utterance by iden-
tifying the subtask to contribute to next, stai ,
based on the subtask tree so far (Ti−1 =
(ST i−1

i−k , DAi−1
i−k, c

i−1
i−k)), as shown in Equation 3

(Table 1) . Then, it chooses the dialog act of the
utterance, daa

i , based on the subtask tree so far and
the chosen subtask for the utterance, as shown in
Equation 4. Finally, it generates an utterance, ca

i ,
to realize its communicative intent (represented
as a subtask and dialog act pair, with associated
named entities)2.

Note that the current clause cu
i is used in the

1This results in a syntactic parse of the clause and could
be done incrementally as well.

2We do not address utterance realization in this paper.

Figure 3: Dialog management process

conditioning context of the interpretation model
(for user utterances), but the corresponding clause
for the agent utterance ca

i is to be predicted and
hence is not part of conditioning context in the
generation model.

4 Dialog Parsing

A dialog parser can produce a “shallow” or “deep”
tree structure. A shallow parse is one in which
utterances are grouped together into subtasks, but
the dominance relations among subtasks are not
tracked. We call this model a chunk-based dia-
log model (Bangalore et al., 2006). The chunk-
based model has limitations. For example, dom-
inance relations among subtasks are important
for dialog processes such as anaphora resolu-
tion (Grosz and Sidner, 1986). Also, the chunk-
based model is representationally inadequate for
center-embedded nestings of subtasks, which do
occur in our domain, although less frequently than
the more prevalent “tail-recursive” structures.

We use the term parse-based dialog model to
refer to deep parsing models for dialog which
not only segment the dialog into chunks but also
predict dominance relations among chunks. For
this paper, we experimented with three alternative
methods for building parse-based models: shift-
reduce, start-complete and connection path.
Each of these operates on the subtask tree for
the dialog incrementally, from left-to-right, with
access only to the preceding dialog context, as
shown in Figure 4. They differ in the parsing ac-
tions and the data structures used by the parser;
this has implications for robustness to errors. The
instructions to reconstruct the parse are either en-
tirely encoded in the stack (in the shift-reduce
method), or entirely in the parsing actions (in the
start-complete and connection path methods). For
each of the four types of parsing action required
to build the parse tree (see Table 1), we construct
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Figure 4: An illustration of incremental evolution of dialog structure

a feature vector containing contextual information
for the parsing action (see Section 5.1). These fea-
ture vectors and the associated parser actions are
used to train maximum entropy models (Berger et
al., 1996). These models are then used to incre-
mentally incorporate the utterances for a new di-
alog into that dialog’s subtask tree as the dialog
progresses, as shown in Figure 3.

4.1 Shift-Reduce Method

In this method, the subtask tree is recovered
through a right-branching shift-reduce parsing
process (Hall et al., 2006; Sagae and Lavie, 2006).
The parser shifts each utterance on to the stack. It
then inspects the stack and decides whether to do
one or more reduce actions that result in the cre-
ation of subtrees in the subtask tree. The parser
maintains two data structures – a stack and a tree.
The actions of the parser change the contents of
the stack and create nodes in the dialog tree struc-
ture. The actions for the parser include unary-
reduce-X, binary-reduce-X and shift, where X is
each of the non-terminals (subtask labels) in the
tree. Shift pushes a token representing the utter-
ance onto the stack; binary-reduce-X pops two to-
kens off the stack and pushes the non-terminal X;
and unary-reduce-X pops one token off the stack
and pushes the non-terminal X. Each type of re-
duce action creates a constituent X in the dialog
tree and the tree(s) associated with the reduced el-
ements as subtree(s) of X. At the end of the dialog,
the output is a binary branching subtask tree.

Consider the example subdialog A: would you
like a free magazine? U: no. The process-

ing of this dialog using our shift-reduce dialog
parser would proceed as follows: the STP model
predicts shift for sta; the DAP model predicts
YNP(Promotions) for daa; the generator outputs
would you like a free magazine?; and the parser
shifts a token representing this utterance onto the
stack. Then, the customer says no. The DAC
model classies dau as No; the STC model clas-
sies stu as shift and binary-reduce-special-offer;
and the parser shifts a token representing the ut-
terance onto the stack, before popping the top two
elements off the stack and adding the subtree for
special-order into the dialog’s subtask tree.

4.2 Start-Complete Method

In the shift-reduce method, the dialog tree is con-
structed as a side effect of the actions performed
on the stack: each reduce action on the stack in-
troduces a non-terminal in the tree. By contrast,
in the start-complete method the instructions to
build the tree are directly encoded in the parser ac-
tions. A stack is used to maintain the global parse
state. The actions the parser can take are similar
to those described in (Ratnaparkhi, 1997). The
parser must decide whether to join each new termi-
nal onto the existing left-hand edge of the tree, or
start a new subtree. The actions for the parser in-
clude start-X, n-start-X, complete-X, u-complete-
X and b-complete-X, where X is each of the non-
terminals (subtask labels) in the tree. Start-X
pushes a token representing the current utterance
onto the stack; n-start-X pushes non-terminal X
onto the stack; complete-X pushes a token repre-
senting the current utterance onto the stack, then
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pops the top two tokens off the stack and pushes
the non-terminal X; u-complete-X pops the top to-
ken off the stack and pushes the non-terminal X;
and b-complete-X pops the top two tokens off the
stack and pushes the non-terminal X. This method
produces a dialog subtask tree directly, rather than
producing an equivalent binary-branching tree.

Consider the same subdialog as before, A:
would you like a free magazine? U: no. The
processing of this dialog using our start-complete
dialog parser would proceed as follows: the STP
model predicts start-special-offer for sta; the DAP
model predicts YNP(Promotions) for daa; the gen-
erator outputs would you like a free magazine?;
and the parser shifts a token representing this ut-
terance onto the stack. Then, the customer says
no. The DAC model classies dau as No; the STC
model classies stu as complete-special-offer; and
the parser shifts a token representing the utter-
ance onto the stack, before popping the top two
elements off the stack and adding the subtree for
special-order into the dialog’s subtask tree.

4.3 Connection Path Method

In contrast to the shift-reduce and the start-
complete methods described above, the connec-
tion path method does not use a stack to track the
global state of the parse. Instead, the parser di-
rectly predicts the connection path (path from the
root to the terminal) for each utterance. The col-
lection of connection paths for all the utterances in
a dialog denes the parse tree. This encoding was
previously used for incremental sentence parsing
by (Costa et al., 2001). With this method, there
are many more choices of decision for the parser
(195 decisions for our data) compared to the shift-
reduce (32) and start-complete (82) methods.

Consider the same subdialog as before, A:
would you like a free magazine? U: no. The pro-
cessing of this dialog using our connection path
dialog parser would proceed as follows. First, the
STP model predicts S-special-offer for sta; the
DAP model predicts YNP(Promotions) for daa;
the generator outputs would you like a free mag-
azine?; and the parser adds a subtree rooted at
special-offer, with one terminal for the current ut-
terance, into the top of the subtask tree. Then,
the customer says no. The DAC model classi-
es dau as No and the STC model classies stu

as S-special-offer. Since the right frontier of the
subtask tree has a subtree matching this path, the

Type Task/subtask labels
Call-level call-forward, closing, misc-other, open-

ing, out-of-domain, sub-call
Task-level check-availability, contact-info,

delivery-info, discount, order-change,
order-item, order-problem, payment-
info, related-offer, shipping-address,
special-offer, summary

Table 2: Task/subtask labels in CHILD

Type Subtype
Ask Info
Explain Catalog, CC Related, Discount, Order Info

Order Problem, Payment Rel, Product Info
Promotions, Related Offer, Shipping

Convers- Ack, Goodbye, Hello, Help, Hold,
-ational YoureWelcome, Thanks, Yes, No, Ack,

Repeat, Not(Information)
Request Code, Order Problem, Address, Catalog,

CC Related, Change Order, Conf, Credit,
Customer Info, Info, Make Order, Name,
Order Info, Order Status, Payment Rel,
Phone Number, Product Info, Promotions,
Shipping, Store Info

YNQ Address, Email, Info, Order Info,
Order Status,Promotions, Related Offer

Table 3: Dialog act labels in CHILD

parser simply incorporates the current utterance as
a terminal of the special-offer subtree.

5 Data and Experiments

To evaluate our parse-based dialog model, we used
817 two-party dialogs from the CHILD corpus of
telephone-based dialogs in a catalog-purchasing
domain. Each dialog was transcribed by hand;
all numbers (telephone, credit card, etc.) were
removed for privacy reasons. The average di-
alog in this data set had 60 turns. The di-
alogs were automatically segmented into utter-
ances and automatically annotated with part-of-
speech tag and supertag information and named
entities. They were annotated by hand for dia-
log acts and tasks/subtasks. The dialog act and
task/subtask labels are given in Tables 2 and 3.

5.1 Features
In our experiments we used the following features
for each utterance: (a) the speaker ID; (b) uni-
grams, bigrams and trigrams of the words; (c) un-
igrams, bigrams and trigrams of the part of speech
tags; (d) unigrams, bigrams and trigrams of the su-
pertags; (e) binary features indicating the presence
or absence of particular types of named entity; (f)
the dialog act (determined by the parser); (g) the
task/subtask label (determined by the parser); and
(h) the parser stack at the current utterance (deter-
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mined by the parser). Each input feature vector for
agent subtask prediction has these features for up
to three utterances of left-hand context (see Equa-
tion 3). Each input feature vector for dialog act
prediction has the same features as for agent sub-
task prediction, plus the actual or predicted sub-
task label (see Equation 4). Each input feature
vector for dialog act interpretation has features a-
h for up to three utterances of left-hand context,
plus the current utterance (see Equation 1). Each
input feature vector for user subtask classication
has the same features as for user dialog act inter-
pretation, plus the actual or classied dialog act
(see Equation 2).

The label for each input feature vector is the
parsing action (for subtask classication and pre-
diction) or the dialog act label (for dialog act clas-
sication and prediction). If more than one pars-
ing action takes place on a particular utterance
(e.g. a shift and then a reduce), the feature vec-
tor is repeated twice with different stack contents.

5.2 Training Method
We randomly selected roughly 90% of the dialogs
for training, and used the remainder for testing.

We separately trained models for: user dia-
log act classication (DAC, Equation 1); user
task/subtask classication (STC, Equation 2);
agent task/subtask prediction (STP, Equation 3);
and agent dialog act prediction (DAP, Equation 4).
In order to estimate the conditional distributions
shown in Table 1, we use the general technique of
choosing the MaxEnt distribution that properly es-
timates the average of each feature over the train-
ing data (Berger et al., 1996). We use the machine
learning toolkit LLAMA (Haffner, 2006), which
encodes multiclass classication problems using
binary MaxEnt classiers to increase the speed of
training and to scale the method to large data sets.

5.3 Decoding Method
The decoding process for the three parsing meth-
ods is illustrated in Figure 3 and has four stages:
STP, DAP, DAC, and STC. As already explained,
each of these steps in the decoding process is mod-
eled as either a prediction task or a classica-
tion task. The decoder constructs an input feature
vector depending on the amount of context being
used. This feature vector is used to query the ap-
propriate classier model to obtain a vector of la-
bels with weights. The parser action labels (STP
and STC) are used to extend the subtask tree. For

example, in the shift-reduce method, shift results
in a push action on the stack, while reduce-X re-
sults in popping the top two elements off the stack
and pushing X on to the stack. The dialog act la-
bels (DAP and DAC) are used to label the leaves
of the subtask tree (the utterances).

The decoder can use n-best results from the
classier to enlarge the search space. In order
to manage the search space effectively, the de-
coder uses a beam pruning strategy. The decod-
ing process proceeds until the end of the dialog is
reached. In this paper, we assume that the end of
the dialog is given to the decoder3.

Given that the classiers are error-prone in their
assignment of labels, the parsing step of the de-
coder needs to be robust to these errors. We ex-
ploit the state of the stack in the different meth-
ods to rule out incompatible parser actions (e.g. a
reduce-X action when the stack has one element,
a shift action on an already shifted utterance). We
also use n-best results to alleviate the impact of
classication errors. Finally, at the end of the di-
alog, if there are unattached constituents on the
stack, the decoder attaches them as sibling con-
stituents to produce a rooted tree structure. These
constraints contribute to robustness, but cannot be
used with the connection path method, since any
connection path (parsing action) suggested by the
classier can be incorporated into the incremental
parse tree. Consequently, in the connection path
method there are fewer opportunities to correct the
errors made by the classiers.

5.4 Evaluation Metrics
We evaluate dialog act classication and predic-
tion by comparing the automatically assigned di-
alog act tags to the reference dialog act tags.
For these tasks we report accuracy. We evaluate
subtask classication and prediction by compar-
ing the subtask trees output by the different pars-
ing methods to the reference subtask tree. We
use the labeled crossing bracket metric (typically
used in the syntactic parsing literature (Harrison et
al., 1991)), which computes recall, precision and
crossing brackets for the constituents (subtrees) in
a hypothesized parse tree given the reference parse
tree. We report F-measure, which is a combination
of recall and precision.

For each task, performance is reported for 1, 3,
3This is an unrealistic assumption if the decoder is to

serve as a dialog model. We expect to address this limitation
in future work.
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5, and 10-best dynamic decoding as well as oracle
(Or) and for 0, 1 and 3 utterances of context.

5.5 Results
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Figure 5: Performance of parse-based methods for
subtask tree building

Figure 5 shows the performance of the different
methods for determining the subtask tree of the di-
alog. Wider beam widths do not lead to improved
performance for any method. One utterance of
context is best for shift-reduce and start-join; three
is best for the connection path method. The shift-
reduce method performs the best. With 1 utter-
ance of context, its 1-best f-score is 47.86, as com-
pared with 34.91 for start-complete, 25.13 for the
connection path method, and 21.32 for the chunk-
based baseline. These performance differences are
statistically signicant at p < .001. However, the
best performance for the shift-reduce method is
still signicantly worse than oracle.

All of the methods are subject to some ‘stick-
iness’, a certain preference to stay within the
current subtask rather than starting a new one.
Also, all of the methods tended to perform poorly
on parsing subtasks that occur rarely (e.g. call-
forward, order-change) or that occur at many dif-
ferent locations in the dialog (e.g. out-of-domain,
order-problem, check-availability). For example,
the shift-reduce method did not make many shift
errors but did frequently b-reduce on an incor-
rect non-terminal (indicating trouble identifying
subtask boundaries). Some non-terminals most
likely to be labeled incorrectly by this method
(for both agent and user) are: call-forward, order-
change, summary, order-problem, opening and
out-of-domain.

Similarly, the start-complete method frequently
mislabeled a non-terminal in a complete action,
e.g. misc-other, check-availability, summary or
contact-info. It also quite frequently mislabeled
nonterminals in n-start actions, e.g. order-item,
contact-info or summary. Both of these errors in-
dicate trouble identifying subtask boundaries.

It is harder to analyze the output from the con-
nection path method. This method is more likely
to mislabel tree-internal nodes than those imme-
diately above the leaves. However, the same
non-terminals show up as error-prone for this
method as for the others: out-of-domain, check-
availability, order-problem and summary.
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Figure 6: Performance of dialog act assignment to
user’s utterances.

Figure 6 shows accuracy for classication of
user dialog acts. Wider beam widths do not
lead to signcantly improved performance for any
method. Zero utterances of context gives the high-
est accuracy for all methods. All methods per-
form fairly well, but no method signicantly out-
performs any other: with 0 utterances of context,
1-best accuracy is .681 for the connection path
method, .698 for the start-complete method and
.698 for the shift-reduce method. We note that
these results are competitive with those reported
in the literature (e.g. (Poesio and Mikheev, 1998;
Seran and Eugenio, 2004)), although the dialog
corpus and the label sets are different.

The most common errors in dialog act classi-
cation occur with dialog acts that occur 40 times
or fewer in the testing data (out of 3610 testing
utterances), and with Not(Information).

Figure 7 shows accuracy for prediction of agent
dialog acts. Performance for this task is lower than
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Speaker Utterance Shift-Reduce Start-Complete Connection Path
A This is Sally shift, Hello start-opening, Hello opening S, Hello
A How may I help you shift, binary-reduce-out-of-

domain, Hello
complete-opening,
Hello

opening S, Hello

B Yes Not(Information), shift,
binary-reduce-out-of-domain

Not(Information),
complete-opening

Not(Information), open-
ing S

B Um I would like to place
an order please

Rquest(Make-Order), shift,
binary-reduce-opening

Rquest(Make-Order),
complete-opening,
n-start-S

Rquest(Make-Order),
opening S

A May I have your tele-
phone number with the
area code

shift, Acknowledge start-contact-info, Ac-
knowledge

contact-info S,
Request(Phone-Number)

B Uh the phone number is
[number]

Explain(Phone-Number),
shift, binary-reduce-contact-
info

Explain(Phone-
Number), complete-
contact-info

Explain(Phone-Number),
contact-info S

Table 4: Dialog extract with subtask tree building actions for three parsing methods
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Figure 7: Performance of dialog act prediction
used to generate agent utterances.

that for dialog act classication because this is a
prediction task. Wider beam widths do not gener-
ally lead to improved performance for any method.
Three utterances of context generally gives the
best performance. The shift-reduce method per-
forms signicantly better than the connection path
method with a beam width of 1 (p < .01), but not
at larger beam widths; there are no other signi-
cant performance differences between methods at
3 utterances of context. With 3 utterances of con-
text, 1-best accuracies are .286 for the connection
path method, .329 for the start-complete method
and .356 for the shift-reduce method.

The most common errors in dialog act predic-
tion occur with rare dialog acts, Not(Information),
and the prediction of Acknowledge at the start of a
turn (we did not remove grounding acts from the
data). With the shift-reduce method, some YNQ
acts are commonly mislabeled. With all methods,

dialog acts pertaining to Order-Info and Product-
Info acts are commonly mislabeled, which could
potentially indicate that these labels require a sub-
tle distinction between information pertaining to
an order and information pertaining to a product.

Table 4 shows the parsing actions performed by
each of our methods on the dialog snippet pre-
sented in Figure 4. For this example, the connec-
tion path method’s output is correct in all cases.

6 Conclusions and Future Work

In this paper, we present a parsing-based model
of task-oriented dialog that tightly integrates in-
terpretation and generation using a subtask tree
representation, can be trained from data, and runs
incrementally for use in dialog management. At
the core of this model is a parser that incremen-
tally builds the dialog task structure as it interprets
user actions and generates system actions. We ex-
periment with three different incremental parsing
methods for our dialog model. Our proposed shift-
reduce method is the best-performing so far, and
performance of this method for dialog act classi-
cation and task/subtask modeling is good enough
to be usable. However, performance of all the
methods for dialog act prediction is too low to be
useful at the moment. In future work, we will ex-
plore improved models for this task that make use
of global information about the task (e.g. whether
each possible subtask has yet been completed;
whether required and optional task-related con-
cepts such as shipping address have been lled).
We will also separate grounding and task-related
behaviors in our model.
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Abstract

Sense induction seeks to automatically
identify word senses directly from a cor-
pus. A key assumption underlying pre-
vious work is that the context surround-
ing an ambiguous word is indicative of
its meaning. Sense induction is thus typ-
ically viewed as an unsupervised cluster-
ing problem where the aim is to partition
a word’s contexts into different classes,
each representing a word sense. Our work
places sense induction in a Bayesian con-
text by modeling the contexts of the am-
biguous word as samples from a multi-
nomial distribution over senses which
are in turn characterized as distributions
over words. The Bayesian framework pro-
vides a principled way to incorporate a
wide range of features beyond lexical co-
occurrences and to systematically assess
their utility on the sense induction task.
The proposed approach yields improve-
ments over state-of-the-art systems on a
benchmark dataset.

1 Introduction

Sense induction is the task of discovering automat-
ically all possible senses of an ambiguous word. It
is related to, but distinct from, word sense disam-
biguation (WSD) where the senses are assumed to
be known and the aim is to identify the intended
meaning of the ambiguous word in context.

Although the bulk of previous work has been
devoted to the disambiguation problem1, there are
good reasons to believe that sense induction may
be able to overcome some of the issues associ-
ated with WSD. Since most disambiguation meth-
ods assign senses according to, and with the aid

1Approaches to WSD are too numerous to list; We refer
the interested reader to Agirre et al. (2007) for an overview
of the state of the art.

of, dictionaries or other lexical resources, it is dif-
ficult to adapt them to new domains or to lan-
guages where such resources are scarce. A re-
lated problem concerns the granularity of the sense
distinctions which is fixed, and may not be en-
tirely suitable for different applications. In con-
trast, when sense distinctions are inferred directly
from the data, they are more likely to represent
the task and domain at hand. There is little risk
that an important sense will be left out, or that ir-
relevant senses will influence the results. Further-
more, recent work in machine translation (Vickrey
et al., 2005) and information retrieval (Véronis,
2004) indicates that induced senses can lead to im-
proved performance in areas where methods based
on a fixed sense inventory have previously failed
(Carpuat and Wu, 2005; Voorhees, 1993).

Sense induction is typically treated as an un-
supervised clustering problem. The input to the
clustering algorithm are instances of the ambigu-
ous word with their accompanying contexts (rep-
resented by co-occurrence vectors) and the output
is a grouping of these instances into classes cor-
responding to the induced senses. In other words,
contexts that are grouped together in the same
class represent a specific word sense. In this paper
we adopt a novel Bayesian approach and formalize
the induction problem in a generative model. For
each ambiguous word we first draw a distribution
over senses, and then generate context words ac-
cording to this distribution. It is thus assumed that
different senses will correspond to distinct lexical
distributions. In this framework, sense distinctions
arise naturally through the generative process: our
model postulates that the observed data (word con-
texts) are explicitly intended to communicate a la-
tent structure (their meaning).

Our work is related to Latent Dirichlet Allo-
cation (LDA, Blei et al. 2003), a probabilistic
model of text generation. LDA models each doc-
ument using a mixture over K topics, which are
in turn characterized as distributions over words.
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The words in the document are generated by re-
peatedly sampling a topic according to the topic
distribution, and selecting a word given the chosen
topic. Whereas LDA generates words from global
topics corresponding to the whole document, our
model generates words from local topics chosen
based on a context window around the ambiguous
word. Document-level topics resemble general do-
main labels (e.g., finance, education) and cannot
faithfully model more fine-grained meaning dis-
tinctions. In our work, therefore, we create an in-
dividual model for every (ambiguous) word rather
than a global model for an entire document col-
lection. We also show how multiple information
sources can be straightforwardly integrated with-
out changing the underlying probabilistic model.
For instance, besides lexical information we may
want to consider parts of speech or dependen-
cies in our sense induction problem. This is in
marked contrast with previous LDA-based mod-
els which mostly take only word-based informa-
tion into account. We evaluate our model on a
recently released benchmark dataset (Agirre and
Soroa, 2007) and demonstrate improvements over
the state-of-the-art.

The remainder of this paper is structured as fol-
lows. We first present an overview of related work
(Section 2) and then describe our Bayesian model
in more detail (Sections 3 and 4). Section 5 de-
scribes the resources and evaluation methodology
used in our experiments. We discuss our results in
Section 6, and conclude in Section 7.

2 Related Work

Sense induction is typically treated as a cluster-
ing problem, where instances of a target word
are partitioned into classes by considering their
co-occurring contexts. Considerable latitude is
allowed in selecting and representing the co-
occurring contexts. Previous methods have used
first or second order co-occurrences (Purandare
and Pedersen, 2004; Schütze, 1998), parts of
speech (Purandare and Pedersen, 2004), and gram-
matical relations (Pantel and Lin, 2002; Dorow
and Widdows, 2003). The size of the context win-
dow also varies, it can be a relatively small, such as
two words before and after the target word (Gauch
and Futrelle, 1993), the sentence within which the
target is found (Bordag, 2006), or even larger, such
as the 20 surrounding words on either side of the
target (Purandare and Pedersen, 2004).

In essence, each instance of a target word
is represented as a feature vector which subse-

quently serves as input to the chosen clustering
method. A variety of clustering algorithms have
been employed ranging from k-means (Purandare
and Pedersen, 2004), to agglomerative clustering
(Schütze, 1998), and the Information Bottleneck
(Niu et al., 2007). Graph-based methods have also
been applied to the sense induction task. In this
framework words are represented as nodes in the
graph and vertices are drawn between the tar-
get and its co-occurrences. Senses are induced by
identifying highly dense subgraphs (hubs) in the
co-occurrence graph (Véronis, 2004; Dorow and
Widdows, 2003).

Although LDA was originally developed as a
generative topic model, it has recently gained
popularity in the WSD literature. The inferred
document-level topics can help determine coarse-
grained sense distinctions. Cai et al. (2007) pro-
pose to use LDA’s word-topic distributions as fea-
tures for training a supervised WSD system. In a
similar vein, Boyd-Graber and Blei (2007) infer
LDA topics from a large corpus, however for un-
supervised WSD. Here, LDA topics are integrated
with McCarthy et al.’s (2004) algorithm. For each
target word, a topic is sampled from the docu-
ment’s topic distribution, and a word is generated
from that topic. Also, a distributional neighbor is
selected based on the topic and distributional sim-
ilarity to the generated word. Then, the word sense
is selected based on the word, neighbor, and topic.
Boyd-Graber et al. (2007) extend the topic mod-
eling framework to include WordNet senses as a
latent variable in the word generation process. In
this case the model discovers both the topics of
the corpus and the senses assigned to each of its
words.

Our own model is also inspired by LDA but cru-
cially performs word sense induction, not disam-
biguation. Unlike the work mentioned above, we
do not rely on a pre-existing list of senses, and do
not assume a correspondence between our auto-
matically derived sense-clusters and those of any
given inventory.2 A key element in these previous
attempts at adapting LDA for WSD is the tendency
to remain at a high level, document-like, setting.
In contrast, we make use of much smaller units
of text (a few sentences, rather than a full doc-
ument), and create an individual model for each
(ambiguous) word type. Our induced senses are
few in number (typically less than ten). This is in
marked contrast to tens, and sometimes hundreds,

2Such a mapping is only performed to enable evaluation
and comparison with other approaches (see Section 5).
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of topics commonly used in document-modeling
tasks.

Unlike many conventional clustering meth-
ods (e.g., Purandare and Pedersen 2004; Schütze
1998), our model is probabilistic; it specifies
a probability distribution over possible values,
which makes it easy to integrate and combine with
other systems via mixture or product models. Fur-
thermore, the Bayesian framework allows the in-
corporation of several information sources in a
principled manner. Our model can easily handle an
arbitrary number of feature classes (e.g., parts of
speech, dependencies). This functionality in turn
enables us to evaluate which linguistic informa-
tion matters for the sense induction task. Previous
attempts to handle multiple information sources
in the LDA framework (e.g., Griffiths et al. 2005;
Barnard et al. 2003) have been task-specific and
limited to only two layers of information. Our
model provides this utility in a general framework,
and could be applied to other tasks, besides sense
induction.

3 The Sense Induction Model

The core idea behind sense induction is that con-
textual information provides important cues re-
garding a word’s meaning. The idea dates back to
(at least) Firth (1957) (“You shall know a word by
the company it keeps”), and underlies most WSD
and lexicon acquisition work to date. Under this
premise, we should expect different senses to be
signaled by different lexical distributions.

We can place sense induction in a probabilis-
tic setting by modeling the context words around
the ambiguous target as samples from a multino-
mial sense distribution. More formally, we will
write P(s) for the distribution over senses s of
an ambiguous target in a specific context win-
dow and P(w|s) for the probability distribution
over context words w given sense s. Each word wi
in the context window is generated by first sam-
pling a sense from the sense distribution, then
choosing a word from the sense-context distribu-
tion. P(si = j) denotes the probability that the jth
sense was sampled for the ith word token and
P(wi|si = j) the probability of context word wi un-
der sense j. The model thus specifies a distribution
over words within a context window:

P(wi) =
S

∑
j=1

P(wi|si = j)P(si = j) (1)

where S is the number of senses. We assume that
each target word has C contexts and each context c

α θ s w Nc
C

φ(β)

Figure 1: Bayesian sense induction model; shaded
nodes represent observed variables, unshaded
nodes indicate latent variables. Arrows indi-
cate conditional dependencies between variables,
whereas plates (the rectangles in the figure) refer
to repetitions of sampling steps. The variables in
the lower right corner refer to the number of sam-
ples.

consists of Nc word tokens. We shall write φ( j) as a
shorthand for P(wi|si = j), the multinomial distri-
bution over words for sense j, and θ(c) as a short-
hand for the distribution of senses in context c.

Following Blei et al. (2003) we will assume that
the mixing proportion over senses θ is drawn from
a Dirichlet prior with parameters α. The role of
the hyperparameter α is to create a smoothed sense
distribution. We also place a symmetric Dirichlet β

on φ (Griffiths and Steyvers, 2002). The hyper-
parmeter β can be interpreted as the prior observa-
tion count on the number of times context words
are sampled from a sense before any word from
the corpus is observed. Our model is represented
in graphical notation in Figure 1.

The model sketched above only takes word in-
formation into account. Methods developed for su-
pervised WSD often use a variety of information
sources based not only on words but also on lem-
mas, parts of speech, collocations and syntactic re-
lationships (Lee and Ng, 2002). The first idea that
comes to mind, is to use the same model while
treating various features as word-like elements. In
other words, we could simply assume that the con-
texts we wish to model are the union of all our
features. Although straightforward, this solution
is undesirable. It merges the distributions of dis-
tinct feature categories into a single one, and is
therefore conceptually incorrect, and can affect the
performance of the model. For instance, parts-of-
speech (which have few values, and therefore high
probability), would share a distribution with words
(which are much sparser). Layers containing more
elements (e.g. 10 word window) would overwhelm
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φ2(β2)

φn(βn)

Figure 2: Extended sense induction model; inner
rectangles represent different sources (layers) of
information. All layers share the same, instance-
specific, sense distribution (θ), but each have their
own (multinomial) sense-feature distribution (φ).
Shaded nodes represent observed features f ; these
can be words, parts of speech, collocations or de-
pendencies.

smaller ones (e.g. 1 word window).
Our solution is to treat each information source

(or feature type) individually and then combine
all of them together in a unified model. Our un-
derlying assumption is that the context window
around the target word can have multiple represen-
tations, all of which share the same sense distribu-
tion. We illustrate this in Figure 2 where each inner
rectangle (layer) corresponds to a distinct feature
type. We will naively assume independence be-
tween multiple layers, even though this is clearly
not the case in our task. The idea here is to model
each layer as faithfully as possible to the empirical
data while at the same time combining information
from all layers in estimating the sense distribution
of each target instance.

4 Inference

Our inference procedure is based on Gibbs sam-
pling (Geman and Geman, 1984). The procedure
begins by randomly initializing all unobserved
random variables. At each iteration, each random
variable si is sampled from the conditional distri-
bution P(si|s−i) where s−i refers to all variables
other than si. Eventually, the distribution over sam-
ples drawn from this process will converge to the

unconditional joint distribution P(s) of the unob-
served variables (provided certain criteria are ful-
filled).

In our model, each element in each layer is a
variable, and is assigned a sense label (see Fig-
ure 2, where distinct layers correspond to differ-
ent representations of the context around the tar-
get word). From these assignments, we must de-
termine the sense distribution of the instance as a
whole. This is the purpose of the Gibbs sampling
procedure. Specifically, in order to derive the up-
date function used in the Gibbs sampler, we must
provide the conditional probability of the i-th vari-
able being assigned sense si in layer l, given the
feature value fi of the context variable and the cur-
rent sense assignments of all the other variables in
the data (s−i):

p(si|s−i, f ) ∝ p( fi|s, f−i,β) · p(si|s−i,α) (2)

The probability of a single sense assignment, si,
is proportional to the product of the likelihood (of
feature fi, given the rest of the data) and the prior
probability of the assignment.

(3)
p( fi|s, f−i,β) =Z

p( fi|l,s,φ) · p(φ| f−i,βl)dφ =
#( fi,si)+βl

#(si)+Vl ·βl

For the likelihood term p( fi|s, f−i,β), integrating
over all possible values of the multinomial feature-
sense distribution φ gives us the rightmost term in
Equation 3, which has an intuitive interpretation.
The term #( fi,si) indicates the number of times
the feature-value fi was assigned sense si in the
rest of the data. Similarly, #(si) indicates the num-
ber of times the sense assignment si was observed
in the data. βl is the Dirichlet prior for the feature-
sense distribution φ in the current layer l, and Vl
is the size of the vocabulary of that layer, i.e., the
number of possible feature values in the layer. In-
tuitively, the probability of a feature-value given
a sense is directly proportional to the number of
times we have seen that value and that sense-
assignment together in the data, taking into ac-
count a pseudo-count prior, expressed through β.
This can also be viewed as a form of smoothing.

A similar approach is taken with regards to the
prior probability p(si|s−i,α). In this case, how-
ever, all layers must be considered:

p(si|s−i,α) = ∑
l

λl · p(si|l,s−i,αl) (4)
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Here λl is the weight for the contribution of layer l,
and αl is the portion of the Dirichlet prior for the
sense distribution θ in the current layer. Treating
each layer individually, we integrate over the pos-
sible values of θ, obtaining a similar count-based
term:

(5)
p(si|l,s−i,αl) =Z

p(si|l,s−i,θ) · p(θ| f−i,αl)dθ =
#l(si)+αl

#l +S ·αl

where #l(si) indicates the number of elements in
layer l assigned the sense si, #l indicates the num-
ber of elements in layer l, i.e., the size of the layer
and S the number of senses.

To distribute the pseudo counts represented by
α in a reasonable fashion among the layers, we
define αl = #l

#m ·α where #m = ∑l #l, i.e., the total
size of the instance. This distributes α according
to the relative size of each layer in the instance.

p(si|l,s−i,αl)=
#l(si)+ #l

#m ·α
#l +S · #l

#m ·α
=

#m · #l(si)
#l +α

#m+S ·α
(6)

Placing these values in Equation 4 we obtain the
following:

p(si|s−i,α) =
#m ·∑l λl · #l(si)

#l +α

#m+S ·α
(7)

Putting it all together, we arrive at the final update
equation for the Gibbs sampling:

p(si|s−i, f )∝
#( fi,si)+βl

#(si)+Vl ·βl
·
#m ·∑l λl · #l(si)

#l +α

#m+S ·α
(8)

Note that when dealing with a single layer, Equa-
tion 8 collapses to:

p(si|s−i, f ) ∝
#( fi,si)+β

#(si)+V ·β
· #m(si)+α

#m+S ·α
(9)

where #m(si) indicates the number of elements
(e.g., words) in the context window assigned to
sense si. This is identical to the update equation
in the original, word-based LDA model.

The sampling algorithm gives direct estimates
of s for every context element. However, in view
of our task, we are more interested in estimating θ,
the sense-context distribution which can be ob-
tained as in Equation 7, but taking into account
all sense assignments, without removing assign-
ment i. Our system labels each instance with the
single, most probable sense.

5 Evaluation Setup

In this section we discuss our experimental set-up
for assessing the performance of the model pre-
sented above. We give details on our training pro-
cedure, describe our features, and explain how our
system output was evaluated.

Data In this work, we focus solely on inducing
senses for nouns, since they constitute the largest
portion of content words. For example, nouns rep-
resent 45% of the content words in the British Na-
tional Corpus. Moreover, for many tasks and ap-
plications (e.g., web queries, Jansen et al. 2000)
nouns are the most frequent and most important
part-of-speech.

For evaluation, we used the Semeval-2007
benchmark dataset released as part of the sense
induction and discrimination task (Agirre and
Soroa, 2007). The dataset contains texts from the
Penn Treebank II corpus, a collection of articles
from the first half of the 1989 Wall Street Jour-
nal (WSJ). It is hand-annotated with OntoNotes
senses (Hovy et al., 2006) and has 35 nouns. The
average noun ambiguity is 3.9, with a high (almost
80%) skew towards the predominant sense. This is
not entirely surprising since OntoNotes senses are
less fine-grained than WordNet senses.

We used two corpora for training as we wanted
to evaluate our model’s performance across differ-
ent domains. The British National Corpus (BNC)
is a 100 million word collection of samples of
written and spoken language from a wide range of
sources including newspapers, magazines, books
(both academic and fiction), letters, and school es-
says as well as spontaneous conversations. This
served as our out-of-domain corpus, and con-
tained approximately 730 thousand instances of
the 35 target nouns in the Semeval lexical sample.
The second, in-domain, corpus was built from se-
lected portions of the Wall Street Journal. We used
all articles (excluding the Penn Treebank II por-
tion used in the Semeval dataset) from the years
1987-89 and 1994 to create a corpus of similar size
to the BNC, containing approximately 740 thou-
sand instances of the target words.

Additionally, we used the Senseval 2 and 3 lex-
ical sample data (Preiss and Yarowsky, 2001; Mi-
halcea and Edmonds, 2004) as development sets,
for experimenting with the hyper-parameters of
our model (see Section 6).

Evaluation Methodology Agirre and Soroa
(2007) present two evaluation schemes for as-
sessing sense induction methods. Under the first
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scheme, the system output is compared to the
gold standard using standard clustering evalua-
tion metrics (e.g., purity, entropy). Here, no at-
tempt is made to match the induced senses against
the labels of the gold standard. Under the second
scheme, the gold standard is partitioned into a test
and training corpus. The latter is used to derive a
mapping of the induced senses to the gold stan-
dard labels. The mapping is then used to calculate
the system’s F-Score on the test corpus.

Unfortunately, the first scheme failed to dis-
criminate among participating systems. The one-
cluster-per-word baseline outperformed all sys-
tems, except one, which was only marginally bet-
ter. The scheme ignores the actual labeling and
due to the dominance of the first sense in the data,
encourages a single-sense approach which is fur-
ther amplified by the use of a coarse-grained sense
inventory. For the purposes of this work, there-
fore, we focused on the second evaluation scheme.
Here, most of the participating systems outper-
formed the most-frequent-sense baseline, and the
rest obtained only slightly lower scores.

Feature Space Our experiments used a feature
set designed to capture both immediate local con-
text, wider context and syntactic context. Specifi-
cally, we experimented with six feature categories:
±10-word window (10w), ±5-word window (5w),
collocations (1w), word n-grams (ng), part-of-
speech n-grams (pg) and dependency relations
(dp). These features have been widely adopted in
various WSD algorithms (see Lee and Ng 2002 for
a detailed evaluation). In all cases, we use the lem-
matized version of the word(s).

The Semeval workshop organizers provided a
small amount of context for each instance (usu-
ally a sentence or two surrounding the sentence
containing the target word). This context, as well
as the text in the training corpora, was parsed us-
ing RASP (Briscoe and Carroll, 2002), to extract
part-of-speech tags, lemmas, and dependency in-
formation. For instances containing more than one
occurrence of the target word, we disambiguate
the first occurrence. Instances which were not cor-
rectly recognized by the parser (e.g., a target word
labeled with the wrong lemma or part-of-speech),
were automatically assigned to the largest sense-
cluster.3

3This was the case for less than 1% of the instances.
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Figure 3: Model performance with varying num-
ber of senses on the WSJ and BNC corpora.

6 Experiments

Model Selection The framework presented in
Section 3 affords great flexibility in modeling the
empirical data. This however entails that several
parameters must be instantiated. More precisely,
our model is conditioned on the Dirichlet hyper-
parameters α and β and the number of senses S.
Additional parameters include the number of iter-
ations for the Gibbs sampler and whether or not
the layers are assigned different weights.

Our strategy in this paper is to fix α and β

and explore the consequences of varying S. The
value for the α hyperparameter was set to 0.02.
This was optimized in an independent tuning ex-
periment which used the Senseval 2 (Preiss and
Yarowsky, 2001) and Senseval 3 (Mihalcea and
Edmonds, 2004) datasets. We experimented with
α values ranging from 0.005 to 1. The β parame-
ter was set to 0.1 (in all layers). This value is often
considered optimal in LDA-related models (Grif-
fiths and Steyvers, 2002). For simplicity, we used
uniform weights for the layers. The Gibbs sampler
was run for 2,000 iterations. Due to the random-
ized nature of the inference procedure, all reported
results are average scores over ten runs.

Our experiments used the same number of
senses for all the words, since tuning this number
individually for each word would be prohibitive.
We experimented with values ranging from three
to nine senses. Figure 3 shows the results obtained
for different numbers of senses when the model is
trained on the WSJ (in-domain) and BNC (out-of-
domain) corpora, respectively. Here, we are using
the optimal combination of layers for each system
(which we discuss in the following section in de-
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Senses of drug (WSJ)
1. U.S., administration, federal, against, war, dealer
2. patient, people, problem, doctor, company, abuse
3. company, million, sale, maker, stock, inc.
4. administration, food, company, approval, FDA

Senses of drug (BNC)
1. patient, treatment, effect, anti-inflammatory
2. alcohol, treatment, patient, therapy, addiction
3. patient, new, find, effect, choice, study
4. test, alcohol, patient, abuse, people, crime
5. trafficking, trafficker, charge, use, problem
6. abuse, against, problem, treatment, alcohol
7. people, wonder, find, prescription, drink, addict
8. company, dealer, police, enforcement, patient

Table 1: Senses inferred for the word drug from
the WSJ and BNC corpora.

tail). For the model trained on WSJ, performance
peaks at four senses, which is similar to the av-
erage ambiguity in the test data. For the model
trained on the BNC, however, the best results are
obtained using twice as many senses. Using fewer
senses with the BNC-trained system can result in
a drop in accuracy of almost 2%. This is due to
the shift in domain. As the sense-divisions of the
learning domain do not match those of the target
domain, finer granularity is required in order to en-
compass all the relevant distinctions.

Table 1 illustrates the senses inferred for the
word drug when using the in-domain and out-of-
domain corpora, respectively. The most probable
words for each sense are also shown. Firstly, note
that the model infers some plausible senses for
drug on the WSJ corpus (top half of Table 1).
Sense 1 corresponds to the “enforcement” sense
of drug, Sense 2 refers to “medication”, Sense 3
to the “drug industry” and Sense 4 to “drugs re-
search”. The inferred senses for drug on the BNC
(bottom half of Table 1) are more fine grained. For
example, the model finds distinct senses for “med-
ication” (Sense 1 and 7) and “illegal substance”
(Senses 2, 4, 6, 7). It also finds a separate sense
for “drug dealing” (Sense 5) and “enforcement”
(Sense 8). Because the BNC has a broader fo-
cus, finer distinctions are needed to cover as many
senses as possible that are relevant to the target do-
main (WSJ).

Layer Analysis We next examine which indi-
vidual feature categories are most informative
in our sense induction task. We also investigate
whether their combination, through our layered

1-Layer
10w 86.9
5w 86.8
1w 84.6
ng 83.6
pg 82.5
dp 82.2
MFS 80.9

5-Layers
-10w 83.1
-5w 83.0
-1w 83.0
-ng 83.0
-pg 82.7
-dp 84.7
all 83.3

Combination
10w+5w 87.3%
5w+pg 83.9%
1w+ng 83.2%
10w+pg 83.3%
1w+pg 84.5%
10w+pg+dep 82.2%
MFS 80.9%

Table 2: Model performance (F-score) on the WSJ
with one layer (left), five layers (middle), and se-
lected combinations of layers (right).

model (see Figure 2), yields performance im-
provements. We used 4 senses for the system
trained on WSJ and 8 for the system trained on
the BNC (α was set to 0.02 and β to 0.1)

Table 2 (left side) shows the performance of our
model when using only one layer. The layer com-
posed of words co-occurring within a ±10-word
window (10w), and representing wider, topical, in-
formation gives the highest scores on its own. It
is followed by the ±5 (5w) and ±1 (1w) word
windows, which represent more immediate, local
context. Part-of-speech n-grams (pg) and word n-
grams (ng), on their own, achieve lower scores,
largely due to over-generalization and data sparse-
ness, respectively. The lowest-scoring single layer
is the dependency layer (dp), with performance
only slightly above the most-frequent-sense base-
line (MFS). Dependency information is very infor-
mative when present, but extremely sparse.

Table 2 (middle) also shows the results obtained
when running the layered model with all but one
of the layers as input. We can use this informa-
tion to determine the contribution of each layer by
comparing to the combined model with all layers
(all). Because we are dealing with multiple lay-
ers, there is an element of overlap involved. There-
fore, each of the word-window layers, despite rel-
atively high informativeness on its own, does not
cause as much damage when it is absent, since
the other layers compensate for the topical and lo-
cal information. The absence of the word n-gram
layer, which provides specific local information,
does not make a great impact when the 1w and pg
layers are present. Finally, we can see that the ex-
tremely sparse dependency layer is detrimental to
the multi-layer model as a whole, and its removal
increases performance. The sparsity of the data in
this layer means that there is often little informa-
tion on which to base a decision. In these cases,
the layer contributes a close-to-uniform estimation
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1-Layer
10w 84.6
5w 84.6
1w 83.6
pg 83.1
ng 82.8
dp 81.1
MFS 80.9

5-Layers
-10w 83.3
-5w 82.8
-1w 83.5
-pg 83.2
-ng 82.9
-dp 84.7
all 84.1

Combination
10w+5w 85.5%
5w+pg 83.5%
1w+ng 83.5%
10w+pg 83.4%
1w+pg 84.1%
10w+pg+dep 81.7%
MFS 80.9%

Table 3: Model performance (F-score) on the BNC
with one layer (left), five layers (middle), and se-
lected combinations of layers (right).

of the sense distribution, which confuses the com-
bined model.

Other layer combinations obtained similar re-
sults. Table 2 (right side) shows the most informa-
tive two and three layer combinations. Again, de-
pendencies tend to decrease performance. On the
other hand, combining features that have similar
performance on their own is beneficial. We obtain
the best performance overall with a two layered
model combining topical (+10w) and local (+5w)
contexts.

Table 3 replicates the same suite of experiments
on the BNC corpus. The general trends are similar.
Some interesting differences are apparent, how-
ever. The sparser layers, notably word n-grams
and dependencies, fare comparatively worse. This
is expected, since the more precise, local, infor-
mation is likely to vary strongly across domains.
Even when both domains refer to the same sense
of a word, it is likely to be used in a different
immediate context, and local contextual informa-
tion learned in one domain will be less effective
in the other. Another observable difference is that
the combined model without the dependency layer
does slightly better than each of the single layers.
The 1w+pg combination improves over its compo-
nents, which have similar individual performance.
Finally, the best performing model on the BNC
also combines two layers capturing wider (10w)
and more local (5w) contextual information (see
Table 3, right side).

Comparison to State-of-the-Art Table 4 com-
pares our model against the two best performing
sense induction systems that participated in the
Semeval-2007 competition. IR2 (Niu et al., 2007)
performed sense induction using the Information
Bottleneck algorithm, whereas UMND2 (Peder-
sen, 2007) used k-means to cluster second order
co-occurrence vectors associated with the target

System F-Score
10w, 5w (WSJ) 87.3
I2R 86.8
UMND2 84.5
MFS 80.9

Table 4: Comparison of the best-performing
Semeval-07 systems against our model.

word. These models and our own model signif-
icantly outperform the most-frequent-sense base-
line (p < 0.01 using a χ2 test). Our best sys-
tem (10w+5w on WSJ) is significantly better than
UMND2 (p < 0.01) and quantitatively better than
IR2, although the difference is not statistically sig-
nificant.

7 Discussion

This paper presents a novel Bayesian approach to
sense induction. We formulated sense induction
in a generative framework that describes how the
contexts surrounding an ambiguous word might
be generated on the basis of latent variables. Our
model incorporates features based on lexical in-
formation, parts of speech, and dependencies in a
principled manner, and outperforms state-of-the-
art systems. Crucially, the approach is not specific
to the sense induction task and can be adapted for
other applications where it is desirable to take mul-
tiple levels of information into account. For exam-
ple, in document classification, one could consider
an accompanying image and its caption as possi-
ble additional layers to the main text.

In the future, we hope to explore more rigor-
ous parameter estimation techniques. Goldwater
and Griffiths (2007) describe a method for inte-
grating hyperparameter estimation into the Gibbs
sampling procedure using a prior over possible
values. Such an approach could be adopted in our
framework, as well, and extended to include the
layer weighting parameters, which have strong po-
tential for improving the model’s performance. In
addition, we could allow an infinite number of
senses and use an infinite Dirichlet model (Teh
et al., 2006) to automatically determine how many
senses are optimal. This provides an elegant so-
lution to the model-order problem, and eliminates
the need for external cluster-validation methods.
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Véronis, Jean. 2004. Hyperlex: lexical cartography for
information retrieval. Computer Speech & Language
18(3):223–252.

Vickrey, David, Luke Biewald, Marc Teyssier, and Daphne
Koller. 2005. Word-sense disambiguation for machine
translation. In Proceedings of the HLT/EMNLP. Vancou-
ver, pages 771–778.

Voorhees, Ellen M. 1993. Using wordnet to disambiguate
word senses for text retrieval. In Proceedings of the 16th
SIGIR. New York, NY, pages 171–180.

111



Proceedings of the 12th Conference of the European Chapter of the ACL, pages 112–120,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Human Evaluation of a German Surface Realisation Ranker

Aoife Cahill
Institut für Maschinelle Sprachverarbeitung (IMS)

University of Stuttgart
70174 Stuttgart, Germany

aoife.cahill@ims.uni-stuttgart.de

Martin Forst
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304, USA

mforst@parc.com

Abstract

In this paper we present a human-based
evaluation of surface realisation alterna-
tives. We examine the relative rankings of
naturally occurring corpus sentences and
automatically generated strings chosen by
statistical models (language model, log-
linear model), as well as the naturalness of
the strings chosen by the log-linear model.
We also investigate to what extent preced-
ing context has an effect on choice. We
show that native speakers do accept quite
some variation in word order, but there are
also clearly factors that make certain real-
isation alternatives more natural.

1 Introduction

An important component of research on surface
realisation (the task of generating strings for a
given abstract representation) is evaluation, espe-
cially if we want to be able to compare across sys-
tems. There is consensus that exact match with
respect to an actually observed corpus sentence is
too strict a metric and that BLEU score measured
against corpus sentences can only give a rough im-
pression of the quality of the system output. It is
unclear, however, what kind of metric would be
most suitable for the evaluation of string realisa-
tions, so that, as a result, there have been a range of
automatic metrics applied includinginter alia ex-
act match, string edit distance, NIST SSA, BLEU,
NIST, ROUGE, generation string accuracy, gener-
ation tree accuracy, word accuracy (Bangalore et
al., 2000; Callaway, 2003; Nakanishi et al., 2005;
Velldal and Oepen, 2006; Belz and Reiter, 2006).

It is not always clear how appropriate these met-
rics are, especially at the level of individual sen-
tences. Using automatic evaluation metrics cannot
be avoided, but ideally, a metric for the evaluation
of realisation rankers would rank alternative real-
isations in the same way as native speakers of the

language for which the surface realisation system
is developed, and not only globally, but also at the
level of individual sentences.

Another major consideration in evaluation is
what to take as the gold standard. The easiest op-
tion is to take the original corpus string that was
used to produce the abstract representation from
which we generate. However, there may well be
other realisations of the same input that are as
suitable in the given context. Reiter and Sripada
(2002) argue that while we should take advantage
of large corpora in NLG, we also need to take care
that we do not introduce errors by learning from
incorrect data present in corpora.

In order to better understand what makes good
evaluation data (and metrics), we designed and im-
plemented an experiment in which human judges
evaluated German string realisations. The main
aims of this experiment were: (i) to establish how
much variation in German word order is accept-
able for human judges, (ii) to find an automatic
evaluation metric that mirrors the findings of the
human evaluation, (iii) to provide detailed feed-
back for the designers of the surface realisation
ranking model and (iv) to establish what effect
preceding context has on the choice of realisation.
In this paper, we concentrate on points (i) and (iv).

The remainder of the paper is structured as fol-
lows: In Section 2 we outline the realisation rank-
ing system that provided the data for the experi-
ment. In Section 3 we outline the design of the
experiment and in Section 4 we present our find-
ings. In Section 5 we relate this to other work and
finally we conclude in Section 6.

2 A Realisation Ranking System for
German

We take the realisation ranking system for German
described in Cahill et al. (2007) and present the
output to human judges. One goal of this series
of experiments is to examine whether the results
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based on automatic evaluation metrics published
in that paper are confirmed in an evaluation by hu-
mans. Another goal is to collect data that will al-
low us and other researchers1 to explore more fine-
grained and reliable automatic evaluation metrics
for realisation ranking.

The system presented by Cahill et al. (2007)
ranks the strings generated by a hand-crafted
broad-coverage Lexical Functional Grammar
(Bresnan, 2001) for German (Rohrer and Forst,
2006) on the basis of a given input f-structure.
In these experiments, we use f-structures from
their held-out and test sets, of which 96% can
be associated with surface realisations by the
grammar. F-structures are attribute-value ma-
trices representing grammatical functions and
morphosyntactic features; roughly speaking,
they are predicate-argument structures. In LFG,
f-structures are assumed to be a crosslinguistically
relatively parallel syntactic representation level,
alongside the more surface-oriented c-structures,
which are context-free trees. Figure 1 shows
the f-structure2 associated with TIGER Corpus
sentence 8609, glossed in (1), as well as the 4
string realisations that the German LFG generates
from this f-structure. The LFG is reversible,
i.e. the same grammar is used for parsing as for
generation. It is a hand-crafted grammar, and
has been carefully constructed to only parse (and
therefore generate) grammatical strings.3

(1) Williams
Williams

war
was

in
in

der
the

britischen
British

Politik
politics

äußerst
extremely

umstritten.
controversial.

‘Williams was extremely controversial in British
politics.’

The ranker consists of a log-linear model that
is based on linguistically informed structural fea-
tures as well as a trigram language model, whose

1The data is available for download from
http://www.ims.uni-stuttgart.de/projekte/pargram/geneval/data/

2Note that only grammatical functions are displayed;
morphosyntactic features are omitted due to space con-
straints. Also note that the discourse function TOPIC was
ignored in generation.

3A ranking mechanism based on so-called optimality
marks can lead to a certain “asymmetry” between parsing and
generation in the sense that not all sentences that can be as-
sociated with a certain f-structure are necessarily generated
from this same f-structure. E.g. the sentenceWilliams war
äußerst umstritten in der britischen Politik.can be parsed
into the f-structure in Figure 1, but it is not generated because
an optimality mark penalizes the extraposition of PPs to the
right of a clause. Only few optimality marks were used in the
process of generating the data for our experiments, so that the
bias they introduce should not be too noticeable.

score is integrated into the model simply as an ad-
ditional feature. The log-linear model is trained on
corpus data, in this case sentences from the TIGER
Corpus (Brants et al., 2002), for which f-structures
are available; the observed corpus sentences are
considered as references whose probability is to
be maximised during the training process.

The output of the realisation ranker is evalu-
ated in terms of exact match and BLEU score,
both measured against the actually observed cor-
pus sentences. In addition to the figures achieved
by the ranker, the corresponding figures achieved
by the employed trigram language model on its
own are given as a baseline, and the exact match
figure of the best possible string selection is given
as an upper bound.4 We summarise these figures
in Table 1.

Exact Match BLEU score
Language model 27% 0.7306
Log-linear model 37% 0.7939
Upper bound 62% –

Table 1: Results achieved by trigram LM ranker
and log-linear model ranker in Cahill et al. (2007)

By means of these figures, Cahill et al. (2007)
show that a log-linear model based on structural
features and a language model score performs con-
siderably better realisation ranking than just a lan-
guage model. In our experiments, presented in de-
tail in the following section, we examine whether
human judges confirm this and how natural and/or
acceptable the selection performed by the realisa-
tion ranker under consideration is for German na-
tive speakers.

3 Experiment Design

The experiment was divided into three parts. Each
part took between 30 and 45 minutes to complete,
and participants were asked to leave some time
(e.g. a week) between each part. In total, 24 par-
ticipants completed the experiment. All were na-
tive German speakers (mostly from South-Western
Germany) and almost all had a linguistic back-
ground. Table 2 gives a breakdown of the items
in each part of the experiment.5

4The observed corpus sentence can be (re)generated from
the corresponding f-structure for only 62% of the sentences
used, usually because of differences in punctuation. Hence
this exact match upper bound. An upper bound in terms
of BLEU score cannot be computed because BLEU score is
computed on entire corpora rather than individual sentences.

5Experiments 3a and 3b contained the same items as ex-
periments 1a and 1b.
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"Williams war in der britischen Politik äußerst umstritten."

'sein<[378:umstritten]>[1:Williams]'PRED

'Williams'PRED1SUBJ

'umstritten<[1:Williams]>'PRED
[1:Williams]SUBJ

'äußerst'PRED274ADJUNCT
378

XCOMP-PRED

'in<[115:Politik]>'PRED

'Politik'PRED

'britisch<[115:Politik]>'PRED
[115:Politik]SUBJ171

ADJUNCT

'die'PREDDETSPEC
115

OBJ

88

ADJUNCT

[1:Williams]TOPIC65

Williams war in der britischen Politik äußerst umstritten.
In der britischen Politik war Williams äußerst umstritten.
Äußerst umstritten war Williams in der britischen Politik.
Äußerst umstritten war in der britischen Politik Williams.

Figure 1: F-structure associated with (1) and strings generated from it.

Exp 1a Exp 1b Exp 2
Num. items 44 52 41
Avg. sent length 14.4 12.1 9.4

Table 2: Statistics for each experiment part

3.1 Part 1

The aim of part 1 of the experiment was twofold.
First, to identify the relative rankings of the sys-
tems evaluated in Cahill et al. (2007) according to
the human judges, and second to evaluate the qual-
ity of the strings as chosen by the log-linear model
of Cahill et al. (2007). To these ends, part 1 was
further subdivided into two tasks: 1a and b.

Task 1a: During the first task, participants were
presented with alternative realisations for an input
f-structure (but not shown the original f-structure)
and asked to rank them in order of how natural
sounding they were, 1 being the best and 3 be-
ing the worst.6 Each item contained three alter-
natives, (i) the original string found in TIGER, (ii)
the string chosen as most likely by the trigram lan-
guage model, and (iii) the string chosen as most
likely by the log-linear model. Only items where
each system chose a different alternative were cho-
sen from the evaluation data of Cahill et al. (2007).
The three alternatives were presented in random
order for each item, and the items were presented
in random order for each participant. Some items
were presented randomly to participants more than

6Joint rankings were not allowed, i.e. the participants
were forced to make strict ranking decisions, and in hindsight
this may have introduced some noise into the data.

once as a sanity check, and in total for Part 1a, par-
ticipants made 52 ranking judgements on 44 items.
Figure 2 shows a screen shot of what the partici-
pant was presented with for this task.

Task 1b: In the second task of part 1, partic-
ipants were presented with the string chosen by
the log-linear model as being the most likely and
asked to evaluate it on a scale from 1 to 5 on how
natural sounding it was, 1 being very unnatural
or marked and 5 being completely natural. Fig-
ure 3 shows a screen shot of what the participant
saw during the experiment. Again some random
items were presented to the participant more than
once, and the items themselves were presented in
random order. In total, the participants made 58
judgements on 52 items.

3.2 Part 2

In the second part of the experiment, participants
were presented between 4 and 8 alternative sur-
face realisations for an input f-structure, as well
as some preceding context. This preceding con-
text was automatically determined using informa-
tion from the export release of the TIGER treebank
and was not hand-checked for relevance.7 The par-
ticipants were then asked to choose the realisation
that they felt fit best given the preceding sentences.

7The export release of the TIGER treebank includes an
article ID for each sentence. Unfortunately, this is not com-
pletely reliable for determining relevant context, since an ar-
ticle can also contain several short news snippets which are
completely unrelated. Paragraph boundaries are not marked.
This leads to some noise, which unfortunately is difficult to
measure objectively
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Figure 2: Screenshot of Part 1a of the Experiment

Figure 3: Screenshot of Part 1b of the Experiment

Total Average
Rank 1 Rank 2 Rank 3 Rank

Original String 817 366 65 1.40
LL String 303 593 352 2.04
LM String 128 289 831 2.56

Table 3: Task 1a: Ranks for each system

The items were presented in random order, and the
list of alternatives were presented in random order
to each participant. Some items were randomly
presented more than once, resulting in 50 judge-
ments on 41 items. Figure 4 shows a screen shot
of what the participant saw.

3.3 Part 3

Part 3 of the experiment was identical to Part 1,
except that now, rather than the participants being
presented with sentences in isolation, they were
given some preceding context. The context was
determined automatically, in the same way as in
Part 2. The items themselves were the same as in
Part 1. The aim of this part of the experiment was
to see what effect preceding context had on judge-
ments.

4 Results

In this section we present the result and analysis
of the experiments outlined above.

4.1 How good were the strings?

The data collected in Experiment 1a showed the
overall human relative ranking of the three sys-
tems. We calculate the total numbers of each
rank for each system. Table 3 summarises the re-
sults. The original string is the string found in the

Figure 5: Task 1b: Naturalness scores for strings
chosen by log-linear model, 1=worst

TIGER Corpus, the LM String is the string cho-
sen as being most likely by the trigram language
model and the LL String is the string chosen as
being most likely by the log-linear model.

Table 3 confirms the overall relative rankings
of the three systems as determined using BLEU
scores. The original TIGER strings are ranked best
(average 1.4), the strings chosen by the log-linear
model are ranked better than the strings chosen by
the language model (average 2.65 vs 2.04).

In Experiment 1b, the aim was to find out how
acceptable the strings chosen by the log-linear
model were, although they were not the same as
the original string. Figure 5 summarises the data.
The graph shows that the majority of strings cho-
sen by the log-linear model ranked very highly on
the naturalness scale.

4.2 Did the human judges agree with the
original authors?

In Experiment 2, the aim was to find out how of-
ten the human judges chose the same string as the
original author (given alternatives generated by the
LFG grammar). Most items had between 4 and 6
alternative strings. In 70% of all items, the human
judges chose the same string as the original au-
thor. However, the remaining 30% of the time, the
human judges picked an alternative as being the
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Figure 4: Screenshot of Part 2 of the Experiment

most fitting in the given context.8 This suggests
that there is quite some variation in what native
German speakers will accept, but that this varia-
tion is by no means random, as indicated by 70%
of choices being the same string as the original au-
thor’s.

Figure 6 shows for each bin of possible alterna-
tives, the percentage of items with a given num-
ber of choices made. For example, for the items
with 4 possible alternatives, over 70% of the time,
the judges chose between only 2 of them. For the
items with 5 possible alternatives, in 10% of those
items the human judges chose only 1 of those al-
ternatives; in 30% of cases, the human judges all
chose the same 2 solutions, and for the remain-
ing 60% they chose between only 3 of the 5 pos-
sible alternatives. These figures indicate that al-
though judges could not always agree on one best
string, often they were only choosing between 2 or
3 of the possible alternatives. This suggests that,
on the one hand, native speakers do accept quite
some variation, but that, on the other hand, there
are clearly factors that make certain realisation al-
ternatives more preferable than others.

Figure 6: Exp 2: Number of Alternatives Chosen

8Recall that almost all strings presented to the judges were
grammatical.

The graph in Figure 6 shows that only in two
cases did the human judges choose from among
all possible alternatives. In one case, there were 4
possible alternatives and in the other 6. The origi-
nal sentence that had 4 alternatives is given in (2).
The four alternatives that participants were asked
to choose from are given in Table 4, with the fre-
quency of each choice. The original sentence that
had 6 alternatives is given in (3). The six alterna-
tives generated by the grammar and the frequen-
cies with which they were chosen is given in Table
5.

(2) Die
The

Brandursache
cause of fire

blieb
remained

zunächst
initially

unbekannt.
unknown.

‘The cause of the fire remained unknown initially.’

Alternative Freq.
Zunächst blieb die Brandursache unbekannt. 2
Die Brandursache blieb zunächst unbekannt. 24
Unbekannt blieb die Brandursache zunächst. 1
Unbekannt blieb zunächst die Brandursache. 1

Table 4: The 4 alternatives given by the grammar
for (2) and their frequencies

Tables 4 and 5 tell different stories. On the one
hand, although each of the 4 alternatives was cho-
sen at least once from Table 4, there is a clear pref-
erence for one string (and this is also the origi-
nal string from the TIGER Corpus). On the other
hand, there is no clear preference9 for any one of
the alternatives in Table 5, and, in fact, the alterna-
tive that was selected most frequently by the par-
ticipants is not the original string. Interestingly,
out of the 41 items presented to participants, the
original string was chosen by the majority of par-
ticipants in 36 cases. Again, this confirms the
hypothesis that there is a certain amount of ac-
ceptable variation for native speakers but there are
clear preferences for certain strings over others.

9Although it is clear that alternative 2 is dispreferred.
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(3) Die
The

Unternehmensgruppe
group of companies

Tengelmann
Tengelmann

fördert
assists

mit
with

einem
a

sechsstelligen
6-figure

Betrag
sum

die
the

Arbeit
work

im
in

brandenburgischen
of-Brandenburg

Biosphärenreservat
biosphere reserve

Schorfheide.
Schorfheide.

‘The Tengelmann group of companies is supporting the work atthe biosphere reserve in Schorfheide, Brandenburg,
with a 6-figure sum.’

Alternative Freq.
Mit einem sechsstelligen Betrag fördert die Unternehmensgruppe Tengelmann die Arbeit im brandenburgischen
Biosphärenreservat Schorfheide. 7
Mit einem sechsstelligen Betrag fördert die Arbeit im brandenburgischen Biosphärenreservat Schorfheide
die Unternehmensgruppe Tengelmann. 1
Die Arbeit im brandenburgischen Biosphärenreservat Schorfheide fördert die Unternehmensgruppe Tengelmann
mit einem sechsstelligen Betrag. 4
Die Arbeit im brandenburgischen Biosphärenreservat Schorfheide fördert mit einem sechsstelligen Betrag
die Unternehmensgruppe Tengelmann. 5
Die Unternehmensgruppe Tengelmann fördert die Arbeit im brandenburgischen Biosphärenreservat Schorfheide
mit einem sechsstelligen Betrag. 5
Die Unternehmensgruppe Tengelmann fördert mit einem sechsstelligen Betrag die Arbeit im brandenburgischen
Biosphärenreservat Schorfheide. 5

Table 5: The 6 alternatives given by the grammar for (3) and their frequencies

4.3 Effects of context

As explained in Section 3.1, Part 3 of our exper-
iment was identical to Part 1, except that the par-
ticipants could see some preceding context. The
aim of this part was to investigate to what extent
discourse factors influence the way in which hu-
man judges evaluate the output of the realisation
ranker. In Task 3a, we expected the original strings
to be ranked (even) higher in context than out of
context; consequently, the ranks of the realisations
selected by the log-linear and the language model
would have to go down. With respect to Task 3b,
we had no particular expectation, but were just in-
terested in seeing whether some preceding context
would affect the evaluation results for the strings
selected as most probable by the log-linear model
ranker in any way.

Table 6 summarises the results of Task 3a. It
shows that, at least overall, our expectation that the
original corpus sentences would be ranked higher
within context than out of context was not borne
out. Actually, they were ranked a bit lower than
they were when presented in isolation, and the
only realisations that are ranked slightly higher
overall are the ones selected by the trigram LM.

The overall results of Task 3b are presented in
Figure 7. Interestingly, although we did not ex-
pect any particular effect of preceding context on
the way the participants would rate the realisa-
tions selected by the log-linear model, the natu-
ralness scores were higher in the condition with
context (Task 3b) than in the one without context

Total Average
Rank 1 Rank 2 Rank 3 Rank

Original String 810 365 71 1.41
(-7) (-1) (+6) (+0.01)

LL String 274 615 357 2.07
(-29) (+22) (+5) (+0.03)

LM String 162 266 818 2.53
(+34) (-23) (-13) (-0.03)

Table 6: Task 3a: Ranks for each system (com-
pared to ranks in Task 1a)

(Task 1b). One explanation might be that sen-
tences in some sort of default order are generally
rated higher in context than out of context, simply
because the context makes sentences less surpris-
ing.

Since, contrary to our expectations, we could
not detect a clear effect of context in the overall re-
sults of Task 3a, we investigated how the average
ranks of the three alternatives presented for indi-
vidual items differ between Task 1a and Task 3a.
An example of an original corpus sentence which
many participants ranked higher in context than in
isolation is given in (4a.). The realisations selected
by the the log-linear model and the trigram LM are
given in (4b.) and (4c.) respectively, and the con-
text shown to the participants is given above these
alternatives. We believe that the context has this
effect because it prepares the reader for the struc-
ture with the sentence-initial predicative partici-
ple entscheidend; usually, these elements appear
rather in clause-final position.

In contrast, (5a) is an example of a corpus

117



(4) -2 Betroffen
Concerned

sind
are

die
the

Antibabypillen
contraceptive pills

Femovan,
Femovan,

Lovelle,
Lovelle,

[...]
[...],

und
and

Dimirel.
Dimirel.

-1 Das
The

Bundesinstitut
federal institute

schließt
excludes

nicht
not

aus, daß
that

sich die
the

Thrombose-Warnung
thrombosis warning

als
as

grundlos
unfounded

erweisen
turn out

könnte.
could.

a. Entscheidend
Decisive

sei
is

die
the

[...]
[...]

abschließende
final

Bewertung,
evaluation,

sagte
said

Jürgen
Jürgen

Beckmann
Beckmann

vom
of the

Institut
institute

dem
the

ZDF.
ZDF.

b. Die [...] abschließende Bewertung sei entscheidend, sagte Jürgen Beckmann vom Institut dem ZDF.
c. Die [...] abschließende Bewertung sei entscheidend, sagte dem ZDF Jürgen Beckmann vom Institut.

(5) -2 Im
In the

konkreten
concrete

Fall
case

darf
may

der
the

Kurde
Kurd

allerdings
however

trotz
despite

der
the

Entscheidung
decision

der
of the

Bundesrichter
federal judges

nicht
not

in
to

die
the

Türkei
Turkey

abgeschoben
deported

werden,
be

weil
because

ihm
him

dort
there

nach
according to

den
the

Feststellungen
conclusions

der
of the

Vorinstanz
court of lower instance

politische
political

Verfolgung
persecution

droht.
threatens.

-1 Es
It

besteht
exists

Abschiebeschutz
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Figure 7: Tasks 1b and 3b: Naturalness scores
for strings chosen by log-linear model, presented
without and with context

sentence which our participants tended to rank
lower in context than in isolation. Actually, the
human judges preferred the realisation selected
by the trigram LM to the original sentence and
the realisation chosen by the log-linear model in
both conditions, but this preference was even re-
inforced when context was available. One expla-
nation might be that the two preceding sentences
are precisely about the decision to which the ini-
tial phrase of variant (5b) refers, which ensures a
smooth flow of the discourse.

4.4 Inter-Annotator Agreement

We measure two types of annotator agreement.
First we measure how well each annotator agrees
with him/herself. This is done by evaluating what
percentage of the time an annotator made the same
choice when presented with the same item choices
(recall that as described in Section 3, a number of
items were presented randomly more than once to
each participant). The results are given in Table 7.
The results show that in between 70% and 74% of
cases, judges make the same decision when pre-
sented with the same data. We found this to be a
surprisingly low number and think that it is most
likely due to the acceptable variation in word or-
der for speakers. Another measure of agreement
is how well the individual participants agree with
each other. In order to establish this, we cal-
culate an average Spearman’s correlation coeffi-
cient (non-parametric Pearson’s correlation coef-
ficient) between each participant for each experi-
ment. The results are summarised in Table 8. Al-
though these figures indicate a high level of inter-
annotator agreement, more tests are required to es-
tablish exactly what these figures mean for each
experiment.

5 Related Work

The work that is most closely related to what is
presented in this paper is that of Velldal (2008). In

118



Experiment Agreement (%)
Part 1a 77.43
Part 1b 71.05
Part 2 74.32
Part 3a 72.63
Part 3b 70.89

Table 7: How often did a participant make the
same choice?

Experiment Spearman coefficient
Part 1a 0.62
Part 1b 0.60
Part 2 0.58
Part 3a 0.61
Part 3b 0.51

Table 8: Inter-Annotator Agreement for each ex-
periment

his thesis several models of realisation ranking are
presented and evaluated against the original cor-
pus text. Chapter 8 describes a small human-based
experiment, where 7 native English speakers rank
the output of 4 systems. One system is the orig-
inal text, another is a randomly chosen baseline,
another is a string chosen by a log-linear model
and the fourth is one chosen by a language model.
Joint rankings were allowed. The results presented
in Velldal (2008) mirror our findings in Exper-
iments 1a and 3a, that native speakers rank the
original strings higher than the log-linear model
strings which are ranked higher than the language
model strings. In both cases, the log-linear mod-
els include the language model score as a feature
in the log-linear model. Nakanishi et al. (2005) re-
port that they achieve the best BLEU scores when
they do not include the language model score in
their log-linear model, but they also admit that
their language model was not trained on enough
data.

Belz and Reiter (2006) carry out a comparison
of automatic evaluation metrics against human do-
main experts and human non-experts in the do-
main of weather forecast statements. In their eval-
uations, the NIST score correlated more closely
than BLEU or ROUGE to the human judgements.
They conclude that more than 4 reference texts are
needed for automatic evaluation of NLG systems.

6 Conclusion and Outlook to Future
Work

In this paper, we have presented a human-based
experiment to evaluate the output of a realisation

ranking system for German. We evaluated the
original corpus text, and strings chosen by a lan-
guage model and a log-linear model. We found
that, at a global level, the human judgements mir-
rored the relative rankings of the three system ac-
cording to the BLEU score. In terms of natural-
ness, the strings chosen by the log-linear model
were generally given 4 or 5, indicating that al-
though the log-linear model might not choose the
same string as the original author had written, the
strings it was choosing were mostly very natural
strings.

When presented with all alternatives generated
by the grammar for a given input f-structure, the
human judges chose the same string as the origi-
nal author 70% of the time. In 5 out of 41 cases,
the majority of judges chose a string other than
the original string. These figures show that native
speakers accept some variation in word order, and
so caution should be exercised when using corpus-
derived reference data. The observed acceptable
variation was often linked to information struc-
tural considerations, and further experiments will
be carried out to investigate this relationship be-
tween word order and information structure.

In examining the effect of preceding context, we
found that overall context had very little effect. At
the level of individual sentences, however, clear
tendencies were observed, but there were some
sentences which were judged better in context and
others which were ranked lower. This again indi-
cates that corpus-derived reference data should be
used with caution.

An obvious next step is to examine how well
automatic metrics correlate with the human judge-
ments collected, not only at an individual sen-
tence level, but also at a global level. This can be
done using statistical techniques to correlate the
human judgements with the scores from the auto-
matic metrics. We will also examine the sentences
that were consistently judged to be of poor quality,
so that we can provide feedback to the developers
of the log-linear model in terms of possible addi-
tional features for disambiguation.
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Abstract
This paper describes a method using mor-
phological rules and heuristics, for the au-
tomatic extraction of large-coverage lexi-
cons of stems and root word-forms from
a raw text corpus. We cast the problem
of high-coverage lexicon extraction as one
of stemming followed by root word-form
selection. We examine the use of POS
tagging to improve precision and recall of
stemming and thereby the coverage of the
lexicon. We present accuracy, precision
and recall scores for the system on a Hindi
corpus.

1 Introduction

Large-coverage morphological lexicons are an es-
sential component of morphological analysers.
Morphological analysers find application in lan-
guage processing systems for tasks like tagging,
parsing and machine translation. While raw text
is an abundant and easily accessible linguistic re-
source, high-coverage morphological lexicons are
scarce or unavailable in Hindi as in many other
languages (Clément et al., 2004). Thus, the devel-
opment of better algorithms for the extraction of
morphological lexicons from raw text corpora is a
task of considerable importance.

A root word-form lexicon is an intermediate
stage in the creation of a morphological lexicon.
In this paper, we consider the problem of extract-
ing a large-coverage root word-form lexicon for
the Hindi language, a highly inflectional and mod-
erately agglutinative Indo-European language spo-
ken widely in South Asia.

Since a POS tagger, another basic tool, was
available along with POS tagged data to train it,
and since the error patterns indicated that POS tag-
ging could greatly improve the accuracy of the lex-
icon, we used the POS tagger in our experiments
on lexicon extraction.

Previous work in morphological lexicon extrac-
tion from a raw corpus often does not achieve very
high precision and recall (de Lima, 1998; Oliver
and Tadić, 2004). In some previous work the pro-
cess of lexicon extraction involves incremental or
post-construction manual validation of the entire
lexicon (Clément et al., 2004; Sagot, 2005; Fors-
berg et al., 2006; Sagot et al., 2006; Sagot, 2007).

Our method attempts to improve on and extend
the previous work by increasing the precision and
recall of the system to such a point that manual
validation might even be rendered unnecessary.
Yet another difference, to our knowledge, is that
in our method we cast the problem of lexicon ex-
traction as two subproblems: that of stemming and
following it, that of root word-form selection.

The input resources for our system are as fol-
lows: a) raw text corpus, b) morphological rules,
c) POS tagger and d) word-segmentation labelled
data. We output a stem lexicon and a root word-
form lexicon.

We take as input a raw text corpus and a set
of morphological rules. We first run a stemming
algorithm that uses the morphological rules and
some heuristics to obtain a stem dictionary. We
then create a root dictionary from the stem dictio-
nary.

The last two input resources are optional but
when a POS tagger is utilized, the F-score (har-
monic mean of precision and recall) of the root
lexicon can be as high as 94.6%.

In the rest of the paper, we provide a brief
overview of the morphological features of the
Hindi language, followed by a description of our
method including the specification of rules, the
corpora and the heuristics for stemming and root
word-form selection. We then evaluate the system
with and without the POS tagger.
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2 Hindi Orthography and Morphology

There are some features peculiar to Hindi orthog-
raphy and to the character encoding system that
we use. These need to be compensated for in the
system. It was also found that Hindi’s inflectional
morphology has certain characteristics that sim-
plify the word segmentation rules.

2.1 Orthography

Hindi is written in the partially-phonemic Devana-
gari script. Most consonant clusters that occur in
the language are represented by characters and lig-
atures, while a very few are represented as diacrit-
ics. Vowels that follow consonants or consonant
clusters are marked with diacritics. However, each
consonant in the Devanagari script also carries an
implicit vowel a1 unless its absence is marked by a
special diacritic “halant”. Vowels are represented
by vowel characters when they occur at the head
of a word or after another vowel.

The y sound sometimes does not surface in the
pronunciation when it occurs between two vow-
els. So suffixes where the y is followed by e or I
can be written in two ways, with or without the y
sound in them. For instance the suffix ie can also
be written as iye.

Certain stemming rules will therefore need to
be duplicated in order to accommodate the differ-
ent spelling possibilities and the different vowel
representations in Hindi. The character encoding
also plays a small but significant role in the ease
of stemming of Hindi word-forms.

2.2 Unicode Representation

We used Unicode to encode Hindi characters. The
Unicode representation of Devanagari treats sim-
ple consonants and vowels as separate units and so
makes it easier to match substrings at consonant-
vowel boundaries. Ligatures and diacritical forms
of consonants are therefore represented by the
same character code and they can be equated very
simply.

However, when using Unicode as the charac-
ter encoding, it must be borne in mind that there
are different character codes for the vowel diacrit-
ics and for the vowel characters for one and the
same vowel sound, and that the long and short

1In the discussion in Section 2 and in Table 1 and
Table 2, we have used a loose phonetic transcription
that resembles ITRANS (developed by Avinash Chopde
http://www.aczoom.com/itrans/).

Word Form Derivational Segmentation Root
karnA kar + nA kar
karAnA kar + A + nA kar
karvAnA kar + vA + nA kar

Word Form Inflectional Segmentation Root
karnA kar + nA kar
karAnA karA + nA karA
karvAnA karvA + nA karvA

Table 1: Morpheme Segmentation

laDkA Nominative Oblique
Singular laDkA laDke
Plural laDke laDkon

laDkI Nominative Oblique
Singular laDkI laDkI
Plural laDkI laDkiyAn

Table 2: Sample Paradigms

forms of the vowels are represented by different
codes. These artifacts of the character encoding
need to be compensated for when using substring
matches to identify the short vowel sound as being
part of the corresponding prolonged vowel sound
and when stemming.

2.3 Morphology

The inflectional morphology of Hindi does not
permit agglutination. This helps keep the num-
ber of inflectional morphological rules manage-
able. However, the derivational suffixes are agglu-
tinative, leading to an explosion in the number of
root word-forms in the inflectional root lexicon.

The example in Table 1 shows that verbs can
take one of the two causative suffixes A and vA.
These being derivational suffixes are not stemmed
in our system and cause the verb lexicon to be
larger than it would have otherwise.

2.4 Paradigms

Nouns, verbs and adjectives are the main POS cat-
egories that undergo inflection in Hindi according
to regular paradigm rules.

For example, Hindi nouns inflect for case and
number. The inflections for the paradigms that the
words laDkA (meaning boy) and laDkI (mean-
ing girl) belong to are shown in Table 2. The root
word-forms are laDkA and laDkI respectively
(the singular and nominative forms).
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Hindi verbs are inflected by gender, number,
person, mood and tense. Hindi adjectives take
inflections for gender and case. The number of
inflected forms in different POS categories varies
considerably, with verbs tending to have a lot more
inflections than other POS categories.

3 System Description

In order to construct a morphological lexicon, we
used a rule-based approach combined with heuris-
tics for stem and root selection. When used in
concert with a POS tagger, they could extract a
very accurate morphological lexicon from a raw
text corpus. Our system therefore consists of the
following components:

1. A raw text corpus in the Hindi language large
enough to contain a few hundred thousand
unique word-forms and a smaller labelled
corpus to train a POS tagger with.

2. A list of rules comprising suffix strings and
constraints on the word-forms and POS cate-
gories that they can be applied to.

3. A stemmer that uses the above rules, and
some heuristics to identify and reduce in-
flected word-forms to stems.

4. A POS tagger to identify the POS category or
categories that the word forms in the raw text
corpus can belong to.

5. A root selector that identifies a root word-
form and its paradigm from a stem and a set
of inflections of the stem.

The components of the system are described in
more detail below.

3.1 Text Corpora
Rules alone are not always sufficient to identify
the best stem or root for a word-form, when the
words being stemmed have very few inflectional
forms or when a word might be stemmed in one
of many ways. In that case, a raw text corpus can
provide important clues for identifying them.

The raw text corpus that we use is the Web-
Duniya corpus which consists of 1.4 million sen-
tences of newswire and 21.8 million words. The
corpus, being newswire, is clearly not balanced.
It has a preponderance of third-person forms
whereas first and second person inflectional forms
are under-represented.

Name POS Paradigm Suffixes Root
laDkA noun {‘A’,‘e’,‘on’} ‘A’
laDkI noun {‘I’,‘iyAn’} ‘I’
dho verb {‘’,‘yogI’,‘nA’,. . .} ‘’
chal verb {‘’,‘ogI’,‘nA’,. . .} ‘’

Table 3: Sample Paradigm Suffix Sets

Since Hindi word boundaries are clearly marked
with punctuation and spaces, tokenization was
an easy task. The raw text corpus yielded ap-
proximately 331000 unique word-forms. When
words beginning with numbers were removed, we
were left with about 316000 unique word-forms of
which almost half occurred only once in the cor-
pus.

In addition, we needed a corpus of 45,000
words labelled with POS categories using the IL-
POST tagset (Sankaran et al., 2008) for the POS
tagger.

3.2 Rules
The morphological rules input into the system are
used to recognize word-forms that together be-
long to a paradigm. Paradigms can be treated as a
set of suffixes that can be used to generate inflec-
tional word-forms from a stem. The set of suffixes
that constitutes a paradigm defines an equivalence
class on the set of unique word-forms in the cor-
pus.

For example, the laDkA paradigm in Table 2
would be represented by the set of suffix strings
{‘A’, ‘e’, ‘on’} derived from the word-forms
laDkA, laDke and laDkon. A few paradigms
are listed in Table 3.

The suffix set formalism of a paradigm closely
resembles the one used in a previous attempt at
unsupervised paradigm extraction (Zeman, 2007)
but differs from it in that Zeman (2007) considers
the set of word-forms that match the paradigm to
be a part of the paradigm definition.

In our system, we represent the morphological
rules by a list of suffix add-delete rules. Each rule
in our method is a five-tuple {α, β, γ, δ, ε} where:

• α is the suffix string to be matched for the
rule to apply.

• β is the portion of the suffix string after which
the stem ends.

• γ is a POS category in which the string α is a
valid suffix.
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α β γ δ ε

‘A’ ‘’ Noun N1 ‘A’
‘on’ ‘’ Noun N1,N3 ‘A’
‘e’ ‘’ Noun N1 ‘A’
‘oyogI’ ‘o’ Verb V5 ‘o’

Table 4: Sample Paradigm Rules

Word Form α Match Stem Root
laDkA laDk + A laDk laDkA
laDkon laDk + on laDk laDkA
laDke laDk + e laDk laDkA
dhoyogI dh + oyogI dh + o dho

Table 5: Rule Application

• δ is a list of paradigms that contain the suffix
string α.

• ε is the root suffix

The sample paradigm rules shown in Table 4
would match the words laDkA, laDkon, laDke
and dhoyogI respectively and cause them to be
stemmed and assigned roots as shown in Table 5.

The rules by themselves can identify word-and-
paradigm entries from the raw text corpus if a suf-
ficient number of inflectional forms were present.
For instance, if the words laDkA and laDkon
were present in the corpus, by taking the intersec-
tion of the paradigms associated with the match-
ing rules in Table 4, it would be possible to infer
that the root word-form was laDkA and that the
paradigm was N1.

We needed to create about 300 rules for Hindi.
The rules could be stored in a list indexed by the
suffix in the case of Hindi because the number of
possible suffixes was small. For highly aggluti-
native languages, such as Tamil and Malayalam,
which can have thousands of suffixes, it would be
necessary to use a Finite State Machine represen-
tation of the rules.

3.3 Suffix Evidence
We define the term ‘suffix evidence’ for a poten-
tial stem as the number of word-forms in the cor-
pus that are composed of a concatenation of the
stem and any valid suffix. For instance, the suf-
fix evidence for the stem laDk is 2 if the word-
forms laDkA and laDkon are the only word-
forms with the prefix laDk that exist in the corpus
and A and on are both valid suffixes.

BSE Word-forms Accuracy
1 20.5% 79%
2 20.0% 70%
3 13.2% 70%
4 10.8% 81%
5 & more 35.5% 80%

Table 6: % Frequency and Accuracy by BSE

BSE Nouns Verbs Others
1 292 6 94
2 245 2 136
3 172 15 66
4 120 16 71
5 & more 103 326 112

Table 7: Frequency by POS Category

Table 6 presents word-form counts for differ-
ent suffix evidence values for the WebDuniya cor-
pus. Since the real stems for the word-forms were
not known, the prefix substring with the highest
suffix evidence was used as the stem. We shall
call this heuristically selected stem the best-suffix-
evidence stem and its suffix evidence as the best-
suffix-evidence (BSE).

It will be seen from Table 6 that about 20% of
the words have a BSE of only 1. Altogether about
40% of the words have a BSE of 1 or 2. Note
that all words have a BSE of atleast 1 since the
empty string is also considered a valid suffix. The
fraction is even higher for nouns as shown in Table
7.

It must be noted that the number of nouns with
a BSE of 5 or more is in the hundreds only be-
cause of erroneous concatenations of suffixes with
stems. Nouns in Hindi do not usually have more
than four inflectional forms.

The scarcity of suffix evidence for most word-
forms poses a huge obstacle to the extraction of a
high-coverage lexicon because :

1. There are usually multiple ways to pick a
stem from word-forms with a BSE of 1 or 2.

2. Spurious stems cannot be detected easily
when there is no overwhelming suffix evi-
dence in favour of the correct stem.

3.4 Gold Standard
The gold standard consists of one thousand word-
forms picked at random from the intersection of
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the unique word-forms in the unlabelled Web-
Duniya corpus and the POS labelled corpus. Each
word-form in the gold standard was manually ex-
amined and a stem and a root word-form found for
it.

For word-forms associated with multiple POS
categories, the stem and root of a word-form were
listed once for each POS category because the seg-
mentation of a word could depend on its POS cat-
egory. There were 1913 word and POS category
combinations in the gold standard.

The creation of the stem gold standard needed
some arbitrary choices which had to be reflected
in the rules as well. These concerned some words
which could be stemmed in multiple ways. For in-
stance, the noun laDkI meaning ‘girl’ could be
segmented into the morphemes laDk and I or al-
lowed to remain unsegmented as laDkI. This is
because by doing the former, the stems of both
laDkA and laDkI could be conflated whereas
by doing the latter, they could be kept separate
from each other. We arbitrarily made the choice
to keep nouns ending in I unsegmented and made
our rules reflect that choice.

A second gold standard consisting of 1000
word-forms was also created to be used in eval-
uation and as training data for supervised algo-
rithms. The second gold standard contained 1906
word and POS category combinations. Only word-
forms that did not appear in the first gold standard
were included in the second one.

3.5 Stemmer

Since the list of valid suffixes is given, the stem-
mer does not need to discover the stems in the lan-
guage but only learn to apply the right one in the
right place. We experimented with three heuristics
for finding the right stem for a word-form. The
heuristics were:

• Longest Suffix Match (LSM) - Picking the
longest suffix that can be applied to the word-
form.

• Highest Suffix Evidence (HSE) - Picking the
suffix which yields the stem with the highest
value for suffix evidence.

• Highest Suffix Evidence with Supervised
Rule Selection (HSE + Sup) - Using labelled
data to modulate suffix matching.

3.5.1 Longest Suffix Match (LSM)

In the LSM heuristic, when multiple suffixes can
be applied to a word-form to stem it, we choose
the longest one. Since Hindi has concatenative
morphology with only postfix inflection, we only
need to find one matching suffix to stem it. It is
claimed in the literature that the method of us-
ing the longest suffix match works better than ran-
dom suffix selection (Sarkar and Bandyopadhyay,
2008). This heuristic was used as the baseline for
our experiments.

3.5.2 Highest Suffix Evidence (HSE)

In the HSE heuristic, which has been applied be-
fore to unsupervised morphological segmentation
(Goldsmith, 2001), stemming (Pandey and Sid-
diqui, 2008), and automatic paradigm extraction
(Zeman, 2007), when multiple suffixes can be ap-
plied to stem a word-form, the suffix that is picked
is the one that results in the stem with the high-
est suffix evidence. In our case, when computing
the suffix evidence, the following additional con-
straint is applied: all the suffixes used to compute
the suffix evidence score for any stem must be as-
sociated with the same POS category.

For example, the suffix yon is only applicable
to nouns, whereas the suffix ta is only applicable
to verbs. These two suffixes will therefore never
be counted together in computing the suffix evi-
dence for a stem. The algorithm for determining
the suffix evidence computes the suffix evidence
once for each POS category and then returns the
maximum.

In the absence of this constraint, the accuracy
drops as the size of the raw word corpus increases.

3.5.3 HSE and Supervised Rule Selection
(HSE + Sup)

The problem with the aforementioned heuristics is
that there are no weights assigned to rules. Since
the rules for the system were written to be as gen-
eral and flexible as possible, false positives were
commonly encountered. We propose a very sim-
ple supervised learning method to circumvent this
problem.

The training data used was a set of 1000 word-
forms sampled, like the gold standard, from the
unique word-forms in the intersection of the raw
text corpus and the POS labelled corpus. The set
of word-forms in the training data was disjoint
from the set of word-forms in the gold standard.
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Rules Accur Prec Recall F-Score
Rules1 73.65% 68.25% 69.4% 68.8%
Rules2 75.0% 69.0% 77.6% 73.0%

Table 8: Comparison of Rules

Gold 1 Accur Prec Recall F-Score
LSM 71.6% 65.8% 66.1% 65.9%
HSE 76.7% 70.6% 77.9% 74.1%
HSE+Sup 78.0% 72.3% 79.8% 75.9%

Gold 2 Accur Prec Recall F-Score
LSM 75.7% 70.7% 72.7% 71.7%
HSE 75.0% 69.0% 77.6% 73.0%
HSE+Sup 75.3% 69.3% 78.0% 73.4%

Table 9: Comparison of Heuristics

The feature set consisted of two features: the
last character (or diacritic) of the word-form, and
the suffix. The POS category was an optional fea-
ture and used when available. If the number of in-
correct splits exceeded the number of correct splits
given a feature set, the rule was assigned a weight
of 0, else it was given a weight of 1.

3.5.4 Comparison

We compare the performance of our rules with
the performance of the Lightweight Stemmer for
Hindi (Ramanathan and Rao, 2003) with a re-
ported accuracy of 81.5%. The scores we report
in Table 8 are the average of the LSM scores
on the two gold standards. The stemmer using
the standard rule-set (Rules1) does not perform as
well as the Lightweight Stemmer. We then hand-
crafted a different set of rules (Rules2) with ad-
justments to maximize its performance. The ac-
curacy was better than Rules1 but not quite equal
to the Lightweight Stemmer. However, since our
gold standard is different from that used to eval-
uate the Lightweight Stemmer, the comparison is
not necessarily very meaningful.

As shown in Table 9, in F-score comparisons,
HSE seems to outperform LSM and HSE+Sup
seems to outperform HSE, but the improvement
in performance is not very large in the case of the
second gold standard. In terms of accuracy scores,
LSM outperforms HSE and HSE+Sup when eval-
uated against the second gold standard.

POS Correct Incorrect POS Errors
Noun 749 231 154
Verb 324 108 0
Adjective 227 49 13
Others 136 82 35

Table 10: Errors by POS Category

3.5.5 Error Analysis
Table 10 lists the number of correct stems, in-
correct stems, and finally a count of those incor-
rect stems that the HSE+Sup heuristic would have
gotten right if the POS category had been avail-
able. From the numbers it appears that a size-
able fraction of the errors, especially with noun
word-forms, is caused when a suffix of the wrong
POS category is applied to a word-form. More-
over, prior work in Bangla (Sarkar and Bandy-
opadhyay, 2008) indicates that POS category in-
formation could improve the accuracy of stem-
ming.

Assigning POS categories to word-forms re-
quires a POS tagger and a substantial amount of
POS labelled data as described below.

3.5.6 POS Tagging
The POS tagset used was the hierarchical tagset
IL-POST (Sankaran et al., 2008). The hierarchical
tagset supports broad POS categories like nouns
and verbs, less broad POS types like common and
proper nouns and finally, at its finest granularity,
attributes like gender, number, case and mood.

We found that with a training corpus of about
45,000 tagged words (2366 sentences), it was pos-
sible to produce a reasonably accurate POS tag-
ger2, use it to label the raw text corpus with broad
POS tags, and consequently improve the accuracy
of stemming. For our experiments, we used both
the full training corpus of 45,000 words and a sub-
set of the same consisting of about 20,000 words.
The POS tagging accuracies obtained were ap-
proximately 87% and 65% respectively.

The reason for repeating the experiment using
the 20,000 word subset of the training data was to
demonstrate that a mere 20,000 words of labelled
data, which does not take a very great amount of

2The Part-of-Speech tagger used was an implementa-
tion of a Cyclic Dependency Network Part-of-Speech tagger
(Toutanova et al., 2003). The following feature set was used
in the tagger: tag of previous word, tag of next word, word
prefixes and suffixes of length exactly four, bigrams and the
presence of numbers or symbols.
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time and effort to create, can produce significant
improvements in stemming performance.

In order to assign tags to the words of the gold
standard, sentences from the raw text corpus con-
taining word-forms present in the gold standard
were tagged using a POS tagger. The POS cate-
gories assigned to each word-form were then read
off and stored in a table.

Once POS tags were associated with all the
words, a more restrictive criterion for matching a
rule to a word-form could be used to calculate the
BSE in order to determine the stem of the word-
form. When searching for rules, and consequently
the suffixes, to be applied to a word-form, only
rules whose γ value matches the word-form’s POS
category were considered. We shall call the HSE
heuristic that uses POS information in this way
HSE+Pos.

3.6 Root Selection

The stem lexicon obtained by the process de-
scribed above had to be converted into a root word-
form lexicon. A root word-form lexicon is in some
cases more useful than a stem lexicon, for the fol-
lowing reasons:

1. Morphological lexicons are traditionally in-
dexed by root word-forms

2. Multiple root word-forms may map to one
stem and be conflated.

3. Tools that use the morphological lexicon may
expect the lexicon to consist of roots instead
of stems.

4. Multiple root word-forms may map to one
stem and be conflated.

5. Stems are entirely dependent on the way
stemming rules are crafted. Roots are inde-
pendent of the stemming rules.

The stem lexicon can be converted into a root
lexicon using the raw text corpus and the morpho-
logical rules that were used for stemming, as fol-
lows:

1. For any word-form and its stem, list all rules
that match.

2. Generate all the root word-forms possible
from the matching rules and stems.

3. From the choices, select the root word-form
with the highest frequency in the corpus.

Relative frequencies of word-forms have been
used in previous work to detect incorrect affix at-
tachments in Bengali and English (Dasgupta and
Ng, 2007). Our evaluation of the system showed
that relative frequencies could be very effective
predictors of root word-forms when applied within
the framework of a rule-based system.

4 Evaluation

The goal of our experiment was to build a high-
coverage morphological lexicon for Hindi and to
evaluate the same. Having developed a multi-stage
system for lexicon extraction with a POS tagging
step following by stemming and root word-form
discovery, we proceeded to evaluate it as follows.

The stemming and the root discovery module
were evaluated against the gold standard of 1000
word-forms. In the first experiment, the precision
and recall of stemming using the HSE+Pos algo-
rithm were measured at different POS tagging ac-
curacies.

In the second experiment the root word-form
discovery module was provided the entire raw
word corpus to use in determining the best pos-
sible candidate for a root and tested using the gold
standard. The scores obtained reflect the perfor-
mance of the overall system.

For stemming, the recall was calculated as the
fraction of stems and suffixes in the gold standard
that were returned by the stemmer for each word-
form examined. The precision was calculated as
the fraction of stems and suffixes returned by the
stemmer that matched the gold standard. The F-
score was calculated as the harmonic mean of the
precision and recall.

The recall of the root lexicon was measured as
the fraction of gold standard roots that were in the
lexicon. The precision was calculated as the frac-
tion of roots in the lexicon that were also in the
gold standard. Accuracy was the percentage of
gold word-forms’ roots that were matched exactly.

In order to approximately estimate the accuracy
of a stemmer or morphological analyzer that used
such a lexicon, we also calculated the accuracy
weighted by the frequency of the word-forms in
a small corpus of running text. The gold standard
tokens were seen in this corpus about 4400 times.
We only considered content words (nouns, verbs,
adjectives and adverbs) in this calculation.

127



Gold1 Accur Prec Recall F-Sco
POS 86.7% 82.4% 86.2% 84.2%
Sup+POS 88.2% 85.2% 87.3% 86.3%
Gold2 Accur Prec Recall F-Sco
POS 81.8% 77.8% 82.0% 79.8%
Sup+POS 83.5% 80.2% 82.6% 81.3%

Table 11: Stemming Performance Comparisons

Gold 1 Accur Prec Recall F-Sco
No POS 76.7% 70.6% 77.9% 74.1%
65% POS 82.3% 77.5% 81.4% 79.4%
87% POS 85.4% 80.8% 85.1% 82.9%
Gold POS 86.7% 82.4% 86.2% 84.2%

Table 12: Stemming Performance at Different
POS Tagger Accuracies

5 Results

The performance of our system using POS tag in-
formation is comparable to that obtained by Sarkar
and Bandyopadhyay (2008). Sarkar and Bandy-
opadhyay (2008) obtained stemming accuracies of
90.2% for Bangla using gold POS tags. So in the
comparisons in Table 11, we use gold POS tags
(row two) and also supervised learning (row three)
using the other gold corpus as the labelled training
corpus. We present the scores for the two gold
standards separately. It must be noted that Sarkar
and Bandyopadhyay (2008) conducted their ex-
periments on Bangla, and so the results are not
exactly comparable.

We also evaluate the performance of stemming
using HSE with POS tagging by a real tagger at
two different tagging accuracies - approximately
65% and 87% - as shown in Table 12. We com-
pare the performance with gold POS tags and a
baseline system which does not use POS tags. We
do not use labelled training data for this section of
the experiments and only evaluate against the first
gold standard.

Table 13 compares the F-scores for root discov-

Gold 1 Accur Prec Recall F-Sco
No POS 71.7% 77.6% 78.8% 78.1%
65% POS 82.5% 87.2% 88.9% 88.0%
87% POS 87.0% 94.1% 95.3% 94.6%
Gold POS 89.1% 95.4% 97.9% 96.6%

Table 13: Root Finding Accuracy

Gold 1 Stemming Root Finding
65% POS 85.6% 87.0%
87% POS 87.5% 90.6%
Gold POS 88.5% 90.2%

Table 14: Weighted Stemming and Root Finding
Accuracies (only Content Words)

ery at different POS tagging accuracies against a
baseline which excludes the use of POS tags alto-
gether. There seems to be very little prior work
that we can use for comparison here. To our
knowledge, the closest comparable work is a sys-
tem built by Oliver and Tadić (2004) in order to
enlarge a Croatian Morphological Lexicon. The
overall performance reported by Tadić et al was
as follows: (precision=86.13%, recall=35.36%,
F1=50.14%).

Lastly, Table 14 shows the accuracy of stem-
ming and root finding weighted by the frequencies
of the words in a running text corpus. This was
calculated only for content words.

6 Conclusion

We have described a system for automatically con-
structing a root word-form lexicon from a raw
text corpus. The system is rule-based and uti-
lizes a POS tagger. Though preliminary, our re-
sults demonstrate that it is possible, using this
method, to extract a high-precision and high-recall
root word-form lexicon. Specifically, we show
that with a POS tagger capable of labelling word-
forms with POS categories at an accuracy of about
88%, we can extract root word-forms with an ac-
curacy of about 87% and a precision and recall of
94.1% and 95.3% respectively.

Though the system has been evaluated on Hindi,
the techniques described herein can probably be
applied to other inflectional languages. The rules
selected by the system and applied to the word-
forms also contain information that can be used to
determine the paradigm membership of each root
word-form. Further work could evaluate the accu-
racy with which we can accomplish this task.
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Abstract 

This paper presents a feasibility study for im-
plementing lexical morphology principles in a 
machine translation system in order to solve 
unknown words. Multilingual symbolic treat-
ment of word-formation is seducing but re-
quires an in-depth analysis of every step that 
has to be performed. The construction of a 
prototype is firstly presented, highlighting the 
methodological issues of such approach. Sec-
ondly, an evaluation is performed on a large 
set of data, showing the benefits and the limits 
of such approach. 

1 Introduction 

Formalising morphological information to deal 
with morphologically constructed unknown 
words in machine translation seems attractive, 
but raises many questions about the resources 
and the prerequisites (both theoretical and practi-
cal) that would make such symbolic treatment 
efficient and feasible. In this paper, we describe 
the prototype we built to evaluate the feasibility 
of such approach. We focus on the knowledge 
required to build such system and on its evalua-
tion. First, we delimit the issue of neologisms 
amongst the other unknown words (section 2), 
and we present the few related work done in 
NLP research (section 3). We then explain why 
implementing morphology in the context of ma-
chine translation (MT) is a real challenge and 
what kind of aspects need to be taken into ac-
count (section 4), and we show that translating 
constructed neologisms is not only a mechanical 
decomposition but requires more fine-grained 
analysis. We then describe the methodology de-
veloped to build up a prototyped translator of 
constructed neologisms (section 5) with all the 
extensions that have to be made, especially in 
terms of resources. Finally, we concentrate on 
the evaluation of each step of the process and on 
the global evaluation of the entire approach (sec-
tion 6). This last evaluation highlights a set of 
methodological criteria that are needed to exploit 
lexical morphology in machine translation. 

2 Issues 

Unknown words are a problematic issue in any 
NLP tool. Depending on the studies (Ren and  
Perrault 1992; Maurel 2004), it is estimated that 
between 5 and 10 % of the words of a text writ-
ten in “standard” language are unknown to lexi-
cal resources. In a MT context (analysis-transfer-
generation), unknown words remain not only 
unanalysed but they cannot be translated, and 
sometimes they also stop the translation of the 
whole sentence. 

Usually, three main groups of unknown words 
are distinguished: proper names, errors, and ne-
ologisms, and the possible solution highly de-
pends on the type of unknown word to be solved. 
In this paper, we concentrate on neologisms 
which are constructed following a morphological 
process. 

The processing of unknown “constructed ne-
ologisms” in NLP can be done by simple guess-
ing (based on the sequence of final letters). This 
option can be efficient enough when the task is 
only tagging, but in a multilingual context (like 
in MT), dealing with constructed neologisms 
implies a transfer and a generation process that 
require a more complex formalisation and im-
plementation. In the project presented in this pa-
per, we propose to implement lexical morphol-
ogy phenomena in MT. 

3 Related work 

Implementing lexical morphology in a MT con-
text has seldom been investigated in the past, 
probably because many researchers share the 
following view: “Though the idea of providing 
rules for translating derived words may seem 
attractive, it raises many problems and so it is 
currently more of a research goal for MT than a 
practical possibility” (Arnold, Balkan et al. 
1994). As far as we know, the only related pro-
ject is described in (Gdaniec, Manandise et al. 
2001), where they describe a project of imple-
mentation of rules for dealing with constructed 
words in the IBM MT system. 
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Even in monolingual contexts, lexical mor-
phology is not very often implemented in NLP. 
Morphological analyzers like the ones described 
in (Porter 1980; Byrd 1983; Byrd, Klavans et al. 
1989; Namer 2005) propose more or less deeper 
lexical analyses, to exploit that dimension of the 
lexicon. 

4 Proposed solution 

Since morphological processes are regular and 
exist in many languages, we propose an approach 
where constructed neologisms in source lan-
guage (SL) can be analysed and their translation 
generated in a target language (TL) through the 
transfer of the constructional information. 

For example, a constructed neologism in one 
language (e.g. ricostruire in Italian) should 
firstly be analysed, i.e. find (i) the rule that pro-
duced it (in this case <reiteration rule>) and (ii) 
the lexeme-base which it is constructed on 
(costruire, with all morphosyntactic and transla-
tional information). Secondly, through a transfer 
mechanism (of both the rule and the base), a 
translation can be generated by rebuilding a con-
structed word, (in French reconstruire, Eng: to 
rebuild). On a theoretical side, the whole process 
is formalised into bilingual Lexeme Formation 
Rules (LFR), as explained below in section 4.3. 

Although this approach seems to be simple 
and attractive, feasibility studies and evaluation 
should be carefully performed. To do so, we built 
a system to translate neologisms from one lan-
guage into another. In order to delimit the project 
and to concentrate on methodological issues, we 
focused on the prefixation process and on two 
related languages (Italian and French). Prefixa-
tion is, after suffixation, the most productive 
process of neologism, and prefixes can be more 
easily processed in terms of character strings. 
Regarding the language, we choose to deal with 
the translation of Italian constructed neologisms 
into French. These two languages are historically 
and morphologically related and are conse-
quently more “neighbours” in terms of neolo-
gism coinage. 

In the following, we firstly describe precisely 
the phenomena that have to be formalized and 
then the prototype built up for the experiment. 

4.1 Phenomena to be formalized 

Like in any MT project, the formalisation work 
has to face different issues of contrastivity, i.e. 
highlighting the divergences and the similarities 
between the two languages. 

In the two languages chosen for the experi-
ment, few divergences were found in the way 
they construct prefixed neologisms. However, in 
some cases, although the morphosemantic proc-
ess is similar, the item used to build it up (i.e. the 
affixes) is not always the same. For example, to 
coin nouns of the spatial location “before”, 
where Italian uses the prefix retro, French uses 
rétro and arrière. A deeper analysis shows that 
Italian retro is used with all types of nouns, 
whereas in French, rétro only forms processual 
nouns (derived from verbs, like rétrovision, 
rétroprojection). For the other type of nouns 
(generally locative nouns), arrière is used (ar-
rière-cabine, arrière-cour). 

Other problematic issues appear when there is 
more than one prefix for the same LFR. For ex-
ample, the rule for “indeterminate plurality” pro-
vides in both languages a set of two prefixes 
(multi/pluri in Italian and multi/pluri in French) 
with no known restrictions for selecting one or 
the other (e.g. both pluridimensionnel and multi-
dimensionnel are acceptable in French). For 
these cases, further empirical research have to be 
performed to identify restrictions on the rule. 

Another important divergence is found in the 
prefixation of relational adjectives. Relational 
adjectives are derived from nouns and designate 
a relation between the entity denoted by the noun 
they are derived from and the entity denoted by 
the noun they modify. Consequently, in a pre-
fixation such as anticostituzionale, the formal 
base is a relational adjective (costituzionale), but 
the semantic base is the noun the adjective is de-
rived from (costituzione). The constructed word 
anticostituzionale can be paraphrased as “against 
the constitution”. Moreover, when the relational 
adjective does not exist, prefixation is possible 
on a nominal base to create an adjective (squadra 
antidroga). In cases where the adjective does 
exist, both forms are possible and seem to be 
equally used, like in the Italian collaborazione 
interuniversità / collaborazione interuniversi-
taria. From a contrastive point of view, the pre-
fixation of relational adjectives exists in both 
languages (Italian and French) and in both these 
languages prefixing a noun to create an adjective 
is also possible (anticostituzione (Adj)). But we 
notice an important discrepancy in the possibility 
of constructing relational adjectives (a rough es-
timation performed on a large bilingual diction-
ary (Garzanti IT-FR (2006)) shows that more 
than 1 000 Italian relational adjectives have no 
equivalent in French (and are generally translated 
with a prepositional phrase).  

131



All these divergences require an in-dept analy-
sis but can be overcome only if the formalism 
and the implementation process are done follow-
ing a rigorous methodology. 

4.2 The prototype 

In order to evaluate the approach described 
above and to concretely investigate the ins and 
outs of such implementation, we built up a proto-
type of a machine translation system specialized 
for constructed neologisms. This prototype is 
composed of two modules. The first one checks 
every unknown word to see if it is potentially 
constructed, and if so, performs a morphological 
analysis to individualise the lexeme-base and the 
rule that coined it. The second module is the ac-
tual translation module, which analyses the con-
structed neologism and generates a possible 
translation. 

 
Figure 1: Prototype 

The whole prototype relies on one hand on 
lexical resources (two monolingual and one bi-
lingual) and on a set of bilingual Lexeme Forma-
tion Rules (LFR). These two sets of information 
helps the analysis and the generation steps. When 
a neologism is looked-up, the system checks if it 
is constructed with one of the LFRs and if the 
lexeme-base is in the lexicon. If it is the case, the 
transfer brings the relevant morphological and 
lexical information in the target language. The 
generation step constructs the translation equiva-
lent, using the information provided by the LFR 
and the lexical resources. Consequently, the 
whole system relies on the quality of both the 
lexical resources and the LFR. 

4.3 Bilingual Lexeme Formation Rules  

The whole morphological process in the system 
is formalised through bilingual Lexeme Forma-
tion Rules. Their representation is inspired by 
(Fradin 2003) as shown in figure 2 in the rule of 
reiterativity. 

Such rules match together two monolingual 
rules (to be read in columns). Each monolingual 
rule describes a process that applies a series of 
instructions on the different sections of the lex-

eme : the surface section (G and F), the syntactic 
category (SX) and the semantic (S) sections. In 
this theoretical framework, affixation is only one 
of the instructions of the rule (the graphemic and 
phonological modification), and consequently, 
affixes are called “exponent” of the rule. 
 Italian French 
 input input 
(G) Vit Vfr 
(F) /Vit/ /Vfr/ 
(SX) cat :v cat :v 
(S) Vit'(...) Vfr'(...) 

 ����  ���� 
 output output 
(G) riVit reVfr 
(F) /ri/⊕/V it/ /ʀə/⊕/Vfr/ 
(SX) cat :v cat :v  
(S) reiterativity (Vit'(...)) reiterativity (Vfr'(...)) 

where Vit' = Vfr', translation equivalent 

This formalisation is particularly useful in a 
bilingual context for rules that have more than 
one prefix in both languages: more than one affix 
can be declared in one single rule, the selection 
being made according to different constraints or 
restrictions. For example, the rule for “indeter-
minate plurality” explained in section 4.1 can be 
formalised as follows: 
 Italian French 
 input input 
(G) Xit Xfr 
(F) /Xit/ /Xfr/ 
(SX) cat :n cat :n 
(S) Xit'(...) Xfr'(...) 

 ����  ���� 
 output output 
(G) multi/pluriXit multi/pluriXfr 
(F) /multi/pluri/⊕/X it/ /mȟlti/plyri/⊕/Xfr/ 
(SX) cat :n cat :n  
(S) indet. plur. (Xit'(...)) indet. plur. (Xfr'(...)) 

where Xit' = Xfr', translation equivalent 
Figure 3: Bilingual LFR of indeterminate plurality 
In this kind of rules with “multiple expo-

nents”, the two possible prefixes are declared in 
the surface section (G and F). The selection is a 
monolingual issue and cannot be done at the 
theoretical level. 

Such rules have been formalised and imple-
mented for the 56 productive prefixes of Italian 
(Iacobini 2004)1, with their French translation 
equivalent. However, finding the translation 
equivalent for each rule requires specific studies 

                                                
1 i.e. a, ad, anti, arci, auto, co, contro, de, dis, ex, extra, in, 
inter, intra, iper, ipo, macro, maxi, mega, meta, micro, mini, 
multi, neo, non, oltre, onni, para, pluri, poli, post, pre, pro, 
retro, ri,  s, semi, sopra, sotto, sovra, stra, sub, super, trans, 
ultra, vice, mono, uni, bi, di, tri, quasi, pseudo. 
 

IT neologism 

FR neologism 

analysis 

LFR 

generation 

Lexica 

Figure 2: Bilingual LFR of reiterativity 
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of the morphological system of both languages in 
a contrastive perspective. 

The following section briefly summarises the 
contrastive analysis that has been performed to 
acquire this type of contrastive knowledge. 

4.4 Knowledge acquisition of bilingual LFR 

As in any MT system, the acquisition of bilin-
gual knowledge is an important issue. In mor-
phology, the method should be particularly accu-
rate to prevent any methodological bias. To for-
malise translation rules for prefixed neologisms, 
we adopt a meaning-to-form approach, i.e. dis-
covering how a constructed meaning is morpho-
logically realised in two languages. 

We build up a tertium comparationis (a neu-
tral platform, see (James 1980) for details) that 
constitute a semantic typology of prefixation 
processes. This typology aims to be universal 
and therefore applicable to all the languages con-
cerned. On a practical point of view, the typol-
ogy has been built up by summing up various 
descriptions of prefixation in various languages 
(Montermini 2002; Iacobini 2004; Amiot 2005). 
We end up with six main classes: location, 
evaluation, quantitative, modality, negation and 
ingressive. The classes are then subdivided ac-
cording to sub-meanings: for example, location 
is subdivided in temporal and spatial, and within 
spatial location, a distinction is made between 
different positions (before, above, below, in 
front, …).  

Prefixes of both languages are then literally 
“projected” (or classified) onto the tertium. For 
each terminal sub-class, we have a clear picture 
of the prefixes involved in both languages. For 
example, the LFR presented in figure 1 is the 
result of the projection of the Italian prefix (ri ) 
and the French one (re) on the sub-class reitera-
tivity, which is a sub-class of modality. 

At the end of the comparison, we end up with 
more than 100 LFRs (one rule can be reiterated 
according the different input and output catego-
ries). From a computing point of view, con-
straints have to be specified and the lexicon has 
to be adapted consequently. 

5 Implementation 

Implementation of the LFR is set up as a data-
base, from where the program takes the informa-
tion to perform the analysis, the transfer and the 
generation of the neologisms. In our approach, 
LFRs are simply declared in a tab format data-

base, easily accessible and modifiable by the 
user, as shown below: 

 
Figure 4: Implemented LFRs 

Implemented LFRs describe (i) the surface 
form of the Italian prefix to be analysed, (ii) the 
category of the base, (iii) the category of the de-
rived lexeme (the output), (iv) a reference to the 
rule implied and (v) the French prefix(es) for the 
generation. 

The surface form in (i) should sometimes take 
into account the different allomorphs of one pre-
fix. Consequently, the rule has to be reiterated in 
order to be able to recognize any forms (e.g. the 
prefix in has different forms according to the ini-
tial letter of the base, and four rules have to be 
implemented for the four allomorphs (in, il, im, 
ir )). In some other cases, the initial consonant is 
doubled, and the algorithm has to take this phe-
nomenon into account.  

In (ii), the information of the category of the 
base has been “overspecified”, to differentiate 
qualitative and relational adjectives, and deverbal 
nouns and the other ones (a_rel/a  or 
n_dev/n ). These overspecifications have two 
objectives: optimizing the analysis performance 
(reducing the noise of homographic character 
strings that look like constructed neologisms but 
that are only misspellings - see below in the 
evaluation section), and refining the analysis, i.e. 
selecting the appropriate LFR and, consequently, 
the appropriate translation. 

To identify relational adjectives and deverbal 
nouns, the monolingual lexicon that supports the 
analysis step has to be extended. Thereafter, we 
present the symbolic method we used to perform 
such extension. 

5.1 Extension of the monolingual lexicon 

Our MT prototype relies on lexical resources: it 
aims at dealing with unknown words that are not 
in a Reference lexicon and these unknown words 
are analyzed with lexical material that is in this 
lexicon. 

From a practical point of view, our prototype 
is based on two very large monolingual data-

arci a a 2.1.2 archi 
arci n n 2.1.2 archi 
[…] 
pro a_rel a 1.1.10 pro 
pro n a 1.1.10 pro 
[…] 
ri v v 6.1 re 
ri n_dev n 6.1 re 
[…] 
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bases (Mmorph (Bouillon, Lehmann et al. 1998)) 
for Italian and French, that contain only morpho-
syntactic information, and on one bilingual lexi-
con that has been built semi-automatically for the 
use of the experiment. But the monolingual 
lexica have to be adapted to provide specific in-
formation necessary for dealing with morpho-
logical process. 

As stated above, identifying the prefix and the 
base is not enough to provide a proper analysis 
of constructed neologisms which is detailed 
enough to be translated. The main information 
that is essential for the achievement of the proc-
ess is the category of the base, which has to be 
sometimes “overspecified”. Obviously, the Ital-
ian reference lexicon does not contain such in-
formation. Consequently, we looked for a simple 
way to automatically extend the Italian lexicon. 
For example, we looked for a way to automati-
cally link relational adjectives with their noun 
bases. 

Our approach tries to take advantage of only 
the lexicon, without the use of any larger re-
sources. To extend the Italian lexicon, we simply 
built a routine based on the typical suffixes of 
relational adjectives (in Italian:  -ale,  -are, -ario, 
-ano, -ico, -ile, -ino, -ivo, -orio, -esco, -asco, 
-iero, -izio, -aceo (Wandruszka 2004)). For every 
adjective ending with one of these suffixes, the 
routine looks up if the potential base corresponds 
to a noun in the rest of the lexicon (modulo some 
morphographemic variations). For example, the 
routine is able to find links between adjectives 
and base nouns such as ambientale and ambiente, 
aziendale and azienda, cortisonica and cortisone 
or contestuale and contesto. Unfortunately, this 
kind of automatic implementation does not find 
links between adjectives made from the learned 
root of the noun, (prandiale � pranzo, bellico 
� guerra). 

This automatic extension has been evaluated. 
Out of a total of more than 68 000 adjective 
forms in the lexicon, we identified 8 466 rela-
tional adjectives. From a “recall” perspective, it 
is not easy to evaluate the coverage of this exten-
sion because of the small number of resources 
containing relational adjectives that could be 
used as a gold standard. 

A similar extension is performed for the 
deverbal aspect, for the lexicon should also dis-
tinguish deverbal noun. From a morphological 
point of view, deverbalisation can be done trough 
two main productive processes: conversion (a 
command � to command) and suffixation. If the 
first one is relatively difficult to implement, the 

second one can be easily captured using the typi-
cal suffixes of such processes. Consequently, we 
considere that any noun ending with suffixes like 
ione, aggio,or mento are deverbal. 

Thanks to this extended lexicon, overspecified 
input categories (like a_rel  for relational ad-
jective or n_dev  for deverbal noun) can be 
stated and exploited in the implemented LFR as 
shown in figure 4. 

5.2 Applying LFRs to translate neologisms 

Once the prototyped MT system was built and 
the lexicon adapted, it was applied to a set of 
neologisms (see section 6 for details). For exam-
ple, unknown Italian neologisms such as arci-
contento, ridescrizione, deitalianizzare, were 
automatically translated in French: archi-content, 
redescription, désitalianiser. 

The divergences existing in the LFR of <loca-
tive position before> are correctly dealt with, 
thanks to the correct analysis of the base. For 
example, in the neologism retrobottega, the lex-
eme-base is correctly identified as a locative 
noun, and the French equivalent is constructed 
with the appropriate prefix (arrière-boutique), 
while in retrodiffusione, the base is analysed as 
deverbal, and the French equivalent is correctly 
generated (rétrodiffusion). 

For the analysis of relational adjectives, the 
overspecification of the LFRs and the extension 
of the lexicon are particularly useful when there 
is no French equivalent for Italian relational ad-
jectives because the corresponding construction 
is not possible in the French morphological sys-
tem. For example, the Italian relational adjective 
aziendale (from the noun azienda, Eng: com-
pany) has no adjectival equivalent in French. The 
Italian prefixed adjective interaziendale can only 
be translated in French by using a noun as the 
base (interentreprise). This translation equivalent 
can be found only if the base noun of the Italian 
adjective is found (interaziendale, in-
ter+aziendale � azienda, azienda = entreprise, 
� interentreprise). The same process has been 
applied for the translation of precongressuale, 
post-transfuzionale by précongrès, post-
transfusion. 

Obviously, all the mechanisms formalised in 
this prototype should be carefully evaluated. 

6 Evaluation 

The advantages of this approach should be care-
fully evaluated from two points of view: the 
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evaluation of the performance of each step and of 
the feasibility and portability of the system. 

6.1 corpus 

As previously stated, the system is intended to 
solve neologisms that are unknown from a lexi-
con with LFRs that exploit information contained 
in the lexicon. To evaluate the performance of 
our system, we built up a corpus of unknown 
words by confronting a large Italian corpus from 
journalistic domain (La Repubblica Online 
(Baroni, Bernardini et al. 2004)) with our refer-
ence lexicon for this language (see section 4.1 
above). We obtained a set of unknown words 
that contains neologisms, but also proper names 
and erroneous items. This set is submitted to the 
various steps of the system, where constructed 
neologisms are recognised, analysed and trans-
lated.  

6.2 Evaluation of the performance of the 
analysis 

As we previously stated, the analysis step can 
actually be divided into two tasks. First of all, the 
program has to identify, among the unknown 
words, which of them are morphologically con-
structed (and so analysable by the LFRs); sec-
ondly, the program has to analyse the constructed 
neologisms, i.e matching them with the correct 
LFRs and isolating the correct base-words. 

For the first task, we obtain a list of 42 673 
potential constructed neologisms. Amongst 
those, there are a number of erroneous words that 
are homographic to a constructed neologism. For 
example, the item progesso, a misspelling of 
progresso (Eng: progress), is erroneously ana-
lysed as the prefixation of gesso (eng: plaster) 
with the LFR in pro. 

In the second part of the processing, LFRs are 
concretely applied to the potential neologisms 
(i.e. constraints on categories and on over-
specified category, phonological constraints). 
This stage retains 30 376 neologisms. A manual 
evaluation is then performed on these outputs. 
Globally, 71.18 % of the analysed words are ac-
tually neologisms. But the performance is not the 
same for every rule. Most of them are very effi-
cient: among all the rules for the 56 Italian pre-
fixes, only 7 cause too many erroneous analyses, 
and should be excluded - mainly rules with very 
short prefixes (like a, di, s), that cause mistakes 
due to homograph. 

As explained above, some of the rules are 
strongly specified, (i.e. very constrained), so we 
also evaluate the consequence of some con-

straints, not only in terms of improved perform-
ance but also in terms of loss of information. In-
deed, some of the constraints specified in the rule 
exclude some neologisms (false negatives). For 
example, the modality LFRs with co and ri have 
been overspecified, requiring deverbal base-noun 
(and not just a noun). Adding this constraint im-
proves the performance of the analysis (i.e. the 
number of correct lexemes analysed), respec-
tively from 69.48 % to 96 % and from 91.21 % 
to 99.65 %. Obviously, the number of false nega-
tives (i.e. correct neologisms excluded by the 
constraint) is very large (between 50 % and 75 % 
of the excluded items). 

In this situation, the question is to decide 
whether the gain obtained by the constraints (the 
improved performance) is more important than 
the un-analysed items. In this context, we prefer 
to keep the more constrained rule. Un-analysed 
items remain unknown words, and the output of 
the analysis is almost perfect, which is an impor-
tant condition for the rest of the process (i.e. 
transfer and generation). 

6.3 Evaluation of the performance of the 
generation 

Generation can also be evaluated according to 
two points of view: the correctness of the gener-
ated items, and the improvement brought by the 
solved words to the quality of the translated sen-
tence. 

To evaluate the first aspect, many procedures 
can be put in place. The correctness of con-
structed words could be evaluated by human 
judges, but this kind of approach would raise 
many questions and biases: people that are not 
expert of morphology would judge the correct-
ness according to their degree of acceptability 
which varies between judges and is particularly 
sensitive when neologism is concerned. Ques-
tions of homogeneity in terms of knowledge of 
the domain and of the language are also raised. 

Because of these difficulties, we prefer to cen-
tre the evaluation on the existence of the gener-
ated neologisms in a corpus. For neologisms, the 
most adequate corpus is the Internet, even if the 
use of such an uncontrolled resource requires 
some precautions (see (Fradin, Dal et al. 2007) 
for a complete debate on the use of web re-
sources in morphology). 

Concretely, we use the robot Golf (Thomas 
2008) that sends each generated neologism auto-
matically as a request on a search engine (here 
Google©) and reports the number of occurrences 
as captured by Google. This robot can be param-

135



eterized, for instance by selecting the appropriate 
language. 

Because of the uncontrolled aspect of the re-
source, we distinguish three groups of reported 
frequencies: 0 occurrence, less than 5 occur-
rences and more than 5. The threshold of 5 helps 
to distinguish confirmed existence of neologism 
(> 5) from unstable appearances (< 5), that are 
closed to hapax phenomena. 

The table below summarizes some results for 
some prefixed neologisms. 

 
Prefix tested forms 0 occ.  < 5 occ. > 5 occ. 
ri  391 8.2 % 5.6 % 86.2 % 
anti 1120 8.6 % 19.9 % 71.5 % 
de 114 2.6 % 3.5 % 93.9 % 
super 951 28 % 30 % 42 % 
pro 166 6.6 % 29.5 % 63.9 % 
…     

Table 1 : Some evaluation results 
Globally, most of the generated prefixed ne-

ologisms have been found in corpus, and most of 
the time with more than 5 occurrences. Unfound 
items are very useful, because they help to point 
out difficulties or miss-formalised processes. 
Most of the unfound neologisms were ill-
analysed items in Italian. Others were due to 
misuses of hyphens in the generation. Indeed, in 
the program, we originally implemented the use 
of the hyphen in French following the estab-
lished norm (i.e. a hyphen is required when the 
prefix ends with a vowel and the base starts with 
a vowel). But following this “norm”, some forms 
were not found in corpus (for example antibra-
connier (Eng: antipoacher) reports 0 occur-
rence). When re-generated with a hyphen, it re-
ports 63 occurrences. This last point shows that 
in neology, usage does not stick always to the 
norm. 

The other problem raised by unknown words 
is that they decrease the quality of the translation 
of the entire sentence. To evaluate the impact of 
the translated unknown words on the translated 
sentence, we built up a test-suite of sentences, 
each of them containing one prefixed neologism 
(in bold in table 2). We then submitted the sen-
tences to a commercial MT system (Systran©) 
and recorded the translation and counted the 
number of mistakes (FR1 in table 2 below). On a 
second step, we “feed” the lexicon of the transla-
tion system with the neologisms and their trans-
lation (generated by our prototype) and resubmit 
the same sentences to the system (FR2 in table 
2). 

For the 60 sentences of the test-suit (21 with 
an unknown verb, 19 with an unknown adjective 
and 20 with a unknown noun), we then counted 
the number of errors before and after the intro-
duction of the neologisms in the lexicon, as 
shown below (errors are underlined). 
IT Le defiscalizzazioni logiche di 17 Euro 

sono previste 
 

FR1 Le defiscalizzazioni logiques de 17 Euro 
sont prévus 

2 

FR2 Les défiscalisations logiques de 17 Euro 
sont prévues 

0 

Table 2: Example of a tested sentence 
For a global view of the evaluation, we classi-

fied in the table below the number of sentences 
according to the number of errors “removed” 
thanks to the resolution of the unknown word. 

 
 0 -1 -2 -3 

Nouns  10 8 2 
Adjectives  18 1  
Verbs 2 14 3 2 

Table 3: Reduction of the number of errors/sentence 
Most of the improvements concern only a re-

duction of 1, i.e. only the unknown word has 
been solved. But it should be noticed that im-
provement is more impressive when the un-
known words are nouns or verbs, probably be-
cause these categories influence much more 
items in the sentence in terms of agreement. 

In two cases (involving verbs), errors are cor-
rected because of the translation of the unknown 
words, but at the same time, two other errors are 
caused by it. This problem comes from the fact 
that adding new words in the lexicon of the sys-
tem requires sometimes more information (such 
as valency) to provide a proper syntaxctic gen-
eration of the sentence. 

6.4 Evaluation of feasibility and portability 

The relatively good results obtained by the proto-
type are very encouraging. They mainly show 
that if the analysis step is performed correctly, 
the rest of the process can be done with not much 
further work. But at the end of such a feasibility 
study, it is useful to look objectively for the con-
ditions that make such results possible. 

The good quality of the result can be ex-
plained by the important preliminary work done 
(i) in the extension/specialisation of the lexicon, 
and (ii) in the setting up of the LFRs. The acqui-
sition of the contrastive knowledge in a MT con-
text is indeed the most essential issue in this kind 
of approach. The methodology we proposed here 
for setting these LFR proves to be useful for the 
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linguist to acquire this specific type of knowl-
edge. 

Lexical morphology is often considered as not 
regular enough to be exploited in NLP. The 
evaluation performed in this study shows that it 
is not the case, especially in neologism. But in 
some cases, it is no use to ask for the impossible, 
and simply give up implementing the most inef-
ficient rules. 

We also show that the efficient analysis step is 
probably the main condition to make the whole 
system work. This step should be implemented 
with as much constraints as possible, to provide 
an output without errors. Such implementation 
requires proper evaluation of the impact of every 
constraint. 

It should also be stated that such implementa-
tion (and especially knowledge acquisition) is 
time-consuming, and one can legitimately ask if 
machine-learning methods would do the job. The 
number of LFRs being relatively restrained in 
producing neologisms, we can say that the effort 
of manual formalisation is worthwhile for the 
benefits that should be valuable on the long term. 
Another aspect of the feasibility is closely related 
to questions of “interoperability”, because such 
implementation should be done within existing 
MT programs, and not independently as it was 
for this feasibility study. 

Other questions of portability should also be 
considered. As we stated, we chose two morpho-
logically related languages on purpose: they pre-
sent less divergences to deal with and allow con-
centrating on the method. However, the proposed 
method (especially that contrastive knowledge 
acquisition) can clearly be ported to another pair 
of languages (at least inflexional languages). It 
should also be noticed that the same approach 
can be applied to other types of construction. We 
mainly think here of suffixation, but one can 
imagine to use LFRs with other elements of for-
mation (like combining forms, that tend to be 
very “international”, and consequently the mate-
rial for many neologisms). Moreover, the way 
the rules are formalised and the algorithm de-
signed allow easy reversibility and modification. 

7 Conclusion 

This feasibility study presents the benefit of im-
plementing lexical morphology principles in a 
MT system. It presents all the issues raised by 
formalization and implementation, and shows in 
a quantitative manner how those principles are 

useful to partly solve unknown words in machine 
translation. 

From a broader perspective, we show the 
benefits of such implementation in a MT system, 
but also the method that should be used to for-
malise this special kind of information. We also 
emphasize the need for in-dept work of knowl-
edge acquisition before actually building up the 
system, especially because contrastive morpho-
logical data are not as obvious as other linguistic 
dimensions. 

Moreover, the evaluation step clearly states 
that the analysis module is the most important 
issue in dealing with lexical morphology in mul-
tilingual context. 

The multilingual approach of morphology also 
paves the way for other researches, either in rep-
resentation of word-formation or in exploitation 
of multilingual dimension in NLP systems. 
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Abstract

Sentence fluency is an important compo-
nent of overall text readability but few
studies in natural language processing
have sought to understand the factors that
define it. We report the results of an ini-
tial study into the predictive power of sur-
face syntactic statistics for the task; we use
fluency assessments done for the purpose
of evaluating machine translation. We
find that these features are weakly but sig-
nificantly correlated with fluency. Ma-
chine and human translations can be dis-
tinguished with accuracy over 80%. The
performance of pairwise comparison of
fluency is also very high—over 90% for a
multi-layer perceptron classifier. We also
test the hypothesis that the learned models
capture general fluency properties applica-
ble to human-written text. The results do
not support this hypothesis: prediction ac-
curacy on the new data is only 57%. This
finding suggests that developing a dedi-
cated, task-independent corpus of fluency
judgments will be beneficial for further in-
vestigations of the problem.

1 Introduction

Numerous natural language applications involve
the task of producing fluent text. This is a core
problem for surface realization in natural language
generation (Langkilde and Knight, 1998; Banga-
lore and Rambow, 2000), as well as an impor-
tant step in machine translation. Considerations
of sentence fluency are also key in sentence sim-
plification (Siddharthan, 2003), sentence compres-
sion (Jing, 2000; Knight and Marcu, 2002; Clarke

and Lapata, 2006; McDonald, 2006; Turner and
Charniak, 2005; Galley and McKeown, 2007), text
re-generation for summarization (Daumé III and
Marcu, 2004; Barzilay and McKeown, 2005; Wan
et al., 2005) and headline generation (Banko et al.,
2000; Zajic et al., 2007; Soricut and Marcu, 2007).

Despite its importance for these popular appli-
cations, the factors contributing to sentence level
fluency have not been researched indepth. Much
more attention has been devoted to discourse-level
constraints on adjacent sentences indicative of co-
herence and good text flow (Lapata, 2003; Barzi-
lay and Lapata, 2008; Karamanis et al., to appear).

In many applications fluency is assessed in
combination with other qualities. For example, in
machine translation evaluation, approaches such
as BLEU (Papineni et al., 2002) use n-gram over-
lap comparisons with a model to judge overall
“goodness”, with higher n-grams meant to capture
fluency considerations. More sophisticated ways
to compare a system production and a model in-
volve the use of syntax, but even in these cases flu-
ency is only indirectly assessed and the main ad-
vantage of the use of syntax is better estimation of
the semantic overlap between a model and an out-
put. Similarly, the metrics proposed for text gener-
ation by (Bangalore et al., 2000) (simple accuracy,
generation accuracy) are based on string-edit dis-
tance from an ideal output.

In contrast, the work of (Wan et al., 2005)
and (Mutton et al., 2007) directly sets as a goal
the assessment of sentence-level fluency, regard-
less of content. In (Wan et al., 2005) the main
premise is that syntactic information from a parser
can more robustly capture fluency than language
models, giving more direct indications of the de-
gree of ungrammaticality. The idea is extended in
(Mutton et al., 2007), where four parsers are used
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and artificially generated sentences with varying
level of fluency are evaluated with impressive suc-
cess. The fluency models hold promise for ac-
tual improvements in machine translation output
quality (Zwarts and Dras, 2008). In that work,
only simple parser features are used for the pre-
diction of fluency, but no actual syntactic prop-
erties of the sentences. But certainly, problems
with sentence fluency are expected to be mani-
fested in syntax. We would expect for example
that syntactic tree features that capture common
parse configurations and that are used in discrim-
inative parsing (Collins and Koo, 2005; Charniak
and Johnson, 2005; Huang, 2008) should be use-
ful for predicting sentence fluency as well. In-
deed, early work has demonstrated that syntac-
tic features, and branching properties in particular,
are helpful features for automatically distinguish-
ing human translations from machine translations
(Corston-Oliver et al., 2001). The exploration of
branching properties of human and machine trans-
lations was motivated by the observations during
failure analysis that MT system output tends to
favor right-branching structures over noun com-
pounding. Branching preference mismatch man-
ifest themselves in the English output when trans-
lating from languages whose branching properties
are radically different from English. Accuracy
close to 80% was achieved for distinguishing hu-
man translations from machine translations.

In our work we continue the investigation of
sentence level fluency based on features that cap-
ture surface statistics of the syntactic structure in
a sentence. We revisit the task of distinguishing
machine translations from human translations, but
also further our understanding of fluency by pro-
viding comprehensive analysis of the association
between fluency assessments of translations and
surface syntactic features. We also demonstrate
that based on the same class of features, it is possi-
ble to distinguish fluent machine translations from
disfluent machine translations. Finally, we test the
models on human written text in order to verify
if the classifiers trained on data coming from ma-
chine translation evaluations can be used for gen-
eral predictions of fluency and readability.

For our experiments we use the evaluations
of Chinese to English translations distributed by
LDC (catalog number LDC2003T17), for which
both machine and human translations are avail-
able. Machine translations have been assessed

by evaluators for fluency on a five point scale (5:
flawless English; 4: good English; 3: non-native
English; 2: disfluent English; 1: incomprehen-
sible). Assessments by different annotators were
averaged to assign overall fluency assessment for
each machine-translated sentence. For each seg-
ment (sentence), there are four human and three
machine translations.

In this setting we address four tasks with in-
creasing difficulty:

• Distinguish human and machine translations.

• Distinguish fluent machine translations from
poor machine translations.

• Distinguish the better (in terms of fluency)
translation among two translations of the
same input segment.

• Use the models trained on data from MT
evaluations to predict potential fluency prob-
lems of human-written texts (from the Wall
Street Journal).

Even for the last most challenging task results
are promising, with prediction accuracy almost
10% better than a random baseline. For the other
tasks accuracies are high, exceeding 80%.

It is important to note that the purpose of our
study is not evaluation of machine translation per
se. Our goal is more general and the interest is in
finding predictors of sentence fluency. No general
corpora exist with fluency assessments, so it seems
advantageous to use the assessments done in the
context of machine translation for preliminary in-
vestigations of fluency. Nevertheless, our findings
are also potentially beneficial for sentence-level
evaluation of machine translation.

2 Features

Perceived sentence fluency is influenced by many
factors. The way the sentence fits in the con-
text of surrounding sentences is one obvious factor
(Barzilay and Lapata, 2008). Another well-known
factor is vocabulary use: the presence of uncom-
mon difficult words are known to pose problems
to readers and to render text less readable (Collins-
Thompson and Callan, 2004; Schwarm and Osten-
dorf, 2005). But these discourse- and vocabulary-
level features measure properties at granularities
different from the sentence level.

Syntactic sentence level features have not been
investigated as a stand-alone class, as has been
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done for the other types of features. This is why
we constrain our study to syntactic features alone,
and do not discuss discourse and language model
features that have been extensively studied in prior
work on coherence and readability.

In our work, instead of looking at the syntac-
tic structures present in the sentences, e.g. the
syntactic rules used, we use surface statistics of
phrase length and types of modification. The sen-
tences were parsed with Charniak’s parser (Char-
niak, 2000) in order to calculate these features.

Sentence length is the number of words in a sen-
tence. Evaluation metrics such as BLEU (Papineni
et al., 2002) have a built-in preference for shorter
translations. In general one would expect that
shorter sentences are easier to read and thus are
perceived as more fluent. We added this feature
in order to test directly the hypothesis for brevity
preference.

Parse tree depth is considered to be a measure
of sentence complexity. Generally, longer sen-
tences are syntactically more complex but when
sentences are approximately the same length the
larger parse tree depth can be indicative of in-
creased complexity that can slow processing and
lead to lower perceived fluency of the sentence.

Number of fragment tags in the sentence parse
Out of the 2634 total sentences, only 165 con-
tained a fragment tag in their parse, indicating
the presence of ungrammaticality in the sentence.
Fragments occur in headlines (e.g. “Cheney will-
ing to hold bilateral talks if Arafat observes U.S.
cease-fire arrangement”) but in machine transla-
tion the presence of fragments can signal a more
serious problem.

Phrase type proportion was computed for
prepositional phrases (PP), noun phrases (NP)
and verb phrases (VP). The length in number of
words of each phrase type was counted, then di-
vided by the sentence length. Embedded phrases
were also included in the calculation: for ex-
ample a noun phrase (NP1 ... (NP2)) would
contribute length(NP1) + length(NP2) to the
phrase length count.

Average phrase length is the number of words
comprising a given type of phrase, divided by the
number of phrases of this type. It was computed
for PP, NP, VP, ADJP, ADVP. Two versions of
the features were computed—one with embedded
phrases included in the calculation and one just for
the largest phrases of a given type. Normalized av-

erage phrase length is computed for PP, NP and
VP and is equal to the average phrase length of
given type divided by the sentence length. These
were computed only for the largest phrases.

Phrase type rate was also computed for PPs,
VPs and NPs and is equal to the number of phrases
of the given type that appeared in the sentence, di-
vided by the sentence length. For example, the
sentence “The boy caught a huge fish this morn-
ing” will have NP phrase number equal to 3/8 and
VP phrase number equal to 1/8.

Phrase length The number of words in a PP,
NP, VP, without any normalization; it is computed
only for the largest phrases. Normalized phrase
length is the average phrase length (for VPs, NPs,
PPs) divided by the sentence length. This was
computed both for longest phrase (where embed-
ded phrases of the same type were counted only
once) and for each phrase regardless of embed-
ding.

Length of NPs/PPs contained in a VP The aver-
age number of words that constitute an NP or PP
within a verb phrase, divided by the length of the
verb phrase. Similarly, the length of PP in NP was
computed.

Head noun modifiers Noun phrases can be very
complex, and the head noun can be modified in va-
riety of ways—pre-modifiers, prepositional phrase
modifiers, apposition. The length in words of
these modifiers was calculated. Each feature also
had a variant in which the modifier length was di-
vided by the sentence length. Finally, two more
features on total modification were computed: one
was the sum of all modifier lengths, the other the
sum of normalized modifier length.

3 Feature analysis

In this section, we analyze the association of the
features that we described above and fluency. Note
that the purpose of the analysis is not feature
selection—all features will be used in the later ex-
periments. Rather, the analysis is performed in or-
der to better understand which factors are predic-
tive of good fluency.

The distribution of fluency scores in the dataset
is rather skewed, with the majority of the sen-
tences rated as being of average fluency 3 as can
be seen in Table 1.

Pearson’s correlation between the fluency rat-
ings and features are shown in Table 2. First of all,
fluency and adequacy as given by MT evaluators
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Fluency score The number of sentences
1 ≤ fluency < 2 7
1 ≤ fluency < 2 295
2 ≤ fluency < 3 1789
3 ≤ fluency < 4 521
4 ≤ fluency < 5 22

Table 1: Distribution of fluency scores.

are highly correlated (0.7). This is surprisingly
high, given that separate fluency and adequacy as-
sessments were elicited with the idea that these
are qualities of the translations that are indepen-
dent of each other. Fluency was judged directly by
the assessors, while adequacy was meant to assess
the content of the sentence compared to a human
gold-standard. Yet, the assessments of the two
aspects were often the same—readability/fluency
of the sentence is important for understanding the
sentence. Only after the assessor has understood
the sentence can (s)he judge how it compares to
the human model. One can conclude then that a
model of fluency/readability that will allow sys-
tems to produce fluent text is key for developing a
successful machine translation system.

The next feature most strongly associated with
fluency is sentence length. Shorter sentences are
easier and perceived as more fluent than longer
ones, which is not surprising. Note though that the
correlation is actually rather weak. It is only one
of various fluency factors and has to be accommo-
dated alongside the possibly conflicting require-
ments shown by the other features. Still, length
considerations reappear at sub-sentential (phrasal)
levels as well.

Noun phrase length for example has almost the
same correlation with fluency as sentence length
does. The longer the noun phrases, the less fluent
the sentence is. Long noun phrases take longer to
interpret and reduce sentence fluency/readability.

Consider the following example:

• [The dog] jumped over the fence and fetched the ball.

• [The big dog in the corner] fetched the ball.

The long noun phrase is more difficult to read,
especially in subject position. Similarly the length
of the verb phrases signal potential fluency prob-
lems:

• Most of the US allies in Europe publicly [object to in-
vading Iraq]V P .

• But this [is dealing against some recent remarks of
Japanese financial minister, Masajuro Shiokawa]V P .

VP distance (the average number of words sep-
arating two verb phrases) is also negatively corre-
lated with sentence fluency. In machine transla-
tions there is the obvious problem that they might
not include a verb for long stretches of text. But
even in human written text, the presence of more
verbs can make a difference in fluency (Bailin and
Grafstein, 2001). Consider the following two sen-
tences:

• In his state of the Union address, Putin also talked
about the national development plan for this fiscal year
and the domestic and foreign policies.

• Inside the courtyard of the television station, a recep-
tion team of 25 people was formed to attend to those
who came to make donations in person.

The next strongest correlation is with unnormal-
ized verb phrase length. In fact in terms of correla-
tions, in turned out that it was best not to normal-
ize the phrase length features at all. The normal-
ized versions were also correlated with fluency,
but the association was lower than for the direct
count without normalization.

Parse tree depth is the final feature correlated
with fluency with correlation above 0.1.

4 Experiments with machine translation
data

4.1 Distinguishing human from machine
translations

In this section we use all the features discussed in
Section 2 for several classification tasks. Note that
while we discussed the high correlation between
fluency and adequacy, we do not use adequacy in
the experiments that we report from here on.

For all experiments we used four of the classi-
fiers in Weka—decision tree (J48), logistic regres-
sion, support vector machines (SMO), and multi-
layer perceptron. All results are for 10-fold cross
validation.

We extracted the 300 sentences with highest flu-
ency scores, 300 sentences with lowest fluency
scores among machine translations and 300 ran-
domly chosen human translations. We then tried
the classification task of distinguishing human and
machine translations with different fluency quality
(highest fluency scores vs. lowest fluency score).
We expect that low fluency MT will be more easily
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adequacy sentence length unnormalized NP length VP distance
0.701(0.00) -0.132(0.00) -0.124(0.00) -0.116(0.00)

unnormalized VP length Max Tree depth phrase length avr. NP length (embedded)
-0.109(0.00) -0.106(0.00) -0.105(0.00) -0.097(0.00)

avr. VP length (embedded) SBAR length avr. largest NP length Unnormalized PP
-0.094(0.00) -0.086(0.00) -0.084(0.00) -0.082(0.00)

avr PP length (embedded) SBAR count PP length in VP Normalized PP1
-0.070(0.00) -0.069(0.001) -0.066(0.001) 0.065(0.001)

NP length in VP PP length normalized VP length PP length in NP
-0.058(0.003) -0.054(0.006) 0.054(0.005) 0.053(0.006)

Fragment avr. ADJP length (embedded) avr. largest VP length
-0.049(0.011) -0.046(0.019) -0.038(0.052)

Table 2: Pearson’s correlation coefficient between fluency and syntactic phrasing features. P-values are
given in parenthesis.

worst 300 MT best 300 MT total MT (5920)
SMO 86.00% 78.33% 82.68%

Logistic reg. 77.16% 79.33% 82.68%
MLP 78.00% 82% 86.99%

Decision Tree(J48) 71.67 % 81.33% 86.11%

Table 3: Accuracy for the task of distinguishing machine and human translations.

distinguished from human translation in compari-
son with machine translations rated as having high
fluency.

Results are shown in Table 3. Overall the
best classifier is the multi-layer perceptron. On
the task using all available data of machine and
human translations, the classification accuracy is
86.99%. We expected that distinguishing the ma-
chine translations from the human ones will be
harder when the best translations are used, com-
pared to the worse translations, but this expecta-
tion is fulfilled only for the support vector machine
classifier.

The results in Table 3 give convincing evi-
dence that the surface structural statistics can dis-
tinguish very well between fluent and non-fluent
sentences when the examples come from human
and machine-produced text respectively. If this is
the case, will it be possible to distinguish between
good and bad machine translations as well? In or-
der to answer this question, we ran one more bi-
nary classification task. The two classes were the
300 machine translations with highest and lowest
fluency respectively. The results are not as good as
those for distinguishing machine and human trans-
lation, but still significantly outperform a random
baseline. All classifiers performed similarly on the
task, and achieved accuracy close to 61%.

4.2 Pairwise fluency comparisons

We also considered the possibility of pairwise
comparisons for fluency: given two sentences,
can we distinguish which is the one scored more
highly for fluency. For every two sentences, the
feature for the pair is the difference of features of
the individual sentences.

There are two ways this task can be set up. First,
we can use all assessed translations and make pair-
ings for every two sentences with different fluency
assessment. In this setting, the question being ad-
dressed is Can sentences with differing fluency be
distinguished?, without regard to the sources of
the sentence. The harder question is Can a more
fluent translation be distinguished from a less flu-
ent translation of the same sentence?

The results from these experiments can be seen
in Table 4. When any two sentences with differ-
ent fluency assessments are paired, the prediction
accuracy is very high: 91.34% for the multi-layer
perceptron classifier. In fact all classifiers have ac-
curacy higher than 80% for this task. The surface
statistics of syntactic form are powerful enough to
distinguishing sentences of varying fluency.

The task of pairwise comparison for translations
of the same input is more difficult: doing well on
this task would be equivalent to having a reliable
measure for ranking different possible translation
variants.

In fact, the problem is much more difficult as
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Task J48 Logistic Regression SMO MLP
Any pair 89.73% 82.35% 82.38% 91.34%

Same Sentence 67.11% 70.91% 71.23% 69.18%

Table 4: Accuracy for pairwise fluency comparison. “Same sentence” are comparisons constrained
between different translations of the same sentences, “any pair” contains comparisons of sentences with
different fluency over the entire data set.

can be seen in the second row of Table 4. Lo-
gistic regression, support vector machines and
multi-layer perceptron perform similarly, with
support vector machine giving the best accuracy
of 71.23%. This number is impressively high, and
significantly higher than baseline performance.
The results are about 20% lower than for predic-
tion of a more fluent sentence when the task is not
constrained to translation of the same sentence.

4.3 Feature analysis: differences among tasks

In the previous sections we presented three varia-
tions involving fluency predictions based on syn-
tactic phrasing features: distinguishing human
from machine translations, distinguishing good
machine translations from bad machine transla-
tions, and pairwise ranking of sentences with dif-
ferent fluency. The results differ considerably and
it is interesting to know whether the same kind
of features are useful in making the three distinc-
tions.

In Table 5 we show the five features with largest
weight in the support vector machine model for
each task. In many cases, certain features appear
to be important only for particular tasks. For ex-
ample the number of prepositional phrases is an
important feature only for ranking different ver-
sions of the same sentence but is not important for
other distinctions. The number of appositions is
helpful in distinguishing human translations from
machine translations, but is not that useful in the
other tasks. So the predictive power of the features
is very directly related to the variant of fluency dis-
tinctions one is interested in making.

5 Applications to human written text

5.1 Identifying hard-to-read sentences in
Wall Street Journal texts

The goal we set out in the beginning of this pa-
per was to derive a predictive model of sentence
fluency from data coming from MT evaluations.
In the previous sections, we demonstrated that

indeed structural features can enable us to per-
form this task very accurately in the context of
machine translation. But will the models conve-
niently trained on data from MT evaluation be at
all capable to identify sentences in human-written
text that are not fluent and are difficult to under-
stand?

To answer this question, we performed an ad-
ditional experiment on 30 Wall Street Journal ar-
ticles from the Penn Treebank that were previ-
ously used in experiments for assessing overall
text quality (Pitler and Nenkova, 2008). The arti-
cles were chosen at random and comprised a to-
tal of 290 sentences. One human assessor was
asked to read each sentence and mark the ones that
seemed disfluent because they were hard to com-
prehend. These were sentences that needed to be
read more than once in order to fully understand
the information conveyed in them. There were 52
such sentences. The assessments served as a gold-
standard against which the predictions of the flu-
ency models were compared.

Two models trained on machine translation data
were used to predict the status of each sentence in
the WSJ articles. One of the models was that for
distinguishing human translations from machine
translations (human vs machine MT), the other
was the model for distinguishing the 300 best from
the 300 worst machine translations (good vs bad
MT). The classifiers used were decision trees for
human vs machine distinction and support vector
machines for good vs bad MT. For the first model
sentences predicted to belong to the “human trans-
lation” class are considered fluent; for the second
model fluent sentences are the ones predicted to be
in the “best MT” class.

The results are shown in Table 6. The two
models vastly differ in performance. The model
for distinguishing machine translations from hu-
man translations is the better one, with accuracy
of 57%. For both, prediction accuracy is much
lower than when tested on data from MT evalu-
ations. These findings indicate that building a new
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MT vs HT good MT vs Bad MT Ranking Same sentence Ranking
unnormalized PP SBAR count avr. NP lengt normalized NP length
PP length in VP Unnormalized VP length normalized PP length PP count
avr. NP length post attribute length NP count normalized NP length
# apposition VP count normalized NP length max tree depth
SBAR length sentence length normalized VP length avr. phrase length

Table 5: The five features with highest weights in the support vector machine model for the different
tasks.

Model Acc P R
human vs machine trans. 57% 0.79 0.58

good MT vs bad MT 44% 0.57 0.44

Table 6: Accuracy, precision and recall (for fluent
class) for each model when test on WSJ sentences.
The gold-standard is assessment by a single reader
of the text.

corpus for the finer fluency distinctions present in
human-written text is likely to be more beneficial
than trying to leverage data from existing MT eval-
uations.

Below, we show several example sentences on
which the assessor and the model for distinguish-
ing human and machine translations (dis)agreed.

Model and assessor agree that sentence is prob-
lematic:

(1.1) The Soviet legislature approved a 1990 budget yes-
terday that halves its huge deficit with cuts in defense spend-
ing and capital outlays while striving to improve supplies to
frustrated consumers.

(1.2) Officials proposed a cut in the defense budget this
year to 70.9 billion rubles (US$114.3 billion) from 77.3 bil-
lion rubles (US$125 billion) as well as large cuts in outlays
for new factories and equipment.

(1.3) Rather, the two closely linked exchanges have been
drifting apart for some years, with a nearly five-year-old
moratorium on new dual listings, separate and different list-
ing requirements, differing trading and settlement guidelines
and diverging national-policy aims.

The model predicts the sentence is good, but the
assessor finds it problematic:

(2.1) Moody’s Investors Service Inc. said it lowered the
ratings of some $145 million of Pinnacle debt because of
”accelerating deficiency in liquidity,” which it said was ev-
idenced by Pinnacle’s elimination of dividend payments.

(2.2) Sales were higher in all of the company’s business
categories, with the biggest growth coming in sales of food-
stuffs such as margarine, coffee and frozen food, which rose
6.3%.

(2.3) Ajinomoto predicted sales in the current fiscal year

ending next March 31 of 480 billion yen, compared with

460.05 billion yen in fiscal 1989.

The model predicts the sentences are bad, but
the assessor considered them fluent:

(3.1) The sense grows that modern public bureaucracies
simply don’t perform their assigned functions well.

(3.2) Amstrad PLC, a British maker of computer hardware
and communications equipment, posted a 52% plunge in pre-
tax profit for the latest year.

(3.3) At current allocations, that means EPA will be spend-

ing $300 billion on itself.

5.2 Correlation with overall text quality

In our final experiment we focus on the relation-
ship between sentence fluency and overall text
quality. We would expect that the presence of dis-
fluent sentences in text will make it appear less
well written. Five annotators had previously as-
sess the overall text quality of each article on a
scale from 1 to 5 (Pitler and Nenkova, 2008). The
average of the assessments was taken as a single
number describing the article. The correlation be-
tween this number and the percentage of fluent
sentences in the article according to the different
models is shown in Table 7.

The correlation between the percentage of flu-
ent sentences in the article as given by the human
assessor and the overall text quality is rather low,
0.127. The positive correlation would suggest that
the more hard to read sentence appear in a text,
the higher the text would be rated overall, which
is surprising. The predictions from the model for
distinguishing good and bad machine translations
very close to zero, but negative which corresponds
better to the intuitive relationship between the two.

Note that none of the correlations are actually
significant for the small dataset of 30 points.

6 Conclusion

We presented a study of sentence fluency based on
data from machine translation evaluations. These
data allow for two types of comparisons: human
(fluent) text and (not so good) machine-generated
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Fluency given by Correlation
human 0.127

human vs machine trans. model -0.055
good MT vs bad MT model 0.076

Table 7: Correlations between text quality assess-
ment of the articles and the percentage of fluent
sentences according to different models.

text, and levels of fluency in the automatically pro-
duced text. The distinctions were possible even
when based solely on features describing syntac-
tic phrasing in the sentences.

Correlation analysis reveals that the structural
features are significant but weakly correlated with
fluency. Interestingly, the features correlated with
fluency levels in machine-produced text are not the
same as those that distinguish between human and
machine translations. Such results raise the need
for caution when using assessments for machine
produced text to build a general model of fluency.
The captured phenomena in this case might be
different than these from comparing human texts
with differing fluency. For future research it will
be beneficial to build a dedicated corpus in which
human-produced sentences are assessed for flu-
ency.

Our experiments show that basic fluency dis-
tinctions can be made with high accuracy. Ma-
chine translations can be distinguished from hu-
man translations with accuracy of 87%; machine
translations with low fluency can be distinguished
from machine translations with high fluency with
accuracy of 61%. In pairwise comparison of sen-
tences with different fluency, accuracy of predict-
ing which of the two is better is 90%. Results are
not as high but still promising for comparisons in
fluency of translations of the same text. The pre-
diction becomes better when the texts being com-
pared exhibit larger difference in fluency quality.

Admittedly, our pilot experiments with human
assessment of text quality and sentence level flu-
ency are small, so no big generalizations can be
made. Still, they allow some useful observations
that can guide future work. They do show that for
further research in automatic recognition of flu-
ency, new annotated corpora developed specially
for the task will be necessary. They also give
some evidence that sentence-level fluency is only
weakly correlated with overall text quality. Dis-
course apects and language model features that

have been extensively studied in prior work are in-
deed much more indicative of overall text quality
(Pitler and Nenkova, 2008). We leave direct com-
parison for future work.
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Abstract

We present an algorithm for pronoun-
anaphora (in English) that uses Expecta-
tion Maximization (EM) to learn virtually
all of its parameters in an unsupervised
fashion. While EM frequently fails to find
good models for the tasks to which it is
set, in this case it works quite well. We
have compared it to several systems avail-
able on the web (all we have found so far).
Our program significantly outperforms all
of them. The algorithm is fast and robust,
and has been made publically available for
downloading.

1 Introduction

We present a new system for resolving (per-
sonal) pronoun anaphora1. We believe it is of
interest for two reasons. First, virtually all of
its parameters are learned via the expectation-
maximization algorithm (EM). While EM has
worked quite well for a few tasks, notably ma-
chine translations (starting with the IBM models
1-5 (Brown et al., 1993), it has not had success in
most others, such as part-of-speech tagging (Meri-
aldo, 1991), named-entity recognition (Collins
and Singer, 1999) and context-free-grammar in-
duction (numerous attempts, too many to men-
tion). Thus understanding the abilities and limi-
tations of EM is very much a topic of interest. We
present this work as a positive data-point in this
ongoing discussion.

Secondly, and perhaps more importantly, is the
system’s performance. Remarkably, there are very
few systems for actually doing pronoun anaphora
available on the web. By emailing the corpora-
list the other members of the list pointed us to

1The system, the Ge corpus, and the
model described here can be downloaded from
http://bllip.cs.brown.edu/download/emPronoun.tar.gz.

four. We present a head to head evaluation and find
that our performance is significantly better than
the competition.

2 Previous Work

The literature on pronominal anaphora is quite
large, and we cannot hope to do justice to it here.
Rather we limit ourselves to particular papers and
systems that have had the greatest impact on, and
similarity to, ours.

Probably the closest approach to our own is
Cherry and Bergsma (2005), which also presents
an EM approach to pronoun resolution, and ob-
tains quite successful results. Our work improves
upon theirs in several dimensions. Firstly, they
do not distinguish antecedents of non-reflexive
pronouns based on syntax (for instance, subjects
and objects). Both previous work (cf. Tetreault
(2001) discussed below) and our present results
find these distinctions extremely helpful. Sec-
ondly, their system relies on a separate prepro-
cessing stage to classify non-anaphoric pronouns,
and mark the gender of certain NPs (Mr., Mrs.
and some first names). This allows the incorpo-
ration of external data and learning systems, but
conversely, it requires these decisions to be made
sequentially. Our system classifies non-anaphoric
pronouns jointly, and learns gender without an
external database. Next, they only handle third-
person pronouns, while we handle first and sec-
ond as well. Finally, as a demonstration of EM’s
capabilities, its evidence is equivocal. Their EM
requires careful initialization — sufficiently care-
ful that the EM version only performs 0.4% better
than the initialized program alone. (We can say
nothing about relative performance of their system
vs. ours since we have been able to access neither
their data nor code.)

A quite different unsupervised approach is
Kehler et al. (2004a), which uses self-training of a
discriminative system, initialized with some con-
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servative number and gender heuristics. The sys-
tem uses the conventional ranking approach, ap-
plying a maximum-entropy classifier to pairs of
pronoun and potential antecedent and selecting the
best antecedent. In each iteration of self-training,
the system labels the training corpus and its de-
cisions are treated as input for the next training
phase. The system improves substantially over a
Hobbs baseline. In comparison to ours, their fea-
ture set is quite similar, while their learning ap-
proach is rather different. In addition, their system
does not classify non-anaphoric pronouns,

A third paper that has significantly influenced
our work is that of (Haghighi and Klein, 2007).
This is the first paper to treat all noun phrase (NP)
anaphora using a generative model. The success
they achieve directly inspired our work. There are,
however, many differences between their approach
and ours. The most obvious is our use of EM
rather than theirs of Gibbs sampling. However, the
most important difference is the choice of training
data. In our case it is a very large corpus of parsed,
but otherwise unannotated text. Their system is
trained on the ACE corpus, and requires explicit
annotation of all “markables” — things that are or
have antecedents. For pronouns, only anaphoric
pronouns are so marked. Thus the system does
not learn to recognize non-anaphoric pronouns —
a significant problem. More generally it follows
from this that the system only works (or at least
works with the accuracy they achieve) when the
input data is so marked. These markings not only
render the non-anaphoric pronoun situation moot,
but also significantly restrict the choice of possible
antecedent. Only perhaps one in four or five NPs
are markable (Poesio and Vieira, 1998).

There are also several papers which treat
coference as an unsupervised clustering problem
(Cardie and Wagstaff, 1999; Angheluta et al.,
2004). In this literature there is no generative
model at all, and thus this work is only loosely
connected to the above models.

Another key paper is (Ge et al., 1998). The data
annotated for the Ge research is used here for test-
ing and development data. Also, there are many
overlaps between their formulation of the problem
and ours. For one thing, their model is genera-
tive, although they do not note this fact, and (with
the partial exception we are about to mention) they
obtain their probabilities from hand annotated data
rather than using EM. Lastly, they learn their gen-

der information (the probability of that a pronoun
will have a particular gender given its antecedent)
using a truncated EM procedure. Once they have
derived all of the other parameters from the train-
ing data, they go through a larger corpus of unla-
beled data collecting estimated counts of how of-
ten each word generates a pronoun of a particular
gender. They then normalize these probabilities
and the result is used in the final program. This is,
in fact, a single iteration of EM.

Tetreault (2001) is one of the few papers that
use the (Ge et al., 1998) corpus used here. They
achieve a very high 80% correct, but this is
given hand-annotated number, gender and syntac-
tic binding features to filter candidate antecedents
and also ignores non-anaphoric pronouns.

We defer discussion of the systems against
which we were able to compare to Section 7 on
evaluation.

3 Pronouns

We briefly review English pronouns and their
properties. First we only concern ourselves with
“personal” pronouns: “I”, “you”, “he”, “she”, “it”,
and their variants. We ignore, e.g., relative pro-
nouns (“who”, “which”, etc.), deictic pronouns
(“this”, “that”) and others.

Personal pronouns come in four basic types:

subject “I”, “she”, etc. Used in subject position.

object “me”, “her” etc. Used in non-subject po-
sition.

possessive “my” “her”, and

reflexive “myself”, “herself” etc. Required by
English grammar in certain constructions —
e.g., “I kicked myself.”

The system described here handles all of these
cases.

Note that the type of a pronoun is not connected
with its antecedent, but rather is completely deter-
mined by the role it plays in it’s sentence.

Personal pronouns are either anaphoric or non-
anaphoric. We say that a pronoun is anaphoric
when it is coreferent with another piece of text in
the same discourse. As is standard in the field we
distinguish between a referent and an antecedent.
The referent is the thing in the world that the pro-
noun, or, more generally, noun phrase (NP), de-
notes. Anaphora on the other hand is a relation be-
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tween pieces of text. It follows from this that non-
anaphoric pronouns come in two basic varieties —
some have a referent, but because the referent is
not mentioned in the text2 there is no anaphoric
relation to other text. Others have no referent (ex-
pletive or pleonastic pronouns, as in “It seems that
. . . ”). For the purposes of this article we do not
distinguish the two.

Personal pronouns have three properties other
than their type:

person first (“I”,”we”), second (“you”) or third
(“she”,”they”) person,

number singular (“I”,”he”) or plural (“we”,
“they”), and

gender masculine (“he”), feminine (“she”) or
neuter (“they”).

These are critical because it is these properties
that our generative model generates.

4 The Generative Model

Our generative model ignores the generation of
most of the discourse, only generating a pronoun’s
person, number,and gender features along with the
governor of the pronoun and the syntactic relation
between the pronoun and the governor. (Infor-
mally, a word’s governor is the head of the phrase
above it. So the governor of both “I” and “her” in
“I saw her” is “saw”.

We first decide if the pronoun is anaphoric
based upon a distribution p(anaphoric). (Actu-
ally this is a bit more complex, see the discus-
sion in Section 5.3.) If the pronoun is anaphoric
we then select a possible antecedent. Any NP
in the current or two previous sentences is con-
sidered. We select the antecedent based upon a
distribution p(anaphora|context). The nature of
the “context” is discussed below. Then given
the antecedent we generative the pronoun’s person
according to p(person|antecedent), the pronoun’s
gender according to p(gender|antecedent), num-
ber, p(number|antecedent) and governor/relation-
to-governor from p(governor/relation|antecedent).

To generate a non-anaphoric third person singu-
lar “it” we first guess that the non-anaphoric pro-
nouns is “it” according to p(“it”|non-anaphoric).

2Actually, as in most previous work, we only consider ref-
erents realized by NPs. For more general approaches see By-
ron (2002).

and then generate the governor/relation according
to p(governor/relation|non-anaphoric-it);

Lastly we generate any other non-anaphoric
pronouns and their governor with a fixed probabil-
ity p(other). (Strictly speaking, this is mathemati-
cally invalid, since we do not bother to normalize
over all the alternatives; a good topic for future re-
search would be exploring what happens when we
make this part of the model truly generative.)

One inelegant part of the model is the need
to scale the p(governor/rel|antecedent) probabili-
ties. We smooth them using Kneser-Ney smooth-
ing, but even then their dynamic range (a factor of
106) greatly exceeds those of the other parameters.
Thus we take their nth root. This n is the last of
the model parameters.

5 Model Parameters

5.1 Intuitions

All of our distributions start with uniform val-
ues. For example, gender distributions start with
the probability of each gender equal to one-third.
From this it follows that on the first EM iteration
all antecedents will have the same probability of
generating a pronoun. At first glance then, the EM
process might seem to be futile. In this section we
hope to give some intuitions as to why this is not
the case.

As is typically done in EM learning, we start
the process with a much simpler generative model,
use a few EM iterations to learn its parameters,
and gradually expose the data to more and more
complex models, and thus larger and larger sets of
parameters.

The first model only learns the probability of
an antecedent generating the pronoun given what
sentence it is in. We train this model through four
iterations before moving on to more complex ones.

As noted above, all antecedents initially have
the same probability, but this is not true after the
first iteration. To see how the probabilities diverge,
and diverge correctly, consider the first sentence of
a news article. Suppose it starts “President Bush
announced that he ...” In this situation there is
only one possible antecedent, so the expectation
that “he” is generated by the NP in the same sen-
tence is 1.0. Contrast this with the situation in the
third and subsequent sentences. It is only then that
we have expectation for sentences two back gener-
ating the pronoun. Furthermore, typically by this
point there will be, say, twenty NPs to share the
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probability mass, so each one will only get an in-
crease of 0.05. Thus on the first iteration only the
first two sentences have the power to move the dis-
tributions, but they do, and they make NPs in the
current sentence very slightly more likely to gener-
ate the pronoun than the sentence one back, which
in turn is more likely than the ones two back.

This slight imbalance is reflected when EM
readjusts the probability distribution at the end of
the first iteration. Thus for the second iteration ev-
eryone contributes to subsequent imbalances, be-
cause it is no longer the case the all antecedents are
equally likely. Now the closer ones have higher
probability so forth and so on.

To take another example, consider how EM
comes to assign gender to various words. By the
time we start training the gender assignment prob-
abilities the model has learned to prefer nearer
antecedents as well as ones with other desirable
properties. Now suppose we consider a sentence,
the first half of which has no pronouns. Consider
the gender of the NPs in this half. Given no fur-
ther information we would expect these genders to
distribute themselves accord to the prior probabil-
ity that any NP will be masculine, feminine, etc.
But suppose that the second half of the sentence
has a feminine pronoun. Now the genders will be
skewed with the probability of one of them being
feminine being much larger. Thus in the same way
these probabilities will be moved from equality,
and should, in general be moved correctly.

5.2 Parameters Learned by EM

Virtually all model parameters are learned by EM.
We use the parsed version of the North-American
News Corpus. This is available from the (Mc-
Closky et al., 2008). It has about 800,000 articles,
and 500,000,000 words.

The least complicated parameter is the proba-
bility of gender given word. Most words that have
a clear gender have this reflected in their probabil-
ities. Some examples are shown in Table 1. We
can see there that EM gets “Paul”, “Paula”, and
“Wal-mart” correct. “Pig” has no obvious gender
in English, and the probabilities reflect this. On
the other hand “Piggy” gets feminine gender. This
is no doubt because of “Miss Piggy” the puppet
character. “Waist” the program gets wrong. Here
the probabilities are close to gender-of-pronoun
priors. This happens for a (comparatively small)
class of pronouns that, in fact, are probably never

Word Male Female Neuter
paul 0.962 0.002 0.035
paula 0.003 0.915 0.082
pig 0.445 0.170 0.385
piggy 0.001 0.853 0.146
wal-mart 0.016 0.007 0.976
waist 0.380 0.155 0.465

Table 1: Words and their probabilities of generat-
ing masculine, feminine and neuter pronouns

antecedent p(singular|antecedent)
Singular 0.939048
Plural 0.0409721
Not NN or NNP 0.746885

Table 2: The probability of an antecedent genera-
tion a singular pronoun as a function of its number

an antecedent, but are nearby random pronouns.
Because of their non-antecedent proclivities, this
sort of mistake has little effect.

Next consider p(number|antecedent), that is the
probability that a given antecedent will generate a
singular or plural pronoun. This is shown in Table
2. Since we are dealing with parsed text, we have
the antecedent’s part-of-speech, so rather than the
antecedent we get the number from the part of
speech: “NN” and “NNP” are singular, “NNS”
and “NNPS” are plural. Lastly, we have the prob-
ability that an antecedent which is not a noun will
have a singular pronoun associated with it. Note
that the probability that a singular antecedent will
generate a singular pronoun is not one. This is
correct, although the exact number probably is too
low. For example, “IBM” may be the antecedent
of both “we” and “they”, and vice versa.

Next we turn to p(person|antecedent), predict-
ing whether the pronoun is first, second or third
person given its antecedent. We simplify this
by noting that we know the person of the an-
tecedent (everything except “I” and “you” and
their variants are third person), so we compute
p(person|person). Actually we condition on one
further piece of information, if either the pronoun
or the antecedent is being quoted. The idea is that
an “I” in quoted material may be the same person
as “John Doe” outside of quotes, if Mr. Doe is
speaking. Indeed, EM picks up on this as is il-
lustrated in Tables 3 and 4. The first gives the
situation when neither antecedent nor pronoun is
within a quotation. The high numbers along the
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Person of Pronoun
Person of Ante First Second Third
First 0.923 0.076 0.001
Second 0.114 0.885 0.001
Third 0.018 0.015 0.967

Table 3: Probability of an antecedent generating a
first,second or third person pronoun as a function
of the antecedents person

Person of Pronoun
Person of Ante First Second Third
First 0.089 0.021 0.889
Second 0.163 0.132 0.705
Third 0.025 0.011 0.964

Table 4: Same, but when the antecedent is in
quoted material but the pronoun is not

diagonal (0.923, 0.885, and 0.967) show the ex-
pected like-goes-to-like preferences. Contrast this
with Table 4 which gives the probabilities when
the antecedent is in quotes but the pronoun is not.
Here we see all antecedents being preferentially
mapped to third person (0.889, 0.705, and 0.964).

We save p(antecedent|context) till last because
it is the most complicated. Given what we know
about the context of the pronoun not all antecedent
positions are equally likely. Some important con-
ditioning events are:

• the exact position of the sentence relative to
the pronoun (0, 1, or 2 sentences back),

• the position of the head of the antecedent
within the sentence (bucketed into 6 bins).
For the current sentence position is measured
backward from the pronoun. For the two pre-
vious sentences it is measure forward from
the start of the sentence.

• syntactic positions — generally we expect
NPs in subject position to be more likely an-
tecedents than those in object position, and
those more likely than other positions (e.g.,
object of a preposition).

• position of the pronoun — for example the
subject of the previous sentence is very likely
to be the antecedent if the pronoun is very
early in the sentence, much less likely if it is
at the end.

• type of pronoun — reflexives can only be
bound within the same sentence, while sub-

Part of Speech pron proper common
0.094 0.057 0.032

Word Position bin 0 bin 2 bin 5
0.111 0.007 0.0004

Syntactic Type subj other object
0.068 0.045 0.037

Table 5: Geometric mean of the probability of
the antecedent when holding everything expect the
stated feature of the antecedent constant

ject and object pronouns may be anywhere.
Possessives may be in previous sentences but
this is not as common.

• type of antecedent. Intuitively other pro-
nouns and proper nouns are more likely to
be antecedents than common nouns and NPs
headed up by things other than nouns.

All told this comes to 2592 parameters (3 sen-
tences, 6 antecedent word positions, 3 syntactic
positions, 4 pronoun positions, 3 pronoun types,
and 4 antecedent types). It is impossible to say
if EM is setting all of these correctly. There are
too many of them and we do not have knowledge
or intuitions about most all of them. However, all
help performance on the development set, and we
can look at a few where we do have strong intu-
itions. Table 5 gives some examples. The first two
rows are devoted to the probabilities of particular
kind of antecedent (pronouns, proper nouns, and
common nouns) generating a pronoun, holding ev-
erything constant except the type of antecedent.
The numbers are the geometric mean of the prob-
abilities in each case. The probabilities are or-
dered according to, at least my, intuition with pro-
noun being the most likely (0.094), followed by
proper nouns (0.057), followed by common nouns
(0.032), a fact also noted by (Haghighi and Klein,
2007). When looking at the probabilities as a func-
tion of word position again the EM derived proba-
bilities accord with intuition, with bin 0 (the clos-
est) more likely than bin 2 more likely than bin
5. The last two lines have the only case where we
have found the EM probability not in accord with
our intuitions. We would have expected objects
of verbs to be more likely to generate a pronoun
than the catch-all “other” case. This proved not to
be the case. On the other hand, the two are much
closer in probabilities than any of the other, more
intuitive, cases.
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5.3 Parameters Not Set by EM

There are a few parameters not set by EM.
Several are connected with the well known syn-

tactic constraints on the use of reflexives. A simple
version of this is built in. Reflexives must have an
antecedent in same sentence, and generally cannot
be coreferent-referent with the subject of the sen-
tence.

There are three system parameters that we set
by hand to optimize performance on the develop-
ment set. The first is n. As noted above, the distri-
bution p(governor/relation|antecedent) has a much
greater dynamic range than the other probability
distributions and to prevent it from, in essence,
completely determining the answer, we take its
nth root. Secondly, there is a probability of gen-
erating a non-anaphoric “it”. Lastly we have a
probability of generating each of the other non-
monotonic pronouns along with (the nth root of)
their governor. These parameters are 6, 0.1, and
0.0004 respectively.

6 Definition of Correctness

We evaluate all programs according to Mitkov’s
“resolution etiquette” scoring metric (also used
in Cherry and Bergsma (2005)), which is defined
as follows: if N is the number of non-anaphoric
pronouns correctly identified, A the number of
anaphoric pronouns correctly linked to their an-
tecedent, and P the total number of pronouns, then
a pronoun-anaphora program’s percentage correct
is N+A

P .
Most papers dealing with pronoun coreference

use this simple ratio, or the variant that ignores
non-anaphoric pronouns. It has appeared under
a number of names: success (Yang et al., 2006),
accuracy (Kehler et al., 2004a; Angheluta et al.,
2004) and success rate (Tetreault, 2001). The
other occasionally-used metric is the MUC score
restricted to pronouns, but this has well-known
problems (Bagga and Baldwin, 1998).

To make the definition perfectly concrete, how-
ever, we must resolve a few special cases. One
is the case in which a pronoun x correctly says
that it is coreferent with another pronoun y. How-
ever, the program misidentifies the antecedent of
y. In this case (sometimes called error chaining
(Walker, 1989)), both x and y are to be scored as
wrong, as they both end up in the wrong corefer-
ential chain. We believe this is, in fact, the stan-
dard (Mitkov, personal communication), although

there are a few papers (Tetreault, 2001; Yang et
al., 2006) which do the opposite and many which
simply do not discuss this case.

One more issue arises in the case of a system
attempting to perform complete NP anaphora3. In
these cases the coreferential chains they create
may not correspond to any of the original chains.
In these cases, we call a pronoun correctly re-
solved if it is put in a chain including at least one
correct non-pronominal antecedent. This defini-
tion cannot be used in general, as putting all NPs
into the same set would give a perfect score. For-
tunately, the systems we compare against do not
do this – they seem more likely to over-split than
under-split. Furthermore, if they do take some
inadvertent advantage of this definition, it helps
them and puts our program at a possible disadvan-
tage, so it is a more-than-fair comparison.

7 Evaluation

To develop and test our program we use the dataset
annotated by Niyu Ge (Ge et al., 1998). This
consists of sections 0 and 1 of the Penn tree-
bank. Ge marked every personal pronoun and all
noun phrases that were coreferent with these pro-
nouns. We used section 0 as our development
set, and section 1 for testing. We reparsed the
sentences using the Charniak and Johnson parser
(Charniak and Johnson, 2005) rather than using
the gold-parses that Ge marked up. We hope
thereby to make the results closer to those a user
will experience. (Generally the gold trees perform
about 0.005 higher than the machine parsed ver-
sion.) The test set has 1119 personal pronouns
of which 246 are non-anaphoric. Our selection of
this dataset, rather than the widely used MUC-6
corpus, is motivated by this large number of pro-
nouns.

We compared our results to four currently-
available anaphora programs from the web. These
four were selected by sending a request to a com-
monly used mailing list (the “corpora-list”) ask-
ing for such programs. We received four leads:
JavaRAP, Open-NLP, BART and GuiTAR. Of
course, these systems represent the best available
work, not the state of the art. We presume that
more recent supervised systems (Kehler et al.,
2004b; Yang et al., 2004; Yang et al., 2006) per-

3Of course our system does not attempt NP coreference
resolution, nor does JavaRAP. The other three comparison
systems do.
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form better. Unfortunately, we were unable to ob-
tain a comparison unsupervised learning system at
all.

Only one of the four is explicitly aimed
at personal-pronoun anaphora — RAP (Resolu-
tion of Anaphora Procedure) (Lappin and Le-
ass, 1994). It is a non-statistical system orig-
inally implemented in Prolog. The version we
used is JavaRAP, a later reimplementation in Java
(Long Qiu and Chua, 2004). It only handles third
person pronouns.

The other three are more general in that they
handle all NP anaphora. The GuiTAR system
(Poesio and Kabadjov, 2004) is designed to work
in an “off the shelf” fashion on general text GUI-
TAR resolves pronouns using the algorithm of
(Mitkov et al., 2002), which filters candidate an-
tecedents and then ranks them using morphosyn-
tactic features. Due to a bug in version 3, GUI-
TAR does not currently handle possessive pro-
nouns.GUITAR also has an optional discourse-
new classification step, which cannot be used as
it requires a discontinued Google search API.

OpenNLP (Morton et al., 2005) uses a
maximum-entropy classifier to rank potential an-
tecedents for pronouns. However despite being
the best-performing (on pronouns) of the existing
systems, there is a remarkable lack of published
information on its innards.

BART (Versley et al., 2008) also uses a
maximum-entropy model, based on Soon et al.
(2001). The BART system also provides a more
sophisticated feature set than is available in the
basic model, including tree-kernel features and a
variety of web-based knowledge sources. Unfor-
tunately we were not able to get the basic version
working. More precisely we were able to run the
program, but the results we got were substantially
lower than any of the other models and we believe
that the program as shipped is not working prop-
erly.

Some of these systems provide their own pre-
processing tools. However, these were bypassed,
so that all systems ran on the Charniak parse trees
(with gold sentence segmentation). Systems with
named-entity detectors were allowed to run them
as a preprocess. All systems were run using the
models included in their standard distribution; typ-
ically these models are trained on annotated news
articles (like MUC-6), which should be relatively
similar to our WSJ documents.

System Restrictions Performance
GuiTAR No Possessives 0.534
JavaRap Third Person 0.529
Open-NLP None 0.593
Our System None 0.686

Table 6: Performance of Evaluated Systems on
Test Data

The performance of the remaining systems is
given in Table 6. The two programs with restric-
tions were only evaluated on the pronouns the sys-
tem was capable of handling.

These results should be approached with some
caution. In particular it is possible that the re-
sults for the systems other than ours are underes-
timated due to errors in the evaluation. Compli-
cations include the fact all of the four programs
all have different output conventions. The better
to catch such problems the authors independently
wrote two scoring programs.

Nevertheless, given the size of the difference
between the results of our system and the others,
the conclusion that ours has the best performance
is probably solid.

8 Conclusion

We have presented a generative model of pronoun-
anaphora in which virtually all of the parameters
are learned by expectation maximization. We find
it of interest first as an example of one of the few
tasks for which EM has been shown to be effec-
tive, and second as a useful program to be put in
general use. It is, to the best of our knowledge, the
best-performing system available on the web. To
down-load it, go to (to be announced).

The current system has several obvious limita-
tion. It does not handle cataphora (antecedents
occurring after the pronoun), only allows an-
tecedents to be at most two sentences back, does
not recognize that a conjoined NP can be the an-
tecedent of a plural pronoun, and has a very lim-
ited grasp of pronominal syntax. Perhaps the
largest limitation is the programs inability to rec-
ognize the speaker of a quoted segment. The result
is a very large fraction of first person pronouns are
given incorrect antecedents. Fixing these prob-
lems would no doubt push the system’s perfor-
mance up several percent.

However the most critical direction for future
research is to push the approach to handle full NP
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anaphora. Besides being of the greatest impor-
tance in its own right, it would also allow us to
add one piece of information we currently neglect
in our pronominal system — the more times a doc-
ument refers to an entity the more likely it is to do
so again.
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Abstract

In this paper, we present an efficient query
selection algorithm for the retrieval of web
text data to augment a statistical language
model (LM). The number of retrieved rel-
evant documents is optimized with respect
to the number of queries submitted.

The querying scheme is applied in the do-
main of SMS text messages. Continuous
speech recognition experiments are con-
ducted on three languages: English, Span-
ish, and French. The web data is utilized
for augmenting in-domain LMs in general
and for adapting the LMs to a user-specific
vocabulary. Word error rate reductions
of up to 6.6 % (in LM augmentation) and
26.0 % (in LM adaptation) are obtained in
setups, where the size of the web mixture
LM is limited to the size of the baseline
in-domain LM.

1 Introduction

An automatic speech recognition (ASR) system
consists of acoustic models of speech sounds and
of a statistical language model (LM). The LM
learns the probabilities of word sequences from
text corpora available for training. The perfor-
mance of the model depends on the amount and
style of the text. The more text there is, the better
the model is, in general. It is also important that
the model be trained on text that matches the style
of language used in the ASR application. Well
matching, in-domain, text may be both difficult
and expensive to obtain in the large quantities that
are needed.

A popular solution is to utilize the World Wide
Web as a source of additional text for LM train-
ing. A small in-domain set is used as seed data,
and more data of the same kind is retrieved from
the web. A decade ago, Berger and Miller (1998)

proposed a just-in-time LM that updated the cur-
rent LM by retrieving data from the web using re-
cent recognition hypotheses as queries submitted
to a search engine. Perplexity reductions of up to
10 % were reported.1 Many other works have fol-
lowed. Zhu and Rosenfeld (2001) retrieved page
and phrase counts from the web in order to update
the probabilities of infrequent trigrams that occur
in N-best lists. Word error rate (WER) reductions
of about 3 % were obtained on TREC-7 data.

In more recent work, the focus has turned to
the collection of text rather than n-gram statistics
based on page counts. More effort has been put
into the selection of query strings. Bulyko et al.
(2003; 2007) first extend their baseline vocabulary
with words from a small in-domain training cor-
pus. They then use n-grams with these new words
in their web queries in order to retrieve text of a
certain genre. For instance, they succeed in ob-
taining conversational style phrases, such as “we
were friends but we don’t actually have a relation-
ship.” In a number of experiments, word error
rate reductions of 2-3 % are obtained on English
data, and 6 % on Mandarin. The same method for
web data collection is applied by Çetin and Stolcke
(2005) in meeting and lecture transcription tasks.
The web sources reduce perplexity by 10 % and
4.3 %, respectively, and word error rates by 3.5 %
and 2.2 %, respectively.

Sarikaya et al. (2005) chunk the in-domain text
into “n-gram islands” consisting of only content
words and excluding frequently occurring stop
words. An island such as “stock fund portfolio” is
then extended by adding context, producing “my
stock fund portfolio”, for instance. Multiple is-
lands are combined using and and or operations to
form web queries. Significant word error reduc-
tions between 10 and 20 % are obtained; however,
the in-domain data set is very small, 1700 phrases,

1All reported percentage differences are relative unless
explicitly stated otherwise.
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which makes (any) new data a much needed addi-
tion.

Similarly, Misu and Kawahara (2006) obtain
very good word error reductions (20 %) in spo-
ken dialogue systems for software support and
sightseeing guidance. Nouns that have high tf/idf
scores in the in-domain documents are used in the
web queries. The existing in-domain data sets
poorly match the speaking style of the task and
therefore existing dialogue corpora of different do-
mains are included, which improves the perfor-
mance considerably.

Wan and Hain (2006) select query strings by
comparing the n-gram counts within an in-domain
topic model to the corresponding counts in an out-
of-domain background model. Topic-specific n-
grams are used as queries, and perplexity reduc-
tions of 5.4 % are obtained.

It is customary to postprocess and filter the
downloaded web texts. Sentence boundaries are
detected using some heuristics. Text chunks with a
high out-of-vocabulary (OOV) rate are discarded.
Additionally, the chunks are often ranked accord-
ing to their similarity with the in-domain data, and
the lowest ranked chunks are discarded. As a sim-
ilarity measure, the perplexity of the sentence ac-
cording to the in-domain LM can be used; for in-
stance, Bulyko et al. (2007). Another measure
for ranking is relative perplexity (Weilhammer et
al., 2006), where the in-domain perplexity is di-
vided by the perplexity given by an LM trained
on the web data. Also the BLEU score familiar
from the field of machine translation has been used
(Sarikaya et al., 2005).

Some criticism has been raised by Sethy et al.
(2007), who claim that sentence ranking has an
inherent bias towards the center of the in-domain
distribution. They propose a data selection algo-
rithm that selects a sentence from the web set, if
adding the sentence to the already selected set re-
duces the relative entropy with respect to the in-
domain data distribution. The algorithm appears
efficient in producing a rather small subset (1/11)
of the web data, while degrading the WER only
marginally.

The current paper describes a new method for
query selection and its applications in LM aug-
mentation and adaptation using web data. The
language models are part of a continuous speech
recognition system that enables users to use
speech as an input modality on mobile devices,

such as mobile phones. The particular domain of
interest is personal communication: The user dic-
tates a message that is automatically transcribed
into text and sent to a recipient as an SMS text
message. Memory consumption and computa-
tional speed are crucial factors in mobile applica-
tions. While most studies ignore the sizes of the
LMs when comparing models, we aim at improv-
ing the LM without increasing its size when web
data is added.

Another aspect that is typically overlooked is
that the collection of web data costs time and com-
putational resources. This applies to the querying,
downloading and postprocessing of the data. The
query selection scheme proposed in this paper is
economical in the sense that it strives to download
as much relevant text from the web as possible us-
ing as few queries as possible avoiding overlap be-
tween the set of pages found by different queries.

2 Query selection and web data retrieval

Our query selection scheme involves multiple
steps. The assumption is that a batch of queries
will be created. These queries are submitted to
a search engine and the matching documents are
downloaded. This procedure is repeated for multi-
ple query batches.

In particular, our scheme attempts to maximize
the number of retrieved relevant documents, when
two restrictions apply: (1) queries are not “free”:
each query costs some time or money; for in-
stance, the number of queries submitted within a
particular period of time is limited, and (2) the
number of documents retrieved for a particular
query is limited to a particular number of “top
hits”.

2.1 N-gram selection and prospection
querying

Some text reflecting the target domain must be
available. A set of the most frequent n-grams oc-
curring in the text is selected, from unigrams up to
five-grams. Some of these n-grams are character-
istic of the domain of interest (such as “Hogwarts
School of Witchcraft and Wizardry”), others are
just frequent in general (“but they did not say”);
we do not know yet which ones.

All n-grams are submitted as queries to the web
search engine. Exact matches of the n-grams are
required; different inflections or matches of the
words individually are not accepted.

158



The search engine returns the total number of
hits h(qs) for each query qs as well as the URLs
of a predefined maximum number of “top hit” web
pages. The top hit pages are downloaded and post-
processed into plain text, from which duplicate
paragraphs and paragraphs with a high OOV rate
are removed.

N-gram language models are then trained sep-
arately on the in-domain text and the the filtered
web text. If the amount of web text is very large,
only a subset is used, which consists of the parts
of the web data that are the most similar to the
in-domain text. As a similarity measure, relative
perplexity is used. The LM trained on web data is
called a background LM to distinguish it from the
in-domain LM.

2.2 Focused querying

Next, the querying is made more specific and tar-
geted on the domain of interest. New queries are
created that consist of n-gram pairs, requiring that
a document contain two n-grams (“but they did not
say”+“Hogwarts School of Witchcraft and Wiz-
ardry”).2

If all possible n-gram pairs are formed from
the n-grams selected in Section 2.1, the number
of pairs is very large, and we cannot afford using
them all as queries. Typical approaches for query
selection include the following: (i) select pairs that
include n-grams that are relatively more frequent
in the in-domain text than in the background text,
(ii) use some extra source of knowledge for select-
ing the best pairs.

2.2.1 Extra linguistic knowledge

We first tested the second (ii) query selection ap-
proach by incorporating some simple linguistic
knowledge: In an experiment on English, queries
were obtained by combining a highly frequent n-
gram with a slightly less frequent n-gram that had
to contain a first- or second-person pronoun (I,
you, we, me, us, my, your, our). Such n-grams
were thought to capture direct speech, which is
characteristic for the desired genre of personal
communication. (Similar techniques are reported
in the literature cited in Section 1.)

Although successful for English, this scheme is
more difficult to apply to other languages, where
person is conveyed as verbal suffixes rather than
single words. Linguistic knowledge is needed for

2Higher order tuples could be used as well, but we have
only tested n-gram pairs.

every language, and it turns out that many of the
queries are “wasted”, because they are too specific
and return only few (if any) documents.

2.2.2 Statistical approach

The other proposed query selection technique (i)
allows for an automatic identification of the n-
grams that are characteristic of the in-domain
genre. If the relative frequency of an n-gram is
higher in the in-domain data than in the back-
ground data, then the n-gram is potentially valu-
able. However, as in the linguistic approach, there
is no guarantee that queries are not wasted, since
the identified n-gram may be very rare on the In-
ternet. Pairing it with some other n-gram (which
may also be rare) often results in very few hits.

To get out the most of the queries, we pro-
pose a query selection algorithm that attempts to
optimize the relevance of the query to the target
domain, but also takes into account the expected
amount of data retrieved by the query. Thus, the
potential queries are ranked according to the ex-
pected number of retrieved relevant documents.
Only the highest ranked pairs, which are likely to
produce the highest number of relevant web pages,
are used as queries.

We denote queries that consist of two n-grams
s and t by qs∧t. The expected number of retrieved
relevant documents for the query qs∧t is r(qs∧t):

r(qs∧t) = n(qs∧t) · ρ(qs∧t |Q), (1)

where n(qs∧t) is the expected number of retrieved
documents for the query, and ρ(qs∧t |Q) is the ex-
pected proportion of relevant documents within all
documents retrieved by the query. The expected
proportion of relevant documents is a value be-
tween zero and one, and as explained below, it is
dependent on all past queries, the query history Q.

Expected number of retrieved documents
n(qs∧t). From the prospection querying phase
(Section 2.1), we know the numbers of hits for
the single n-grams s and t, separately: h(qs) and
h(qt). We make the operational, but overly simpli-
fying, assumption that the n-grams occur evenly
distributed over the web collection, independently
of each other. The expected size of the intersection
qs∧t is then:

ĥ(qs∧t) =
h(qs) · h(qt)

N
, (2)

where N is the size of the web collection that our
n-gram selection covers (total number of docu-
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ments). N is not known, but different estimates
can be used, for instance, N = max∀qs h(qs),
where it is assumed that the most frequent n-gram
occurs in every document in the collection (prob-
ably an underestimate of the actual value).

Ideally, the expected number of retrieved doc-
uments equals the expected number of hits, but
since the search engine returns a limited maximum
number of “top hit” pages, M , we get:

n(qs∧t) = min(ĥ(qs∧t),M). (3)

Expected proportion of relevant documents
ρ(qs∧t |Q). As in the case of n(qs∧t), an inde-
pendence assumption can be applied in the deriva-
tion of the expected proportion of relevant docu-
ments for the combined query qs∧t: We simply
put together the chances of obtaining relevant doc-
uments by the single n-gram queries qs and qt in-
dividually. The union equals:

ρ(qs∧t |Q) =
1 − (

1 − ρ(qs |Q)
) · (1 − ρ(qt |Q)

)
. (4)

However, we do not know the values for
ρ(qs |Q) and ρ(qt |Q). As mentioned earlier, it is
straightforward to obtain a relevance ranking for a
set of n-grams: For each n-gram s, the LM prob-
ability is computed using both the in-domain and
the background LM. The in-domain probability is
divided by the background probability and the n-
grams are sorted, highest relative probability first.
The first n-gram is much more prominent in the
in-domain than the background data, and we wish
to obtain more text with this crucial n-gram. The
opposite is true for the last n-gram.

We need to transform the ranking into ρ(·) val-
ues between zero and one. There is no absolute di-
vision into relevant and irrelevant documents from
the point of view of LM training. We use a proba-
bilistic query ranking scheme, such that we define
that of all documents containing an x % relevant
n-gram, x % are relevant. When the n-grams have
been ranked into a presumed order of relevance,
we decide that the most relevant n-gram is 100 %
relevant and the least relevant n-gram is 0 % rele-
vant; finally, we scale the relevances of the other
n-grams according to rank.

When scoring the remaining n-grams, linear
scaling is avoided, because the majority of the n-
grams are irrelevant or neutral with respect to our
domain of interest, and many of them would ob-
tain fairly high relevance values. Instead, we fix

the relevance value of the “most domain-neutral”
n-gram (the one with the relative probability value
closest to one); we might assume that only 5 % of
all documents containing this n-gram are indeed
relevant. We then fit a polynomial curve through
the three points with known values (0, 0.05, and 1)
to get the missing ρ(·) values for all qs.

Decay factor δ(s |Q). We noticed that if con-
stant relevance values are used, the top ranked
queries will consist of a rather small set of top
ranked n-grams that are paired with each other in
all possible combinations. However, it is likely
that each time an n-gram is used in a query, the
need for finding more occurrences of this partic-
ular n-gram decreases. Therefore, we introduced
a decay factor δ(s |Q), by which the initial ρ(·)
value, written ρ0(qs), is multiplied:

ρ(qs |Q) = ρ0(qs) · δ(s |Q), (5)

The decay is exponential:

δ(s |Q) = (1 − ε)
P

∀s∈Q 1. (6)

ε is a small value between zero and one (for in-
stance 0.05), and

∑
∀s∈Q 1 is the number of times

the n-gram s has occurred in past queries.

Overlap with previous queries. Some queries
are likely to retrieve the same set of documents
as other queries. This occurs if two queries share
one n-gram and there is strong correlation be-
tween the second n-grams (for instance, “we wish
you”+“Merry Christmas” vs. “we wish you”+
“and a Happy New Year”). In principle, when as-
sessing the relevance of a query, one should esti-
mate the overlap of that query with all past queries.
We have tested an approximate solution that al-
lows for fast computing. However, the real effect
of this addition was insignificant, and a further de-
scription is omitted in this paper.

Optimal order of the queries. We want to max-
imize the expected number of retrieved relevant
documents while keeping the number of submitted
queries as low as possible. Therefore we sort the
queries best first and submit as many queries we
can afford from the top of the list. However, the
relevance of a query is dependent on the sequence
of past queries (because of the decay factor). Find-
ing the optimal order of the queries takes O(n2)
operations, if n is the total number of queries.

A faster solution is to apply an iterative algo-
rithm: All queries are put in some initial order. For

160



each query, its r(qs∧t) value is computed accord-
ing to Equation 1. The queries are then rearranged
into the order defined by the new r(·) values, best
first. These two steps are repeated until conver-
gence.

Repeated focused querying. Focused querying
can be run multiple times. Some ten thousands of
the top ranked queries are submitted to the search
engine and the documents matching the queries
are downloaded. A new background LM is trained
using the new web data, and a new round of fo-
cused querying can take place.

2.2.3 Comparison of the linguistic and
statistical focused querying schemes

On one language (German), the statical focused
querying algorithm (Section 2.2.2) was shown
to retrieve 50 % more unique web pages and
70 % more words than the linguistic scheme (Sec-
tion 2.2.1) for the same number of queries. Also
results from language modeling and speech recog-
nition experiments favored statistical querying.

2.3 Web collections obtained

For the speech recognition experiments described
in the current paper, we have collected web texts
for three languages: US English, European Span-
ish, and Canadian French.

As in-domain data we used 230,000 English
text messages (4 million words), 65,000 Spanish
messages (2 million words), and 60,000 French
messages (1 million words). These text messages
were obtained in data collection projects involving
thousand of participants, who used a web interface
to enter messages according to different scenarios
of personal communication situations.3 A few ex-
ample messages are shown in Figure 1.

The queries were submitted to Yahoo!’s web
search engine. The web pages that were retrieved
by the queries were filtered and cleaned and di-
vided into chunks consisting of single paragraphs.
For English, we obtained 210 million paragraphs
and 13 billion words, for Spanish 160 million
paragraphs and 12 billion words, and for French
44 million paragraphs and 3 billion words.

3Real messages sent from mobile phones would be the
best data, but are hard to get because of privacy protection.
The postprocessing of authentic messages would, however,
require proper handling of artifacts resulting from the limited
input capacities on keypads of mobile devices, such as spe-
cific acronyms: i’ll c u l8er. In our setup, we did not have to
face such issues.

I hope you have a long and happy marriage.
Congratulations!
Remember to pick up Billy at practice at five
o’clock!
Hey Eric, how was the trip with the kids over
winter vacation? Did you go to Texas?

Figure 1: Example text messages (US English).

The linguistic focused querying method was ap-
plied in the US English task (because the statisti-
cal method did not yet exist). The Spanish and
Canadian French web collections were obtained
using statistical querying. Since the French set
was smaller than the other sets (“only” 3 billion
words), web crawling was performed, such that
those web sites that had provided us with the most
valuable data (measured by relative perplexity)
were downloaded entirely. As a result, the num-
ber of paragraphs increased to 110 million and the
number of words to 8 billion.

3 Speech Recognition Experiments

We have trained language models on the in-
domain data together with web data, and these
models have been used in speech recognition ex-
periments. Two kinds of experiments have been
performed: (1) the in-domain LM is augmented
with web data, and (2) the LM is adapted to a user-
specific vocabulary utilizing web data as an addi-
tional data source.

One hundred native speakers for each language
were recorded reading held-out subsets of the in-
domain text data. The speech data was partitioned
into training and test sets, such that around one
fourth of the speakers were reserved for testing.

We use a continuous speech recognizer opti-
mized for low memory footprint and fast recog-
nition (Olsen et al., 2008). The recognizer
runs on a server (Core2 2.33 GHz) in about
one fourth of real time. The LM probabilities
are quantized and precompiled together with the
speaker-independent acoustic models (intra-word
triphones) into a finite state transducer (FST).

3.1 Language model augmentation

Each paragraph in the web data is treated as a po-
tential text message and scored according to its
similarity to the in-domain data. Relative perplex-
ity is used as the similarity measure. The para-
graphs are sorted, lowest relative perplexity first,
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US English
FST size [MB] 10 20 40 70
In-domain 42.7 40.1 39.1 –
Web mixture 42.0 37.6 35.7 33.8
Ppl reduction [%] 1.6 6.2 8.7 13.6

European Spanish
FST size [MB] 10 20 25 40
In-domain 68.0 64.6 64.3 –
Web mixture 63.9 58.4 55.0 52.1
Ppl reduction [%] 6.0 9.6 14.5 19.0

Canadian French
FST size [MB] 10 20 25 50
In-domain 57.6 – – –
Web mixture 51.7 47.9 45.9 44.6
Ppl reduction [%] 10.2 16.8 20.3 22.6

Table 1: Perplexities.

In the tables, the perplexity and word error rate reductions of the web mixtures are computed with
respect to the in-domain models of the same size, if such models exist; otherwise the comparison is
made to the largest in-domain model available.

and the highest ranked paragraphs are used as LM
training data. The optimal size of the set depends
on the test, but the largest chosen set contains 15
million paragraphs and 500 million words.

Separate LMs are trained on the in-domain data
and web data. The two LMs are then linearly
interpolated into a mixture model. Roughly the
same interpolation weights (0.5) are obtained for
the LMs, when the optimal value is chosen based
on a held-out in-domain development test set.

3.1.1 Test set perplexities

In Table 1, the prediction abilities of the in-domain
and web mixture language models are compared.
As an evaluation measure we use perplexity cal-
culated on test sets consisting of in-domain text.
The comparison is performed on FSTs of differ-
ent sizes. The FSTs contain the acoustic models,
language model and lexicon, but the LM makes up
for most of the size. The availability of data varies
for the different languages, and therefore the FST
sizes are not exactly the same across languages.

The LMs have been created using the SRI LM
toolkit (Stolcke, 2002). Good-Turing smoothing
with Katz backoff (Katz, 1987) has been used, and
the different model sizes are obtained by pruning
down the full models using entropy-based prun-
ing (Stolcke, 1998). N-gram orders up to five have
been tested: 5-grams always work best on the mix-

US English
FST size [MB] 10 20 40 70
In-domain 17.9 17.5 17.3 –
Web mixture 17.5 16.7 16.4 15.8
WER reduction 2.2 4.4 5.2 8.4

European Spanish
FST size [MB] 10 20 25 40
In-domain 18.9 18.7 18.6 –
Web mixture 18.7 17.9 17.4 16.8
WER reduction 1.4 4.1 6.6 9.7

Canadian French
FST size [MB] 10 20 25 50
In-domain 22.6 – – –
Web mixture 22.1 21.7 21.3 20.9
WER reduction 2.3 4.1 5.8 7.5

Table 2: Word error rates [%].

ture models, whereas the best in-domain models
are 4- or 5-grams.

For every language and model size, the web
mixture model performs better than the corre-
sponding in-domain model. The perplexity reduc-
tions obtained increase with the size of the model.
Since it is possible to create larger mixture mod-
els than in-domain models, there are no in-domain
results for the largest model sizes.

Especially if large models can be afforded, the
perplexity reductions are considerable. The largest
improvements are observed for French (between
10.2 % and 22.6 % relative). This is not surprising,
as the French in-domain set is the smallest, which
leaves much room for improvement.

3.1.2 Word error rates

Speech recognition results for the different LMs
are given in Table 2. The results are consistent in
the sense that the web mixture models outperform
the in-domain models, and augmentation helps
more with larger models. The largest word error
rate reduction is observed for the largest Span-
ish model (9.7 % relative). All WER reductions
are statistically significant (one-sided Wilcoxon
signed-rank test; level 0.05) except the 10 MB
Spanish setup.

Although the observed word error rate reduc-
tions are mostly smaller than the corresponding
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perplexity reductions, the results are actually very
good, when we consider the fact that consider-
able reductions in perplexity may typically trans-
late into meager word error reductions; see, for in-
stance, Rosenfeld (2000), Goodman (2001). This
suggests that the web texts are very welcome com-
plementary data that improve on the robustness of
the recognition.

3.1.3 Modified Kneser-Ney smoothing

In the above experiments, Good-Turing (GT)
smoothing with Katz backoff was used, although
modified Kneser-Ney (KN) interpolation has been
shown to outperform other smoothing methods
(Chen and Goodman, 1999). However, as demon-
strated by Siivola et al. (2007), KN smoothing
is not compatible with simple pruning methods
such as entropy-based pruning. In order to make
a meaningful comparison, we used the revised
Kneser pruning and Kneser-Ney growing tech-
niques proposed by Siivola et al. (2007). For the
three languages, we built KN models that resulted
in FSTs of the same sizes as the largest GT in-
domain models. The perplexities decreased 4–8%,
but in speech recognition, the improvements were
mostly negligible: the error rates were 17.0 for En-
glish, 18.7 for Spanish, and 22.5 for French.

For English, we also created web mixture mod-
els with KN smoothing. The error rates were 16.5,
15.9 and 15.7 for the 20 MB, 40 MB and 70 MB
models, respectively. Thus, Kneser-Ney outper-
formed Good-Turing, but the improvements were
small, and a statistically significant difference was
measured only for the 40 MB LMs. This was ex-
pected, as it has been observed before that very
simple smoothing techniques can perform well on
large data sets, such as web data (Brants et al.,
2007).

For the purpose of demonstrating the usefulness
of our web data retrieval system, we concluded
that there was no significant difference between
GT and KN smoothing in our current setup.

3.2 Language model adaptation

In the second set of experiments we envisage a
system that adapts to the user’s own vocabulary.
Some words that the user needs may not be in-
cluded in the built-in vocabulary of the device,
such as names in the user’s contact list, names of
places or words related to some specific hobby or
other focus of interest.

Two adaptation techniques have been tested:

(1) Unigram adaptation is a simple technique, in
which user-specific words (for instance, names
from the contact list) are added to the vocabulary.
No context information is available, and thus only
unigram probabilities are created for these words.
(2) In message adaptation, the LM is augmented
selectively with paragraphs of web data that con-
tain user-specific words. Now, higher order n-
grams can be estimated, since the words occur
within passages of running text. This idea is not
new: information retrieval has been suggested as a
solution by Bigi et al. (2004) among others.

In our message adaptation, we have not created
web queries dynamically on demand. Instead, we
used the large web collections described in Sec-
tion 2.3, from which we selected paragraphs con-
taining user-specific words. We have tested both
adaptation by pooling (adding the paragraphs to
the original training data), and adaptation by in-
terpolation (using the new data to train a sepa-
rate LM, which is interpolated with the original
LM). One million words from the web data were
selected for each language. The adaptation was
thought to take place off-line on a server.

3.2.1 Data sets

For each language, the adaptation takes place on
two baseline models, which are the in-domain
and web mixture LMs of Section 3.1; however,
the amount of in-domain training data is reduced
slightly (as explained below).

In order to evaluate the success of the adapta-
tion, a simulated user-specific test set is created.
This set is obtained by selecting a subset of a
larger potential test set. Words that occur both in
the training set and the potential test set and that
are infrequent in the training set are chosen as the
user-specific vocabulary. For Spanish and French,
a training set frequency threshold of one is used,
resulting in 606 and 275 user-specific words, re-
spectively. For English the threshold is 5, which
results in 99 words. All messages in the potential
test set containing any of these words are selected
into the user-specific test set. Any message con-
taining user-specific words is removed from the
in-domain training set. In this manner, we obtain
a test set with a certain over-representation of a
specific vocabulary, without biasing the word fre-
quency distribution of the training set to any no-
ticeable degree.

For comparison, performance is additionally
computed on a generic in-domain test set, as be-
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US English, 23 MB models
Model WER (reduction)

user-specific in-domain
In-domain 29.1 (–) 17.9 (–)
+unigram adapt. 24.4 (16.3) 17.1 (4.7)
+message adapt. 21.6 (26.0) 16.8 (6.0)
Web mixture 25.7 (11.8) 16.9 (5.9)
+unigram adapt. 23.1 (20.6) 16.3 (8.8)
+message adapt. 22.2 (23.8) 16.4 (8.5)

European Spanish, 23 MB models
Model WER (reduction)

user-specific in-domain
In-domain 25.3 (–) 18.6 (–)
+unigram adapt. 23.4 (7.7) 18.5 (0.3)
+message adapt. 21.7 (14.4) 18.0 (3.2)
Web mixture 21.9 (13.7) 17.5 (5.8)
+unigram adapt. 21.5 (15.3) 17.7 (5.0)
+message adapt. 21.2 (16.5) 17.7 (4.7)

Canadian French, 21 MB models
Model WER (reduction)

user-specific in-domain
In-domain 30.3 (–) 22.6 (–)
+unigram adapt. 28.3 (6.4) 22.5 (0.4)
+message adapt. 26.6 (12.1) 22.2 (1.8)
Web mixture 26.7 (11.8) 21.4 (5.1)
+unigram adapt. 26.0 (14.3) 21.4 (5.4)
+message adapt. 26.0 (14.2) 21.6 (4.3)

Table 3: Adaptation, word error rates [%]. Six
models have been evaluated on two types of test
sets: a user-specific test set with a higher number
of user-specific words and a generic in-domain test
set. The numbers in brackets are relative WER re-
ductions [%] compared to the in-domain model.
WER values for the unigram adaptation are ren-
dered in italics, if the improvement obtained is sta-
tistically significant compared to the correspond-
ing non-adapted model. WER values for the mes-
sage adaptation are in italics, if there is a statisti-
cally significant reduction with respect to unigram
adaptation.

fore. User-specific and generic development test
sets are used for the estimation of optimal interpo-
lation weights.

3.2.2 Results

The adaptation experiments are summarized in Ta-
ble 3. Only medium sized FSTs (21–23 MB)
have been tested. The two baseline models have

been adapted using the simple unigram reweight-
ing scheme and using selective web message aug-
mentation. For the in-domain baseline, pooling
works the best, that is, adding the web messages
to the original in-domain training set. For the web
mixture baseline, a mixture model is the only op-
tion; that is, one more layer of interpolation is
added.

In the adaptation of the in-domain LMs, mes-
sage selection is almost twice as effective as uni-
gram adaptation for all data sets. Also the perfor-
mance on the generic in-domain test set is slightly
improved, because more training data is available.

Except for English, the best results on the user-
specific test sets are produced by the adaptation of
the web mixture models. The benefit of using mes-
sage adaptation instead of simple unigram adapta-
tion is smaller when we have a web mixture model
as a baseline rather than an in-domain-only LM.

On the generic test sets, the adaptation of the
web mixture makes a difference only for English.
Since there were practically no singleton words
in the English in-domain data, the user-specific
vocabulary consists of words occurring at most
five times. Thus, the English user-specific words
are more frequent than their Spanish and French
equivalents, which shows in larger WER reduc-
tions for English in all types of adaptation.

4 Discussion and conclusion

Mobile applications need to run in small memory,
but not much attention is usually paid to memory
consumption in related LM work. We have shown
that LM augmentation using web data can be suc-
cessful, even when the resulting mixture model is
not allowed to grow any larger than the initial in-
domain model. Yet, the benefit of the web data is
larger, the larger model can be used.

The largest WER reductions were observed in
the adaptation to a user-specific vocabulary. This
can be compared to Misu and Kawahara (2006),
who obtained similar accuracy improvements with
clever selection of web data, when there was ini-
tially no in-domain data available with both the
correct topic and speaking style.

We used relative perplexity ranking to filter the
downloaded web data. More elaborate algorithms
could be exploited, such as the one proposed by
Sethy et al. (2007). Initially, we have experi-
mented along those lines, but it did not pay off;
maybe future refinements will be more successful.
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Abstract
In this paper, we first demonstrate the in-
terest of the Loopy Belief Propagation al-
gorithm to train and use a simple align-
ment model where the expected marginal
values needed for an efficient EM-training
are not easily computable. We then im-
prove this model with a distortion model
based on structure conservation.

1 Introduction and Related Work

Automatic word alignment of parallel corpora is
an important step for data-oriented Machine trans-
lation (whether Statistical or Example-Based) as
well as for automatic lexicon acquisition. Many
algorithms have been proposed in the last twenty
years to tackle this problem. One of the most suc-
cessfull alignment procedure so far seems to be
the so-called “IBM model 4” described in (Brown
et al., 1993). It involves a very complex distor-
tion model (here and in subsequent usages “dis-
tortion” will be a generic term for the reordering
of the words occurring in the translation process)
with many parameters that make it very complex
to train.

By contrast, the first alignment model we are
going to propose is fairly simple. But this sim-
plicity will allow us to try and experiment differ-
ent ideas for making a better use of the sentence
structures in the alignment process. This model
(and even more so its subsequents variations), al-
though simple, do not have a computationally ef-
ficient procedure for an exact EM-based training.
However, we will give some theoretical and empir-
ical evidences that Loopy Belief Propagation can
give us a good approximation procedure.

Although we do not have the space to review the
many alignment systems that have already been
proposed, we will shortly refer to works that share
some similarities with our approach. In particu-
lar, the first alignment model we will present has

already been described in (Melamed, 2000). We
differ however in the training and decoding pro-
cedure we propose. The problem of making use
of syntactic trees for alignment (and translation),
which is the object of our second alignment model
has already received some attention, notably by
(Yamada and Knight, 2001) and (Gildea, 2003) .

2 Factor Graphs and Belief Propagation

In this paper, we will make several use of Fac-
tor Graphs. A Factor Graph is a graphical
model, much like a Bayesian Network. The three
most common types of graphical models (Factor
Graphs, Bayesian Network and Markov Network)
share the same purpose: intuitively, they allow to
represent the dependencies among random vari-
ables; mathematically, they represent a factoriza-
tion of the joint probability of these variables.

Formally, a factor graph is a bipartite graph with
2 kinds of nodes. On one side, the Variable Nodes
(abbreviated as V-Node from here on), and on the
other side, the Factor Nodes (abbreviated as F-
Node). If a Factor Graph represents a given joint
distribution, there will be one V-Node for every
random variable in this joint distribution. Each F-
Node is associated with a function of the V-Nodes
to which it is connected (more precisely, a func-
tion of the values of the random variables associ-
ated with the V-Nodes, but for brevity, we will fre-
quently mix the notions of V-Node, Random Vari-
ables and their values). The joint distribution is
then the product of these functions (and of a nor-
malizing constant). Therefore, each F-Node actu-
ally represent a factor in the factorization of the
joint distribution.

As a short example, let us consider a prob-
lem classically used to introduce Bayesian Net-
work. We want to model the joint probability of
the Weather(W) being sunny or rainy, the Sprin-
kle(S) being on or off, and the Lawn(L) being
wet or dry. Figure 1 show the dependencies of
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Figure 1: A classical example

the variables represented with a Factor Graph and
with a Bayesian Network. Mathematically, the
Bayesian Network imply that the joint probabil-
ity has the following factorization: P (W,L, S) =
P (W ) · P (S|W ) · P (L|W,S). The Factor Graph
imply there exist two functions ϕ1 and ϕ2 as well
as a normalization constant C such that we have
the factorization: P (W,L, S) = C · ϕ2(W,S) ·
ϕ1(L,W,S). If we set C = 1, ϕ2(W,S) =
P (W ) · P (S|W ) and ϕ1(L,W,S) = P (L|W,S),
the Factor Graph express exactly the same factor-
ization as the Bayesian Network.

A reason to use Graphical Models is that we can
use with them an algorithm called Belief Propa-
gation (abbreviated as BP from here on) (Pearl,
1988). The BP algorithm comes in two flavors:
sum-product BP and max-product BP. Each one
respectively solve two problems that arise often
(and are often intractable) in the use of a proba-
bilistic model: “what are the marginal probabili-
ties of each individual variable?” and “what is the
set of values with the highest probability?”. More
precisely, the BP algorithm will give the correct
answer to these questions if the graph represent-
ing the distribution is a forest. If it is not the case,
the BP algorithm is not even guaranteed to con-
verge. It has been shown, however, that the BP al-
gorithm do converge in many practical cases, and
that the results it produces are often surprisingly
good approximations (see, for example, (Murphy
et al., 1999) or (Weiss and Freeman, 2001) ).

(Yedidia et al., 2003) gives a very good presen-
tation of the sum-product BP algorithm, as well as
some theoretical justifications for its success. We
will just give an outline of the algorithm. The BP
algorithm is a message-passing algorithm. Mes-
sages are sent during several iterations until con-
vergence. At each iteration, each V-Node sends
to its neighboring F-Nodes a message represent-
ing an estimation of its own marginal values. The

message sent by the V-Node Vi to the F-Node Fj

estimating the marginal probability of Vi to take
the value x is :

mV i→Fj(x) =
∏

Fk∈N(V i)\Fj

mFk→V i(x)

(N(Vi) represent the set of the neighbours of Vi)
Also, every F-Node send a message to its neigh-

boring V-Nodes that represent its estimates of the
marginal values of the V-Node:

mFj→V i(x) =
∑

v1,...,vn

ϕj(v1, .., x, .., vn)·

·
∏

V k∈N(Fj)\V i

mV k→Fj(vk)

At any point, the belief of a V-Node V i is given
by

bi(x) =
∏

Fk∈N(V i)

mFk→V i(x)

, bi being normalized so that
∑

x bi(x) = 1. The
belief bi(x) is expected to converge to the marginal
probability (or an approximation of it) of Vi taking
the value x .

An interesting point to note is that each message
can be “scaled” (that is, multiplied by a constant)
by any factor at any point without changing the re-
sult of the algorithm. This is very useful both for
preventing overflow and underflow during compu-
tation, and also sometimes for simplifying the al-
gorithm (we will use this in section 3.2). Also,
damping schemes such as the ones proposed in
(Murphy et al., 1999) or (Heskes, 2003) are use-
ful for decreasing the cases of non-convergence.

As for the max-product BP, it is best explained
as “sum-product BP where each sum is replaced
by a maximization”.

3 The monolink model

We are now going to present a simple alignment
model that will serve both to illustrate the effi-
ciency of the BP algorithm and as basis for fur-
ther improvement. As previously mentioned, this
model is mostly identical to one already proposed
in (Melamed, 2000). The training and decoding
procedures we propose are however different.

3.1 Description
Following the usual convention, we will designate
the two sides of a sentence pair as French and En-
glish. A sentence pair will be noted (e, f). ei rep-
resents the word at position i in e.
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In this first simple model, we will pay little at-
tention to the structure of the sentence pair we
want to align. Actually, each sentence will be re-
duced to a bag of words.

Intuitively, the two sides of a sentence pair ex-
press the same set of meanings. What we want to
do in the alignment process is find the parts of the
sentences that originate from the same meaning.
We will suppose here that each meaning generate
at most one word on each side, and we will name
concept the pair of words generated by a mean-
ing. It is possible for a meaning to be expressed
in only one side of the sentence pair. In that case,
we will have a “one-sided” concept consisting of
only one word. In this view, a sentence pair ap-
pears “superficially” as a pair of bag of words, but
the bag of words are themselves the visible part of
an underlying bag of concepts.

We propose a simple generative model to de-
scribe the generation of a sentence pair (or rather,
its underlying bag of concepts):

• First, an integer n, representing the number
of concepts of the sentence is drawn from a
distribution Psize

• Then, n concepts are drawn independently
from a distribution Pconcept

The probability of a bag of concepts C is then:

P (C) = Psize(|C|)
∏

(w1,w2)∈C

Pconcept((w1, w2))

We can alternatively represent a bag of concepts
as a pair of sentence (e, f), plus an alignment a.
a is a set of links, a link being represented as a
pair of positions in each side of the sentence pair
(the special position -1 indicating the empty side
of a one-sided concept). This alternative represen-
tation has the advantage of better separating what
is observed (the sentence pair) and what is hidden
(the alignment). It is not a strictly equivalent rep-
resentation (it also contains information about the
word positions) but this will not be relevant here.
The joint distribution of e,f and a is then:

P (e, f, a) = Psize(|a|)
∏

(i,j)∈a

Pconcept(ei, fj)

(1)
This model only take into consideration one-

to-one alignments. Therefore, from now on, we
will call this model “monolink”. Considering

only one-to-one alignments can be seen as a lim-
itation compared to others models that can of-
ten produce at least one-to-many alignments, but
on the good side, this allow the monolink model
to be nicely symmetric. Additionally, as already
argued in (Melamed, 2000), there are ways to
determine the boundaries of some multi-words
phrases (Melamed, 2002), allowing to treat sev-
eral words as a single token. Alternatively, a pro-
cedure similar to the one described in (Cromieres,
2006), where substrings instead of single words
are aligned (thus considering every segmentation
possible) could be used.

With the monolink model, we want to do two
things: first, we want to find out good values for
the distributions Psize and Pconcept. Then we want
to be able to find the most likely alignment a given
the sentence pair (e, f).

We will consider Psize to be a uniform distribu-
tion over the integers up to a sufficiently big value
(since it is not possible to have a uniform distri-
bution over an infinite discrete set). We will not
need to determine the exact value of Psize . The
assumption that it is uniform is actually enough to
“remove” it of the computations that follow.

In order to determine the Pconcept distribution,
we can use an EM procedure. It is easy to
show that, at every iteration, the EM procedure
will require to set Pconcept(we, wf ) proportional
to the sum of the expected counts of the concept
(we, wf ) over the training corpus. This, in turn,
mean we have to compute the conditional expec-
tation:

E((i, j) ∈ a|e, f) =
∑

a|(i,j)∈a

P (a|e, f)

for every sentence pair (e, f). This computation
require a sum over all the possible alignments,
whose numbers grow exponentially with the size
of the sentences. As noted in (Melamed, 2000),
it does not seem possible to compute this expecta-
tion efficiently with dynamic programming tricks
like the one used in the IBM models 1 and 2 (as a
passing remark, these “tricks” can actually be seen
as instances of the BP algorithm).

We propose to solve this problem by applying
the BP algorithm to a Factor Graph representing
the conditional distribution P (a|e, f). Given a
sentence pair (e, f), we build this graph as fol-
lows.

We create a V-node V e
i for every position i in

the English sentence. This V-Node can take for

168



Figure 2: A Factor Graph for the monolink model
in the case of a 2-words English sentence and a 3-
words french sentence (F rec

ij nodes are noted Fri-j)

value any position in the french sentence, or the
special position −1 (meaning this position is not
aligned, corresponding to a one-sided concept).
We create symmetrically a V-node V f

j for every
position in the french sentence.

We have to enforce a “reciprocal love” condi-
tion: if a V-Node at position i choose a position j
on the opposite side, the opposite V-Node at po-
sition j must choose the position i. This is done
by adding a F-Node F rec

i,j between every opposite

node V e
i and V f

j , associated with the function:

ϕrec
i,j (k, l) =


1 if (i = l and j = k)

or (i 6= l and j 6= k)
0 else

We then connect a “translation probability” F-
Node F tp.e

i to every V-Node V e
i associated with

the function:

ϕtp.e
i (j) =

{√
Pconcept(ei, fj) if j 6= −1

Pconcept(ei, ∅) if j = −1

We add symmetrically on the French side F-Nodes
F tp.f

j to the V-Nodes V f
j .

It should be fairly easy to see that such a Factor
Graph represents P (a|e, f). See figure 2 for an
example.

Using the sum-product BP, the beliefs of ev-
ery V-Node V e

i to take the value j and of every
node V f

j to take the value i should converge to the
marginal expectation E((i, j) ∈ a|e, f) (or rather,
a hopefully good approximation of it).

We can also use max-product BP on the same
graph to decode the most likely alignment. In the
monolink case, decoding is actually an instance of
the “assignment problem”, for which efficient al-
gorithms are known. However this will not be the

case for the more complex model of the next sec-
tion. Actually, (Bayati et al., 2005) has recently
proved that max-product BP always give the opti-
mal solution to the assignment problem.

3.2 Efficient BP iterations

Applying naively the BP algorithm would lead us
to a complexity of O(|e|2 · |f |2) per BP iteration.
While this is not intractable, it could turn out to be
a bit slow. Fortunately, we found it is possible to
reduce this complexity to O(|e| · |f |) by making
two useful observations.

Let us note me
ij the resulting message from V e

i

to V f
j (that is the message sent by F rec

i,j to V f
j af-

ter it received its own message from V e
i ). me

ij(x)
has the same value for every x different from i:
me

ij(x 6= i) =
∑

k 6=j
be
i (k)

mf
ji(k)

. We can divide all the

messages me
ij by me

ij(x 6= i), so that me
ij(x) = 1

except if x = i; and the same can be done for the
messages coming from the French side mf

ij . It fol-
lows that me

ij(x 6= i) =
∑

k 6=j be
i (k) = 1 − be

i (j)
if the be

i are kept normalized. Therefore, at ev-
ery step, we only need to compute me

ij(j), not
me

ij(x 6= j).
Hence the following algorithm (me

ij(j) will be
here abbreviated to me

ij since it is the only value
of the message we need to compute). We describe
the process for computing the English-side mes-
sages and beliefs (me

ij and be
i ) , but the process

must also be done symmetrically for the French-
side messages and beliefs (mf

ij and bf
i ) at every

iteration.
0- Initialize all messages and beliefs with:

m
e(0)
ij = 1 and b

e(0)
i (j) = ϕtp.e

i (j)
Until convergence (or for a set number of itera-

tion):
1- Compute the messages me

ij : m
e(t+1)
ij =

b
e(t)
i (j)/((1 − b

e(t)
i (j)) · mf(t)

ji )

2- Compute the beliefs be
i (j):bi(j)e(t+1) =

ϕtp.e
i (j) · mf(t+1)

ji

3- And then normalize the bi(j)e(t+1) so that∑
j bi(j)e(t+1) = 1.
A similar algorithm can be found for the max-

product BP.

3.3 Experimental Results

We evaluated the monolink algorithm with two
languages pairs: French-English and Japanese-
English.
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For the English-French Pair, we used 200,000
sentence pairs extracted from the Hansard cor-
pus (Germann, 2001). Evaluation was done with
the scripts and gold standard provided during
the workshop HLT-NAACL 20031 (Mihalcea and
Pedersen, 2003). Null links are not considered for
the evaluation.

For the English-Japanese evaluation, we used
100,000 sentence pairs extracted from a corpus of
English/Japanese news. We used 1000 sentence
pairs extracted from pre-aligned data(Utiyama and
Isahara, 2003) as a gold standard. We segmented
all the Japanese data with the automatic segmenter
Juman (Kurohashi and Nagao, 1994). There is
a caveat to this evaluation, though. The reason
is that the segmentation and alignment scheme
used in our gold standard is not very fine-grained:
mostly, big chunks of the Japanese sentence cover-
ing several words are aligned to big chunks of the
English sentence. For the evaluation, we had to
consider that when two chunks are aligned, there
is a link between every pair of words belonging to
each chunk. A consequence is that our gold stan-
dard will contain a lot more links than it should,
some of them not relevants. This means that the
recall will be largely underestimated and the pre-
cision will be overestimated.

For the BP/EM training, we used 10 BP iter-
ations for each sentences, and 5 global EM iter-
ations. By using a damping scheme for the BP
algorithm, we never observed a problem of non-
convergence (such problems do commonly ap-
pears without damping). With our python/C im-
plementation, training time approximated 1 hour.
But with a better implementation, it should be pos-
sible to reduce this time to something comparable
to the model 1 training time with Giza++.

For the decoding, although the max-product BP
should be the algorithm of choice, we found we
could obtain slightly better results (by between 1
and 2 AER points) by using the sum-product BP,
choosing links with high beliefs, and cutting-off
links with very small beliefs (the cut-off was cho-
sen roughly by manually looking at a few aligned
sentences not used in the evaluation, so as not to
create too much bias).

Due to space constraints, all of the results of this
section and the next one are summarized in two
tables (tables 1 and 2) at the end of this paper.

In order to compare the efficiency of the BP

1http://www.cs.unt.edu/ rada/wpt/

training procedure to a more simple one, we reim-
plemented the Competitive Link Algorithm (ab-
breviated as CLA from here on) that is used in
(Melamed, 2000) to train an identical model. This
algorithm starts with some relatively good esti-
mates found by computing correlation score (we
used the G-test score) between words based on
their number of co-occurrences. A greedy Viterbi
training is then applied to improve this initial
guess. In contrast, our BP/EM training do not need
to compute correlation scores and start the training
with uniform parameters.

We only evaluated the CLA on the
French/English pair. The first iteration of
CLA did improve alignment quality, but subse-
quent ones decreased it. The reported score for
CLA is therefore the one obtained during the best
iteration. The BP/EM training demonstrate a clear
superiority over the CLA here, since it produce
almost 7 points of AER improvement over CLA.

In order to have a comparison with a well-
known and state-of-the-art system, we also used
the GIZA++ program (Och and Ney, 1999) to
align the same data. We tried alignments in both
direction and provide the results for the direction
that gave the best results. The settings used were
the ones used by the training scripts of the Moses
system2, which we assumed to be fairly optimal.
We tried alignment with the default Moses settings
(5 iterations of model 1, 5 of Hmm, 3 of model 3,
3 of model 4) and also tried with increased number
of iterations for each model (up to 10 per model).

We are aware that the score we obtained for
model 4 in English-French is slightly worse than
what is usually reported for a similar size of train-
ing data. At the time of this paper, we did not
have the time to investigate if it is a problem of
non-optimal settings in GIZA++, or if the train-
ing data we used was “difficult to learn from” (it
is common to extract sentences of moderate length
for the training data but we didn’t, and some sen-
tences of our training corpus do have more than
200 words; also, we did not use any kind of pre-
processing). In any case, Giza++ is compared here
with an algorithm trained on the same data and
with no possibilities for fine-tuning; therefore the
comparison should be fair.

The comparison show that performance-wise,
the monolink algorithm is between the model 2
and the model 3 for English/French. Considering

2http://www.statmt.org/moses/
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our model has the same number of parameters as
the model 1 (namely, the word translation prob-
abilities, or concept probabilities in our model),
these are pretty good results. Overall, the mono-
link model tend to give better precision and worse
recall than the Giza++ models, which was to be
expected given the different type of alignments
produced (1-to-1 and 1-to-many).

For English/Japanese, monolink is at just about
the level of model 1, but model 1,2 and 3 have very
close performances for this language pair (inter-
estingly, this is different from the English/French
pair). Incidentally, these performances are very
poor. Recall was expected to be low, due to the
previously mentioned problem with the gold stan-
dard. But precision was expected to be better. It
could be the algorithms are confused by the very
fine-grained segmentation produced by Juman.

4 Adding distortion through structure

4.1 Description

While the simple monolink model gives interest-
ing results, it is somehow limited in that it do not
use any model of distortion. We will now try to
add a distortion model; however, rather than di-
rectly modeling the movement of the positions of
the words, as is the case in the IBM models, we
will try to design a distortion model based on the
structures of the sentences. In particular, we are
interested in using the trees produced by syntactic
parsers.

The intuition we want to use is that, much like
there is a kind of “lexical conservation” in the
translation process, meaning that a word on one
side has usually an equivalent on the other side,
there should also be a kind of “structure conserva-
tion”, with most structures on one side having an
equivalent on the other.

Before going further, we should precise the idea
of “structure” we are going to use. As we said, our
prime (but not only) interest will be to make use of
the syntactic trees of the sentences to be aligned.
However these kind of trees come in very different
shapes depending on the language and the type of
parser used (dependency, constituents,. . . ). This is
why we decided the only information we would
keep from a syntactic tree is the set of its sub-
nodes. More specifically, for every sub-node, we
will only consider the set of positions it cover in
the underlying sentence. We will call such a set
of positions a P-set. This simplification will allow

Figure 3: A small syntactic tree and the 3 P-Sets it
generates

us to process dependency trees, constituents trees
and other structures in a uniformized way. Fig-
ure 3 gives an example of a constituents tree and
the P-sets it generates.

According to our intuition about the “conserva-
tion of structure”, some (not all) of the P-sets on
one side should have an equivalent on the other
side. We can model this in a way similar to how
we represented equivalence between words with
concepts. We postulate that, in addition to a bag of
concepts, sentence pairs are underlaid by a set of
P-concepts. P-concepts being actually pairs of P-
sets (a P-set for each side of the sentence pair). We
also allow the existence of one-sided P-concepts.

In the previous model, sentence pairs where
just bag of words underlaid by a or bag of con-
cepts, and there was no modeling of the position
of the words. P-concepts bring a notion of word
position to the model. Intuitively, there should
be coherency between P-concepts and concepts.
This coherence will come from a compatibility
constraint: if a sentence contains a two-sided P-
concept (PSe, PSf ), and if a word we covered
by PSe come from a two-sided concept (we, wf ),
then wf must be covered by PSf .

Let us describe the model more formally. In
the view of this model, a sentence pair is fully de-
scribed by: e and f (the sentences themselves), a
(the word alignment giving us the underlying bag
of concept), se and sf (the sets of P-sets on each
side of the sentence) and as (the P-set alignment
that give us the underlying set of P-concepts).
e,f ,se,sf are considered to be observed (even if
we will need parsing tools to observe se and sf );
a and as are hidden. The probability of a sentence
pair is given by the joint probability of these vari-
ables :P (e, f, se, sf , a, as). By making some sim-
ple independence assumptions, we can write:

P (a, as, e, f,se, sf ) = Pml(a, e, f)·
· P (se, sf |e, f) · P (as|a, se, sf )
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Pml(a, e, f) is taken to be identical to the mono-
link model (see equation (1)). We are not inter-
ested in P (se, sf |e, f) (parsers will deal with it for
us). In our model, P (as|a, se, sf ) will be equal to:

P(as|a, se, sf ) = C ·
∏

(i,j)∈as

Ppc(se
i , s

f
j )·

· comp(a, as, s
e, sf )

where comp(a, as, s
e, sf ) is equal to 1 if the com-

patibility constraint is verified, and 0 else. C is a
normalizing constant. Ppc describe the probability
of each P-concept.

Although it would be possible to learn parame-
ters for the distribution Ppc depending on the char-
acteristics of each P-concepts, we want to keep
our model simple. Therefore, Ppc will have only
two different values. One for the one-sided P-
concepts, and one for the two-sided ones. Con-
sidering the constraint of normalization, we then
have actually one parameter: α = Ppc(1−sided)

Ppc(2−sided) .
Although it would be possible to learn the param-
eter α during the EM-training, we choose to set
it at a preset value. Intuitively, we should have
0 < α < 1, because if α is greater than 1, then
the one-sided P-concepts will be favored by the
model, which is not what we want. Some empiri-
cal experiments showed that all values of α in the
range [0.5,0.9] were giving good results, which
lead to think that α can be set mostly indepen-
dently from the training corpus.

We still need to train the concepts probabilities
(used in Pml(a, e, f)), and to be able to decode
the most probable alignments. This is why we are
again going to represent P (a, as|e, f, se, sf ) as a
Factor Graph.

This Factor Graph will contain two instances of
the monolink Factor Graph as subgraph: one for
a, the other for as (see figure 4). More precisely,
we create again a V-Node for every position on
each side of the sentence pair. We will call these
V-Nodes “Word V-Nodes”, to differentiate them
from the new “P-set V-Nodes”. We will create a
“P-set V-Node” V ps.e

i for every P-set in se, and a
“P-set V-Node” V ps.f

j for every P-set in sj . We
inter-connect all of the Word V-Nodes so that we
have a subgraph identical to the Factor Graph used
in the monolink case. We also create a “monolink
subgraph” for the P-set V-Nodes.

We now have 2 disconnected subgraphs. How-
ever, we need to add F-Nodes between them to en-
force the compatibility constraint between as and

Figure 4: A part of a Factor Graph showing the
connections between P-set V-Nodes and Word V-
Nodes on the English side.The V-Nodes are con-
nected to the French side through the 2 monolink
subgraphs

a. On the English side, for every P-set V-Node
V pse

k , and for every position i that the correspond-
ing P-set cover, we add a F-Node F comp.e

k,i between
V pse

k and V e
i , associated with the function:

ϕcomp.e
k,i (l, j) =


1 if j ∈ sf

l or
j = −1 or l = −1

0 else

We proceed symmetrically on the French side.
Messages inside each monolink subgraph can

still be computed with the efficient procedure de-
scribed in section 3.2. We do not have the space to
describe in details the messages sent between P-set
V-Nodes and Word V-Nodes, but they are easily
computed from the principles of the BP algorithm.
Let NE =

∑
ps∈se |ps| and NF =

∑
ps∈sf |ps|.

Then the complexity of one BP iteration will be
O(NG · ND + |e| · |f |).

An interesting aspect of this model is that it
is flexible towards enforcing the respect of the
structures by the alignment, since not every P-set
need to have an equivalent in the opposite sen-
tence. (Gildea, 2003) has shown that too strict an
enforcement can easily degrade alignment quality
and that good balance was difficult to find.

Another interesting aspect is the fact that
we have a somehow “parameterless” distortion
model. There is only one real-valued parameter to
control the distortion: α. And even this parameter
is actually pre-set before any training on real data.
The distortion is therefore totally controlled by the
two sets of P-sets on each side of the sentence.

Finally, although we introduced the P-sets as
being generated from a syntactic tree, they do
not need to. In particular, we found interest-
ing to use P-sets consisting of every pair of adja-
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cent positions in a sentence. For example, with
a sentence of length 5, we generate the P-sets
{1,2},{2,3},{3,4} and {4,5}. The underlying in-
tuition is that “adjacency” is often preserved in
translation (we can see this as another case of
“conservation of structure”). Practically, using P-
sets of adjacent positions create a distortion model
where permutation of words are not penalized, but
gaps are penalized.

4.2 Experimental Results

The evaluation setting is the same as in the previ-
ous section. We created syntactic trees for every
sentences. For English,we used the Dan Bikel im-
plementation of the Collins parser (Collins, 2003).
For French, the SYGMART parser (Chauché,
1984) and for Japanese, the KNP parser (Kuro-
hashi and Nagao, 1994).

The line SDM:Parsing (SDM standing for
“Structure-based Distortion Monolink”) shows the
results obtained by using P-sets from the trees pro-
duced by these parsers. The line SDM:Adjacency
shows results obtained by using adjacent positions
P-sets ,as described at the end of the previous sec-
tion (therefore, SDM:Adjacency do not use any
parser).

Several interesting observations can be made
from the results. First, our structure-based distor-
tion model did improve the results of the mono-
link model. There are however some surprising
results. In particular, SDM:Adjacency produced
surprisingly good results. It comes close to the
results of the IBM model 4 in both language pairs,
while it actually uses exactly the same parameters
as model 1. The fact that an assumption as simple
as “allow permutations, penalize gaps” can pro-
duce results almost on par with the complicated
distortion model of model 4 might be an indica-
tion that this model is unnecessarily complex for
languages with similar structure.Another surpris-
ing result is the fact that SDM:Adjacency gives
better results for the English-French language pair
than SDM:Parsing, while we expected that infor-
mation provided by parsers would have been more
relevant for the distortion model. It might be an
indication that the structure of English and French
is so close that knowing it provide only moder-
ate information for word reordering. The con-
trast with the English-Japanese pair is, in this re-
spect, very interesting. For this language pair,
SDM:Adjacency did provide a strong improve-

Algorithm AER P R
Monolink 0.197 0.881 0.731
SDM:Parsing 0.166 0.882 0.813
SDM:Adjacency 0.135 0.887 0.851
CLA 0.26 0.819 0.665
GIZA++ /Model 1 0.281 0.667 0.805
GIZA++ /Model 2 0.205 0.754 0.863
GIZA++ /Model 3 0.162 0.806 0.890
GIZA++ /Model 4 0.121 0.849 0.927

Table 1: Results for English/French

Algorithm F P R
Monolink 0.263 0.594 0.169
SDM:Parsing 0.291 0.662 0.186
SDM:Adjacency 0.279 0.636 0.179
GIZA++ /Model 1 0.263 0.555 0.172
GIZA++ /Model 2 0.268 0.566 0.176
GIZA++ /Model 3 0.267 0.589 0.173
GIZA++ /Model 4 0.299 0.658 0.193

Table 2: Results for Japanese/English.

ment, but significantly less so than SDM:Parsing.
This tend to show that for language pairs that have
very different structures, the information provided
by syntactic tree is much more relevant.

5 Conclusion and Future Work

We will summarize what we think are the 4 more
interesti ng contributions of this paper. BP al-
gorithm has been shown to be useful and flexi-
ble for training and decoding complex alignment
models. An original mostly non-parametrical dis-
tortion model based on a simplified structure of
the sentences has been described. Adjacence con-
straints have been shown to produce very efficient
distortion model. Empirical performances differ-
ences in the task of aligning Japanese and English
to French hint that considering different paradigms
depending on language pairs could be an improve-
ment on the “one-size-fits-all” approach generally
used in Statistical alignment and translation.

Several interesting improvement could also be
made on the model we presented. Especially,
a more elaborated Ppc, that would take into ac-
count the nature of the nodes (NP, VP, head,..) to
parametrize the P-set alignment probability, and
would use the EM-algorithm to learn those param-
eters.
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Abstract

We present a method which, given a few
words defining a concept in some lan-
guage, retrieves, disambiguates and ex-
tends corresponding terms that define a
similar concept in another specified lan-
guage. This can be very useful for
cross-lingual information retrieval and the
preparation of multi-lingual lexical re-
sources. We automatically obtain term
translations from multilingual dictionaries
and disambiguate them using web counts.
We then retrieve web snippets with co-
occurring translations, and discover ad-
ditional concept terms from these snip-
pets. Our term discovery is based on co-
appearance of similar words in symmetric
patterns. We evaluate our method on a set
of language pairs involving 45 languages,
including combinations of very dissimilar
ones such as Russian, Chinese, and He-
brew for various concepts. We assess the
quality of the retrieved sets using both hu-
man judgments and automatically compar-
ing the obtained categories to correspond-
ing English WordNet synsets.

1 Introduction

Numerous NLP tasks utilize lexical databases that
incorporate concepts (or word categories): sets
of terms that share a significant aspect of their
meanings (e.g., terms denoting types of food, tool
names, etc). These sets are useful by themselves
for improvement of thesauri and dictionaries, and
they are also utilized in various applications in-
cluding textual entailment and question answer-
ing. Manual development of lexical databases is

labor intensive, error prone, and susceptible to
arbitrary human decisions. While databases like
WordNet (WN) are invaluable for NLP, for some
applications any offline resource would not be ex-
tensive enough. Frequently, an application re-
quires data on some very specific topic or on very
recent news-related events. In these cases even
huge and ever-growing resources like Wikipedia
may provide insufficient coverage. Hence appli-
cations turn to Web-based on-demand queries to
obtain the desired data.

The majority of web pages are written in En-
glish and a few other salient languages, hence
most of the web-based information retrieval stud-
ies are done on these languages. However, due
to the substantial growth of the multilingual web1,
queries can be performed and the required infor-
mation can be found in less common languages,
while the query language frequently does not
match the language of available information.

Thus, if we are looking for information about
some lexical category where terms are given in
a relatively uncommon language such as Hebrew,
it is likely to find more detailed information and
more category instances in a salient language such
as English. To obtain such information, we need
to discover a word list that represents the desired
category in English. This list can be used, for in-
stance, in subsequent focused search in order to
obtain pages relevant for the given category. Thus
given a few Hebrew words as a description for
some category, it can be useful to obtain a simi-
lar (and probably more extended) set of English
words representing the same category.

In addition, when exploring some lexical cate-
gory in a common language such as English, it is

1http://www.internetworldstats.com/stats7.htm
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frequently desired to consider available resources
from different countries. Such resources are likely
to be written in languages different from English.
In order to obtain such resources, as before, it
would be beneficial, given a concept definition in
English, to obtain word lists denoting the same
concept in different languages. In both cases a
concept as a set of words should be translated as a
whole from one language to another.

In this paper we present an algorithm that given
a concept defined as a set of words in some source
language discovers and extends a similar set in
some specified target language. Our approach
comprises three main stages. First, given a few
terms, we obtain sets of their translations to the tar-
get language from multilingual dictionaries, and
use web counts to select the appropriate word
senses. Next, we retrieve search engine snippets
with the translated terms and extract symmetric
patterns that connect these terms. Finally, we use
these patterns toextendthe translated concept, by
obtaining more terms from the snippets.

We performed thorough evaluation for various
concepts involving 45 languages. The obtained
categories were manually verified with two human
judges and, when appropriate, automatically com-
pared to corresponding English WN synsets. In
all tested cases we discovered dozens of concept
terms with state-of-the-art precision.

Our major contribution is a novel framework for
concept translation across languages. This frame-
work utilizes web queries together with dictio-
naries for translation, disambiguation and exten-
sion of given terms. While our framework relies
on the existence of multilingual dictionaries, we
show that even with basic 1000 word dictionaries
we achieve good performance. Modest time and
data requirements allow the incorporation of our
method in practical applications.

In Section 2 we discuss related work, Section 3
details the algorithm, Section 4 describes the eval-
uation protocol and Section 5 presents our results.

2 Related work

Substantial efforts have been recently made to
manually construct and interconnect WN-like
databases for different languages (Pease et al.,
2008; Charoenporn et al., 2007). Some stud-
ies (e.g., (Amasyali, 2005)) use semi-automated
methods based on language-specific heuristics and
dictionaries.

At the same time, much work has been done
on automatic lexical acquisition, and in particu-
lar, on the acquisition of concepts. The two main
algorithmic approaches are pattern-based discov-
ery, and clustering of context feature vectors. The
latter represents word contexts as vectors in some
space and use similarity measures and automatic
clustering in that space (Deerwester et al., 1990).
Pereira (1993), Curran (2002) and Lin (1998) use
syntactic features in the vector definition. (Pantel
and Lin, 2002) improves on the latter by cluster-
ing by committee. Caraballo (1999) uses conjunc-
tion and appositive annotations in the vector rep-
resentation. While a great effort has focused on
improving the computational complexity of these
methods (Gorman and Curran, 2006), they still re-
main data and computation intensive.

The current major algorithmic approach for
concept acquisition is to use lexico-syntactic pat-
terns. Patterns have been shown to produce more
accurate results than feature vectors, at a lower
computational cost on large corpora (Pantel et al.,
2004). Since (Hearst, 1992), who used a manu-
ally prepared set of initial lexical patterns in order
to acquire relationships, numerous pattern-based
methods have been proposed for the discovery of
concepts from seeds (Pantel et al., 2004; Davidov
et al., 2007; Pasca et al., 2006). Most of these
studies were done for English, while some show
the applicability of their method to some other
languages including Russian, Greek, Czech and
French.

Many papers directly target specific applica-
tions, and build lexical resources as a side ef-
fect. Named Entity Recognition can be viewed
as an instance of the concept acquisition problem
where the desired categories contain words that
are names of entities of a particular kind, as done
in (Freitag, 2004) using co-clustering and in (Et-
zioni et al., 2005) using predefined pattern types.
Many Information Extraction papers discover re-
lationships between words using syntactic patterns
(Riloff and Jones, 1999).

Unlike in the majority of recent studies where
the acquisition framework is designed with spe-
cific languages in mind, in our task the algorithm
should be able to deal well with a wide variety
of target languages without any significant manual
adaptations. While some of the proposed frame-
works could potentially be language-independent,
little research has been done to confirm it yet.
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There are a few obstacles that may hinder apply-
ing common pattern-based methods to other lan-
guages. Many studies utilize parsing or POS tag-
ging, which frequently depends on the availabil-
ity and quality of language-specific tools. Most
studies specify seed patterns in advance, and it is
not clear whether translated patterns can work well
on different languages. Also, the absence of clear
word segmentation in some languages (e.g., Chi-
nese) can make many methods inapplicable.

A few recently proposed concept acquisition
methods require only a handful of seed words
(Davidov et al., 2007; Pasca and Van Durme,
2008). While these studies avoid some of the ob-
stacles above, it still remains unconfirmed whether
such methods are indeed language-independent.
In the concept extension part of our algorithm we
adapt our concept acquisition framework (Davi-
dov and Rappoport, 2006; Davidov et al., 2007;
Davidov and Rappoport, 2008a; Davidov and
Rappoport, 2008b) to suit diverse languages, in-
cluding ones without explicit word segmentation.
In our evaluation we confirm the applicability of
the adapted methods to 45 languages.

Our study is related to cross-language infor-
mation retrieval (CLIR/CLEF) frameworks. Both
deal with information extracted from a set of lan-
guages. However, the majority of CLIR stud-
ies pursue different targets. One of the main
CLIR goals is the retrieval ofdocumentsbased
on explicit queries, when the document lan-
guage is not the query language (Volk and Buite-
laar, 2002). These frameworks usually develop
language-specific tools and algorithms including
parsers, taggers and morphology analyzers in or-
der to integrate multilingualqueries and docu-
ments(Jagarlamudi and Kumaran, 2007). Our
goal is to develop and evaluate alanguage-
independentmethod for the translation and exten-
sion oflexical categories. While our goals are dif-
ferent from CLIR, CLIR systems can greatly ben-
efit from our framework, since our translated cate-
gories can be directly utilized for subsequent doc-
ument retrieval.

Another field indirectly related to our research
is Machine Translation (MT). Many MT tasks re-
quire automated creation or improvement of dic-
tionaries (Koehn and Knight, 2001). However,
MT mainly deals with translation and disambigua-
tion of words at the sentence or document level,
while we translate whole concepts defined inde-

pendently of contexts. Our primary target is not
translation of given words, but the discovery and
extension of a concept in a target language when
the concept definition is given in some different
source language.

3 Cross-lingual Concept Translation
Framework

Our framework has three main stages: (1) given
a set of words in a source language as definition
for some concept, we automatically translate them
to the target language with multilingual dictionar-
ies, disambiguating translations using web counts;
(2) we retrieve from the web snippets where these
translations co-appear; (3) we apply a pattern-
based concept extension algorithm for discovering
additional terms from the retrieved data.

3.1 Concept words and sense selection

We start from a set of words denoting a category
in a source language. Thus we may use words
like (apple, banana, ...)as the definition of fruits
or (bear, wolf, fox, ...) as the definition of wild
animals2. Each of these words can be ambiguous.
Multilingual dictionaries usually provide many
translations, one or more for each sense. We need
to select the appropriate translation for each term.
In practice, some or even most of the category
terms may be absent in available dictionaries.
In these cases, we attempt to extract “chain”
translations, i.e., if we cannot find Source→Target
translation, we can still find some indirect
Source→Intermediate1→Intermediate2→Target
paths. Such translations are generally much
more ambiguous, hence we allow up to two
intermediate languages in a chain. We collect all
possible translations at the chains having minimal
length, and skip category terms for whom this
process results in no translations.

Then we use the conjecture that terms of the
same concept tend to co-appear more frequently
than ones belonging to different concepts3. Thus,

2In order to reduce noise, we limit the length (in words)
of multiword expressions considered as terms. To calculate
this limit for a language we randomly take 100 terms from
the appropriate dictionary and set a limit asLimmwe =
round(avg(length(w))) wherelength(w) is the number of
words in termw. For languages like Chinese without inherent
word segmentation,length(w) is the number of characters in
w. While for many languagesLimmwe = 1, some languages
like Vietnamese usually require two words or more to express
terms.

3Our results in this paper support this conjecture.
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we select a translation of a term co-appearing
most frequently with some translation of a differ-
ent term of the same concept. We estimate how
well translations of different terms are connected
to each other. LetC = {Ci} be the given seed
words for some concept. LetTr(Ci, n) be the
n-th available translation of wordCi andCnt(s)
denote the web count of strings obtained by a
search engine. Then we select translationTr(Ci)
according to:

F (w1, w2) =
Cnt(“w1 ∗ w2”) × Cnt(“w2 ∗ w1”)

Cnt(w1) × Cnt(w2)

Tr(Ci) =
argmax

si

(

max
sj

j 6=i

(F (Tr(Ci, si), T r(Cj , sj)))

)

We utilize theY ahoo! “x * y” wildcard that al-
lows to count only co-appearances where x and y
are separated by a single word. As a result, we ob-
tain a set of disambiguated term translations. The
number of queries in this stage depends on the am-
biguity of concept terms translation to the target
language. Unlike many existing disambiguation
methods based on statistics obtained from parallel
corpora, we take a rather simplistic query-based
approach. This approach is powerful (as shown
in our evaluation) and only relies on a few web
queries in a language independent manner.

3.2 Web mining for translation contexts

We need to restrict web mining to specific tar-
get languages. This restriction is straightforward
if the alphabet or term translations are language-
specific or if the search API supports restriction to
this language4. In case where there are no such
natural restrictions, we attempt to detect and add
to our queries a few language-specific frequent
words. Using our dictionaries, we find 1–3 of the
15 most frequent words in a desired language that
are unique to that language, and we ‘and’ them
with the queries to ensure selection of the proper
language. While some languages as Esperanto do
not satisfy any of these requirements, more than
60 languages do.

For each pairA, B of disambiguated term trans-
lations, we construct and execute the following 2
queries: {“A * B”, “B * A” }5. When we have
3 or more terms we also add{A B C . . .}-like
conjunction queries which include 3–5 terms. For
languages withLimmwe > 1, we also construct

4Yahoo! allows restrictions for 42 languages.
5These are Yahoo! queries where enclosing words in “”

means searching for an exact phrase and “*” means a wild-
card for exactly one arbitrary word.

queries with several “*” wildcards between terms.
For each query we collect snippets containing text
fragments of web pages. Such snippets frequently
include the search terms. SinceY ahoo! allows re-
trieval of up to the1000 first results (100 in each
query), we collect several thousands snippets. For
most of the target languages and categories, only a
few dozen queries (20 on the average) are required
to obtain sufficient data. Thus the relevant data
can be downloaded in seconds. This makes our
approach practical for on-demand retrieval tasks.

3.3 Pattern-based extension of concept terms

First we extract from the retrieved snippets con-
texts where translated terms co-appear, and de-
tect patterns where they co-appear symmetrically.
Then we use the detected patterns to discover ad-
ditional concept terms. In order to define word
boundaries, for each target language we manu-
ally specify boundary characters such as punctu-
ation/space symbols. This data, along with dic-
tionaries, is the only language-specific data in our
framework.

3.3.1 Meta-patterns

Following (Davidov et al., 2007) we seek symmet-
ric patterns to retrieve concept terms. We use two
meta-pattern types. First, aTwo-Slotpattern type
constructed as follows:

[Prefix] C1 [Infix] C2 [Postfix]

Ci are slots for concept terms. We allow up to
Limmwe space-separated6 words to be in a sin-
gle slot. Infix may contain punctuation, spaces,
and up toLimmwe × 4 words. Prefix and Post-
fix are limited to contain punctuation characters
and/orLimmwe words.

Terms of the same concept frequently co-appear
in lists. To utilize this, we introduce two additional
List pattern types7:

[Prefix] C1[Infix] (Ci[Infix])+ (1)

[Infix] (Ci[Infix])+ Cn [Postfix] (2)

As in (Widdows and Dorow, 2002; Davidov and
Rappoport, 2006), we define a pattern graph.
Nodes correspond to terms and patterns to edges.
If term pair(w1, w2) appears in patternP , we add
nodesNw1

, Nw2
to the graph and a directed edge

EP (Nw1
, Nw2

) between them.
6As before, for languages without explicit space-based

word separationLimmwe limits the number of characters in-
stead.

7(X)+ means one or more instances ofX.
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3.3.2 Symmetric patterns

We consider only symmetric patterns. We define
a symmetric pattern as a pattern where some cate-
gory termsCi, Cj appear both in left-to-right and
right-to-left order. For example, if we consider the
terms{apple, pineapple} we select a List pattern
“(one Ci, )+ and Cn.” if we find both “oneapple,
onepineapple, one guava and orange.” and “one
watermelon, onepineappleandapple.”. If no such
patterns are found, we turn to a weaker definition,
considering as symmetric those patterns where the
same terms appear in the corpus in at least two dif-
ferent slots. Thus, we select a pattern “forC1 and
C2” if we see both “forappleand guava,” and “for
orange andapple,”.

3.3.3 Retrieving concept terms

We collect terms in two stages. First, we obtain
“high-quality” core terms and then we retrieve po-
tentially more noisy ones. In the first stage we col-
lect all terms8 that are bidirectionally connected to
at least two different original translations, and call
themcore concept termsCcore. We also add the
original ones as core terms. Then we detect the
rest of the termsCrest that appear with more dif-
ferentCcore terms than with ‘out’ (non-core) terms
as follows:
Gin(c)={w∈Ccore|E(Nw, Nc) ∨ E(Nc, Nw)}
Gout(c)={w/∈Ccore|E(Nw, Nc) ∨ E(Nc, Nw)}
Crest={c| |Gin(c)|>|Gout(c)| }
where E(Na, Nb) correspond to existence of a
graph edge denoting that translated terms a and b
co-appear in a pattern in this order. Our final term
set is the union ofCcore andCrest.

For the sake of simplicity, unlike in the ma-
jority of current research, we do not attempt to
discover more patterns/instances iteratively by re-
examining the data or re-querying the web. If we
have enough data, we use windowing to improve
result quality. If we obtain more than 400 snip-
pets for some concept, we randomly divide the
data into equal parts, each containing up to 400
snippets. We apply our algorithm independently
to each part and select only the words that appear
in more than one part.

4 Experimental Setup

We describe here the languages, concepts and dic-
tionaries we used in our experiments.

8We do not consider as terms the 50 most frequent words.

4.1 Languages and categories

One of the main goals in this research is to ver-
ify that the proposed basic method can be applied
to different languages unmodified. We examined
a wide variety of languages and concepts. Table
3 shows a list of 45 languages used in our experi-
ments, including west European languages, Slavic
languages, Semitic languages, and diverse Asian
languages.

Our concept set was based on English WN
synsets, while concept definitions for evaluation
were based on WN glosses. For automated evalua-
tion we selected as categories 150 synsets/subtrees
with at least 10 single-word terms in them. For
manual evaluation we used a subset of 24 of these
categories. In this subset we tried to select generic
categories, such that no domain expert knowledge
was required to check their correctness.

Ten of these categories were equal to ones used
in (Widdows and Dorow, 2002; Davidov and Rap-
poport, 2006), which allowed us to indirectly
compare to recent work. Table 1 shows these 10
concepts along with the sample terms. While the
number of tested categories is still modest, it pro-
vides a good indication for the quality of our ap-
proach.

Concept Sample terms
Musical instruments guitar, flute, piano
Vehicles/transport train, bus, car
Academic subjects physics, chemistry, psychology
Body parts hand, leg, shoulder
Food egg, butter, bread
Clothes pants, skirt, jacket
Tools hammer, screwdriver, wrench
Places park, castle, garden
Crimes murder, theft, fraud
Diseases rubella, measles, jaundice

Table 1:10 of the selected categories with sample terms.

4.2 Multilingual dictionaries

We developed a set of tools for automatic access
to several dictionaries. We used Wikipedia cross-
language links as our main source (60%) for of-
fline translation. These links include translation
of Wikipedia terms into dozens of languages. The
main advantage of using Wikipedia is its wide cov-
erage of concepts and languages. However, one
problem in using it is that it frequently encodes too
specific senses and misses common ones. Thus
bear is translated asfamily Ursidaemissing its
common “wild animal” sense. To overcome these
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difficulties, we also used Wiktionary and comple-
mented these offline resources with a few auto-
mated queries to several (20) online dictionaries.
We start with Wikipedia definitions, then if not
found, Wiktionary, and then we turn to online dic-
tionaries.

5 Evaluation and Results

While there are numerous concept acquisition
studies, no framework has been developed so far
to evaluate this type of cross-lingual concept dis-
covery, limiting our ability to perform a meaning-
ful comparison to previous work. Fair estimation
of translated concept quality is a challenging task.
For most languages there are no widely accepted
concept databases. Moreover, the contents of the
same concept may vary across languages. Fortu-
nately, when English is taken as a target language,
the English WN allows an automated evaluation of
concepts. We conducted evaluation in three differ-
ent settings, mostly relying on human judges and
utilizing the English WN where possible.

1. English as source language. We applied our
algorithm on a subset of 24 categories using
each of the 45 languages as a target language.
Evaluation is done by two judges9.

2. English as target language. All other lan-
guages served as source languages. In this
case human subjects manually provided in-
put terms for 150 concept definitions in each
of the target languages using 150 selected
English WN glosses. For each gloss they
were requested to provide at least 2 terms.
Then we ran the algorithm on these term
lists. Since the obtained results were English
words, we performed both manual evaluation
of the 24 categories and automated compari-
son to the original WN data.

3. Language pairs. We created 10 different non-
English language pairs for the 24 concepts.
Concept definitions were the same as in (2)
and manual evaluation followed the same
protocol as in (1).

The absence of exhaustive term lists makes recall
estimation problematic. In all cases we assess the
quality of the discovered lists in terms of precision
(P ) and length of retrieved lists(T ).

9For 19 of the languages, at least one judge was a native
speaker. For other languages at least one of the subjects was
fluent with this language.

5.1 Manual evaluation

Each discovered concept was evaluated by two
judges. All judges were fluent English speakers
and for each target language, at least one was a flu-
ent speaker of this language. They were given one-
line English descriptions of each category and the
full lists obtained by our algorithm for each of the
24 concepts. Table 2 shows the lists obtained by
our algorithm for the category described asRela-
tives(e.g., grandmother) for several language pairs
including Hebrew→French and Chinese→Czech.
We mixed “noise” words into each list of terms10.
These words were automatically and randomly ex-
tracted from the same text. Subjects were re-
quired to select all words fitting the provided de-
scription. They were unaware of algorithm details
and desired results. They were instructed to ac-
cept common abbreviations, alternative spellings
or misspellings like yel

¯
ow∈color and to accept a

term as belonging to a category if at least one
of its senses belongs to it, like orange∈color and
orange∈fruit. They were asked to reject terms re-
lated or associated but not belonging to the target
category, like tasty/∈food, or that are too general,
like animal/∈dogs.

The first 4 columns of Table 3 show averaged
results of manual evaluation for 24 categories. In
the first two columns English is used as a source
language and in the next pair of columns English is
used as the target. In addition we display in paren-
theses the amount of terms added during the ex-
tension stage. We can see that for all languages,
average precision (% of correct terms in concept)
is above 80, and frequently above 90, and the aver-
age number of extracted terms is above 30. Inter-
nal concept quality is in line with values observed
on similarly evaluated tasks for recent concept ac-
quisition studies in English. As a baseline, only
3% of the inserted 20-40% noise words were in-
correctly labeled by judges. Due to space limita-
tion we do not show the full per-concept behavior;
all medians forP andT were close to the average.

We can also observe that the majority(> 60%)
of target language terms were obtained during the
extension stage. Thus, even when considering
translation from a rich language such as English
(where given concepts frequently contain dozens
of terms), most of the discovered target language
terms are not discovered through translation but

10To reduce annotator bias, we used a different number of
noise words, adding 20–40% of the original number of words.
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English→Portuguese:
afilhada,afilhado,amigo,avó,av̂o,bisav́o,bisav̂o,
bisneta,bisneto,ĉonjuge,cunhada,cunhado,companheiro,
descendente,enteado,filha,filho,irmã,irmão,irm̃aos,irm̃as,
madrasta,madrinha,m̃ae,marido,mulher,namorada,
namorado,neta,neto,noivo,padrasto,pai,papai,parente,
prima,primo,sogra,sogro,sobrinha,sobrinho,tia,tio,vizinho
Hebrew→French:
amant,ami,amie,amis,arrière-grand-m̀ere,
arrière-grand-p̀ere,beau-fr̀ere,beau-parent,beau-père,bebe,
belle-fille,belle-m̀ere,belle-soeur,b̀eb̀e,compagnon,
concubin,conjoint,cousin,cousine,demi-frère,demi-soeur,
épouse,́epoux,enfant,enfants,famille,femme,fille,fils,foyer,
frère,garcon,grand-m̀ere,grand-parent,grand-père,
grands-parents,maman,mari,mère,neveu,nièce,oncle,
papa,parent,p̀ere,petit-enfant,petit-fils,soeur,tante
English→Spanish:
abuela,abuelo,amante,amiga,amigo,confidente,bisabuelo,
cuñada,cũnado,ćonyuge,esposa,esposo,espı́ritu,familia,
familiar,hermana,hermano,hija,hijo,hijos,madre,marido,
mujer,nieta,nieto,niño, novia,padre,papá,primo,sobrina,
sobrino,suegra,suegro,tı́a,t́ıo,tutor, viuda,viudo
Chinese→Czech:
babǐcka,bratr,bŕacha,chlapec,dcera,děda,ďeděcek,druh,
kamaŕad,kamaŕadka,mama,manžel,maňzelka,matka,
muž,otec,podnajemnik,přı́telkyně, sestra,starš́ı,stŕyc,
strýček, syn,śegra,tch́an,tchyňe,teta,vnuk,vnǔcka,̌zena

Table 2:Sample of results for the Relatives concept. Note
that precision is not 100% (e.g. the Portuguese set includes
‘friend’ and ‘neighbor’).

during the subsequent concept extension. In fact,
brief examination shows that less than half of
source language terms successfully pass transla-
tion and disambiguation stage. However, more
than 80% of terms which were skipped due to lack
of available translations were re-discovered in the
target language during the extension stage, along
with the discovery of new correct terms not exist-
ing in the given source definition.

The first two columns of Table 4 show similar
results for non-English language pairs. We can see
that these results are only slightly inferior to the
ones involving English.

5.2 WordNet based evaluation

We applied our algorithm on 150 concepts with
English used as the target language. Since we
want to consider common misspellings and mor-
phological combinations of correct terms as hits,
we used a basic speller and stemmer to resolve
typos and drop some English endings. The WN
columns in Table 3 displayP and T values for
this evaluation. In most cases we obtain> 85%
precision. While these results (P=87,T=17) are
lower than in manual evaluation, the task is much
harder due to the large number (and hence sparse-
ness) of the utilized 150 WN categories and the

incomplete nature of WN data. For the 10 cat-
egories of Table 1 used in previous work, we
have obtained (P=92,T=41) which outperforms
the seed-based concept acquisition of (Widdows
and Dorow, 2002; Davidov and Rappoport, 2006)
(P=90,T=35) on the same concepts. However, it
should be noted that our task setting is substan-
tially different since we utilize more seeds and
they come from languages different from English.

5.3 Effect of dictionary size and source
category size

The first stage in our framework heavily relies on
the existence and quality of dictionaries, whose
coverage may be insufficient. In order to check
the effect of dictionary coverage on our task, we
re-evaluated 10 language pairs using reduced dic-
tionaries containing only the 1000 most frequent
words. The last columns in Table 4 show evalu-
ation results for such reduced dictionaries. Sur-
prisingly, while we see a difference in coverage
and precision, this difference is below 8%, thus
even basic 1000-word dictionaries may be useful
for some applications.

This may suggest that only a few correct trans-
lations are required for successful discovery of
the corresponding category. Hence, even a small
dictionary containing translations of the most fre-
quent terms could be enough. In order to test
this hypothesis, we re-evaluated the 10 language
pairs using full dictionaries while reducing the
initial concept definition to the 3 most frequent
words. The results of this experiment are shown at
columns 3–4 of Table 4. We can see that for most
language pairs, 3 seeds were sufficient to achieve
equally good results, and providing more exten-
sive concept definitions had little effect on perfor-
mance.

5.4 Variance analysis

We obtained high precision. However, we also ob-
served high variance in the number of terms be-
tween different language pairs for the same con-
cept. There are many possible reasons for this out-
come. Below we briefly discuss some of them; de-
tailed analysis of inter-language and inter-concept
variance is a major target for future work.

Web coverage of languages is not uniform (Pao-
lillo et al., 2005); e.g. Georgian has much less
web hits than English. Indeed, we observed a cor-
relation between reported web coverage and the
number of retrieved terms. Concept coverage and
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English English as target
Language as source

Manual Manual WN
T[xx] P T[xx] P T P

Arabic 29 [12] 90 41 [35] 91 17 87
Armenian 27 [21] 93 40 [32] 92 15 86
Afrikaans 40 [29] 89 51 [28] 86 19 85
Bengali 23 [18] 95 42 [34] 93 18 88
Belorussian 23 [15] 91 43 [30] 93 17 87
Bulgarian 46 [36] 85 58 [33] 87 19 83
Catalan 45 [29] 81 56 [46] 88 21 86
Chinese 47 [34] 87 56 [22] 90 22 89
Croatian 46 [26] 90 57 [35] 92 16 89
Czech 58 [40] 89 65 [39] 94 23 88
Danish 48 [35] 94 59 [38] 97 17 90
Dutch 41 [28] 92 60 [36] 94 20 88
Estonian 35 [21] 96 47 [24] 96 16 90
Finnish 34 [21] 88 47 [29] 90 19 85
French 56 [30] 89 61 [31] 93 17 87
Georgian 22 [15] 95 39 [31] 96 16 90
German 54 [32] 91 62 [34] 92 21 83
Greek 27 [16] 93 44 [30] 95 17 91
Hebrew 38 [28] 93 45 [32] 93 18 92
Hindi 30 [10] 92 46 [28] 93 16 86
Hungarian 43 [27] 90 44 [28] 93 15 87
Italian 45 [26] 89 51 [29] 88 16 81
Icelandic 27 [21] 90 39 [27] 92 15 85
Indonesian 33 [25] 96 49 [25] 95 15 90
Japanese 40 [16] 89 50 [22] 91 20 83
Kazakh 22 [14] 96 43 [36] 97 16 92
Korean 33 [15] 88 46 [29] 89 16 85
Latvian 41 [30] 92 55 [46] 90 19 83
Lithuanian 36 [26] 94 44 [35] 95 16 89
Norwegian 37 [25] 89 46 [29] 93 15 85
Persian 17 [6] 98 40 [29] 96 15 92
Polish 38 [25] 89 55 [36] 92 17 96
Portuguese 55 [34] 87 64 [33] 90 21 85
Romanian 46 [29] 93 56 [25] 96 15 91
Russian 58 [40] 91 65 [35] 92 22 84
Serbian 19 [11] 93 36 [30] 95 17 90
Slovak 32 [20] 89 56 [39] 90 15 87
Slovenian 28 [16] 94 43 [36] 95 18 89
Spanish 53 [37] 90 66 [32] 91 23 85
Swedish 52 [33] 89 62 [39] 93 16 87
Thai 26 [13] 95 41 [34] 97 16 92
Turkish 42 [33] 92 50 [25] 93 16 88
Ukrainian 47 [33] 88 54 [28] 88 16 83
Vietnamese 26 [8] 84 48 [25] 89 15 82
Urdu 27 [14] 84 42 [36] 88 14 82
Average 38 [24] 91 50 [32] 92 17 87

Table 3: Concept translation and extension results. The
first column shows the 45 tested languages.Bold are lan-
guages evaluated with at least one native speaker. P: preci-
sion, T: number of retrieved terms. “[xx]”: number of terms
added during the concept extension stage. Columns 1-4 show
results for manual evaluation on 24 concepts. Columns 5-6
show automated WN-based evaluation on 150 concepts. For
columns 1-2 the input category is given in English, in other
columns English served as the target language.

content is also different for each language. Thus,
concepts involving fantasy creatures were found
to have little coverage in Arabic and Hindi, and
wide coverage in European languages. For ve-
hicles, Snowmobile was detected in Finnish and

Language pair Regular Reduced Reduced
Source-Target data seed dict.

T[xx] P T P T P
Hebrew-French 43[28] 89 39 90 35 87
Arabic-Hebrew 31[24] 90 25 94 29 82
Chinese-Czech 35[29] 85 33 84 25 75
Hindi-Russian 45[33] 89 45 87 38 84
Danish-Turkish 28[20] 88 24 88 24 80
Russian-Arabic 28[18] 87 19 91 22 86
Hebrew-Russian 45[31] 92 44 89 35 84
Thai-Hebrew 28[25] 90 26 92 23 78
Finnish-Arabic 21[11] 90 14 92 16 84
Greek-Russian 48[36] 89 47 87 35 81
Average 35[26] 89 32 89 28 82

Table 4: Results for non-English pairs. P: precision, T:
number of terms. “[xx]”: number of terms added in the exten-
sion stage. Columns 1-2 show results for normal experiment
settings, 3-4 show data for experiments where the 3 most fre-
quent terms were used as concept definitions, 5-6 describe
results for experiment with 1000-word dictionaries.

Swedish while Rickshaw appears in Hindi.
Morphology was completely neglected in this

research. To co-appear in a text, terms frequently
have to be in a certain form different from that
shown in dictionaries. Even in English, plurals
like spoons, forksco-appear more thanspoon,
fork. Hence dictionaries that include morphol-
ogy may greatly improve the quality of our frame-
work. We have conducted initial experiments with
promising results in this direction, but we do not
report them here due to space limitations.

6 Conclusions

We proposed a framework that when given a set
of terms for a category in some source language
uses dictionaries and the web to retrieve a similar
category in a desired target language. We showed
that the same pattern-based method can success-
fully extend dozens of different concepts for many
languages with high precision. We observed that
even when we have very few ambiguous transla-
tions available, the target language concept can
be discovered in a fast and precise manner with-
out relying on any language-specific preprocess-
ing, databases or parallel corpora. The average
concept total processing time, including all web
requests, was below 2 minutes11. The short run-
ning time and the absence of language-specific re-
quirements allow processing queries within min-
utes and makes it possible to apply our method to
on-demand cross-language concept mining.

11We used a single PC with ADSL internet connection.
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Abstract

We describe a methodology for learning a
disambiguation model for deep pragmatic
interpretations in the context of situated
task-oriented dialogue. The system accu-
mulates training examples for ambiguity
resolution by tracking the fates of alter-
native interpretations across dialogue, in-
cluding subsequent clarificatory episodes
initiated by the system itself. We illus-
trate with a case study building maxi-
mum entropy models over abductive in-
terpretations in a referential communica-
tion task. The resulting model correctly re-
solves 81% of ambiguities left unresolved
by an initial handcrafted baseline. A key
innovation is that our method draws exclu-
sively on a system’s own skills and experi-
ence and requires no human annotation.

1 Introduction

In dialogue, the basic problem of interpretation is
to identify the contribution a speaker is making to
the conversation. There is much to recognize: the
domain objects and properties the speaker is refer-
ring to; the kind of action that the speaker is per-
forming; the presuppositions and implicatures that
relate that action to the ongoing task. Neverthe-
less, since the seminal work of Hobbs et al. (1993),
it has been possible to conceptualize pragmatic in-
terpretation as a unified reasoning process that se-
lects a representation of the speaker’s contribution
that is most preferred according to a background
model of how speakers tend to behave.

In principle, the problem of pragmatic interpre-
tation is qualitatively no different from the many
problems that have been tackled successfully by
data-driven models in NLP. However, while re-
searchers have shown that it is sometimes possi-
ble to annotate corpora that capture features of in-

terpretation, to provide empirical support for the-
ories, as in (Eugenio et al., 2000), or to build
classifiers that assist in dialogue reasoning, as in
(Jordan and Walker, 2005), it is rarely feasible
to fully annotate the interpretations themselves.
The distinctions that must be encoded are subtle,
theoretically-loaded and task-specific—and they
are not always signaled unambiguously by the
speaker. See (Poesio and Vieira, 1998; Poesio
and Artstein, 2005), for example, for an overview
of problems of vagueness, underspecification and
ambiguity in reference annotation.

As an alternative to annotation, we argue here
that dialogue systems can and should prepare
their own training data by inference from under-
specified models, which provide sets of candi-
date meanings, and from skilled engagement with
their interlocutors, who know which meanings are
right. Our specific approach is based on contribu-
tion tracking (DeVault, 2008), a framework which
casts linguistic inference in situated, task-oriented
dialogue in probabilistic terms. In contribution
tracking, ambiguous utterances may result in alter-
native possible contexts. As subsequent utterances
are interpreted in those contexts, ambiguities may
ramify, cascade, or disappear, giving new insight
into the pattern of activity that the interlocutor is
engaged in. For example, consider what happens
if the system initiates clarification. The interlocu-
tor’s answer may indicate not only what they mean
now but also what they must have meant earlier
when they used the original ambiguous utterance.

Contribution tracking allows a system to accu-
mulate training examples for ambiguity resolution
by tracking the fates of alternative interpretations
across dialogue. The system can use these ex-
amples to improve its models of pragmatic inter-
pretation. To demonstrate the feasibility of this
approach in realistic situations, we present a sys-
tem that tracks contributions to a referential com-
munication task using an abductive interpretation
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model: see Section 2. A user study with this sys-
tem, described in Section 3, shows that this sys-
tem can, in the course of interacting with its users,
discover the correct interpretations of many poten-
tially ambiguous utterances. The system thereby
automatically acquires a body of training data in
its native representations. We use this data to build
a maximum entropy model of pragmatic interpre-
tation in our referential communication task. After
training, we correctly resolve 81% of the ambigu-
ities left open in our handcrafted baseline.

2 Contribution tracking

We continue a tradition of research that uses sim-
ple referential communication tasks to explore the
organization and processing of human–computer
and mediated human–human conversation, includ-
ing recently (DeVault and Stone, 2007; Gergle
et al., 2007; Healey and Mills, 2006; Schlangen
and Fernández, 2007). Our specific task is a two-
player object-identification game adapted from the
experiments of Clark and Wilkes-Gibbs (1986)
and Brennan and Clark (1996); see Section 2.1.
To play this game, our agent, COREF, inter-
prets utterances as performing sequences of task-
specific problem-solving acts using a combination
of grammar-based constraint inference and abduc-
tive plan recognition; see Section 2.2. Crucially,
COREF’s capabilities also include the ambiguity
management skills described in Section 2.3, in-
cluding policies for asking and answering clarifi-
cation questions.

2.1 A referential communication task
The game plays out in a special-purpose graphical
interface, which can support either human–human
or human–agent interactions. Two players work
together to create a specific configuration of ob-
jects, or a scene, by adding objects into the scene
one at a time. Their interfaces display the same set
of candidate objects (geometric objects that differ
in shape, color and pattern), but their locations are
shuffled. The shuffling undermines the use of spa-
tial expressions such as “the object at bottom left”.
Figures 1 and 2 illustrate the different views.1

1Note that in a human–human game, there are literally
two versions of the graphical interface on the separate com-
puters the human participants are using. In a human–agent
interaction, COREF does not literally use the graphical inter-
face, but the information that COREF is provided is limited
to the information the graphical interface would provide to a
human participant. For example, COREF is not aware of the
locations of objects on its partner’s screen.

Present: [c4, Agent], Active: [] 

Skip this objectContinue (next object) or You (c4:) 

c4: brown diamond

c4: yes

History  

Candidate Objects    Your scene    

Figure 1: A human user plays an object identifi-
cation game with COREF. The figure shows the
perspective of the user (denoted c4). The user is
playing the role of director, and trying to identify
the diamond at upper right (indicated to the user
by the blue arrow) to COREF.

Present: [c4, Agent], Active: [] 

Skip this object or You (Agent:) 

c4: brown diamond

c4: yes

History  

Candidate Objects    Your scene    

Figure 2: The conversation of Figure 1 from
COREF’s perspective. COREF is playing the role
of matcher, and trying to determine which object
the user wants COREF to identify.

As in the experiments of Clark and Wilkes-
Gibbs (1986) and Brennan and Clark (1996), one
of the players, who plays the role of director,
instructs the other player, who plays the role of
matcher, which object is to be added next to the
scene. As the game proceeds, the next target ob-
ject is automatically determined by the interface
and privately indicated to the director with a blue
arrow, as shown in Figure 1. (Note that the corre-
sponding matcher’s perspective, shown in Figure
2, does not include the blue arrow.) The director’s
job is then to get the matcher to click on (their ver-
sion of) this target object.

To achieve agreement about the target, the two
players can exchange text through an instant-
messaging modality. (This is the only communi-
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cation channel.) Each player’s interface provides
a real-time indication that their partner is “Active”
while their partner is composing an utterance, but
the interface does not show in real-time what is
being typed. Once the Enter key is pressed, the
utterance appears to both players at the bottom of
a scrollable display which provides full access to
all the previous utterances in the dialogue.

When the matcher clicks on an object they be-
lieve is the target, their version of that object is pri-
vately moved into their scene. The director has no
visible indication that the matcher has clicked on
an object. However, the director needs to click the
Continue (next object) button (see Fig-
ure 1) in order to move the current target into the
director’s scene, and move on to the next target
object. This means that the players need to discuss
not just what the target object is, but also whether
the matcher has added it, so that they can coordi-
nate on the right moment to move on to the next
object. If this coordination succeeds, then after
the director and matcher have completed a series
of objects, they will have created the exact same
scene in their separate interfaces.

2.2 Interpreting user utterances
COREF treats interpretation broadly as a prob-
lem of abductive intention recognition (Hobbs et
al., 1993).2 We give a brief sketch here to high-
light the content of COREF’s representations, the
sources of information that COREF uses to con-
struct them, and the demands they place on disam-
biguation. See DeVault (2008) for full details.

COREF’s utterance interpretations take the
form of action sequences that it believes would
constitute coherent contributions to the dialogue
task in the current context. Interpretations are con-
structed abductively in that the initial actions in
the sequence need not be directly tied to observ-
able events; they may be tacit in the terminology
of Thomason et al. (2006). Examples of such tacit
actions include clicking an object, initiating a clar-
ification, or abandoning a previous question. As
a concrete example, consider utterance (1b) from
the dialogue of Figure 1, repeated here as (1):

(1) a. COREF: is the target round?
b. c4: brown diamond
c. COREF: do you mean dark brown?
d. c4: yes

2In fact, the same reasoning interprets utterances, button
presses and the other actions COREF observes!

In interpreting (1b), COREF hypothesizes that the
user has tacitly abandoned the agent’s question in
(1a). In fact, COREF identifies two possible inter-
pretations for (1b):

i2,1= 〈 c4:tacitAbandonTasks[2],
c4:addcr[t7,rhombus(t7)],
c4:setPrag[inFocus(t7)],
c4:addcr[t7,saddlebrown(t7)]〉

i2,2= 〈 c4:tacitAbandonTasks[2],
c4:addcr[t7,rhombus(t7)],
c4:setPrag[inFocus(t7)],
c4:addcr[t7,sandybrown(t7)]〉

Both interpretations begin by assuming that
user c4 has tacitly abandoned the previous ques-
tion, and then further analyze the utterance as per-
forming three additional dialogue acts. When a di-
alogue act is preceded by tacit actions in an inter-
pretation, the speaker of the utterance implicates
that the earlier tacit actions have taken place (De-
Vault, 2008). These implicatures are an important
part of the interlocutors’ coordination in COREF’s
dialogues, but they are a major obstacle to annotat-
ing interpretations by hand.

Action sequences such as i2,1 and i2,2 are coher-
ent only when they match the state of the ongoing
referential communication game and the seman-
tic and pragmatic status of information in the dia-
logue. COREF tracks these connections by main-
taining a probability distribution over a set of di-
alogue states, each of which represents a possi-
ble thread that resolves the ambiguities in the di-
alogue history. For performance reasons, COREF
entertains up to three alternative threads of inter-
pretation; COREF strategically drops down to the
single most probable thread at the moment each
object is completed. Each dialogue state repre-
sents the stack of processes underway in the ref-
erential communication game; constituent activi-
ties include problem-solving interactions such as
identifying an object, information-seeking interac-
tions such as question–answer pairs, and ground-
ing processes such as acknowledgment and clari-
fication. Dialogue states also represent pragmatic
information including recent utterances and refer-
ents which are salient or in focus.

COREF abductively recognizes the intention I
of an actor in three steps. First, for each dia-
logue state sk, COREF builds a horizon graph of
possible tacit action sequences that could be as-
sumed coherently, given the pending tasks (De-
Vault, 2008).

Second, COREF uses the horizon graph and
other resources to solve any constraints associ-
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ated with the observed action. This step instanti-
ates any free parameters associated with the action
to contextually relevant values. For utterances,
the relevant constraints are identified by parsing
the utterance using a hand-built, lexicalized tree-
adjoining grammar. In interpreting (1b), the parse
yields an ambiguity in the dialogue act associated
with the word “brown”, which may mean either
of the two shades of brown in Figure 1, which
COREF distinguishes using its saddlebrown
and sandybrown concepts.

Once COREF has identified a set of interpre-
tations {it,1, ..., it,n} for an utterance o at time t,
the last step is to assign a probability to each. In
general, we conceive of this following Hobbs et
al. (1993): the agent should weigh the different
assumptions that went into constructing each in-
terpretation.3 Ultimately, this process should be
made sensitive to the rich range of factors that
are available from COREF’s deep representation
of the dialogue state and the input utterance—this
is our project in this paper. However, in our initial
implemented prototype, COREF assigned these
probabilities using a simple hand-built model con-
sidering only NT, the number of tacit actions ab-
ductively assumed to occur in an interpretation:

P (I = it,j |o, St = sk) ∝
1

NT(it,j) + 1
(1)

In effect, this is a “null hypothesis” that assigns
relatively uniform weights to different abductive
hypotheses.

2.3 Interactive disambiguation
COREF uses its probabilistic model of context in
order to tolerate ambiguity as it moves forward
with its dialogues and to resolve ambiguity over
time. We have put particular effort into COREF’s
skills with three kinds of ambiguity: word-sense
ambiguities, where COREF finds multiple resolu-
tions for the domain concept evoked by the use
of a lexical item, as in the interaction (1) of Fig-
ure 1; referential ambiguities, where COREF takes
a noun phrase to be compatible with multiple ob-
jects from the display; and speech act ambiguities,
where alternative interpretations communicate or
implicate different kinds of contributions to the
ongoing task.

The resolution of ambiguity may involve some
combination of asking questions of the user, ag-

3Though note that Hobbs et al. do not explicitly construe
their weights in terms of probabilities.

Figure 3: A human user plays the director role in
an object identification game with COREF. The
figure shows the perspective of the user.

gregating information provided by the user across
multiple turns of dialogue, and strategically drop-
ping threads of interpretation. For example,
COREF represents the context resulting from (1b)
in terms of two states: one from interpretation i2,1

and one from i2,2. COREF asks a clarification
question (1c); the user’s explicit answer yes allows
COREF to discard one of the possible states and
allocate all its probability mass to the other one.

The dialogue in (2) shows an alternative case.

(2) a. c1: color is orange
b. c1: shape is diamond
c. COREF: ok

The example is taken from the setting shown in
Figure 3. In this case, COREF finds two colors on
the screen it thinks the user could intend to evoke
with the word orange; the peachy orange of the di-
amond and circle on the top row and the brighter
orange of the solid and empty squares in the mid-
dle column. COREF responds to the ambiguity by
introducing two states which track the alternative
colors. Immediately COREF gets an additional
description from the user, and adds the constraint
that the object is a diamond. As there is no bright
orange diamond, there is no way to interpret the
user’s utterance in the bright orange state; COREF
discards this state and allocates all its probability
mass to the other one.

3 Inferring the fates of interpretations

Our approach is based on the observation that
COREF’s contribution tracking can be viewed as
assigning a fate to every dialogue state it enter-
tains as part of some thread of interpretation. In
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particular, if we consider the agent’s contribution
tracking retrospectively, every dialogue state can
be assigned a fate of correct or incorrect, where a
state is viewed as correct if it or some of its descen-
dants eventually capture all the probability mass
that COREF is distributing across the viable sur-
viving states, and incorrect otherwise.

In general, there are two ways that a state can
end up with fate incorrect. One way is that the
state and all of its descendants are eventually de-
nied any probability mass due to a failure to in-
terpret a subsequent utterance or action as a co-
herent contribution from any of those states. In
this case, we say that the incorrect state was elimi-
nated. The second way a state can end up incorrect
is if COREF makes a strategic decision to drop the
state, or all of its surviving descendants, at a time
when the state or its descendants were assigned
nonzero probability mass. In this case we say that
the incorrect state was dropped. Meanwhile, be-
cause COREF drops all states but one after each
object is completed, there is a single hypothesized
state at each time t whose descendants will ulti-
mately capture all of COREF’s probability mass.
Thus, for each time t, COREF will retrospectively
classify exactly one state as correct.

Of course, we really want to classify interpre-
tations. Because we seek to estimate P (I =
it,j |o, St = sk), which conditions the probability
assigned to I = it,j on the correctness of state
sk, we consider only those interpretations arising
in states that are retrospectively identified as cor-
rect. For each such interpretation, we start from
the state where that interpretation is adopted and
trace forward to a correct state or to its last surviv-
ing descendant. We classify the interpretation the
same way as that final state, either correct, elimi-
nated, or dropped.

We harvested a training set using this method-
ology from the transcripts of a previous evaluation
experiment designed to exercise COREF’s ambi-
guity management skills. The data comes from
20 subjects—most of them undergraduates par-
ticipating for course credit—who interacted with
COREF over the web in three rounds of the ref-
erential communication each. The number of ob-
jects increased from 4 to 9 to 16 across rounds;
the roles of director and matcher alternated in each
round, with the initial role assigned at random.

Of the 3275 sensory events that COREF in-
terpreted in these dialogues, from the (retrospec-

N Percentage N Percentage
0 10.53 5 0.21
1 79.76 6 0.12
2 7.79 7 0.09
3 0.85 8 0.06
4 0.58 9 0.0

Figure 4: Distribution of degree of ambiguity in
training set. The table lists percentage of events
that had a specific number N of candidate inter-
pretations constructed from the correct state.

tively) correct state, COREF hypothesized 0 inter-
pretations for 345 events, 1 interpretation for 2612
events, and more than one interpretation for 318
events. The overall distribution in the number of
interpretations hypothesized from the correct state
is given in Figure 4.

4 Learning pragmatic interpretation

We capture the fate of each interpretation it,j in a
discrete variable F whose value is correct, elimi-
nated, or dropped. We also represent each inten-
tion it,j , observation o, and state sk in terms of
features. We seek to learn a function

P (F = correct | features(it,j),
features(o),
features(sk))

from a set of training examples E = {e1, ..., en}
where, for l = 1..n, we have:

el = ( F = fate(it,j), features(it,j),
features(o), features(sk)).

We chose to train maximum entropy models
(Berger et al., 1996). Our learning framework is
described in Section 4.1; the results in Section 4.2.

4.1 Learning setup
We defined a range of potentially useful features,
which we list in Figures 5, 6, and 7. These fea-
tures formalize pragmatic distinctions that plau-
sibly provide evidence of the correct interpreta-
tion for a user utterance or action. You might
annotate any of these features by hand, but com-
puting them automatically lets us easily explore a
much larger range of possibilities. To allow these
various kinds of features (integer-valued, binary-
valued, and string-valued) to interface to the max-
imum entropy model, these features were con-
verted into a much broader class of indicator fea-
tures taking on a value of either 0.0 or 1.0.
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feature set description
NumTacitActions The number of tacit actions in it,j .
TaskActions These features represent the action type (function symbol) of

each action ak in it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, as a
string.

ActorDoesTaskAction For each Ak : ak in it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, a
feature indicates that Ak (represented as string “Agent” or
“User”) has performed action ak (represented as a string
action type, as in the TaskActions features).

Presuppositions If o is an utterance, we include a string representation of each
presupposition assigned to o by it,j . The predicate/argument
structure is captured in the string, but any gensym identifiers
within the string (e.g. target12) are replaced with
exemplars for that identifier type (e.g. target).

Assertions If o is an utterance, we include a string representation of each
dialogue act assigned to o by it,j . Gensym identifiers are
filtered as in the Presuppositions features.

Syntax If o is an utterance, we include a string representation of the
bracketed phrase structure of the syntactic analysis assigned to
o by it,j . This includes the categories of all non-terminals in
the structure.

FlexiTaskIntentionActors Given it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, we include a single
string feature capturing the actor sequence 〈A1, A2, ..., An〉 in
it,j (e.g. “User, Agent, Agent”).

Figure 5: The interpretation features, features(it,j), available for selection in our learned model.

feature set description
Words If o is an utterance, we include features that indicate the

presence of each word that occurs in the utterance.

Figure 6: The observation features, features(o), available for selection in our learned model.

feature set description
NumTasksUnderway The number of tasks underway in sk.
TasksUnderway The name, stack depth, and current task state for each task

underway in sk.
NumRemainingReferents The number of objects yet to be identified in sk.
TabulatedFacts String features representing each proposition in the

conversational record in sk (with filtered gensym identifiers).
CurrentTargetConstraints String features for each positive and negative constraint on the

current target in sk (with filtered gensym identifiers). E.g.
“positive: squareFigureObject(target)” or
“negative: solidFigureObject(target)”.

UsefulProperties String features for each property instantiated in the experiment
interface in sk. E.g. “squareFigureObject”,
“solidFigureObject”, etc.

Figure 7: The dialogue state features, features(sk), available for selection in our learned model.
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We used the MALLET maximum entropy clas-
sifier (McCallum, 2002) as an off-the-shelf, train-
able maximum entropy model. Each run involved
two steps. First, we applied MALLET’s feature
selection algorithm, which incrementally selects
features (as well as conjunctions of features) that
maximize an exponential gain function which rep-
resents the value of the feature in predicting in-
terpretation fates. Based on manual experimenta-
tion, we chose to have MALLET select about 300
features for each learned model. In the second
step, the selected features were used to train the
model to estimate probabilities. We used MAL-
LET’s implementation of Limited-Memory BFGS
(Nocedal, 1980).

4.2 Evaluation

We are generally interested in whether COREF’s
experience with previous subjects can be lever-
aged to improve its interactions with new sub-
jects. Therefore, to evaluate our approach, while
making maximal use of our available data set, we
performed a hold-one-subject-out cross-validation
using our 20 human subjects H = {h1, ..., h20}.
That is, for each subject hi, we trained a model
on the training examples associated with subjects
H \ {hi}, and then tested the model on the exam-
ples associated with subject hi.

To quantify the performance of the learned
model in comparison to our baseline, we adapt
the mean reciprocal rank statistic commonly used
for evaluation in information retrieval (Vorhees,
1999). We expect that a system will use the prob-
abilities calculated by a disambiguation model to
decide which interpretations to pursue and how to
follow them up through the most efficient interac-
tion. What matters is not the absolute probability
of the correct interpretation but its rank with re-
spect to competing interpretations. Thus, we con-
sider each utterance as a query; the disambigua-
tion model produces a ranked list of responses for
this query (candidate interpretations), ordered by
probability. We find the rank r of the correct in-
terpretation in this list and measure the outcome
of the query as 1

r . Because of its weak assump-
tions, our baseline disambiguation model actually
leaves many ties. So in fact we must compute an
expected reciprocal rank (ERR) statistic that aver-
ages 1

r over all ways of ordering the correct inter-
pretation against competitors of equal probability.

Figure 8 shows a histogram of ERR across

ERR range Hand-built
model

Learned
models

1 20.75% 81.76%
[12 , 1) 74.21% 16.35%
[13 , 1

2) 3.46% 1.26%
[0, 1

3) 1.57% 0.63%

mean(ERR) 0.77 0.92
var(ERR) 0.02 0.03

Figure 8: For the 318 ambiguous sensory events,
the distribution of the expected reciprocal of rank
of the correct interpretation, for the initial, hand-
built model and the learned models in aggregate.

the ambiguous utterances from the corpus. The
learned models correctly resolve almost 82%,
while the baseline model correctly resolves about
21%. In fact, the learned models get much of this
improvement by learning weights to break the ties
in our baseline model. The overall performance
measure for a disambiguation model is the mean
expected reciprocal rank across all examples in the
corpus. The learned model improves this metric to
0.92 from a baseline of 0.77. The difference is un-
ambiguously significant (Wilcoxon rank sum test
W = 23743.5, p < 10−15).

4.3 Selected features
Feature selection during training identified a vari-
ety of syntactic, semantic, and pragmatic features
as useful in disambiguating correct interpretations.
Selections were made from every feature set in
Figures 5, 6, and 7. It was often possible to iden-
tify relevant features as playing a role in successful
disambiguation by the learned models. For exam-
ple, the learned model trained on H \ {c4} deliv-
ered the following probabilities for the two inter-
pretations COREF found for c4’s utterance (1b):

P (I = i2,1|o, S2 = s8923) = 0.665
P (I = i2,2|o, S2 = s8923) = 0.335

The correct interpretation, i2,1, hypothesizes that
the user means saddlebrown, the darker of the
two shades of brown in the display. Among the
features selected in this model is a Presupposi-
tions feature (see Figure 5) which is present just
in case the word ‘brown’ is interpreted as mean-
ing saddlebrown rather than some other shade.
This feature allows the learned model to prefer
to interpret c4’s use of ‘brown’ as meaning this
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darker shade of brown, based on the observed lin-
guistic behavior of other users.

5 Results in context

Our work adds to a body of research learning deep
models of language from evidence implicit in an
agent’s interactions with its environment. It shares
much of its motivation with co-training (Blum and
Mitchell, 1998) in improving initial models by
leveraging additional data that is easy to obtain.
However, as the examples of Section 2.3 illustrate,
COREF’s interactions with its users offer substan-
tially more information about interpretation than
the raw text generally used for co-training. Closer
in spirit is AI research on learning vocabulary
items by connecting user vocabulary to the agent’s
perceptual representations at the time of utterance
(Oates et al., 2000; Roy and Pentland, 2002; Co-
hen et al., 2002; Yu and Ballard, 2004; Steels
and Belpaeme, 2005). Our framework augments
this information about utterance context with ad-
ditional evidence about meaning from linguistic
interaction. In general, dialogue coherence is an
important source of evidence for all aspects of lan-
guage, for both human language learning (Saxton
et al., 2005) as well as machine models. For exam-
ple, Bohus et al. (2008) use users’ confirmations
of their spoken requests in a multi-modal interface
to tune the system’s ASR rankings for recognizing
subsequent utterances.

Our work to date has a number of limitations.
First, although 318 ambiguous interpretations did
occur, this user study provided a relatively small
number of ambiguous interpretations, in machine
learning terms; and most (80.2%) of those that did
occur were 2-way ambiguities. A richer domain
would require both more data and a generative ap-
proach to model-building and search.

Second, this learning experiment has been per-
formed after the fact, and we have not yet inves-
tigated the performance of the learned model in a
follow-up experiment in which COREF uses the
learned model in interactions with its users.

A third limitation lies in the detection of
‘correct’ interpretations. Our scheme some-
times conflates the user’s actual intentions with
COREF’s subsequent assumptions about them. If
COREF decides to strategically drop the user’s
actual intended interpretation, our scheme may
mark another interpretation as ‘correct’. Alterna-
tive approaches may do better at harvesting mean-

ingful examples of correct and incorrect interpre-
tations from an agent’s dialogue experience. Our
approach also depends on having clear evidence
about what an interlocutor has said and whether
the system has interpreted it correctly—evidence
that is often unavailable with spoken input or
information-seeking tasks. Thus, even when spo-
ken language interfaces use probabilistic inference
for dialogue management (Williams and Young,
2007), new techniques may be needed to mine
their experience for correct interpretations.

6 Conclusion

We have implemented a system COREF that
makes productive use of its dialogue experience by
learning to rank new interpretations based on fea-
tures it has historically associated with correct ut-
terance interpretations. We present these results as
a proof-of-concept that contribution tracking pro-
vides a source of information that an agent can
use to improve its statistical interpretation process.
Further work is required to scale these techniques
to richer dialogue systems, and to understand the
best architecture for extracting evidence from an
agent’s interpretive experience and modeling that
evidence for future language use. Nevertheless,
we believe that these results showcase how judi-
cious system-building efforts can lead to dialogue
capabilities that defuse some of the bottlenecks to
learning rich pragmatic interpretation. In particu-
lar, a focus on improving our agents’ basic abilities
to tolerate and resolve ambiguities as a dialogue
proceeds may prove to be a valuable technique for
improving the overall dialogue competence of the
agents we build.
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Abstract

Building on work detecting errors in de-
pendency annotation, we set out to correct
local dependency errors. To do this, we
outline the properties of annotation errors
that make the task challenging and their
existence problematic for learning. For
the task, we define a feature-based model
that explicitly accounts for non-relations
between words, and then use ambiguities
from one model to constrain a second,
more relaxed model. In this way, we are
successfully able to correct many errors,
in a way which is potentially applicable to
dependency parsing more generally.

1 Introduction and Motivation

Annotation error detection has been explored for
part-of-speech (POS), syntactic constituency, se-
mantic role, and syntactic dependency annotation
(see Boyd et al., 2008, and references therein).
Such work is extremely useful, given the harm-
fulness of annotation errors for training, including
the learning of noise (e.g., Hogan, 2007; Habash
et al., 2007), and for evaluation (e.g., Padro and
Marquez, 1998). But little work has been done
to show the full impact of errors, or what types
of cases are the most damaging, important since
noise can sometimes be overcome (cf. Osborne,
2002). Likewise, it is not clear how to learn from
consistently misannotated data; studies often only
note the presence of errors or eliminate them from
evaluation (e.g., Hogan, 2007), and a previous at-
tempt at correction was limited to POS annotation
(Dickinson, 2006). By moving from annotation
error detection to error correction, we can more
fully elucidate ways in which noise can be over-
come and ways it cannot.

We thus explore annotation error correction and
its feasibility for dependency annotation, a form

of annotation that provides argument relations
among words and is useful for training and testing
dependency parsers (e.g., Nivre, 2006; McDonald
and Pereira, 2006). A recent innovation in depen-
dency parsing, relevant here, is to use the predic-
tions made by one model to refine another (Nivre
and McDonald, 2008; Torres Martins et al., 2008).
This general notion can be employed here, as dif-
ferent models of the data have different predictions
about whch parts are erroneous and can highlight
the contributions of different features. Using dif-
ferences that complement one another, we can be-
gin to sort accurate from inaccurate patterns, by
integrating models in such a way as to learn the
true patterns and not the errors. Although we focus
on dependency annotation, the methods are poten-
tially applicable for different types of annotation,
given that they are based on the similar data repre-
sentations (see sections 2.1 and 3.2).

In order to examine the effects of errors and
to refine one model with another’s information,
we need to isolate the problematic cases. The
data representation must therefore be such that it
clearly allows for the specific identification of er-
rors between words. Thus, we explore relatively
simple models of the data, emphasizing small sub-
structures (see section 3.2). This simple model-
ing is not always rich enough for full dependency
parsing, but different models can reveal conflict-
ing information and are generally useful as part of
a larger system. Graph-based models of depen-
dency parsing (e.g., McDonald et al., 2006), for
example, rely on breaking parsing down into deci-
sions about smaller substructures, and focusing on
pairs of words has been used for domain adapta-
tion (Chen et al., 2008) and in memory-based pars-
ing (Canisius et al., 2006). Exploring annotation
error correction in this way can provide insights
into more general uses of the annotation, just as
previous work on correction for POS annotation
(Dickinson, 2006) led to a way to improve POS
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tagging (Dickinson, 2007).
After describing previous work on error detec-

tion and correction in section 2, we outline in sec-
tion 3 how we model the data, focusing on individ-
ual relations between pairs of words. In section 4,
we illustrate the difficulties of error correction and
show how simple combinations of local features
perform poorly. Based on the idea that ambigui-
ties from strict, lexical models can constrain more
general POS models, we see improvement in error
correction in section 5.

2 Background

2.1 Error detection

We base our method of error correction on a
form of error detection for dependency annota-
tion (Boyd et al., 2008). The variation n-gram ap-
proach was developed for constituency-based tree-
banks (Dickinson and Meurers, 2003, 2005) and
it detects strings which occur multiple times in
the corpus with varying annotation, the so-called
variation nuclei. For example, the variation nu-
cleus next Tuesday occurs three times in the Wall
Street Journal portion of the Penn Treebank (Tay-
lor et al., 2003), twice labeled as NP and once as
PP (Dickinson and Meurers, 2003).

Every variation detected in the annotation of a
nucleus is classified as either an annotation error
or as a genuine ambiguity. The basic heuristic
for detecting errors requires one word of recur-
ring context on each side of the nucleus. The nu-
cleus with its repeated surrounding context is re-
ferred to as a variation n-gram. While the original
proposal expanded the context as far as possible
given the repeated n-gram, using only the immedi-
ately surrounding words as context is sufficient for
detecting errors with high precision (Boyd et al.,
2008). This “shortest” context heuristic receives
some support from research on first language ac-
quisition (Mintz, 2006) and unsupervised gram-
mar induction (Klein and Manning, 2002).

The approach can detect both bracketing and la-
beling errors in constituency annotation, and we
already saw a labeling error for next Tuesday. As
an example of a bracketing error, the variation nu-
cleus last month occurs within the NP its biggest
jolt last month once with the label NP and once as
a non-constituent, which in the algorithm is han-
dled through a special label NIL.

The method for detecting annotation errors can
be extended to discontinuous constituency annota-

tion (Dickinson and Meurers, 2005), making it ap-
plicable to dependency annotation, where words
in a relation can be arbitrarily far apart. Specifi-
cally, Boyd et al. (2008) adapt the method by treat-
ing dependency pairs as variation nuclei, and they
include NIL elements for pairs of words not an-
notated as a relation. The method is successful
at detecting annotation errors in corpora for three
different languages, with precisions of 93% for
Swedish, 60% for Czech, and 48% for German.1

2.2 Error correction

Correcting POS annotation errors can be done by
applying a POS tagger and altering the input POS
tags (Dickinson, 2006). Namely, ambiguity class
information (e.g., IN/RB/RP) is added to each cor-
pus position for training, creating complex ambi-
guity tags, such as <IN/RB/RP,IN>. While this
results in successful correction, it is not clear how
it applies to annotation which is not positional and
uses NIL labels. However, ambiguity class infor-
mation is relevant when there is a choice between
labels; we return to this in section 5.

3 Modeling the data

3.1 The data

For our data set, we use the written portion (sec-
tions P and G) of the Swedish Talbanken05 tree-
bank (Nivre et al., 2006), a reconstruction of the
Talbanken76 corpus (Einarsson, 1976) The written
data of Talbanken05 consists of 11,431 sentences
with 197,123 tokens, annotated using 69 types of
dependency relations.

This is a small sample, but it matches the
data used for error detection, which results in
634 shortest non-fringe variation n-grams, corre-
sponding to 2490 tokens. From a subset of 210
nuclei (917 tokens), hand-evaluation reveals error
detection precision to be 93% (195/210), with 274
(of the 917) corpus positions in need of correction
(Boyd et al., 2008). This means that 643 positions
do not need to be corrected, setting a baseline of
70.1% (643/917) for error correction.2 Following
Dickinson (2006), we train our models on the en-
tire corpus, explicitly including NIL relations (see

1The German experiment uses a more relaxed heuristic;
precision is likely higher with the shortest context heuristic.

2Detection and correction precision are different measure-
ments: for detection, it is the percentage of variation nuclei
types where at least one is incorrect; for correction, it is the
percentage of corpus tokens with the true (corrected) label.
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section 3.2); we train on the original annotation,
but not the corrections.

3.2 Individual relations

Annotation error correction involves overcoming
noise in the corpus, in order to learn the true
patterns underlying the data. This is a slightly
different goal from that of general dependency
parsing methods, which often integrate a vari-
ety of features in making decisions about depen-
dency relations (cf., e.g., Nivre, 2006; McDon-
ald and Pereira, 2006). Instead of maximizing a
feature model to improve parsing, we isolate in-
dividual pieces of information (e.g., context POS
tags), thereby being able to pinpoint, for example,
when non-local information is needed for particu-
lar types of relations and pointing to cases where
pieces of information conflict (cf. also McDonald
and Nivre, 2007).

To support this isolation of information, we use
dependency pairs as the basic unit of analysis and
assign a dependency label to each word pair. Fol-
lowing Boyd et al. (2008), we add L or R to the
label to indicate which word is the head, the left
(L) or the right (R). This is tantamount to han-
dling pairs of words as single entries in a “lex-
icon” and provides a natural way to talk of am-
biguities. Breaking the representation down into
strings whch receive a label also makes the method
applicable to other annotation types (e.g., Dickin-
son and Meurers, 2005).

A major issue in generating a lexicon is how
to handle pairs of words which are not dependen-
cies. We follow Boyd et al. (2008) and generate
NIL labels for those pairs of words which also
occur as a true labeled relation. In other words,
only word pairs which can be relations can also be
NILs. For every sentence, then, when we produce
feature lists (see section 3.3), we produce them for
all word pairs that are related or could potentially
be related, but not those which have never been
observed as a dependency pair. This selection of
NIL items works because there are no unknown
words. We use the method in Dickinson and Meur-
ers (2005) to efficiently calculate the NIL tokens.

Focusing on word pairs and not attempting to
build a a whole dependency graph allows us to ex-
plore the relations between different kinds of fea-
tures, and it has the potential benefit of not rely-
ing on possibly erroneous sister relations. From
the perspective of error correction, we cannot as-

sume that information from the other relations in
the sentence is reliable.3 This representation also
fits nicely with previous work, both in error de-
tection (see section 2.1) and in dependency pars-
ing (e.g., Canisius et al., 2006; Chen et al., 2008).
Most directly, Canisius et al. (2006) integrate such
a representation into a memory-based dependency
parser, treating each pair individually, with words
and POS tags as features.

3.3 Method of learning
We employ memory-based learning (MBL) for
correction. MBL stores all corpus instances as
vectors of features, and given a new instance, the
task of the classifier is to find the most similar
cases in memory to deduce the best class. Given
the previous discussion of the goals of correcting
errors, what seems to be needed is a way to find
patterns which do not fully generalize because of
noise appearing in very similar cases in the cor-
pus. As Zavrel et al. (1997, p. 137) state about the
advantages of MBL:

Because language-processing tasks typ-
ically can only be described as a com-
plex interaction of regularities, sub-
regularities and (families of) exceptions,
storing all empirical data as potentially
useful in analogical extrapolation works
better than extracting the main regulari-
ties and forgetting the individual exam-
ples (Daelemans, 1996).

By storing all corpus examples, as MBL does,
both correct and incorrect data is maintained, al-
lowing us to pinpoint the effect of errors on train-
ing. For our experiments, we use TiMBL, version
6.1 (Daelemans et al., 2007), with the default set-
tings. We use the default overlap metric, as this
maintains a direct connection to majority-based
correction. We could run TiMBL with different
values of k, as this should lead to better feature
integration. However, this is difficult to explore
without development data, and initial experiments
with higher k values were not promising (see sec-
tion 4.2).

To fully correct every error, one could also ex-
periment with a real dependency parser in the fu-
ture, in order to look beyond the immediate con-
text and to account for interactions between rela-

3We use POS information, which is also prone to errors,
but on a different level of annotation. Still, this has its prob-
lems, as discussed in section 4.1.
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tions. The approach to correction pursued here,
however, isolates problems for assigning depen-
dency structures, highlighting the effectiveness of
different features within the same local domain.
Initial experiments with a dependency parser were
again not promising (see section 4.2).

3.4 Integrating features

When using features for individual relations, we
have different options for integrating them. On
the one hand, one can simply additively combine
features into a larger vector for training, as de-
scribed in section 4.2. On the other hand, one can
use one set of features to constrain another set,
as described in section 5. Pulling apart the fea-
tures commonly employed in dependency parsing
can help indicate the contributions each has on the
classification.

This general idea is akin to the notion of clas-
sifier stacking, and in the realm of dependency
parsing, Nivre and McDonald (2008) successfully
stack classifiers to improve parsing by “allow[ing]
a model to learn relative to the predictions of the
other” (p. 951). The output from one classifier
is used as a feature in the next one (see also Tor-
res Martins et al., 2008). Nivre and McDonald
(2008) use different kinds of learning paradigms,
but the general idea can be carried over to a situ-
ation using the same learning mechanism. Instead
of focusing on what one learning algorithm in-
forms another about, we ask what one set of more
or less informative features can inform another set
about, as described in section 5.1.

4 Performing error correction

4.1 Challenges

The task of automatic error correction in some
sense seems straightforward, in that there are no
unknown words. Furthermore, we are looking at
identical recurring words, which should for the
most part have consistent annotation. But it is pre-
cisely this similarity of local contexts that makes
the correction task challenging.

Given that variations contain sets of corpus po-
sitions with differing labels, it is tempting to take
the error detection output and use a heuristic of
“majority rules” for the correction cases, i.e., cor-
rect the cases to the majority label. When us-
ing only information from the word sequence, this
runs into problems quickly, however, in that there
are many non-majority labels which are correct.

Some of these non-majority cases pattern in uni-
form ways and are thus more correctable; oth-
ers are less tractable in being corrected, as they
behave in non-uniform and often non-local ways.
Exploring the differences will highlight what can
and cannot be easily corrected, underscoring the
difficulties in training from erroneous annotation.

Uniform non-majority cases The first problem
with correction to the majority label is an issue
of coverage: a large number of variations are ties
between two different labels. Out of 634 shortest
non-fringe variation nuclei, 342 (53.94%) have no
majority label; for the corresponding 2490 tokens,
749 (30.08%) have no majority tag.

The variation är väg (’is way’), for example, ap-
pears twice with the same local context shown in
(1),4 once incorrectly labeled as OO-L (other ob-
ject [head on the left]) and once correctly as SP-
L (subjective predicative complement). To dis-
tinguish these two, more information is necessary
than the exact sequence of words. In this case, for
example, looking at the POS categories of the nu-
clei could potentially lead to accurate correction:
AV NN is SP-L 1032 times and OO-L 32 times
(AV = the verb “vara” (be), NN = other noun).
While some ties might require non-local informa-
tion, we can see that local—but more general—
information could accurately break this tie.

(1) kärlekens
love’s

väg
way

är/AV
is

en
a

lång
long

väg/NN
way

och
and

. . .

. . .

Secondly, in a surprising number of cases where
there is a majority tag (122 out of the 917 tokens
we have a correction for), a non-majority label
is actually correct. For the example in (2), the
string institution kvarleva (‘institution remnant’)
varies between CC-L (sister of first conjunct in bi-
nary branching analysis of coordination) and AN-
L (apposition).5 CC-L appears 5 times and AN-L
3 times, but the CC-L cases are incorrect and need
to be changed to AN-L.

(2) en
an

föråldrad
obsolete

institution/NN
institution

,/IK
,

en/EN
a

kvarleva/NN
remnant

från
from

1800-talets
the 1800s

4We put variation nuclei in bold and underline the imme-
diately surrounding context.

5Note that CC is a category introduced in the conversion
from the 1976 to the 2005 corpus.
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Other cases with a non-majority label have
other problems. In example (3), for instance, the
string under hägnet (‘under protection’) varies in
this context between HD-L (other head, 3 cases)
and PA-L (complement of preposition, 5 cases),
where the PA-L cases need to be corrected to HD-
L. Both of these categories are new, so part of the
issue here could be in the consistency of the con-
version.

(3) fria
free

liv
life

under/PR
under

hägnet/ID|NN
the protection

av/ID|PR
of

ett
a

en
one

gång
time

givet
given

löfte
promise

The additional problem is that there are other,
correlated errors in the analysis, as shown in fig-
ure 1. In the case of the correct HD analysis, both
hägnet and av are POS-annotated as ID (part of id-
iom (multi-word unit)) and are HD dependents of
under, indicating that the three words make up an
idiom. The PA analysis is a non-idiomatic analy-
sis, with hägnet as NN.

AT ET HD HD

fria liv under hägnet av ...
AJ NN PR ID ID

AT ET PA PA

fria liv under hägnet av ...
AJ NN PR NN PR

Figure 1: Erroneous POS & dependency variation

Significantly, hägnet only appears 10 times in
the corpus, all with under as its head, 5 times HD-
L and 5 times PA-L. We will not focus explicitly
on correcting these types of cases, but the example
serves to emphasize the necessity of correction at
all levels of annotation.

Non-uniform non-majority cases All of the
above cases have in common that whatever change
is needed, it needs to be done for all positions in a
variation. But this is not sound, as error detection
precision is not 100%. Thus, there are variations
which clearly must not change.

For example, in (4), there is legitimate varia-
tion between PA-L (4a) and HD-L (4b), stemming
from the fact that one case is non-idiomatic, and

the other is idiomatic, despite having identical lo-
cal context. In these examples, at least the POS
labels are different. Note, though, that in (4) we
need to trust the POS labels to overcome the simi-
larity of text, and in (3) we need to distrust them.6

(4) a. Med/PR
with

andra
other

ord/NN
words

en
an

ändamålsenlig
appropriate

...

b. Med/AB
with

andra
other

ord/ID
words

en
a

form
form

av
of

prostitution
prostitution

.

Without non-local information, some legitimate
variations are virtually irresolvable. Consider (5),
for instance: here, we find variation between SS-R
(other subject), as in (5a), and FS-R (dummy sub-
ject), as in (5b). Crucially, the POS tags are the
same, and the context is the same. What differen-
tiates these cases is that går has a different set of
dependents in the two sentences, as shown in fig-
ure 2; to use this information would require us to
trust the rest of the dependency structure or to use
a dependency parser which accurately derives the
structural differences.

(5) a. Det/PO
it

går/VV
goes

bara
just

inte
not

ihop
together

.

‘It just doesn’t add up.’

b. Det/PO
it

går/VV
goes

bara
just

inte
not

att
to

hålla
hold

ihop
together

...

...

4.2 Using local information

While some variations require non-local informa-
tion, we have seen that some cases are correctable
simply with different kinds of local information
(cf. (1)). In this paper, we will not attempt to
directly cover non-local cases or cases with POS
annotation problems, instead trying to improve the
integration of different pieces of local information.

In our experiments, we trained simple models of
the original corpus using TiMBL (see section 3.3)
and then tested on the same corpus. The models
we use include words (W) and/or tags (T) for nu-
cleus and/or context positions, where context here

6Rerunning the experiments in the paper by first running
a POS tagger showed slight degradations in precision.
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SS MA NA PL

Det går bara inte ihop
PO VV AB AB AB

FS CA NA IM ES

Det går bara inte att hålla ...
PO VV AB AB IM VV

Figure 2: Correct dependency variation

refers only to the immediately surrounding words.
These are outlined in table 1, for different mod-
els of the nucleus (Nuc.) and the context (Con.).
For instance, the model 6 representation of exam-
ple (6) (=(1)) consists of all the underlined words
and tags.

(6) kärlekens väg/NN är/AV en/EN lång/AJ
väg/NN och/++ man gör oklokt ...

In table 1, we report the precision figures for
different models on the 917 positions we have
corrections for. We report the correction preci-
sion for positions the classifier changed the label
of (Changed), and the overall correction precision
(Overall). We also report the precision TiMBL has
for the whole corpus, with respect to the original
tags (instead of the corrected tags).

# Nuc. Con. TiMBL Changed Overall
1 W - 86.6% 34.0% 62.5%
2 W, T - 88.1% 35.9% 64.8%
3 W W 99.8% 50.3% 72.7%
4 W W, T 99.9% 52.6% 73.5%
5 W, T W 99.9% 50.8% 72.4%
6 W, T W, T 99.9% 51.2% 72.6%
7 T - 73.4% 20.1% 49.5%
8 T T 92.7% 50.2% 73.2%

Table 1: The models tested

We can draw a few conclusions from these re-
sults. First, all models using contexual informa-
tion perform essentially the same—approximately
50% on changed positions and 73% overall. When
not generalizing to new data, simply adding fea-
tures (i.e., words or tags) to the model is less im-
portant than the sheer presence of context. This
is true even for some higher values of k: model

6, for example, has only 73.2% and 72.1% overall
precision for k = 2 and k = 3, respectively.

Secondly, these results confirm that the task is
difficult, even for a corpus with relatively high er-
ror detection precision (see section 2.1). Despite
high similarity of context (e.g., model 6), the best
results are only around 73%, and this is given a
baseline (no changes) of 70%. While a more ex-
pansive set of features would help, there are other
problems here, as the method appears to be over-
training. There is no question that we are learning
the “correct” patterns, i.e., 99.9% similarity to the
benchmark in the best cases. The problem is that,
for error correction, we have to overcome noise in
the data. Training and testing with the dependency
parser MaltParser (Nivre et al., 2007, default set-
tings) is no better, with 72.1% overall precision
(despite a labeled attachment score of 98.3%).

Recall in this light that there are variations for
which the non-majority label is the correct one;
attempting to get a non-majority label correct us-
ing a strict lexical model does not work. To be
able not to learn the erroneous patterns requires
a more general model. Interestingly, a more gen-
eral model—e.g., treating the corpus as a sequence
of tags (model 8)—results in equally good correc-
tion, without being a good overall fit to the cor-
pus data (only 92.7%). This model, too, learns
noise, as it misses cases that the lexical models get
correct. Simply combining the features does not
help (cf. model 6); what we need is to use infor-
mation from both stricter and looser models in a
way that allows general patterns to emerge with-
out overgeneralizing.

5 Model combination

Given the discussion in section 4.1 surrounding
examples (1)-(5), it is clear that the information
needed for correction is sometimes within the
immediate context, although that information is
needed, however, is often different. Consider the
more general models, 7 and 8, which only use POS
tag information. While sometimes this general in-
formation is effective, at times it is dramatically
incorrect. For example, for (7), the original (incor-
rect) relation between finna and erbjuda is CC-L;
the model 7 classifier selects OO-L as the correct
tag; model 8 selects NIL; and the correct label is
+F-L (coordination at main clause level).
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(7) försöker
try

finna/VV
to find

ett
a

lämpligt
suitable

arbete
job

i
in

öppna
open

marknaden
market

eller
or

erbjuda/VV
to offer

andra
other

arbetsmöjligheter
work possibilities

.

The original variation for the nucleus finna erb-
juda (‘find offer’) is between CC-L and +F-L, but
when represented as the POS tags VV VV (other
verb), there are 42 possible labels, with OO-L be-
ing the most frequent. This allows for too much
confusion. If model 7 had more restrictions on the
set of allowable tags, it could make a more sensi-
ble choice and, in this case, select the correct label.

5.1 Using ambiguity classes
Previous error correction work (Dickinson, 2006)
used ambiguity classes for POS annotation, and
this is precisely the type of information we need
to constrain the label to one which we know is rel-
evant to the current case. Here, we investigate am-
biguity class information derived from one model
integrated into another model.

There are at least two main ways we can use
ambiguity classes in our models. The first is what
we have just been describing: an ambiguity class
can serve as a constraint on the set of possible out-
comes for the system. If the correct label is in the
ambiguity class (as it usually is for error correc-
tion), this constraining can do no worse than the
original model. The other way to use an ambigu-
ity class is as a feature in the model. The success
of this approach depends on whether or not each
ambiguity class patterns in its own way, i.e., de-
fines a sub-regularity within a feature set.

5.2 Experiment details
We consider two different feature models, those
containing only tags (models 7 and 8), and add
to these ambiguity classes derived from two other
models, those containing only words (models 1
and 3). To correct the labels, we need models
which do not strictly adhere to the corpus, and the
tag-based models are best at this (see the TiMBL
results in table 1). The ambiguity classes, how-
ever, must be fairly constrained, and the word-
based models do this best (cf. example (7)).

5.2.1 Ambiguity classes as constraints
As described in section 5.1, we can use ambiguity
classes to constrain the output of a model. Specif-
ically, we take models 7 and 8 and constrain each

selected tag to be one which is within the ambi-
guity class of a lexical model, either 1 or 3. That
is, if the TiMBL-determined label is not in the am-
biguity class, we select the most likely tag of the
ones which are. If no majority label can be de-
cided from this restricted set, we fall back to the
TiMBL-selected tag. In (7), for instance, if we use
model 7, the TiMBL tag is OO-L, but model 3’s
ambiguity class restricts this to either CC-L or +F-
L. For the representation VV VV, the label CC-L
appears 315 times and +F-L 544 times, so +F-L is
correctly selected.7

The results are given in table 2, which can be
compared to the the original models 7 and 8 in ta-
ble 1, i.e., total precisions of 49.5% and 73.2%,
respectively. With these simple constraints, model
8 now outperforms any other model (75.5%), and
model 7 begins to approach all the models that use
contextual information (68.8%).

# AC Changed Total
7 1 28.5% (114/400) 57.4% (526/917)
7 3 45.9% (138/301) 68.8% (631/917)
8 1 54.0% (142/263) 74.8% (686/917)
8 3 56.7% (144/254) 75.5% (692/917)

Table 2: Constraining TiMBL with ACs

5.2.2 Ambiguity classes as features
Ambiguity classes from one model can also be
used as features for another (see section 5.1); in
this case, ambiguity class information from lexical
models (1 and 3) is used as a feature for POS tag
models (7 and 8). The results are given in table 3,
where we can see dramatically improved perfor-
mance from the original models (cf. table 1) and
generally improved performance over using ambi-
guity classes as constraints (cf. table 2).

# AC Changed Total
7 1 33.2% (122/368) 61.9% (568/917)
7 3 50.2% (131/261) 72.1% (661/917)
8 1 59.0% (148/251) 76.4% (701/917)
8 3 55.1% (130/236) 73.6% (675/917)

Table 3: TiMBL with ACs as features

If we compare the two results for model 7
(61.9% vs. 72.1%) and then the two results for
model 8 (76.4% vs. 73.6%), we observe that the

7Even if CC-L had been selected here, the choice is sig-
nificantly better than OO-L.
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better use of ambiguity classes integrates contex-
tual and non-contextual features. Model 7 (POS,
no context) with model 3 ambiguity classes (lex-
ical, with context) is better than using ambiguity
classes derived from a non-contextual model. For
model 8, on the other hand, which uses contextual
POS features, using the ambiguity class without
context (model 1) does better. In some ways, this
combination of model 8 with model 1 ambiguity
classes makes the most sense: ambiguity classes
are derived from a lexicon, and for dependency an-
notation, a lexicon can be treated as a set of pairs
of words. It is also noteworthy that model 7, de-
spite not using context directly, achieves compara-
ble results to all the previous models using context,
once appropriate ambiguity classes are employed.

5.2.3 Both methods
Given that the results of ambiguity classes as fea-
tures are better than that of constraining, we can
now easily combine both methodologies, by con-
straining the output from section 5.2.2 with the
ambiguity class tags. The results are given in ta-
ble 4; as we can see, all results are a slight im-
provement over using ambiguity classes as fea-
tures without constraining the output (table 3). Us-
ing only local context, the best model here is 3.2%
points better than the best original model, repre-
senting an improvement in correction.

# AC Changed Total
7 1 33.5% (123/367) 62.2% (570/917)
7 3 55.8% (139/249) 74.1% (679/917)
8 1 59.6% (149/250) 76.7% (703/917)
8 3 57.1% (133/233) 74.3% (681/917)

Table 4: TiMBL w/ ACs as features & constraints

6 Summary and Outlook

After outlining the challenges of error correction,
we have shown how to integrate information from
different models of dependency annotation in or-
der to perform annotation error correction. By us-
ing ambiguity classes from lexical models, both as
features and as constraints on the final output, we
saw improvements in POS models that were able
to overcome noise, without using non-local infor-
mation.

A first step in further validating these methods
is to correct other dependency corpora; this is lim-
ited, of course, by the amount of corpora with cor-

rected data available. Secondly, because this work
is based on features and using ambiguity classes, it
can in principle be applied to other types of anno-
tation, e.g., syntactic constituency annotation and
semantic role annotation. In this light, it is inter-
esting to note the connection to annotation error
detection: the work here is in some sense an ex-
tension of the variation n-gram method. Whether
it can be employed as an error detection system on
its own requires future work.

Another way in which this work can be ex-
tended is to explore how these representations and
integration of features can be used for dependency
parsing. There are several issues to work out, how-
ever, in making insights from this work more gen-
eral. First, it is not clear that pairs of words are suf-
ficiently general to treat them as a lexicon, when
one is parsing new data. Secondly, we have ex-
plicit representations for word pairs not annotated
as a dependency relation (i.e., NILs), and these are
constrained by looking at those which are the same
words as real relations. Again, one would have to
determine which pairs of words need NIL repre-
sentations in new data.
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Abstract

Spoken Language Understanding aims at
mapping a natural language spoken sen-
tence into a semantic representation. In
the last decade two main approaches have
been pursued: generative and discrimi-
native models. The former is more ro-
bust to overfitting whereas the latter is
more robust to many irrelevant features.
Additionally, the way in which these ap-
proaches encode prior knowledge is very
different and their relative performance
changes based on the task. In this pa-
per we describe a machine learning frame-
work where both models are used: a gen-
erative model produces a list of ranked hy-
potheses whereas a discriminative model
based on structure kernels and Support
Vector Machines, re-ranks such list. We
tested our approach on the MEDIA cor-
pus (human-machine dialogs) and on a
new corpus (human-machine and human-
human dialogs) produced in the Euro-
pean LUNA project. The results show a
large improvement on the state-of-the-art
in concept segmentation and labeling.

1 Introduction

In Spoken Dialog Systems, the Language Under-
standing module performs the task of translating
a spoken sentence into its meaning representation
based on semantic constituents. These are the
units for meaning representation and are often re-
ferred to as concepts. Concepts are instantiated by
sequences of words, therefore a Spoken Language
Understanding (SLU) module finds the association
between words and concepts.

In the last decade two major approaches have
been proposed to find this correlation: (i) gener-
ative models, whose parameters refer to the joint

probability of concepts and constituents; and (ii)
discriminative models, which learn a classifica-
tion function to map words into concepts based
on geometric and statistical properties. An ex-
ample of generative model is the Hidden Vector
State model (HVS) (He and Young, 2005). This
approach extends the discrete Markov model en-
coding the context of each state as a vector. State
transitions are performed as stack shift operations
followed by a push of a preterminal semantic cat-
egory label. In this way the model can capture se-
mantic hierarchical structures without the use of
tree-structured data. Another simpler but effec-
tive generative model is the one based on Finite
State Transducers. It performs SLU as a transla-
tion process from words to concepts using Finite
State Transducers (FST). An example of discrim-
inative model used for SLU is the one based on
Support Vector Machines (SVMs) (Vapnik, 1995),
as shown in (Raymond and Riccardi, 2007). In
this approach, data are mapped into a vector space
and SLU is performed as a classification problem
using Maximal Margin Classifiers (Shawe-Taylor
and Cristianini, 2004).

Generative models have the advantage to be
more robust to overfitting on training data, while
discriminative models are more robust to irrele-
vant features. Both approaches, used separately,
have shown a good performance (Raymond and
Riccardi, 2007), but they have very different char-
acteristics and the way they encode prior knowl-
edge is very different, thus designing models able
to take into account characteristics of both ap-
proaches are particularly promising.

In this paper we propose a method for SLU
based on generative and discriminative models:
the former uses FSTs to generate a list of SLU hy-
potheses, which are re-ranked by SVMs. These
exploit all possible word/concept subsequences
(with gaps) of the spoken sentence as features (i.e.
all possible n-grams). Gaps allow for the encod-
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ing of long distance dependencies between words
in relatively small n-grams. Given the huge size
of this feature space, we adopted kernel methods
and in particular sequence kernels (Shawe-Taylor
and Cristianini, 2004) and tree kernels (Raymond
and Riccardi, 2007; Moschitti and Bejan, 2004;
Moschitti, 2006) to implicitly encode n-grams and
other structural information in SVMs.

We experimented with different approaches for
training the discriminative models and two dif-
ferent corpora: the well-known MEDIA corpus
(Bonneau-Maynard et al., 2005) and a new corpus
acquired in the European project LUNA1 (Ray-
mond et al., 2007). The results show a great
improvement with respect to both the FST-based
model and the SVM model alone, which are the
current state-of-the-art for concept classification
on such corpora. The rest of the paper is orga-
nized as follows: Sections 2 and 3 show the gener-
ative and discriminative models, respectively. The
experiments and results are reported in Section 4
whereas the conclusions are drawn in Section 5.

2 Generative approach for concept
classification

In the context of Spoken Language Understanding
(SLU), concept classification is the task of asso-
ciating the best sequence of concepts to a given
sentence,i.e. word sequence. A concept is a class
containing all the words carrying out the same se-
mantic meaning with respect to the application do-
main. In SLU, concepts are used as semantic units
and are represented with concept tags. The associ-
ation between words and concepts is learned from
an annotated corpus.

The Generative model used in our work for con-
cept classification is the same used in (Raymond
and Riccardi, 2007). Given a sequence of words
as input, a translation process based on FST is
performed to output a sequence of concept tags.
The translation process involves three steps: (1)
the mapping of words into classes (2) the mapping
of classes into concepts and (3) the selection of the
best concept sequence.

The first step is used to improve the generaliza-
tion power of the model. The word classes at this
level can be both domain-dependent,e.g. ”Hotel”
in MEDIA or ”Software” in the LUNA corpus, or
domain-independent,e.g.numbers, dates, months

1Contract n. 33549

etc. The class of a word not belonging to any class
is the word itself.

In the second step, classes are mapped into con-
cepts. The mapping is not one-to-one: a class
may be associated with more than one concept,i.e.
more than one SLU hypothesis can be generated.

In the third step, the best or the m-best hy-
potheses are selected among those produced in the
previous step. They are chosen according to the
maximum probability evaluated by the Conceptual
Language Model, described in the next section.

2.1 Stochastic Conceptual Language Model
(SCLM)

An SCLM is an n-gram language model built on
semantic tags. Using the same notation proposed
in (Moschitti et al., 2007) and (Raymond and Ric-
cardi, 2007), our SCLM trains joint probability
P (W,C) of word and concept sequences from an
annotated corpus:

P (W,C) =

k
∏

i=1

P (wi, ci|hi),

where W = w1..wk, C = c1..ck and
hi = wi−1ci−1..w1c1. Since we use a 3-gram
conceptual language model, the historyhi is
{wi−1ci−1, wi−2ci−2}.

All the steps of the translation process described
here and above are implemented as Finite State
Transducers (FST) using the AT&T FSM/GRM
tools and the SRILM (Stolcke, 2002) tools. In
particular the SCLM is trained using SRILM tools
and then converted to an FST. This allows the use
of a wide set of stochastic language models (both
back-off and interpolated models with several dis-
counting techniques like Good-Turing, Witten-
Bell, Natural, Kneser-Ney, Unchanged Kneser-
Ney etc). We represent the combination of all the
translation steps as a transducerλSLU (Raymond
and Riccardi, 2007) in terms of FST operations:

λSLU = λW ◦ λW2C ◦ λSLM ,

whereλW is the transducer representation of the
input sentence,λW2C is the transducer mapping
words to classes andλSLM is the Semantic Lan-
guage Model (SLM) described above. The best
SLU hypothesis is given by

C = projectC(bestpath1(λSLU )),

wherebestpathn (in this case n is 1 for the 1-best
hypothesis) performs a Viterbi search on the FST
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and outputs the n-best hypotheses andprojectC
performs a projection of the FST on the output la-
bels, in this case the concepts.

2.2 Generation of m-best concept labeling

Using the FSTs described above, we can generate
m best hypotheses ranked by the joint probability
of the SCLM.

After an analysis of them-best hypotheses of
our SLU model, we noticed that many times the
hypothesis ranked first by the SCLM is not the
closest to the correct concept sequence,i.e. its er-
ror rate using the Levenshtein alignment with the
manual annotation of the corpus is not the low-
est among them hypotheses. This means that
re-ranking them-best hypotheses in a convenient
way could improve the SLU performance. The
best choice in this case is a discriminative model,
since it allows for the use of informative features,
which, in turn, can model easily feature dependen-
cies (also if they are infrequent in the training set).

3 Discriminative re-ranking

Our discriminative re-ranking is based on SVMs
or a perceptron trained with pairs of conceptually
annotated sentences. The classifiers learn to select
which annotation has an error rate lower than the
others so that them-best annotations can be sorted
based on their correctness.

3.1 SVMs and Kernel Methods

Kernel Methods refer to a large class of learning
algorithms based on inner product vector spaces,
among which Support Vector Machines (SVMs)
are one of the most well known algorithms. SVMs
and perceptron learn a hyperplaneH(~x) = ~w~x +
b = 0, where~x is the feature vector represen-
tation of a classifying objecto, ~w ∈ R

n (a
vector space) andb ∈ R are parameters (Vap-
nik, 1995). The classifying objecto is mapped
into ~x by a feature functionφ. The kernel trick
allows us to rewrite the decision hyperplane as
∑

i=1..l yiαiφ(oi)φ(o) + b = 0, whereyi is equal
to 1 for positive and -1 for negative examples,
αi ∈ R

+, oi∀i ∈ {1..l} are the training instances
and the productK(oi, o) = 〈φ(oi)φ(o)〉 is the ker-
nel function associated with the mappingφ. Note
that we do not need to apply the mappingφ, we
can useK(oi, o) directly (Shawe-Taylor and Cris-
tianini, 2004). For example, next section shows a
kernel function that counts the number of word se-

quences in common between two sentences, in the
space ofn-grams (for anyn).

3.2 String Kernels

The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences,i.e. some of the symbols of the
original string are skipped. Gaps modify the
weight associated with the target substrings as
shown in the following.

LetΣ be a finite alphabet,Σ∗ =
⋃∞

n=0 Σn is the
set of all strings. Given a strings ∈ Σ∗, |s| denotes
the length of the strings andsi its compounding
symbols, i.es = s1..s|s|, whereass[i : j] selects
the substringsisi+1..sj−1sj from the i-th to the
j-th character. u is a subsequence ofs if there
is a sequence of indexes~I = (i1, ..., i|u|), with
1 ≤ i1 < ... < i|u| ≤ |s|, such thatu = si1 ..si|u|

or u = s[~I] for short.d(~I) is the distance between
the first and last character of the subsequenceu in
s, i.e. d(~I) = i|u| − i1 + 1. Finally, givens1, s2

∈ Σ∗, s1s2 indicates their concatenation.
The set of all substrings of a text corpus forms a

feature space denoted byF = {u1, u2, ..} ⊂ Σ∗.
To map a strings in R

∞ space, we can use the
following functions: φu(s) =

P

~I:u=s[~I] λ
d(~I) for

someλ ≤ 1. These functions count the num-
ber of occurrences ofu in the strings and assign
them a weightλd(~I) proportional to their lengths.
Hence, the inner product of the feature vectors for
two stringss1 ands2 returns the sum of all com-
mon subsequences weighted according to their
frequency of occurrences and lengths,i.e.

SK(s1, s2) =
X

u∈Σ∗

φu(s1) ·φu(s2) =
X

u∈Σ∗

X

~I1:u=s1[~I1]

λ
d( ~I1)

X

~I2:u=s2[~I2]

λ
d( ~I2) =

X

u∈Σ∗

X

~I1:u=s1[~I1]

X

~I2:u=s2[~I2]

λ
d( ~I1)+d( ~I2)

,

whered(.) counts the number of characters in the
substrings as well as the gaps that were skipped in
the original string. It is worth noting that:

(a) longer subsequences receive lower weights;

(b) some characters can be omitted,i.e. gaps;
and

(c) gaps determine a weight since the exponent
of λ is the number of characters and gaps be-
tween the first and last character.
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Characters in the sequences can be substituted
with any set of symbols. In our study we pre-
ferred to use words so that we can obtain word
sequences. For example, given the sentence:How
may I help you ?sample substrings, extracted by
the Sequence Kernel (SK), are:How help you ?,
How help ?, help you, may help you, etc.

3.3 Tree kernels

Tree kernels represent trees in terms of their sub-
structures (fragments). The kernel function de-
tects if a tree subpart (common to both trees) be-
longs to the feature space that we intend to gen-
erate. For such purpose, the desired fragments
need to be described. We consider two important
characterizations: the syntactic tree (STF) and the
partial tree (PTF) fragments.

3.3.1 Tree Fragment Types

An STF is a general subtree whose leaves can be
non-terminal symbols. For example, Figure 1(a)
shows 10 STFs (out of 17) of the subtree rooted in
VP (of the left tree). The STFs satisfy the con-
straint that grammatical rules cannot be broken.
For example,[VP [V NP]] is an STF, which
has two non-terminal symbols,V andNP, as leaves
whereas[VP [V]] is not an STF. If we relax
the constraint over the STFs, we obtain more gen-
eral substructures calledpartial trees fragments
(PTFs). These can be generated by the application
of partial production rules of the grammar, con-
sequently[VP [V]] and[VP [NP]] are valid
PTFs. Figure 1(b) shows that the number of PTFs
derived from the same tree as before is still higher
(i.e. 30 PTs).

3.4 Counting Shared SubTrees

The main idea of tree kernels is to compute the
number of common substructures between two
treesT1 andT2 without explicitly considering the
whole fragment space. To evaluate the above ker-
nels between twoT1 andT2, we need to define a
setF = {f1, f2, . . . , f|F|}, i.e. a tree fragment
space and an indicator functionIi(n), equal to 1
if the targetfi is rooted at noden and equal to 0
otherwise. A tree-kernel function overT1 andT2

is TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2
∆(n1, n2),

where NT1 and NT2 are the sets of theT1’s
and T2’s nodes, respectively and∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the num-
ber of common fragments rooted in then1 and
n2 nodes. In the following sections we report the

equation for the efficient evaluation of∆ for ST
and PT kernels.

3.5 Syntactic Tree Kernels (STK)

The∆ function depends on the type of fragments
that we consider asbasic features. For example,
to evaluate the fragments of type STF, it can be
defined as:

1. if the productions atn1 andn2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 and n2 are the
same, andn1 andn2 have only leaf children
(i.e. they are pre-terminals symbols) then
∆(n1, n2) = 1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (1)

whereσ ∈ {0, 1}, nc(n1) is the number of chil-
dren of n1 and c

j
n is the j-th child of the node

n. Note that, since the productions are the same,
nc(n1) = nc(n2). ∆(n1, n2) evaluates the num-
ber of STFs common ton1 andn2 as proved in
(Collins and Duffy, 2002).

Moreover, a decay factorλ can be added by
modifying steps (2) and (3) as follows2:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (σ + ∆(cj
n1 , c

j
n2)).

The computational complexity of Eq. 1 is
O(|NT1 | × |NT2 |) but as shown in (Moschitti,
2006), the average running time tends to be lin-
ear, i.e. O(|NT1 | + |NT2 |), for natural language
syntactic trees.

3.6 The Partial Tree Kernel (PTK)

PTFs have been defined in (Moschitti, 2006).
Their computation is carried out by the following
∆ function:

1. if the node labels ofn1 andn2 are different
then∆(n1, n2) = 0;

2. else∆(n1, n2) =

1+
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1(

~I1j), cn2(
~I2j))

2To have a similarity score between 0 and 1, we also apply
the normalization in the kernel space,i.e.:
K′(T1, T2) = TK(T1 ,T2)

√
TK(T1 ,T1)×TK(T2 ,T2)

.
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Figure 1: Examples of different classes of tree fragments.

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 =
〈k1, k2, k3, ..〉 are index sequences associated with
the ordered child sequencescn1 of n1 andcn2 of
n2, respectively,~I1j and~I2j point to thej-th child
in the corresponding sequence, and, again,l(·) re-
turns the sequence length,i.e. the number of chil-
dren.

Furthermore, we add two decay factors:µ for
the depth of the tree andλ for the length of the
child subsequences with respect to the original se-
quence,i.e. we account for gaps. It follows that
∆(n1, n2) =

µ
(

λ2+
∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)
∏

j=1

∆(cn1(
~I1j), cn2(

~I2j))
)

,

(2)
whered(~I1) = ~I1l(~I1)

− ~I11 andd(~I2) = ~I2l(~I2)
−

~I21. This way, we penalize both larger trees and
child subsequences with gaps. Eq. 2 is more gen-
eral than Eq. 1. Indeed, if we only consider the
contribution of the longest child sequence from
node pairs that have the same children, we imple-
ment the STK kernel.

3.7 Re-ranking models using sequences

The FST generates them most likely concept an-
notations. These are used to build annotation
pairs,

〈

si, sj
〉

, which are positive instances ifsi

has a lower concept annotation error thansj, with
respect to the manual annotation in the corpus.
Thus, a trained binary classifier can decide ifsi

is more accurate thansj. Each candidate anno-
tation si is described by a word sequence where
each word is followed by its concept annotation.
For example, given the sentence:

ho (I have) un (a) problema (problem) con
(with) la (the) scheda di rete (network card) ora
(now)

a pair of annotations
〈

si, sj
〉

could be

si: ho NULL un NULL problemaPROBLEM-B con
NULL la NULL schedaHW-B di HW-I rete HW-I ora
RELATIVETIME-B

sj: ho NULL un NULL problema ACTION-B con

NULL la NULL schedaHW-B di HW-B rete HW-B ora

RELATIVETIME-B

where NULL , ACTION , RELATIVETIME ,
andHW are the assigned concepts whereasB and
I are the usual begin and internal tags for concept
subparts. The second annotation is less accurate
than the first sinceproblemais annotated as an ac-
tion and”scheda di rete” is split in three different
concepts.

Given the above data, the sequence kernel
is used to evaluate the number of commonn-
grams betweensi and sj. Since the string ker-
nel skips some elements of the target sequences,
the countedn-grams include: concept sequences,
word sequences and any subsequence of words
and concepts at any distance in the sentence.

Such counts are used in our re-ranking function
as follows: letei be the pair

〈

s1
i , s

2
i

〉

we evaluate
the kernel:

KR(e1, e2) = SK(s1
1, s

1
2) + SK(s2

1, s
2
2) (3)

− SK(s1
1, s

2
2) − SK(s2

1, s
1
2)

This schema, consisting in summing four differ-
ent kernels, has been already applied in (Collins
and Duffy, 2002) for syntactic parsing re-ranking,
where the basic kernel was a tree kernel instead of
SK and in (Moschitti et al., 2006), where, to re-
rank Semantic Role Labeling annotations, a tree
kernel was used on a semantic tree similar to the
one introduced in the next section.

3.8 Re-ranking models using trees

Since the aim in concept annotation re-ranking is
to exploit innovative and effective source of infor-
mation, we can use the power of tree kernels to
generate correlation between concepts and word
structures.

Fig. 2 describes the structural association be-
tween the concept and the word level. This kind of
trees allows us to engineer new kernels and con-
sequently new features (Moschitti et al., 2008),
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Figure 2: An example of the semantic tree used for STK or PTK

Corpus Train set Test set
LUNA words concepts words concepts
Dialogs WOZ 183 67
Dialogs HH 180 -
Turns WOZ 1.019 373
Turns HH 6.999 -
Tokens WOZ 8.512 2.887 2.888 984
Tokens WOZ 62.639 17.423 - -
Vocab. WOZ 1.172 34 - -
Vocab. HH 4.692 49 - -
OOV rate - - 3.2% 0.1%

Table 1: Statistics on the LUNA corpus

Corpus Train set Test set
Media words concepts words concepts
Turns 12,922 3,518
# of tokens 94,912 43,078 26,676 12,022
Vocabulary 5,307 80 - -
OOV rate - - 0.01% 0.0%

Table 2: Statistics on the MEDIA corpus

e.g. their subparts extracted by STK or PTK, like
the tree fragments in figures 1(a) and 1(b). These
can be used in SVMs to learn the classification of
words in concepts.

More specifically, in our approach, we use tree
fragments to establish the order of correctness
between two alternative annotations. Therefore,
given two trees associated with two annotations, a
re-ranker based on tree kernel,KR, can be built
in the same way of the sequence-based kernel by
substituting SK in Eq. 3 with STK or PTK.

4 Experiments

In this section, we describe the corpora, param-
eters, models and results of our experiments of
word chunking and concept classification. Our
baseline relates to the error rate of systems based
on only FST and SVMs. The re-ranking models
are built on the FST output. Different ways of
producing training data for the re-ranking models
determine different results.

4.1 Corpora

We used two different speech corpora:
The corpus LUNA, produced in the homony-

mous European project is the first Italian corpus
of spontaneous speech on spoken dialog: it is
based on the help-desk conversation in the domain
of software/hardware repairing (Raymond et al.,
2007). The data are organized in transcriptions
and annotations of speech based on a new multi-
level protocol. Data acquisition is still in progress.
Currently, 250 dialogs acquired with a WOZ ap-
proach and 180 Human-Human (HH) dialogs are
available. Statistics on LUNA corpus are reported
in Table 1.

The corpus MEDIA was collected within
the French project MEDIA-EVALDA (Bonneau-
Maynard et al., 2005) for development and evalu-
ation of spoken understanding models and linguis-
tic studies. The corpus is composed of 1257 di-
alogs, from 250 different speakers, acquired with
a Wizard of Oz (WOZ) approach in the context
of hotel room reservations and tourist information.
Statistics on transcribed and conceptually anno-
tated data are reported in Table 2.

4.2 Experimental setup

We defined two different training sets in the
LUNA corpus: one using only the WOZ train-
ing dialogs and one merging them with the HH
dialogs. Given the small size of LUNA corpus, we
did not carried out parameterization on a develop-
ment set but we used default or a priori parameters.

We experimented with LUNA WOZ and six re-
rankers obtained with the combination of SVMs
and perceptron (PCT) with three different types
of kernels: Syntactic Tree Kernel (STK), Partial
Tree kernels (PTK) and the String Kernel (SK) de-
scribed in Section 3.3.

Given the high number and the cost of these ex-
periments, we ran only one model,i.e. the one
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Corpus LUNA WOZ+HH MEDIA
Approach (STK) MT ST MT
FST 18.2 18.2 12.6
SVM 23.4 23.4 13.7
RR-A 15.6 17.0 11.6
RR-B 16.2 16.5 11.8
RR-C 16.1 16.4 11.7

Table 3: Results of experiments (CER) using FST
and SVMs with the Sytntactic Tree Kernel (STK)
on two different corpora: LUNA WOZ + HH, and
MEDIA.

based on SVMs and STK3 , on the largest datasets,
i.e. WOZ merged with HH dialogs and Media.
We trained all the SCLMs used in our experiments
with the SRILM toolkit (Stolcke, 2002) and we
used an interpolated model for probability esti-
mation with the Kneser-Ney discount (Chen and
Goodman, 1998). We then converted the model in
an FST as described in Section 2.1.

The model used to obtain the SVM baseline
for concept classification was trained using Yam-
CHA (Kudo and Matsumoto, 2001). For the re-
ranking models based on structure kernels, SVMs
or perceptron, we used the SVM-Light-TK toolkit
(available at dit.unitn.it/moschitti). Forλ (see Sec-
tion 3.2), cost-factor and trade-off parameters, we
used, 0.4, 1 and 1, respectively.

4.3 Training approaches

The FST model generates them-best annotations,
i.e. the data used to train the re-ranker based
on SVMs and perceptron. Different training ap-
proaches can be carried out based on the use of the
corpus and the method to generate them-best. We
apply two different methods for training:Mono-
lithic Training andSplit Training .

In the former, FSTs are learned with the whole
training set. Them-best hypotheses generated by
such models are then used to train the re-ranker
classifier. In Split Training, the training data are
divided in two parts to avoid bias in the FST gen-
eration step. More in detail, we train FSTs on part
1 and generate them-best hypotheses using part 2.
Then, we re-apply these procedures inverting part
1 with part 2. Finally, we train the re-ranker on the
mergedm-best data. At the classification time, we
generate them-best of the test set using the FST
trained on all training data.

3The number of parameters, models and training ap-
proaches make the exhaustive experimentation expensive in
terms of processing time, which approximately requires 2 or
3 months.

Monolithic Training
WOZ SVM PCT

STK PTK SK STK PTK SK
RR-A 18.5 19.3 19.1 24.2 28.3 23.3
RR-B 18.5 19.3 19.0 29.4 23.7 20.3
RR-C 18.5 19.3 19.1 31.5 30.0 20.2

Table 4: Results of experiments, in terms of Con-
cept Error Rate (CER), on the LUNA WOZ corpus
using Monolithic Training approach. The baseline
with FST and SVMs used separately are23.2%
and26.7% respectively.

Split Training
WOZ SVM PCT

STK PTK SK STK PTK SK
RR-A 20.0 18.0 16.1 28.4 29.8 27.8
RR-B 19.0 19.0 19.0 26.3 30.0 25.6
RR-C 19.0 18.4 16.6 27.1 26.2 30.3

Table 5: Results of experiments, in terms of Con-
cept Error Rate (CER), on the LUNA WOZ cor-
pus using Split Training approach. The baseline
with FST and SVMs used separately are23.2%
and26.7% respectively.

Regarding the generation of the training in-
stances

〈

si, sj
〉

, we setm to 10 and we choose one
of the 10-best hypotheses as the second element of
the pair,sj, thus generating 10 different pairs.

The first element instead can be selected accord-
ing to three different approaches:

(A): si is the manual annotation taken from the
corpus;

(B) si is the most accurate annotation, in terms
of the edit distance from the manual annotation,
among the 10-best hypotheses of the FST model;

(C) as above butsi is selected among the 100-
best hypotheses. The pairs are also inverted to
generate negative examples.

4.4 Re-ranking results

All the results of our experiments, expressed in
terms of concept error rate (CER), are reported in
Table 3, 4 and 5.

In Table 3, the corpora,i.e. LUNA (WOZ+HH)
and Media, and the training approaches,i.e.
Monolithic Training (MT) and Split Training (ST),
are reported in the first and second row. Column
1 shows the concept classification model used,i.e.
the baselines FST and SVMs, and the re-ranking
models (RR) applied to FST. A, B and C refer
to the three approaches for generating training in-
stances described above. As already mentioned
for these large datasets, SVMs only use STK.
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We note that our re-rankers relevantly improve
our baselines,i.e. the FST and SVM concept clas-
sifiers on both corpora. For example, SVM re-
ranker using STK, MT and RR-A improves FST
concept classifier of 23.2-15.6 = 7.6 points.

Moreover, the monolithic training seems the
most appropriate to train the re-rankers whereas
approach A is the best in producing training in-
stances for the re-rankers. This is not surprising
since method A considers the manual annotation
as a referent gold standard and it always allows
comparing candidate annotations with the perfect
one.

Tables 4 and 5 have a similar structure of Ta-
ble 3 but they only show experiments on LUNA
WOZ corpus with respect to the monolithic and
split training approach, respectively. In these ta-
bles, we also report the result for SVMs and per-
ceptron (PCT) using STK, PTK and SK. We note
that:

First, the small size of WOZ training set (only
1,019 turns) impacts on the accuracy of the sys-
tems, e.g. FST and SVMs, which achieved a
CER of 18.2% and 23.4%, respectively, using also
HH dialogs, with only the WOZ data, they obtain
23.2% and 26.7%, respectively.

Second, the perceptron algorithm appears to be
ineffective for re-ranking. This is mainly due to
the reduced size of the WOZ data, which clearly
prevents an on line algorithm like PCT to ade-
quately refine its model by observing many exam-
ples4.

Third, the kernels which produce higher number
of substructures,i.e. PTK and SK, improves the
kernel less rich in terms of features,i.e. STK. For
example, using split training and approach A, STK
is improved by 20.0-16.1=3.9. This is an interest-
ing result since it shows that (a) richer structures
do produce better ranking models and (b) kernel
methods give a remarkable help in feature design.

Next, although the training data is small, the re-
rankers based on kernels appear to be very effec-
tive. This may also alleviate the burden of anno-
tating a lot of data.

Finally, the experiments of MEDIA show a not
so high improvement using re-rankers. This is due
to: (a) the baseline,i.e. the FST model is very
accurate since MEDIA is a large corpus thus the
re-ranker can only”correct” small number of er-
rors; and (b) we could only experiment with the

4We use only one iteration of the algorithm.

less expensive but also less accurate models,i.e.
monolithic training and STK.

Media also offers the possibility to compare
with the state-of-the-art, which our re-rankers
seem to improve. However, we need to consider
that many Media corpus versions exist and this
makes such comparisons not completely reliable.
Future work on the paper research line appears
to be very interesting: the assessment of our best
models on Media and WOZ+HH as well as other
corpora is required. More importantly, the struc-
tures that we have proposed for re-ranking are
just two of the many possibilities to encode both
word/concept statistical distributions and linguis-
tic knowledge encoded in syntactic/semantic parse
trees.

5 Conclusions

In this paper, we propose discriminative re-
ranking of concept annotation to capitalize from
the benefits of generative and discriminative ap-
proaches. Our generative approach is the state-
of-the-art in concept classification since we used
the same FST model used in (Raymond and Ric-
cardi, 2007). We could improve it by 1% point
in MEDIA and 7.6 points (until 30% of relative
improvement) on LUNA, where the more limited
availability of annotated data leaves a larger room
for improvement.

It should be noted that to design the re-ranking
model, we only used two different structures,
i.e. one sequence and one tree. Kernel meth-
ods show that combinations of feature vectors, se-
quence kernels and other structural kernels,e.g.
on shallow or deep syntactic parse trees, appear
to be a promising research line (Moschitti, 2008).
Also, the approach used in (Zanzotto and Mos-
chitti, 2006) to define cross pair relations may be
exploited to carry out a more effective pair re-
ranking. Finally, the experimentation with auto-
matic speech transcriptions is interesting to test the
robustness of our models to transcription errors.
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Abstract

In this paper, we explore ways of improv-
ing an inference rule collection and its ap-
plication to the task of recognizing textual
entailment. For this purpose, we start with
an automatically acquired collection and
we propose methods to refine it and ob-
tain more rules using a hand-crafted lex-
ical resource. Following this, we derive
a dependency-based structure representa-
tion from texts, which aims to provide a
proper base for the inference rule appli-
cation. The evaluation of our approach
on the recognizing textual entailment data
shows promising results on precision and
the error analysis suggests possible im-
provements.

1 Introduction

Textual inference plays an important role in many
natural language processing (NLP) tasks. In recent
years, the recognizing textual entailment (RTE)
(Dagan et al., 2006) challenge, which focuses on
detecting semantic inference, has attracted a lot of
attention. Given a text T (several sentences) and a
hypothesis H (one sentence), the goal is to detect
if H can be inferred from T.

Studies such as (Clark et al., 2007) attest that
lexical substitution (e.g. synonyms, antonyms) or
simple syntactic variation account for the entail-
ment only in a small number of pairs. Thus, one
essential issue is to identify more complex expres-
sions which, in appropriate contexts, convey the
same (or similar) meaning. However, more gener-
ally, we are also interested in pairs of expressions
in which only a uni-directional inference relation
holds1.

1We will use the term inference rule to stand for such con-
cept; the two expressions can be actual paraphrases if the re-
lation is bi-directional

A typical example is the following RTE pair in
which accelerate to in H is used as an alternative
formulation for reach speed of in T.

T: The high-speed train, scheduled for a trial run on Tues-
day, is able to reach a maximum speed of up to 430 kilome-
ters per hour, or 119 meters per second.

H: The train accelerates to 430 kilometers per hour.

One way to deal with textual inference is
through rule representation, for example X wrote
Y ≈ X is author of Y. However, manually building
collections of inference rules is time-consuming
and it is unlikely that humans can exhaustively
enumerate all the rules encoding the knowledge
needed in reasoning with natural language. In-
stead, an alternative is to acquire these rules au-
tomatically from large corpora. Given such a rule
collection, the next step to focus on is how to suc-
cessfully use it in NLP applications. This paper
tackles both aspects, acquiring inference rules and
using them for the task of recognizing textual en-
tailment.

For the first aspect, we extend and refine an ex-
isting collection of inference rules acquired based
on the Distributional Hypothesis (DH). One of the
main advantages of using the DH is that the only
input needed is a large corpus of (parsed) text2.
For the extension and refinement, a hand-crafted
lexical resource is used for augmenting the origi-
nal inference rule collection and exclude some of
the incorrect rules.

For the second aspect, we focus on applying
these rules to the RTE task. In particular, we use
a structure representation derived from the depen-
dency parse trees of T and H, which aims to cap-
ture the essential information they convey.

The rest of the paper is organized as follows:
Section 2 introduces the inference rule collection

2Another line of work on acquiring paraphrases uses com-
parable corpora, for instance (Barzilay and McKeown, 2001),
(Pang et al., 2003)
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we use, based on the Discovery of Inference Rules
from Text (henceforth DIRT) algorithm and dis-
cusses previous work on applying it to the RTE
task. Section 3 focuses on the rule collection it-
self and on the methods in which we use an exter-
nal lexical resource to extend and refine it. Sec-
tion 4 discusses the application of the rules for the
RTE data, describing the structure representation
we use to identify the appropriate context for the
rule application. The experimental results will be
presented in Section 5, followed by an error analy-
sis and discussions in Section 6. Finally Section 7
will conclude the paper and point out future work
directions.

2 Background

A number of automatically acquired inference
rule/paraphrase collections are available, such as
(Szpektor et al., 2004), (Sekine, 2005). In our
work we use the DIRT collection because it is the
largest one available and it has a relatively good
accuracy (in the 50% range for top generated para-
phrases, (Szpektor et al., 2007)). In this section,
we describe the DIRT algorithm for acquiring in-
ference rules. Following that, we will overview
the RTE systems which take DIRT as an external
knowledge resource.

2.1 Discovery of Inference Rules from Text
The DIRT algorithm has been introduced by (Lin
and Pantel, 2001) and it is based on what is called
the Extended Distributional Hypothesis. The orig-
inal DH states that words occurring in similar
contexts have similar meaning, whereas the ex-
tended version hypothesizes that phrases occur-
ring in similar contexts are similar.

An inference rule in DIRT is a pair of binary
relations 〈 pattern1(X, Y ), pattern2(X,Y ) 〉
which stand in an inference relation. pattern1 and
pattern2 are chains in dependency trees3 while X
and Y are placeholders for nouns at the end of this
chain. The two patterns will constitute a candi-
date paraphrase if the sets of X and Y values ex-
hibit relevant overlap. In the following example,
the two patterns are prevent and provide protection
against.

X
subj←−−− prevent

obj−−→ Y

X
subj←−−− provide

obj−−→ protection
mod−−−→ against

pcomp−−−−→ Y

3obtained with the Minipar parser (Lin, 1998)

X put emphasis on Y
≈ X pay attention to Y
≈ X attach importance to Y
≈ X increase spending on Y
≈ X place emphasis on Y
≈ Y priority of X
≈ X focus on Y

Table 1: Example of DIRT algorithm output. Most
confident paraphrases of X put emphasis on Y

Such rules can be informally defined (Szpek-
tor et al., 2007) as directional relations between
two text patterns with variables. The left-hand-
side pattern is assumed to entail the right-hand-
side pattern in certain contexts, under the same
variable instantiation. The definition relaxes the
intuition of inference, as we only require the en-
tailment to hold in some and not all contexts, mo-
tivated by the fact that such inferences occur often
in natural text.

The algorithm does not extract directional in-
ference rules, it can only identify candidate para-
phrases; many of the rules are however uni-
directional. Besides syntactic rewriting or lexi-
cal rules, rules in which the patterns are rather
complex phrases are also extracted. Some of the
rules encode lexical relations which can also be
found in resources such as WordNet while oth-
ers are lexical-syntactic variations that are unlikely
to occur in hand-crafted resources (Lin and Pan-
tel, 2001). Table 1 gives a few examples of rules
present in DIRT4.

Current work on inference rules focuses on
making such resources more precise. (Basili et
al., 2007) and (Szpektor et al., 2008) propose at-
taching selectional preferences to inference rules.
These are semantic classes which correspond to
the anchor values of an inference rule and have
the role of making precise the context in which the
rule can be applied 5. This aspect is very impor-
tant and we plan to address it in our future work.
However in this paper we investigate the first and
more basic issue: how to successfully use rules in
their current form.

4For simplification, in the rest of the paper we will omit
giving the dependency relations in a pattern.

5For example X won Y entails X played Y only when Y
refers to some sort of competition, but not if Y refers to a
musical instrument.
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2.2 Related Work

Intuitively such inference rules should be effective
for recognizing textual entailment. However, only
a small number of systems have used DIRT as a re-
source in the RTE-3 challenge, and the experimen-
tal results have not fully shown it has an important
contribution.

In (Clark et al., 2007)’s approach, semantic
parsing to clause representation is performed and
true entailment is decided only if every clause
in the semantic representation of T semantically
matches some clause in H. The only variation al-
lowed consists of rewritings derived from Word-
Net and DIRT. Given the preliminary stage of this
system, the overall results show very low improve-
ment over a random classification baseline.

(Bar-Haim et al., 2007) implement a proof
system using rules for generic linguistic struc-
tures, lexical-based rules, and lexical-syntactic
rules (these obtained with a DIRT-like algorithm
on the first CD of the Reuters RCV1 corpus). The
entailment considers not only the strict notion of
proof but also an approximate one. Given premise
p and hypothesis h, the lexical-syntactic compo-
nent marks all lexical noun alignments. For ev-
ery pair of alignment, the paths between the two
nouns are extracted, and the DIRT algorithm is
applied to obtain a similarity score. If the score
is above a threshold the rule is applied. However
these lexical-syntactic rules are only used in about
3% of the attempted proofs and in most cases there
is no lexical variation.

(Iftene and Balahur-Dobrescu, 2007) use DIRT
in a more relaxed manner. A DIRT rule is em-
ployed in the system if at least one of the anchors
match in T and H, i.e. they use them as unary
rules. However, the detailed analysis of the sys-
tem that they provide shows that the DIRT com-
ponent is the least relevant one (adding 0.4% of
precision).

In (Marsi et al., 2007), the focus is on the use-
fulness of DIRT. In their system a paraphrase sub-
stitution step is added on top of a system based on
a tree alignment algorithm. The basic paraphrase
substitution method follows three steps. Initially,
the two patterns of a rule are matched in T and
H (instantiations of the anchors X , Y do not have
to match). The text tree is transformed by apply-
ing the paraphrase substitution. Following this,
the transformed text tree and hypothesis trees are
aligned. The coverage (proportion of aligned con-

X write Y →X author Y
X, founded in Y →X, opened in Y
X launch Y → X produce Y
X represent Z → X work for Y
death relieved X→ X died
X faces menace from Y ↔ X endangered by Y
X, peace agreement for Y
→ X is formulated to end war in Y

Table 2: Example of inference rules needed in
RTE

tent words) is computed and if above some thresh-
old, entailment is true. The paraphrase compo-
nent adds 1.0% to development set results and only
0.5% to test sets, but a more detailed analysis on
the results of the interaction with the other system
components is not given.

3 Extending and refining DIRT

Based on observations of using the inference rule
collection on the real data, we discover that 1)
some of the needed rules still lack even in a very
large collection such as DIRT and 2) some system-
atic errors in the collection can be excluded. On
both aspects, we use WordNet as additional lexi-
cal resource.

Missing Rules
A closer look into the RTE data reveals that

DIRT lacks many of the rules that entailment pairs
require.

Table 2 lists a selection of such rules. The
first rows contain rules which are structurally very
simple. These, however, are missing from DIRT
and most of them also from other hand-crafted re-
sources such as WordNet (i.e. there is no short
path connecting the two verbs). This is to be ex-
pected as they are rules which hold in specific con-
texts, but difficult to be captured by a sense dis-
tinction of the lexical items involved.

The more complex rules are even more difficult
to capture with a DIRT-like algorithm. Some of
these do not occur frequently enough even in large
amounts of text to permit acquiring them via the
DH.

Combining WordNet and DIRT
In order to address the issue of missing rules,

we investigate the effects of combining DIRT with
an exact hand-coded lexical resource in order to
create new rules.

For this we extended the DIRT rules by adding
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X face threat of Y
≈ X at risk of Y

face
≈ confront, front, look, face up

threat
≈ menace, terror, scourge

risk
≈ danger, hazard, jeopardy,
endangerment, peril

Table 3: Lexical variations creating new rules
based on DIRT rule X face threat of Y → X at risk
of Y

rules in which any of the lexical items involved
in the patterns can be replaced by WordNet syn-
onyms. In the example above, we consider the
DIRT rule X face threat of Y → X, at risk of Y
(Table 3).

Of course at this moment due to the lack of
sense disambiguation, our method introduces lots
of rules that are not correct. As one can see, ex-
pressions such as front scourge do not make any
sense, therefore any rules containing this will be
incorrect. However some of the new rules created
in this example, such as X face threat of Y ≈ X,
at danger of Y are reasonable ones and the rules
which are incorrect often contain patterns that are
very unlikely to occur in natural text.

The idea behind this is that a combination of
various lexical resources is needed in order to
cover the vast variety of phrases which humans
can judge to be in an inference relation.

The method just described allows us to identify
the first four rules listed in Table 2. We also ac-
quire the rule X face menace of Y ≈ X endangered
by Y (via X face threat of Y ≈ X threatened by Y,
menace ≈ threat, threaten ≈ endanger).

Our extension is application-oriented therefore
it is not intended to be evaluated as an independent
rule collection, but in an application scenario such
as RTE (Section 6).

In our experiments we also made a step towards
removing the most systematic errors present in
DIRT. DH algorithms have the main disadvantage
that not only phrases with the same meaning are
extracted but also phrases with opposite meaning.

In order to overcome this problem and since
such errors are relatively easy to detect, we ap-
plied a filter to the DIRT rules. This eliminates
inference rules which contain WordNet antonyms.

For such a rule to be eliminated the two patterns
have to be identical (with respect to edge labels
and content words) except from the antonymous
words; an example of a rule eliminated this way is
X have confidence in Y ≈ X lack confidence in Y.

As pointed out by (Szpektor et al., 2007) a thor-
ough evaluation of a rule collection is not a trivial
task; however due to our methodology we can as-
sume that the percentage of rules eliminated this
way that are indeed contradictions gets close to
100%.

4 Applying DIRT on RTE

In this section we point out two issues that are en-
countered when applying inference rules for tex-
tual entailment. The first issue is concerned with
correctly identifying the pairs in which the knowl-
edge encoded in these rules is needed. Follow-
ing this, another non-trivial task is to determine
the way this knowledge interacts with the rest of
information conveyed in an entailment pair. In or-
der to further investigate these issues, we apply the
rule collection on a dependency-based representa-
tion of text and hypothesis, namely Tree Skeleton.

4.1 Observations

A straightforward experiment can reveal the num-
ber of pairs in the RTE data which contain rules
present in DIRT. For all the experiments in this pa-
per, we use the DIRT collection provided by (Lin
and Pantel, 2001), derived from the DIRT algo-
rithm applied on 1GB of news text. The results
we report here use only the most confident rules
amounting to more than 4 million rules (top 40 fol-
lowing (Lin and Pantel, 2001)).6

Following the definition of an entail-
ment rule, we identify RTE pairs in which
pattern1(w1, w2) and pattern2(w1, w2) are
matched one in T and the other one in H and
〈pattern1(X, Y ), pattern2(X, Y )〉 is an infer-
ence rule. The pair bellow is an example of this.

T: The sale was made to pay Yukos US$ 27.5 billion tax
bill, Yuganskneftegaz was originally sold for US$ 9.4 bil-
lion to a little known company Baikalfinansgroup which was
later bought by the Russian state-owned oil company Ros-
neft.

H: Baikalfinansgroup was sold to Rosneft.

6Another set of experiments showed that for this particu-
lar task, using the entire collection instead of a subset gave
similar results.
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On average, only 2% of the pairs in the RTE
data is subject to the application of such inference
rules. Out of these, approximately 50% are lexical
rules (one verb entailing the other). Out of these
lexical rules, around 50% are present in WordNet
in a synonym, hypernym or sister relation. At a
manual analysis, close to 80% of these are correct
rules; this is higher than the estimated accuracy of
DIRT, probably due to the bias of the data which
consists of pairs which are entailment candidates.

However, given the small number of inference
rules identified this way, we performed another
analysis. This aims at determining an upper
bound of the number of pairs featuring entailment
phrases present in a collection. Given DIRT and
the RTE data, we compute in how many pairs
the two patterns of a paraphrase can be matched
irrespective of their anchor values. An example is
the following pair,

T: Libya’s case against Britain and the US concerns the
dispute over their demand for extradition of Libyans charged
with blowing up a Pan Am jet over Lockerbie in 1988.

H: One case involved the extradition of Libyan suspects

in the Pan Am Lockerbie bombing.

This is a case in which the rule is correct and
the entailment is positive. In order to determine
this, a system will have to know that Libya’s case
against Britain and the US in T entails one case
in H. Similarly, in this context, the dispute over
their demand for extradition of Libyans charged
with blowing up a Pan Am jet over Lockerbie in
1988 in T can be replaced with the extradition of
Libyan suspects in the Pan Am Lockerbie bombing
preserving the meaning.

Altogether in around 20% of the pairs, patterns
of a rule can be found this way, many times with
more than one rule found in a pair. However, in
many of these pairs, finding the patterns of an in-
ference rule does not imply that the rule is truly
present in that pair.

Considering a system is capable of correctly
identifying the cases in which an inference rule
is needed, subsequent issues arise from the way
these fragments of text interact with the surround-
ing context. Assuming we have a correct rule
present in an entailment pair, the cases in which
the pair is still not a positive case of entailment
can be summarized as follows:

• The entailment rule is present in parts of the
text which are not relevant to the entailment

value of the pair.

• The rule is relevant, however the sentences
in which the patterns are embedded block the
entailment (e.g. through negative markers,
modifiers, embedding verbs not preserving
entailment)7

• The rule is correct in a limited number of con-
texts, but the current context is not the correct
one.

To sum up, making use of the knowledge en-
coded with such rules is not a trivial task. If rules
are used strictly in concordance with their defini-
tion, their utility is limited to a very small number
of entailment pairs. For this reason, 1) instead of
forcing the anchor values to be identical as most
previous work, we allow more flexible rule match-
ing (similar to (Marsi et al., 2007)) and 2) fur-
thermore, we control the rule application process
using a text representation based on dependency
structure.

4.2 Tree Skeleton
The Tree Skeleton (TS) structure was proposed by
(Wang and Neumann, 2007), and can be viewed
as an extended version of the predicate-argument
structure. Since it contains not only the predi-
cate and its arguments, but also the dependency
paths in-between, it captures the essential part of
the sentence.

Following their algorithm, we first preprocess
the data using a dependency parser8 and then
select overlapping topic words (i.e. nouns) in T
and H. By doing so, we use fuzzy match at the
substring level instead of full match. Starting
with these nouns, we traverse the dependency
tree to identify the lowest common ancestor node
(named as root node). This sub-tree without the
inner yield is defined as a Tree Skeleton. Figure
1 shows the TS of T of the following positive
example,

T For their discovery of ulcer-causing bacteria, Aus-
tralian doctors Robin Warren and Barry Marshall have re-
ceived the 2005 Nobel Prize in Physiology or Medicine.

H Robin Warren was awarded a Nobel Prize.

Notice that, in order to match the inference rules
with two anchors, the number of the dependency

7See (Nairn et al., 2006) for a detailed analysis of these
aspects.

8Here we also use Minipar for the reason of consistence
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Figure 1: Dependency structure of text. Tree
skeleton in bold

paths contained in a TS should also be two. In
practice, among all the 800 T-H pairs of the RTE-
2 test set, we successfully extracted tree skeletons
in 296 text pairs, i.e., 37% of the test data is cov-
ered by this step and results on other data sets are
similar.

Applying DIRT on a TS
Dependency representations like the tree skele-

ton have been explored by many researchers, e.g.
(Zanzotto and Moschitti, 2006) have utilized a tree
kernel method to calculate the similarity between
T and H, and (Wang and Neumann, 2007) chose
subsequence kernel to reduce the computational
complexity. However, the focus of this paper is to
evaluate the application of inference rules on RTE,
instead of exploring methods of tackling the task
itself. Therefore, we performed a straightforward
matching algorithm to apply the inference rules
on top of the tree skeleton structure. Given tree
skeletons of T and H, we check if the two left de-
pendency paths, the two right ones or the two root
nodes contain the patterns of a rule.

In the example above, the rule X
obj←−−

receive
subj−−−→ Y ≈ X

obj2←−−− award
obj1−−−→ Y satisfies

this criterion, as it is matched at the root nodes.
Notice that the rule is correct only in restricted
contexts, in which the object of receive is some-
thing which is conferred on the basis of merit.
However in this pair, the context is indeed the cor-
rect one.

5 Experiments

Our experiments consist in predicting positive en-
tailment in a very straightforward rule-based man-
ner (Table 4 summarizes the results using three
different rule collections). For each collection we

select the RTE pairs in which we find a tree skele-
ton and match an inference rule. The first number
in our table entries represents how many of such
pairs we have identified, out the 1600 of devel-
opment and test pairs. For these pairs we simply
predict positive entailment and the second entry
represents what percentage of these pairs are in-
deed positive entailment. Our work does not fo-
cus on building a complete RTE system; however,
we also combine our method with a bag of words
baseline to see the effects on the whole data set.

5.1 Results on a subset of the data

In the first two columns (DirtTS and Dirt+WNTS)
we consider DIRT in its original state and DIRT
with rules generated with WordNet as described
in Section 3; all precisions are higher than 67%9.
After adding WordNet, approximately in twice as
many pairs, tree skeletons and rules are matched,
while the precision is not harmed. This may in-
dicate that our method of adding rules does not
decrease precision of an RTE system.

In the third column we report the results of us-
ing a set of rules containing only the trivial iden-
tity ones (IdTS). For our current system, this can
be seen as a precision upper bound for all the
other collections, in concordance with the fact that
identical rules are nothing but inference rules of
highest possible confidence. The fourth column
(Dirt+Id+WNTS) contains what can be consid-
ered our best setting. In this setting considerably
more pairs are covered using a collection contain-
ing DIRT and identity rules with WordNet exten-
sion.

Although the precision results with this setting
are encouraging (65% for RTE2 data and 72% for
RTE3 data), the coverage is still low, 8% for RTE2
and 6% for RTE3. This aspect together with an er-
ror analysis we performed are the focus of Section
7.

The last column (Dirt+Id+WN) gives the preci-
sion we obtain if we simply decide a pair is true
entailment if we have an inference rule matched in
it (irrespective of the values of the anchors or of
the existence of tree skeletons). As expected, only
identifying the patterns of a rule in a pair irrespec-
tive of tree skeletons does not give any indication
of the entailment value of the pair.

9The RTE task is considered to be difficult. The aver-
age accuracy of the systems in the RTE-3 challenge is around
61% (Giampiccolo et al., 2007)
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RTE Set DirtTS Dirt + WNTS IdTS Dirt + Id + WNTS Dirt + Id + WN
RTE2 49/69.38 94/67.02 45/66.66 130/65.38 673/50.07
RTE3 42/69.04 70/70.00 29/79.31 93/72.05 661/55.06

Table 4: Coverage/precision with various rule collections

RTE Set BoW Main
RTE2 (85 pairs) 51.76% 60.00%
RTE3 (64 pairs) 54.68% 62.50%

Table 5: Precision on the covered RTE data

RTE Set (800 pairs) BoW Main & BoW
RTE2 56.87% 57.75%
RTE3 61.12% 61.75%

Table 6: Precision on full RTE data

5.2 Results on the entire data
At last, we also integrate our method with a bag
of words baseline, which calculates the ratio of
overlapping words in T and H. For the pairs that
our method covers, we overrule the baseline’s de-
cision. The results are shown in Table 6 (Main
stands for the Dirt + Id + WNTS configuration).
On the full data set, the improvement is still small
due to the low coverage of our method, however
on the pairs that are covered by our method (Ta-
ble 5), there is a significant improvement over the
overlap baseline.

6 Discussion

In this section we take a closer look at the data in
order to better understand how does our method
of combining tree skeletons and inference rules
work. We will first perform error analysis on what
we have considered our best setting so far. Fol-
lowing this, we analyze data to identify the main
reasons which cause the low coverage.

For error analysis we consider the pairs incor-
rectly classified in the RTE3 test data set, consist-
ing of a total of 25 pairs. We classify the errors
into three main categories: rule application errors,
inference rule errors, and other errors (Table 7).

In the first category, the tree skeleton fails to
match the corresponding anchors of the inference
rules. For instance, if someone founded the Insti-
tute of Mathematics (Instituto di Matematica) at
the University of Milan, it does not follow that they
founded The University of Milan. The Institute of
Mathematics should be aligned with the Univer-
sity of Milan, which should avoid applying the in-

ference rule for this pair.

A rather small portion of the errors (16%) are
caused by incorrect inference rules. Out of these,
two are correct in some contexts but not in the en-
tailment pairs in which they are found. For exam-
ple, the following rule X generate Y ≈ X earn Y is
used incorrectly, however in the restricted context
of money or income, the two verbs have similar
meaning. An example of an incorrect rule is X is-
sue Y ≈ X hit Y since it is difficult to find a context
in which this holds.

The last category contains all the other errors.
In all these cases, the additional information con-
veyed by the text or the hypothesis which cannot
be captured by our current approach, affects the
entailment. For example an imitation diamond is
not a diamond, and more than 1,000 members
of the Russian and foreign media does not entail
more than 1,000 members from Russia; these are
not trivial, since lexical semantics and fine-grained
analysis of the restrictors are needed.

For the second part of our analysis we discuss
the coverage issue, based on an analysis of uncov-
ered pairs. A main factor in failing to detect pairs
in which entailment rules should be applied is the
fact that the tree skeleton does not find the corre-
sponding lexical items of two rule patterns.

Issues will occur even if the tree skeleton struc-
ture is modified to align all the corresponding frag-
ments together. Consider cases such as threaten to
boycott and boycott or similar constructions with
other embedding verbs such as manage, forget, at-
tempt. Our method can detect if the two embedded
verbs convey a similar meaning, however not how
the embedding verbs affect the implication.

Independent of the shortcomings of our tree
skeleton structure, a second factor in failing to de-
tect true entailment still lies in lack of rules. For
instance, the last two examples in Table 2 are en-
tailment pair fragments which can be formulated
as inference rules, but it is not straightforward to
acquire them via the DH.
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Source of error % pairs
Incorrect rule application 32%
Incorrect inference rules 16%
Other errors 52%

Table 7: Error analysis

7 Conclusion

Throughout the paper we have identified impor-
tant issues encountered in using inference rules for
textual entailment and proposed methods to solve
them. We explored the possibility of combin-
ing a collection obtained in a statistical, unsuper-
vised manner, DIRT, with a hand-crafted lexical
resource in order to make inference rules have a
larger contribution to applications. We also inves-
tigated ways of effectively applying these rules.
The experiment results show that although cover-
age is still not satisfying, the precision is promis-
ing. Therefore our method has the potential to be
successfully integrated in a larger entailment de-
tection framework.

The error analysis points out several possible
future directions. The tree skeleton representation
we used needs to be enhanced in order to capture
more accurately the relevant fragments of the text.
A different issue remains the fact that a lot of rules
we could use for textual entailment detection are
still lacking. A proper study of the limitations of
the DH as well as a classification of the knowledge
we want to encode as inference rules would be a
step forward towards solving this problem.

Furthermore, although all the inference rules we
used aim at recognizing positive entailment cases,
it is natural to use them for detecting negative
cases of entailment as well. In general, we can
identify pairs in which the patterns of an inference
rule are present but the anchors are mismatched, or
they are not the correct hypernym/hyponym rela-
tion. This can be the base of a principled method
for detecting structural contradictions (de Marn-
effe et al., 2008).
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Abstract

Large scale annotated corpora are pre-
requisite to developing high-performance
semantic role labeling systems. Unfor-
tunately, such corpora are expensive to
produce, limited in size, and may not be
representative. Our work aims to reduce
the annotation effort involved in creat-
ing resources for semantic role labeling
via semi-supervised learning. Our algo-
rithm augments a small number of man-
ually labeled instances with unlabeled ex-
amples whose roles are inferred automat-
ically via annotation projection. We for-
mulate the projection task as a generaliza-
tion of the linear assignment problem. We
seek to find a role assignment in the un-
labeled data such that the argument sim-
ilarity between the labeled and unlabeled
instances is maximized. Experimental re-
sults on semantic role labeling show that
the automatic annotations produced by our
method improve performance over using
hand-labeled instances alone.

1 Introduction

Recent years have seen a growing interest in the
task of automatically identifying and labeling the
semantic roles conveyed by sentential constituents
(Gildea and Jurafsky, 2002). This is partly due to
its relevance for applications ranging from infor-
mation extraction (Surdeanu et al., 2003; Mos-
chitti et al., 2003) to question answering (Shen and
Lapata, 2007), paraphrase identification (Padó and
Erk, 2005), and the modeling of textual entailment
relations (Tatu and Moldovan, 2005). Resources
like FrameNet (Fillmore et al., 2003) and Prop-
Bank (Palmer et al., 2005) have also facilitated the
development of semantic role labeling methods by
providing high-quality annotations for use in train-

ing. Semantic role labelers are commonly devel-
oped using a supervised learning paradigm1 where
a classifier learns to predict role labels based on
features extracted from annotated training data.

Examples of the annotations provided in
FrameNet are given in (1). Here, the meaning of
predicates (usually verbs, nouns, or adjectives) is
conveyed by frames, schematic representations of
situations. Semantic roles (or frame elements) are
defined for each frame and correspond to salient
entities present in the situation evoked by the pred-
icate (or frame evoking element). Predicates with
similar semantics instantiate the same frame and
are attested with the same roles. In our exam-
ple, the frame Cause harm has three core semantic
roles, Agent, Victim, and Body part and can be in-
stantiated with verbs such as punch, crush, slap,
and injure. The frame may also be attested with
non-core (peripheral) roles that are more generic
and often shared across frames (see the roles De-
gree, Reason, and Means, in (1c) and (1d)).

(1) a. [Lee]Agent punched [John]Victim

[in the eye]Body part.
b. [A falling rock]Cause crushed [my

ankle]Body part.
c. [She]Agent slapped [him]Victim

[hard]Degree [for his change of
mood]Reason.

d. [Rachel]Agent injured [her
friend]Victim [by closing the car
door on his left hand]Means.

The English FrameNet (version 1.3) contains
502 frames covering 5,866 lexical entries. It also
comes with a set of manually annotated exam-
ple sentences, taken mostly from the British Na-
tional Corpus. These annotations are often used

1The approaches are too numerous to list; we refer the
interested reader to the proceedings of the SemEval-2007
shared task (Baker et al., 2007) for an overview of the state-
of-the-art.
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as training data for semantic role labeling sys-
tems. However, the applicability of these sys-
tems is limited to those words for which labeled
data exists, and their accuracy is strongly corre-
lated with the amount of labeled data available.
Despite the substantial annotation effort involved
in the creation of FrameNet (spanning approxi-
mately twelve years), the number of annotated in-
stances varies greatly across lexical items. For in-
stance, FrameNet contains annotations for 2,113
verbs; of these 12.3% have five or less annotated
examples. The average number of annotations per
verb is 29.2. Labeled data is thus scarce for indi-
vidual predicates within FrameNet’s target domain
and would presumably be even scarcer across do-
mains. The problem is more severe for languages
other than English, where training data on the
scale of FrameNet is virtually non-existent. Al-
though FrameNets are being constructed for Ger-
man, Spanish, and Japanese, these resources are
substantially smaller than their English counter-
part and of limited value for modeling purposes.

One simple solution, albeit expensive and time-
consuming, is to manually create more annota-
tions. A better alternative may be to begin with
an initial small set of labeled examples and aug-
ment it with unlabeled data sufficiently similar to
the original labeled set. Suppose we have man-
ual annotations for sentence (1a). We shall try and
find in an unlabeled corpus other sentences that
are both structurally and semantically similar. For
instance, we may think that Bill will punch me in
the face and I punched her hard in the head re-
semble our initial sentence and are thus good ex-
amples to add to our database. Now, in order to
use these new sentences as training data we must
somehow infer their semantic roles. We can prob-
ably guess that constituents in the same syntactic
position must have the same semantic role, espe-
cially if they refer to the same concept (e.g., “body
parts”) and thus label in the face and in the head
with the role Body part. Analogously, Bill and
I would be labeled as Agent and me and her as
Victim.

In this paper we formalize the method sketched
above in order to expand a small number of
FrameNet-style semantic role annotations with
large amounts of unlabeled data. We adopt a learn-
ing strategy where annotations are projected from
labeled onto unlabeled instances via maximizing
a similarity function measuring syntactic and se-

mantic compatibility. We formalize the annotation
projection problem as a generalization of the linear
assignment problem and solve it efficiently using
the simplex algorithm. We evaluate our algorithm
by comparing the performance of a semantic role
labeler trained on the annotations produced by our
method and on a smaller dataset consisting solely
of hand-labeled instances. Results in several ex-
perimental settings show that the automatic anno-
tations, despite being noisy, bring significant per-
formance improvements.

2 Related Work

The lack of annotated data presents an obstacle
to developing many natural language applications,
especially when these are not in English. It is
therefore not surprising that previous efforts to re-
duce the need for semantic role annotation have
focused primarily on non-English languages.

Annotation projection is a popular framework
for transferring frame semantic annotations from
one language to another by exploiting the transla-
tional and structural equivalences present in par-
allel corpora. The idea here is to leverage the ex-
isting English FrameNet and rely on word or con-
stituent alignments to automatically create an an-
notated corpus in a new language. Padó and Lap-
ata (2006) transfer semantic role annotations from
English onto German and Johansson and Nugues
(2006) from English onto Swedish. A different
strategy is presented in Fung and Chen (2004),
where English FrameNet entries are mapped to
concepts listed in HowNet, an on-line ontology
for Chinese, without consulting a parallel corpus.
Then, Chinese sentences with predicates instan-
tiating these concepts are found in a monolin-
gual corpus and their arguments are labeled with
FrameNet roles.

Other work attempts to alleviate the data re-
quirements for semantic role labeling either by re-
lying on unsupervised learning or by extending ex-
isting resources through the use of unlabeled data.
Swier and Stevenson (2004) present an unsuper-
vised method for labeling the arguments of verbs
with their semantic roles. Given a verb instance,
their method first selects a frame from VerbNet, a
semantic role resource akin to FrameNet and Prop-
Bank, and labels each argument slot with sets of
possible roles. The algorithm proceeds iteratively
by first making initial unambiguous role assign-
ments, and then successively updating a probabil-
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ity model on which future assignments are based.
Being unsupervised, their approach requires no
manual effort other than creating the frame dic-
tionary. Unfortunately, existing resources do not
have exhaustive coverage and a large number of
verbs may be assigned no semantic role informa-
tion since they are not in the dictionary in the
first place. Pennacchiotti et al. (2008) address
precisely this problem by augmenting FrameNet
with new lexical units if they are similar to an ex-
isting frame (their notion of similarity combines
distributional and WordNet-based measures). In
a similar vein, Gordon and Swanson (2007) at-
tempt to increase the coverage of PropBank. Their
approach leverages existing annotations to handle
novel verbs. Rather than annotating new sentences
that contain novel verbs, they find syntactically
similar verbs and use their annotations as surro-
gate training data.

Our own work aims to reduce but not entirely
eliminate the annotation effort involved in creating
training data for semantic role labeling. We thus
assume that a small number of manual annotations
is initially available. Our algorithm augments
these with unlabeled examples whose roles are in-
ferred automatically. We apply our method in a
monolingual setting, and thus do not project an-
notations between languages but within the same
language. In contrast to Pennacchiotti et al. (2008)
and Gordon and Swanson (2007), we do not aim
to handle novel verbs, although this would be a
natural extension of our method. Given a verb
and a few labeled instances exemplifying its roles,
we wish to find more instances of the same verb
in an unlabeled corpus so as to improve the per-
formance of a hypothetical semantic role labeler
without having to annotate more data manually.
Although the use of semi-supervised learning is
widespread in many natural language tasks, rang-
ing from parsing to word sense disambiguation, its
application to FrameNet-style semantic role label-
ing is, to our knowledge, novel.

3 Semi-Supervised Learning Method

Our method assumes that we have access to a
small seed corpus that has been manually anno-
tated. This represents a relatively typical situation
where some annotation has taken place but not on
a scale that is sufficient for high-performance su-
pervised learning. For each sentence in the seed
corpus we select a number of similar sentences
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Figure 1: Labeled dependency graph with seman-
tic role annotations for the frame evoking ele-
ment (FEE) course in the sentence We can feel the
blood coursing through our veins again. The frame
is Fluidic motion, and its roles are Fluid and Path.
Directed edges (without dashes) represent depen-
dency relations between words, edge labels denote
types of grammatical relations (e.g., SUBJ, AUX).

from an unlabeled expansion corpus. These are
automatically annotated by projecting relevant se-
mantic role information from the labeled sentence.
The similarity between two sentences is opera-
tionalized by measuring whether their arguments
have a similar structure and whether they express
related meanings. The seed corpus is then en-
larged with the k most similar unlabeled sentences
to form the expanded corpus. In what follows we
describe in more detail how we measure similarity
and project annotations.

3.1 Extracting Predicate-Argument
Structures

Our method operates over labeled dependency
graphs. We show an example in Figure 1 for
the sentence We can feel the blood coursing
through our veins again. We represent verbs
(i.e., frame evoking elements) in the seed and
unlabeled corpora by their predicate-argument
structure. Specifically, we record the direct de-
pendents of the predicate course (e.g., blood
or again in Figure 1) and their grammatical
roles (e.g., SUBJ, MOD). Prepositional nodes
are collapsed, i.e., we record the preposition’s
object and a composite grammatical role (like
IOBJ THROUGH, where IOBJ stands for “preposi-
tional object” and THROUGH for the preposition
itself). In addition to direct dependents, we also
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Lemma GramRole SemRole
blood SUBJ Fluid
vein IOBJ THROUGH Path
again MOD —

Table 1: Predicate-argument structure for the verb
course in Figure 1.

consider nodes coordinated with the predicate as
arguments. Finally, for each argument node we
record the semantic roles it carries, if any. All sur-
face word forms are lemmatized. An example of
the argument structure information we obtain for
the predicate course (see Figure 1) is shown in Ta-
ble 1.

We obtain information about grammatical roles
from the output of RASP (Briscoe et al., 2006),
a broad-coverage dependency parser. However,
there is nothing inherent in our method that re-
stricts us to this particular parser. Any other
parser with broadly similar dependency output
could serve our purposes.

3.2 Measuring Similarity

For each frame evoking verb in the seed corpus our
method creates a labeled predicate-argument re-
presentation. It also extracts all sentences from the
unlabeled corpus containing the same verb. Not
all of these sentences will be suitable instances
for adding to our training data. For example, the
same verb may evoke a different frame with dif-
ferent roles and argument structure. We therefore
must select sentences which resemble the seed an-
notations. Our hypothesis is that verbs appearing
in similar syntactic and semantic contexts will be-
have similarly in the way they relate to their argu-
ments.

Estimating the similarity between two predi-
cate argument structures amounts to finding the
highest-scoring alignment between them. More
formally, given a labeled predicate-argument
structure pl with m arguments and an unla-
beled predicate-argument structure pu with n ar-
guments, we consider (and score) all possible
alignments between these arguments. A (partial)
alignment can be viewed as an injective function
σ : Mσ → {1, . . . , n} where Mσ ⊂ {1, . . . ,m}.
In other words, an argument i of pl is aligned to
argument σ(i) of pu if i ∈ Mσ. Note that this al-
lows for unaligned arguments on both sides.

We score each alignment σ using a similarity

function sim(σ) defined as:∑
i∈Mσ

(
A · syn(gl

i, g
u
σ(i)) + sem(wl

i, w
u
σ(i))−B

)
where syn(gl

i, g
u
σ(i)) denotes the syntactic similar-

ity between grammatical roles gl
i and gu

σ(i) and
sem(wl

i, w
u
σ(i)) the semantic similarity between

head words wl
i and wu

σ(i).
Our goal is to find an alignment such

that the similarity function is maximized:
σ∗ := arg max

σ
sim(σ). This optimization

problem is a generalized version of the linear
assignment problem (Dantzig, 1963). It can be
straightforwardly expressed as a linear program-
ming problem by associating each alignment σ
with a set of binary indicator variables xij :

xij :=
{

1 if i ∈ Mσ ∧ σ(i) = j
0 otherwise

The similarity objective function then becomes:

m∑
i=1

n∑
j=1

(
A · syn(gl

i, g
u
j ) + sem(wl

i, w
u
j )−B

)
xij

subject to the following constraints ensuring that σ
is an injective function on some Mσ:

n∑
j=1

xij ≤ 1 for all i = 1, . . . ,m

m∑
i=1

xij ≤ 1 for all j = 1, . . . , n

Figure 2 graphically illustrates the alignment
projection problem. Here, we wish to project
semantic role information from the seed blood
coursing through our veins again onto the un-
labeled sentence Adrenalin was still coursing
through her veins. The predicate course has three
arguments in the labeled sentence and four in the
unlabeled sentence (represented as rectangles in
the figure). There are 73 possible alignments in
this example. In general, for any m and n argu-
ments, where m ≤ n, the number of alignments
is

∑m
k=0

m!n!
(m−k)!(n−k)!k! . Each alignment is scored

by taking the sum of the similarity scores of the in-
dividual alignment pairs (e.g., between blood and
be, vein and still ). In this example, the highest
scoring alignment is between blood and adrenalin,
vein and vein, and again and still, whereas be is
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left unaligned (see the non-dotted edges in Fig-
ure 2). Note that only vein and blood carry seman-
tic roles (i.e., Fluid and Path) which are projected
onto adrenalin and vein, respectively.

Finding the best alignment crucially depends
on estimating the syntactic and semantic similar-
ity between arguments. We define the syntactic
measure on the grammatical relations produced
by RASP. Specifically, we set syn(gl

i, g
u
σ(i)) to 1

if the relations are identical, to a ≤ 1 if the rela-
tions are of the same type but different subtype2

and to 0 otherwise. To avoid systematic errors,
syntactic similarity is also set to 0 if the predicates
differ in voice. We measure the semantic similar-
ity sem(wl

i, w
u
σ(i)) with a semantic space model.

The meaning of each word is represented by a vec-
tor of its co-occurrences with neighboring words.
The cosine of the angle of the vectors represent-
ing wl and wu quantifies their similarity (Section 4
describes the specific model we used in our exper-
iments in more detail).

The parameter A counterbalances the impor-
tance of syntactic and semantic information, while
the parameter B can be interpreted as the lowest
similarity value for which an alignment between
two arguments is possible. An optimal align-
ment σ∗ cannot link arguments i0 of pl and j0

of pu, if A · syn(gl
i0

, gu
j0

) + sem(wl
i0

, wu
j0

) < B
(i.e., either i0 /∈ Mσ∗ or σ∗(i0) 6= j0). This
is because for an alignment σ with σ(i0) = j0

we can construct a better alignment σ0, which is
identical to σ on all i 6= i0, but leaves i0 un-
aligned (i.e., i0 /∈ Mσ0). By eliminating a neg-
ative term from the scoring function, it follows
that sim(σ0) > sim(σ). Therefore, an alignment σ
satisfying σ(i0) = j0 cannot be optimal and con-
versely the optimal alignment σ∗ can never link
two arguments with each other if the sum of their
weighted syntactic and semantic similarity scores
is below B.

3.3 Projecting Annotations
Once we obtain the best alignment σ∗ between pl

and pu, we can simply transfer the role of each
role-bearing argument i of pl to the aligned argu-
ment σ∗(i) of pu, resulting in a labeling of pu.

To increase the accuracy of our method we dis-
card projections if they fail to transfer all roles
of the labeled to the unlabeled dependency graph.

2This concerns fine-grained distinctions made by the
parser, e.g., the underlying grammatical roles in passive con-
structions.
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Figure 2: Alignments between the argument
structures representing the clauses blood coursing
through our veins again and Adrenalin was still
coursing through her veins; non-dotted lines illus-
trate the highest scoring alignment.

This can either be the case if pl does not cover all
roles annotated on the graph (i.e., there are role-
bearing nodes which we do not recognize as argu-
ments of the frame evoking verb) or if there are
unaligned role-bearing arguments (i.e., i /∈ Mσ∗

for a role-bearing argument i of pl).
The remaining projections form our expan-

sion corpus. For each seed instance we select
the k most similar neighbors to add to our training
data. The parameter k controls the trade-off be-
tween annotation confidence and expansion size.

4 Experimental Setup

In this section we discuss our experimental setup
for assessing the usefulness of the method pre-
sented above. We give details on our training pro-
cedure and parameter estimation, describe the se-
mantic labeler we used in our experiments and ex-
plain how its output was evaluated.

Corpora Our seed corpus was taken from
FrameNet. The latter contains approximately
2,000 verb entries out of which we randomly se-
lected a sample of 100. We next extracted all an-
notated sentences for each of these verbs. These
sentences formed our gold standard corpus, 20%
of which was reserved as test data. We used
the remaining 80% as seeds for training purposes.
We generated seed corpora of various sizes by
randomly reducing the number of annotation in-
stances per verb to a maximum of n. An addi-
tional (non-overlapping) random sample of 100
verbs was used as development set for tuning the
parameters for our method. We gathered unla-
beled sentences from the BNC.
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The seed and unlabeled corpora were parsed
with RASP (Briscoe et al., 2006). The FrameNet
annotations in the seed corpus were converted
into dependency graphs (see Figure 1) using the
method described in Fürstenau (2008). Briefly,
the method works by matching nodes in the de-
pendency graph with role bearing substrings in
FrameNet. It first finds the node in the graph
which most closely matches the frame evoking
element in FrameNet. Next, individual graph
nodes are compared against labeled substrings in
FrameNet to transfer all roles onto their closest
matching graph nodes.

Parameter Estimation The similarity function
described in Section 3.2 has three free parameters.
These are the weight A which determines the rel-
ative importance of syntactic and semantic infor-
mation, the parameter B which determines when
two arguments cannot be aligned and the syntactic
score a for almost identical grammatical roles. We
optimized these parameters on the development
set using Powell’s direction set method (Brent,
1973) with F1 as our loss function. The optimal
values for A, B and a were 1.76, 0.41 and 0.67,
respectively.

Our similarity function is further parametrized
in using a semantic space model to compute the
similarity between two words. Considerable lat-
itude is allowed in specifying the parameters of
vector-based models. These involve the defi-
nition of the linguistic context over which co-
occurrences are collected, the number of com-
ponents used (e.g., the k most frequent words
in a corpus), and their values (e.g., as raw co-
occurrence frequencies or ratios of probabilities).

We created a vector-based model from a lem-
matized version of the BNC. Following previ-
ous work (Bullinaria and Levy, 2007), we opti-
mized the parameters of our model on a word-
based semantic similarity task. The task involves
examining the degree of linear relationship be-
tween the human judgments for two individual
words and vector-based similarity values. We ex-
perimented with a variety of dimensions (ranging
from 50 to 500,000), vector component definitions
(e.g., pointwise mutual information or log likeli-
hood ratio) and similarity measures (e.g., cosine or
confusion probability). We used WordSim353, a
benchmark dataset (Finkelstein et al., 2002), con-
sisting of relatedness judgments (on a scale of 0
to 10) for 353 word pairs.

We obtained best results with a model using a
context window of five words on either side of the
target word, the cosine measure, and 2,000 vec-
tor dimensions. The latter were the most com-
mon context words (excluding a stop list of func-
tion words). Their values were set to the ratio of
the probability of the context word given the tar-
get word to the probability of the context word
overall. This configuration gave high correlations
with the WordSim353 similarity judgments using
the cosine measure.

Solving the Linear Program A variety of algo-
rithms have been developed for solving the linear
assignment problem efficiently. In our study, we
used the simplex algorithm (Dantzig, 1963). We
generate and solve an LP of every unlabeled sen-
tence we wish to annotate.

Semantic role labeler We evaluated our method
on a semantic role labeling task. Specifically, we
compared the performance of a generic seman-
tic role labeler trained on the seed corpus and
a larger corpus expanded with annotations pro-
duced by our method. Our semantic role labeler
followed closely the implementation of Johans-
son and Nugues (2008). We extracted features
from dependency parses corresponding to those
routinely used in the semantic role labeling liter-
ature (see Baker et al. (2007) for an overview).
SVM classifiers were trained to identify the argu-
ments and label them with appropriate roles. For
the latter we performed multi-class classification
following the one-versus-one method3 (Friedman,
1996). For the experiments reported in this paper
we used the LIBLINEAR library (Fan et al., 2008).
The misclassification penalty C was set to 0.1.

To evaluate against the test set, we linearized
the resulting dependency graphs in order to obtain
labeled role bracketings like those in example (1)
and measured labeled precision, labeled recall and
labeled F1. (Since our focus is on role labeling and
not frame prediction, we let our role labeler make
use of gold standard frame annotations, i.e., label-
ing of frame evoking elements with frame names.)

5 Results

The evaluation of our method was motivated by
three questions: (1) How do different training set
sizes affect semantic role labeling performance?

3Given n classes the one-versus-one method builds
n(n− 1)/2 classifiers.
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TrainSet Size Prec (%) Rec (%) F1 (%)
0-NN 849 35.5 42.0 38.5
1-NN 1205 36.4 43.3 39.5
2-NN 1549 38.1 44.1 40.9∗

3-NN 1883 37.9 43.7 40.6∗

4-NN 2204 38.0 43.9 40.7∗

5-NN 2514 37.4 43.9 40.4∗

self train 1609 34.0 41.0 37.1

Table 2: Semantic role labeling performance using
different amounts of training data; the seeds are
expanded with their k nearest neighbors; ∗: F1 is
significantly different from 0-NN (p < 0.05).

Training size varies depending on the number of
unlabeled sentences added to the seed corpus. The
quality of these sentences also varies depending
on their similarity to the seed sentences. So,
we would like to assess whether there is a trade-
off between annotation quality and training size.
(2) How does the size of the seed corpus influence
role labeling performance? Here, we are interested
to find out what is the least amount of manual
annotation possible for our method to have some
positive impact. (3) And finally, what are the an-
notation savings our method brings?

Table 2 shows the performance of our semantic
role labeler when trained on corpora of different
sizes. The seed corpus was reduced to at most 10
instances per verb. Each row in the table corre-
sponds to adding the k nearest neighbors of these
instances to the training data. When trained solely
on the seed corpus the semantic role labeler yields
a (labeled) F1 of 38.5%, (labeled) recall is 42.0%
and (labeled) precision is 35.5% (see row 0-NN
in the table). All subsequent expansions yield
improved precision and recall. In all cases ex-
cept k = 1 the improvement is statistically signif-
icant (p < 0.05). We performed significance test-
ing on F1 using stratified shuffling (Noreen, 1989),
an instance of assumption-free approximative ran-
domization testing. As can be seen, the optimal
trade-off between the size of the training corpus
and annotation quality is reached with two nearest
neighbors. This corresponds roughly to doubling
the number of training instances. (Due to the re-
strictions mentioned in Section 3.3 a 2-NN expan-
sion does not triple the number of instances.)

We also compared our results against a self-
training procedure (see last row in Table 2). Here,
we randomly selected unlabeled sentences corre-

sponding in number to a 2-NN expansion, labeled
them with our role labeler, added them to the train-
ing set, and retrained. Self-training resulted in per-
formance inferior to the baseline of adding no un-
labeled data at all (see the first row in Table 2).
Performance decreased even more with the addi-
tion of more self-labeled instances. These results
indicate that the similarity function is crucial to the
success of our method.

An example of the annotations our method pro-
duces is given below. Sentence (2a) is the seed.
Sentences (2b)–(2e) are its most similar neighbors.
The sentences are presented in decreasing order of
similarity.

(2) a. [He]Theme stared and came
[slowly]Manner [towards me]Goal.

b. [He]Theme had heard the shooting
and come [rapidly]Manner [back to-
wards the house]Goal.

c. Without answering, [she]Theme left
the room and came [slowly]Manner

[down the stairs]Goal.
d. [Then]Manner [he]Theme won’t come

[to Salisbury]Goal.
e. Does [he]Theme always come round

[in the morning]Goal [then]Manner?

As we can see, sentences (2b) and (2c) accu-
rately identify the semantic roles of the verb come
evoking the frame Arriving. In (2b) He is la-
beled as Theme, rapidly as Manner, and towards
the house as Goal. Analogously, in (2c) she is
the Theme, slowly is Manner and down the stairs
is Goal. The quality of the annotations decreases
with less similar instances. In (2d) then is marked
erroneously as Manner, whereas in (2e) only the
Theme role is identified correctly.

To answer our second question, we varied the
size of the training corpus by varying the num-
ber of seeds per verb. For these experiments we
fixed k = 2. Table 3 shows the performance of the
semantic role labeler when the seed corpus has one
annotation per verb, five annotations per verb, and
so on. (The results for 10 annotations are repeated
from Table 2). With 1, 5 or 10 instances per verb
our method significantly improves labeling perfor-
mance. We observe improvements in F1 of 1.5%,
2.1%, and 2.4% respectively when adding the 2
most similar neighbors to these training corpora.
Our method also improves F1 when a 20 seeds
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TrainSet Size Prec (%) Rec (%) F1 (%)
≤ 1 seed 95 24.9 31.3 27.7
+ 2-NN 170 26.4 32.6 29.2∗

≤ 5 seeds 450 29.7 38.4 33.5
+ 2-NN 844 31.8 40.4 35.6∗

≤ 10 seeds 849 35.5 42.0 38.5
+ 2-NN 1549 38.1 44.1 40.9∗

≤ 20 seeds 1414 38.7 46.1 42.1
+ 2-NN 2600 40.5 46.7 43.4
all seeds 2323 38.3 47.0 42.2
+ 2-NN 4387 39.5 46.7 42.8

Table 3: Semantic role labeling performance us-
ing different numbers of seed instances per verb in
the training corpus; the seeds are expanded with
their k = 2 nearest neighbors; ∗: F1 is signifi-
cantly different from seed corpus (p < 0.05).

corpus or all available seeds are used, however the
difference is not statistically significant.

The results in Table 3 also allow us to draw
some conclusions regarding the relative quality
of manual and automatic annotation. Expand-
ing a seed corpus with 10 instances per verb im-
proves F1 from 38.5% to 40.9%. We can com-
pare this to the labeler’s performance when trained
solely on the 20 seeds corpus (without any ex-
pansion). The latter has approximately the same
size as the expanded 10 seeds corpus. Interest-
ingly, F1 on this exclusively hand-annotated cor-
pus is only 1.2% better than on the expanded cor-
pus. So, using our expansion method on a 10 seeds
corpus performs almost as well as using twice as
many manual annotations. Even in the case of the
5 seeds corpus, where there is limited informa-
tion for our method to expand from, we achieve
an improvement from 33.5% to 35.6%, compared
to 38.5% for manual annotation of about the same
number of instances. In sum, while additional
manual annotation is naturally more effective for
improving the quality of the training data, we can
achieve substantial proportions of these improve-
ments by automatic expansion alone. This is a
promising result suggesting that it is possible to
reduce annotation costs without drastically sacri-
ficing quality.

6 Conclusions

This paper presents a novel method for reducing
the annotation effort involved in creating resources
for semantic role labeling. Our strategy is to ex-

pand a manually annotated corpus by projecting
semantic role information from labeled onto un-
labeled instances. We formulate the projection
problem as an instance of the linear assignment
problem. We seek to find role assignments that
maximize the similarity between labeled and un-
labeled instances. Similarity is measured in terms
of structural and semantic compatibility between
argument structures.

Our method improves semantic role labeling
performance in several experimental conditions. It
is especially effective when a small number of an-
notations is available for each verb. This is typi-
cally the case when creating frame semantic cor-
pora for new languages or new domains. Our ex-
periments show that expanding such corpora with
our method can yield almost the same relative im-
provement as using exclusively manual annota-
tion.

In the future we plan to extend our method
in order to handle novel verbs that are not at-
tested in the seed corpus. Another direction con-
cerns the systematic modeling of diathesis alter-
nations (Levin, 1993). These are currently only
captured implicitly by our method (when the se-
mantic similarity overrides syntactic dissimilar-
ity). Ideally, we would like to be able to system-
atically identify changes in the realization of the
argument structure of a given predicate. Although
our study focused solely on FrameNet annotations,
we believe it can be adapted to related annotation
schemes, such as PropBank. An interesting ques-
tion is whether the improvements obtained by our
method carry over to other role labeling frame-
works.
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Abstract 

We investigate linguistic features that correlate 
with the readability of texts for adults with in-
tellectual disabilities (ID).  Based on a corpus 
of texts (including some experimentally meas-
ured for comprehension by adults with ID), we 
analyze the significance of novel discourse-
level features related to the cognitive factors 
underlying our users’ literacy challenges.  We 
develop and evaluate a tool for automatically 
rating the readability of texts for these users.  
Our experiments show that our discourse-
level, cognitively-motivated features improve 
automatic readability assessment. 

1 Introduction 

Assessing the degree of readability of a text has 
been a field of research as early as the 1920's. 
Dale and Chall define readability as “the sum 
total (including all the interactions) of all those 
elements within a given piece of printed material 
that affect the success a group of readers have 
with it. The success is the extent to which they 
understand it, read it at optimal speed, and find it 
interesting” (Dale and Chall, 1949). It has long 
been acknowledged that readability is a function 
of text characteristics, but also of the readers 
themselves.  The literacy skills of the readers, 
their motivations, background knowledge, and 
other internal characteristics play an important 
role in determining whether a text is readable for 
a particular group of people. In our work, we 
investigate how to assess the readability of a text 
for people with intellectual disabilities (ID). 

Previous work in automatic readability as-
sessment has focused on generic features of a 
text at the lexical and syntactic level.  While such 
features are essential, we argue that audience-
specific features that model the cognitive charac-
teristics of a user group can improve the accura-

cy of a readability assessment tool.  The contri-
butions of this paper are: (1) we present a corpus 
of texts with readability judgments from adults 
with ID; (2) we propose a set of cognitively-
motivated features which operate at the discourse 
level; (3) we evaluate the utility of these features 
in predicting readability for adults with ID. 

Our framework is to create tools that benefit 
people with intellectual disabilities (ID), specifi-
cally those classified in the “mild level” of men-
tal retardation, IQ scores 55-70.  About 3% of 
the U.S. population has intelligence test scores of 
70 or lower (U.S. Census Bureau, 2000).  People 
with ID face challenges in reading literacy.  They 
are better at decoding words (sounding them out) 
than at comprehending their meaning (Drew & 
Hardman, 2004), and most read below their men-
tal age-level (Katims, 2000).  Our research ad-
dresses two literacy impairments that distinguish 
people with ID from other low-literacy adults: 
limitations in (1) working memory and (2) dis-
course representation.  People with ID have 
problems remembering and inferring information 
from text (Fowler, 1998).  They have a slower 
speed of semantic encoding and thus units are 
lost from the working memory before they are 
processed (Perfetti & Lesgold, 1977; Hickson-
Bilsky, 1985).  People with ID also have trouble 
building cohesive representations of discourse 
(Hickson-Bilsky, 1985).  As less information is 
integrated into the mental representation of the 
current discourse, less is comprehended.   

Adults with ID are limited in their choice of 
reading material.  Most texts that they can readi-
ly understand are targeted at the level of reada-
bility of children.  However, the topics of these 
texts often fail to match their interests since they 
are meant for younger readers.  Because of the 
mismatch between their literacy and their inter-
ests, users may not read for pleasure and there-
fore miss valuable reading-skills practice time.  
In a feasibility study we conducted with adults 

229



with ID, we asked participants what they enjoyed 
learning or reading about.  The majority of our 
subjects mentioned enjoying watching the news, 
in particular local news.  Many mentioned they 
were interested in information that would be re-
levant to their daily lives.  While for some ge-
nres, human editors can prepare texts for these 
users, this is not practical for news sources that 
are frequently updated and specific to a limited 
geographic area (like local news). Our goal is to 
create an automatic metric to predict the reada-
bility of local news articles for adults with ID.  
Because of the low levels of written literacy 
among our target users, we intend to focus on 
comprehension of texts displayed on a computer 
screen and read aloud by text-to-speech software; 
although some users may depend on the text-to-
speech software, we use the term readability. 

This paper is organized as follows.  Section 2 
presents related work on readability assessment. 
Section 3 states our research hypotheses and de-
scribes our methodology.  Section 4 focuses on 
the data sets used in our experiments, while sec-
tion 5 describes the feature set we used for rea-
dability assessment along with a corpus-based 
analysis of each feature.  Section 6 describes a 
readability assessment tool and reports on evalu-
ation.  Section 7 discusses the implications of the 
work and proposes direction for future work. 

2 Related Work on Readability Metrics 

Many readability metrics have been established 
as a function of shallow features of texts, such as 
the number of syllables per word and number of 
words per sentence (Flesch, 1948; McLaughlin, 
1969; Kincaid et al., 1975). These so-called tra-
ditional readability metrics are still used today in 
many settings and domains, in part because they 
are very easy to compute. Their results, however, 
are not always representative of the complexity 
of a text (Davison and Kantor, 1982). They can 
easily misrepresent the complexity of technical 
texts, or reveal themselves un-adapted to a set of 
readers with particular reading difficulties. Other 
formulas rely on lexical information; e.g., the 
New Dale-Chall readability formula consults a 
static, manually-built list of “easy” words to de-
termine whether a text contains unfamiliar words 
(Chall and Dale, 1995).  

Researchers in computational linguistics have 
investigated the use of statistical language mod-
els (unigram in particular) to capture the range of 
vocabulary from one grade level to another (Si 
and Callan, 2001; Collins-Thompson and Callan, 

2004). These metrics predicted readability better 
than traditional formulas when tested against a 
corpus of web pages. The use of syntactic fea-
tures was also investigated (Schwarm and Osten-
dorf, 2005; Heilman et al., 2007; Petersen and 
Ostendorf, 2009) in the assessment of text reada-
bility for English as a Second Language readers. 
While lexical features alone outperform syntactic 
features in classifying texts according to their 
reading levels, combining the lexical and syntac-
tic features yields the best results. 

Several elegant metrics that focus solely on 
the syntax of a text have also been developed.  
The Yngve (1960) measure, for instance, focuses 
on the depth of embedding of nodes in the parse 
tree; others use the ratio of terminal to non-
terminal nodes in the parse tree of a sentence 
(Miller and Chomsky, 1963; Frazier, 1985).  
These metrics have been used to analyze the 
writing of potential Alzheimer's patients to detect 
mild cognitive impairments (Roark, Mitchell, 
and Hollingshead, 2007), thereby indicating that 
cognitively motivated features of text are valua-
ble when creating tools for specific populations. 

Barzilay and Lapata (2008) presented early 
work in investigating the use of discourse to dis-
tinguish abridged from original encyclopedia 
articles.  Their focus, however, is on style detec-
tion rather than readability assessment per se.  
Coh-Metrix is a tool for automatically calculat-
ing text coherence based on features such as re-
petition of lexical items across sentences and 
latent semantic analysis (McNamara et al., 
2006).  The tool is based on comprehension data 
collected from children and college students. 

Our research differs from related work in that 
we seek to produce an automatic readability me-
tric that is tailored to the literacy skills of adults 
with ID.  Because of the specific cognitive cha-
racteristics of these users, it is an open question 
whether existing readability metrics and features 
are useful for assessing readability for adults 
with ID.  Many of these earlier metrics have fo-
cused on the task of assigning texts to particular 
elementary school grade levels.  Traditional 
grade levels may not be the ideal way to score 
texts to indicate how readable they are for adults 
with ID.  Other related work has used models of 
vocabulary (Collins-Thompson and Callan, 
2004).  Since we would like to use our tool to 
give adults with ID access to local news stories, 
we choose to keep our metric topic-independent. 

Another difference between our approach and 
previous approaches is that we have designed the 
features used by our readability metric based on 
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the cognitive aspects of our target users.  For ex-
ample, these users are better at decoding words 
than at comprehending text meaning (Drew & 
Hardman, 2004); so, shallow features like “sylla-
ble count per word” or unigram models of word 
frequency (based on texts designed for children) 
may be less important indicators of reading diffi-
culty.  A critical challenge for our users is to 
create a cohesive representation of discourse.  
Due to their impairments in semantic encoding 
speed, our users may have particular difficulty 
with texts that place a significant burden on 
working memory (items fall out of memory be-
fore they can be semantically encoded).   

While we focus on readability of texts, other 
projects have automatically generated texts for 
people with aphasia (Carroll et al., 1999) or low 
reading skills (Williams and Reiter, 2005). 

3 Research Hypothesis and Methods 

We hypothesize that the complexity of a text for 
adults with ID is related to the number of entities 
referred to in the text overall.  If a paragraph or a 
text refers to too many entities at once, the reader 
has to work harder at mapping each entity to a 
semantic representation and deciding how each 
entity is related to others.  On the other hand, 
when a text refers to few entities, less work is 
required both for semantic encoding and for in-
tegrating the entities into a cohesive mental re-
presentation.  Section 5.2 discusses some novel 
discourse-level features (based on the “entity 
density” of a text) that we believe will correlate 
to comprehension by adults with ID.   

To test our hypothesis, we used the following 
methodology.  We collected four corpora (as de-
scribed in Section 4).  Three of them (Britannica, 
LiteracyNet and WeeklyReader) have been ex-
amined in previous work on readability.  The 
fourth (LocalNews) is novel and results from a 
user study we conducted with adults with ID.  
We then analyzed how significant each feature is 
on our Britannica and LiteracyNet corpora.  Fi-
nally, we combined the significant features into a 
linear regression model and experimented with 
several feature combinations. We evaluated our 
model on the WeeklyReader and LocalNews 
corpora. 

4 Corpora and Readability Judgments  

To study how certain linguistic features indicate 
the readability of a text, we collected a corpus of 
English text at different levels of readability.  An 
ideal corpus for our research would contain texts 

that have been written specifically for our au-
dience of adults with intellectual disabilities – in 
particular if such texts were paired with alternate 
versions of each text written for a general au-
dience.  We are not aware of such texts available 
electronically, and so we have instead mostly 
collected texts written for an audience of child-
ren.  The texts come from online and commercial 
sources, and some have been analyzed previous-
ly by text simplification researchers (Petersen 
and Ostendorf, 2009).  Our corpus also contains 
some novel texts produced as part of an experi-
mental study involving adults with ID. 

4.1 Paired and Graded Generic Corpora: 
Britannica, LiteracyNet, and Weekly 
Reader 

The first section of our corpus (which we refer to 
as Britannica) has 228 articles from the Encyclo-
pedia Britannica, originally collected by (Barzi-
lay and Elhadad, 2003).  This consists of 114 
articles in two forms: original articles written for 
adults and corresponding articles rewritten for an 
audience of children.  While the texts are paired, 
the content of the texts is not identical: some de-
tails are omitted from the child version, and addi-
tional background is sometimes inserted.  The 
resulting corpus is comparable in content. 

Because we are particularly interested in mak-
ing local news articles accessible to adults with 
ID, we collected a second paired corpus, which 
we refer to as LiteracyNet, consisting of 115 
news articles made available through (West-
ern/Pacific Literacy Network / LiteracyNet, 
2008).  The collection of local CNN stories is 
available in an original and simplified/abridged 
form (230 total news articles) designed for use in 
literacy education. 

The third corpus we collected (Weekly Reader) 
was obtained from the Weekly Reader corpora-
tion (Weekly Reader, 2008).  It contains articles 
for students in elementary school.  Each text is 
labeled with its target grade level (grade 2: 174 
articles, grade 3: 289 articles, grade 4: 428 ar-
ticles, grade 5: 542 articles).  Overall, the corpus 
has 1433 articles. (U.S. elementary school grades 
2 to 5 generally are for children ages 7 to 10.) 

The corpora discussed above are similar to 
those used by Petersen and Ostendorf (2009).  
While the focus of our research is adults with ID, 
most of the texts discussed in this section have 
been simplified or written by human authors to 
be readable for children.  Despite the texts being 
intended for a different audience than the focus 
of our research, we still believe these texts to be 
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of value.  It is rare to encounter electronically 
available corpora in which an original and a sim-
plified version of a text is paired (as in the Bri-
tannica and LiteracyNet corpora) or texts labeled 
as being at specific levels of readability (as in the 
Weekly Reader corpus). 

4.2 Readability-Specific Corpus: LocalNews 

The final section of our corpus contains local 
news articles that are labeled with comprehen-
sion scores.  These texts were produced for a fea-
sibility study involving adults with ID.  Each text 
was read by adults with ID, who then answered 
comprehension questions to measure their under-
standing of the texts.  Unlike the previous corpo-
ra, LocalNews is novel and was not investigated 
by previous research in readability. 

After obtaining university approval for our ex-
perimental protocol and informed consent 
process, we conducted a study with 14 adults 
with mild intellectual disabilities who participate 
in daytime educational programs in the New 
York area.  Participants were presented with ten 
articles collected from various local New York 
based news websites.  Some subjects saw the 
original form of an article and others saw a sim-
plified form (edited by a human author); no sub-
ject saw both versions.  The texts were presented 
in random order using software that displayed 
the text on the screen, read it aloud using text-to-
speech software, and highlighted each word as it 
was read.  Afterward, subjects were asked aloud 
multiple-choice comprehension questions. We 
defined the readability score of a story as the 
percentage of correct answers averaged across 
the subjects who read that particular story. 

A human editor performed the text simplifica-
tion with the goal of making the text more reada-
ble for adults with mild ID.  The editor made the 
following types of changes to the original news 
stories: breaking apart complex sentences, un-
embedding information in complex prepositional 
phrases and reintegrating it as separate sentences, 
replacing infrequent vocabulary items with more 
common/colloquial equivalents, omitting sen-
tences and phrases from the story that mention 
entities and phrases extraneous to the main 
theme of the article.  For instance, the original 
sentence “They’re installing an induction loop 
system in cabs that would allow passengers with 
hearing aids to tune in specifically to the driver’s 
voice.” was transformed into “They’re installing 
a system in cabs. It would allow passengers with 
hearing aids to listen to the driver’s voice.” 

This corpus of local news articles that have 
been human edited and scored for comprehen-
sion by adults with ID is small in size (20 news 
articles), but we consider it a valuable resource.  
Unlike the texts that have been simplified for 
children (the rest of our corpus), these texts have 
been rated for readability by actual adults with 
ID.  Furthermore, comprehension scores are de-
rived from actual reader comprehension tests, 
rather than self-perceived comprehension.  Be-
cause of the small size of this part of our corpus, 
however, we primarily use it for evaluation pur-
poses (not for training the readability models). 

5 Linguistic Features and Readability  

We now describe the set of features we investi-
gated for assessing readability automatically.  
Table 1 contains a list of the features – including 
a short code name for each feature which may be 
used throughout this paper.  We have begun by 
implementing the simple features used by the 
Flesh-Kincaid and FOG metrics: average number 
of words per sentence, average number of syl-
lables per word, and percentage of words in the 
document with 3+ syllables. 

5.1 Basic Features Used in Earlier Work 

We have also implemented features inspired by 
earlier research on readability.  Petersen and Os-
tendorf (2009) included features calculated from 
parsing the sentences in their corpus using the 
Charniak parser (Charniak, 2000): average parse 
tree height, average number of noun phrases per 
sentence, average number of verb phrases per 
sentence, and average number of SBARs per sen-
tence. We have implemented versions of most of 
these parse-tree-related features for our project.  
We also parse the sentences in our corpus using 
Charniak’s parser and calculate the following 
features listed in Table 1: aNP, aN, aVP, aAdj, 
aSBr, aPP, nNP, nN, nVP, nAdj, nSBr, and nPP.   

5.2 Novel Cognitively-Motivated Features  

Because of the special reading characteristics of 
our target users, we have designed a set of cogni-
tively motivated features to predict readability of 
texts for adults with ID.  We have discussed how 
working memory limits the semantic encoding of 
new information by these users; so, our features 
indicate the number of entities in a text that the 
reader must keep in mind while reading each 
sentence and throughout the entire document.  It 
is our hypothesis that this “entity density” of a 
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text plays an important role in the difficulty of 
that text for readers with intellectual disabilities. 

The first set of features incorporates the Ling-
Pipe named entity detection software (Alias-i, 
2008), which detects three types of entities: per-
son, location, and organization.  We also use the 
part-of-speech tagger in LingPipe to identify the 
common nouns in the document, and we find the 
union of the common nouns and the named entity 
noun phrases in the text.  The union of these two 
sets is our definition of “entity” for this set of 
features.  We count both the total number of 
“entity mentions” in a text (each token appear-
ance of an entity) and the total number of unique 
entities (exact-string-match duplicates only 
counted once).  Table 1 lists these features: nEM, 
nUE, aEM, and aUE.  We count the totals per 
document to capture how many entities the read-
er must keep track of while reading the docu-
ment.  We also expect sentences with more enti-
ties to be more difficult for our users to semanti-
cally encode due to working memory limitations; 
so, we also count the averages per sentence to 

capture how many entities the reader must keep 
in mind to understand each sentence.   

To measure the working memory burden of a 
text, we’d like to capture the number of dis-
course entities that a reader must keep in mind.  
However, the “unique entities” identified by the 
named entity recognition tool may not be a per-
fect representation of this – several unique enti-
ties may actually refer to the same real-world 
entity under discussion.  To better model how 
multiple noun phrases in a text refer to the same 
entity or concept, we have also built features us-
ing lexical chains (Galley and McKeown, 2003).  
Lexical chains link nouns in a document con-
nected by relations like synonymy or hyponomy; 
chains can indicate concepts that recur through-
out a text.  A lexical chain has both a length 
(number of noun phrases it includes) and a span 
(number of words in the document between the 
first noun phrase at the beginning of the chain 
and the last noun phrase that is part of the chain).  
We calculate the number of lexical chains in the 
document (nLC) and those with a span greater 
than half the document length (nLC2).  We be-
lieve these features may indicate the number of 
entities/concepts that a reader must keep in mind 
during a document and the subset of very impor-
tant entities/concepts that are the main topic of 
the document.  The average length and average 
span of the lexical chains in a document (aLCL 
and aLCS) may also indicate how many of the 
chains in the document are short-lived, which 
may mean that they are ancillary enti-
ties/concepts, not the main topics. 

The final two features in Table 1 (aLCw and 
aLCe) use the concept of an “active” chain.  At a 
particular location in a text, we define a lexical 
chain to be “active” if the span (between the first 
and last noun in the lexical chain) includes the 
current location.  We expect these features may 
indicate the total number of concepts that the 
reader needs to keep in mind during a specific 
moment in time when reading a text.  Measuring 
the average number of concepts that the reader of 
a text must keep in mind may suggest the work-
ing memory burden of the text over time.  We 
were unsure if individual words or individual 
noun-phrases in the document should be used as 
the basic unit of “time” for the purpose of aver-
aging the number of active lexical chains; so, we 
included both features. 

5.3 Testing the Significance of Features 

To select which features to include in our auto-
matic readability assessment tool (in Section 6), 

Code Feature

aWPS average number of words per sentence

aSPW average number of syllables per word

%3+S % of words in document with 3+ syllables

aNP avg. num. NPs per sentence

aN avg. num. common+proper nouns per sentence

aVP avg. num. VPs per sentence

aAdj avg. num. Adjectives per sentence

aSBr avg. num. SBARs per sentence

aPP avg. num. prepositional phrases per sentence

nNP total number of NPs per sentence

nN total num. of common+proper nouns in document

nVP total number of VPs in the document

nAdj total number of Adjectives in the document

nSBr total number of SBARs in the document

nPP total num. of prepositional phrases in document

nEM number of entity mentions in document

nUE number of unique entit ies in document

aEM avg. num. entity mentions per sentence

aUE avg. num. unique entit ies per sentence

nLC number of lexical chains in document

nLC2 num. lex. chains, span > half document length

aLCL average lexical chain length

aLCS average lexical chain span

aLCw avg. num. lexical chains active at  each word

aLCn avg. num. lexical chains active at  each NP

Table 1: Implemented Features
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we analyzed the documents in our paired corpora 
(Britannica and LiteracyNet).  Because they con-
tain a complex and a simplified version of each 
article, we can examine differences in readability 
while holding the topic and genre constant.  We 
calculated the value of each feature for each doc-
ument, and we used a paired t-test to determine if 
the difference between the complex and simple 
documents was significant for that corpus. 

Table 2 contains the results of this feature se-
lection process; the columns in the table indicate 
the values for the following corpora: Britannica 
complex, Britannica simple, LiteracyNet com-
plex, and LiteracyNet simple.  An asterisk ap-
pears in the “Sig” column if the difference be-
tween the feature values for the complex vs. 
simple documents is statistically significant for 
that corpus (significance level: p<0.00001).   

The only two features which did not show a 
significant difference (p>0.01) between the com-
plex and simple versions of the articles were: 
average lexical chain length (aLCL) and number 
of lexical chains with span greater than half the 
document length (nLC2).  The lack of signific-
ance for aLCL may be explained by the vast ma-
jority of lexical chains containing few members; 
complex articles contained more of these chains 
– but their chains did not contain more members.  
In the case of nLC2, over 80% of the articles in 
each category contained no lexical chains whose 
span was greater than half the document length.  
The rarity of a lexical chain spanning the majori-
ty of a document may have led to there being no 
significant difference between complex/simple. 

6 A Readability Assessment Tool 

After testing the significance of features using 
paired corpora, we used linear regression and our 
graded corpus (Weekly Reader) to build a reada-
bility assessment tool.  To evaluate the tool’s 
usefulness for adults with ID, we test the correla-
tion of its scores with the LocalNews corpus. 

6.1 Versions of Our Model 

We began our evaluation by implementing three 
versions of our automatic readability assessment 
tool.  The first version uses only those features 
studied by previous researchers (aWPS, aSPW, 
%3+S, aNP, aN, aVP, aAdj, aSBr, aPP, nNP, nN, 
nVP, nAdj, nSBr, nPP).  The second version uses 
only our novel cognitively motivated features 
(section 5.2).  The third version uses the union of 
both sets of features.  By building three versions 
of the tool, we can compare the relative impact 

of our novel cognitively-motivated features.  For 
all versions, we have only included those fea-
tures that showed a significant difference be-
tween the complex and simple articles in our 
paired corpora (as discussed in section 5.3). 

6.2 Learning Technique and Training Data 

Early work on automatic readability analysis 
framed the problem as a classification task: 
creating multiple classifiers for labeling a text as 
being one of several elementary school grade 
levels (Collins-Thompson and Callan, 2004).  
Because we are focusing on a unique user group 
with special reading challenges, we do not know 
a priori what level of text difficulty is ideal for 
our users.  We would not know where to draw 
category boundaries for classification.  We also 
prefer that our assessment tool assign numerical 
difficulty scores to texts.  Thus, after creating 
this tool, we can conduct further reading com-
prehension experiments with adults with ID to 
determine what threshold (for readability scores 
assigned by our tool) is appropriate for our users. 

Feature
Brit. 
Com.

Brit. 
Simp. Sig

LitN. 
Com.

LitN. 
Simp. Sig

aWPS 20.13 14.37 * 17.97 12.95 *

aSPW 1.708 1.655 * 1.501 1.455 *

%3+S 0.196 0.177 * 0.12 0.101 *

aNP 8.363 6.018 * 6.519 4.691 *

aN 7.024 5.215 * 5.319 3.929 *

aVP 2.334 1.868 * 3.806 2.964 *

aAdj 1.95 1.281 * 1.214 0.876 *

aSBr 0.266 0.205 * 0.793 0.523 *

aPP 2.858 1.936 * 1.791 1.22 *

nNP 798 219.2 * 150.2 102.9 *

nN 668.4 190.4 * 121.4 85.75 *

nVP 242.8 69.19 * 88.2 65.52 *

nAdj 205 47.32 * 28.11 19.04 *

nSBr 31.33 7.623 * 18.16 11.43 *

nPP 284.7 70.75 * 41.06 26.79 *

nEM 624.2 172.7 * 115.2 82.83 *

nUE 355 117 * 81.56 54.94 *

aEM 6.441 4.745 * 5.035 3.789 *

aUE 4.579 3.305 * 3.581 2.55 *

nLC 59.21 17.57 * 12.43 8.617 *

nLC2 0.175 0.211 0.191 0.226

aLCL 3.009 3.022 2.817 2.847

aLCS 357 246.1 * 271.9 202.9 *

aLCw 1.803 1.358 * 1.407 1.091 *

aLCn 1.852 1.42 * 1.53 1.201 *

Table 2: Feature Values of Paired Corpora
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To select features for our model, we used our 
paired corpora (Britannica and LiteracyNet) to 
measure the significance of each feature.  Now 
that we are training a model, we make use of our 
graded corpus (articles from Weekly Reader).  
This corpus contains articles that have each been 
labeled with an elementary school grade level for 
which it was written.  We divide this corpus – 
using 80% of articles as training data and 20% as 
testing data.  We model the grade level of the 
articles using linear regression; our model is im-
plemented using R (R Development Core Team, 
2008).  

6.3 Evaluation of Our Readability Tool 

We conducted two rounds of training and evalua-
tion of our three regression models.  We also 
compare our models to a baseline readability as-
sessment tool: the popular Flesh-Kincaid Grade 
Level index (Kincaid et al., 1975).  

In the first round of evaluation, we trained and 
tested our regression models on the Weekly 
Reader corpus.  This round of evaluation helped 
to determine whether our feature-set and regres-
sion technique were successfully modeling those 
aspects of the texts that were relevant to their 
grade level.  Our results from this round of eval-
uation are presented in the form of average error 
scores.  (For each article in the Weekly Reader 
testing data, we calculate the difference between 
the output score of the model and the correct 
grade-level for that article.)  Table 3 presents the 
average error results for the baseline system and 
our three regression models.  We can see that the 
model trained on the shallow and parse-related 
features out-performs the model trained only on 
our novel features; however, the best model 
overall is the one is trained on all of the features.  
This model predicts the grade level of Weekly 
Reader articles to within roughly 0.565 grade 
levels on average.   
 

Readability Model (or baseline) Average Error 
Baseline: Flesh-Kincaid Index 2.569 
Basic Features Only 0.6032 
Cognitively Motivated Features Only 0.6110 
Basic + Cognitively-Motiv. Features 0.5650 
Table 3: Predicting Grade Level of Weekly Reader 
 

In our second round of evaluation, we trained 
the regression model on the Weekly Reader cor-
pus, but we tested it against the LocalNews cor-
pus.  We measured the correlation between our 
regression models’ output and the comprehen-
sion scores of adults with ID on each text.  For 
this reason, we do not calculate the “average er-

ror”; instead, we simply measure the correlation 
between the models’ output and the comprehen-
sion scores. (We expect negative correlations 
because comprehension scores should increase as 
the predicted grade level of the text goes down.)  

Table 4 presents the correlations for our three 
models and the baseline system in the form of 
Pearson’s R-values.  We see a surprising result: 
the model trained only on the cognitively-
motivated features is more tightly correlated with 
the comprehension scores of the adults with ID.  
While the model trained on all features was bet-
ter at assigning grade levels to Weekly Reader 
articles, when we tested it on the local news ar-
ticles from our user-study, it was not the top-
performing model.  This result suggests that the 
shallow and parse-related features of texts de-
signed for children (the Weekly Reader articles, 
our training data) are not the best predictors of 
text readability for adults with ID.   
 

Readability Model (or baseline) Pearson’s R 
Baseline: Flesh-Kincaid Index -0.270 
Basic Features Only -0.283 
Cognitively Motivated Features Only -0.352 
Basic + Cognitively-Motiv. Features -0.342 
Table 4: Correlation to User-Study Comprehension 

7 Discussion 

Based on the cognitive and literacy skills of 
adults with ID, we designed novel features that 
were useful in assessing the readability of texts 
for these users.  The results of our study have 
supported our hypothesis that the complexity of a 
text for adults with ID is related to the number of 
entities referred to in the text.  These “entity den-
sity” features enabled us to build models that 
were better at predicting text readability for 
adults with intellectual disabilities.  

This study has also demonstrated the value of 
collecting readability judgments from target us-
ers when designing a readability assessment tool.  
The results in Table 4 suggest that models 
trained on corpora containing texts designed for 
children may not always lead to accurate models 
of the readability of texts for other groups of 
low-literacy users.  Using features targeting spe-
cific aspects of literacy impairment have allowed 
us to make better use of children’s texts when 
designing a model for adults with ID. 

7.1 Future Work 

In order to study more features and models of 
readability, we will require more testing data for 
tracking progress of our readability regression 
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models.  Our current study has illustrated the 
usefulness of texts that have been evaluated by 
adults with ID, and we therefore plan to increase 
the size of this corpus in future work.   In addi-
tion to using this corpus for evaluation, we may 
want to use it to train our regression models.  For 
this study, we trained on Weekly Reader text 
labeled with elementary school grade levels, but 
this is not ideal.  Texts designed for children may 
differ from those that are best for adults with ID, 
and “grade levels” may not be the best way to 
rank/rate text readability for these users.  While 
our user-study comprehension-test corpus is cur-
rently too small for training, we intend to grow 
the size of this corpus in future work.   

We also plan on refining our cognitively moti-
vated features for measuring the difficulty of a 
text for our users.  Currently, we use lexical 
chain software to link noun phrases in a docu-
ment that may refer to similar entities/concepts.  
In future work, we plan to use co-reference reso-
lution software to model how multiple “entity 
mentions” may refer to a single discourse entity.  

For comparison purposes, we plan to imple-
ment other features that have been used in earlier 
readability assessment systems.  For example, 
Petersen and Ostendorf (2009) created lists of the 
most common words from the Weekly Reader 
articles, and they used the percentage of words in 
a document not on this list as a feature.   

The overall goal of our research is to develop 
a software system that can automatically simplify 
the reading level of local news articles and 
present them in an accessible way to adults with 
ID.  Our automatic readability assessment tool 
will be a component in this future text simplifica-
tion system.  We have therefore preferred to in-
clude features in our tool that focus on aspects of 
the text that can be modified during a simplifica-
tion process.  In future work, we will study how 
to use our readability assessment tool to guide 
how a text revision system decides to modify a 
text to increase its readability for these users. 

7.2 Summary of Contributions 

We have contributed to research on automatic 
readability assessment by designing a new me-
thod for assessing the complexity of a text at the 
level of discourse.  Our novel “entity density” 
features are based on named entity and lexical 
chain software, and they are inspired by the cog-
nitive underpinnings of the literacy challenges of 
adults with ID – specifically, the role of slow 
semantic encoding and working memory limita-
tions.  We have demonstrated the usefulness of 

these novel features in modeling the grade level 
of elementary school texts and in correlating to 
readability judgments from adults with ID.   

Another contribution of our work is the collec-
tion of an initial corpus of texts of local news 
stories that have been manually simplified by a 
human editor.  Both the original and the simpli-
fied versions of these stories have been evaluated 
by adults with intellectual disabilities.  We have 
used these comprehension scores in the evalua-
tion phase of this study, and we have suggested 
how constructing a larger corpus of such articles 
could be useful for training readability tools. 

More broadly, this project has demonstrated 
how focusing on a specific user population, ana-
lyzing their cognitive skills, and involving them 
in a user-study has led to new insights in model-
ing text readability.  As Dale and Chall’s defini-
tion (1949) originally argued, characteristics of 
the reader are central to the issue of readability.  
We believe our user-focused research paradigm 
may be used to drive further advances in reada-
bility assessment for other groups of users. 
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Abstract

Mobile voice-enabled search is emerging
as one of the most popular applications
abetted by the exponential growth in the
number of mobile devices. The automatic
speech recognition (ASR) output of the
voice query is parsed into several fields.
Search is then performed on a text corpus
or a database. In order to improve the ro-
bustness of the query parser to noise in the
ASR output, in this paper, we investigate
two different methods to query parsing.
Both methods exploit multiple hypotheses
from ASR, in the form of word confusion
networks, in order to achieve tighter cou-
pling between ASR and query parsing and
improved accuracy of the query parser. We
also investigate the results of this improve-
ment on search accuracy. Word confusion-
network based query parsing outperforms
ASR 1-best based query-parsing by 2.7%
absolute and the search performance im-
proves by 1.8% absolute on one of our data
sets.

1 Introduction

Local search specializes in serving geographi-
cally constrained search queries on a structured
database of local business listings. Most text-
based local search engines provide two text fields:
the “SearchTerm” (e.g. Best Chinese Restau-
rant) and the “LocationTerm” (e.g. a city, state,
street address, neighborhood etc.). Most voice-
enabled local search dialog systems mimic this
two-field approach and employ a two-turn dia-
log strategy. The dialog system solicits from the
user a LocationTerm in the first turn followed by a
SearchTerm in the second turn (Wang et al., 2008).

Although the two-field interface has been
widely accepted, it has several limitations for mo-
bile voice search. First, most mobile devices are
location-aware which obviates the need to spec-
ify the LocationTerm. Second, it’s not always
straightforward for users to be aware of the dis-
tinction between these two fields. It is com-

mon for users to specify location information in
the SearchTerm field. For example, “restaurants
near Manhattan” for SearchTerm and “NY NY”
for LocationTerm. For voice-based search, it is
more natural for users to specify queries in a sin-
gle utterance1. Finally, many queries often con-
tain other constraints (assuming LocationTerm is a
constraint) such as that deliver in restaurants that
deliver or open 24 hours in night clubs open 24
hours. It would be very cumbersome to enumerate
each constraint as a different text field or a dialog
turn. An interface that allows for specifying con-
straints in a natural language utterance would be
most convenient.

In this paper, we introduce a voice-based search
system that allows users to specify search requests
in a single natural language utterance. The out-
put of ASR is then parsed by a query parser
into three fields: LocationTerm, SearchTerm,
and Filler. We use a local search engine,
http://www.yellowpages.com/, which accepts the
SearchTerm and LocationTerm as two query fields
and returns the search results from a business list-
ings database. We present two methods for pars-
ing the voice query into different fields with par-
ticular emphasis on exploiting the ASR output be-
yond the 1-best hypothesis. We demonstrate that
by parsing word confusion networks, the accuracy
of the query parser can be improved. We further
investigate the effect of this improvement on the
search task and demonstrate the benefit of tighter
coupling of ASR and the query parser on search
accuracy.

The paper outline is as follows. In Section 2, we
discuss some of the related threads of research rel-
evant for our task. In Section 3, we motivate the
need for a query parsing module in voice-based
search systems. We present two different query
parsing models in Section 4 and Section 5 and dis-
cuss experimental results in Section 6. We sum-
marize our results in Section 7.

1Based on the returned results, the query may be refined
in subsequent turns of a dialog.
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2 Related Work

The role of query parsing can be considered as
similar to spoken language understanding (SLU)
in dialog applications. However, voice-based
search systems currently do not have SLU as a
separate module, instead the words in the ASR
1-best output are directly used for search. Most
voice-based search applications apply a conven-
tional vector space model (VSM) used in infor-
mation retrieval systems for search. In (Yu et al.,
2007), the authors enhanced the VSM by deem-
phasizing term frequency in Listing Names and
using character level instead of word level uni/bi-
gram terms to improve robustness to ASR errors.
While this approach improves recall it does not
improve precision. In other work (Natarajan et
al., 2002), the authors proposed a two-state hidden
Markov model approach for query understanding
and speech recognition in the same step (Natarajan
et al., 2002).

There are two other threads of research liter-
ature relevant to our work. Named entity (NE)
extraction attempts to identify entities of interest
in speech or text. Typical entities include loca-
tions, persons, organizations, dates, times mon-
etary amounts and percentages (Kubala et al.,
1998). Most approaches for NE tasks rely on ma-
chine learning approaches using annotated data.
These algorithms include a hidden Markov model,
support vector machines, maximum entropy, and
conditional random fields. With the goal of im-
proving robustness to ASR errors, (Favre et al.,
2005) described a finite-state machine based ap-
proach to take as input ASR n-best strings and ex-
tract the NEs. Although our task of query segmen-
tation has similarity with NE tasks, it is arguable
whether the SearchTerm is a well-defined entity,
since a user can provide varied expressions as they
would for a general web search. Also, it is not
clear how the current best performing NE methods
based on maximum entropy or conditional ran-
dom fields models can be extended to apply on
weighted lattices produced by ASR.

The other related literature is natural language
interface to databases (NLIDBs), which had been
well-studied during 1960s-1980s (Androutsopou-
los, 1995). In this research, the aim is to map
a natural language query into a structured query
that could be used to access a database. However,
most of the literature pertains to textual queries,
not spoken queries. Although in its full general-

1−best
WCN

Query
Parsed

Query
Parser

Speech
SearchASR

Figure 1: Architecture of a voice-based search sys-
tem

ity the task of NLIDB is significantly more ambi-
tious than our current task, some of the challeng-
ing problems (e.g. modifier attachment in queries)
can also be seen in our task as well.

3 Voice-based Search System
Architecture

Figure 1 illustrates the architecture of our voice-
based search system. As expected the ASR and
Search components perform speech recognition
and search tasks. In addition to ASR and Search,
we also integrate a query parsing module between
ASR and Search for a number of reasons.

First, as can be expected the ASR 1-best out-
put is typically error-prone especially when a user
query originates from a noisy environment. How-
ever, ASR word confusion networks which com-
pactly encode multiple word hypotheses with their
probabilities have the potential to alleviate the er-
rors in a 1-best output. Our motivation to intro-
duce the understanding module is to rescore the
ASR output for the purpose of maximizing search
performance. In this paper, we show promising
results using richer ASR output beyond 1-best hy-
pothesis.

Second, as mentioned earlier, the query parser
not only provides the search engine “what” and
“where” information, but also segments the query
to phrases of other concepts. For the example we
used earlier, we segment night club open 24 hours
into night club and open 24 hours. Query seg-
mentation has been considered as a key step to
achieving higher retrieval accuracy (Tan and Peng,
2008).

Lastly, we prefer to reuse an existing local
search engine http://www.yellowpages.com/, in
which many text normalization, task specific tun-
ing, business rules, and scalability issues have
been well addressed. Given that, we need a mod-
ule to translate ASR output to the query syntax that
the local search engine supports.

In the next section, we present our proposed ap-
proaches of how we parse ASR output including
ASR 1-best string and lattices in a scalable frame-
work.
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4 Text Indexing and Search-based Parser
(PARIS)

As we discussed above, there are many potential
approaches such as those for NE extraction we can
explore for parsing a query. In the context of voice
local search, users expect overall system response
time to be similar to that of web search. Con-
sequently, the relatively long ASR latency leaves
no room for a slow parser. On the other hand,
the parser needs to be tightly synchronized with
changes in the listing database, which is updated
at least once a day. Hence, the parser’s training
process also needs to be quick to accomodate these
changes. In this section, we propose a probabilis-
tic query parsing approach called PARIS (parsing
using indexing and search). We start by presenting
a model for parsing ASR 1-best and extend the ap-
proach to consider ASR lattices.
4.1 Query Parsing on ASR 1-best output

4.1.1 The Problem
We formulate the query parsing task as follows.
A 1-best ASR output is a sequence of words:
Q = q1, q2, . . . , qn. The parsing task is to
segment Q into a sequence of concepts. Each
concept can possibly span multiple words. Let
S = s1, s2, . . . , sk, . . . , sm be one of the possible
segmentations comprising of m segments, where
sk = qi

j = qi, . . . qj , 1 ≤ i ≤ j ≤ n + 1. The
corresponding concept sequence is represented as
C = c1, c2, . . . , ck, . . . , cm.

For a given Q, we are interested in searching
for the best segmentation and concept sequence
(S∗, C∗) as defined by Equation 1, which is rewrit-
ten using Bayes rule as Equation 2. The prior
probability P (C) is approximated using an h-
gram model on the concept sequence as shown
in Equation 3. We model the segment sequence
generation probability P (S|C) as shown in Equa-
tion 4, using independence assumptions. Finally,
the query terms corresponding to a segment and
concept are generated using Equations 5 and 6.

(S∗, C∗) = argmax
S,C

P (S, C) (1)

= argmax
S,C

P (C) ∗ P (S|C) (2)

P (C) = P (c1) ∗
m∏
i

P (ci|ci−h+1
i−1 ) (3)

P (S|C) =
m∏

k=1

P (sk | ck) (4)

P (sk|ck) = P (qi
j |ck) (5)

P (qi
j |ck) = Pck

(qi) ∗
j∏

l=i+1

Pck
(ql | ql−k+1

l−1 ) (6)

To train this model, we only have access to text
query logs from two distinct fields (SearchTerm,
LocationTerm) and the business listing database.
We built a SearchTerm corpus by including valid
queries that users typed to the SearchTerm field
and all the unique business listing names in the
listing database. Valid queries are those queries
for which the search engine returns at least one
business listing result or a business category. Sim-
ilarly, we built a corpus for LocationTerm by con-
catenating valid LocationTerm queries and unique
addresses including street address, city, state, and
zip-code in the listing database. We also built a
small corpus for Filler, which contains common
carrier phrases and stop words. The generation
probabilities as defined in 6 can be learned from
these three corpora.

In the following section, we describe a scalable
way of implementation using standard text indexer
and searcher.

4.1.2 Probabilistic Parsing using Text Search
We use Apache-Lucene (Hatcher and Gospod-
netic, 2004), a standard text indexing and search
engines for query parsing. Lucene is an open-
source full-featured text search engine library.
Both Lucene indexing and search are efficient
enough for our tasks. It takes a few milliseconds
to return results for a common query. Indexing
millions of search logs and listings can be done
in minutes. Reusing text search engines allows
a seamless integration between query parsing and
search.

We changed the tf.idf based document-term
relevancy metric in Lucene to reflect P (qi

j |ck) us-
ing Relevancy as defined below.

P (qi
j |ck) = Relevancy(qi

j , dk) =
tf(qi

j , dk) + σ

N
(7)

where dk is a corpus of examples we collected for
the concept ck; tf(qi

j , dk) is referred as the term
frequency, the frequency of qi

j in dk; N is the num-
ber of entries in dk; σ is an empirically determined
smoothing factor.
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Figure 2: An example confusion network for ”Gary crities Springfield Missouri”

Inputs:

• A set of K concepts:C = c1, c2, . . . , cK ,
in this paper, K = 3, c1 =
SearchTerm, c2 = LocationTerm,
c3 = Filler

• Each concept ck associates with a text
corpus: dk. Corpora are indexed using
Lucene Indexing.

• A given query: Q = q1, q2, . . . , qn

• A given maximum number of words in a
query segment: Ng

Parsing:

• Enumerate possible segments in Q up to
Ng words long: qi

j = qi, qi+1, . . . , qj ,
j >= i, |j − i| < Ng

• Obtain P (qi
j |ck)) for each pair of ck and

qi
j using Lucene Search

• Boost P (qi
j |ck)) based on the position of

qi
j in the query P (qi

j |ck) = P (qi
j |ck) ∗

boostck
(i, j, n)

• Search for the best segment sequence
and concept sequence using Viterbi
search

Fig.3. Parsing procedure using Text Indexer and
Searcher

pck
(qi

j) =
tf(qi

i ∼ dis(i, j), dk) + σ

N ∗ shift
(8)

When tf(qi
j , dk) is zero for all concepts, we

loosen the phrase search to be proximity search,
which searches words in qi

j within a specific dis-
tance. For instance, ”burlington west virginia” ∼

5 will find entries that include these three words
within 5 words of each other. tf(qi

j , dk) is dis-
counted for proximity search. For a given qi

j , we
allow a distance of dis(i, j) = (j − i + shift)
words. shift is a parameter that is set empirically.
The discounting formula is given in 8.

Figure 3 shows the procedure we use for pars-
ing. It enumerates possible segments qi

j of a given
Q. It then obtains P (qi

j |ck) using Lucene Search.
We boost pck

(qi
j)) based on the position of qi

j in
Q. In our case, we simply set: boostck

(i, j, n) = 3
if j = n and ck = LocationTerm. Other-
wise, boostck

(i, j, n) = 1. The algorithm searches
for the best segmentation using the Viterbi algo-
rithm. Out-of-vocabulary words are assigned to c3

(Filler).

4.2 Query Parsing on ASR Lattices

Word confusion networks (WCNs) is a compact
lattice format (Mangu et al., 2000). It aligns a
speech lattice with its top-1 hypothesis, yielding
a ”sausage”-like approximation of lattices. It has
been used in applications such as word spotting
and spoken document retrieval. In the following,
we present our use of WCNs for query parsing
task.

Figure 2 shows a pruned WCN example. For
each word position, there are multiple alternatives
and their associated negative log posterior proba-
bilities. The 1-best path is “Gary Crites Spring-
field Missouri”. The reference is “Dairy Queen
in Springfield Missouri”. ASR misrecognized
“Dairy Queen” as “Gary Crities”. However, the
correct words “Dairy Queen” do appear in the lat-
tice, though with lower probability. The challenge
is to select the correct words from the lattice by
considering both ASR posterior probabilities and
parser probabilities.

The hypotheses in WCNs have to be reranked
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by the Query Parser to prefer those that have
meaningful concepts. Clearly, each business name
in the listing database corresponds to a single con-
cept. However, the long queries from query logs
tend to contain multiple concepts. For example, a
frequent query is ”night club for 18 and up”. We
know ”night club” is the main subject. And ”18
and up” is a constraint. Without matching ”night
club”, any match with ”18 and up” is meaning-
less. The data fortunately can tell us which words
are more likely to be a subject. We rarely see ”18
and up” as a complete query. Given these observa-
tions, we propose calculating the probability of a
query term to be a subject. ”Subject” here specif-
ically means a complete query or a listing name.
For the example shown in Figure 2, we observe the
negative log probability for ”Dairy Queen” to be a
subject is 9.3. ”Gary Crites” gets 15.3. We refer
to this probability as subject likelihood. Given a
candidate query term s = w1, w2, ..wm, we repre-
sent the subject likelihood as Psb(s). In our exper-
iments, we estimate Psb using relative frequency
normorlized by the length of s. We use the follow-
ing formula to combine it with posterior probabil-
ities in WCNs Pcf (s):

P (s) = Pcf (s) ∗ Psb(s)λ

Pcf (s) =
∏

j=1,...,nw

Pcf (wi)

where λ is used to flatten ASR posterior proba-
bilities and nw is the number of words in s. In
our experiments, λ is set to 0.5. We then re-rank
ASR outputs based on P (s). We will report ex-
perimental results with this approach. ”Subject”
is only related to SearchTerm. Considering this,
we parse the ASR 1-best out first and keep the
Location terms extracted as they are. Only word
alternatives corresponding to the search terms are
used for reranking. This also improves speed,
since we make the confusion network lattice much
smaller. In our initial investigations, such an ap-
proach yields promising results as illustrated in the
experiment section.

Another capability that the parser does for both
ASR 1-best and lattices is spelling correction. It
corrects words such as restaurants to restaurants.
ASR produces spelling errors because the lan-
guage model is trained on query logs. We need
to make more efforts to clean up the query log
database, though progresses had been made.

5 Finite-state Transducer-based Parser

In this section, we present an alternate method for
parsing which can transparently scale to take as in-
put word lattices from ASR. We encode the prob-
lem of parsing as a weighted finite-state transducer
(FST). This encoding allows us to apply the parser
on ASR 1-best as well as ASR WCNs using the
composition operation of FSTs.

We formulate the parsing problem as associat-
ing with each token of the input a label indicating
whether that token belongs to one of a business
listing (bl), city/state (cs) or neither (null). Thus,
given a word sequence (W = w1, . . . , wn) output
from ASR, we search of the most likely label se-
quence (T = t1, . . . , tn), as shown in Equation 9.
We use the joint probability P (W,T ) and approx-
imate it using an k-gram model as shown in Equa-
tions 10,11.

T ∗ = argmax
T

P (T |W ) (9)

= argmax
T

P (W,T ) (10)

= argmax
T

n∏
i

P (wi, ti | wi−k+1
i−1 , ti−k+1

i−1 )

(11)

A k-gram model can be encoded as a weighted
finite-state acceptor (FSA) (Allauzen et al., 2004).
The states of the FSA correspond to the k-gram
histories, the transition labels to the pair (wi, ti)
and the weights on the arcs are −log(P (wi, ti |
wi−k+1

i−1 , ti−k+1
i−1 )). The FSA also encodes back-off

arcs for purposes of smoothing with lower order k-
grams. An annotated corpus of words and labels is
used to estimate the weights of the FSA. A sample
corpus is shown in Table 1.

1. pizza bl hut bl new cs york cs new cs
york cs

2. home bl depot bl around null
san cs francisco cs

3. please null show null me null indian bl
restaurants bl in null chicago cs

4. pediatricians bl open null on null
sundays null

5. hyatt bl regency bl in null honolulu cs
hawaii cs

Table 1: A Sample set of annotated sentences
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The FSA on the joint alphabet is converted into
an FST. The paired symbols (wi, ti) are reinter-
preted as consisting of an input symbol wi and
output symbol ti. The resulting FST (M ) is used
to parse the 1-best ASR (represented as FSTs
(I)), using composition of FSTs and a search for
the lowest weight path as shown in Equation 12.
The output symbol sequence (π2) from the lowest
weight path is T ∗.

T ∗ = π2(Bestpath(I ◦M)) (12)

Equation 12 shows a method for parsing the 1-
best ASR output using the FST. However, a simi-
lar method can be applied for parsing WCNs. The
WCN arcs are associated with a posterior weight
that needs to be scaled suitably to be comparable
to the weights encoded in M . We represent the re-
sult of scaling the weights in WCN by a factor of
λ as WCNλ. The value of the scaling factor is de-
termined empirically. Thus the process of parsing
a WCN is represented by Equation 13.

T ∗ = π2(Bestpath(WCNλ ◦M)) (13)

6 Experiments

We have access to text query logs consisting of 18
million queries to the two text fields: SearchTerm
and LocationTerm. In addition to these logs, we
have access to 11 million unique business listing
names and their addresses. We use the combined
data to train the parameters of the two parsing
models as discussed in the previous sections. We
tested our approaches on three data sets, which in
total include 2686 speech queries. These queries
were collected from users using mobile devices
from different time periods. Labelers transcribed
and annotated the test data using SearchTerm and
LocationTerm tags.

Data Sets Number of WACC
Speech Queries

Test1 1484 70.1%
Test2 544 82.9%
Test3 658 77.3%

Table 2: ASR Performance on three Data Sets

We use an ASR with a trigram-based language
model trained on the query logs. Table 2 shows the
ASR word accuracies on the three data sets. The
accuracy is the lowest on Test1, in which many

users were non-native English speakers and a large
percentage of queries are not intended for local
search.

We measure the parsing performance in terms
of extraction accuracy on the two non-filler slots:
SearchTerm and LocationTerm. Extraction accu-
racy computes the percentage of the test set where
the string identified by the parser for a slot is ex-
actly the same as the annotated string for that slot.

Table 3 reports parsing performance using the
PARIS approach for the two slots. The “Tran-
scription” columns present the parser’s perfor-
mances on human transcriptions (i.e. word ac-
curacy=100%) of the speech. As expected, the
parser’s performance heavily relies on ASR word
accuracy. We achieved lower parsing perfor-
mance on Test1 compared to other test sets due
to lower ASR accuracy on this test set. The
promising aspect is that we consistently improved
SearchTerm extraction accuracy when using WCN
as input. The performance under “Oracle path”
column shows the upper bound for the parser us-
ing the oracle path2 from the WCN. We pruned
the WCN by keeping only those arcs that are
within cthresh of the lowest cost arc between
two states. Cthresh = 4 is used in our experi-
ments. For Test2, the upper bound improvement
is 7.6% (82.5%-74.9%) absolute. Our proposed
approach using pruned WCN achieved 2.7% im-
provement, which is 35% of the maximum poten-
tial gain. We observed smaller improvements on
Test1 and Test3. Our approach did not take advan-
tage of WCN for LocationTerm extraction, hence
we obtained the same performance with WCNs as
using ASR 1-best.

In Table 4, we report the parsing performance
for the FST-based approach. We note that the
FST-based parser on a WCN also improves the
SearchTerm and LocationTerm extraction accu-
racy over ASR 1-best, an improvement of about
1.5%. The accuracies on the oracle path and the
transcription are slightly lower with the FST-based
parser than with the PARIS approach. The per-
formance gap, however, is bigger on ASR 1-best.
The main reason is PARIS has embedded a module
for spelling correction that is not included in the
FST approach. For instance, it corrects nieman to
neiman. These improvements from spelling cor-
rection don’t contribute much to search perfor-

2Oracle text string is the path in the WCN that is closest
to the reference string in terms of Levenshtein edit distance
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Data Sets SearchTerm Extraction Accuracy LocationTerm Extraction Accuracy
Input ASR WCN Oracle Transcription ASR WCN Oracle Transcription

1-best Path 4 1best Path 4
Test1 60.0% 60.7% 67.9% 94.1% 80.6% 80.6% 85.2% 97.5%
Test2 74.9% 77.6% 82.5% 98.6% 89.0% 89.0% 92.8% 98.7%
Test3 64.7% 65.7% 71.5% 96.7% 88.8% 88.8% 90.5% 97.4%

Table 3: Parsing performance using the PARIS approach

Data Sets SearchTerm Extraction Accuracy LocationTerm Extraction Accuracy
Input ASR WCN Oracle Transcription ASR WCN Oracle Transcription

1-best Path 4 1best Path 4
Test1 56.9% 57.4% 65.6% 92.2% 79.8% 79.8% 83.8% 95.1%
Test2 69.5% 71.0% 81.9% 98.0% 89.4% 89.4% 92.7% 98.5%
Test3 59.2% 60.6% 69.3% 96.1% 87.1% 87.1% 89.3% 97.3%

Table 4: Parsing performance using the FST approach

mance as we will see below, since the search en-
gine is quite robust to spelling errors. ASR gen-
erates spelling errors because the language model
is trained using query logs, where misspellings are
frequent.

We evaluated the impact of parsing perfor-
mance on search accuracy. In order to measure
search accuracy, we need to first collect a ref-
erence set of search results for our test utter-
ances. For this purpose, we submitted the hu-
man annotated two-field data to the search engine
(http://www.yellowpages.com/ ) and extracted the
top 5 results from the returned pages. The re-
turned search results are either business categories
such as “Chinese Restaurant” or business listings
including business names and addresses. We con-
sidered these results as the reference search results
for our test utterances.

In order to evaluate our voice search system, we
submitted the two fields resulting from the query
parser on the ASR output (1-best/WCN) to the
search engine. We extracted the top 5 results from
the returned pages and we computed the Precision,
Recall and F1 scores between this set of results
and the reference search set. Precision is the ra-
tio of relevant results among the top 5 results the
voice search system returns. Recall refers to the
ratio of relevant results to the reference search re-
sult set. F1 combines precision and recall as: (2
* Recall * Precision) / (Recall + Precision) (van
Rijsbergen, 1979).

In Table 5 and Table 6, we report the search per-
formance using PARIS and FST approaches. The
overall improvement in search performance is not

Data Sets Precision Recall F1
ASR Test1 71.8% 66.4% 68.8%

1-best
Test2 80.7% 76.5% 78.5%
Test3 72.9% 68.8% 70.8%

WCN
Test1 70.8% 67.2% 69.0%
Test2 81.6% 79.0% 80.3%
Test3 73.0% 69.1% 71.0%

Table 5: Search performances using the PARIS ap-
proach

Data Sets Precision Recall F1
ASR Test1 71.6% 64.3% 67.8%

1-best
Test2 79.6% 76.0% 77.7%
Test3 72.9% 67.2% 70.0%

WCN
Test1 70.5% 64.7% 67.5%
Test2 80.3% 77.3% 78.8%
Test3 72.9% 68.1% 70.3%

Table 6: Search performances using the FST ap-
proach

as large as the improvement in the slot accura-
cies between using ASR 1-best and WCNs. On
Test1, we obtained higher recall but lower preci-
sion with WCN resulting in a slight decrease in
F1 score. For both approaches, we observed that
using WCNs consistently improves recall but not
precision. Although this might be counterintu-
itive, given that WCNs improve the slot accuracy
overall. One possible explanation is that we have
observed errors made by the parser using WCNs
are more “severe” in terms of their relationship to
the original queries. For example, in one particular
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case, the annotated SearchTerm is “book stores”,
for which the ASR 1-best-based parser returned
“books” (due to ASR error) as the SearchTerm,
while the WCN-based parser identified “banks”
as the SearchTerm. As a result, the returned re-
sults from the search engine using the 1-best-based
parser were more relevant compared to the results
returned by the WCN-based parser.

There are few directions that this observation
suggests. First, the weights on WCNs may need
to be scaled suitably to optimize the search per-
formance as opposed to the slot accuracy perfor-
mance. Second, there is a need for tighter cou-
pling between the parsing and search components
as the eventual goal for models of voice search is
to improve search accuracy and not just the slot
accuracy. We plan to investigate such questions in
future work.

7 Summary

This paper describes two methods for query pars-
ing. The task is to parse ASR output including 1-
best and lattices into database or search fields. In
our experiments, these fields are SearchTerm and
LocationTerm for local search. Our first method,
referred to as PARIS, takes advantage of a generic
search engine (for text indexing and search) for
parsing. All probabilities needed are retrieved on-
the-fly. We used keyword search, phrase search
and proximity search. The second approach, re-
ferred to as FST-based parser, which encodes the
problem of parsing as a weighted finite-state trans-
duction (FST). Both PARIS and FST successfully
exploit multiple hypotheses and posterior proba-
bilities from ASR encoded as word confusion net-
works and demonstrate improved accuracy. These
results show the benefits of tightly coupling ASR
and the query parser. Furthermore, we evaluated
the effects of this improvement on search perfor-
mance. We observed that the search accuracy im-
proves using word confusion networks. However,
the improvement on search is less than the im-
provement we obtained on parsing performance.
Some improvements the parser achieves do not
contribute to search. This suggests the need of
coupling the search module and the query parser
as well.

The two methods, namely PARIS and FST,
achieved comparable performances on search.
One advantage with PARIS is the fast training
process, which takes minutes to index millions

of query logs and listing entries. For the same
amount of data, FST needs a number of hours to
train. The other advantage is PARIS can easily
use proximity search to loosen the constrain of N-
gram models, which is hard to be implemented
using FST. FST, on the other hand, does better
smoothing on learning probabilities. It can also
more directly exploit ASR lattices, which essen-
tially are represented as FST too. For future work,
we are interested in ways of harnessing the bene-
fits of the both these approaches.
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Abstract

The paper presents a multi-document sum-
marization system which builds company-
specific summaries from a collection of fi-
nancial news such that the extracted sen-
tences contain novel and relevant infor-
mation about the corresponding organiza-
tion. The user’s familiarity with the com-
pany’s profile is assumed. The goal of
such summaries is to provide information
useful for the short-term trading of the cor-
responding company, i.e., to facilitate the
inference from news to stock price move-
ment in the next day. We introduce a
novel query (i.e., company name) expan-
sion method and a simple unsupervized al-
gorithm for sentence ranking. The sys-
tem shows promising results in compari-
son with a competitive baseline.

1 Introduction

Automatic text summarization has been a field of
active research in recent years. While most meth-
ods are extractive, the implementation details dif-
fer considerably depending onthe goalsof a sum-
marization system. Indeed, the intended use of the
summaries may help significantly to adapt a par-
ticular summarization approach to a specific task
whereas the broadly defined goal of preserving rel-
evant, although generic, information may turn out
to be of little use.

In this paper we present a system whose goal is
to extract sentences from a collection of financial

∗This work was done during the first author’s internship
at Yahoo! Research. Mihai Surdeanu is currently affiliated
with Stanford University (mihais@stanford.edu).
Massimiliano Ciaramita is currently at Google
(massi@google.com).

news to inform about important events concern-
ing companies, e.g., to support trading (i.e., buy or
sell) the corresponding symbol on the next day, or
managing a portfolio. For example, a company’s
announcement of surpassing its earnings’ estimate
is likely to have a positive short-term effect on its
stock price, whereas an announcement of job cuts
is likely to have the reverse effect. We demonstrate
how existing methods can be extended to achieve
precisely this goal.

In a way, the described task can be classified
as query-oriented multi-document summarization
because we are mainly interested in information
related to the company and its sector. However,
there are also important differences between the
two tasks.

• The name of the company is not a query,
e.g., as it is specified in the context of the
DUC competitions1, and requires an exten-
sion. Initially, a query consists exclusively
of the “symbol”, i.e., the abbreviation of the
name of a company as it is listed on the stock
market. For example,WPO is the abbrevia-
tion used on the stock market to refer toThe
Washington Post–a large media and educa-
tion company. Such symbols are rarely en-
countered in the news and cannot be used to
find all the related information.

• The summary has to providenovel informa-
tion related to the company and should avoid
general facts about it which the user is sup-
posed to know. This point makes the task
related to update summarization where one
has to provide the user with new information

1http://duc.nist.gov; since 2008 TAC:http:
//www.nist.gov/tac.
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given some background knowledge2. In our
case, general facts about the company are as-
sumed to be known by the user. GivenWPO,
we want to distinguish betweenThe Wash-
ington Post is owned by The Washington Post
Company, a diversified education and media
companyandThe Post recently went through
its third round of job cuts and reported an
11% decline in print advertising revenues for
its first quarter, the former being an example
of background information whereas the lat-
ter is what we would like to appear in the
summary. Thus, the similarity to the query
alone is not the decisive parameter in com-
puting sentence relevance.

• While the summaries must be specific for a
given organization, important but general fi-
nancial events that drive the overall market
must be included in the summary. For exam-
ple, the recent subprime mortgage crisis af-
fected the entire economy regardless of the
sector.

Our system proceeds in the three steps illus-
trated in Figure 1. First, the company symbol is
expanded with terms relevant for the company, ei-
ther directly – e.g.,iPod is directly related to Apple
Inc. – or indirectly – i.e., using information about
the industry or sector the company operates in. We
detail our symbol expansion algorithm in Section
3. Second, this information is used to rank sen-
tences based on their relatedness to the expanded
query and their overall importance (Section 4). Fi-
nally, the most relevant sentences are re-ranked
based on the degree of novelty they carry (Section
5).

The paper makes the following contributions.
First, we present a new query expansion tech-
nique which is useful in the context of company-
dependent news summarization as it helps identify
sentences important to the company. Second, we
introduce a simple and efficient method for sen-
tence ranking which foregrounds novel informa-
tion of interest. Our system performs well in terms
of the ROUGE score (Lin & Hovy, 2003) com-
pared with a competitive baseline (Section 6).

2 Data

The data we work with is a collection of financial
news consolidated and distributed by Yahoo! Fi-

2See the DUC 2007 and 2008 update tracks.

nance3 from various sources4. Each story is la-
beled as being relevant for a company – i.e., it
appears in the company’s RSS feed – if the story
mentions either the company itself or the sector the
company belongs to. Altogether the corpus con-
tains 88,974 news articles from a period of about
5 months (148 days). Some articles are labeled
as being relevant for several companies. The total
number of(company name, news collection)pairs
is 46,444.

The corpus is cleaned of HTML tags, embed-
ded graphics and unrelated information (e.g., ads,
frames) with a set of manually devised rules. The
filtering is not perfect but removes most of the
noise. Each article is passed through a language
processing pipeline (described in (Atserias et al.,
2008)). Sentence boundaries are identified by
means of simple heuristics. The text is tokenized
according to Penn TreeBank style and each to-
ken lemmatized using Wordnet’s morphological
functions. Part of speech tags and named entities
(LOC, PER, ORG, MISC) are identified by means
of a publicly available named-entity tagger5 (Cia-
ramita & Altun, 2006, SuperSense). Apart from
that, all sentences which are shorter than 5 tokens
and contain neither nouns nor verbs are sorted out.
We apply the latter filter as we are interested in
textual information only. Numeric information
contained, e.g., in tables can be easily and more
reliably obtained from the indices tables available
online.

3 Query Expansion

In company-oriented summarization query expan-
sion is crucial because, by default, our query con-
tains only thesymbol, that is the abbreviation of
the name of the company. Unfortunately, exist-
ing query expansion techniques which utilize such
knowledge sources as WordNet or Wikipedia are
not useful for symbol expansion. WordNet does
not include organizations in any systematic way.
Wikipedia covers many companies but it is unclear
how it can be used for expansion.

3http://finance.yahoo.com
4http://biz.yahoo.com, http://www.

seekingalpha.com, http://www.marketwatch.
com, http://www.reuters.com, http://www.
fool.com, http://www.thestreet.com, http:
//online.wsj.com, http://www.forbes.com,
http://www.cnbc.com, http://us.ft.com,
http://www.minyanville.com

5http://sourceforge.net/projects/
supersensetag
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Figure 1: System architecture

Intuitively, a good expansion method should
provide us with a list of products, or properties,
of the company, the field it operates in, the typi-
cal customers, etc. Such information is normally
found on the profile page of a company at Yahoo!
Finance6. There, so called “business summaries”
provide succinct and financially relevant informa-
tion about the company. Thus, we use business
summaries as follows. For every company sym-
bol in our collection, we download its business
summary, split it into tokens, remove all words
but nouns and verbs which we then lemmatize.
Since words likecompanyare fairly uninforma-
tive in the context of our task, we do not want to
include them in the expanded query. To filter out
such words, we compute the company-dependent
TF*IDF score for every word on the collection of
all business summaries:

score(w) = tfw,c × log

„

N

cfw

«

(1)

wherec is the business summary of a company,
tfw,c is the frequency ofw in c, N is the total
number of business summaries we have, cfw is
the number of summaries that containw. This
formula penalizes words occurring in most sum-
maries (e.g.,company, produce, offer, operate,
found, headquarter, management). At the mo-
ment of running the experiments,N was about
3,000, slightly less than the total number of sym-

6http://finance.yahoo.com/q/pr?s=AAPL
where the trading symbol of any company can be used
instead of AAPL.

bols because some companies do not have a busi-
ness summary on Yahoo! Finance. It is impor-
tant to point out that companies without a business
summary are usually small and are seldom men-
tioned in news articles: for example, these compa-
nies had relevant news articles in only 5% of the
days monitored in this work.

Table 1 gives the ten high scoring words for
three companies (Apple Inc. – the computer and
software manufacture, Delta Air Lines – the air-
line, and DaVita – dyalisis services). Table 1
shows that this approach succeeds in expanding
the symbol with terms directly related to the com-
pany, e.g.,ipod for Apple, but also with more gen-
eral information like the industry or the company
operates in, e.g.,softwareandcomputerfor Apple.
All words whose TF*IDF score is above a certain
thresholdθ are included in the expanded query (θ

was tuned to a value of 5.0 on the development
set).

4 Relatedness to Query

Once the expanded query is generated, it can be
used for sentence ranking. We chose the system of
Otterbacher et al. (2005) as a a starting point for
our approach and also as a competitive baseline
because it has been successfully tested in a simi-
lar setting–it has been applied to multi-document
query-focused summarization of news documents.

Given a graphG = (S, E), whereS is the set
of all sentences from all input documents, andE is
the set of edges representing normalized sentence
similarities, Otterbacher et al. (2005) rank all sen-

248



AAPL DAL DVA
apple air dialysis
music flight davita
mac delta esrd

software lines kidney
ipod schedule inpatient

computer destination outpatient
peripheral passenger patient

movie cargo hospital
player atlanta disease

desktop fleet service

Table 1: Top 10 scoring words for three companies

tence nodes based on the inter-sentence relations
as well as the relevance to the queryq. Sentence
ranks are found iteratively over the set of graph
nodes with the following formula:

r(s, q) = λ
rel(s|q)

P

t∈S
rel(t|q)

+(1−λ)
X

t∈S

sim(s, t)
P

v∈S
sim(v, t)

r(t, q) (2)

The first term represents the importance of a sen-
tence defined in respect to the query, whereas the
second term infers the importance of the sentence
from its relation to other sentences in the collec-
tion. λ ∈ (0, 1) determines the relative importance
of the two terms and is found empirically. Another
parameter whose value is determined experimen-
tally is the sentence similarity thresholdτ , which
determines the inclusion of a sentence inG. Ot-
terbacher et al. (2005) report 0.2 and 0.95 to be
the optimal values forτ andλ respectively. These
values turned out to produce the best results also
on our development set and were used in all our
experiments. Similarity between sentences is de-
fined as the cosine of their vector representations:

sim(s, t) =

P

w∈s∩t
weight(w)2

q

P

w∈s
weight(w)2 ×

q

P

w∈t
weight(w)2

(3)

weight(w) = tfw,sidfw,S (4)

idfw,S = log

(

|S| + 1

0.5 + sfw

)

(5)

where tfw,s is the frequency ofw in sentences,
|S| is the total number of sentences in the docu-
ments from which sentences are to be extracted,
and sfw is the number of sentences which contain
the wordw (all words in the documents as well

as in the query are stemmed and stopwords are re-
moved from them). Relevance to the query is de-
fined in Equation (6) which has been previously
used for sentence retrieval (Allan et al., 2003):

rel(s|q) =
X

w∈q

log(tfw,s + 1) × log(tfw,q + 1) × idfw,S (6)

where tfw,x stands for the number of timesw ap-
pears inx, be it a sentence (s) or the query (q). If
a sentence shares no words other than stopwords
with the query, the relevance becomes zero. Note
that without the relevance to the query part Equa-
tion 2 takes only inter-sentence similarity into ac-
count and computes the weighted PageRank (Brin
& Page, 1998).

In defining the relevance to the query, in Equa-
tion (6), words which do not appear in too many
sentences in the document collection weigh more.
Indeed, if a word from the query is contained in
many sentences, it should not count much. But it
is also true that not all words from the query are
equally important. As it has been mentioned in
Section 3, words likeproduct or offer appear in
many business summaries and are equally related
to any company. To penalize such words, when
computing the relevance to the query, we multiply
the relevance score of a given wordw with the in-
verted document frequency ofw on the corpus of
business summariesQ – idfw,Q:

idfw,Q = log

(

|Q|

qfw

)

(7)

We also replace tfw,s with the indicator function
s(w) since it has been reported to be more ad-
equate for sentences, in particular for sentence
alignment (Nelken & Shieber, 2006):

s(w) =

{

1 if s containsw

0 otherwise
(8)

Thus, the modified formula we use to compute
sentence ranks is as follows:

rel(s|q) =
X

w∈q

s(w) × log(tfw,q + 1) × idfw,S × idfw,Q (9)

We call these two ranking algorithms that use
the formula in (2) OTTERBACHER and QUERY

WEIGHTS, the difference being the way the rel-
evance to the query is computed: (6) or (9). We
use the OTTERBACHERalgorithm as a baseline in
the experiments reported in Section 6.
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5 Novelty Bias

Apart from being related to the query, a good sum-
mary should provide the user with novel infor-
mation. According to Equation (2), if there are,
say, two sentences which are highly similar to the
query and which share some words, they are likely
to get a very high score. Experimenting with the
development set, we observed that sentences about
the company, such as e.g.,DaVita, Inc. is a lead-
ing provider of kidney care in the United States,
providing dialysis services and education for pa-
tients with chronic kidney failure and end stage re-
nal disease, are ranked high although they do not
contribute new information. However, a non-zero
similarity to the query is indeed a good filter of the
information related to the company and to its sec-
tor and can be used as a prerequisite of a sentence
to be included in the summary. These observations
motivate our proposal for a ranking method which
aims at providing relevantand novel information
at the same time.

Here, we explore two alternative approaches to
add the novelty bias to the system:

• The first approach bypasses the relatedness
to query step introduced in Section 4 com-
pletely. Instead, this method merges the dis-
covery of query relatedness and novelty into
a single algorithm, which uses a sentence
graph that contains edgesonly between sen-
tences related to the query, (i.e., sentences for
which rel(s|q) > 0). All edges connecting
sentences which are unrelated to the query
are skipped in this graph. In this way we limit
the novelty ranking process to a subset of sen-
tences related to the query.

• The second approach models the problem
in a re-ranking architecture: we take the
top ranked sentences after the relatedness-to-
query filtering component (Section 4) and re-
rank them using the novelty formula intro-
duced below.

The main difference between the two approaches
is that the former uses relatedness-to-query and
novelty information but ignores the overall impor-
tance of a sentence as given by the PageRank al-
gorithm in Section 4, while the latter combines all
these aspects –i.e., importance of sentences, relat-
edness to query, and novelty– using the re-ranking
architecture.

To amend the problem of general information
ranked inappropriately high, we modify the word-
weighting formula (4) so that it implements a nov-
elty bias, thus becoming dependent on the query.
A straightforward way to define the novelty weight
of a word would be to draw a line between the
“known” words, i.e., words appearing in the busi-
ness summary, and the rest. In this approach all
the words from the business summary are equally
related to the company and get the weight of0:

weight(w) =

{

0 if Q containsw

tfw,sidfw,S otherwise
(10)

We call this weighting schemeSIMPLE. As
an alternative, we also introduce a more elab-
orate weighting procedure which incorporates
the relatedness-to-query (or rather distance from
query) in the word weight formula. Intuitively, the
more related to the query a word is (e.g.,DaVita,
the name of the company), the more familiar to the
user it is and the smaller its novelty contribution
is. If a word does not appear in the query at all, its
weight becomes equal to the usual tfw,sidfw,S :

weight(w) =

 

1 −
tfw,q × idfw,Q

P

wi∈q
tfwi,q × idfwi,Q

!

× tfw,s idfw,S (11)

The overall novelty ranking formula is based
on the query-dependent PageRank introduced in
Equation (2). However, since we already incorpo-
rate the relatedness to the query in these two set-
tings, we focus only on related sentences and thus
may drop the relatedness to the query part from
(2):

r’(s, q) = λ + (1 − λ)
∑

t∈S

sim(s, t, q)
∑

u∈S sim(t, u, q)

(12)
We setλ to the same value as in OTTERBACHER.
We deliberately set the sentence similarity thresh-
old τ to a very low value (0.05) to prevent the
graph from becoming exceedingly bushy. Note
that this novelty-ranking formula can be equally
applied in both scenarios introduced at the begin-
ning of this section. In the first scenario,S stands
for the set of nodes in the graph that contains only
sentences related to the query. In the second sce-
nario, S contains the highest ranking sentences
detected by the relatedness-to-query component
(Section 4).
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5.1 Redundancy Filter

Some sentences are repeated several times in the
collection. Such repetitions, which should be
avoided in the summary, can be filtered out ei-
ther before or after the sentence ranking. We ap-
ply a simple repetition check when incrementally
adding ranked sentences to the summary. If a sen-
tence to be added is almost identical to the one
already included in the summary, we skip it. Iden-
tity check is done by counting the percentage of
non-stop word lemmas in common between two
sentences. 95% is taken as the threshold.

We do not filter repetitionsbefore the rank-
ing has taken place because often such repetitions
carry important and relevant information. The re-
dundancy filter is applied to all the systems de-
scribed as they are equally prone to include repe-
titions.

6 Evaluation

We randomly selected 23 company stock names,
and constructed a document collection for each
containing all the news provided in the Yahoo! Fi-
nance news feed for that company in a period of
two days (the time period was chosen randomly).
The average length of a news collection is about
600 tokens. When selecting the company names,
we took care of not picking those which have only
a few news articles for that period of time. This
resulted into 9.4 news articles per collection on av-
erage. From each of these, three human annotators
independently selected up to ten sentences. All an-
notators had average to good understanding of the
financial domain. The annotators were asked to
choose the sentences which could best help them
decide whether to buy, sell or retain stock for the
company the following day and present them in
the order of decreasing importance. The anno-
tators compared their summaries of the first four
collections and clarified the procedure before pro-
ceeding with the other ones. These four collec-
tions were then later used as a development set.

All summaries – manually as well as automat-
ically generated – were cut to the first 250 words
which made the summaries 10 words shorter on
average. We evaluated the performance automat-
ically in terms of ROUGE-2 (Lin & Hovy, 2003)
using the parameters and following the methodol-
ogy from the DUC events. The results are pre-
sented in Table 2. We also report the 95% confi-
dence intervals in brackets. As in DUC, we used

METHOD ROUGE-2
Otterbacher 0.255 (0.226 - 0.285)
Query Weights 0.289 (0.254 - 0.324)
Novelty Bias (simple) 0.315 (0.287 - 0.342)
Novelty Bias 0.302 (0.277 - 0.329)
Manual 0.472 (0.415 - 0.531)

Table 2: Results of the four extraction methods
and human annotators

jackknife for each(query, summary)pair and com-
puted a macro-average to make human and au-
tomatic results comparable (Dang, 2005). The
scores computed on summaries produced by hu-
mans are given in the bottom line (MANUAL ) and
serve as upper bound and also as an indicator for
the inter-annotator agreement.

6.1 Discussion

From Table 2 follows that the modifications we
applied to the baseline are sensible and indeed
bring an improvement. QUERY WEIGHTS per-
forms better than OTTERBACHER and is in turn
outperformed by the algorithms biased to novel in-
formation (the twoNOVELTY systems). The over-
lap between the confidence intervals of the base-
line and the simple version of the novelty algo-
rithm is minimal (0.002).

It is remarkable that the achieved improvement
is due to a more balanced relatedness to the query
ranking (9), as well as to the novelty bias re-
ranking. The fact that the simpler novelty weight-
ing formula (10) produced better results than the
more elaborated one (11) requires a deeper anal-
ysis and a larger test set to explain the difference.
Our conjecture so far is that theSIMPLE approach
allows for a better combination of both novelty
and relatedness to query. Since the more complex
novelty ranking formula penalizes terms related
to the query (Equation (11)), it favors a scenario
where novelty is boosted in detriment of related-
ness to query, which is not always realistic.

It is important to note that, compared with the
baseline, we did not do any parameter tuning for
λ and the inter-sentence similarity threshold. The
improvement between the system of Otterbacher
et al. (2005) and our best model is statistically
significant.
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6.2 System Combination

Recall from Section 5 that the motivation for pro-
moting novel information came from the fact that
sentences with background information about the
company obtained very high scores: they were re-
lated but not novel. The sentences ranked by OT-
TERBACHER or QUERY WEIGHTS required a re-
ranking to include relatedand novel sentences in
the summary. We checked whether novelty re-
ranking brings an improvement if added on top
of a system which does not have a novelty bias
(baseline or QUERY WEIGHTS) and compared it
with the setting where we simply limit the novelty
ranking to all the sentences related to the query
(NOVELTY SIMPLE and NOVELTY). In the simi-
larity graph, we left only edges between the first
30 sentences from the ranked list produced by
one of the two algorithms described in Section 4
(OTTERBACHERor QUERY WEIGHTS). Then we
ranked the sentences biased to novel information
the same way as described in Section 5. The re-
sults are presented in Table 3. What we evalu-
ate here is whether a combination of two methods
performs better than the simple heuristics of dis-
carding edges between sentences unrelated to the
query.

METHOD ROUGE-2
Otterbacher + Novelty simple 0.280 (0.254 - 0.306)
Otterbacher + Novelty 0.273 (0.245 - 0.301)
Query Weights + Novelty simple 0.275 (0.247 - 0.302)
Query Weights + Novelty 0.265 (0.242 - 0.289)

Table 3: Results of the combinations of the four
methods

From the four possible combinations, there is
an improvement over the baseline only (0.255 vs.
0.280 resp. 0.273). None of the combinations per-
forms better than the simple novelty bias algo-
rithm on a subset of edges. This experiment sug-
gests that, at least in the scenario investigated here
(short-term monitoring of publicly-traded compa-
nies), novelty is more important than relatedness
to query. Hence, the simple novelty bias algo-
rithm, which emphasizes novelty and incorporates
relatedness to query only through a loose con-
straint (rel(s|q) > 0) performs better than com-
plex models, which are more constrained by the
relatedness to query.

7 Related Work

Summarization has been extensively investigated
in recent years and to date there exists a multi-
tude of very different systems. Here, we review
those that come closest to ours in respect to the
task and that concern extractive multi-document
query-oriented summarization. We also mention
some work on using textual news data for stock
indices prediction which we are aware of.

Stock market prediction: Wüthrich et al.
(1998) were among the first who introduced an au-
tomatic stock indices prediction system which re-
lies on textual information only. The system gen-
erates weighted rules each of which returns the
probability of the stock going up, down or remain-
ing steady. The only information used in the rules
is the presence or absence of certain keyphrases
provided by a human expert who“judged them
to be influential factors potentially moving stock
markets”. In this approach, training data is re-
quired to measure the usefulness of the keyphrases
for each of the three classes. More recently, Ler-
man et al. (2008) introduced a forecasting system
for prediction markets that combines news anal-
ysis with a price trend analysis model. This ap-
proach was shown to be successful for the fore-
casting of public opinion about political candi-
dates in such prediction markets. Our approach
can be seen as a complement to both these ap-
proaches, necessary especially for financial mar-
kets where the news typically cover many events,
only some related to the company of interest.

Unsupervized summarization systems extract
sentences whose relevance can be inferred from
the inter-sentence relations in the document col-
lection. In (Radev et al., 2000), the centroid of
the collection, i.e., the words with the highest
TF*IDF, is considered and the sentences which
contain more words from the centroid are ex-
tracted. Mihalcea & Tarau (2004) explore sev-
eral methods developed for ranking documents
in information retrieval for the single-document
summarization task. Similarly, Erkan & Radev
(2004) apply in-degree and PageRank to build a
summary from a collection of related documents.
They show that their method, called LexRank,
achieves good results. In (Otterbacher et al., 2005;
Erkan, 2006) the ranking function of LexRank is
extended to become applicable to query-focused
summarization. The rank of a sentence is deter-
mined not just by its relation to other sentences in

252



the document collection but also by its relevance
to the query. Relevance to the query is defined as
the word-based similarity between query and sen-
tence.

Query expansion has been used for improv-
ing information retrieval (IR) or question answer-
ing (QA) systems with mixed results. One of the
problems is that the queries are expanded word
by word, ignoring the context and as a result the
extensions often become inadequate7. However,
Riezler et al. (2007) take the entire query into ac-
count when adding new words by utilizing tech-
niques used in statistical machine translation.

Query expansion for summarization has not yet
been explored as extensively as in IR or QA.
Nastase (2008) uses Wikipedia and WordNet for
query expansion and proposes that a concept can
be expanded by adding the text of all hyper-
links from the first paragraph of the Wikipedia
article about this concept. The automatic eval-
uation demonstrates that extracting relevant con-
cepts from Wikipedia leads to better performance
compared with WordNet: both expansion systems
outperform the no-expansion version in terms of
the ROUGE score. Although this method proved
helpful on the DUC data, it seems less appropriate
for expanding company names. For small compa-
nies there are short articles with only a few links;
the first paragraphs of the articles about larger
companies often include interesting rather than
relevant information. For example, the text pre-
ceding the contents box in the article about Apple
Inc. (AAPL) states that“Fortune magazine named
Apple the most admired company in the United
States”8. The link to the article about the For-
tune magazine can be hardly considered relevant
for the expansion of AAPL. Wikipedia category
information, which has been successfully used in
some NLP tasks (Ponzetto & Strube, 2006, inter
alia), is too general and does not help discriminate
between two companies from the same sector.

Our work suggests that query expansion is
needed for summarization in the financial domain.
In addition to previous work, we also show that an-
other key factor for success in this task is detecting
and modeling the novelty of the target content.

7E.g., see the proceedings of TREC 9, TREC 10:http:
//trec.nist.gov.

8Checked on September 17, 2008.

8 Conclusions

In this paper we presented a multi-document
company-oriented summarization algorithm
which extracts sentences that are both relevant for
the given organization and novel to the user. The
system is expected to be useful in the context of
stock market monitoring and forecasting, that is,
to help the trader predict the move of the stock
price for the given company. We presented a
novel query expansion method which works par-
ticularly well in the context of company-oriented
summarization. Our sentence ranking method is
unsupervized and requires little parameter tuning.
An automatic evaluation against a competitive
baseline showed supportive results, indicating that
the ranking algorithm is able to select relevant
sentences and promote novel information at the
same time.

In the future, we plan to experiment with po-
sitional features which have proven useful for
generic summarization. We also plan to test the
system extrinsically. For example, it would be of
interest to see if a classifier may predict the move
of stock prices based on a set of features extracted
from company-oriented summaries.

Acknowledgments: We would like to thank the
anonymous reviewers for their helpful feedback.
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Abstract

This paper presents a conditional ran-
dom field-based approach for identifying
speaker-produced disfluencies (i.e. if and
where they occur) in spontaneous speech
transcripts. We emphasize false start re-
gions, which are often missed in cur-
rent disfluency identification approaches
as they lack lexical or structural similar-
ity to the speech immediately following.
We find that combining lexical, syntac-
tic, and language model-related features
with the output of a state-of-the-art disflu-
ency identification system improves over-
all word-level identification of these and
other errors. Improvements are reinforced
under a stricter evaluation metric requiring
exact matches between cleaned sentences
annotator-produced reconstructions, and
altogether show promise for general re-
construction efforts.

1 Introduction

The output of an automatic speech recognition
(ASR) system is often not what is required for sub-
sequent processing, in part because speakers them-
selves often make mistakes (e.g. stuttering, self-
correcting, or using filler words). A cleaner speech
transcript would allow for more accurate language
processing as needed for natural language process-
ing tasks such as machine translation and conver-
sation summarization which often assume a gram-
matical sentence as input.

A system would accomplish reconstruction of
its spontaneous speech input if its output were
to represent, in flawless, fluent, and content-
preserving text, the message that the speaker in-
tended to convey. Such a system could also be ap-
plied not only to spontaneous English speech, but
to correct common mistakes made by non-native

speakers (Lee and Seneff, 2006), and possibly ex-
tended to non-English speaker errors.

A key motivation for this work is the hope that a
cleaner, reconstructed speech transcript will allow
for simpler and more accurate human and natu-
ral language processing, as needed for applications
like machine translation, question answering, text
summarization, and paraphrasing which often as-
sume a grammatical sentence as input. This ben-
efit has been directly demonstrated for statistical
machine translation (SMT). Rao et al. (2007) gave
evidence that simple disfluency removal from tran-
scripts can improve BLEU (a standard SMT eval-
uation metric) up to 8% for sentences with disflu-
encies. The presence of disfluencies were found to
hurt SMT in two ways: making utterances longer
without adding semantic content (and sometimes
adding false content) and exacerbating the data
mismatch between the spontaneous input and the
clean text training data.

While full speech reconstruction would likely
require a range of string transformations and po-
tentially deep syntactic and semantic analysis of
the errorful text (Fitzgerald, 2009), in this work
we will first attempt to resolve less complex errors,
corrected by deletion alone, in a given manually-
transcribed utterance.

We build on efforts from (Johnson et al., 2004),
aiming to improve overall recall – especially of
false start or non-copy errors – while concurrently
maintaining or improving precision.

1.1 Error classes in spontaneous speech

Common simple disfluencies in sentence-like ut-
terances (SUs) include filler words (i.e. “um”, “ah”,
and discourse markers like “you know”), as well as
speaker edits consisting of a reparandum, an inter-
ruption point (IP), an optional interregnum (like “I
mean”), and a repair region (Shriberg, 1994), as
seen in Figure 1.
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[that′s]︸ ︷︷ ︸
reparandum

IP︷︸︸︷
+ {uh}︸︷︷︸

interregnum

that′s︸ ︷︷ ︸
repair

a relief

Figure 1: Typical edit region structure. In these
and other examples, reparandum regions are in
brackets (’[’, ’]’), interregna are in braces (’{’,
’}’), and interruption points are marked by ’+’.

These reparanda, or edit regions, can be classified
into three main groups:

1. In a repetition (above), the repair phrase is
approximately identical to the reparandum.

2. In a revision, the repair phrase alters reparan-
dum words to correct the previously stated
thought.

EX1: but [when he] + {i mean} when she put it
that way

EX2: it helps people [that are going to quit] + that
would be quitting anyway

3. In a restart fragment (also called a false
start), an utterance is aborted and then
restarted with a new train of thought.

EX3: and [i think he’s] + he tells me he’s glad he
has one of those

EX4: [amazon was incorporated by] {uh} well i
only knew two people there

In simple cleanup (a precursor to full speech re-
construction), all detected filler words are deleted,
and the reparanda and interregna are deleted while
the repair region is left intact. This is a strong ini-
tial step for speech reconstruction, though more
complex and less deterministic changes are of-
ten required for generating fluent and grammatical
speech text.

In some cases, such as the repetitions men-
tioned above, simple cleanup is adequate for re-
construction. However, simply deleting the identi-
fied reparandum regions is not always optimal. We
would like to consider preserving these fragments
(for false starts in particular) if

1. the fragment contains content words, and

2. its information content is distinct from that in
surrounding utterances.

In the first restart fragment example (EX3 in Sec-
tion 1.1), the reparandum introduces no new ac-
tive verbs or new content, and thus can be safely

deleted. The second example (EX4) however
demonstrates a case when the reparandum may be
considered to have unique and preservable con-
tent of its own. Future work should address how
to most appropriately reconstruct speech in this
and similar cases; this initial work will for risk
information loss as we identify and delete these
reparandum regions.

1.2 Related Work
Stochastic approaches for simple disfluency de-
tection use features such as lexical form, acoustic
cues, and rule-based knowledge. Most state-of-
the-art methods for edit region detection such as
(Johnson and Charniak, 2004; Zhang and Weng,
2005; Liu et al., 2004; Honal and Schultz, 2005)
model speech disfluencies as a noisy channel
model. In a noisy channel model we assume that
an unknown but fluent string F has passed through
a disfluency-adding channel to produce the ob-
served disfluent string D, and we then aim to re-
cover the most likely input string F̂ , defined as

F̂ = argmaxF P (F |D)
= argmaxF P (D|F )P (F )

where P (F ) represents a language model defin-
ing a probability distribution over fluent “source”
strings F , and P (D|F ) is the channel model defin-
ing a conditional probability distribution of ob-
served sentences D which may contain the types
of construction errors described in the previous
subsection. The final output is a word-level tag-
ging of the error condition of each word in the se-
quence, as seen in line 2 of Figure 2.

The Johnson and Charniak (2004) approach,
referred to in this document as JC04, combines
the noisy channel paradigm with a tree-adjoining
grammar (TAG) to capture approximately re-
peated elements. The TAG approach models the
crossed word dependencies observed when the
reparandum incorporates the same or very similar
words in roughly the same word order, which JC04
refer to as a rough copy. Our version of this sys-
tem does not use external features such as prosodic
classes, as they use in Johnson et al. (2004), but
otherwise appears to produce comparable results
to those reported.

While much progress has been made in sim-
ple disfluency detection in the last decade, even
top-performing systems continue to be ineffec-
tive at identifying words in reparanda. To bet-
ter understand these problems and identify areas
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Label % of words Precision Recall F-score
Fillers 5.6% 64% 59% 61%
Edit (reparandum) 7.8% 85% 68% 75%

Table 1: Disfluency detection performance on the SSR test subcorpus using JC04 system.

Label % of edits Recall
Rough copy (RC) edits 58.8% 84.8%
Non-copy (NC) edits 41.2% 43.2%
Total edits 100.0% 67.6%

Table 2: Deeper analysis of edit detection performance on the SSR test subcorpus using JC04 system.

1 he that ’s uh that ’s a relief
2 E E E FL - - - -
3 NC RC RC FL - - - -

Figure 2: Example of word class and refined word
class labels, where - denotes a non-error, FL de-
notes a filler, E generally denotes reparanda, and
RC and NC indicate rough copy and non-copy
speaker errors, respectively.

for improvement, we used the top-performing1

JC04 noisy channel TAG edit detector to produce
edit detection analyses on the test segment of the
Spontaneous Speech Reconstruction (SSR) corpus
(Fitzgerald and Jelinek, 2008). Table 1 demon-
strates the performance of this system for detect-
ing filled pause fillers, discourse marker fillers,
and edit words. The results of a more granular
analysis compared to a hand-refined reference (as
shown in line 3 of Figure 2) are shown in Table 2.
The reader will recall that precision P is defined
as P = |correct|

|correct|+|false| and recall R = |correct|
|correct|+|miss| .

We denote the harmonic mean of P and R as F-
score F and calculate it F = 2

1/P+1/R .
As expected given the assumptions of the TAG

approach, JC04 identifies repetitions and most
revisions in the SSR data, but less success-
fully labels false starts and other speaker self-
interruptions which do not have a cross-serial cor-
relations. These non-copy errors (with a recall of
only 43.2%), are hurting the overall edit detection
recall score. Precision (and thus F-score) cannot
be calculated for the experiment in Table 2; since
the JC04 does not explicitly label edits as rough
copies or non-copies, we have no way of knowing
whether words falsely labeled as edits would have

1As determined in the RT04 EARS Metadata Extraction
Task

been considered as false RCs or false NCs. This
will unfortunately hinder us from using JC04 as a
direct baseline comparison in our work targeting
false starts; however, we consider these results to
be further motivation for the work.

Surveying these results, we conclude that there
is still much room for improvement in the
field of simple disfluency identification, espe-
cially the cases of detecting non-copy reparandum
and learning how and where to implement non-
deletion reconstruction changes.

2 Approach

2.1 Data
We conducted our experiments on the recently re-
leased Spontaneous Speech Reconstruction (SSR)
corpus (Fitzgerald and Jelinek, 2008), a medium-
sized set of disfluency annotations atop Fisher
conversational telephone speech (CTS) data (Cieri
et al., 2004). Advantages of the SSR data include

• aligned parallel original and cleaned sen-
tences

• several levels of error annotations, allowing
for a coarse-to-fine reconstruction approach

• multiple annotations per sentence reflecting
the occasional ambiguity of corrections

As reconstructions are sometimes non-
deterministic (illustrated in EX6 in Section
1.1), the SSR provides two manual reconstruc-
tions for each utterance in the data. We use
these dual annotations to learn complementary
approaches in training and to allow for more
accurate evaluation.

The SSR corpus does not explicitly label all
reparandum-like regions, as defined in Section 1.1,
but only those which annotators selected to delete.
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Thus, for these experiments we must implicitly
attempt to replicate annotator decisions regarding
whether or not to delete reparandum regions when
labeling them as such. Fortunately, we expect this
to have a negligible effect here as we will empha-
size utterances which do not require more complex
reconstructions in this work.

The Spontaneous Speech Reconstruction cor-
pus is partitioned into three subcorpora: 17,162
training sentences (119,693 words), 2,191 sen-
tences (14,861 words) in the development set, and
2,288 sentences (15,382 words) in the test set. Ap-
proximately 17% of the total utterances contain a
reparandum-type error.

The output of the JC04 model ((Johnson and
Charniak, 2004) is included as a feature and used
as an approximate baseline in the following exper-
iments. The training of the TAG model within this
system requires a very specific data format, so this
system is trained not with SSR but with Switch-
board (SWBD) (Godfrey et al., 1992) data as de-
scribed in (Johnson and Charniak, 2004). Key dif-
ferences in these corpora, besides the form of their
annotations, include:

• SSR aims to correct speech output, while
SWBD edit annotation aims to identify
reparandum structures specifically. Thus, as
mentioned, SSR only marks those reparanda
which annotators believe must be deleted
to generate a grammatical and content-
preserving reconstruction.

• SSR considers some phenomena such as
leading conjunctions (“and i did” → “i did”) to
be fillers, while SWBD does not.

• SSR includes more complex error identifi-
cation and correction, though these effects
should be negligible in the experimental
setup presented herein.

While we hope to adapt the trained JC04 model
to SSR data in the future, for now these difference
in task, evaluation, and training data will prevent
direct comparison between JC04 and our results.

2.2 Conditional random fields

Conditional random fields (Lafferty et al., 2001),
or CRFs, are undirected graphical models whose
prediction of a hidden variable sequence Y is
globally conditioned on a given observation se-
quence X , as shown in Figure 3. Each observed

Figure 3: Illustration of a conditional random
field. For this work, x represents observable in-
puts for each word as described in Section 3.1 and
y represents the error class of each word (Section
3.2).

state xi ∈ X is composed of the corresponding
word wi and a set of additional features Fi, de-
tailed in Section 3.1.

The conditional probability of this model can be
represented as

pΛ(Y |X) =
1

Zλ(X)
exp(

∑
k

λkFk(X, Y )) (1)

where Zλ(X) is a global normalization factor and
Λ = (λ1 . . . λK) are model parameters related to
each feature function Fk(X, Y ).

CRFs have been widely applied to tasks in
natural language processing, especially those in-
volving tagging words with labels such as part-
of-speech tagging and shallow parsing (Sha and
Pereira, 2003), as well as sentence boundary
detection (Liu et al., 2005; Liu et al., 2004).
These models have the advantage that they model
sequential context (like hidden Markov models
(HMMs)) but are discriminative rather than gen-
erative and have a less restricted feature set. Ad-
ditionally, as compared to HMMs, CRFs offer
conditional (versus joint) likelihood, and directly
maximizes posterior label probabilities P (E|O).

We used the GRMM package (Sutton, 2006) to
implement our CRF models, each using a zero-
mean Gaussian prior to reduce over-fitting our
model. No feature reduction is employed, except
where indicated.

3 Word-Level ID Experiments

3.1 Feature functions
We aim to train our CRF model with sets of
features with orthogonal analyses of the errorful
text, integrating knowledge from multiple sources.
While we anticipate that repetitions and other
rough copies will be identified primarily by lexical
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and local context features, this will not necessarily
help for false starts with little or no lexical overlap
between reparandum and repair. To catch these er-
rors, we add both language model features (trained
with the SRILM toolkit (Stolcke, 2002) on SWBD
data with EDITED reparandum nodes removed),
and syntactic features to our model. We also in-
cluded the output of the JC04 system – which had
generally high precision on the SSR data – in the
hopes of building on these results.

Altogether, the following features F were ex-
tracted for each observation xi.

• Lexical features, including

– the lexical item and part-of-speech
(POS) for tokens ti and ti+1,

– distance from previous token to the next
matching word/POS,

– whether previous token is partial word
and the distance to the next word with
same start, and

– the token’s (normalized) position within
the sentence.

• JC04-edit: whether previous, next, or cur-
rent word is identified by the JC04 system as
an edit and/or a filler (fillers are classified as
described in (Johnson et al., 2004)).

• Language model features: the unigram log
probability of the next word (or POS) token
p(t), the token log probability conditioned on
its multi-token history h (p(t|h))2, and the
log ratio of the two (log p(t|h)

p(t) ) to serve as
an approximation for mutual information be-
tween the token and its history, as defined be-
low.

I(t;h) =
∑
h,t

p(h, t) log
p(h, t)

p(h)p(t)

=
∑
h,t

p(h, t)
[
log

p(t|h)
p(t)

]
This aims to capture unexpected n-grams
produced by the juxtaposition of the reparan-
dum and the repair. The mutual information
feature aims to identify when common words
are seen in uncommon context (or, alterna-
tively, penalize rare n-grams normalized for
rare words).

2In our model, word historys h encompassed the previous
two words (a 3-gram model) and POS history encompassed
the previous four POS labels (a 5-gram model)

• Non-terminal (NT) ancestors: Given an au-
tomatically produced parse of the utterance
(using the Charniak (1999) parser trained on
Switchboard (SWBD) (Godfrey et al., 1992)
CTS data), we determined for each word all
NT phrases just completed (if any), all NT
phrases about to start to its right (if any), and
all NT constituents for which the word is in-
cluded.

(Ferreira and Bailey, 2004) and others have
found that false starts and repeats tend to end
at certain points of phrases, which we also
found to be generally true for the annotated
data.

Note that the syntactic and POS features we
used are extracted from the output of an automatic
parser. While we do not expect the parser to al-
ways be accurate, especially when parsing errorful
text, we hope that the parser will at least be con-
sistent in the types of structures it assigns to par-
ticular error phenomena. We use these features in
the hope of taking advantage of that consistency.

3.2 Experimental setup
In these experiments, we attempt to label the
following word-boundary classes as annotated in
SSR corpus:

• fillers (FL), including filled pauses and dis-
course markers (∼5.6% of words)

• rough copy (RC) edit (reparandum incor-
porates the same or very similar words in
roughly the same word order, including repe-
titions and some revisions) (∼4.6% of words)

• non-copy (NC) edit (a speaker error where the
reparandum has no lexical or structural re-
lationship to the repair region following, as
seen in restart fragments and some revisions)
(∼3.2% of words)

Other labels annotated in the SSR corpus (such
as insertions and word reorderings), have been ig-
nored for these error tagging experiments.

We approach our training of CRFs in several
ways, detailed in Table 3. In half of our exper-
iments (#1, 3, and 4), we trained a single model
to predict all three annotated classes (as defined
at the beginning of Section 3.3), and in the other
half (#2, 5, and 6), we trained the model to predict
NCs only, NCs and FLs, RCs only, or RCs and FLs
(as FLs often serve as interregnum, we predict that
these will be a valuable cue for other edits).
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Setup Train data Test data Classes trained per model
#1 Full train Full test FL + RC + NC
#2 Full train Full test {RC,NC}, FL+{RC,NC}
#3 Errorful SUs Errorful SUs FL + RC + NC
#4 Errorful SUs Full test FL + RC + NC
#5 Errorful SUs Errorful SUs {RC,NC}, FL+{RC,NC}
#6 Errorful SUs Full test {RC,NC}, FL+{RC,NC}

Table 3: Overview of experimental setups for word-level error predictions.

We varied the subcorpus utterances used in
training. In some experiments (#1 and 2) we
trained with the entire training set3, including sen-
tences without speaker errors, and in others (#3-6)
we trained only on those sentences containing the
relevant deletion errors (and no additionally com-
plex errors) to produce a densely errorful train-
ing set. Likewise, in some experiments we pro-
duced output only for those test sentences which
we knew to contain simple errors (#3 and 5). This
was meant to emulate the ideal condition where
we could perfectly predict which sentences con-
tain errors before identifying where exactly those
errors occurred.

The JC04-edit feature was included to help us
build on previous efforts for error classification.
To confirm that the model is not simply replicating
these results and is indeed learning on its own with
the other features detailed, we also trained models
without this JC04-edit feature.

3.3 Evaluation of word-level experiments

3.3.1 Word class evaluation

We first evaluate edit detection accuracy on a per-
word basis. To evaluate our progress identify-
ing word-level error classes, we calculate preci-
sion, recall and F-scores for each labeled class c in
each experimental scenario. As usual, these met-
rics are calculated as ratios of correct, false, and
missed predictions. However, to take advantage of
the double reconstruction annotations provided in
SSR (and more importantly, in recognition of the
occasional ambiguities of reconstruction) we mod-

3Using both annotated SSR reference reconstructions for
each utterance

ified these calculations slightly as shown below.

corr(c) =
∑

i:cwi=c

δ(cwi = cg1,i or cwi = cg2,i)

false(c) =
∑

i:cwi=c

δ(cwi 6= cg1,i and cwi 6= cg2,i)

miss(c) =
∑

i:cg1,i=c

δ(cwi 6= cg1,i)

where cwi is the hypothesized class for wi and cg1,i

and cg2,i are the two reference classes.

Setup Class labeled FL RC NC
Train and test on all SUs in the subcorpus
#1 FL+RC+NC 71.0 80.3 47.4
#2 NC - - 42.5
#2 NC+FL 70.8 - 47.5
#2 RC - 84.2 -
#2 RC+FL 67.8 84.7 -

Train and test on errorful SUs
#3 FL+RC+NC 91.6 84.1 52.2
#4 FL+RC+NC 44.1 69.3 31.6
#5 NC - - 73.8
#6 w/ full test - - 39.2
#5 NC+FL 90.7 - 69.8
#6 w/ full test 50.1 - 38.5
#5 RC - 88.7 -
#6 w/ full test - 75.0 -
#5 RC+FL 92.3 87.4 -
#6 w/ full test 62.3 73.9 -

Table 4: Word-level error prediction F1-score re-
sults: Data variation. The first column identifies
which data setup was used for each experiment
(Table 3). The highest performing result for each
class in the first set of experiments has been high-
lighted.

Analysis: Experimental results can be seen in
Tables 4 and 5. Table 4 shows the impact of
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Features FL RC NC
JC04 only 56.6 69.9-81.9 1.6-21.0
lexical only 56.5 72.7 33.4
LM only 0.0 15.0 0.0
NT bounds only 44.1 35.9 11.5
All but JC04 58.5 79.3 33.1
All but lexical 66.9 76.0 19.6
All but LM 67.9 83.1 41.0
All but NT bounds 61.8 79.4 33.6
All 71.0 80.3 47.4

Table 5: Word-level error prediction F-score re-
sults: Feature variation. All models were trained
with experimental setup #1 and with the set of fea-
tures identified.

training models for individual features and of con-
straining training data to contain only those ut-
terances known to contain errors. It also demon-
strates the potential impact on error classification
after prefiltering test data to those SUs with er-
rors. Table 5 demonstrates the contribution of each
group of features to our CRF models.

Our results demonstrate the impact of varying
our training data and the number of label classes
trained for. We see in Table 4 from setup #5 exper-
iments that training and testing on error-containing
utterances led to a dramatic improvement in F1-
score. On the other hand, our results for experi-
ments using setup #6 (where training data was fil-
tered to contain errorful data but test data was fully
preserved) are consistently worse than those of ei-
ther setup #2 (where both train and test data was
untouched) or setup #5 (where both train and test
data were prefiltered). The output appears to suf-
fer from sample bias, as the prior of an error oc-
curring in training is much higher than in testing.
This demonstrates that a densely errorful training
set alone cannot improve our results when testing
data conditions do not match training data condi-
tions. However, efforts to identify errorful sen-
tences before determining where errors occur in
those sentences may be worthwhile in preventing
false positives in error-less utterances.

We next consider the impact of the four feature
groups on our prediction results. The CRF model
appears competitive even without the advantage
of building on JC04 results, as seen in Table 54.

4JC04 results are shown as a range for the reasons given in
Section 1.2: since JC04 does not on its own predict whether
an “edit” is a rough copy or non-copy, it is impossible to cal-

Interestingly and encouragingly, the NT bounds
features which indicate the linguistic phrase struc-
tures beginning and ending at each word accord-
ing to an automatic parse were also found to be
highly contribututive for both fillers and non-copy
identification. We believe that further pursuit of
syntactic features, especially those which can take
advantage of the context-free weakness of statisti-
cal parsers like (Charniak, 1999) will be promising
in future research.

It was unexpected that NC classification would
be so sensitive to the loss of lexical features while
RC labeling was generally resilient to the drop-
ping of any feature group. We hypothesize that
for rough copies, the information lost from the re-
moval of the lexical items might have been com-
pensated for by the JC04 features as JC04 per-
formed most strongly on this error type. This
should be further investigated in the future.

3.3.2 Strict evaluation: SU matching
Depending on the downstream task of speech re-
construction, it could be imperative not only to
identify many of the errors in a given spoken ut-
terance, but indeed to identify all errors (and only
those errors), yielding the precise cleaned sentence
that a human annotator might provide.

In these experiments we apply simple cleanup
(as described in Section 1.1) to both JC04 out-
put and the predicted output for each experimental
setup in Table 3, deleting words when their right
boundary class is a filled pause, rough copy or
non-copy.

Taking advantage of the dual annotations for
each sentence in the SSR corpus, we can report
both single-reference and double-reference eval-
uation. Thus, we judge that if a hypothesized
cleaned sentence exactly matches either reference
sentence cleaned in the same manner, we count the
cleaned utterance as correct and otherwise assign
no credit.

Analysis: We see the outcome of this set of ex-
periments in Table 6. While the unfiltered test sets
of JC04-1, setup #1 and setup #2 appear to have
much higher sentence-level cleanup accuracy than
the other experiments, we recall that this is natu-
ral also due to the fact that the majority of these
sentences should not be cleaned at all, besides

culate precision and thus F1 score precisely. Instead, here we
show the resultant F1 for the best case and worst case preci-
sion range.
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Setup Classes deleted # SUs # SUs which match gold % accuracy
Baseline only filled pauses 2288 1800 78.7%
JC04-1 E+FL 2288 1858 81.2%
CRF-#1 RC, NC, and FL 2288 1922 84.0%
CRF-#2

⋃
{RC,NC} 2288 1901 83.1%

Baseline only filled pauses 281 5 1.8%
JC04-2 E+FL 281 126 44.8%
CRF-#3 RC, NC, and FL 281 156 55.5%
CRF-#5

⋃
{RC,NC} 281 132 47.0%

Table 6: Word-level error predictions: exact SU match results. JC04-2 was run only on test sentences
known to contain some error to match the conditions of Setup #3 and #5 (from Table 3). For the baselines,
we delete only filled pause filler words like “eh” and “um”.

occasional minor filled pause deletions. Look-
ing specifically on cleanup results for sentences
known to contain at least one error, we see, once
again, that our system outperforms our baseline
JC04 system at this task.

4 Discussion

Our first goal in this work was to focus on an area
of disfluency detection currently weak in other
state-of-the-art speaker error detection systems –
false starts – while producing comparable classi-
fication on repetition and revision speaker errors.
Secondly, we attempted to quantify how far delet-
ing identified edits (both RC and NC) and filled
pauses could bring us to full reconstruction of
these sentences.

We’ve shown in Section 3 that by training and
testing on data prefiltered to include only utter-
ances with errors, we can dramatically improve
our results, not only by improving identification
of errors but presumably by reducing the risk of
falsely predicting errors. We would like to further
investigate to understand how well we can auto-
matically identify errorful spoken utterances in a
corpus.

5 Future Work

This work has shown both achievable and demon-
strably feasible improvements in the area of iden-
tifying and cleaning simple speaker errors. We be-
lieve that improved sentence-level identification of
errorful utterances will help to improve our word-
level error identification and overall reconstruction
accuracy; we will continue to research these areas
in the future. We intend to build on these efforts,
adding prosodic and other features to our CRF and

maximum entropy models,
In addition, as we improve the word-level clas-

sification of rough copies and non-copies, we will
begin to move forward to better identify more
complex speaker errors such as missing argu-
ments, misordered or redundant phrases. We will
also work to apply these results directly to the out-
put of a speech recognition system instead of to
transcripts alone.
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Abstract

Although a lot of progress has been made
recently in word segmentation and POS
tagging for Chinese, the output of cur-
rent state-of-the-art systems is too inaccu-
rate to allow for syntactic analysis based
on it. We present an experiment in im-
proving the output of an off-the-shelf mod-
ule that performs segmentation and tag-
ging, the tokenizer-tagger from Beijing
University (PKU). Our approach is based
on transformation-based learning (TBL).
Unlike in other TBL-based approaches to
the problem, however, both obligatory and
optional transformation rules are learned,
so that the final system can output multi-
ple segmentation and POS tagging anal-
yses for a given input. By allowing for
a small amount of ambiguity in the out-
put of the tokenizer-tagger, we achieve a
very considerable improvement in accu-
racy. Compared to the PKU tokenizer-
tagger, we improve segmentation F-score
from 94.18% to 96.74%, tagged word
F-score from 84.63% to 92.44%, seg-
mented sentence accuracy from 47.15%
to 65.06% and tagged sentence accuracy
from 14.07% to 31.47%.

1 Introduction

Word segmentation and tagging are the neces-
sary initial steps for almost any language process-
ing system, and Chinese parsers are no exception.
However, automatic Chinese word segmentation
and tagging has been recognized as a very difficult
task (Sproat and Emerson, 2003), for the follow-
ing reasons:

First, Chinese text provides few cues for word
boundaries (Xia, 2000; Wu, 2003) and part-of-
speech (POS) information. With the exception of
punctuation marks, Chinese does not have word
delimiters such as the whitespace used in English
text, and unlike other languages without whites-
paces such as Japanese, Chinese lacks morpholog-
ical inflections that could provide cues for word
boundaries and POS information. In fact, the lack
of word boundary marks and morphological in-
flection contributes not only to mistakes in ma-
chine processing of Chinese; it has also been iden-
tified as a factor for parsing miscues in Chinese
children’s reading behavior (Chang et al., 1992).

Second, in addition to the two problems de-
scribed above, segmentation and tagging also suf-
fer from the fact that the notion of a word is
very unclear in Chinese (Xu, 1997; Packard, 2000;
Hsu, 2002). While the word is an intuitive and
salient notion in English, it is by no means a
clear notion in Chinese. Instead, for historical
reasons, the intuitive and clear notion in Chinese
language and culture is the character rather than
the word. Classical Chinese is in general mono-
syllabic, with each syllable corresponding to an
independent morpheme that can be visually ren-
dered with a written character. In other words,
characters did represent the basic syntactic unit in
Classical Chinese, and thus became the sociolog-
ically intuitive notion. However, although collo-
quial Chinese quickly evolved throughout Chinese
history to be disyllabic or multi-syllabic, monosyl-
labic Classical Chinese has been considered more
elegant and proper and was commonly used in
written text until the early 20th century in China.
Even in Modern Chinese written text, Classical
Chinese elements are not rare. Consequently, even
if a morpheme represented by a character is no
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longer used independently in Modern colloquial
Chinese, it might still appear to be a free mor-
pheme in modern written text, because it contains
Classical Chinese elements. This fact leads to a
phenomenon in which Chinese speakers have dif-
ficulty differentiating whether a character repre-
sents a bound or free morpheme, which in turn
affects their judgment regarding where the word
boundaries should be. As pointed out by Hoosain
(Hoosain, 1992), the varying knowledge of Classi-
cal Chinese among native Chinese speakers in fact
affects their judgments about what is or is not a
word. In summary, due to the influence of Classi-
cal Chinese, the notion of a word and the bound-
ary between a bound and free morpheme is very
unclear for Chinese speakers, which in turn leads
to a fuzzy perception of where word boundaries
should be.

Consequently, automatic segmentation and tag-
ging in Chinese faces a serious challenge from
prevalent ambiguities. For example 1, the string
“有意见” can be segmented as (1a) or (1b), de-
pending on the context.

(1) a. 有 意见

yǒu yı̀jian
have disagreement

b. 有意 见

yǒuyı̀ jiàn
have the intention meet

The contrast shown in (2) illustrates that even a
string that is not ambiguous in terms of segmenta-
tion can still be ambiguous in terms of tagging.

(2) a. 白/a 花/n
bái huā
white flower

b. 白/d 花/v
bái huā
in vain spend
‘spend (money, time, energy etc.) in vain’

Even Chinese speakers cannot resolve such am-
biguities without using further information from
a bigger context, which suggests that resolving
segmentation and tagging ambiguities probably
should not be a task or goal at the word level. In-
stead, we should preserve such ambiguities in this
level and leave them to be resolved in a later stage,
when more information is available.

1(1) and (2) are cited from (Fang and King, 2007)

To summarize, the word as a notion and hence
word boundaries are very unclear; segmentation
and tagging are prevalently ambiguous in Chinese.
These facts suggest that Chinese segmentation and
part-of-speech identification are probably inher-
ently non-deterministic at the word level. How-
ever most of the current segmentation and/or tag-
ging systems output a single result.

While a deterministic approach to Chinese seg-
mentation and POS tagging might be appropriate
and necessary for certain tasks or applications, it
has been shown to suffer from a problem of low
accuracy. As pointed out by Yu (Yu et al., 2004),
although the segmentation and tagging accuracy
for certain types of text can reach as high as 95%,
the accuracy for open domain text is only slightly
higher than 80%. Furthermore, Chinese segmenta-
tion (SIGHAN) bakeoff results also show that the
performance of the Chinese segmentation systems
has not improved a whole lot since 2003. This
fact also indicates that deterministic approaches
to Chinese segmentation have hit a bottleneck in
terms of accuracy.

The system for which we improved the output
of the Beijing tokenizer-tagger is a hand-crafted
Chinese grammar. For such a system, as proba-
bly for any parsing system that presupposes seg-
mented (and tagged) input, the accuracy of the
segmentation and POS tagging analyses is criti-
cal. However, as described in detail in the fol-
lowing section, even current state-of-art systems
cannot provide satisfactory results for our ap-
plication. Based on the experiments presented
in section 3, we believe that a proper amount
of non-deterministic results can significantly im-
prove the Chinese segmentation and tagging accu-
racy, which in turn improves the performance of
the grammar.

2 Background

The improved tokenizer-tagger we developed is
part of a larger system, namely a deep Chinese
grammar (Fang and King, 2007). The system
is hybrid in that it uses probability estimates for
parse pruning (and it is planned to use trained
weights for parse ranking), but the “core” gram-
mar is rule-based. It is written within the frame-
work of Lexical Functional Grammar (LFG) and
implemented on the XLE system (Crouch et al.,
2006; Maxwell and Kaplan, 1996). The input to
our system is a raw Chinese string such as (3).
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(3)

小王 走 了 。
xiǎowáng zǒu le .
XiaoWang leave ASP 2 .
‘XiaoWang left.’

The output of the Chinese LFG consists of a
Constituent Structure (c-structure) and a Func-
tional Structure (f-structure) for each sentence.
While c-structure represents phrasal structure and
linear word order, f-structure represents various
functional relations between parts of sentences.
For example, (4) and (5) are the c-structure and f-
structure that the grammar produces for (3). Both
c-structure and f-structure information are carried
in syntactic rules in the grammar.

(4) c-structure of (3)

(5) f-structure of (3)

To parse a sentence, the Chinese LFG min-
imally requires three components: a tokenizer-
tagger, a lexicon, and syntactic rules. The
tokenizer-tagger that is currently used in the gram-
mar is developed by Beijing University (PKU)3

and is incorporated as a library transducer (Crouch
et al., 2006).

Because the grammar’s syntactic rules are ap-
plied based upon the results produced by the
tokenizer-tagger, the performance of the latter is

2ASP stands for aspect marker.
3http://www.icl.pku.edu.cn/icl res/

critical to overall quality of the system’s out-
put. However, even though PKU’s tokenizer-
tagger is one of the state-of-art systems, its per-
formance is not satisfactory for the Chinese LFG.
This becomes clear from a small-scale evaluation
in which the system was tested on a set of 101
gold sentences chosen from the Chinese Treebank
5 (CTB5) (Xue et al., 2002; Xue et al., 2005).
These 101 sentences are 10-20 words long and
all of them are chosen from Xinhua sources 4.
Based on the deterministic segmentation and tag-
ging results produced by PKU’s tokenizer-tagger,
the Chinese LFG can only parse 80 out of the
101 sentences. Among the 80 sentences that are
parsed, 66 received full parses and 14 received
fragmented parses. Among the 21 completely
failed sentences, 20 sentences failed due to seg-
mentation and tagging mistakes.

This simple test shows that in order for the
deep Chinese grammar to be practically useful,
the performance of the tokenizer-tagger must be
improved. One way to improve the segmentation
and tagging accuracy is to allow non-deterministic
segmentation and tagging for Chinese for the rea-
sons stated in Section 1. Therefore, our goal
is to find a way to transform PKU’s tokenizer-
tagger into a system that produces a proper amount
of non-deterministic segmentation and tagging re-
sults, one that can significantly improve the sys-
tem’s accuracy without a substantial sacrifice in
terms of efficiency. Our approach is described in
the following section.

3 FST5 Rules for the Improvement of
Segmentation and Tagging Output

For grammars of other languages implemented on
the XLE grammar development platform, the in-
put is usually preprocessed by a cascade of gener-
ally non-deterministic finite state transducers that
perform tokenization, morphological analysis etc.
Since word segmentation and POS tagging are
such hard problems in Chinese, this traditional
setup is not an option for the Chinese grammar.
However, finite state rules seem a quite natural ap-
proach to improving in XLE the output of a sep-

4The reason why only sentences from Xinhua sources
were chosen is because the version of PKU’s tokenizer-tagger
that was integrated into the system was not designed to han-
dle data from Hong Kong and Taiwan.

5We use the abbreviation “FST” for “finite-state trans-
ducer”. fst is used to refer to the finite-state tool called fst,
which was developed by Beesley and Karttunen (2003).
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arate segmentation and POS tagging module like
PKU’s tokenizer-tagger.

3.1 Hand-Crafted FST Rules for Concept
Proving

Although the grammar developer had identified
PKU’s tokenizer-tagger as the most suitable for
the preprocessing of Chinese raw text that is
to be parsed with the Chinese LFG, she no-
ticed in the process of development that (i) cer-
tain segmentation and/or tagging decisions taken
by the tokenizer-tagger systematically go counter
her morphosyntactic judgment and that (ii) the
tokenizer-tagger (as any software of its kind)
makes mistakes. She therefore decided to develop
a set of finite-state rules that transform the output
of the module; a set of mostly obligatory rewrite
rules adapts the POS-tagged word sequence to the
grammar’s standard, and another set of mostly op-
tional rules tries to offer alternative segment and
tag sequences for sequences that are frequently
processed erroneously by PKU’s tokenizer-tagger.

Given the absence of data segmented and tagged
according to the standard the LFG grammar de-
veloper desired, the technique of hand-crafting
FST rules to postprocess the output of PKU’s
tokenizer-tagger worked surprisingly well. Re-
call that based on the deterministic segmentation
and tagging results produced by PKU’s tokenizer-
tagger, our system can only parse 80 out of the 101
sentences, and among the 21 completely failed
sentences, 20 sentences failed due to segmenta-
tion and tagging mistakes. In contrast, after the
application of the hand-crafted FST rules for post-
processing, 100 out of the 101 sentences can be
parsed. However, this approach involved a lot
of manual development work (about 3-4 person
months) and has reached a stage where it is dif-
ficult to systematically work on further improve-
ments.

3.2 Machine-Learned FST Rules

Since there are large amounts of training data that
are close to the segmentation and tagging standard
the grammar developer wants to use, the idea of
inducing FST rules rather than hand-crafting them
comes quite naturally. The easiest way to do this
is to apply transformation-based learning (TBL) to
the combined problem of Chinese segmentation
and POS tagging, since the cascade of transfor-
mational rules learned in a TBL training run can

straightforwardly be translated into a cascade of
FST rules.

3.2.1 Transformation-Based Learning and
µ-TBL

TBL is a machine learning approach that has been
employed to solve a number of problems in nat-
ural language processing; most famously, it has
been used for part-of-speech tagging (Brill, 1995).
TBL is a supervised learning approach, since it re-
lies on gold-annotated training data. In addition,
it relies on a set of templates of transformational
rules; learning consists in finding a sequence of in-
stantiations of these templates that minimizes the
number of errors in a more or less naive base-line
output with respect to the gold-annotated training
data.

The first attempts to employ TBL to solve the
problem of Chinese word segmentation go back to
Palmer (1997) and Hockenmaier and Brew (1998).
In more recent work, TBL was used for the adap-
tion of the output of a statistical “general pur-
pose” segmenter to standards that vary depend-
ing on the application that requires sentence seg-
mentation (Gao et al., 2004). TBL approaches to
the combined problem of segmenting and POS-
tagging Chinese sentences are reported in Florian
and Ngai (2001) and Fung et al. (2004).

Several implementations of the TBL approach
are freely available on the web, the most well-
known being the so-called Brill tagger, fnTBL,
which allows for multi-dimensional TBL, and
µ-TBL (Lager, 1999). Among these, we chose
µ-TBL for our experiments because (like fnTBL)
it is completely flexible as to whether a sample
is a word, a character or anything else and (un-
like fnTBL) it allows for the induction of optional
rules. Probably due to its flexibility, µ-TBL has
been used (albeit on a small scale for the most part)
for tasks as diverse as POS tagging, map tasks, and
machine translation.

3.2.2 Experiment Set-up
We started out with a corpus of thirty gold-
segmented and -tagged daily editions of the Xin-
hua Daily, which were provided by the Institute
of Computational Linguistics at Beijing Univer-
sity. Three daily editions, which comprise 5,054
sentences with 129,377 words and 213,936 char-
acters, were set aside for testing purposes; the re-
maining 27 editions were used for training. With
the idea of learning both obligatory and optional
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transformational rules in mind, we then split the
training data into two roughly equally sized sub-
sets. All the data were broken into sentences us-
ing a very simple method: The end of a para-
graph was always considered a sentence bound-
ary. Within paragraphs, sentence-final punctua-
tion marks such as periods (which are unambigu-
ous in Chinese), question marks and exclamation
marks, potentially followed by a closing parenthe-
sis, bracket or quote mark, were considered sen-
tence boundaries.

We then had to come up with a way of cast-
ing the problem of combined segmentation and
POS tagging as a TBL problem. Following a strat-
egy widely used in Chinese word segmentation,
we did this by regarding the problem as a charac-
ter tagging problem. However, since we intended
to learn rules that deal with segmentation and
POS tagging simultaneously, we could not adopt
the BIO-coding approach.6 Also, since the TBL-
induced transformational rules were to be con-
verted into FST rules, we had to keep our character
tagging scheme one-dimensional, unlike Florian
and Ngai (2001), who used a multi-dimensional
TBL approach to solve the problem of combined
segmentation and POS tagging.

The character tagging scheme that we finally
chose is illustrated in (6), where a. and b. show the
character tags that we used for the analyses in (1a)
and (1b) respectively. The scheme consists in tag-
ging the last character of a word with the part-of-
speech of the entire word; all non-final characters
are tagged with ‘-’. The main advantages of this
character tagging scheme are that it expresses both
word boundaries and parts-of-speech and that, at
the same time, it is always consistent; inconsisten-
cies between BIO tags indicating word boundaries
and part-of-speech tags, which Florian and Ngai
(2001), for example, have to resolve, can simply
not arise.

(6)

有 意 见

a. v - n
b. - v v

Both of the training data subsets were tagged
according to our character tagging scheme and

6In this character tagging approach to word segmentation,
characters are tagged as the beginning of a word (B), inside
(or at the end) of a multi-character word (I) or a word of their
own (O). Their are numerous variations of this approach.

converted to the data format expected by µ-TBL.
The first training data subset was used for learn-
ing obligatory resegmentation and retagging rules.
The corresponding rule templates, which define
the space of possible rules to be explored, are
given in Figure 1. The training parameters of
µ-TBL, which are an accuracy threshold and a
score threshold, were set to 0.75 and 5 respec-
tively; this means that a potential rule was only
retained if at least 75% of the samples to which it
would have applied were actually modified in the
sense of the gold standard and not in some other
way and that the learning process was terminated
when no more rule could be found that applied to
at least 5 samples in the first training data subset.
With these training parameters, 3,319 obligatory
rules were learned by µ-TBL.

Once the obligatory rules had been learned on
the first training data subset, they were applied to
the second training data subset. Then, optional
rules were learned on this second training data
subset. The rule templates used for optional rules
are very similar to the ones used for obligatory
rules; a few templates of optional rules are given in
Figure 2. The difference between obligatory rules
and optional rules is that the former replace one
character tag by another, whereas the latter add
character tags. They hence introduce ambiguity,
which is why we call them optional rules. Like in
the learning of the obligatory rules, the accuracy
threshold used was 0.75; the score theshold was
set to 7 because the training software seemed to
hit a bug below that threshold. 753 optional rules
were learned. We did not experiment with the ad-
justment of the training parameters on a separate
held-out set.

Finally, the rule sets learned were converted into
the fst (Beesley and Karttunen, 2003) notation for
transformational rules, so that they could be tested
and used in the FST cascade used for preprocess-
ing the input of the Chinese LFG. For evaluation,
the converted rules were applied to our test data set
of 5,054 sentences. A few example rules learned
by µ-TBL with the set-up described above are
given in Figure 3; we show them both in µ-TBL
notation and in fst notation.

3.2.3 Results
The results achieved by PKU’s tokenizer-tagger
on its own and in combination with the trans-
formational rules learned in our experiments are
given in Table 1. We compare the output of PKU’s
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tag:m> - <- wd:’一’@[0] & wd:’个’@[1] & "/" m WS @-> 0 || 一 _ 个 [ ( TAG )
tag:q@[1,2,3,4] & {\+q=(-)}. CHAR ]ˆ{0,3} "/" q WS

tag:r>n <- wd:’我’@[-1] & wd:’国’@[0]. "/" r WS @-> "/" n TB || 我 ( TAG ) 国 _
tag:add nr <- tag:(-)@[0] & wd:’铸’@[1]. [..] (@->) "/" n r TB || CHAR _ 铸
... ...

Figure 3: Sample rules learned in our experiments in µ-TBL notation on the left and in fst notation on
the right8

tag:A>B <- ch:C@[0].
tag:A>B <- ch:C@[1].
tag:A>B <- ch:C@[-1] & ch:D@[0].
tag:A>B <- ch:C@[0] & ch:D@[1].
tag:A>B <- ch:C@[1] & ch:D@[2].
tag:A>B <- ch:C@[-2] & ch:D@[-1] &

ch:E@[0].
tag:A>B <- ch:C@[-1] & ch:D@[0] &

ch:E@[1].
tag:A>B <- ch:C@[0] & ch:D@[1] & ch:E@[2].
tag:A>B <- ch:C@[1] & ch:D@[2] & ch:E@[3].
tag:A>B <- tag:C@[-1].
tag:A>B <- tag:C@[1].
tag:A>B <- tag:C@[1] & tag:D@[2].
tag:A>B <- tag:C@[-2] & tag:D@[-1].
tag:A>B <- tag:C@[-1] & tag:D@[1].
tag:A>B <- tag:C@[1] & tag:D@[2].
tag:A>B <- tag:C@[1] & tag:D@[2] &

tag:E@[3].
tag:A>B <- tag:C@[-1] & ch:W@[0].
tag:A>B <- tag:C@[1] & ch:W@[0].
tag:A>B <- tag:C@[1] & tag:D@[2] &

ch:W@[0].
tag:A>B <- tag:C@[-2] & tag:D@[-1] &

ch:W@[0].
tag:A>B <- tag:C@[-1] & tag:D@[1] &

ch:W@[0].
tag:A>B <- tag:C@[1] & tag:D@[2] &

ch:W@[0].
tag:A>B <- tag:C@[1] & tag:D@[2] &

tag:E@[3] & ch:W@[0].
tag:A>B <- tag:C@[-1] & ch:W@[1].
tag:A>B <- tag:C@[1] & ch:W@[1].
tag:A>B <- tag:C@[1] & tag:D@[2] &

ch:W@[1].
tag:A>B <- tag:C@[-2] & tag:D@[-1] &

ch:W@[1].
tag:A>B <- tag:C@[-1] & ch:D@[0] &

ch:E@[1].
tag:A>B <- tag:C@[-1] & tag:D@[1] &

ch:W@[1].
tag:A>B <- tag:C@[1] & tag:D@[2] &

ch:W@[1].
tag:A>B <- tag:C@[1] & tag:D@[2] &

tag:E@[3] & ch:W@[1].
tag:A>B <- tag:C@[1,2,3,4] & {\+C=’-’}.
tag:A>B <- ch:C@[0] & tag:D@[1,2,3,4] &

{\+D=’-’}.
tag:A>B <- tag:C@[-1] & ch:D@[0] &

tag:E@[1,2,3,4] & {\+E=’-’}.
tag:A>B <- ch:C@[0] & ch:D@[1] &

tag:E@[1,2,3,4] & {\+E=’-’}.

Figure 1: Templates of obligatory rules used in our
experiments

tag:add B <- tag:A@[0] & ch:C@[0].
tag:add B <- tag:A@[0] & ch:C@[1].
tag:add B <- tag:A@[0] & ch:C@[-1] &

ch:D@[0].
...

Figure 2: Sample templates of optional rules used
in our experiments

tokenizer-tagger run in the mode where it returns
only the most probable tag for each word (PKU
one tag), of PKU’s tokenizer-tagger run in the
mode where it returns all possible tags for a given
word (PKU all tags), of PKU’s tokenizer-tagger
in one-tag mode augmented with the obligatory
transformational rules learned on the first part of
our training data (PKU one tag + deterministic rule
set), and of PKU’s tokenizer-tagger augmented
with both the obligatory and optional rules learned
on the first and second parts of our training data re-
spectively (PKU one tag + non-deterministic rule
set). We give results in terms of character tag ac-
curacy and ambiguity according to our character
tagging scheme. Then we provide evaluation fig-
ures for the word level. Finally, we give results re-
ferring to the sentence level in order to make clear
how serious a problem Chinese segmentation and
POS tagging still are for parsers, which obviously
operate at the sentence level.

These results show that simply switching from
the one-tag mode of PKU’s tokenizer-tagger to its
all-tags mode is not a solution. First of all, since
the tokenizer-tagger always produces only one
segmentation regardless of the mode it is used in,
segmentation accuracy would stay completely un-
affected by this change, which is particularly seri-
ous because there is no way for the grammar to re-
cover from segmentation errors and the tokenizer-
tagger produces an entirely correct segmentation
only for 47.15% of the sentences. Second, the
improved tagging accuracy would come at a very
heavy price in terms of ambiguity; the median
number of combined segmentation and POS tag-
ging analyses per sentence would be 1,440.
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In contrast, machine-learned transformation
rules are an effective means to improve the out-
put of PKU’s tokenizer-tagger. Applying only
the obligatory rules that were learned already im-
proves segmented sentence accuracy from 47.15%
to 63.14% and tagged sentence accuracy from
14.07% to 27.21%, and this at no cost in terms
of ambiguity. Adding the optional rules that were
learned and hence making the rule set used for
post-processing the output of PKU’s tokenizer-
tagger non-deterministic makes it possible to im-
prove segmented sentence accuracy and tagged
sentence accuracy further to 65.06% and 31.47%
respectively, i.e. tagged sentence accuracy is more
than doubled with respect to the baseline. While
this last improvement does come at a price in
terms of ambiguity, the ambiguity resulting from
the application of the non-deterministic rule set is
very low in comparison to the ambiguity of the
output of PKU’s tokenizer-tagger in all-tags mode;
the median number of analyses per sentences only
increases to 2. Finally, it should be noted that
the transformational rules provide entirely correct
segmentation and POS tagging analyses not only
for more sentences, but also for longer sentences.
They increase the average length of a correctly
segmented sentence from 18.22 words to 21.94
words and the average length of a correctly seg-
mented and POS-tagged sentence from 9.58 words
to 16.33 words.

4 Comparison to related work and
Discussion

Comparing our results to other results in the liter-
ature is not an easy task because segmentation and
POS tagging standards vary, and our test data have
not been used for a final evaluation before. Nev-
ertheless, there are of course systems that perform
word segmentation and POS tagging for Chinese
and have been evaluated on data similar to our test
data.

Published results also vary as to the evalua-
tion measures used, in particular when it comes
to combined word segmentation and POS tag-
ging. For word segmentation considered sepa-
rately, the consensus is to use the (segmentation)
F-score (SF). The quality of systems that perform
both segmentation and POS tagging is often ex-
pressed in terms of (character) tag accuracy (TA),
but this obviously depends on the character tag-
ging scheme adopted. An alternative measure is

POS tagging F-score (TF), which is the geomet-
ric mean of precision and recall of correctly seg-
mented and POS-tagged words. Evaluation mea-
sures for the sentence level have not been given in
any publication that we are aware of, probably be-
cause segmenters and POS taggers are rarely con-
sidered as pre-processing modules for parsers, but
also because the figures for measures like sentence
accuracy are strikingly low.

For systems that perform only word segmenta-
tion, we find the following results in the literature:
(Gao et al., 2004), who use TBL to adapt a “gen-
eral purpose” segmenter to varying standards, re-
port an SF of 95.5% on PKU data and an SF of
90.4% on CTB data. (Tseng et al., 2005) achieve
an SF of 95.0%, 95.3% and 86.3% on PKU data
from the Sighan Bakeoff 2005, PKU data from
the Sighan Bakeoff 2003 and CTB data from the
Sighan Bakeoff 2003 respectively. Finally, (Zhang
et al., 2006) report an SF of 94.8% on PKU data.

For systems that perform both word segmenta-
tion and POS tagging, the following results were
published: Florian and Ngai (2001) report an SF
of 93.55% and a TA of 88.86% on CTB data.
Ng and Low (2004) report an SF of 95.2% and
a TA of 91.9% on CTB data. Finally, Zhang and
Clark (2008) achieve an SF of 95.90% and a TF
of 91.34% by 10-fold cross validation using CTB
data.

Last but not least, there are parsers that oper-
ate on characters rather than words and who per-
form segmentation and POS tagging as part of the
parsing process. Among these, we would like to
mention Luo (2003), who reports an SF 96.0%
on Chinese Treebank (CTB) data, and (Fung et
al., 2004), who achieve “a word segmentation pre-
cision/recall performance of 93/94%”. Both the
SF and the TF results achieved by our “PKU one
tag + non-deterministic rule set” setup, whose out-
put is slightly ambiguous, compare favorably with
all the results mentioned, and even the results
achieved by our “PKU one tag + deterministic rule
set” setup are competitive.

5 Conclusions and Future Work

The idea of carrying some ambiguity from one
processing step into the next in order not to prune
good solutions is not new. E.g., Prins and van No-
ord (2003) use a probabilistic part-of-speech tag-
ger that keeps multiple tags in certain cases for
a hand-crafted HPSG-inspired parser for Dutch,
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PKU PKU PKU one tag + PKU one tag +
one tag all tags det. rule set non-det. rule set

Character tag accuracy (in %) 89.98 92.79 94.69 95.27
Avg. number of tags per char. 1.00 1.39 1.00 1.03
Avg. number of words per sent. 26.26 26.26 25.77 25.75
Segmented word precision (in %) 93.00 93.00 96.18 96.46
Segmented word recall (in %) 95.39 95.39 96.84 97.02
Segmented word F-score (in %) 94.18 94.18 96.51 96.74
Tagged word precision (in %) 83.57 87.87 91.27 92.17
Tagged word recall (in %) 85.72 90.23 91.89 92.71
Tagged word F-score (in %) 84.63 89.03 91.58 92.44
Segmented sentence accuracy (in %) 47.15 47.15 63.14 65.06
Avg. nmb. of words per correctly segm. sent. 18.22 18.22 21.69 21.94
Tagged sentence accuracy (in %) 14.07 21.09 27.21 31.47
Avg. number of analyses per sent. 1.00 4.61e18 1.00 12.84
Median nmb. of analyses per sent. 1 1,440 1 2
Avg. nmb. of words per corr. tagged sent. 9.58 13.20 15.11 16.33

Table 1: Evaluation figures achieved by four different systems on the 5,054 sentences of our test set

and Curran et al. (2006) show the benefits of us-
ing a multi-tagger rather than a single-tagger for
an induced CCG for English. However, to our
knowledge, this idea has not made its way into
the field of Chinese parsing so far. Chinese pars-
ing systems either pass on a single segmentation
and POS tagging analysis to the parser proper or
they are character-based, i.e. segmentation and
tagging are part of the parsing process. Although
several treebank-induced character-based parsers
for Chinese have achieved promising results, this
approach is impractical in the development of a
hand-crafted deep grammar like the Chinese LFG.
We therefore believe that the development of a
“multi-tokenizer-tagger” is the way to go for this
sort of system (and all systems that can handle a
certain amount of ambiguity that may or may not
be resolved at later processing stages). Our results
show that we have made an important first step in
this direction.

As to future work, we hope to resolve the prob-
lem of not having a gold standard that is seg-
mented and tagged exactly according to the guide-
lines established by the Chinese LFG developer
by semi-automatically applying the hand-crafted
transformational rules that were developed to the
PKU gold standard. We will then induce obliga-
tory and optional FST rules from this “grammar-
compliant” gold standard and hope that these will
be able to replace the hand-crafted transformation
rules currently used in the grammar. Finally, we

plan to carry out more training runs; in particu-
lar, we intend to experiment with lower accuracy
(and score) thresholds for optional rules. The idea
is to find the optimal balance between ambigu-
ity, which can probably be higher than with our
current set of induced rules without affecting ef-
ficiency too adversely, and accuracy, which still
needs further improvement, as can easily be seen
from the sentence accuracy figures.
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Abstract

We explore the problem of resolving the
second person English pronoun you in
multi-party dialogue, using a combination
of linguistic and visual features. First, we
distinguish generic and referential uses,
then we classify the referential uses as ei-
ther plural or singular, and finally, for the
latter cases, we identify the addressee. In
our first set of experiments, the linguistic
and visual features are derived from man-
ual transcriptions and annotations, but in
the second set, they are generated through
entirely automatic means. Results show
that a multimodal system is often prefer-
able to a unimodal one.

1 Introduction

The English pronoun you is the second most fre-
quent word in unrestricted conversation (after I
and right before it).1 Despite this, with the ex-
ception of Gupta et al. (2007b; 2007a), its re-
solution has received very little attention in the lit-
erature. This is perhaps not surprising since the
vast amount of work on anaphora and reference
resolution has focused on text or discourse - medi-
ums where second-person deixis is perhaps not
as prominent as it is in dialogue. For spoken di-
alogue pronoun resolution modules however, re-
solving you is an essential task that has an impor-
tant impact on the capabilities of dialogue summa-
rization systems.

∗We thank the anonymous EACL reviewers, and Surabhi
Gupta, John Niekrasz and David Demirdjian for their com-
ments and technical assistance. This work was supported by
the CALO project (DARPA grant NBCH-D-03-0010).

1See e.g. http://www.kilgarriff.co.uk/BNC_lists/

Besides being important for computational im-
plementations, resolving you is also an interesting
and challenging research problem. As for third
person pronouns such as it, some uses of you are
not strictly referential. These include discourse
marker uses such as you know in example (1), and
generic uses like (2), where you does not refer to
the addressee as it does in (3).

(1) It’s not just, you know, noises like something
hitting.

(2) Often, you need to know specific button se-
quences to get certain functionalities done.

(3) I think it’s good. You’ve done a good review.

However, unlike it, you is ambiguous between sin-
gular and plural interpretations - an issue that is
particularly problematic in multi-party conversa-
tions. While you clearly has a plural referent in
(4), in (3) the number of its referent is ambigu-
ous.2

(4) I don’t know if you guys have any questions.

When an utterance contains a singular referen-
tial you, resolving the you amounts to identifying
the individual to whom the utterance is addressed.
This is trivial in two-person dialogue since the cur-
rent listener is always the addressee, but in conver-
sations with multiple participants, it is a complex
problem where different kinds of linguistic and vi-
sual information play important roles (Jovanovic,
2007). One of the issues we investigate here is

2In contrast, the referential use of the pronoun it (as well
as that of some demonstratives) is ambiguous between NP
interpretations and discourse-deictic ones (Webber, 1991).
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how this applies to the more concrete problem of
resolving the second person pronoun you.

We approach this issue as a three-step prob-
lem. Using the AMI Meeting Corpus (McCowan
et al., 2005) of multi-party dialogues, we first dis-
criminate between referential and generic uses of
you. Then, within the referential uses, we dis-
tinguish between singular and plural, and finally,
we resolve the singular referential instances by
identifying the intended addressee. We use multi-
modal features: initially, we extract discourse fea-
tures from manual transcriptions and use visual in-
formation derived from manual annotations, but
then we move to a fully automatic approach, us-
ing 1-best transcriptions produced by an automatic
speech recognizer (ASR) and visual features auto-
matically extracted from raw video.

In the next section of this paper, we give a brief
overview of related work. We describe our data in
Section 3, and explain how we extract visual and
linguistic features in Sections 4 and 5 respectively.
Section 6 then presents our experiments with man-
ual transcriptions and annotations, while Section
7, those with automatically extracted information.
We end with conclusions in Section 8.

2 Related Work

2.1 Reference Resolution in Dialogue

Although the vast majority of work on reference
resolution has been with monologic text, some re-
cent research has dealt with the more complex
scenario of spoken dialogue (Strube and Müller,
2003; Byron, 2004; Arstein and Poesio, 2006;
Müller, 2007). There has been work on the iden-
tification of non-referential uses of the pronoun it:
Müller (2006) uses a set of shallow features au-
tomatically extracted from manual transcripts of
two-party dialogue in order to train a rule-based
classifier, and achieves an F-score of 69%.

The only existing work on the resolution of you
that we are aware of is Gupta et al. (2007b; 2007a).
In line with our approach, the authors first disam-
biguate between generic and referential you, and
then attempt to resolve the reference of the ref-
erential cases. Generic uses of you account for
47% of their data set, and for the generic vs. ref-
erential disambiguation, they achieve an accuracy
of 84% on two-party conversations and 75% on
multi-party dialogue. For the reference resolution
task, they achieve 47%, which is 10 points over
a baseline that always classifies the next speaker

as the addressee. These results are achieved with-
out visual information, using manual transcripts,
and a combination of surface features and manu-
ally tagged dialogue acts.

2.2 Addressee Detection

Resolving the referential instances of you amounts
to determining the addressee(s) of the utterance
containing the pronoun. Recent years have seen
an increasing amount of research on automatic
addressee detection. Much of this work focuses
on communication between humans and computa-
tional agents (such as robots or ubiquitous com-
puting systems) that interact with users who may
be engaged in other activities, including interac-
tion with other humans. In these situations, it
is important for a system to be able to recognize
when it is being addressed by a user. Bakx et
al. (2003) and Turnhout et al. (2005) studied this
issue in the context of mixed human-human and
human-computer interaction using facial orienta-
tion and utterance length as clues for addressee
detection, while Katzenmaier et al. (2004) inves-
tigated whether the degree to which a user utter-
ance fits the language model of a conversational
robot can be useful in detecting system-addressed
utterances. This research exploits the fact that hu-
mans tend to speak differently to systems than to
other humans.

Our research is closer to that of Jovanovic
et al. (2006a; 2007), who studied addressing in
human-human multi-party dialogue. Jovanovic
and colleagues focus on addressee identification in
face-to-face meetings with four participants. They
use a Bayesian Network classifier trained on sev-
eral multimodal features (including visual features
such as gaze direction, discourse features such as
the speaker and dialogue act of preceding utter-
ances, and utterance features such as lexical clues
and utterance duration). Using a combination of
features from various resources was found to im-
prove performance (the best system achieves an
accuracy of 77% on a portion of the AMI Meeting
Corpus). Although this result is very encouraging,
it is achieved with the use of manually produced
information - in particular, manual transcriptions,
dialogue acts and annotations of visual focus of at-
tention. One of the issues we aim to investigate
here is how automatically extracted multimodal
information can help in detecting the addressee(s)
of you-utterances.
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Generic Referential Ref Sing. Ref Pl.
49.14% 50.86% 67.92% 32.08%

Table 1: Distribution of you interpretations

3 Data

Our experiments are performed using the AMI
Meeting Corpus (McCowan et al., 2005), a collec-
tion of scenario-driven meetings among four par-
ticipants, manually transcribed and annotated with
several different types of information (including
dialogue acts, topics, visual focus of attention, and
addressee). We use a sub-corpus of 948 utterances
containing you, and these were extracted from 10
different meetings. The you-utterances are anno-
tated as either discourse marker, generic or refer-
ential.

We excluded the discourse marker cases, which
account for only 8% of the data, and of the refer-
ential cases, selected those with an AMI addressee
annotation.3 The addressee of a dialogue act can
be unknown, a single meeting participant, two
participants, or the whole audience (three partici-
pants in the AMI corpus). Since there are very few
instances of two-participant addressee, we distin-
guish only between singular and plural addressees.
The resulting distribution of classes is shown in
Table 1.4

We approach the reference resolution task as a
two-step process, first discriminating between plu-
ral and singular references, and then resolving the
reference of the singular cases. The latter task re-
quires a classification scheme for distinguishing
between the three potential addressees (listeners)
for the given you-utterance.

In their four-way classification scheme,
Gupta et al. (2007a) label potential addressees in
terms of the order in which they speak after the
you-utterance. That is, for a given you-utterance,
the potential addressee who speaks next is labeled
1, the potential addressee who speaks after that is
2, and the remaining participant is 3. Label 4 is
used for group addressing. However, this results
in a very skewed class distribution because the
next speaker is the intended addressee 41% of
the time, and 38% of instances are plural - the

3Addressee annotations are not provided for some dia-
logue act types - see (Jovanovic et al., 2006b).

4Note that the percentages of the referential singular and
referential plural are relative to the total of referential in-
stances.

L1 L2 L3

35.17% 30.34% 34.49%

Table 2: Distribution of addressees for singular you

remaining two classes therefore make up a small
percentage of the data.

We were able to obtain a much less skewed class
distribution by identifying the potential addressees
in terms of their position in relation to the current
speaker. The meeting setting includes a rectangu-
lar table with two participants seated at each of
its opposite longer sides. Thus, for a given you-
utterance, we label listeners as either L1, L2 or
L3 depending on whether they are sitting opposite,
diagonally or laterally from the speaker. Table 2
shows the resulting class distribution for our data-
set. Such a labelling scheme is more similar to Jo-
vanovic (2007), where participants are identified
by their seating position.

4 Visual Information

4.1 Features from Manual Annotations
We derived per-utterance visual features from the
Focus Of Attention (FOA) annotations provided
by the AMI corpus. These annotations track meet-
ing participants’ head orientation and eye gaze
during a meeting.5 Our first step was to use the
FOA annotations in order to compute what we re-
fer to as Gaze Duration Proportion (GDP) values
for each of the utterances of interest - a measure
similar to the “Degree of Mean Duration of Gaze”
described by (Takemae et al., 2004). Here a GDP
value denotes the proportion of time in utterance u
for which subject i is looking at target j:

GDPu(i, j) =
∑
j

T (i, j)/Tu

were Tu is the length of utterance u in millisec-
onds, and T (i, j), the amount of that time that i
spends looking at j. The gazer i can only refer to
one of the four meeting participants, but the tar-
get j can also refer to the white-board/projector
screen present in the meeting room. For each utter-
ance then, all of the possible values of i and j are
used to construct a matrix of GDP values. From
this matrix, we then construct “Highest GDP” fea-
tures for each of the meeting participants: such

5A description of the FOA labeling scheme is avail-
able from the AMI Meeting Corpus website http://corpus.

amiproject.org/documentations/guidelines-1/
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For each participant Pi
– target for whole utterance
– target for first third of utterance
– target for second third of utterance
– target for third third of utterance
– target for -/+ 2 secs from you start time
– ratio 2nd hyp. target / 1st hyp. target
– ratio 3rd hyp. target / 1st hyp. target
– participant in mutual gaze with speaker

Table 3: Visual Features

features record the target with the highest GDP
value and so indicate whom/what the meeting par-
ticipant spent most time looking at during the ut-
terance.

We also generated a number of additional fea-
tures for each individual. These include firstly,
three features which record the candidate “gazee”
with the highest GDP during each third of the ut-
terance, and which therefore account for gaze tran-
sitions. So as to focus more closely on where par-
ticipants are looking around the time when you
is uttered, another feature records the candidate
with the highest GDP -/+ 2 seconds from the start
time of the you. Two further features give some
indication of the amount of looking around that
the speaker does during an utterance - we hypoth-
esized that participants (especially the speaker)
might look around more in utterances with plu-
ral addressees. The first is the ratio of the sec-
ond highest GDP to the highest, and the second
is the ratio of the third highest to the highest. Fi-
nally, there is a highest GDP mutual gaze feature
for the speaker, indicating with which other indi-
vidual, the speaker spent most time engaged in a
mutual gaze.

Hence this gives a total of 29 features: seven
features for each of the four participants, plus one
mutual gaze feature. They are summarized in Ta-
ble 3. These visual features are different to those
used by Jovanovic (2007) (see Section 2). Jo-
vanovic’s features record the number of times that
each participant looks at each other participant
during the utterance, and in addition, the gaze di-
rection of the current speaker. Hence, they are not
highest GDP values, they do not include a mutual
gaze feature and they do not record whether par-
ticipants look at the white-board/projector screen.

4.2 Automatic Features from Raw Video

To perform automatic visual feature extraction, a
six degree-of-freedom head tracker was run over
each subject’s video sequence for the utterances

containing you. For each utterance, this gave 4 se-
quences, one per subject, of the subject’s 3D head
orientation and location at each video frame along
with 3D head rotational velocities. From these
measurements we computed two types of visual
information: participant gaze and mutual gaze.

The 3D head orientation and location of each
subject along with camera calibration information
was used to compute participant gaze information
for each video frame of each sequence in the form
of a gaze probability matrix. More precisely, cam-
era calibration is first used to estimate the 3D head
orientation and location of all subjects in the same
world coordinate system.

The gaze probability matrix is a 4 × 5 matrix
where entry i, j stores the probability that subject
i is looking at subject j for each of the four sub-
jects and the last column corresponds to the white-
board/projector screen (i.e., entry i, j where j = 5
is the probability that subject i is looking at the
screen). Gaze probability G(i, j) is defined as

G(i, j) = G0e
−αi,j2/γ2

where αi,j is the angular difference between the
gaze of subject i and the direction defined by the
location of subjects i and j. G0 is a normalization
factor such that

∑
j G(i, j) = 1 and γ is a user-

defined constant (in our experiments, we chose
γ = 15 degrees).

Using the gaze probability matrix, a 4 × 1 per-
frame mutual gaze vector was computed that for
entry i stores the probability that the speaker and
subject i are looking at one another.

In order to create features equivalent to those
described in Section 4.1, we first collapse the
frame-level probability matrix into a matrix of bi-
nary values. We convert the probability for each
frame into a binary judgement of whether subject
i is looking at target j:

H(i, j) = βG(i, j)

β is a binary value to evaluate G(i, j) > θ, where
θ is a high-pass thresholding value - or “gaze prob-
ability threshold” (GPT) - between 0 and 1.

Once we have a frame-level matrix of binary
values, for each subject i, we compute GDP val-
ues for the time periods of interest, and in each
case, choose the target with the highest GDP as the
candidate. Hence, we compute a candidate target
for the utterance overall, for each third of the ut-
terance, and for the period -/+ 2 seconds from the
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you start time, and in addition, we compute a can-
didate participant for mutual gaze with the speaker
for the utterance overall.

We sought to use the GPT threshold which pro-
duces automatic visual features that agree best
with the features derived from the FOA annota-
tions. Hence we experimented with different GPT
values in increments of 0.1, and compared the re-
sulting features to the manual features using the
kappa statistic. A threshold of 0.6 gave the best
kappa scores, which ranged from 20% to 44%.6

5 Linguistic Information

Our set of discourse features is a simplified ver-
sion of those employed by Galley et al. (2004) and
Gupta et al. (2007a). It contains three main types
(summarized in Table 4):
— Sentential features (1 to 13) encode structural,
durational, lexical and shallow syntactic patterns
of the you-utterance. Feature 13 is extracted us-
ing the AMI “Named Entity” annotations and in-
dicates whether a particular participant is men-
tioned in the you-utterance. Apart from this fea-
ture, all other sentential features are automatically
extracted, and besides 1, 8, 9, and 10, they are all
binary.
— Backward Looking (BL)/Forward Looking (FL)
features (14 to 22) are mostly extracted from ut-
terance pairs, namely the you-utterance and the
BL/FL (previous/next) utterance by each listener
Li (potential addressee). We also include a few
extra features which are not computed in terms of
utterance pairs. These indicate the number of par-
ticipants that speak during the previous and next 5
utterances, and the BL and FL speaker order. All
of these features are computed automatically.
— Dialogue Act (DA) features (23 to 24) use the
manual AMI dialogue act annotations to represent
the conversational function of the you-utterance
and the BL/FL utterance by each potential ad-
dressee. Along with the sentential feature based
on the AMI Named Entity annotations, these are
the only discourse features which are not com-
puted automatically. 7

6The fact that our gaze estimator is getting any useful
agreement with respect to these annotations is encouraging
and suggests that an improved tracker and/or one that adapts
to the user more effectively could work very well.

7Since we use the manual transcripts of the meetings, the
transcribed words and the segmentation into utterances or di-
alogue acts are of course not given automatically. A fully
automatic approach would involve using ASR output instead
of manual transcriptions— something which we attempt in

(1) # of you pronouns
(2) you (say|said|tell|told| mention(ed)|mean(t)|

sound(ed))
(3) auxiliary you
(4) wh-word you
(5) you guys
(6) if you
(7) you know
(8) # of words in you-utterance
(9) duration of you-utterance
(10) speech rate of you-utterance
(11) 1st person
(12) general case
(13) person Named Entity tag
(14) # of utterances between you- and BL/FL utt.
(15) # of speakers between you- and BL/FL utt.
(16) overlap between you- and BL/FL utt. (binary)
(17) duration of overlap between you- and BL/FL utt.
(18) time separation between you- and BL/FL utt.
(19) ratio of words in you- that are in BL/FL utt.
(20) # of participants that speak during prev. 5 utt.
(21) # of participants that speak during next 5 utt.
(22) speaker order BL/FL
(23) dialogue act of the you-utterance
(24) dialogue act of the BL/FL utterance

Table 4: Discourse Features

6 First Set of Experiments & Results

In this section we report our experiments and re-
sults when using manual transcriptions and anno-
tations. In Section 7 we will present the results
obtained using ASR output and automatically ex-
tracted visual information. All experiments (here
and in the next section) are performed using a
Bayesian Network classifier with 10-fold cross-
validation.8 In each task, we give raw overall ac-
curacy results and then F-scores for each of the
classes. We computed measures of information
gain in order to assess the predictive power of the
various features, and did some experimentation
with Correlation-based Feature Selection (CFS)
(Hall, 2000).

6.1 Generic vs. Referential Uses of You

We first address the task of distinguishing between
generic and referential uses of you.

Baseline. A majority class baseline that classi-
fies all instances of you as referential yields an ac-
curacy of 50.86% (see Table 1).

Results. A summary of the results is given in Ta-
ble 5. Using discourse features only we achieve
an accuracy of 77.77%, while using multimodal

Section 7.
8We use the the BayesNet classifier implemented in the

Weka toolkit http://www.cs.waikato.ac.nz/ml/weka/.

277



Features Acc F1-Gen F1-Ref
Baseline 50.86 0 67.4
Discourse 77.77 78.8 76.6
Visual 60.32 64.2 55.5
MM 79.02 80.2 77.7
Dis w/o FL 78.34 79.1 77.5
MM w/o FL 78.22 79.0 77.4
Dis w/o DA 69.44 71.5 67.0
MM w/o DA 72.75 74.4 70.9

Table 5: Generic vs. referential uses

(MM) yields 79.02%, but this increase is not sta-
tistically significant.

In spite of this, visual features do help to dis-
tinguish between generic and referential uses -
note that the visual features alone are able to beat
the baseline (p < .005). The listeners’ gaze is
more predictive than the speaker’s: if listeners
look mostly at the white-board/projector screen in-
stead of another participant, then the you is more
likely to be referential. More will be said on this
in Section 6.2.1 in the analysis of the results for
the singular vs. plural referential task.

We found sentential features of the you-
utterance to be amongst the best predictors, es-
pecially those that refer to surface lexical proper-
ties, such as features 1, 11, 12 and 13 in Table 4.
Dialogue act features provide useful information
as well. As pointed out by Gupta et al. (2007b;
2007a), a you pronoun within a question (e.g.
an utterance tagged as elicit-assess or
elicit-inform) is more likely to be referen-
tial. Eliminating information about dialogue acts
(w/o DA) brings down performance (p < .005),
although accuracy remains well above the baseline
(p < .001). Note that the small changes in perfor-
mance when FL information is taken out (w/o FL)
are not statistically significant.

6.2 Reference Resolution

We now turn to the referential instances of you,
which can be resolved by determining the ad-
dressee(s) of the given utterance.

6.2.1 Singular vs. Plural Reference
We start by trying to discriminate singular vs. plu-
ral interpretations. For this, we use a two-way
classification scheme that distinguishes between
individual and group addressing. To our knowl-
edge, this is the first attempt at this task using lin-
guistic information.9

9But see e.g. (Takemae et al., 2004) for an approach that
uses manually extracted visual-only clues with similar aims.

Baseline. A majority class baseline that consid-
ers all instances of you as referring to an individual
addressee gives 67.92% accuracy (see Table 1).

Results. A summary of the results is shown in
Table 6. There is no statistically significant differ-
ence between the baseline and the results obtained
when visual features are used alone (67.92% vs.
66.28%). However, we found that visual informa-
tion did contribute to identifying some instances of
plural addressing, as shown by the F-score for that
class. Furthermore, the visual features helped to
improve results when combined with discourse in-
formation: using multimodal (MM) features pro-
duces higher results than the discourse-only fea-
ture set (p < .005), and increases from 74.24% to
77.05% with CFS.

As in the generic vs. referential task, the white-
board/projector screen value for the listeners’ gaze
features seems to have discriminative power -
when listeners’ gaze features take this value, it is
often indicative of a plural rather than a singular
you. It seems then, that in our data-set, the speaker
often uses the white-board/projector screen when
addressing the group, and hence draws the listen-
ers’ gaze in this direction. We should also note
that the ratio features which we thought might be
useful here (see Section 4.1) did not prove so.

Amongst the most useful discourse features
are those that encode similarity relations between
the you-utterance and an utterance by a potential
addressee. Utterances by individual addressees
tend to be more lexically cohesive with the you-
utterance and so if features such as feature 19 in
Table 4 indicate a low level of lexical similarity,
then this increases the likelihood of plural address-
ing. Sentential features that refer to surface lexical
patterns (features 6, 7, 11 and 12) also contribute
to improved results, as does feature 21 (number of
speakers during the next five utterances) - fewer
speaker changes correlates with plural addressing.

Information about dialogue acts also plays a
role in distinguishing between singular and plu-
ral interpretations. Questions tend to be addressed
to individual participants, while statements show a
stronger correlation with plural addressees. When
no DA features are used (w/o DA), the drop in per-
formance for the multimodal classifier to 71.19%
is statistically significant (p < .05). As for the
generic vs. referential task, FL information does
not have a significant effect on performance.
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Features Acc F1-Sing. F1-Pl.
Baseline 67.92 80.9 0
Discourse 71.19 78.9 54.6
Visual 66.28 74.8 48.9
MM* 77.05 83.3 63.2
Dis w/o FL 72.13 80.1 53.7
MM w/o FL 72.60 79.7 58.1
Dis w/o DA 68.38 78.5 40.5
MM w/o DA 71.19 78.8 55.3

Table 6: Singular vs. plural reference; * = with Correlation-
based Feature Selection (CFS).

6.2.2 Detection of Individual Addressees
We now turn to resolving the singular referential
uses of you. Here we must detect the individual
addressee of the utterance that contains the pro-
noun.

Baselines. Given the distribution shown in Ta-
ble 2, a majority class baseline yields an accu-
racy of 35.17%. An off-line system that has access
to future context could implement a next-speaker
baseline that always considers the next speaker to
be the intended addressee, so yielding a high raw
accuracy of 71.03%. A previous-speaker base-
line that does not require access to future context
achieves 35% raw accuracy.

Results. Table 7 shows a summary of the re-
sults, and these all outperform the majority class
(MC) and previous-speaker baselines. When all
discourse features are available, adding visual in-
formation does improve performance (74.48% vs.
60.69%, p < .005), and with CFS, this increases
further to 80.34% (p < .005). Using discourse or
visual features alone gives scores that are below
the next-speaker baseline (60.69% and 65.52% vs.
71.03%). Taking all forward-looking (FL) infor-
mation away reduces performance (p < .05), but
the small increase in accuracy caused by taking
away dialogue act information is not statistically
significant.

When we investigated individual feature contri-
bution, we found that the most predictive features
were the FL and backward-looking (BL) speaker
order, and the speaker’s visual features (including
mutual gaze). Whomever the speaker spent most
time looking at or engaged in a mutual gaze with
was more likely to be the addressee. All of the vi-
sual features had some degree of predictive power
apart from the ratio features. Of the other BL/FL
discourse features, features 14, 18 and 19 (see Ta-
ble 4) were more predictive. These indicate that
utterances spoken by the intended addressee are

Features Acc F1-L1 F1-L2 F1-L3

MC baseline 35.17 52.0 0 0
Discourse 60.69 59.1 60.0 62.7
Visual 65.52 69.1 63.5 64.0
MM* 80.34 80.0 82.4 79.0
Dis w/o FL 52.41 50.7 51.8 54.5
MM w/o FL 66.55 68.7 62.7 67.6
Dis w/o DA 61.03 58.5 59.9 64.2
MM w/o DA 73.10 72.4 69.5 72.0

Table 7: Addressee detection for singular references; * =
with Correlation-based Feature Selection (CFS).

often adjacent to the you-utterance and lexically
similar.

7 A Fully Automatic Approach

In this section we describe experiments which
use features derived from ASR transcriptions and
automatically-extracted visual information. We
used SRI’s Decipher (Stolcke et al., 2008)10 in or-
der to generate ASR transcriptions, and applied
the head-tracker described in Section 4.2 to the
relevant portions of video in order to extract the
visual information. Recall that the Named Entity
features (feature 13) and the DA features used in
our previous experiments had been manually an-
notated, and hence are not used here. We again
divide the problem into the same three separate
tasks: we first discriminate between generic and
referential uses of you, then singular vs. plural
referential uses, and finally we resolve the ad-
dressee for singular uses. As before, all exper-
iments are performed using a Bayesian Network
classifier and 10-fold cross validation.

7.1 Results
For each of the three tasks, Figure 7 compares
the accuracy results obtained using the fully-
automatic approach with those reported in Section
6. The figure shows results for the majority class
baselines (MCBs), and with discourse-only (Dis),
and multimodal (MM) feature sets. Note that the
data set for the automatic approach is smaller,
and that the majority class baselines have changed
slightly. This is because of differences in the ut-
terance segmentation, and also because not all of
the video sections around the you utterances were
processed by the head-tracker.

In all three tasks we are able to significantly
outperform the majority class baseline, but the vi-
sual features only produce a significant improve-

10Stolcke et al. (2008) report a word error rate of 26.9% on
AMI meetings.
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Figure 1: Results for the manual and automatic systems; MCB = majority class baseline, Dis = discourse features, MM =
multimodal, * = with Correlation-based Feature Selection (CFS), FL = forward-looking, man = manual, auto = automatic.

ment in the individual addressee resolution task.
For the generic vs. referential task, the discourse
and multimodal classifiers both outperform the
majority class baseline (p < .001), achieving
accuracy scores of 68.71% and 68.48% respec-
tively. In contrast to when using manual transcrip-
tions and annotations (see Section 6.1), removing
forward-looking (FL) information reduces perfor-
mance (p < .05). For the referential singular
vs. plural task, the discourse and multimodal with
CFS classifier improve over the majority class
baseline (p < .05). Multimodal with CFS does
not improve over the discourse classifier - indeed
without feature selection, the addition of visual
features causes a drop in performance (p < .05).
Here, taking away FL information does not cause
a significant reduction in performance. Finally,
in the individual addressee resolution task, the
discourse, visual (60.78%) and multimodal clas-
sifiers all outperform the majority class baseline
(p < .005, p < .001 and p < .001 respec-
tively). Here the addition of visual features causes
the multimodal classifier to outperform the dis-
course classifier in raw accuracy by nearly ten per-
centage points (67.32% vs. 58.17%, p < .05), and
with CFS, the score increases further to 74.51%
(p < .05). Taking away FL information does
cause a significant drop in performance (p < .05).

8 Conclusions

We have investigated the automatic resolution of
the second person English pronoun you in multi-

party dialogue, using a combination of linguistic
and visual features. We conducted a first set of
experiments where our features were derived from
manual transcriptions and annotations, and then a
second set where they were generated by entirely
automatic means. To our knowledge, this is the
first attempt at tackling this problem using auto-
matically extracted multimodal information.

Our experiments showed that visual informa-
tion can be highly predictive in resolving the ad-
dressee of singular referential uses of you. Visual
features significantly improved the performance of
both our manual and automatic systems, and the
latter achieved an encouraging 75% accuracy. We
also found that our visual features had predictive
power for distinguishing between generic and ref-
erential uses of you, and between referential sin-
gulars and plurals. Indeed, for the latter task,
they significantly improved the manual system’s
performance. The listeners’ gaze features were
useful here: in our data set it was apparently the
case that the speaker would often use the white-
board/projector screen when addressing the group,
thus drawing the listeners’ gaze in this direction.

Future work will involve expanding our data-
set, and investigating new potentially predictive
features. In the slightly longer term, we plan to
integrate the resulting system into a meeting as-
sistant whose purpose is to automatically extract
useful information from multi-party meetings.
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Abstract

Many different types of features have
been shown to improve accuracy in parse
reranking. A class of features that thus far
has not been considered is based on a pro-
jection of the syntactic structure of a trans-
lation of the text to be parsed. The intu-
ition for using this type ofbitext projec-
tion feature is that ambiguous structures
in one language often correspond to un-
ambiguous structures in another. We show
that reranking based on bitext projection
features increases parsing accuracy signif-
icantly.

1 Introduction

Parallel text orbitext is an important knowledge
source for solving many problems such as ma-
chine translation, cross-language information re-
trieval, and the projection of linguistic resources
from one language to another. In this paper, we
show that bitext-based features are effective in ad-
dressing another NLP problem, increasing the ac-
curacy of statistical parsing. We pursue this ap-
proach for a number of reasons. First, one lim-
iting factor for syntactic approaches to statistical
machine translation is parse quality (Quirk and
Corston-Oliver, 2006). Improved parses of bi-
text should result in improved machine translation.
Second, as more and more texts are available in
several languages, it will be increasingly the case
that a text to be parsed is itself part of a bitext.
Third, we hope that the improved parses of bitext
will serve as higher quality training data for im-
proving monolingual parsing using a process sim-
ilar to self-training (McClosky et al., 2006).

It is well known that different languages encode
different types of grammatical information (agree-
ment, case, tense etc.) and that what can be left
unspecified in one language must be made explicit

NP

NP

NP

DT

a

NN

baby

CC

and

NP

DT

a

NN

woman

SBAR

who had gray hair

Figure 1: English parse with high attachment

in another. This information can be used for syn-
tactic disambiguation. However, it is surprisingly
hard to do this well. We use parses and alignments
that are automatically generated and hence imper-
fect. German parse quality is considered to be
worse than English parse quality, and the annota-
tion style is different, e.g., NP structure in German
is flatter.

We conduct our research in the framework of
N-best parse reranking, but apply it to bitext and
add only features based onsyntactic projection
from German to English. We test the idea that,
generally, English parses with more isomorphism
with respect to the projected German parse are bet-
ter. The system takes as input (i) English sen-
tences with a list of automatically generated syn-
tactic parses, (ii) a translation of the English sen-
tences into German, (iii) an automatically gen-
erated parse of the German translation, and (iv)
an automatically generated word alignment. We
achieve a significant improvement of 0.66F1 (ab-
solute) on test data.

The paper is organized as follows. Section 2
outlines our approach and section 3 introduces the
model. Section 4 describes training and section 5
presents the data and experimental results. In sec-
tion 6, we discuss previous work. Section 7 ana-
lyzes our results and section 8 concludes.
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Figure 2: English parse with low attachment
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Figure 3: German parse with low attachment

2 Approach

Consider the English sentence “He saw a baby and
a woman who had gray hair”. Suppose that the
baseline parser generates two parses, containing
the NPs shown in figures 1 and 2, respectively, and
that the semantically more plausible second parse
in figure 2 is correct. How can we determine that
the second parse should be favored? Since we are
parsing bitext, we can observe the German trans-
lation which is “Er sah ein Baby und eine Frau,
die graue Haare hatte” (glossed: “he saw a baby
and a woman, who gray hair had”). The singular
verb in the subordinate clause (“hatte”: “had”) in-
dicates that the subordinate S must be attached low
to “woman” (“Frau”) as shown in figure 3.

We follow Collins’ (2000) approach to discrim-
inative reranking (see also (Riezler et al., 2002)).
Given a new sentence to parse, we first select the
best N parse trees according to a generative model.
Then we use new features to learn discriminatively
how to rerank the parses in this N-best list. We
use features derived using projections of the 1-best
German parse onto the hypothesized English parse
under consideration.

In more detail, we take the 100 best English
parses from the BitPar parser (Schmid, 2004) and
rerank them. We have a good chance of finding the
optimal parse among the 100-best1. An automati-
cally generated word alignment determines trans-
lational correspondence between German and En-
glish. We use features which measuresyntactic di-

1Using an oracle to select the best parse results in anF1

of 95.90, an improvement of8.01 absolute over the baseline.

vergence between the German and English trees to
try to rank the English trees which have less diver-
gence higher. Our test set is 3718 sentences from
the English Penn treebank (Marcus et al., 1993)
which were translated into German. We hold out
these sentences, and train BitPar on the remain-
ing Penn treebank training sentences. The average
F1 parsing accuracy of BitPar on this test set is
87.89%, which is our baseline2. We implement
features based on projecting the German parse to
each of the English 100-best parses in turn via the
word alignment. By performing cross-validation
and measuring test performance within each fold,
we compare our new system with the baseline on
the 3718 sentence set. The overall test accuracy
we reach is 88.55%, a statistically significant im-
provement over baseline of 0.66.

Given a word alignment of the bitext, the sys-
tem performs the following steps for each English
sentence to be parsed:
(i) run BitPar trained on English to generate 100-
best parses for the English sentence
(ii) run BitPar trained on German to generate the
1-best parse for the German sentence
(iii) calculate feature function values which mea-
sure different kinds of syntactic divergence
(iv) apply a model that combines the feature func-
tion values to score each of the 100-best parses
(v) pick the best parse according to the model

3 Model

We use a log-linear model to choose the best En-
glish parse. The feature functions are functions
on the hypothesized English parsee, the German
parseg, and the word alignmenta, and they as-
sign a score (varying between 0 and infinity) that
measuressyntactic divergence. The alignment of
a sentence pair is a function that, for each English
word, returns a set of German words that the En-
glish word is aligned with as shown here for the
sentence pair from section 2:
Er sah ein Baby und eine Frau , die graue Haare
hatte
He{1} saw{2} a{3} baby{4} and{5} a{6}
woman{7} who{9} had{12} gray{10} hair{11}

Feature function values are calculated either by
taking the negativelog of a probability, or by using
a heuristic function which scales in a similar fash-

2The test set is very challenging, containing English sen-
tences of up to 99 tokens.
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ion3. The form of the log-linear model is shown in
eq. 1. There areM feature functionsh1, . . . , hM .
The vectorλ is used to control the contribution of
each feature function.

pλ(e|g, a) =
exp(−

∑
i λihi(e, g, a))∑

e′ exp(−
∑

i λihi(e′, g, a))
(1)

Given a vector of weightsλ, the best English
parseê can be found by solving eq. 2. The model
is trained by finding the weight vectorλ which
maximizes accuracy (see section 4).

ê = argmax
e

pλ(e|g, a)

= argmin
e

exp(
∑

i

λihi(e, g, a)) (2)

3.1 Feature Functions

The basic idea behind our feature functions is that
any constituent in a sentence should play approx-
imately the same syntactic role and have a similar
span as the corresponding constituent in a trans-
lation. If there is an obvious disagreement, it
is probably caused by wrong attachment or other
syntactic mistakes in parsing. Sometimes in trans-
lation the syntactic role of a given semantic consti-
tutent changes; we assume that our model penal-
izes all hypothesized parses equally in this case.
For the initial experiments, we used a set of 34
probabilistic and heuristic feature functions.

BitParLogProb (the only monolingual feature)
is the negative log probability assigned by BitPar
to the English parse. If we setλ1 = 1 andλi = 0
for all i 6= 1 and evaluate eq. 2, we will select the
parse ranked best by BitPar.

In order to define our feature functions, we first
introduce auxiliary functions operating on indi-
vidual word positions or sets of word positions.
Alignment functions take an alignmenta as an ar-
gument. In the descriptions of these functions we
omita as it is held constant for a sentence pair (i.e.,
an English sentence and its German translation).
f(i) returns the set of word positions of German

words aligned with an English word at positioni.
f ′(i) returns the leftmost word position of the

German words aligned with an English word at po-
sition i, or zero if the English word is unaligned.
f−1(i) returns the set of positions of English

3For example, a probability of 1 is a feature value of 0,
while a low probability is a feature value which is≫ 0.

words aligned with a German word at positioni.
f ′−1(i) returns the leftmost word position of the

English words aligned with a German word at po-
sition i, or zero if the German word is unaligned.
We overload the above functions to allow the ar-
gumenti to be a set, in which case union is used,
for example,f(i) = ∪j∈if(j). Positions in a
tree are denoted with integers. First, the POS tags
are numbered from 1 to the length of the sentence
(i.e., the same as the word positions). Constituents
higher in the tree are also indexed using consecu-
tive integers. We refer to the constituent that has
been assigned indexi in the treet as “constituenti
in treet” or simply as “constituenti”. The follow-
ing functions have the English and German trees
as an implicit argument; it should be obvious from
the argument to the function whether the index
i refers to the German tree or the English tree.
When we say “constituents”, we include nodes
on the POS level of the tree. Our syntactic trees
are annotated with a syntactic head for each con-
stituent. Finally, the tag at position 0 is NULL.
mid2sib(i) returns0 if i is 0, returns1 if i has

exactly two siblings, one on the left ofi and one
on the right, and otherwise returns0.
head(i) returns the index of the head ofi. The

head of a POS tag is its own position.
tag(i) returns the tag ofi.
left(i) returns the index of the leftmost sibling of

i.
right(i) returns the index of the rightmost sibling.
up(i) returns the index ofi’s parent.
∆(i) returns the set of word positions covered by

i. If i is a set,∆ returns all word positions between
the leftmost position covered by any constituent in
the set and the rightmost position covered by any
constituent in the set (inclusive).
n(A) returns the size of the setA.
c(A) returns the number of characters (including

punctuation and excluding spaces) covered by the
constituents in setA.
JπK is 1 if π is true, and 0 otherwise.

l andm are the lengths in words of the English and
German sentences, respectively.

3.1.1 Count Feature Functions

FeatureCrdBin counts binary events involving
the heads of coordinated phrases. If in the English
parse we have a coordination where the English
CC is aligned only with a German KON, and both
have two siblings, then the value contributed to
CrdBin is 1 (indicating a constraint violation) un-
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less the head of the English left conjunct is aligned
with the head of the German left conjunct and like-
wise the right conjuncts are aligned. Eq. 3 calcu-
lates the value ofCrdBin .

l∑

i=1

J(tag(i) = CCKJ(n(f(i)) = 1K mid2sib(i)

mid2sib(f ′(i)) Jtag(f ′(i)) = KON-CDK

J[head(left(f ′(i))) 6= f ′(head(left(i)))] OR

[head(right(f ′(i))) 6= f ′(head(right(i)))]K (3)

FeatureQ simply captures a mismatch between
questions and statements. If an English sentence is
parsed as a question but the parallel German sen-
tence is not, or vice versa, the feature value is1;
otherwise the value is0.

3.1.2 Span Projection Feature Functions

Span projection features calculate the percentage
difference between a constituent’s span and the
span of its projection. Span size is measured in
characters or words. To project a constituent in
a parse, we use the word alignment to project all
word positions covered by the constituent and then
look for the smallest covering constituent in the
parse of the parallel sentence.

CrdPrj is a feature that measures the diver-
gence in the size of coordination constituents and
their projections. If we have a constituent (XP1
CC XP2) in English that is projected to a German
coordination, we expect the English and German
left conjuncts to span a similar percentage of their
respective sentences, as should the right conjuncts.
The feature computes a character-based percent-
age difference as shown in eq. 4.

l∑

i=1

Jtag(i) = CCKJn(f(i)) = 1K (4)

Jtag(f ′(i)) = KON-CDK

mid2sib(i)mid2sib(f ′(i))

(|
c(∆(left(i)))

r
−

c(∆(left(f ′(i))))

s
|

+|
c(∆(right(i)))

r
−

c(∆(right(f ′(i))))

s
|)

r ands are the lengths in characters of the En-
glish and German sentences, respectively. In the
English parse in figure 1, the left conjunct has 5
characters and the right conjunct has 6, while in
figure 2 the left conjunct has 5 characters and the

right conjunct has 20. In the German parse (fig-
ure 3) the left conjunct has 7 characters and the
right conjunct has 27. Finally,r = 33 ands = 42.
Thus, the value ofCrdPrj is 0.48 for the first hy-
pothesized parse and 0.05 for the second, which
captures the higher divergence of the first English
parse from the German parse.

POSParentPrj is based on computing the span
difference between all the parent constituents of
POS tags in a German parse and their respective
coverage in the corresponding hypothesized parse.
The feature value is the sum of all the differences.
POSPar(i) is true if i immediately dominates a
POS tag. The projection direction is from German
to English, and the feature computes a percentage
difference which is character-based. The value of
the feature is calculated in eq. 5, whereM is the
number of constituents (including POS tags) in the
German tree.

M∑

i=1

JPOSPar(i)K|
c(∆(i))

s
−

c(∆(f−1(∆(i))))

r
|

(5)
The right conjunct in figure 3 is a POSParent

that corresponds to the coordination NP in fig-
ure 1, contributing a score of 0.21, and to the right
conjunct in figure 2, contributing a score of 0.04.
For the two parses of the full sentences contain-
ing the NPs in figure 1 and figure 2, we sum over
7 POSParents and get a value of 0.27 for parse 1
and 0.11 for parse 2. The lower value for parse
2 correctly captures the fact that the first English
parse has higher divergence than the second due to
incorrect high attachment.

AbovePOSPrj is similar toPOSParentPrj, but
it is word-based and the projection direction is
from English to German. UnlikePOSParentPrj
the feature value is calculated over all constituents
above the POS level in the English tree.

Another span projection feature function is
DTNNPrj , which projects English constituents of
the form (NP(DT)(NN)). DTNN(i) is true if i

is an NP immediately dominating only DT and
NN. The feature computes a percentage difference
which is word-based, shown in eq. 6.

L∑

i=1

JDTNN(i)K|
n(∆(i))

l
−

n(∆(f(∆(i))))

m
| (6)

L is the number of constituents in the English
tree. This feature is designed to disprefer parses
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where constituents starting with “DT NN”, e.g.,
(NP (DT NN NN NN)), are incorrectly split into
two NPs, e.g., (NP (DT NN)) and (NP (NN NN)).
This feature fires in this case, and projects the (NP
(DT NN)) into German. If the German projection
is a surprisingly large number of words (as should
be the case if the German also consists of a deter-
miner followed by several nouns) then the penalty
paid by this feature is large. This feature is impor-
tant as (NP (DT NN)) is a very common construc-
tion.

3.1.3 Probabilistic Feature Functions

We use Europarl (Koehn, 2005), from which we
extract a parallel corpus of approximately 1.22
million sentence pairs, to estimate the probabilis-
tic feature functions described in this section.

For the PDepth feature, we estimate English
parse depth probability conditioned on German
parse depth from Europarl by calculating a sim-
ple probability distribution over the 1-best parse
pairs for each parallel sentence. A very deep Ger-
man parse is unlikely to correspond to a flat En-
glish parse and we can penalize such a parse using
PDepth. The indexi refers to a sentence pair in
Europarl, as doesj. Let li andmi be the depths
of the top BitPar ranked parses of the English and
German sentences, respectively. We calculate the
probability of observing an English tree of depth
l′ given German tree of depthm′ as the maxi-
mum likelihood estimate, shown in eq. 7, where
δ(z, z′) = 1 if z = z′ and 0 otherwise. To avoid
noisy feature values due to outliers and parse er-
rors, we bound the value ofPDepthat 5 as shown
in eq. 84.

p(l′|m′) =

∑
i δ(l

′, li)δ(m
′, mi)∑

j δ(m′, mj)
(7)

min(5,− log10(p(l′|m′))) (8)

The full parse of the sentence containing the En-
glish high attachment has a parse depth of 8 while
the full parse of the sentence containing the En-
glish low attachment has a depth of 9. Their fea-
ture values given the German parse depth of 6 are
− log10(0.12) = 0.93 and− log10(0.14) = 0.84.
The wrong parse is assigned a higher feature value
indicating its higher divergence.

The featurePTagEParentGPOSGParentmea-
sures tagging inconsistency based on estimating

4Throughout this paper, assumelog(0) = −∞.

the probability that for an English word at posi-
tion i, the parent of its POS tag has a particular
label. The feature value is calculated in eq. 10.

q(i, j) = p(tag(up(i))|tag(j), tag(up(j))) (9)

l∑

i=1

min(5,

∑
j∈f(i) − log10(q(i, j))

n(f(i))
) (10)

Consider (S(NP(NN fruit))(VP(V flies))) and
(NP(NN fruit)(NNS flies)) with the translation
(NP(NNS Fruchtfliegen)). Assume that “fruit”
and “flies” are aligned with the German com-
pound noun “Fruchtfliegen”. In the incorrect En-
glish parse the parent of the POS of “fruit” is
NP and the parent of the POS of “flies” is VP,
while in the correct parse the parent of the POS of
“fruit” is NP and the parent of the POS of “flies”
is NP. In the German parse the compound noun
is POS-tagged as an NNS and the parent is an
NP. The probabilities considered for the two En-
glish parses arep(NP|NNS, NP) for “fruit” in both
parses,p(VP|NNS, NP) for “flies” in the incorrect
parse, andp(NP|NNS, NP) for “flies” in the cor-
rect parse. A German NNS in an NP has a higher
probability of being aligned with a word in an En-
glish NP than with a word in an English VP, so the
second parse will be preferred.

As with the PDepth feature, we use relative
frequency to estimate this feature. When an En-
glish word is aligned with two words, estimation is
more complex. We heuristically give each English
and German pair one count. The value calculated
by the feature function is the geometric mean5 of
the pairwise probabilities, see eq. 10.

3.1.4 Other Features

Our best system uses the nine features we have
described in detail so far. In addition, we imple-
mented the following 25 other features, which did
not improve performance (see section 7): (i) 7
“ptag” features similar toPTagEParentGPOSG-
Parent but predicting and conditioning on differ-
ent combinations of tags (POS tag, parent of POS,
grandparent of POS)
(ii) 10 “prj” features similar toPOSParentPrj

measuring different combinations of character and
word percentage differences at the POS parent and

5Each English word has the same weight regardless of
whether it was aligned with one or with more German words.
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POS grandparent levels, projecting from both En-
glish and German
(iii) 3 variants of theDTNN feature function
(iv) A NPPP feature function, similar to the

DTNN feature function but trying to counteract a
bias towards (NP (NP) (PP)) units
(v) A feature function which penalizes aligning

clausal units to non-clausal units
(vi) The BitPar rank

4 Training

Log-linear models are often trained using the
Maximum Entropy criterion, but we train our
model directly to maximizeF1. We scoreF1 by
comparing hypothesized parses for the discrimi-
native training set with the gold standard. To try
to find the optimalλ vector, we perform direct ac-
curacy maximization, meaning that we search for
the λ vector which directly optimizesF1 on the
training set.

Och (2003) has described an efficient exact one-
dimensional accuracy maximization technique for
a similar search problem in machine translation.
The technique involves calculating an explicit
representation of the piecewise constant function
gm(x) which evaluates the accuracy of the hy-
potheses which would be picked by eq. 2 from a
set of hypotheses if we hold all weights constant,
except for the weightλm, which is set tox. This
is calculated in one pass over the data.

The algorithm for training is initialized with a
choice forλ and is described in figure 4. The func-
tion F1(λ) returnsF1 of the parses selected using
λ. Due to space we do not describe step 8 in detail
(see (Och, 2003)). In step 9 the algorithm per-
forms approximate normalization, where feature
weights are forced towards zero. The implemen-
tation of step 9 is straight-forward given theM
explicit functionsgm(x) created in step 8.

5 Data and Experiments

We used the subset of the Wall Street Journal
investigated in (Atterer and Schütze, 2007) for
our experiments, which consists of all sentences
that have at least one prepositional phrase attach-
ment ambiguity. This difficult subset of sentences
seems particularly interesting when investigating
the potential of information in bitext for improv-
ing parsing performance. The first 500 sentences
of this set were translated from English to German
by a graduate student and an additional 3218 sen-

1: Algorithm TRAIN(λ)
2: repeat
3: addλ to the sets
4: let t be a set of 1000 randomly generated vectors
5: letλ = argmaxρ∈(s∪t) F1(ρ)

6: letλ′ = λ
7: repeat
8: repeatedly run one-dimensional error minimiza-

tion step (updating a single scalar of the vectorλ)
until no further error reduction

9: adjust each scalar ofλ in turn towards0 such that
there is no increase in error (if possible)

10: until no scalar inλ changes in last two steps (8 and
9)

11: until λ = λ′

12: returnλ

Figure 4: Sketch of the training algorithm

tences by a translation bureau. We withheld these
3718 English sentences (and an additional 1000
reserved sentences) when we trained BitPar on the
Penn treebank.

Parses. We use the BitPar parser (Schmid,
2004) which is based on a bit-vector im-
plementation (cf. (Graham et al., 1980)) of
the Cocke-Younger-Kasami algorithm (Kasami,
1965; Younger, 1967). It computes a compact
parse forest for all possible analyses. As all pos-
sible analyses are computed, any number of best
parses can be extracted. In contrast, other treebank
parsers use sophisticated search strategies to find
the most probable analysis without examining the
set of all possible analyses (Charniak et al., 1998;
Klein and Manning, 2003). BitPar is particularly
useful for N-best parsing as the N-best parses can
be computed efficiently.

For the 3718 sentences in the translated set, we
created 100-best English parses and 1-best Ger-
man parses. The German parser was trained on
the TIGER treebank. For the Europarl corpus, we
created 1-best parses for both languages.

Word Alignment. We use a word alignment
of the translated sentences from the Penn tree-
bank, as well as a word alignment of the Europarl
corpus. We align these two data sets together
with data from the JRC Acquis (Steinberger et al.,
2006) to try to obtain better quality alignments (it
is well known that alignment quality improves as
the amount of data increases (Fraser and Marcu,
2007)). We aligned approximately 3.08 million
sentence pairs. We tried to obtain better alignment
quality as alignment quality is a problem in many
cases where syntactic projection would otherwise
work well (Fossum and Knight, 2008).
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System Train +base Test +base
1 Baseline 87.89 87.89
2 Contrastive 88.70 0.82 88.45 0.56

(5 trials/fold)
3 Contrastive 88.82 0.93 88.55 0.66

(greedy selection)

Table 1: AverageF1 of 7-way cross-validation

To generate the alignments, we used Model 4
(Brown et al., 1993), as implemented in GIZA++
(Och and Ney, 2003). As is standard practice, we
trained Model 4 with English as the source lan-
guage, and then trained Model 4 with German as
the source language, resulting in two Viterbi align-
ments. These were combined using theGrow Diag
Final And symmetrization heuristic (Koehn et al.,
2003).

Experiments. We perform 7-way cross-
validation on 3718 sentences. In each fold of the
cross-validation, the training set is 3186 sentences,
while the test set is 532 sentences. Our results are
shown in table 1. In row 1, we take the hypothesis
ranked best by BitPar. In row 2, we train using the
algorithm outlined in section 4. To cancel out any
effect caused by a particularly effective or ineffec-
tive startingλ value, we perform 5 trials each time.
Columns 3 and 5 report the improvement over the
baseline on train and test respectively. We reach
an improvement of 0.56 over the baseline using
the algorithm as described in section 4.

Our initial experiments used many highly cor-
related features. For our next experiment we use
greedy feature selection. We start with aλ vector
that is zero for all features, and then run the error
minimization without the random generation of
vectors (figure 4, line 4). This means that we add
one feature at a time. This greedy algorithm winds
up producing a vector with many zero weights. In
row 3 of table 1, we used the greedy feature selec-
tion algorithm and trained usingF1, resulting in
a performance of 0.66 over the baseline which is
our best result. We performed a planned one-tailed
paired t-test on theF1 scores of the parses selected
by the baseline and this system for the 3718 sen-
tences (parses were taken from the test portion
of each fold). We found that there is a signifi-
cant difference with the baseline (t(3717) = 6.42,
p < .01). We believe that using the full set of 34
features (many of which are very similar to one
another) made the training problem harder with-
out improving the fit to the training data, and that

greedy feature selection helps with this (see also
section 7).

6 Previous Work

As we mentioned in section 2, work on parse
reranking is relevant, but a vital difference is that
we use features based only onsyntactic projection
of the two languages in a bitext. For an overview
of different types of features that have been used in
parse reranking see Charniak and Johnson (2005).
Like Collins (2000) we use cross-validation to
train our model, but we have access to much less
data (3718 sentences total, which is less than 1/10
of the data Collins used). We use rich feature func-
tions which were designed by hand to specifically
address problems in English parses which can be
disambiguated using the German translation.

Syntactic projection has been used to bootstrap
treebanks in resource poor languages. Some ex-
amples of projection of syntactic parses from En-
glish to a resource poor language for which no
parser is available are the works of Yarowsky and
Ngai (2001), Hwa et al. (2005) and Goyal and
Chatterjee (2006). Our work differs from theirs
in that we are performing a parse reranking task
in English using knowledge gained from German
parses, and parsing accuracy is generally thought
to be worse in German than in English.

Hopkins and Kuhn (2006) conducted research
with goals similar to ours. They showed how to
build a powerful generative model which flexibly
incorporates features from parallel text in four lan-
guages, but were not able to show an improvement
in parsing performance. After the submission of
our paper for review, two papers outlining relevant
work were published. Burkett and Klein (2008)
describe a system for simultaneously improving
Chinese and English parses of a Chinese/English
bitext. This work is complementary to ours. The
system is trained using gold standard trees in both
Chinese and English, in contrast with our system
which only has access to gold standard trees in En-
glish. Their system uses a tree alignment which
varies within training, but this does not appear to
make a large difference in performance. They use
coarsely defined features which are language in-
dependent. We use several features similar to their
two best performing sets of features, but in con-
trast with their work, we also define features which
are specifically aimed at English disambiguation
problems that we have observed can be resolved
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using German parses. They use an in-domain
Chinese parser and out-of-domain English parser,
while for us the English parser is in-domain and
the German parser is out-of-domain, both of which
make improving the English parse more difficult.
Their Maximum Entropy training is more appro-
priate for their numerous coarse features, while
we use Minimum Error Rate Training, which is
much faster. Finally, we are projecting from a sin-
gle German parse which is a more difficult prob-
lem. Fossum and Knight (2008) outline a system
for using Chinese/English word alignments to de-
termine ambiguous English PP-attachments. They
first use an oracle to choose PP-attachment deci-
sions which are ambiguous in the English side of a
Chinese/English bitext, and then build a classifier
which uses information from a word alignment to
make PP-attachment decisions. No Chinese syn-
tactic information is required. We use automati-
cally generated German parses to improve English
syntactic parsing, and have not been able to find a
similar phenomenon for which only a word align-
ment would suffice.

7 Analysis

We looked at the weights assigned during the
cross-validation performed to obtain our best re-
sult. The weights of many of the 34 features we
defined were frequently set to zero. We sorted
the features by the number of times the relevant
λ scalar was zero (i.e., the number of folds of
the cross-validation for which they were zero; the
greedy feature selection is deterministic and so we
do not run multiple trials). We then reran the same
greedy feature selection algorithm as was used in
table 1, row 3, but this time using only the top
9 feature values, which were the features which
were active on 4 or more folds6. The result was an
improvement on train of 0.84 and an improvement
on test of 0.73. This test result may be slightly
overfit, but the result supports the inference that
these 9 feature functions are the most important.
We chose these feature functions to be described
in detail in section 3. We observed that the variants
of the similar featuresPOSParentPrj andAbove-
POSPrj projected in opposite directions and mea-
sured character and word differences, respectively,
and this complementarity seems to help.

6We saw that many features canceled one another out on
different folds. For instance either the word-based or the
character-based version ofDTNN was active in each fold,
but never at the same time as one another.

We also tried to see if our results depended
strongly on the log-linear model and training algo-
rithm, by using the SVM-Light ranker (Joachims,
2002). In order to make the experiment tractable,
we limited ourselves to the 8-best parses (rather
than 100-best). Our training algorithm and model
was 0.74 better than the baseline on train and 0.47
better on test, while SVM-Light was 0.54 better
than baseline on train and 0.49 better on test (us-
ing linear kernels). We believe that the results are
not unduly influenced by the training algorithm.

8 Conclusion

We have shown that rich bitext projection features
can improve parsing accuracy. This confirms the
hypothesis that the divergence in what information
different languages encode grammatically can be
exploited for syntactic disambiguation. Improved
parsing due to bitext projection features should be
helpful in syntactic analysis of bitexts (by way of
mutual syntactic disambiguation) and in comput-
ing syntactic analyses of texts that have transla-
tions in other languages available.
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Abstract

We present parsing algorithms for vari-
ous mildly non-projective dependency for-
malisms. In particular, algorithms are pre-
sented for: all well-nested structures of
gap degree at most1, with the same com-
plexity as the best existing parsers for con-
stituency formalisms of equivalent genera-
tive power; all well-nested structures with
gap degree bounded by any constantk;
and a new class of structures with gap de-
gree up tok that includes some ill-nested
structures. The third case includes all the
gap degreek structures in a number of de-
pendency treebanks.

1 Introduction

Dependency parsers analyse a sentence in terms
of a set of directed links (dependencies) express-
ing the head-modifier and head-complement rela-
tionships which form the basis of predicate argu-
ment structure. We take dependency structures to
be directed trees, where each node corresponds to
a word and the root of the tree marks the syn-
tactic head of the sentence. For reasons of effi-
ciency, many practical implementations of depen-
dency parsing are restricted toprojective struc-
tures, in which the subtree rooted at each word
covers a contiguous substring of the sentence.
However, while free word order languages such
as Czech do not satisfy this constraint, parsing
without the projectivity constraint is computation-
ally complex. Although it is possible to parse
non-projective structures in quadratic time under a
model in which each dependency decision is inde-
pendent of all the others (McDonald et al., 2005),

∗Partially supported by MEC and FEDER (HUM2007-
66607-C04) and Xunta de Galicia (PGIDIT07SIN005206PR,
INCITE08E1R104022ES, INCITE08ENA305025ES, IN-
CITE08PXIB302179PR, Rede Galega de Proc. da Linguaxe
e RI, Bolsas para Estadı́as INCITE – FSE cofinanced).

the problem is intractable in the absence of this as-
sumption (McDonald and Satta, 2007).

Nivre and Nilsson (2005) observe that most
non-projective dependency structures appearing
in practice are “close” to being projective, since
they contain only a small proportion of non-
projective arcs. This has led to the study of
classes of dependency structures that lie be-
tween projective and unrestricted non-projective
structures (Kuhlmann and Nivre, 2006; Havelka,
2007). Kuhlmann (2007) investigates several such
classes, based on well-nestedness and gap degree
constraints (Bodirsky et al., 2005), relating them
to lexicalised constituency grammar formalisms.
Specifically, he shows that: linear context-free
rewriting systems (LCFRS) with fan-outk (Vijay-
Shanker et al., 1987; Satta, 1992) induce the set
of dependency structures with gap degree at most
k − 1; coupled context-free grammars in which
the maximal rank of a nonterminal isk (Hotz and
Pitsch, 1996) induce the set of well-nested depen-
dency structures with gap degree at mostk − 1;
and LTAGs (Joshi and Schabes, 1997) induce the
set of well-nested dependency structures with gap
degree at most1.

These results establish that there must be
polynomial-time dependency parsing algorithms
for well-nested structures with bounded gap de-
gree, since such parsers exist for their correspond-
ing lexicalised constituency-based formalisms.
However, since most of the non-projective struc-
tures in treebanks are well-nested and have a small
gap degree (Kuhlmann and Nivre, 2006), devel-
oping efficient dependency parsing strategies for
these sets of structures has considerable practical
interest, since we would be able to parse directly
with dependencies in a data-driven manner, rather
than indirectly by constructing intermediate con-
stituency grammars and extracting dependencies
from constituency parses.

We address this problem with the following
contributions: (1) we define a parsing algorithm
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for well-nested dependency structures of gap de-
gree1, and prove its correctness. The parser runs
in time O(n7), the same complexity as the best
existing algorithms for LTAG (Eisner and Satta,
2000), and can be optimised toO(n6) in the non-
lexicalised case; (2) we generalise the previous al-
gorithm to any well-nested dependency structure
with gap degree at mostk in time O(n5+2k); (3)
we generalise the previous parsers to be able to
analyse not only well-nested structures, but also
ill-nested structures with gap degree at mostk sat-
isfying certain constraints1, in timeO(n4+3k); and
(4) we characterise the set of structures covered by
this parser, which we callmildly ill-nestedstruc-
tures, and show that it includes all the trees present
in a number of dependency treebanks.

2 Preliminaries

A dependency graphfor a stringw1 . . . wn is a
graphG = (V, E), whereV = {w1, . . . , wn}
and E ⊆ V × V . We write the edge(wi, wj)
aswi → wj , meaning that the wordwi is a syn-
tacticdependent(or achild) of wj or, conversely,
that wj is thegovernor(parent) of wi. We write
wi →? wj to denote that there exists a (possi-
bly empty) path fromwi to wj . The projection
of a nodewi, denotedbwic, is the set of reflexive-
transitive dependents ofwi, that is:bwic = {wj ∈
V | wj →

? wi}. An interval (with endpointsi and
j) is a set of the form[i, j] = {wk | i ≤ k ≤ j}.

A dependency graph is said to be atree if it is:
(1) acyclic:wj ∈ bwic implieswi → wj 6∈ E; and
(2) each node has exactly one parent, except for
one node which we call theroot or head. A graph
verifying these conditions and having a vertex set
V ⊆ {w1, . . . , wn} is a partial dependency tree.
Given a dependency treeT = (V, E) and a node
u ∈ V , thesubtreeinduced by the nodeu is the
graphTu = (buc, Eu) whereEu = {wi → wj ∈
E | wj ∈ buc}.

2.1 Properties of dependency trees

We now define the concepts of gap degree and
well-nestedness (Kuhlmann and Nivre, 2006). Let
T be a (possibly partial) dependency tree for
w1 . . . wn: We say thatT is projective if bwic is
an interval for every wordwi. Thus every node
in the dependency structure must dominate a con-
tiguous substring in the sentence. Thegap degree

1Parsing unrestricted ill-nested structures, even when the
gap degree is bounded, is NP-complete: these structures are
equivalent to LCFRS for which the recognition problem is
NP-complete (Satta, 1992).

of a particular nodewk in T is the minimumg ∈ N

such thatbwkc can be written as the union ofg+1
intervals; that is, the number of discontinuities in
bwkc. The gap degree of the dependency treeT is
the maximum among the gap degrees of its nodes.
Note thatT has gap degree 0 if and only ifT is
projective. The subtrees induced by nodeswp and
wq areinterleaved if bwpc ∩ bwqc = ∅ and there
are nodeswi, wj ∈ bwpc andwk, wl ∈ bwqc such
that i < k < j < l. A dependency treeT is
well-nestedif it does not contain two interleaved
subtrees. A tree that is not well-nested is said to
beill-nested. Note that projective trees are always
well-nested, but well-nested trees are not always
projective.

2.2 Dependency parsing schemata

The framework of parsing schemata (Sikkel,
1997) provides a uniform way to describe, anal-
yse and compare parsing algorithms. Parsing
schemata were initially defined for constituency-
based grammatical formalisms, but Gómez-
Rodŕıguez et al. (2008a) define a variant of the
framework for dependency-based parsers. We
use thesedependency parsing schematato de-
fine parsers and prove their correctness. Due to
space constraints, we only provide brief outlines
of the main concepts behind dependency parsing
schemata.

The parsing schema approach considers pars-
ing as deduction, generating intermediate results
called items. An initial set of items is obtained
from the input sentence, and the parsing process
involvesdeduction stepswhich produce new items
from existing ones. Each item contains informa-
tion about the sentence’s structure, and a success-
ful parsing process produces at least onefinal item
providing a full dependency analysis for the sen-
tence or guaranteeing its existence. In a depen-
dency parsing schema, items are defined as sets of
partial dependency trees2. To define a parser by
means of a schema, we must define an item set
and provide a set of deduction steps that operate
on it. Given an item setI, the set offinal items
for strings of lengthn is the set of items inI that
contain a full dependency tree for some arbitrary
string of lengthn. A final item containing a de-
pendency tree for a particular stringw1 . . . wn is
said to be acorrect final itemfor that string. These

2The formalism allows items to contain forests, and the
dependency structures inside items are defined in a notation
with terminal and preterminal nodes, but these are not needed
here.
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concepts can be used to prove the correctness of
a parser: for each input string, a parsing schema’s
deduction steps allow us to infer a set of items,
calledvalid itemsfor that string. A schema is said
to besoundif all valid final items it produces for
any arbitrary string are correct for that string. A
schema is said to becompleteif all correct final
items are valid. Acorrect parsing schema is one
which is both sound and complete.

In constituency-based parsing schemata, deduc-
tion steps usually have grammar rules as side con-
ditions. In the case of dependency parsers it is
also possible to use grammars (Eisner and Satta,
1999), but many algorithms use a data-driven ap-
proach instead, making individual decisions about
which dependencies to create by using probabilis-
tic models (Eisner, 1996) or classifiers (Yamada
and Matsumoto, 2003). To represent these algo-
rithms as deduction systems, we use the notion
of D-rules (Covington, 1990). D-rules take the
form a → b, which says that wordb can havea
as a dependent. Deduction steps in non-grammar-
based parsers can be tied to the D-rules associated
with the links they create. In this way, we ob-
tain a representation of the underlying logic of the
parser while abstracting away from control struc-
tures (the particular model used to create the de-
cisions associated with D-rules). Furthermore, the
choice points in the parsing process and the infor-
mation we can use to make decisions are made ex-
plicit in the steps linked to D-rules.

3 The WG1 parser

3.1 Parsing schema forWG1

We defineWG1, a parser for well-nested depen-
dency structures of gap degree≤ 1, as follows:

The item set isIWG1 = I1 ∪ I2, with

I1 = {[i, j, h, �, �] | i, j, h ∈ N, 1 ≤ h ≤ n,

1 ≤ i ≤ j ≤ n, h 6= j, h 6= i − 1},

where each item of the form[i, j, h, �, �] repre-
sents the set of all well-nested partial dependency
trees3 with gap degree at most 1, rooted atwh, and
such thatbwhc = {wh} ∪ [i, j], and

I2 = {[i, j, h, l, r] | i, j, h, l, r ∈ N, 1 ≤ h ≤ n,

1 ≤ i < l ≤ r < j ≤ n, h 6= j, h 6= i − 1,

h 6= l − 1, h 6= r}

3In this and subsequent schemata, we use D-rules to ex-
press parsing decisions, so partial dependency trees are as-
sumed to be taken from the set of trees licensed by a set of
D-rules.

where each item of the form[i, j, h, l, r] represents
the set of all well-nested partial dependency trees
rooted atwh such thatbwhc = {wh} ∪ ([i, j] \
[l, r]), and all the nodes (except possiblyh) have
gap degree at most 1. We call items of this form
gapped items, and the interval[l, r] the gap of
the item. Note that the constraintsh 6= j, h 6=
i + 1, h 6= l − 1, h 6= r are added to items to
avoid redundancy in the item set. Since the result
of the expression{wh} ∪ ([i, j] \ [l, r]) for a given
head can be the same for different sets of values of
i, j, l, r, we restrict these values so that we cannot
get two different items representing the same de-
pendency structures. Itemsι violating these con-
straints always have an alternative representation
that does not violate them, that we can express
with a normalising functionnm(ι) as follows:
nm([i, j, j, l, r]) = [i, j − 1, j, l, r] (if r ≤ j − 1 or r = �),

or [i, l − 1, j, �, �] (if r = j − 1).
nm([i, j, l − 1, l, r]) = [i, j, l − 1, l − 1, r](if l > i + 1),

or [r + 1, j, l − 1, �, �] (if l = i + 1).
nm([i, j, i − 1, l, r]) = [i − 1, j, i − 1, l, r].
nm([i, j, r, l, r]) = [i, j, r, l, r − 1] (if l < r),

or [i, j, r, �, �] (if l = r).

nm([i, j, h, l, r]) = [i, j, h, l, r] for all other items.

When defining the deduction steps for this and
other parsers, we assume that they always produce
normalised items. For clarity, we do not explicitly
write this in the deduction steps, writingι instead
of nm(ι) as antecedents and consequents of steps.

The set of initial items is defined as the set

H = {[h, h, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

where each item[h, h, h, �, �] represents the set
containing the trivial partial dependency tree con-
sisting of a single nodewh and no links. This
same set of hypotheses can be used for all the
parsers, so we do not make it explicit for subse-
quent schemata. Note that initial items are sepa-
rate from the item setIWG1 and not subject to its
constraints, so they do not require normalisation.

The set of final items for strings of lengthn in
WG1 is defined as the set

F = {[1, n, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

which is the set of items inIWG1 containing de-
pendency trees for the complete input string (from
position1 to n), with their head at any wordwh.

The deduction steps of the parser can be seen in
Figure 1A.

TheWG1 parser proceeds bottom-up, by build-
ing dependency subtrees and joining them to form
larger subtrees, until it finds a complete depen-
dency tree for the input sentence. The logic of
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A. WG1 parser:

Link Ungapped:

[h1, h1, h1, �, �]
[i2, j2, h2, �, �]

[i2, j2, h1, �, �]
wh2 → wh1

such thatwh2 ∈ [i2, j2] ∧ wh1 /∈ [i2, j2],

Link Gapped:

[h1, h1, h1, �, �]
[i2, j2, h2, l2, r2]

[i2, j2, h1, l2, r2]
wh2 → wh1

such thatwh2 ∈ [i2, j2] \ [l2, r2] ∧ wh1 /∈ [i2, j2] \ [l2, r2],

Combine Ungapped:
[i, j, h, �, �] [j + 1, k, h, �, �]

[i, k, h, �, �]
Combine Opening Gap:

[i, j, h, �, �] [k, l, h, �, �]

[i, l, h, j + 1, k − 1]
such thatj < k − 1,

Combine Keeping Gap Left:
[i, j, h, l, r] [j + 1, k, h, �, �]

[i, k, h, l, r]

Combine Keeping Gap Right:
[i, j, h, �, �] [j + 1, k, h, l, r]

[i, k, h, l, r]

Combine Closing Gap:
[i, j, h, l, r] [l, r, h, �, �]

[i, j, h, �, �]

Combine Shrinking Gap Left:
[i, j, h, l, r] [l, k, h, �, �]

[i, j, h, k + 1, r]

Combine Shrinking Gap Right:
[i, j, h, l, r] [k, r, h, �, �]

[i, j, h, l, k − 1]

Combine Shrinking Gap Centre:
[i, j, h, l, r] [l, r, h, l2, r2]

[i, j, h, l2, r2]

B. WGK parser:

Link:

[h1, h1, h1, []]
[i2, j2, h2, [(l1, r1), . . . , (lg, rg)]]

[i2, j2, h1, [(l1, r1), . . . , (lg, rg)]]
wh2 → wh1

such thatwh2 ∈ [i2, j2] \
⋃g

p=1[lp, rp]

∧wh1 /∈ [i2, j2] \
⋃g

p=1[lp, rp].

Combine Shrinking Gap Right:
[i, j, h, [(l1, r1), . . . , (lq−1, rq−1), (lq, r

′), (ls, rs), . . . , (lg, rg)]]
[rq + 1, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

Combine Opening Gap:
[i, lq − 1, h, [(l1, r1), . . . , (lq−1, rq−1)]]

[rq + 1, m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i, m, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k andlq ≤ rq,

Combine Shrinking Gap Left:
[i, j, h, [(l1, r1), . . . , (lq, rq), (l

′, rs), (ls+1, rs+1), . . . , (lg, rg)]]
[l′, ls − 1, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

Combine Keeping Gaps:
[i, j, h, [(l1, r1), . . . , (lq, rq)]]

[j + 1, m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i, m, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k,

Combine Shrinking Gap Centre:
[i, j, h, [(l1, r1), . . . , (lq, rq), (l

′, r′), (ls, rs), . . . , (lg, rg)]]
[l′, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

C. Additional steps to turn WG1 into MG1:

Combine Interleaving:
[i, j, h, l, r] [l, k, h, r + 1, j]

[i, k, h, �, �]
Combine Interleaving Gap C:

[i, j, h, l, r] [l, k, h, m, j]

[i, k, h, m, r]
such thatm < r + 1,

Combine Interleaving Gap L:

[i, j, h, l, r]
[l, k, h, r + 1, u]

[i, k, h, j + 1, u]
such thatu > j,

Combine Interleaving Gap R:

[i, j, h, l, r]
[k, m, h, r + 1, j]

[i, m, h, l, k − 1]
such thatk > l.

D. General form of the MGk Combine step:
[ia1

, iap+1 − 1, h, [(ia1+1, ia2
− 1), . . . , (iap−1+1, iap

− 1)]]
[ib1 , ibq+1 − 1, h, [(ib1+1, ib2 − 1), . . . , (ibq−1+1, ibq

− 1)]]

[imin(a1,b1), imax(ap+1,bq+1) − 1, h, [(ig1
, ig1+1 − 1), . . . , (igr

, igr+1 − 1)]]
for each string of lengthn with a’s located at positionsa1 . . . ap(1 ≤ a1 < . . . < ap ≤ n), b’s at positionsb1 . . . bq(1 ≤ b1 <
. . . < bq ≤ n), and g’s at positionsg1 . . . gr(2 ≤ g1 < . . . < gr ≤ n − 1), such that1 ≤ p ≤ k, 1 ≤ q ≤ k, 0 ≤ r ≤ k − 1,
p + q + r = n, and the string does not contain more than one consecutive appearance of the same symbol.

Figure 1: Deduction steps for the parsers defined in the paper.

the parser can be understood by considering how
it infers the item corresponding to the subtree in-
duced by a particular node, given the items for the
subtrees induced by the direct dependents of that
node. Suppose that, in a complete dependency
analysis for a sentencew1 . . . wn, the wordwh

haswd1 . . . wdp
as direct dependents (i.e. we have

dependency linkswd1 → wh, . . . , wdp
→ wh).

Then, the item corresponding to the subtree in-

duced bywh is obtained from the ones correspond-
ing to the subtrees induced bywd1 . . . wdp

by: (1)
applying theLink Ungappedor Link Gappedstep
to each of the items corresponding to the subtrees
induced by the direct dependents, and to the hy-
pothesis[h, h, h, �, �]. This allows us to inferp
items representing the result of linking each of the
dependent subtrees to the new headwh; (2) ap-
plying the variousCombinesteps to join all of the
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items obtained in the previous step into a single
item. TheCombinesteps perform a union oper-
ation between subtrees. Therefore, the result is a
dependency tree containing all the dependent sub-
trees, and with all of them linked toh: this is
the subtree induced bywh. This process is ap-
plied repeatedly to build larger subtrees, until, if
the parsing process is successful, a final item is
found containing a dependency tree for the com-
plete sentence.

3.2 Proving correctness

The parsing schemata formalism can be used to
prove the correctness of a parsing schema. To
prove that WG1 is correct, we need to prove
its soundness and completeness.4 Soundness is
proven by checking that valid items always con-
tain well-nested trees. Completeness is proven by
induction, taking initial items as the base case and
showing that an item containing a correct subtree
for a string can always be obtained from items
corresponding to smaller subtrees. In order to
prove this induction step, we use the concept of
order annotations (Kuhlmann, 2007; Kuhlmann
and Möhl, 2007), which are strings that lexicalise
the precedence relation between the nodes of a de-
pendency tree. Given a correct subtree, we divide
the proof into cases according to the order annota-
tion of its head and we find that, for every possible
form of this order annotation, we can find a se-
quence ofCombinesteps to infer the relevant item
from smaller correct items.

3.3 Computational complexity

The time complexity ofWG1 is O(n7), as the
stepCombine Shrinking Gap Centreworks with7
free string positions. This complexity with respect
to the length of the input is as expected for this
set of structures, since Kuhlmann (2007) shows
that they are equivalent to LTAG, and the best ex-
isting parsers for this formalism also perform in
O(n7) (Eisner and Satta, 2000). Note that the
Combinestep which is the bottleneck only uses the
7 indexes, and not any other entities like D-rules,
so itsO(n7) complexity does not have any addi-
tional factors due to grammar size or other vari-
ables. The space complexity ofWG1 is O(n5)
for recognition, due to the5 indexes in items, and
O(n7) for full parsing.

4Due to space constraints, correctness proofs for the
parsers are not given here. Full proofs are provided in the
extended version of this paper, see (Gómez-Rodŕıguez et al.,
2008b).

It is possible to build a variant of this parser
with time complexityO(n6), as with parsers for
unlexicalised TAG, if we work with unlexicalised
D-rules specifying the possibility of dependencies
between pairs of categories instead of pairs of
words. In order to do this, we expand the item set
with unlexicalised items of the form[i, j, C, l, r],
where C is a category, apart from the existing
items [i, j, h, l, r]. Steps in the parser are dupli-
cated, to work both with lexicalised and unlex-
icalised items, except for theLink steps, which
always work with a lexicalised item and an un-
lexicalised hypothesis to produce an unlexicalised
item, and theCombine Shrinking Gapsteps, which
can work only with unlexicalised items. Steps are
added to obtain lexicalised items from their unlex-
icalised equivalents by binding the head to partic-
ular string positions. Finally, we need certain vari-
ants of theCombine Shrinking Gapsteps that take
2 unlexicalised antecedents and produce a lexi-
calised consequent; an example is the following:

Combine Shrinking Gap Centre L:

[i, j, C, l, r]
[l + 1, r, C, l2, r2]

[i, j, l, l2, r2]

such thatcat(wl)=C

Although this version of the algorithm reduces
time complexity with respect to the length of the
input toO(n6), it also adds a factor related to the
number of categories, as well as constant factors
due to using more kinds of items and steps than
the originalWG1 algorithm. This, together with
the advantages of lexicalised dependency parsing,
may mean that the originalWG1 algorithm is more
practical than this version.

4 The WGk parser

The WG1 parsing schema can be generalised to
obtain a parser for all well-nested dependency
structures with gap degree bounded by a constant
k(k ≥ 1), which we callWGk parser. In order to
do this, we extend the item set so that it can contain
items with up tok gaps, and modify the deduction
steps to work with these multi-gapped items.

4.1 Parsing schema forWGk

The item set IWGk is the set of all
[i, j, h, [(l1, r1), . . . , (lg, rg)]] wherei, j, h, g ∈ N

, 0 ≤ g ≤ k, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n , h 6= j,
h 6= i − 1; and for eachp ∈ {1, 2, . . . , g}:
lp, rp ∈ N, i < lp ≤ rp < j, rp < lp+1 − 1,
h 6= lp − 1, h 6= rp.

An item [i, j, h, [(l1, r1), . . . , (lg, rg)]] repre-
sents the set of all well-nested partial dependency
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trees rooted atwh such thatbwhc = {wh}∪([i, j]\⋃g
p=1

[lp, rp]), where each interval[lp, rp] is called
a gap. The constraintsh 6= j, h 6= i + 1, h 6=
lp − 1, h 6= rp are added to avoid redundancy, and
normalisation is defined as inWG1. The set of fi-
nal items is defined as the setF = {[1, n, h, []] |
h ∈ N, 1 ≤ h ≤ n}. Note that this set is the same
as inWG1, as these are the items that we denoted
[1, n, h, �, �] in the previous parser.

The deduction steps can be seen in Figure 1B.
As expected, theWG1 parser corresponds toWGk

when we makek = 1. WGk works in the same
way asWG1, except for the fact thatCombine
steps can create items with more than one gap5.
The correctness proof is also analogous to that of
WG1, but we must take into account that the set of
possible order annotations is larger whenk > 1,
so more cases arise in the completeness proof.

4.2 Computational complexity

The WGk parser runs in timeO(n5+2k): as in
the case ofWG1, the deduction step with most
free variables isCombine Shrinking Gap Cen-
tre, and in this case it has5 + 2k free indexes.
Again, this complexity result is in line with what
could be expected from previous research in con-
stituency parsing: Kuhlmann (2007) shows that
the set of well-nested dependency structures with
gap degree at mostk is closely related to cou-
pled context-free grammars in which the maxi-
mal rank of a nonterminal isk + 1; and the con-
stituency parser defined by Hotz and Pitsch (1996)
for these grammars also adds ann2 factor for each
unit increment ofk. Note that a small value of
k should be enough to cover the vast majority of
the non-projective sentences found in natural lan-
guage treebanks. For example, the Prague Depen-
dency Treebank contains no structures with gap
degree greater than4. Therefore, aWG4 parser
would be able to analyse all the well-nested struc-
tures in this treebank, which represent99.89% of
the total. Increasingk beyond4 would not pro-
duce further improvements in coverage.

5 Parsing ill-nested structures

The WGk parser analyses dependency structures
with bounded gap degree as long as they are
well-nested. This covers the vast majority of

5In all the parsers in this paper,Combinesteps may be
applied in different orders to produce the same result, causing
spurious ambiguity. InWG1 andWGk, this can be avoided
when implementing the schemata, by adding flags to items
so as to impose a particular order.

the structures that occur in natural-language tree-
banks (Kuhlmann and Nivre, 2006), but there is
still a significant minority of sentences that con-
tain ill-nested structures. Unfortunately, the gen-
eral problem of parsing ill-nested structures is NP-
complete, even when the gap degree is bounded:
this set of structures is closely related to LCFRS
with bounded fan-out and unbounded production
length, and parsing in this formalism has been
proven to be NP-complete (Satta, 1992). The
reason for this high complexity is the problem
of unrestricted crossing configurations, appearing
when dependency subtrees are allowed to inter-
leave in every possible way. However, just as
it has been noted that most non-projective struc-
tures appearing in practice are only “slightly” non-
projective (Nivre and Nilsson, 2005), we charac-
terise a sense in which the structures appearing in
treebanks can be viewed as being only “slightly”
ill-nested. In this section, we generalise the algo-
rithms WG1 andWGk to parse a proper superset
of the set of well-nested structures in polynomial
time; and give a characterisation of this new set
of structures, which includes all the structures in
several dependency treebanks.

5.1 TheMG1 and MGk parsers

TheWGk parser presented previously is based on
a bottom-up process, whereLink steps are used to
link completed subtrees to a head, andCombine
steps are used to join subtrees governed by a com-
mon head to obtain a larger structure. AsWGk is a
parser for well-nested structures of gap degree up
to k, its Combinesteps correspond to all the ways
in which we can join two sets of sibling subtrees
meeting these constraints, and having a common
head, into another. Thus, this parser does not use
Combinesteps that produce interleaved subtrees,
since these would generate items corresponding to
ill-nested structures.

We obtain a polynomial parser for a wider set of
structures of gap degree at mostk, including some
ill-nested ones, by havingCombinesteps repre-
senting every way in which two sets of sibling sub-
trees of gap degree at mostk with a common head
can be joined into another, including those produc-
ing interleaved subtrees, like the steps for gap de-
gree1 shown in Figure 1C. Note that this does not
mean that we can build every possible ill-nested
structure: some structures with complex crossed
configurations have gap degreek, but cannot be
built by combining two structures of that gap de-
gree. More specifically, our algorithm will be able
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to parse a dependency structure (well-nested or
not) if there exists abinarisationof that structure
that has gap degree at mostk. The parser im-
plicitly works by finding such a binarisation, since
Combinesteps are always applied to two items and
no intermediate item generated by them can ex-
ceed gap degreek (not counting the position of
the head in the projection).

More formally, letT be a dependency structure
for the stringw1 . . . wn. A binarisation of T is
a dependency treeT ′ over a set of nodes, each of
which may be unlabelled or labelled with a word
in {w1 . . . wn}, such that the following conditions
hold: (1) each node has at most two children, and
(2) wi → wj in T if and only if wi →? wj in
T ′. A dependency structure ismildly ill-nested
for gap degreek if it has at least one binarisation
of gap degree≤ k. Otherwise, we say that it is
strongly ill-nested for gap degreek. It is easy
to prove that the set of mildly ill-nested structures
for gap degreek includes all well-nested structures
with gap degree up tok.

We defineMG1, a parser for mildly ill-nested
structures for gap degree1, as follows: (1) the
item set is the same as that ofWG1, except that
items can now contain any mildly ill-nested struc-
tures for gap degree1, instead of being restricted
to well-nested structures; and (2) deduction steps
are the same as inWG1, plus the additional steps
shown in Figure 1C. These extraCombinesteps
allow the parser to combine interleaved subtrees
with simple crossing configurations. TheMG1

parser still runs inO(n7), as these new steps do
not use more than 7 string positions.

The proof of correctness for this parser is sim-
ilar to that of WG1. Again, we use the concept
of order annotations. The set of mildly ill-nested
structures for gap degreek can be defined as those
that only contain annotations meeting certain con-
straints. The soundness proof involves showing
thatCombinesteps always generate items contain-
ing trees with such annotations. Completeness is
proven by induction, by showing that if a subtree
is mildly ill-nested for gap degreek, an item for
it can be obtained from items for smaller subtrees
by applyingCombineandLink steps. In the cases
whereCombinesteps have to be applied, the order
in which they may be used to produce a subtree
can be obtained from its head’s order annotation.

To generalise this algorithm to mildly ill-nested
structures for gap degreek, we need to add aCom-
bine step for every possible way of joining two
structures of gap degree at mostk into another.

This can be done systematically by considering a
set of strings over an alphabet of three symbols:
a andb to represent intervals of words in the pro-
jection of each of the structures, andg to repre-
sent intervals that are not in the projection of ei-
ther structure, and will correspond to gaps in the
joined structure. The legal combinations of struc-
tures for gap degreek will correspond to strings
where symbolsa andb each appear at mostk + 1
times,g appears at mostk times and is not the first
or last symbol, and there is no more than one con-
secutive appearance of any symbol. Given a string
of this form, the correspondingCombinestep is
given by the expression in Figure 1D. As a particu-
lar example, theCombine Interleaving Gap Cstep
in Figure 1C is obtained from the stringabgab.

Thus, we define the parsing schema forMGk, a
parser for mildly ill-nested structures for gap de-
greek, as the schema where (1) the item set is
like that ofWGk, except that items can now con-
tain any mildly ill-nested structures for gap degree
k, instead of being restricted to well-nested struc-
tures; and (2) the set of deduction steps consists of
a Link step as the one inWGk, plus a set ofCom-
binesteps obtained as expressed in Figure 1D.

As the string used to generate aCombinestep
can have length at most3k + 2, and the result-
ing step contains an index for each symbol of the
string plus two extra indexes, theMGk parser has
complexityO(n3k+4). Note that the item and de-
duction step sets of anMGk parser are always su-
persets of those ofWGk. In particular, the steps
for WGk are those obtained from strings that do
not containabab or baba as a scattered substring.

5.2 Mildly ill-nested dependency structures

The MGk algorithm defined in the previous sec-
tion can parse any mildly ill-nested structure for a
given gap degreek in polynomial time. We have
characterised the set of mildly ill-nested structures
for gap degreek as those having a binarisation of
gap degree≤ k. Since a binarisation of a depen-
dency structure cannot have lower gap degree than
the original structure, this set only contains struc-
tures with gap degree at mostk. Furthermore, by
the relation betweenMGk andWGk, we know that
it contains all the well-nested structures with gap
degree up tok.

Figure 2 shows an example of a structure that
has gap degree1, but is strongly ill-nested for gap
degree1. This is one of the smallest possible such
structures: by generating all the possible trees up
to 10 nodes (without counting a dummy root node

297



Language

Structures

Total
Nonprojective

Total
By gap degree By nestedness

Gap
degree1

Gap
degree2

Gap
degree3

Gap
deg.> 3

Well-
Nested

Mildly
Ill-Nested

Strongly
Ill-Nested

Arabic 2995 205 189 13 2 1 204 1 0
Czech 87889 20353 19989 359 4 1 20257 96 0

Danish 5430 864 854 10 0 0 856 8 0
Dutch 13349 4865 4425 427 13 0 4850 15 0
Latin 3473 1743 1543 188 10 2 1552 191 0

Portuguese 9071 1718 1302 351 51 14 1711 7 0
Slovene 1998 555 443 81 21 10 550 5 0
Swedish 11042 1079 1048 19 7 5 1008 71 0
Turkish 5583 685 656 29 0 0 665 20 0

Table 1:Counts of dependency trees classified by gap degree, and mild and strong ill-nestedness (for their gap degree); appear-
ing in treebanks for Arabic (Hajič et al., 2004), Czech (Hajič et al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al.,
2002), Latin (Bamman and Crane, 2006), Portuguese (Afonso et al., 2002), Slovene (Ďzeroski et al., 2006), Swedish (Nilsson
et al., 2005) and Turkish (Oflazer et al., 2003; Atalay et al., 2003).

Figure 2: One of the smallest strongly ill-nested structures.
This dependency structure has gap degree1, but is only
mildly ill-nested for gap degree≥ 2.

located at position0), it can be shown that all the
structures of any gap degreek with length smaller
than10 are well-nested or only mildly ill-nested
for that gap degreek.

Even if a structureT is strongly ill-nested for
a given gap degree, there is always somem ∈ N

such thatT is mildly ill-nested form (since every
dependency structure can be binarised, and binari-
sations have finite gap degree). For example, the
structure in Figure 2 is mildly ill-nested for gap de-
gree2. Therefore,MGk parsers have the property
of being able to parse any possible dependency
structure as long as we makek large enough.

In practice, structures like the one in Figure 2
do not seem to appear in dependency treebanks.
We have analysed treebanks for nine different lan-
guages, obtaining the data presented in Table 1.
None of these treebanks contain structures that are
strongly ill-nested for their gap degree. There-
fore, in any of these treebanks, theMGk parser can
parse every sentence with gap degree at mostk.

6 Conclusions and future work

We have defined a parsing algorithm for well-
nested dependency structures with bounded gap
degree. In terms of computational complexity,
this algorithm is comparable to the best parsers
for related constituency-based formalisms: when
the gap degree is at most1, it runs in O(n7),

like the fastest known parsers for LTAG, and can
be madeO(n6) if we use unlexicalised depen-
dencies. When the gap degree is greater than 1,
the time complexity goes up by a factor ofn2

for each extra unit of gap degree, as in parsers
for coupled context-free grammars. Most of the
non-projective sentences appearing in treebanks
are well-nested and have a small gap degree, so
this algorithm directly parses the vast majority of
the non-projective constructions present in natural
languages, without requiring the construction of a
constituency grammar as an intermediate step.

Additionally, we have defined a set of struc-
tures for any gap degreek which we call mildly
ill-nested. This set includes ill-nested structures
verifying certain conditions, and can be parsed in
O(n3k+4) with a variant of the parser for well-
nested structures. The practical interest of mildly
ill-nested structures can be seen in the data ob-
tained from several dependency treebanks, show-
ing that all of the ill-nested structures in them are
mildly ill-nested for their corresponding gap de-
gree. Therefore, ourO(n3k+4) parser can analyse
all the gap degreek structures in these treebanks.

The set of mildly ill-nested structures for gap
degreek is defined as the set of structures that have
a binarisation of gap degree at mostk. This defini-
tion is directly related to the way theMGk parser
works, since it implicitly finds such a binarisation.
An interesting line of future work would be to find
an equivalent characterisation of mildly ill-nested
structures which is more grammar-oriented and
would provide a more linguistic insight into these
structures. Another research direction, which we
are currently working on, is exploring how vari-
ants of theMGk parser’s strategy can be applied
to the problem of binarising LCFRS (Ǵomez-
Rodŕıguez et al., 2009).
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Abstract

This paper presents six novel approaches
to biographic fact extraction that model
structural, transitive and latent proper-
ties of biographical data. The ensem-
ble of these proposed models substantially
outperforms standard pattern-based bio-
graphic fact extraction methods and per-
formance is further improved by modeling
inter-attribute correlations and distribu-
tions over functions of attributes, achiev-
ing an average extraction accuracy of 80%
over seven types of biographic attributes.

1 Introduction

Extracting biographic facts such as “Birthdate”,
“Occupation”, “Nationality”, etc. is a critical step
for advancing the state of the art in information
processing and retrieval. An important aspect of
web search is to be able to narrow down search
results by distinguishing among people with the
same name leading to multiple efforts focusing
on web person name disambiguation in the liter-
ature (Mann and Yarowsky, 2003; Artiles et al.,
2007, Cucerzan, 2007). While biographic facts are
certainly useful for disambiguating person names,
they also allow for automatic extraction of ency-
lopedic knowledge that has been limited to man-
ual efforts such as Britannica, Wikipedia, etc.
Such encyploedic knowledge can advance verti-
cal search engines such as http://www.spock.com
that are focused on people searches where one can
get an enhanced search interface for searching by
various biographic attributes. Biographic facts are
also useful for powerful query mechanisms such
as finding what attributes are common between
two people (Auer and Lehmann, 2007).

Figure 1: Goal: extracting attribute-value bio-
graphic fact pairs from biographic free-text

While there are a large quantity of biographic texts
available online, there are only a few biographic
fact databases available1, and most of them have
been created manually, are incomplete and are
available primarily in English.

This work presents multiple novel approaches
for automatically extracting biographic facts such
as “Birthdate”, “Occupation”, “Nationality”, and
“Religion”, making use of diverse sources of in-
formation present in biographies.
In particular, we have proposed and evaluated the
following 6 distinct original approaches to this

1E.g.: http://www.nndb.com, http://www.biography.com,
Infoboxes in Wikipedia
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task with large collective empirical gains:

1. An improvement to the Ravichandran and
Hovy (2002) algorithm based on Partially
Untethered Contextual Pattern Models

2. Learning a position-based model using ab-
solute and relative positions and sequential
order of hypotheses that satisfy the domain
model. For example, “Deathdate” very often
appears after “Birthdate” in a biography.

3. Using transitive models over attributes via
co-occurring entities. For example, other
people mentioned person’s biography page
tend to have similar attributes such as occu-
pation (See Figure 4).

4. Using latent wide-document-context models
to detect attributes that may not be mentioned
directly in the article (e.g. the words “song,
hits, album, recorded,..” all collectively indi-
cate the occupation of singer or musician in
the article.

5. Using inter-attribute correlations, for filter-
ing unlikely biographic attribute combina-
tions. For example, a tuple consisting of <
“Nationality” = India, “Religion” = Hindu >
has a higher probability than a tuple consist-
ing of < “Nationality” = France, “Religion”
= Hindu >.

6. Learning distributions over functions of at-
tributes, for example, using an age distri-
bution to filter tuples containing improbable
<deathyear>-<birthyear> lifespan values.

We propose and evaluate techniques for exploiting
all of the above classes of information in the next
sections.

2 Related Work

The literature for biography extraction falls into
two major classes. The first one deals with iden-
tifying and extracting biographical sentences and
treats the problem as a summarization task (Cowie
et al., 2000, Schiffman et al., 2001, Zhou et
al., 2004). The second and more closely related
class deals with extracting specific facts such as
“birthplace”, “occupation”, etc. For this task,
the primary theme of work in the literature has
been to treat the task as a general semantic-class
learning problem where one starts with a few

seeds of the semantic relationship of interest and
learns contextual patterns such as “<NAME>
was born in <Birthplace>” or “<NAME> (born
<Birthdate>)” (Hearst, 1992; Riloff, 1996; The-
len and Riloff, 2002; Agichtein and Gravano,
2000; Ravichandran and Hovy, 2002; Mann and
Yarowsky, 2003; Jijkoun et al., 2004; Mann and
Yarowsky, 2005; Alfonseca et al., 2006; Pasca et
al., 2006). There has also been some work on ex-
tracting biographic facts directly from Wikipedia
pages. Culotta et al. (2006) deal with learning
contextual patterns for extracting family relation-
ships from Wikipedia. Ruiz-Casado et al. (2006)
learn contextual patterns for biographic facts and
apply them to Wikipedia pages.
While the pattern-learning approach extends well
for a few biography classes, some of the bio-
graphic facts like “Gender” and “Religion” do not
have consistent contextual patterns, and only a
few of the explicit biographic attributes such as
“Birthdate”, “Deathdate”, “Birthplace” and “Oc-
cupation” have been shown to work well in the
pattern-learning framework (Mann and Yarowsky,
2005; Alfonesca, 2006; Pasca et al., 2006).
Secondly, there is a general lack of work that at-
tempts to utilize the typical information sequenc-
ing within biographic texts for fact extraction, and
we show how the information structure of biogra-
phies can be used to improve upon pattern based
models. Furthermore, we also present additional
novel models of attribute correlation and age dis-
tribution that aid the extraction process.

3 Approach

We first implement the standard pattern-based ap-
proach for extracting biographic facts from the raw
prose in Wikipedia people pages. We then present
an array of novel techniques exploiting different
classes of information including partially-tethered
contextual patterns, relative attribute position and
sequence, transitive attributes of co-occurring en-
tities, broad-context topical profiles, inter-attribute
correlations and likely human age distributions.
For illustrative purposes, we motivate each tech-
nique using one or two attributes but in practice
they can be applied to a wide range of attributes
and empirical results in Table 4 show that they
give consistent performance gains across multiple
attributes.
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4 Contextual Pattern-Based Model

A standard model for extracting biographic facts
is to learn templatic contextual patterns such as
<NAME> “was born in” <Birthplace>. Such
templatic patterns can be learned using seed ex-
amples of the attribute in question and, there has
been a plethora of work in the seed-based boot-
strapping literature which addresses this problem
(Ravichandran and Hovy, 2002; Thelen and Riloff,
2002; Mann and Yarowsky, 2005; Alfonseca et al.,
2006; Pasca et al., 2006)
Thus for our baseline we implemented a stan-
dard Ravichandran and Hovy (2002) pattern
learning model using 100 seed2 examples from
an online biographic database called NNDB
(http://www.nndb.com) for each of the biographic
attributes: “Birthdate”, “Birthplace”, “Death-
date”, “Gender”, “Nationality”, “Occupation” and
“Religion”. Given the seed pairs, patterns for
each attribute were learned by searching for seed
<Name,Attribute Value> pairs in the Wikipedia
page and extracting the left, middle and right con-
texts as various contextual patterns3.
While the biographic text was obtained from
Wikipedia articles, all of the 7 attribute values
used as seed and test person names could not
be obtained from Wikipedia due to incomplete
and unnormalized (for attribute value format) in-
foboxes. Hence, the values for training/evaluation
were extracted from NNDB which provides a
cleaner set of gold truth, and is similar to an ap-
proach utilizing trained annotators for marking up
and extracting the factual information in a stan-
dard format. For consistency, only the people
names whose articles occur in Wikipedia where
selected as part of seed and test sets.
Given the attribute values of the seed names and
their text articles, the probability of a relationship
r(Attribute Name), given the surrounding context
“A1 p A2 q A3”, where p and q are <NAME>
and <Attrib Val> respectively, is given using the
rote extractor model probability as in (Ravichan-
dran and Hovy, 2002; Mann and Yarowsky 2005):

2The seed examples were chosen randomly, with a bias
against duplicate attribute values to increase training diver-
sity. Both the seed and test names and data will be made
available online to the research community for replication
and extension.

3We implemented a noisy model of coreference resolu-
tion by resolving any gender-correct pronoun used in the
Wikipedia page to the title person name of the article. Gender
is also extracted automatically as a biographic attribute.

P (r(p, q)|A1pA2qA3) =
∑

x,y∈r
c(A1xA2yA3)∑

x,z
c(A1xA2zA3)

Thus, the probability for each contextual pattern
is based on how often it correctly predicts a re-
lationship in the seed set. And, each extracted
attribute value q using the given pattern can thus
be ranked according to the above probability. We
tested this approach for extracting values for each
of the seven attributes on a test set of 100 held-out
names and report Precision, Pseudo-recall and F-
score for each attribute which are computed in the
standard way as follows, for say Attribute “Birth-
place (bplace)”:

Precisionbplace =
# people with bplace correctly extracted

# of people with bplace extracted

Pseudo-recbplace =
# people with bplace correctly extracted

# of people with bplace in test set

F-scorebplace =
2·Precisionbplace·Pseudo-recbplace
Precisionbplace + Pseudo-recbplace

Since the true values of each attribute are obtained
from a cleaner and normalized person-database
(NNDB), not all the attribute values maybe present
in the Wikipedia article for a given name. Thus,
we also compute accuracy on the subset of names
for which the value of a given attribute is also ex-
plictly stated in the article. This is denoted as:

Acctruth pres =
# people with bplace correctly extracted

# of people with true bplace stated in article

We further applied a domain model for each at-
tribute to filter noisy targets extracted from lex-
ical patterns. Our domain models of attributes
include lists of acceptable values (such as lists
of places, occupations and religions) and struc-
tural constraints such as possible date formats for
“Birthdate” and “Deathdate”. The rows with sub-
script “RH02”in Table 4 shows the performance
of this Ravichandran and Hovy (2002) model with
additional attribute domain modeling for each at-
tribute, and Table 3 shows the average perfor-
mance across all attributes.

5 Partially Untethered Templatic
Contextual Patterns

The pattern-learning literature for fact extraction
often consists of patterns with a “hook” and
“target” (Mann and Yarowsky, 2005). For ex-
ample, in the pattern “<Name> was born in
<Birthplace>”, “<NAME>” is the hook and
“<Birthplace>” is the target. The disadvantage
of this approach is that the intervening dually-
tethered patterns can be quite long and highly
variable, such as “<NAME> was highly influ-
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Figure 2: Distribution of the observed document
mentions of Deathdate, Nationality and Religion.

ential in his role as <Occupation>”. We over-
come this problem by modeling partially unteth-
ered variable-length ngram patterns adjacent to
only the target, with the only constraint being
that the hook entity appear somewhere in the sen-
tence4. Examples of these new contextual ngram
features include “his role as <Occupation>” and
‘role as <Occupation>”. The pattern probability
model here is essentially the same as in Ravichan-
dran and Hovy, 2002 and just the pattern repre-
sentation is changed. The rows with subscript
“RH02imp” in tables 4 and 3 show performance
gains using this improved templatic-pattern-based
model, yielding an absolute 21% gain in accuracy.

6 Document-Position-Based Model

One of the properties of biographic genres is that
primary biographic attributes5 tend to appear in
characteristic positions, often toward the begin-
ning of the article. Thus, the absolute position
(in percentage) can be modeled explicitly using a
Gaussian parametric model as follows for choos-
ing the best candidate value v∗ for a given attribute
A:

v∗ = argmaxv∈domain(A)f(posnv|A)

where,
f(posnv|A)
= N (posnv; µ̂A, σ̂2

A)
= 1

σ̂A

√
2π
e−(posnv−µ̂A)2/2σ̂A

2

4This constraint is particularly viable in biographic text,
which tends to focus on the properties of a single individual.

5We use the hyperlinked phrases as potential values for all
attributes except “Gender”. For “Gender” we used pronouns
as potential values ranked according to the their distance from
the beginning of the page.

In the above equation, posnv is the absolute
position ratio (position/length) and µ̂A, σ̂A

2 are
the sample mean and variance based on the sam-
ple of correct position ratios of attribute values
in biographies with attribute A. Figure 2, for
example, shows the positional distribution of the
seed attribute values for deathdate, nationality and
religion in Wikipedia articles, fit to a Gaussian
distribution. Combining this empirically derived
position model with a domain model6 of accept-
able attribute values is effective enough to serve
as a stand-alone model.

Attribute Best rank P(Rank)
in seed set

Birthplace 1 0.61
Birthdate 1 0.98
Deathdate 2 0.58

Gender 1 1.0
Occupation 1 0.70
Nationality 1 0.83

Religion 1 0.80

Table 1: Majority rank of the correct attribute
value in the Wikipedia pages of the seed names
used for learning relative ordering among at-
tributes satisfying the domain model

6.1 Learning Relative Ordering in the
Position-Based Model

In practice, for attributes such as birthdate, the
first text pattern satisfying the domain model is
often the correct answer for biographical articles.
Deathdate also tends to occur near the beginning
of the article, but almost always some point
after the birthdate. This motivates a second,
sequence-based position model based on the rank
of the attribute values among other values in the
domain of the attribute, as follows:

v∗ = argmaxv∈domain(A)P (rankv|A)

where P (rankv|A) is the fraction of biographies
having attribute a with the correct value occuring
at rank rankv, where rank is measured according
to the relative order in which the values belonging
to the attribute domain occur from the beginning

6The domain model is the same as used in Section 4 and
remains constant across all the models developed in this paper

303



of the article. We use the seed set to learn the rel-
ative positions between attributes, that is, in the
Wikipedia pages of seed names what is the rank of
the correct attribute.
Table 1 shows the most frequent rank of the correct
attribute value and Figure 3 shows the distribu-
tion of the correct ranks for a sample of attributes.
We can see that 61% of the time the first loca-
tion mentioned in a biography is the individuals’s
birthplace, while 58% of the time the 2nd date
in the article is the deathdate. Thus, “Deathdate”
often appears as the second date in a Wikipedia
page as expected. These empirical distributions
for the correct rank provide a direct vehicle for
scoring hypotheses, and the rows with “rel. posn”
as the subscript in Table 4 shows the improvement
in performance using the learned relative order-
ing. Averaging across different attributes, table
3 shows an absolute 11% average gain in accu-
racy of the position-sequence-based models rela-
tive to the improved Ravichandran and Hovy re-
sults achieved here.

Figure 3: Empirical distribution of the relative po-
sition of the correct (seed) answers among all text
phrases satisfying the domain model for “birth-
place” and “death date”.

7 Implicit Models

Some of the biographic attributes such as “Nation-
ality”, “Occupation” and “Religion” can be ex-
tracted successfully even when the answer is not
directly mentioned in the biographic article. We
present two such models for doing so in the fol-
lowing subsections:

7.1 Extracting Attributes Transitively using
Neighboring Person-Names

Attributes such as “Occupation” are transitive in
nature, that is, the people names appearing close
to the target name will tend to have the same
occupation as the target name. Based on this
intution, we implemented a transitive model that
predicts occupation based on consensus voting via
the extracted occupations of neighboring names7

as follows:

v∗ = argmaxv∈domain(A)P (v|A,Sneighbors)

where,
P (v|A,Sneighbors) =

# neighboring names with attrib value v
# of neighboring names in the article

The set of neighboring names is represented
as Sneighbors and the best candidate value for
an attribute A is chosen based on the the fraction
of neighboring names having the same value
for the respective attribute. We rank candidates
according to this probability and the row labeled
“trans” in Table 4 shows that this model helps in
subsantially improving the recall of “Occupation”
and “Religion”, yielding a 7% and 3% average
improvement in F-measure respectively, on top of
the position model described in Section 6.

7.2 Latent Model based on Document-Wide
Context Profiles

In addition to modeling cross-entity attribute
transitively, attributes such as “Occupation” can
also be modeled successfully using a document-
wide context or topic model. For example, the
distribution of words occuring in a biography

7We only use the neighboring names whose attribute
value can be obtained from an encylopedic database. Fur-
thermore, since we are dealing with biographic pages that
talk about a single person, all other person-names mentioned
in the article whose attributes are present in an encylopedia
were considered for consensus voting
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Figure 4: Illustration of modeling “occupation” and “nationality” transitively via consensus from at-
tributes of neighboring names

of a politician would be different from that of
a scientist. Thus, even if the occupation is not
explicitly mentioned in the article, one can infer
it using a bag-of-words topic profile learned from
the seed examples.

Given a value v, for an attribute A, (for ex-
ample v = “Politician” and A = “Occupation”),
we learn a centroid weight vector:

Cv = [w1,v, w2,v, ..., wn,v] where,

wt,v = 1
N tft,v · log |A||t∈A|

tft,v is the frequency of word t in the articles of People
having attribute A = v

|A| is the total number of values of attribute A

|t ∈ A| is the total number of values of attribute A, such that
the articles of people having one of those values contain the
term t

N is the total number of People in the seed set

Given a biography article of a test name and
an attribute in question, we compute a similar
word weight vector C ′ = [w′1, w

′
2, ..., w

′
n] for

the test name and measure its cosine similarity
to the centroid vector of each value of the given

attribute. Thus, the best value a∗ is chosen as:

v∗ =
argmaxv

w′1·w1,v+w′2·w2,v+....+w′n·wn,v√
w′21 +w′22 +...+w′2n

√
w2

1,v+w2
2,v+...+w2

n,v

Tables 3 and 4 show performance using the la-
tent document-wide-context model. We see that
this model by itself gives the top performance
on “Occupation”, outperforming the best alterna-
tive model by 9% absolute accuracy, indicating
the usefulness of implicit attribute modeling via
broad-context word frequencies.
This latent model can be further extended us-
ing the multilingual nature of Wikipedia. We
take the corresponding German pages of the train-
ing names and model the German word distribu-
tions characterizing each seed occupation. Table
4 shows that English attribute classification can be
successful using only the words in a parallel Ger-
man article. For some attributes, the performance
of latent model modeled via cross-language (noted
as latentCL) is close to that of English suggesting
potential future work by exploiting this multilin-
gual dimension.
It is interesting to note that both the transitive
model and the latent wide-context model do not
rely on the actual “Occupation” being explicitly
mentioned in the article, they still outperform ex-
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Occupation Weight Vector
English

Physicist <magnetic:32.7, electromagnetic:18.2, wire: 18.2, electricity: 17.7, optical:14.5, discovered:11.2>
Singer <song:40, hits:30.5, hit:29.6, reggae:23.6, album:17.1, francis:15.2, music:13.8, recorded:13.6, ...>
Politician <humphrey:367.4, soviet: 97.4, votes: 70.6, senate: 64.7, democratic: 57.2, kennedy: 55.9, ...>
Painter <mural:40.0, diego:14.7, paint:14.5, fresco:10.9. paintings:10.9, museum of modern art:8.83, ...>
Auto racing <renault:76.3, championship:32.7. schumacher:32.7, race:30.4, pole:29.1, driver:28.1 >

German
Physicist <faraday:25.4, chemie:7.3, vorlesungsserie:7.2, 1846:5.8, entdeckt:4.5, rotation:3.6 ...>
Singer <song:16.22, jamaikanischen:11.77, platz:7.3, hit: 6.7, soloünstler:4.5, album:4.1, widmet:4.0, ...>
Politician <konservativen:26.5, wahlkreis:26.5, romano:21.8, stimmen:18.6, gewählt:18.4, ...>
Painter <rivera:32.7, malerin:7.6, wandgemälde:7.3, kunst:6.75, 1940:5.8, maler:5.1, auftrag:4.5, ...>
Auto racing <team:29.4,mclaren:18.1,teamkollegen:18.1,sieg:11.7, meisterschaft:10.9, gegner:10.9, ...>

Table 2: Sample of occupation weight vectors in English and German learned using the latent model.

plicit pattern-based and position-based models.
This implicit modeling also helps in improving the
recall of less-often directly mentioned attributes
such as a person’s “Religion”.

8 Model Combination

While the pattern-based, position-based, transitive
and latent models are all stand-alone models, they
can complement each other in combination as they
provide relatively orthogonal sources of informa-
tion. To combine these models, we perform a sim-
ple backoff-based combination for each attribute
based on stand-alone model performance, and the
rows with subscript “combined” in Tables 3 and 4
shows an average 14% absolute performance gain
of the combined model relative to the improved
Ravichandran and Hovy 2002 model.

9 Further Extensions: Reducing False
Positives

Since the position-and-domain-based models will
almost always posit an answer, one of the prob-
lems is the high number of false positives yielded
by these algorithms. The following subsections in-
troduce further extensions using interesting prop-
erties of biographic attributes to reduce the effect
of false positives.

9.1 Using Inter-Attribute Correlations

One of the ways to filter false positives is by
filtering empirically incompatible inter-attribute
pairings. The motivation here is that the at-
tributes are not independent of each other when
modeled for the same individual. For example,
P(Religion=Hindu | Nationality=India) is higher
than P(Religion=Hindu | Nationality=France) and

Model Fscore Acc
truth

pres

Ravichandran and Hovy, 2002 0.37 0.43
Improved RH02 Model 0.54 0.64
Position-Based Model 0.53 0.75
Combinedabove 3+trans+latent+cl 0.59 0.78
Combined + Age Dist + Corr 0.62 0.80

(+24%) (+37%)

Table 3: Average Performance of different models
across all biographic attributes

similarly we can find positive and negative cor-
relations among other attribute pairings. For im-
plementation, we consider all possible 3-tuples
of (“Nationality”, “Birthplace”, “Religion”)8 and
search on NNDB for the presence of the tuple for
any individual in the database (excluding the test
data of course). As an agressive but effective filter,
we filter the tuples for which no name in NNDB
was found containing the candidate 3-tuples. The
rows with label “combined+corr” in Table 4 and
Table 3 shows substantial performaance gains us-
ing inter-attribute correlations, such as the 7% ab-
solute average gain for Birthplace over the Section
8 combined models, and a 3% absolute gain for
Nationality and Religion.

9.2 Using Age Distribution

Another way to filter out false positives is to con-
sider distributions on meta-attributes, for example:
while age is not explicitly extracted, we can use
the fact that age is a function of two extracted at-
tributes (<Deathyear>-<Birthyear>) and use the
age distribution to filter out false positives for

8The test of joint-presence between these three attributes
were used since they are strongly correlated
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Figure 5: Age distribution of famous people on the
web (from www.spock.com)

<Birthdate> and<Deathdate>. Based on the age
distribution for famous people9 on the web shown
in Figure 5, we can bias against unusual candi-
date lifespans and filter out completely those out-
side the range of 25-100, as most of the probabil-
ity mass is concentrated in this range. Rows with
subscript “comb+ age dist” in Table 4 shows the
performance gains using this feature, yielding an
average 5% absolute accuracy gain for Birthdate.

10 Conclusion

This paper has shown six successful novel ap-
proaches to biographic fact extraction using struc-
tural, transitive and latent properties of biographic
data. We first showed an improvement to the stan-
dard Ravichandran and Hovy (2002) model uti-
lizing untethered contextual pattern models, fol-
lowed by a document position and sequence-based
approach to attribute modeling.
Next we showed transitive models exploiting the
tendency for individuals occurring together in an
article to have related attribute values. We also
showed how latent models of wide document con-
text, both monolingually and translingually, can
capture facts that are not stated directly in a text.
Each of these models provide substantial per-
formance gain, and further performance gain is
achived via classifier combination. We also
showed how inter-attribution correlations can be

9Since all the seed and test examples were used from
nndb.com, we use the age distribution of famous people on
the web: http://blog.spock.com/2008/02/08/age-distribution-
of-people-on-the-web/

Attribute Prec P-Rec Fscore Acc
truth
pres

BirthdateRH02 0.86 0.38 0.53 0.88
BirthdateRH02imp 0.52 0.52 0.52 0.67
Birthdaterel. posn 0.42 0.40 0.41 0.93
Birthdatecombined 0.58 0.58 0.58 0.95
Birthdatecomb+age dist 0.63 0.60 0.61 1.00
DeathdateRH02 0.80 0.19 0.30 0.36
DeathdateRH02imp 0.50 0.49 0.49 0.59
Deathdaterel. posn 0.46 0.44 0.45 0.86
Deathdatecombined 0.49 0.49 0.49 0.86
Deathdatecomb+age dist 0.51 0.49 0.50 0.86
BirthplaceRH02 0.42 0.38 0.40 0.42
BirthplaceRH02imp 0.41 0.41 0.41 0.45
Birthplacerel. posn 0.47 0.41 0.44 0.48
Birthplacecombined 0.44 0.44 0.44 0.48
Birthplacecombined+corr 0.53 0.50 0.51 0.55
OccupationRH02 0.54 0.18 0.27 0.26
OccupationRH02imp 0.38 0.34 0.36 0.48
Occupationrel. posn 0.48 0.35 0.40 0.50
Occupationtrans 0.49 0.46 0.47 0.50
Occupationlatent 0.48 0.48 0.48 0.59
OccupationlatentCL 0.48 0.48 0.48 0.54
Occupationcombined 0.48 0.48 0.48 0.59
NationalityRH02 0.40 0.25 0.31 0.27
NationalityRH02imp 0.75 0.75 0.75 0.81
Nationalityrel. posn 0.73 0.72 0.71 0.78
Nationalitytrans 0.51 0.48 0.49 0.49
Nationalitylatent 0.56 0.56 0.56 0.56
NationalitylatentCL 0.55 0.48 0.51 0.48
Nationalitycombined 0.75 0.75 0.75 0.81
Nationalitycomb+corr 0.77 0.77 0.77 0.84
GenderRH02 0.76 0.76 0.76 0.76
GenderRH02imp 0.99 0.99 0.99 0.99
Genderrel. posn 1.00 1.00 1.00 1.00
Gendertrans 0.79 0.75 0.77 0.75
Genderlatent 0.82 0.82 0.82 0.82
GenderlatentCL 0.83 0.72 0.77 0.72
Gendercombined 1.00 1.00 1.00 1.00
ReligionRH02 0.02 0.02 0.04 0.06
ReligionRH02imp 0.55 0.18 0.27 0.45
Religionrel. posn 0.49 0.24 0.32 0.73
Religiontrans 0.38 0.33 0.35 0.48
Religionlatent 0.36 0.36 0.36 0.45
ReligionlatentCL 0.30 0.26 0.28 0.22
Religioncombined 0.41 0.41 0.41 0.76
Religioncombined+corr 0.44 0.44 0.44 0.79

Table 4: Attribute-wise performance comparison
of all the models across several biographic at-
tributes.

modeled to filter unlikely attribute combinations,
and how models of functions over attributes, such
as deathdate-birthdate distributions, can further
constrain the candidate space. These approaches
collectively achieve 80% average accuracy on a
test set of 7 biographic attribute types, yielding a
37% absolute accuracy gain relative to a standard
algorithm on the same data.
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Abstract

This paper presents an application of finite
state transducers weighted with feature
structure descriptions, following Amtrup
(2003), to the morphology of the Semitic
language Tigrinya. It is shown that
feature-structure weights provide an effi-
cient way of handling the templatic mor-
phology that characterizes Semitic verb
stems as well as the long-distance de-
pendencies characterizing the complex
Tigrinya verb morphotactics. A relatively
complete computational implementation
of Tigrinya verb morphology is described.

1 Introduction

1.1 Finite state morphology

Morphological analysis is the segmentation of
words into their component morphemes and the
assignment of grammatical morphemes to gram-
matical categories and lexical morphemes to lex-
emes. For example, the English noun parties
could be analyzed as party+PLURAL. Morpho-
logical generation is the reverse process. Both
processes relate a surface level to a lexical level.
The relationship between these levels has con-
cerned many phonologists and morphologists over
the years, and traditional descriptions, since the
pioneering work of Chomsky and Halle (1968),
have characterized it in terms of a series of ordered
content-sensitive rewrite rules, which apply in the
generation, but not the analysis, direction.

Within computational morphology, a very sig-
nificant advance came with the demonstration that
phonological rules could be implemented as fi-
nite state transducers (Johnson, 1972; Kaplan
and Kay, 1994) (FSTs) and that the rule ordering
could be dispensed with using FSTs that relate the
surface and lexical levels directly (Koskenniemi,

1983). Because of the invertibility of FSTs, “two-
level” phonology and morphology permitted the
creation of systems of FSTs that implemented both
analysis (surface input, lexical output) and gener-
ation (lexical input, surface output).

In addition to inversion, FSTs are closed un-
der composition. A second important advance in
computational morphology was the recognition by
Karttunen et al. (1992) that a cascade of composed
FSTs could implement the two-level model. This
made possible quite complex finite state systems,
including ordered alternation rules representing
context-sensitive variation in the phonological or
orthographic shape of morphemes, the morpho-
tactics characterizing the possible sequences of
morphemes (in canonical form) for a given word
class, and one or more sublexicons. For example,
to handle written English nouns, we could create a
cascade of FSTs covering the rules that insert an e
in words like bushes and parties and relate lexical
y to surface i in words like buggies and parties and
an FST that represents the possible sequences of
morphemes in English nouns, including all of the
noun stems in the English lexicon. The key fea-
ture of such systems is that, even though the FSTs
making up the cascade must be composed in a par-
ticular order, the result of composition is a single
FST relating surface and lexical levels directly, as
in two-level morphology.

1.2 FSTs for non-concatenative morphology

These ideas have revolutionized computational
morphology, making languages with complex
word structure, such as Finnish and Turkish, far
more amenable to analysis by traditional compu-
tational techniques. However, finite state mor-
phology is inherently biased to view morphemes
as sequences of characters or phones and words
as concatenations of morphemes. This presents
problems in the case of non-concatenative mor-
phology: discontinuous morphemes (circumfix-
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ation); infixation, which breaks up a morpheme
by inserting another within it; reduplication, by
which part or all of some morpheme is copied;
and the template morphology (also called stem-
pattern morphology, intercalation, and interdigi-
tation) that characterizes Semitic languages, and
which is the focus of much of this paper. The stem
of a Semitic verb consists of a root, essentially
a sequence of consonants, and a pattern, a sort
of template which inserts other segments between
the root consonants and possibly copies certain of
them (see Tigrinya examples in the next section).

Researchers within the finite state framework
have proposed a number of ways to deal with
Semitic template morphology. One approach is to
make use of separate tapes for root and pattern at
the lexical level (Kiraz, 2000). A transition in such
a system relates a single surface character to mul-
tiple lexical characters, one for each of the distinct
sublexica.

Another approach is to have the transducers at
the lexical level relate an upper abstract charac-
terization of a stem to a lower string that directly
represents the merging of a particular root and pat-
tern. This lower string can then be compiled into
an FST that yields a surface expression (Beesley
and Karttunen, 2003). Given the extra compile-
and-replace operation, this resulting system maps
directly between abstract lexical expressions and
surface strings. In addition to Arabic, this ap-
proach has been applied to a portion of the verb
morphology system of the Ethio-Semitic language
Amharic (Amsalu and Demeke, 2006), which is
characterized by all of the same sorts of complex-
ity as Tigrinya.

A third approach makes use of a finite set of
registers that the FST can write to and read from
(Cohen-Sygal and Wintner, 2006). Because it can
remember relevant previous states, a “finite-state
registered transducer” for template morphology
can keep the root and pattern separate as it pro-
cesses a stem.

This paper proposes an approach which is clos-
est to this last framework, one that starts with
familiar extension to FSTs, weights on the tran-
sitions. The next section gives an overview of
Tigrinya verb morphology. The following sec-
tion discusses weighted FSTs, in particular, with
weights consisting of feature structure descrip-
tions. Then I describe a system that applies this
approach to Tigrinya verb morphology.

2 Tigrinya Verb Morphology

Tigrinya is an Ethio-Semitic language spoken by
5-6 million people in northern Ethiopia and central
Eritrea. There has been almost no computational
work on the language, and there are effectively no
corpora or digitized dictionaries containing roots.
For a language with the morphological complexity
of Tigrinya, a crucial early step in computational
linguistic work must be the development of mor-
phological analyzers and generators.

2.1 The stem

A Tigrinya verb (Leslau, 1941 is a standard ref-
erence for Tigrinya grammar) consists of a stem
and one or more prefixes and suffixes. Most of
the complexity resides in the stem, which can be
described in terms of three dimensions: root (the
only strictly lexical component of the verb), tense-
aspect-mood (TAM), and derivational category.
Table 1 illustrates the possible combinations of
TAM and derivational category for a single root.1

A Tigrinya verb root consists of a sequence of
three, four, or five consonants. In addition, as
in other Ethio-Semitic languages, certain roots in-
clude inherent vowels and/or gemination (length-
ening) of particular consonants. Thus among the
three-consonant roots, there are three subclasses:
CCC, CaCC, CC C. As we have seen, the stem of
a Semitic verb can be viewed as the result of the in-
sertion of pattern vowels between root consonants
and the copying of root consonants in particular
positions. For Tigrinya, each combination of root
class, TAM, and derivational category is charac-
terized by a particular pattern.

With respect to TAM, there are four possibili-
ties, as shown in Table 1, conventionally referred
to in English as PERFECTIVE, IMPERFECTIVE,
JUSSIVE-IMPERATIVE, and GERUNDIVE. Word-
forms within these four TAM categories combine
with auxiliaries to yield the full range of possbil-
ities in the complex Tigrinya tense-aspect-mood
system. Since auxiliaries are written as separate
words or separated from the main verbs by an
apostrophe, they will not be discussed further.

Within each of the TAM categories, a Tigrinya
verb root can appear in up to eight different deriva-

1I use 1 for the high central vowel of Tigrinya, E for the
mid central vowel, q for the velar ejective, a dot under a char-
acter to represent other ejectives, a right quote to represent a
glottal stop, a left quote to represent the voiced pharyngeal
fricative, and to represent gemination. Other symbols are
conventional International Phonetic Alphabet.
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simple pas/refl caus freqv recip1 caus-rec1 recip2 caus-rec2
perf fElEt

˙
tEfEl(E)t

˙
aflEt

˙
fElalEt

˙
tEfalEt

˙
af alEt

˙
tEfElalEt

˙
af ElalEt

˙imprf fEl( 1)t
˙

f1l Et
˙

af(1)l( )1t
˙

fElalt
˙

f alEt
˙

af alt
˙

f ElalEt
˙

af Elalt
˙jus/impv flEt

˙
tEfElEt

˙
afl1t

˙
fElalt

˙
tEfalEt

˙
af alt

˙
tEfElalEt

˙
af Elalt

˙ger fElit
˙

tEfElit
˙

aflit
˙

fElalit
˙

tEfalit
˙

af alit
˙

tEfElalit
˙

af Elalit
˙

Table 1: Stems based on the Tigrinya root√flt
˙
.

tional categories, which can can be characterized
in terms of four binary features, each with partic-
ular morphological consequences. These features
will be referred to in this paper as “ps” (“passive”),
“tr” (“transitive”), “it” (“iterative”), and “rc” (“re-
ciprocal”). The eight possible combinations of
these features (see Table 1 for examples) are SIM-
PLE [-ps,-tr,-it,-rc], PASSIVE/REFLEXIVE [+ps,-
tr,-it,-rc], TRANSITIVE/CAUSATIVE: [-ps,+tr,-it,-
rc], FREQUENTATIVE [-ps,-tr,+it,-rc], RECIPRO-
CAL 1 [+ps,-tr,-it,+rc], CAUSATIVE RECIPROCAL

1 [-ps,+tr,-it,+rc], RECIPROCAL 2 [+ps,-tr,+it,-
rc], CAUSATIVE RECIPROCAL 2 [-ps,+tr,+it,-rc].
Notice that the [+ps,+it] and [+tr,+it] combina-
tions are roughly equivalent semantically to the
[+ps,+rc] and [+tr,+rc] combinations, though this
is not true for all verb roots.

2.2 Affixes

The affixes closest to the stem represent subject
agreement; there are ten combinations of person,
number, and gender in the Tigrinya pronominal
and verb-agreement system. For imperfective and
jussive verbs, as in the corresponding TAM cate-
gories in other Semitic languages, subject agree-
ment takes the form of prefixes and sometimes
also suffixes, for example, y1flEt

˙
‘that he know’,

y1flEt
˙
u ‘that they (mas.) know’. In the perfec-

tive, imperative, and gerundive, subject agreement
is expressed by suffixes alone, for example, fElEt

˙
ki

‘you (sg., fem.) knew’, fElEt
˙
u ‘they (mas.) knew!’.

Following the subject agreement suffix (if there
is one), a transitive Tigrinya verb may also include
an object suffix (or object agreement marker),
again in one of the same set of ten possible combi-
nations of person, number, and gender. There are
two sets of object suffixes, a plain set representing
direct objects and a prepositional set representing
various sorts of dative, benefactive, locative, and
instrumental complements, for example, y1fElt

˙
En i

‘he knows me’, y1fElt
˙
El Ey ‘he knows for me’.

Preceding the subject prefix of an imperfective
or jussive verb or the stem of a perfective, imper-

ative, or gerundive verb, there may be the prefix
indicating negative polarity, ay-. Non-finite neg-
ative verbs also require the suffix -n: y1fElt

˙
En i ‘he

knows me’; ay 1fElt
˙
En 1n ‘he doesn’t know me’.

Preceding the negative prefix (if there is one),
an imperfective or perfective verb may also in-
clude the prefix marking relativization, (z)1-, for
example, zifElt

˙
En i ‘(he) who knows me’. The rel-

ativizer can in turn be preceded by one of a set
of seven prepositions, for example, kabzifElt

˙
En i

‘from him who knows me’. Finally, in the per-
fective, imperfective, and gerundive, there is the
possibility of one or the other of several conjunc-
tive prefixes at the beginning of the verb (with-
out the relativizer), for example, kifElt

˙
En i ‘so

that he knows me’ and one of several conjunc-
tive suffixes at the end of the verb, for example,
y1fElt

˙
En 1n ‘and he knows me’.

Given up to 32 possible stem templates (com-
binations of four tense-aspect-mood and eight
derivational categories) and the various possi-
ble combinations of agreement, polarity, rela-
tivization, preposition, and conjunction affixes, a
Tigrinya verb root can appear in well over 100,000
different wordforms.

2.3 Complexity

Tigrinya shares with other Semitic languages com-
plex variations in the stem patterns when the
root contains glottal or pharyngeal consonants or
semivowels. These and a range of other regu-
lar language-specific morphophonemic processes
can be captured in alternation rules. As in other
Semitic languages, reduplication also plays a role
in some of the stem patterns (as seen in Table 1).
Furthermore, the second consonant of the most
important conjugation class, as well as the con-
sonant of most of the object suffixes, geminates
in certain environments and not others (Buckley,
2000), a process that depends on syllable weight.

The morphotactics of the Tigrinya verb is re-
plete with dependencies which span the verb stem:
(1) the negative circumfix ay-n, (2) absence of the
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negative suffix -n following a subordinating prefix,
(3) constraints on combinations of subject agree-
ment prefixes and suffixes in the imperfective and
jussive, (4) constraints on combinations of subject
agreement affixes and object suffixes.

There is also considerable ambiguity in the sys-
tem. For example, the second person and third per-
son feminine plural imperfective and jussive sub-
ject suffix is identical to one allomorph of the third
person feminine singular object suffix (y1fElt

˙
a) ’he

knows her; they (fem.) know’). Tigrinya is written
in the Ge’ez (Ethiopic) syllabary, which fails to
mark gemination and to distinguish between syl-
lable final consonants and consonants followed by
the vowel 1. This introduces further ambiguity.

In sum, the complexity of Tigrinya verbs
presents a challenge to any computational mor-
phology framework. In the next section I consider
an augmentation to finite state morphology offer-
ing clear advantages for this language.

3 FSTs with Feature Structures

A weighted FST (Mohri et al., 2000) is a fi-
nite state transducer whose transitions are aug-
mented with weights. The weights must be ele-
ments of a semiring, an algebraic structure with
an “addition” operation, a “multiplication” opera-
tion, identity elements for each operation, and the
constraint that multiplication distributes over ad-
dition. Weights on a path of transitions through
a transducer are “multiplied”, and the weights as-
sociated with alternate paths through a transducer
are “added”. Weighted FSTs are closed under the
same operations as unweighted FSTs; in particu-
lar, they can be composed. Weighted FSTs are fa-
miliar in speech processing, where the semiring el-
ements usually represent probabilities, with “mul-
tiplication” and “addition” in their usual senses.

Amtrup (2003) recognized the advantages that
would accrue to morphological analyzers and gen-
erators if they could accommodate structured rep-
resentations. One familiar approach to repre-
senting linguistic structure is feature structures
(FSs) (Carpenter, 1992; Copestake, 2002). A
feature structure consists of a set of attribute-
value pairs, for which values are either atomic
properties, such as FALSE or FEMININE, or fea-
ture structures. For example, we might repre-
sent the morphological structure of the Tigrinya
noun gEzay ‘my house’ as [lex=gEza, num=sing,
poss=[pers=1, num=sg]]. The basic operation over

FSs is unification. Loosely speaking, two FSs
unify if their attribute-values pairs are compati-
ble; the resulting unification combines the features
of the FSs. For example, the two FSs [lex=gEza,
num=sg] and [poss=[pers=1, num=sg]] unify to
yield the FS [lex=gEza, num=sg, poss=[pers=1,
num=sg]]. The distinguished FS TOP unifies with
any other FS.

Amtrup shows that sets of FSs constitute a
semiring, with pairwise unification as the multi-
plication operator, set union as the addition opera-
tor, TOP as the identity element for multiplication,
and the empty set as the identity element for ad-
dition. Thus FSTs can be weighted with FSs. In
an FST with FS weights, traversing a path through
the network for a given input string yields an FS
set, in addition to the usual output string. The FS
set is the result of repeated unification of the FS
sets on the arcs in the path, starting with an initial
input FS set. A path through the network fails not
only if the current input character fails to match
the input character on the arc, but also if the cur-
rent accumulated FS set fails to unify with the FS
set on an arc.

Using examples from Persian, Amtrup demon-
strates two advantages of FSTs weighted with
FS sets. First, long-distance dependencies within
words present notorious problems for finite state
techniques. For generation, the usual approach
is to overgenerate and then filter out the illegal
strings below, but this may result in a much larger
network because of the duplication of state de-
scriptions. Using FSs, enforcing long-distance
constraints is straightforward. Weights on the rel-
evant transitions early in the word specify val-
ues for features that must agree with similar fea-
ture specifications on transitions later in the word
(see the Tigrinya examples in the next section).
Second, many NLP applications, such a machine
translation, work with the sort of structured rep-
resentations that are elegantly handled by FS de-
scriptions. Thus it is often desirable to have the
output of a morphological analyzer exhibit this
richness, in contrast to the string representations
that are the output of an unweighted finite state
analyzer.

4 Weighted FSTs for Tigrinya Verbs

4.1 Long-distance dependencies

As we have seen, Tigrinya verbs exhibit vari-
ous sorts of long-distance dependencies. The cir-
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cumfix that marks the negative of non-subordinate
verbs, ay...n, is one example. Figure 1 shows
how this constraint can be handled naturally us-
ing an FST weighted with FS sets. In place of
the separate negative and affirmative subnetworks
that would have to span the entire FST in the abs-
cence of weighted arcs, we have simply the nega-
tive and affirmative branches at the beginning and
end of the weighted FST. In the analysis direction,
this FST will accept forms such as ay 1fElt

˙
un ‘they

don’t know’ and y1fElt
˙
u ‘they know’ and reject

forms such as ay 1fElt
˙
u. In the generation direc-

tion, the FST will correctly generate a form such
as ay 1fElt

˙
un given a initial FS that includes the

feature [pol=neg].

4.2 Stems: root and derivational pattern

Now consider the source of most of the complex-
ity of the Tigrinya verb, the stem. The stem may
be thought of as conveying three types of infor-
mation: lexical (the root of the verb), derivational,
and TAM. However, unlike the former two types,
the TAM category of the verb is redundantly coded
for by the combination of subject agreement af-
fixes. Thus, analysis of a stem should return at
least the root and the derivational category, and
generation should start with a root and a deriva-
tional category and return a stem. We can repre-
sent each root as a sequence of consonants, sep-
arated in some cases by the vowel a or the gem-
ination character ( ). Given a particular deriva-
tional pattern and a TAM category, extracting the
root from the stem is a straightforward matter with
an FST. For example, for the imperfective pas-
sive, the CC C root pattern appears in the template
C1C EC, and the root is what is left if the two vow-
els in the stem are skipped over.

However, we want to extract both the deriva-
tional pattern and the root, and the problem for
finite state methods, as discussed in Section 1.2,
is that both are spread throughout the stem. The
analyzer needs to alternate between recording ele-
ments of the root and clues about the derivational
pattern as it traverses the stem, and the generator
needs to alternate between outputting characters
that represent root elements and characters that
depend on the derivational pattern as it produces
the stem. The process is complicated further be-
cause some stem characters, such as the gemina-
tion character, may be either lexical (that is, a root
element) or derivational, and others may provide

information about both components. For exam-
ple, a stem with four consonants and a separating
the second and third consonants represents the fre-
quentative of a three-consonant root if the third
and fourth consonants are identical (e.g., fElalEt

˙’knew repeatedly’, root: flt
˙
) and a four-consonant

root (CCaCC root pattern) in the simple deriva-
tional category if they are not (e.g., kElakEl ’pre-
vented’, root klakl).

As discussed in Section 1.2, one of the familiar
approaches to this problem, that of Beesley and
Karttunen (2003), precompiles all of the combina-
tions of roots and derivational patterns into stems.
The problem with this approach for Tigrinya is
that we do not have anything like a complete list
of roots; that is, we expect many stems to be novel
and will need to be able to analyze them on the fly.
The other two approaches discussed in 1.2, that of
Kiraz (2000) and that of Cohen-Sygal & Wintner
(2006), are closer to what is proposed here. Each
has an explicit mechanism for keeping the root and
pattern distinct: separate tapes in the case of Kiraz
(2000) and separate memory registers in the case
of Cohen-Sygal & Wintner (2006).

The present approach also divides the work of
processing the root and the derivational patterns
between two components of the system. However,
instead of the additional overhead required for im-
plementing a multi-tape system or registers, this
system makes use of the FSTs weighted with FSs
that are already motivated for other aspects of mor-
phology, as argued above. In this approach, the
lexical aspects of morphology are handled by the
ordinary input-output character correspondences,
and the grammatical aspects of morphology, in
particular the derivational patterns, are handled by
the FS weights on the FST arcs and the unifica-
tion that takes place as accumulated weights are
matched against the weights on FST arcs.

As explained in Section 2, we can represent
the eight possible derivational categories for a
Tigrinya verb stem in terms of four binary features
(ps, tr, rc, it). Each of these features is reflected
more or less directly in the stem form (though dif-
ferently for different root classes and for differ-
ent TAM categories). However, they are some-
times distributed across the stem: different parts
of a stem may be constrained by the presence of
a particular feature. For example, the feature +ps
(abbreviating [ps=True]) causes the gemination of
the stem-initial consonant under various circum-
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Figure 1: Handling Tigrinya (non-subordinate, imperfective) negation using feature structure weights.
Arcs with uppercase labels represents subnetworks that are not spelled out in the figure.

stances and also controls the final vowel in the
stem in the imperfective, and the feature +tr is
marked by the vowel a before the first root con-
sonant and, in the imperfective, by the nature of
the vowel that follows the first root consonant (E
where we would otherwise expect 1, 1 where we
would otherwise expect E.) That is, as with the
verb affixes, there are long-distance dependencies
within the verb stem.

Figure 2 illustrates this division of labor for the
portion of the stem FST that covers the CC C root
pattern for the imperfective. This FST (including
the subnetwork not shown that is responsible for
the reduplicated portion of the +it patterns) han-
dles all eight possible derivational categories. For
the root √fs. m ’finish’, the stems are [-ps,-tr,-rc,-
it]: f1s

˙
1m, [+ps,-tr,-rc,-it]: f1s

˙
Em, [-ps,+tr,-rc,-it]:

afEs
˙

1m, [-ps,-tr,-rc,+it]: fEs
˙
as
˙

1m, [+ps,-tr,+rc,-
it]: f as

˙
Em, [-ps,+tr,+rc,-it]: af as

˙
1m, [+ps,-tr,-

rc,+it]: f Es
˙
as
˙

Em, [-ps,+tr,-rc,+it]: af Es
˙
as
˙

1m.
What is notable is the relatively small number of
states that are required; among the consonant and
vowel positions in the stems, all but the first are
shared among the various derivational categories.

Of course the full stem FST, applying to all
combinations of the eight root classes, the eight
derivational categories, and the four TAM cate-
gories, is much larger, but the FS weights still
permit a good deal of sharing, including sharing
across the root classes and across the TAM cate-
gories.

4.3 Architecture

The full verb morphology processing system (see
Figure 3) consists of analysis and generation FSTs
for both orthographic and phonemically repre-
sented words, four FSTs in all. Eleven FSTs are
composed to yield the phonemic analysis FST (de-
noted by the dashed border in Figure 3), and two
additional FSTs are composed onto this FST to
yield the orthographic FST (denoted by the large
solid rectangle). The generation FSTs are created

by inverting the analysis FSTs. Only the ortho-
graphic FSTs are discussed in the remainder of
this paper.

At the most abstract (lexical) end is the heart of
the system, the morphotactic FST, and the heart of
this FST is the stem FST described above. The
stem FST is composed from six FSTs, including
three that handle the morphotactics of the stem,
one that handles root constraints, and two that han-
dle phonological processes that apply only to the
stem. A prefix FST and a suffix FST are then con-
catenated onto the composed stem FST to create
the full verb morphotactic FST. Within the whole
FST, it is only the morphotactic FSTs (the yellow
rectangles in Figure 3) that have FS weights.2

In the analysis direction, the morphotactic FST
takes as input words in an abstract canonical form
and an initial weight of TOP; that is, at this point
in analysis, no grammatical information has been
extracted. The output of the morphotactic FST
is either the empty list if the form is unanalyz-
able, or one or more analyses, each consisting
of a root string and a fully specified grammat-
ical description in the form of an FS. For ex-
ample, given the form ’ayt1f1l et

˙
un, the morpho-

tactic FST would output the root flt. and the FS
[tam=imprf, der=[+ps,-tr,-rc,-it], sbj=[+2p,+plr,-
fem], +neg, obj=nil, -rel] (see Figure 3). That
is, this word represents the imperfective, nega-
tive, non-relativized passive of the verb root √flt.
(‘know’) with second person plural masculine sub-
ject and no object: ’you (plr., mas.) are not
known’. The system has no actual lexicon, so it
outputs all roots that are compatible with the in-
put, even if such roots do not exist in the language.
In the generation direction, the opposite happens.
In this case, the input root can be any legal se-
quence of characters that matches one of the eight

2The reduplication that characterizes [+it] stems and the
“anti-reduplication” that prevents sequences of identical root
consonants in some positions are handled with separate tran-
sitions for each consonant pair.
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Figure 2: FST for imperfective verb stems of root type CC C. <CaC:C> indicates a subnetwork, not
shown, which handles the reduplicated portion of +it stems, for example, fes

˙
as
˙

1m.

root patterns (there are some constraints on what
can constitute a root), though not necessarily an
actual root in the language.

The highest FST below the morphotactic FST
handles one case of allomorphy: the two allo-
morphs of the relativization prefix. Below this are
nine FSTs handling phonology; for example, one
of these converts the sequence a1 to E. At the bot-
tom end of the cascade are two orthographic FSTs
which are required when the input to analysis or
the output of generation is in standard Tigrinya or-
thography. One of these is responsible for the in-
sertion of the vowel 1 and for consonant gemina-
tion (neither of which is indicated in the orthogra-
phy); the other inserts a glottal stop before a word-
initial vowel.

The full orthographic FST consists of 22,313
states and 118,927 arcs. The system handles
verbs in all of the root classes discussed by
Leslau (1941), including those with laryngeals
and semivowels in different root positions and the
three common irregular verbs, and all grammati-
cal combinations of subject, object, negation, rel-
ativization, preposition, and conjunction affixes.

For the orthographic version of the analyzer, a
word is entered in Ge’ez script (UTF-8 encoding).
The program romanizes the input using the SERA
transcription conventions (Firdyiwek and Yaqob,
1997), which represent Ge’ez characters with the
ASCII character set, before handing it to the ortho-
graphic analysis FST. For each possible analysis,
the output consists of a (romanized) root and a FS
set. Where a set contains more than one FS, the
interpretation is that any of the FS elements con-
stitutes a possible analysis. Input to the generator
consists of a romanized root and a single feature

ኣይትፍለጡን 

flṭ; [tam=+imprf, der=[+ps,-tr,-it,-rc],
      sbj=[+2p,+plr,-fem], +neg]]
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Figure 3: Architecture of the system. Rectangles
represent FSTs, “.o.”composition.

structure. The output of the orthographic gener-
ation FST is an orthographic representation, us-
ing SERA conventions, of each possible form that
is compatible with the input root and FS. These
forms are then converted to Ge’ez orthography.

The analyzer and generator are pub-
licly accessible on the Internet at
www.cs.indiana.edu/cgi-pub/gasser/L3/

morpho/Ti/v.
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4.4 Evaluation

Systematic evaluation of the system is diffi-
cult since no Tigrinya corpora are currently
available. One resource that is useful, how-
ever, is the Tigrinya word list compiled by
Biniam Gebremichael, available on the Internet at
www.cs.ru.nl/ biniam/geez/crawl.php. Biniam ex-
tracted 227,984 distinct wordforms from Tigrinya
texts by crawling the Internet. As a first step to-
ward evaluating the morphological analyzer, the
orthographic analyzer was run on 400 word-
forms selected randomly from the list compiled by
Biniam, and the results were evaluated by a human
reader.

Of the 400 wordforms, 329 were unambigu-
ously verbs. The program correctly analyzed 308
of these. The 21 errors included irregular verbs
and orthographic/phonological variants that had
not been built into the FST; these will be straight-
forward to add. Fifty other words were not verbs.
The program again responded appropriately, given
its knowledge, either rejecting the word or analyz-
ing it as a verb based on a non-existent root. Thir-
teen other words appeared to be verb forms con-
taining a simple typographical error, and I was un-
able to identify the remaining eight words. For the
latter two categories, the program again responded
by rejecting the word or treating it as a verb based
on a non-existent root.

To test the morphological generator, the pro-
gram was run on roots belonging to all 21 of the
major classes discussed by Leslau (1941), includ-
ing those with glottal or pharyngeal consonants or
semivowels in different positions within the roots.
For each of these classes, the program was asked
to generate all possible derivational patterns (in the
third person singular masculine form). In addition,
for a smaller set of four root classes in the sim-
ple derivational pattern, the program was tested on
all relevant combinations of the subject and object
affixes3 and, for the imperfective and perfective,
on 13 combinations of the relativization, negation,
prepositional, and conjunctive affixes. For each
of the 272 tests, the generation FST succeeded in
outputting the correct form (and in some cases a
phonemic and/or orthographic alternative).

In conclusion, the orthographic morphological
analyzer and generator provide good coverage of

3With respect to their morphophonological behavior, the
subject affixes and object suffixes each group into four cate-
gories.

Tigrinya verbs. One weakness of the present sys-
tem results from its lack of a root dictionary. The
analyzer produces as many as 15 different analyses
of words, when in many cases only one contains a
root that exists in the language. The number could
be reduced somewhat by a more extensive filter
on possible root segment sequences; however, root
internal phonotactics is an area that has not been
extensively studied for Tigrinya. In any case, once
a Tigrinya root dictionary becomes available, it
will be straightforward to compose a lexical FST
onto the existing FSTs that will reject all but ac-
ceptable roots. Even a relatively small root dictio-
nary should also permit inferences about possible
root segment sequences in the language, enabling
the construction of a stricter filter for roots that are
not yet contained in the dictionary.

5 Conclusion

Progress in all applications for a language such as
Tigrinya is held back when verb morphology is
not dealt with adequately. Tigrinya morphology
is complex in two senses. First, like other Semitic
languages, it relies on template morphology, pre-
senting unusual challenges to any computational
framework. This paper presents a new answer
to these challenges, one which has the potential
to integrate morphological processing into other
knowledge-based applications through the inclu-
sion of the powerful and flexible feature structure
framework. This approach should extend to other
Semitic languages, such as Arabic, Hebrew, and
Amharic. Second, Tigrinya verbs are simply very
elaborate. In addition to the stems resulting from
the intercalation of eight root classes, eight deriva-
tional patterns and four TAM categories, there are
up to four prefix slots and four suffix slots; various
sorts of prefix-suffix dependencies; and a range
of interacting phonological processes, including
those sensitive to syllable structure, as well as
segmental context. Just putting together all of
these constraints in a way that works is signifi-
cant. Since the motivation for this project is pri-
marily practical rather than theoretical, the main
achievement of the paper is the demonstration that,
with some effort, a system can be built that actu-
ally handles Tigrinya verbs in great detail. Future
work will focus on fine-tuning the verb FST, de-
veloping an FST for nouns, and applying this same
approach to other Semitic languages.
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Abstract

We introduce cube summing, a technique
that permits dynamic programming algo-
rithms for summing over structures (like
the forward and inside algorithms) to be
extended with non-local features that vio-
late the classical structural independence
assumptions. It is inspired by cube prun-
ing (Chiang, 2007; Huang and Chiang,
2007) in its computation of non-local
features dynamically using scored k-best
lists, but also maintains additional resid-
ual quantities used in calculating approx-
imate marginals. When restricted to lo-
cal features, cube summing reduces to a
novel semiring (k-best+residual) that gen-
eralizes many of the semirings of Good-
man (1999). When non-local features are
included, cube summing does not reduce
to any semiring, but is compatible with
generic techniques for solving dynamic
programming equations.

1 Introduction

Probabilistic NLP researchers frequently make in-
dependence assumptions to keep inference algo-
rithms tractable. Doing so limits the features that
are available to our models, requiring features
to be structurally local. Yet many problems in
NLP—machine translation, parsing, named-entity
recognition, and others—have benefited from the
addition of non-local features that break classical
independence assumptions. Doing so has required
algorithms for approximate inference.

Recently cube pruning (Chiang, 2007; Huang
and Chiang, 2007) was proposed as a way to lever-
age existing dynamic programming algorithms
that find optimal-scoring derivations or structures
when only local features are involved. Cube prun-
ing permits approximate decoding with non-local

features, but leaves open the question of how the
feature weights or probabilities are learned. Mean-
while, some learning algorithms, like maximum
likelihood for conditional log-linear models (Laf-
ferty et al., 2001), unsupervised models (Pereira
and Schabes, 1992), and models with hidden vari-
ables (Koo and Collins, 2005; Wang et al., 2007;
Blunsom et al., 2008), require summing over the
scores of many structures to calculate marginals.

We first review the semiring-weighted logic
programming view of dynamic programming al-
gorithms (Shieber et al., 1995) and identify an in-
tuitive property of a program called proof locality
that follows from feature locality in the underlying
probability model (§2). We then provide an analy-
sis of cube pruning as an approximation to the in-
tractable problem of exact optimization over struc-
tures with non-local features and show how the
use of non-local features with k-best lists breaks
certain semiring properties (§3). The primary
contribution of this paper is a novel technique—
cube summing—for approximate summing over
discrete structures with non-local features, which
we relate to cube pruning (§4). We discuss imple-
mentation (§5) and show that cube summing be-
comes exact and expressible as a semiring when
restricted to local features; this semiring general-
izes many commonly-used semirings in dynamic
programming (§6).

2 Background

In this section, we discuss dynamic programming
algorithms as semiring-weighted logic programs.
We then review the definition of semirings and im-
portant examples. We discuss the relationship be-
tween locally-factored structure scores and proofs
in logic programs.

2.1 Dynamic Programming
Many algorithms in NLP involve dynamic pro-
gramming (e.g., the Viterbi, forward-backward,
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probabilistic Earley’s, and minimum edit distance
algorithms). Dynamic programming (DP) in-
volves solving certain kinds of recursive equations
with shared substructure and a topological order-
ing of the variables.

Shieber et al. (1995) showed a connection
between DP (specifically, as used in parsing)
and logic programming, and Goodman (1999)
augmented such logic programs with semiring
weights, giving an algebraic explanation for the
intuitive connections among classes of algorithms
with the same logical structure. For example, in
Goodman’s framework, the forward algorithm and
the Viterbi algorithm are comprised of the same
logic program with different semirings. Goodman
defined other semirings, including ones we will
use here. This formal framework was the basis
for the Dyna programming language, which per-
mits a declarative specification of the logic pro-
gram and compiles it into an efficient, agenda-
based, bottom-up procedure (Eisner et al., 2005).

For our purposes, a DP consists of a set of recur-
sive equations over a set of indexed variables. For
example, the probabilistic CKY algorithm (run on
sentence w1w2...wn) is written as

CX,i−1,i = pX→wi (1)

CX,i,k = max
Y,Z∈N;j∈{i+1,...,k−1}

pX→Y Z × CY,i,j × CZ,j,k

goal = CS,0,n

where N is the nonterminal set and S ∈ N is the
start symbol. Each CX,i,j variable corresponds to
the chart value (probability of the most likely sub-
tree) of an X-constituent spanning the substring
wi+1...wj . goal is a special variable of greatest in-
terest, though solving for goal correctly may (in
general, but not in this example) require solving
for all the other values. We will use the term “in-
dex” to refer to the subscript values on variables
(X, i, j on CX,i,j).

Where convenient, we will make use of Shieber
et al.’s logic programming view of dynamic pro-
gramming. In this view, each variable (e.g., CX,i,j

in Eq. 1) corresponds to the value of a “theo-
rem,” the constants in the equations (e.g., pX→Y Z

in Eq. 1) correspond to the values of “axioms,”
and the DP defines quantities corresponding to
weighted “proofs” of the goal theorem (e.g., find-
ing the maximum-valued proof, or aggregating
proof values). The value of a proof is a combi-
nation of the values of the axioms it starts with.

Semirings define these values and define two op-
erators over them, called “aggregation” (max in
Eq. 1) and “combination” (× in Eq. 1).

Goodman and Eisner et al. assumed that the val-
ues of the variables are in a semiring, and that the
equations are defined solely in terms of the two
semiring operations. We will often refer to the
“probability” of a proof, by which we mean a non-
negative R-valued score defined by the semantics
of the dynamic program variables; it may not be a
normalized probability.

2.2 Semirings
A semiring is a tuple 〈A,⊕,⊗,0,1〉, in which A
is a set, ⊕ : A × A → A is the aggregation
operation, ⊗ : A × A → A is the combina-
tion operation, 0 is the additive identity element
(∀a ∈ A, a ⊕ 0 = a), and 1 is the multiplica-
tive identity element (∀a ∈ A, a ⊗ 1 = a). A
semiring requires ⊕ to be associative and com-
mutative, and ⊗ to be associative and to distribute
over ⊕. Finally, we require a⊗0 = 0⊗a = 0 for
all a ∈ A.1 Examples include the inside semir-
ing, 〈R≥0,+,×, 0, 1〉, and the Viterbi semiring,
〈R≥0,max,×, 0, 1〉. The former sums the prob-
abilities of all proofs of each theorem. The lat-
ter (used in Eq. 1) calculates the probability of the
most probable proof of each theorem. Two more
examples follow.

Viterbi proof semiring. We typically need to
recover the steps in the most probable proof in
addition to its probability. This is often done us-
ing backpointers, but can also be accomplished by
representing the most probable proof for each the-
orem in its entirety as part of the semiring value
(Goodman, 1999). For generality, we define a
proof as a string that is constructed from strings
associated with axioms, but the particular form
of a proof is problem-dependent. The “Viterbi
proof” semiring includes the probability of the
most probable proof and the proof itself. Letting
L ⊆ Σ∗ be the proof language on some symbol
set Σ, this semiring is defined on the set R≥0 × L

with 0 element 〈0, ε〉 and 1 element 〈1, ε〉. For
two values 〈u1, U1〉 and 〈u2, U2〉, the aggregation
operator returns 〈max(u1, u2), Uargmaxi∈{1,2} ui〉.

1When cycles are permitted, i.e., where the value of one
variable depends on itself, infinite sums can be involved. We
must ensure that these infinite sums are well defined under
the semiring. So-called complete semirings satisfy additional
conditions to handle infinite sums, but for simplicity we will
restrict our attention to DPs that do not involve cycles.
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Semiring A Aggregation (⊕) Combination (⊗) 0 1
inside R≥0 u1 + u2 u1u2 0 1
Viterbi R≥0 max(u1, u2) u1u2 0 1
Viterbi proof R≥0 × L 〈max(u1, u2), Uargmaxi∈{1,2} ui〉 〈u1u2, U1.U2〉 〈0, ε〉 〈1, ε〉
k-best proof (R≥0 × L)≤k max-k(u1 ∪ u2) max-k(u1 ? u2) ∅ {〈1, ε〉}

Table 1: Commonly used semirings. An element in the Viterbi proof semiring is denoted 〈u1, U1〉, where u1 is the probability
of proof U1. The max-k function returns a sorted list of the top-k proofs from a set. The ? function performs a cross-product
on two k-best proof lists (Eq. 2).

The combination operator returns 〈u1u2, U1.U2〉,
where U1.U2 denotes the string concatenation of
U1 and U2.2

k-best proof semiring. The “k-best proof”
semiring computes the values and proof strings of
the k most-probable proofs for each theorem. The
set is (R≥0 × L)≤k, i.e., sequences (up to length
k) of sorted probability/proof pairs. The aggrega-
tion operator ⊕ uses max-k, which chooses the k
highest-scoring proofs from its argument (a set of
scored proofs) and sorts them in decreasing order.
To define the combination operator ⊗, we require
a cross-product that pairs probabilities and proofs
from two k-best lists. We call this ?, defined on
two semiring values u = 〈〈u1, U1〉, ..., 〈uk, Uk〉〉
and v = 〈〈v1, V1〉, ..., 〈vk, Vk〉〉 by:

u ? v = {〈uivj , Ui.Vj〉 | i, j ∈ {1, ..., k}} (2)

Then, u ⊗ v = max-k(u ? v). This is similar to
the k-best semiring defined by Goodman (1999).

These semirings are summarized in Table 1.

2.3 Features and Inference
Let X be the space of inputs to our logic program,
i.e., x ∈ X is a set of axioms. Let L denote the
proof language and let Y ⊆ L denote the set of
proof strings that constitute full proofs, i.e., proofs
of the special goal theorem. We assume an expo-
nential probabilistic model such that

p(y | x) ∝
∏M

m=1 λ
hm(x,y)
m (3)

where each λm ≥ 0 is a parameter of the model
and each hm is a feature function. There is a bijec-
tion between Y and the space of discrete structures
that our model predicts.

Given such a model, DP is helpful for solving
two kinds of inference problems. The first prob-
lem, decoding, is to find the highest scoring proof

2We assume for simplicity that the best proof will never
be a tie among more than one proof. Goodman (1999) han-
dles this situation more carefully, though our version is more
likely to be used in practice for both the Viterbi proof and
k-best proof semirings.

ŷ ∈ Y for a given input x ∈ X:

ŷ(x) = argmaxy∈Y

∏M
m=1 λm

hm(x,y) (4)

The second is the summing problem, which
marginalizes the proof probabilities (without nor-
malization):

s(x) =
∑

y∈Y

∏M
m=1 λm

hm(x,y) (5)

As defined, the feature functions hm can depend
on arbitrary parts of the input axiom set x and the
entire output proof y.

2.4 Proof and Feature Locality

An important characteristic of problems suited for
DP is that the global calculation (i.e., the value of
goal ) depend only on local factored parts. In DP
equations, this means that each equation connects
a relatively small number of indexed variables re-
lated through a relatively small number of indices.
In the logic programming formulation, it means
that each step of the proof depends only on the the-
orems being used at that step, not the full proofs
of those theorems. We call this property proof lo-
cality. In the statistical modeling view of Eq. 3,
classical DP requires that the probability model
make strong Markovian conditional independence
assumptions (e.g., in HMMs, St−1 ⊥ St+1 | St);
in exponential families over discrete structures,
this corresponds to feature locality.

For a particular proof y of goal consisting of
t intermediate theorems, we define a set of proof
strings `i ∈ L for i ∈ {1, ..., t}, where `i corre-
sponds to the proof of the ith theorem.3 We can
break the computation of feature function hm into
a summation over terms corresponding to each `i:

hm(x, y) =
∑t

i=1 fm(x, `i) (6)

This is simply a way of noting that feature func-
tions “fire” incrementally at specific points in the

3The theorem indexing scheme might be based on a topo-
logical ordering given by the proof structure, but is not im-
portant for our purposes.
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proof, normally at the first opportunity. Any fea-
ture function can be expressed this way. For local
features, we can go farther; we define a function
top(`) that returns the proof string corresponding
to the antecedents and consequent of the last infer-
ence step in `. Local features have the property:

hloc
m (x, y) =

∑t
i=1 fm(x, top(`i)) (7)

Local features only have access to the most re-
cent deductive proof step (though they may “fire”
repeatedly in the proof), while non-local features
have access to the entire proof up to a given the-
orem. For both kinds of features, the “f” terms
are used within the DP formulation. When tak-
ing an inference step to prove theorem i, the value∏M

m=1 λ
fm(x,`i)
m is combined into the calculation

of that theorem’s value, along with the values of
the antecedents. Note that typically only a small
number of fm are nonzero for theorem i.

When non-local hm/fm that depend on arbitrary
parts of the proof are involved, the decoding and
summing inference problems are NP-hard (they
instantiate probabilistic inference in a fully con-
nected graphical model). Sometimes, it is possible
to achieve proof locality by adding more indices to
the DP variables (for example, consider modify-
ing the bigram HMM Viterbi algorithm for trigram
HMMs). This increases the number of variables
and hence computational cost. In general, it leads
to exponential-time inference in the worst case.

There have been many algorithms proposed for
approximately solving instances of these decod-
ing and summing problems with non-local fea-
tures. Some stem from work on graphical mod-
els, including loopy belief propagation (Sutton and
McCallum, 2004; Smith and Eisner, 2008), Gibbs
sampling (Finkel et al., 2005), sequential Monte
Carlo methods such as particle filtering (Levy et
al., 2008), and variational inference (Jordan et al.,
1999; MacKay, 1997; Kurihara and Sato, 2006).
Also relevant are stacked learning (Cohen and
Carvalho, 2005), interpretable as approximation
of non-local feature values (Martins et al., 2008),
and M-estimation (Smith et al., 2007), which al-
lows training without inference. Several other ap-
proaches used frequently in NLP are approximate
methods for decoding only. These include beam
search (Lowerre, 1976), cube pruning, which we
discuss in §3, integer linear programming (Roth
and Yih, 2004), in which arbitrary features can act
as constraints on y, and approximate solutions like

McDonald and Pereira (2006), in which an exact
solution to a related decoding problem is found
and then modified to fit the problem of interest.

3 Approximate Decoding

Cube pruning (Chiang, 2007; Huang and Chi-
ang, 2007) is an approximate technique for decod-
ing (Eq. 4); it is used widely in machine transla-
tion. Given proof locality, it is essentially an effi-
cient implementation of the k-best proof semiring.
Cube pruning goes farther in that it permits non-
local features to weigh in on the proof probabili-
ties, at the expense of making the k-best operation
approximate. We describe the two approximations
cube pruning makes, then propose cube decoding,
which removes the second approximation. Cube
decoding cannot be represented as a semiring; we
propose a more general algebraic structure that ac-
commodates it.

3.1 Approximations in Cube Pruning

Cube pruning is an approximate solution to the de-
coding problem (Eq. 4) in two ways.

Approximation 1: k < ∞. Cube pruning uses
a finite k for the k-best lists stored in each value.
If k = ∞, the algorithm performs exact decoding
with non-local features (at obviously formidable
expense in combinatorial problems).

Approximation 2: lazy computation. Cube
pruning exploits the fact that k < ∞ to use lazy
computation. When combining the k-best proof
lists of d theorems’ values, cube pruning does not
enumerate all kd proofs, apply non-local features
to all of them, and then return the top k. Instead,
cube pruning uses a more efficient but approxi-
mate solution that only calculates the non-local
factors on O(k) proofs to obtain the approximate
top k. This trick is only approximate if non-local
features are involved.

Approximation 2 makes it impossible to formu-
late cube pruning using separate aggregation and
combination operations, as the use of lazy com-
putation causes these two operations to effectively
be performed simultaneously. To more directly
relate our summing algorithm (§4) to cube prun-
ing, we suggest a modified version of cube prun-
ing that does not use lazy computation. We call
this algorithm cube decoding. This algorithm can
be written down in terms of separate aggregation
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and combination operations, though we will show
it is not a semiring.

3.2 Cube Decoding
We formally describe cube decoding, show that
it does not instantiate a semiring, then describe
a more general algebraic structure that it does in-
stantiate.

Consider the set G of non-local feature functions
that map X × L → R≥0.4 Our definitions in §2.2
for the k-best proof semiring can be expanded to
accommodate these functions within the semiring
value. Recall that values in the k-best proof semir-
ing fall in Ak = (R≥0×L)≤k. For cube decoding,
we use a different set Acd defined as

Acd = (R≥0 × L)≤k︸ ︷︷ ︸
Ak

×G× {0, 1}

where the binary variable indicates whether the
value contains a k-best list (0, which we call an
“ordinary” value) or a non-local feature function
in G (1, which we call a “function” value). We
denote a value u ∈ Acd by

u = 〈〈〈u1, U1〉, 〈u2, U2〉, ..., 〈uk, Uk〉〉︸ ︷︷ ︸
ū

, gu, us〉

where each ui ∈ R≥0 is a probability and each
Ui ∈ L is a proof string.

We use ⊕k and ⊗k to denote the k-best proof
semiring’s operators, defined in §2.2. We let g0 be
such that g0(`) is undefined for all ` ∈ L. For two
values u = 〈ū, gu, us〉,v = 〈v̄, gv, vs〉 ∈ Acd,
cube decoding’s aggregation operator is:

u⊕cd v = 〈ū⊕k v̄, g0, 0〉 if ¬us ∧ ¬vs (8)

Under standard models, only ordinary values will
be operands of⊕cd, so⊕cd is undefined when us∨
vs. We define the combination operator ⊗cd:

u⊗cd v = (9)
〈ū⊗k v̄, g0, 0〉 if ¬us ∧ ¬vs,
〈max-k(exec(gv, ū)), g0, 0〉 if ¬us ∧ vs,
〈max-k(exec(gu, v̄)), g0, 0〉 if us ∧ ¬vs,
〈〈〉, λz.(gu(z)× gv(z)), 1〉 if us ∧ vs.

where exec(g, ū) executes the function g upon
each proof in the proof list ū, modifies the scores

4In our setting, gm(x, `) will most commonly be defined
as λ

fm(x,`)
m in the notation of §2.3. But functions in G could

also be used to implement, e.g., hard constraints or other non-
local score factors.

in place by multiplying in the function result, and
returns the modified proof list:

g′ = λ`.g(x, `)
exec(g, ū) = 〈〈u1g

′(U1), U1〉, 〈u2g
′(U2), U2〉,

..., 〈ukg
′(Uk), Uk〉〉

Here, max-k is simply used to re-sort the k-best
proof list following function evaluation.

The semiring properties fail to hold when in-
troducing non-local features in this way. In par-
ticular, ⊗cd is not associative when 1 < k < ∞.
For example, consider the probabilistic CKY algo-
rithm as above, but using the cube decoding semir-
ing with the non-local feature functions collec-
tively known as “NGramTree” features (Huang,
2008) that score the string of terminals and nonter-
minals along the path from word j to word j + 1
when two constituents CY,i,j and CZ,j,k are com-
bined. The semiring value associated with such
a feature is u = 〈〈〉,NGramTreeπ(), 1〉 (for a
specific path π), and we rewrite Eq. 1 as fol-
lows (where ranges for summation are omitted for
space):

CX,i,k =
⊕

cd pX→Y Z ⊗cd CY,i,j⊗cd CZ,j,k⊗cd u

The combination operator is not associative
since the following will give different answers:5

(pX→Y Z ⊗cd CY,i,j)⊗cd (CZ,j,k ⊗cd u) (10)

((pX→Y Z ⊗cd CY,i,j)⊗cd CZ,j,k)⊗cd u (11)

In Eq. 10, the non-local feature function is ex-
ecuted on the k-best proof list for Z, while in
Eq. 11, NGramTreeπ is called on the k-best proof
list for the X constructed from Y and Z. Further-
more, neither of the above gives the desired re-
sult, since we actually wish to expand the full set
of k2 proofs of X and then apply NGramTreeπ

to each of them (or a higher-dimensional “cube”
if more operands are present) before selecting the
k-best. The binary operations above retain only
the top k proofs of X in Eq. 11 before applying
NGramTreeπ to each of them. We actually would
like to redefine combination so that it can operate
on arbitrarily-sized sets of values.

We can understand cube decoding through an
algebraic structure with two operations ⊕ and ⊗,
where ⊗ need not be associative and need not dis-
tribute over⊕, and furthermore where⊕ and⊗ are

5Distributivity of combination over aggregation fails for
related reasons. We omit a full discussion due to space.
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defined on arbitrarily many operands. We will re-
fer here to such a structure as a generalized semir-
ing.6 To define ⊗cd on a set of operands with N ′

ordinary operands and N function operands, we
first compute the full O(kN ′

) cross-product of the
ordinary operands, then apply each of the N func-
tions from the remaining operands in turn upon the
full N ′-dimensional “cube,” finally calling max-k
on the result.

4 Cube Summing

We present an approximate solution to the sum-
ming problem when non-local features are in-
volved, which we call cube summing. It is an ex-
tension of cube decoding, and so we will describe
it as a generalized semiring. The key addition is to
maintain in each value, in addition to the k-best list
of proofs from Ak, a scalar corresponding to the
residual probability (possibly unnormalized) of all
proofs not among the k-best.7 The k-best proofs
are still used for dynamically computing non-local
features but the aggregation and combination op-
erations are redefined to update the residual as ap-
propriate.

We define the set Acs for cube summing as

Acs = R≥0 × (R≥0 × L)≤k × G× {0, 1}

A value u ∈ Acs is defined as

u = 〈u0, 〈〈u1, U1〉, 〈u2, U2〉, ..., 〈uk, Uk〉〉︸ ︷︷ ︸
ū

, gu, us〉

For a proof list ū, we use ‖ū‖ to denote the sum
of all proof scores,

∑
i:〈ui,Ui〉∈ū ui.

The aggregation operator over operands
{ui}N

i=1, all such that uis = 0,8 is defined by:⊕N
i=1 ui = (12)〈∑N

i=1 ui0 +
∥∥∥Res

(⋃N
i=1 ūi

)∥∥∥ ,

max-k
(⋃N

i=1 ūi

)
, g0, 0

〉
6Algebraic structures are typically defined with binary op-

erators only, so we were unable to find a suitable term for this
structure in the literature.

7Blunsom and Osborne (2008) described a related ap-
proach to approximate summing using the chart computed
during cube pruning, but did not keep track of the residual
terms as we do here.

8We assume that operands ui to ⊕cs will never be such
that uis = 1 (non-local feature functions). This is reasonable
in the widely used log-linear model setting we have adopted,
where weights λm are factors in a proof’s product score.

where Res returns the “residual” set of scored
proofs not in the k-best among its arguments, pos-
sibly the empty set.

For a set of N+N ′ operands {vi}N
i=1∪{wj}N ′

j=1

such that vis = 1 (non-local feature functions) and
wjs = 1 (ordinary values), the combination oper-
ator ⊗ is shown in Eq. 13 Fig. 1. Note that the
case where N ′ = 0 is not needed in this applica-
tion; an ordinary value will always be included in
combination.

In the special case of two ordinary operands
(where us = vs = 0), Eq. 13 reduces to

u⊗ v = (14)

〈u0v0 + u0 ‖v̄‖+ v0 ‖ū‖+ ‖Res(ū ? v̄)‖ ,

max-k(ū ? v̄), g0, 0〉

We define 0 as 〈0, 〈〉, g0, 0〉; an appropriate def-
inition for the combination identity element is less
straightforward and of little practical importance;
we leave it to future work.

If we use this generalized semiring to solve a
DP and achieve goal value of u, the approximate
sum of all proof probabilities is given by u0+‖ū‖.
If all features are local, the approach is exact. With
non-local features, the k-best list may not contain
the k-best proofs, and the residual score, while in-
cluding all possible proofs, may not include all of
the non-local features in all of those proofs’ prob-
abilities.

5 Implementation

We have so far viewed dynamic programming
algorithms in terms of their declarative speci-
fications as semiring-weighted logic programs.
Solvers have been proposed by Goodman (1999),
by Klein and Manning (2001) using a hypergraph
representation, and by Eisner et al. (2005). Be-
cause Goodman’s and Eisner et al.’s algorithms as-
sume semirings, adapting them for cube summing
is non-trivial.9

To generalize Goodman’s algorithm, we sug-
gest using the directed-graph data structure known
variously as an arithmetic circuit or computation
graph.10 Arithmetic circuits have recently drawn
interest in the graphical model community as a

9The bottom-up agenda algorithm in Eisner et al. (2005)
might possibly be generalized so that associativity, distribu-
tivity, and binary operators are not required (John Blatz, p.c.).

10This data structure is not specific to any particular set of
operations. We have also used it successfully with the inside
semiring.
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N⊗
i=1

vi ⊗
N ′⊗
j=1

wj =

〈 ∑
B∈P(S)

∏
b∈B

wb0

∏
c∈S\B

‖w̄c‖

 (13)

+ ‖Res(exec(gv1 , . . . exec(gvN , w̄1 ? · · · ? w̄N ′) . . .))‖ ,

max-k(exec(gv1 , . . . exec(gvN , w̄1 ? · · · ? w̄N ′) . . .)), g0, 0
〉

Figure 1: Combination operation for cube summing, where S = {1, 2, . . . , N ′} and P(S) is the power set of S excluding ∅.

tool for performing probabilistic inference (Dar-
wiche, 2003). In the directed graph, there are ver-
tices corresponding to axioms (these are sinks in
the graph), ⊕ vertices corresponding to theorems,
and ⊗ vertices corresponding to summands in the
dynamic programming equations. Directed edges
point from each node to the nodes it depends on;
⊕ vertices depend on ⊗ vertices, which depend on
⊕ and axiom vertices.

Arithmetic circuits are amenable to automatic
differentiation in the reverse mode (Griewank
and Corliss, 1991), commonly used in back-
propagation algorithms. Importantly, this permits
us to calculate the exact gradient of the approx-
imate summation with respect to axiom values,
following Eisner et al. (2005). This is desirable
when carrying out the optimization problems in-
volved in parameter estimation. Another differen-
tiation technique, implemented within the semir-
ing, is given by Eisner (2002).

Cube pruning is based on the k-best algorithms
of Huang and Chiang (2005), which save time
over generic semiring implementations through
lazy computation in both the aggregation and com-
bination operations. Their techniques are not as
clearly applicable here, because our goal is to sum
over all proofs instead of only finding a small sub-
set of them. If computing non-local features is a
computational bottleneck, they can be computed
only for the O(k) proofs considered when choos-
ing the best k as in cube pruning. Then, the com-
putational requirements for approximate summing
are nearly equivalent to cube pruning, but the ap-
proximation is less accurate.

6 Semirings Old and New

We now consider interesting special cases and
variations of cube summing.

6.1 The k-best+residual Semiring

When restricted to local features, cube pruning
and cube summing can be seen as proper semir-

k-best proof
(Goodman, 1999)

k-best + residual

Viterbi proof
(Goodman, 1999)

all proof
(Goodman, 1999)

Viterbi
(Viterbi, 1967)

ignore
proof

inside
(Baum et al., 1970)

ign
ore

 re
sid

ual k = 0

k = ∞k =
 1

Figure 2: Semirings generalized by k-best+residual.

ings. Cube pruning reduces to an implementation
of the k-best semiring (Goodman, 1998), and cube
summing reduces to a novel semiring we call the
k-best+residual semiring. Binary instantiations of
⊗ and ⊕ can be iteratively reapplied to give the
equivalent formulations in Eqs. 12 and 13. We de-
fine 0 as 〈0, 〈〉〉 and 1 as 〈1, 〈1, ε〉〉. The ⊕ opera-
tor is easily shown to be commutative. That ⊕ is
associative follows from associativity of max-k,
shown by Goodman (1998). Showing that ⊗ is
associative and that ⊗ distributes over ⊕ are less
straightforward; proof sketches are provided in
Appendix A. The k-best+residual semiring gen-
eralizes many semirings previously introduced in
the literature; see Fig. 2.

6.2 Variations

Once we relax requirements about associativity
and distributivity and permit aggregation and com-
bination operators to operate on sets, several ex-
tensions to cube summing become possible. First,
when computing approximate summations with
non-local features, we may not always be inter-
ested in the best proofs for each item. Since the
purpose of summing is often to calculate statistics
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under a model distribution, we may wish instead
to sample from that distribution. We can replace
the max-k function with a sample-k function that
samples k proofs from the scored list in its argu-
ment, possibly using the scores or possibly uni-
formly at random. This breaks associativity of ⊕.
We conjecture that this approach can be used to
simulate particle filtering for structured models.

Another variation is to vary k for different theo-
rems. This might be used to simulate beam search,
or to reserve computation for theorems closer to
goal , which have more proofs.

7 Conclusion

This paper has drawn a connection between cube
pruning, a popular technique for approximately
solving decoding problems, and the semiring-
weighted logic programming view of dynamic
programming. We have introduced a generaliza-
tion called cube summing, to be used for solv-
ing summing problems, and have argued that cube
pruning and cube summing are both semirings that
can be used generically, as long as the under-
lying probability models only include local fea-
tures. With non-local features, cube pruning and
cube summing can be used for approximate decod-
ing and summing, respectively, and although they
no longer correspond to semirings, generic algo-
rithms can still be used.
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A k-best+residual is a Semiring
In showing that k-best+residual is a semiring, we will restrict
our attention to the computation of the residuals. The com-
putation over proof lists is identical to that performed in the
k-best proof semiring, which was shown to be a semiring by
Goodman (1998). We sketch the proofs that ⊗ is associative
and that ⊗ distributes over ⊕; associativity of ⊕ is straight-
forward.

For a proof list ā, ‖ā‖ denotes the sum of proof scores,P
i:〈ai,Ai〉∈ā ai. Note that:

‖Res(ā)‖+ ‖max-k(ā)‖ = ‖ā‖ (15)‚‚ā ? b̄
‚‚ = ‖ā‖

‚‚b̄
‚‚ (16)

Associativity. Given three semiring values u, v, and w, we
need to show that (u⊗v)⊗w = u⊗(v⊗w). After expand-
ing the expressions for the residuals using Eq. 14, there are
10 terms on each side, five of which are identical and cancel

out immediately. Three more cancel using Eq. 15, leaving:

LHS = ‖Res(ū ? v̄)‖ ‖w̄‖+ ‖Res(max-k(ū ? v̄) ? w̄)‖
RHS = ‖ū‖ ‖Res(v̄ ? w̄)‖+ ‖Res(ū ? max-k(v̄ ? w̄))‖

If LHS = RHS, associativity holds. Using Eq. 15 again, we
can rewrite the second term in LHS to obtain

LHS = ‖Res(ū ? v̄)‖ ‖w̄‖+ ‖max-k(ū ? v̄) ? w̄‖
− ‖max-k(max-k(ū ? v̄) ? w̄)‖

Using Eq. 16 and pulling out the common term ‖w̄‖, we have

LHS =(‖Res(ū ? v̄)‖+ ‖max-k(ū ? v̄)‖) ‖w̄‖
− ‖max-k(max-k(ū ? v̄) ? w̄)‖

= ‖(ū ? v̄) ? w̄‖ − ‖max-k(max-k(ū ? v̄) ? w̄)‖
= ‖(ū ? v̄) ? w̄‖ − ‖max-k((ū ? v̄) ? w̄)‖

The resulting expression is intuitive: the residual of (u⊗v)⊗
w is the difference between the sum of all proof scores and
the sum of the k-best. RHS can be transformed into this same
expression with a similar line of reasoning (and using asso-
ciativity of ?). Therefore, LHS = RHS and ⊗ is associative.

Distributivity. To prove that ⊗ distributes over ⊕, we must
show left-distributivity, i.e., that u⊗(v⊕w) = (u⊗v)⊕(u⊗
w), and right-distributivity. We show left-distributivity here.
As above, we expand the expressions, finding 8 terms on the
LHS and 9 on the RHS. Six on each side cancel, leaving:

LHS = ‖Res(v̄ ∪ w̄)‖ ‖ū‖+ ‖Res(ū ? max-k(v̄ ∪ w̄))‖
RHS = ‖Res(ū ? v̄)‖+ ‖Res(ū ? w̄)‖

+ ‖Res(max-k(ū ? v̄) ∪max-k(ū ? w̄))‖

We can rewrite LHS as:

LHS = ‖Res(v̄ ∪ w̄)‖ ‖ū‖+ ‖ū ? max-k(v̄ ∪ w̄)‖
− ‖max-k(ū ? max-k(v̄ ∪ w̄))‖

= ‖ū‖ (‖Res(v̄ ∪ w̄)‖+ ‖max-k(v̄ ∪ w̄)‖)
− ‖max-k(ū ? max-k(v̄ ∪ w̄))‖

= ‖ū‖ ‖v̄ ∪ w̄‖ − ‖max-k(ū ? (v̄ ∪ w̄))‖
= ‖ū‖ ‖v̄ ∪ w̄‖ − ‖max-k((ū ? v̄) ∪ (ū ? w̄))‖

where the last line follows because ? distributes over ∪
(Goodman, 1998). We now work with the RHS:

RHS = ‖Res(ū ? v̄)‖+ ‖Res(ū ? w̄)‖
+ ‖Res(max-k(ū ? v̄) ∪max-k(ū ? w̄))‖

= ‖Res(ū ? v̄)‖+ ‖Res(ū ? w̄)‖
+ ‖max-k(ū ? v̄) ∪max-k(ū ? w̄)‖
− ‖max-k(max-k(ū ? v̄) ∪max-k(ū ? w̄))‖

Since max-k(ū ? v̄) and max-k(ū ? w̄) are disjoint (we
assume no duplicates; i.e., two different theorems can-
not have exactly the same proof), the third term becomes
‖max-k(ū ? v̄)‖+ ‖max-k(ū ? w̄)‖ and we have

= ‖ū ? v̄‖+ ‖ū ? w̄‖
− ‖max-k(max-k(ū ? v̄) ∪max-k(ū ? w̄))‖

= ‖ū‖ ‖v̄‖+ ‖ū‖ ‖w̄‖
− ‖max-k((ū ? v̄) ∪ (ū ? w̄))‖

= ‖ū‖ ‖v̄ ∪ w̄‖ − ‖max-k((ū ? v̄) ∪ (ū ? w̄))‖ .
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Abstract
We present a framework for interfacing
a PCFG parser with lexical information
from an external resource following a dif-
ferent tagging scheme than the treebank.
This is achieved by defining a stochas-
tic mapping layer between the two re-
sources. Lexical probabilities for rare
events are estimated in a semi-supervised
manner from a lexicon and large unanno-
tated corpora. We show that this solu-
tion greatly enhances the performance of
an unlexicalized Hebrew PCFG parser, re-
sulting in state-of-the-art Hebrew parsing
results both when a segmentation oracle is
assumed, and in a real-word parsing sce-
nario of parsing unsegmented tokens.

1 Introduction

The intuition behind unlexicalized parsers is that
the lexicon is mostly separated from the syntax:
specific lexical items are mostly irrelevant for ac-
curate parsing, and can be mediated through the
use of POS tags and morphological hints. This
same intuition also resonates in highly lexicalized
formalism such as CCG: while the lexicon cate-
gories are very fine grained and syntactic in na-
ture, once the lexical category for a lexical item is
determined, the specific lexical form is not taken
into any further consideration.

Despite this apparent separation between the
lexical and the syntactic levels, both are usually es-
timated solely from a single treebank. Thus, while

∗Supported by the Lynn and William Frankel Center for
Computer Sciences, Ben Gurion University

†Funded by the Dutch Science Foundation (NWO), grant
number 017.001.271.

‡Post-doctoral fellow, Deutsche Telekom labs at Ben Gu-
rion University

PCFGs can be accurate, they suffer from vocabu-
lary coverage problems: treebanks are small and
lexicons induced from them are limited.

The reason for this treebank-centric view in
PCFG learning is 3-fold: the English treebank is
fairly large and English morphology is fairly sim-
ple, so that in English, the treebank does provide
mostly adequate lexical coverage1; Lexicons enu-
merate analyses, but don’t provide probabilities
for them; and, most importantly, the treebank and
the external lexicon are likely to follow different
annotation schemas, reflecting different linguistic
perspectives.

On a different vein of research, current POS tag-
ging technology deals with much larger quantities
of training data than treebanks can provide, and
lexicon-based unsupervised approaches to POS
tagging are practically unlimited in the amount
of training data they can use. POS taggers rely
on richer knowledge than lexical estimates de-
rived from the treebank, have evolved sophisti-
cated strategies to handle OOV and can provide
distributions p(t|w, context) instead of “best tag”
only.

Can these two worlds be combined? We pro-
pose that parsing performance can be greatly im-
proved by using a wide coverage lexicon to sug-
gest analyses for unknown tokens, and estimating
the respective lexical probabilities using a semi-
supervised technique, based on the training pro-
cedure of a lexicon-based HMM POS tagger. For
many resources, this approach can be taken only
on the proviso that the annotation schemes of the
two resources can be aligned.

We take Modern Hebrew parsing as our case
study. Hebrew is a Semitic language with rich

1This is not the case with other languages, and also not
true for English when adaptation scenarios are considered.
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morphological structure. This rich structure yields
a large number of distinct word forms, resulting in
a high OOV rate (Adler et al., 2008a). This poses
a serious problem for estimating lexical probabili-
ties from small annotated corpora, such as the He-
brew treebank (Sima’an et al., 2001).

Hebrew has a wide coverage lexicon /
morphological-analyzer (henceforth, KC Ana-
lyzer) available2, but its tagset is different than the
one used by the Hebrew Treebank. These are not
mere technical differences, but derive from dif-
ferent perspectives on the data. The Hebrew TB
tagset is syntactic in nature, while the KC tagset
is lexicographic. This difference in perspective
yields different performance for parsers induced
from tagged data, and a simple mapping between
the two schemes is impossible to define (Sec. 2).

A naive approach for combining the use of the
two resources would be to manually re-tag the
Treebank with the KC tagset, but we show this ap-
proach harms our parser’s performance. Instead,
we propose a novel, layered approach (Sec. 2.1),
in which syntactic (TB) tags are viewed as contex-
tual refinements of the lexicon (KC) tags, and con-
versely, KC tags are viewed as lexical clustering
of the syntactic ones. This layered representation
allows us to easily integrate the syntactic and the
lexicon-based tagsets, without explicitly requiring
the Treebank to be re-tagged.

Hebrew parsing is further complicated by the
fact that common prepositions, conjunctions and
articles are prefixed to the following word and
pronominal elements often appear as suffixes. The
segmentation of prefixes and suffixes can be am-
biguous and must be determined in a specific con-
text only. Thus, the leaves of the syntactic parse
trees do not correspond to space-delimited tokens,
and the yield of the tree is not known in advance.

We show that enhancing the parser with external
lexical information is greatly beneficial, both in an
artificial scenario where the token segmentation is
assumed to be known (Sec. 4), and in a more re-
alistic one in which parsing and segmentation are
handled jointly by the parser (Goldberg and Tsar-
faty, 2008) (Sec. 5). External lexical informa-
tion enhances unlexicalized parsing performance
by as much as 6.67 F-points, an error reduction
of 20% over a Treebank-only parser. Our results
are not only the best published results for pars-
ing Hebrew, but also on par with state-of-the-art

2http://mila.cs.technion.ac.il/hebrew/resources/lexicons/

lexicalized Arabic parsing results assuming gold-
standard fine-grained Part-of-Speech (Maamouri
et al., 2008).3

2 A Tale of Two Resources
Modern Hebrew has 2 major linguistic resources:
the Hebrew Treebank (TB), and a wide coverage
Lexicon-based morphological analyzer developed
and maintained by the Knowledge Center for Pro-
cessing Hebrew (KC Analyzer).

The Hebrew Treebank consists of sentences
manually annotated with constituent-based syn-
tactic information. The most recent version (V2)
(Guthmann et al., 2009) has 6,219 sentences, and
covers 28,349 unique tokens and 17,731 unique
segments4.

The KC Analyzer assigns morphological analy-
ses (prefixes, suffixes, POS, gender, person, etc.)
to Hebrew tokens. It is based on a lexicon of
roughly 25,000 word lemmas and their inflection
patterns. From these, 562,439 unique word forms
are derived. These are then prefixed (subject to
constraints) by 73 prepositional prefixes.

It is interesting to note that even with these
numbers, the Lexicon’s coverage is far from com-
plete. Roughly 1,500 unique tokens from the He-
brew Treebank cannot be assigned any analysis
by the KC Lexicon, and Adler et al.(2008a) report
that roughly 4.5% of the tokens in a 42M tokens
corpus of news text are unknown to the Lexicon.
For roughly 400 unique cases in the Treebank, the
Lexicon provides some analyses, but not a correct
one. This goes to emphasize the productive nature
of Hebrew morphology, and stress that robust lex-
ical probability estimates cannot be derived from
an annotated resource as small as the Treebank.

Lexical vs. Syntactic POS Tags The analyses
produced by the KC Analyzer are not compatible
with the Hebrew TB.

The KC tagset (Adler et al., 2008b; Netzer et
al., 2007; Adler, 2007) takes a lexical approach to
POS tagging (“a word can assume only POS tags
that would be assigned to it in a dictionary”), while
the TB takes a syntactic one (“if the word in this
particular positions functions as an Adverb, tag it
as an Adverb, even though it is listed in the dictio-
nary only as a Noun”). We present 2 cases that em-
phasize the difference: Adjectives: the Treebank

3Our method is orthogonal to lexicalization and can be
used in addition to it if one so wishes.

4In these counts, all numbers are conflated to one canoni-
cal form
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treats any word in an adjectivial position as an Ad-
jective. This includes also demonstrative pronouns
זה ילד (this boy). However, from the KC point of
view, the fact that a pronoun can be used to modify
a noun does not mean it should appear in a dictio-
nary as an adjective. The MOD tag: similarly,
the TB has a special POS-tag for words that per-
form syntactic modification. These are mostly ad-
verbs, but almost any Adjective can, in some cir-
cumstances, belong to that class as well. This cat-
egory is highly syntactic, and does not conform to
the lexicon based approach.

In addition, many adverbs and prepositions in
Hebrew are lexicalized instances of a preposition
followed by a noun (e.g., ,ברכות “in+softness”,
softly). These can admit both the lexical-
ized and the compositional analyses. Indeed,
many words admit the lexicalized analyses in
one of the resource but not in the other (e.g.,
לטובת “for+benefit” is Prep in the TB but only
Prep+Noun in the KC, while for מצד “from+side”
it is the other way around).

2.1 A Unified Resource

While the syntactic POS tags annotation of the TB
is very useful for assigning the correct tree struc-
ture when the correct POS tag is known, there are
clear benefits to an annotation scheme that can be
easily backed by a dictionary.

We created a unified resource, in which every
word occurrence in the Hebrew treebank is as-
signed a KC-based analysis. This was done in a
semi-automatic manner – for most cases the map-
ping could be defined deterministically. The rest
(less than a thousand instances) were manually as-
signed. Some Treebank tokens had no analyses
in the KC lexicon, and some others did not have
a correct analysis. These were marked as “UN-
KNOWN” and “MISSING” respectively.5

The result is a Treebank which is morpho-
logically annotated according to two different
schemas. On average, each of the 257 TB tags
is mapped to 2.46 of the 273 KC tags.6 While this
resource can serve as a basis for many linguisti-
cally motivated inquiries, the rest of this paper is

5Another solution would be to add these missing cases to
the KC Lexicon. In our view this act is harmful: we don’t
want our Lexicon to artificially overfit our annotated corpora.

6A “tag” in this context means the complete morphologi-
cal information available for a morpheme in the Treebank: its
part of speech, inflectional features and possessive suffixes,
but not prefixes or nominative and accusative suffixes, which
are taken to be separate morphemes.

devoted to using it for constructing a better parser.

Tagsets Comparison In (Adler et al., 2008b),
we hypothesized that due to its syntax-based na-
ture, the Treebank morphological tagset is more
suitable than the KC one for syntax related tasks.
Is this really the case? To verify it, we simulate a
scenario in which the complete gold morpholog-
ical information is available. We train 2 PCFG
grammars, one on each tagged version of the Tree-
bank, and test them on the subset of the develop-
ment set in which every token is completely cov-
ered by the KC Analyzer (351 sentences).7 The
input to the parser is the yields and disambiguated
pre-terminals of the trees to be parsed. The parsing
results are presented in Table 1. Note that this sce-
nario does not reflect actual parsing performance,
as the gold information is never available in prac-
tice, and surface forms are highly ambiguous.

Tagging Scheme Precision Recall
TB / syntactic 82.94 83.59
KC / dictionary 81.39 81.20

Table 1: evalb results for parsing with Oracle
morphological information, for the two tagsets
With gold morphological information, the TB

tagging scheme is more informative for the parser.
The syntax-oriented annotation scheme of the

TB is more informative for parsing than the lexi-
cographic KC scheme. Hence, we would like our
parser to use this TB tagset whenever possible, and
the KC tagset only for rare or unseen words.

A Layered Representation It seems that learn-
ing a treebank PCFG assuming such a different
tagset would require a treebank tagged with the
alternative annotation scheme. Rather than assum-
ing the existence of such an alternative resource,
we present here a novel approach in which we
view the different tagsets as corresponding to dif-
ferent aspects of the morphosyntactic representa-
tion of pre-terminals in the parse trees. Each of
these layers captures subtleties and regularities in
the data, none of which we would want to (and
sometimes, cannot) reduce to the other. We, there-
fore, propose to retain both tagsets and learn a
fuzzy mapping between them.

In practice, we propose an integrated represen-
tation of the tree in which the bottommost layer
represents the yield of the tree, the surface forms

7For details of the train/dev splits as well as the grammar,
see Section 4.2.
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are tagged with dictionary-based KC POS tags,
and syntactic TB POS tags are in turn mapped onto
the KC ones (see Figure 1).

TB: KC: Layered:
...

JJ-ZYTB

זה

...
PRP-M-S-3-DEMKC

זה

...
JJ-ZYTB

PRP-M-S-3-DEMKC

זה
...

INTB

במסגרת

...
INKC

ב

...
NN-F-SKC

מסגרת

...
INTB

INKC

ב

NN-F-SKC

מסגרת

Figure 1: Syntactic (TB), Lexical (KC) and
Layered representations

This representation helps to retain the informa-
tion both for the syntactic and the morphologi-
cal POS tagsets, and can be seen as capturing the
interaction between the morphological and syn-
tactic aspects, allowing for a seamless integra-
tion of the two levels of representation. We re-
fer to this intermediate layer of representation as
a morphosyntactic-transfer layer and we formally
depict it as p(tKC |tTB).

This layered representation naturally gives rise
to a generative model in which a phrase level con-
stituent first generates a syntactic POS tag (tTB),
and this in turn generates the lexical POS tag(s)
(tKC). The KC tag then ultimately generates the
terminal symbols (w). We assume that a morpho-
logical analyzer assigns all possible analyses to a
given terminal symbol. Our terminal symbols are,
therefore, pairs: 〈w, t〉, and our lexical rules are of
the form t→ 〈w, t〉. This gives rise to the follow-
ing equivalence:

p(〈w, tKC〉|tTB) = p(tKC |tTB)p(〈w, tKC〉|tKC)

In Sections (4, 5) we use this layered gener-
ative process to enable a smooth integration of
a PCFG treebank-learned grammar, an external
wide-coverage lexicon, and lexical probabilities
learned in a semi-supervised manner.

3 Semi-supervised Lexical Probability
Estimations

A PCFG parser requires lexical probabilities
of the form p(w|t) (Charniak et al., 1996).
Such information is not readily available in
the lexicon. However, it can be estimated
from the lexicon and large unannotated cor-
pora, by using the well-known Baum-Welch

(EM) algorithm to learn a trigram HMM tagging
model of the form p(t1, . . . , tn, w1, . . . , wn) =
argmax

∏
p(ti|ti−1, ti−2)p(wi|ti), and taking

the emission probabilities p(w|t) of that model.
In Hebrew, things are more complicated, as

each emission w is not a space delimited token, but
rather a smaller unit (a morphological segment,
henceforth a segment). Adler and Elhadad (2006)
present a lattice-based modification of the Baum-
Welch algorithm to handle this segmentation am-
biguity.

Traditionally, such unsupervised EM-trained
HMM taggers are thought to be inaccurate, but
(Goldberg et al., 2008) showed that by feeding the
EM process with sufficiently good initial proba-
bilities, accurate taggers (> 91% accuracy) can be
learned for both English and Hebrew, based on a
(possibly incomplete) lexicon and large amount of
raw text. They also present a method for automat-
ically obtaining these initial probabilities.

As stated in Section 2, the KC Analyzer (He-
brew Lexicon) coverage is incomplete. Adler
et al.(2008a) use the lexicon to learn a Maximum
Entropy model for predicting possible analyses for
unknown tokens based on their orthography, thus
extending the lexicon to cover (even if noisily) any
unknown token. In what follows, we use KC Ana-
lyzer to refer to this extended version.

Finally, these 3 works are combined to create
a state-of-the-art POS-tagger and morphological
disambiguator for Hebrew (Adler, 2007): initial
lexical probabilities are computed based on the
MaxEnt-extended KC Lexicon, and are then fed
to the modified Baum-Welch algorithm, which is
used to fit a morpheme-based tagging model over
a very large corpora. Note that the emission prob-
abilities P (W |T ) of that model cover all the mor-
phemes seen in the unannotated training corpus,
even those not covered by the KC Analyzer.8

We hypothesize that such emission probabili-
ties are good estimators for the morpheme-based
P (T → W ) lexical probabilities needed by a
PCFG parser. To test this hypothesis, we use it
to estimate p(tKC → w) in some of our models.

4 Parsing with a Segmentation Oracle

We now turn to describing our first set of exper-
iments, in which we assume the correct segmen-

8P (W |T ) is defined also for words not seen during train-
ing, based on the initial probabilities calculation procedure.
For details, see (Adler, 2007).
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tation for each input sentence is known. This is
a strong assumption, as the segmentation stage
is ambiguous, and segmentation information pro-
vides very useful morphological hints that greatly
constrain the search space of the parser. However,
the setting is simpler to understand than the one
in which the parser performs both segmentation
and POS tagging, and the results show some in-
teresting trends. Moreover, some recent studies on
parsing Hebrew, as well as all studies on parsing
Arabic, make this oracle assumption. As such, the
results serve as an interesting comparison. Note
that in real-world parsing situations, the parser is
faced with a stream of ambiguous unsegmented to-
kens, making results in this setting not indicative
of real-world parsing performance.

4.1 The Models

The main question we address is the incorporation
of an external lexical resource into the parsing pro-
cess. This is challenging as different resources fol-
low different tagging schemes. One way around
it is re-tagging the treebank according to the new
tagging scheme. This will serve as a baseline
in our experiment. The alternative method uses
the Layered Representation described above (Sec.
2.1). We compare the performance of the two ap-
proaches, and also compare them against the per-
formance of the original treebank without external
information.

We follow the intuition that external lexical re-
sources are needed only when the information
contained in the treebank is too sparse. There-
fore, we use treebank-derived estimates for reli-
able events, and resort to the external resources
only in the cases of rare or OOV words, for which
the treebank distribution is not reliable.

Grammar and Notation For all our experi-
ments, we use the same grammar, and change
only the way lexical probabilities are imple-
mented. The grammar is an unlexicalized
treebank-estimated PCFG with linguistically mo-
tivated state-splits.9

In what follows, a lexical event is a word seg-
ment which is assigned a single POS thereby func-
tioning as a leaf in a syntactic parse tree. A rare

9Details of the grammar: all functional information is re-
moved from the non-terminals, finite and non-finite verbs, as
well as possessive and other PPs are distinguished, definite-
ness structure of constituents is marked, and parent annota-
tion is employed. It is the same grammar as described in
(Goldberg and Tsarfaty, 2008).

(lexical) event is an event occurring less than K
times in the training data, and a reliable (lexical)
event is one occurring at least K times in the train-
ing data. We use OOV to denote lexical events ap-
pearing 0 times in the training data. count(·) is
a counting function over the training data, rare
stands for any rare event, and wrare is a specific
rare event. KCA(·) is the KC Analyzer function,
mapping a lexical event to a set of possible tags
(analyses) according to the lexicon.

Lexical Models
All our models use relative frequency estimated
probabilities for reliable lexical events: p(t →
w|t) = count(w,t)

count(t) . They differ only in their treat-
ment of rare (including OOV) events.

In our Baseline, no external resource is used.
We smooth for rare and OOV events using a per-
tag probability distribution over rare segments,
which we estimate using relative frequency over
rare segments in the training data: p(wrare|t) =
count(rare,t)

count(t) . This is the way lexical probabilities
in treebank grammars are usually estimated.

We experiment with two flavours of lexical
models. In the first, LexFilter, the KC Analyzer is
consulted for rare events. We estimate rare events
using the same per-tag distribution as in the base-
line, but use the KC Analyzer to filter out any in-
compatible cases, that is, we force to 0 the proba-
bility of any analysis not supported by the lexicon:

p(wrare|t) =

{
count(rare,t)

count(t) t ∈ KCA(wrare)

0 t /∈ KCA(wrare)
Our second flavour of lexical models, Lex-

Probs, the KC Analyzer is consulted to propose
analyses for rare events, and the probability of an
analysis is estimated via the HMM emission func-
tion described in Section 3, which we denote B:
p(wrare|t) = B(wrare, t)

In both LexFilter and LexProbs, we resort to
the relative frequency estimation in case the event
is not covered in the KC Analyzer.

Tagset Representations
In this work, we are comparing 3 different rep-
resentations: TB, which is the original Treebank,
KC which is the Treebank converted to use the KC
Analyzer tagset, and Layered, which is the layered
representation described above.

The details of the lexical models vary according
to the representation we choose to work with.
For the TB setting, our lexical rules are of the form
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ttb → w. Only the Baseline models are relevant
here, as the tagset is not compatible with that of
the external lexicon.
For the KC setting, our lexical rules are of the form
tkc → w, and their probabilities are estimated as
described above. Note that this setting requires our
trees to be tagged with the new (KC) tagset, and
parsed sentences are also tagged with this tagset.
For the Layered setting, we use lexical rules of
the form ttb → w. Reliable events are esti-
mated as usual, via relative frequency over the
original treebank. For rare events, we estimate
p(ttb → w|ttb) = p(ttb → tkc|ttb)p(tkc → w|tkc),
where the transfer probabilities p(ttb → tkc) are
estimated via relative frequencies over the layered
trees, and the emission probabilities are estimated
either based on other rare events (LexFilter) or
based on the semi-supervised method described in
Section 3 (LexProbs).

The layered setting has several advantages:
First, the resulting trees are all tagged with the
original TB tagset. Second, the training proce-
dure does not require a treebank tagged with the
KC tagset: Instead of learning the transfer layer
from the treebank we could alternatively base our
counts on a different parallel resource, estimate it
from unannotated data using EM, define it heuris-
tically, or use any other estimation procedure.
4.2 Experiments
We perform all our experiments on Version 2 of
the Hebrew Treebank, and follow the train/test/dev
split introduced in (Tsarfaty and Sima’an, 2007):
section 1 is used for development, sections 2-12
for training, and section 13 is the test set, which
we do not use in this work. All the reported re-
sults are on the development set.10 After removal
of empty sentences, we have 5241 sentences for
training, and 483 for testing. Due to some changes
in the Treebank11, our results are not directly com-
parable to earlier works. However, our baseline
models are very similar to the models presented
in, e.g. (Goldberg and Tsarfaty, 2008).

In order to compare the performance of the
model on the various tagset representations (TB
tags, KC tags, Layered), we remove from the test
set 51 sentences in which at least one token is
marked as not having any correct segmentation in
the KC Analyzer. This introduces a slight bias in

10This work is part of an ongoing work on a parser, and the
test set is reserved for final evaluation of the entire system.

11Normalization of numbers and percents, correcting of
some incorrect trees, etc.

favor of the KC-tags setting, and makes the test
somewhat easier for all the models. However, it
allows for a relatively fair comparison between the
various models.12

Results and Discussion
Results are presented in Table 2.13

Baseline
rare: < 2 rare: < 10

Prec Rec Prec Rec
TB 72.80 71.70 67.66 64.92
KC 72.23 70.30 67.22 64.31

LexFilter
rare: < 2 rare: < 10

Prec Rec Prec Rec
KC 77.18 76.31 77.34 76.20
Layered 76.69 76.40 76.66 75.74

LexProbs
rare: < 2 rare: < 10

Prec Rec Prec Rec
KC 77.29 76.65 77.22 76.36
Layered 76.81 76.49 76.85 76.08

Table 2: evalb results for parsing with a
segmentation Oracle.

As expected, all the results are much lower than
those with gold fine-grained POS (Table 1).

When not using any external knowledge (Base-
line), the TB tagset performs slightly better than
the converted treebank (KC). Note, however, that
the difference is less pronounced than in the gold
morphology case. When varying the rare words
threshold from 2 to 10, performance drops consid-
erably. Without external knowledge, the parser is
facing difficulties coping with unseen events.

The incorporation of an external lexical knowl-
edge in the form of pruning illegal tag assignments
for unseen words based on the KC lexicon (Lex-
Filter) substantially improves the results (∼ 72 to
∼ 77). The additional lexical knowledge clearly
improves the parser. Moreover, varying the rare
words threshold in this setting hardly affects the
parser performance: the external lexicon suffices
to guide the parser in the right direction. Keep-
ing the rare words threshold high is desirable, as it
reduces overfitting to the treebank vocabulary.

We expected the addition of the semi-
supervised p(t → w) distribution (LexProbs) to
improve the parser, but found it to have an in-
significant effect. The correct segmentation seems

12We are forced to remove these sentences because of the
artificial setting in which the correct segmentation is given. In
the no-oracle setting (Sec. 5), we do include these sentences.

13The layered trees have an extra layer of bracketing
(tTB → tKC ). We remove this layer prior to evaluation.
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to remove enough ambiguity as to let the parser
base its decisions on the generic tag distribution
for rare events.

In all the settings with a Segmentation Oracle,
there is no significant difference between the KC
and the Layered representation. We prefer the lay-
ered representation as it provides more flexibility,
does not require trees tagged with the KC tagset,
and produces parse trees with the original TB POS
tags at the leaves.

5 Parsing without a Segmentation Oracle
When parsing real world data, correct token seg-
mentation is not known in advance. For method-
ological reasons, this issue has either been set-
aside (Tsarfaty and Sima’an, 2007), or dealt with
in a pipeline model in which a morphological dis-
ambiguator is run prior to parsing to determine the
correct segmentation. However, Tsarfaty (2006)
argues that there is a strong interaction between
syntax and morphological segmentation, and that
the two tasks should be modeled jointly, and not
in a pipeline model. Several studies followed this
line, (Cohen and Smith, 2007) the most recent of
which is Goldberg and Tsarfaty (2008), who pre-
sented a model based on unweighted lattice pars-
ing for performing the joint task.

This model uses a morphological analyzer to
construct a lattice over all possible morphologi-
cal analyses of an input sentence. The arcs of
the lattice are 〈w, t〉 pairs, and a lattice parser
is used to build a parse over the lattice. The
Viterbi parse over the lattice chooses a lattice path,
which induces a segmentation over the input sen-
tence. Thus, parsing and segmentation are per-
formed jointly.

Lexical rules in the model are defined over the
lattice arcs (t→ 〈w, t〉|t), and smoothed probabil-
ities for them are estimated from the treebank via
relative frequency over terminal/preterminal pairs.
The lattice paths themselves are unweighted, re-
flecting the intuition that all morphological anal-
yses are a-priori equally likely, and that their per-
spective strengths should come from the segments
they contain and their interaction with the syntax.

Goldberg and Tsarfaty (2008) use a data-driven
morphological analyzer derived from the treebank.
Their better models incorporated some external
lexical knowledge by use of an Hebrew spell
checker to prune some illegal segmentations.

In what follows, we use the layered represen-
tation to adapt this joint model to use as its mor-

phological analyzer the wide coverage KC Ana-
lyzer in enhancement of a data-driven one. Then,
we further enhance the model with the semi-
supervised lexical probabilities described in Sec 3.

5.1 Model

The model of Goldberg and Tsarfaty (2008) uses a
morphological analyzer to constructs a lattice for
each input token. Then, the sentence lattice is built
by concatenating the individual token lattices. The
morphological analyzer used in that work is data
driven based on treebank observations, and em-
ploys some well crafted heuristics for OOV tokens
(for details, see the original paper). Here, we use
instead a morphological analyzer which uses the
KC Lexicon for rare and OOV tokens.

We begin by adapting the rare vs. reliable events
distinction from Section 4 to cover unsegmented
tokens. We define a reliable token to be a token
from the training corpus, which each of its possi-
ble segments according to the training corpus was
seen in the training corpus at least K times.14 All
other tokens are considered to be rare.

Our morphological analyzer works as follows:
For reliable tokens, it returns the set of analyses
seen for this token in the treebank (each analysis
is a sequence of pairs of the form 〈w, tTB〉).
For rare tokens, it returns the set of analyses re-
turned by the KC analyzer (here, analyses are se-
quences of pairs of the form 〈w, tKC〉).

The lattice arcs, then, can take two possible
forms, either 〈w, tTB〉 or 〈w, tKC〉.
Lexical rules of the form tTB → 〈w, tTB〉 are reli-
able, and their probabilities estimated via relative
frequency over events seen in training.
Lexical rules of the form tTB → 〈w, tKC〉
are estimated in accordance with the transfer
layer introduced above: p(tTB → 〈w, tKC〉) =
p(tKC |tTB)p(〈w, tKC〉|tKC).

The remaining question is how to estimate
p(〈w, tKC〉|tKC). Here, we use either the LexFil-
ter (estimated over all rare events) or LexProbs
(estimated via the semisupervised emission prob-
abilities)models, as defined in Section 4.1 above.

5.2 Experiments

As our Baseline, we take the best model of (Gold-
berg and Tsarfaty, 2008), run against the current

14Note that this is more inclusive than requiring that the
token itself is seen in the training corpus at least K times, as
some segments may be shared by several tokens.
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version of the Treebank.15 This model uses the
same grammar as described in Section 4.1 above,
and use some external information in the form of a
spell-checker wordlist. We compare this Baseline
with the LexFilter and LexProbs models over the
Layered representation.

We use the same test/train splits as described in
Section 4. Contrary to the Oracle segmentation
setting, here we evaluate against all sentences, in-
cluding those containing tokens for which the KC
Analyzer does not contain any correct analyses.

Due to token segmentation ambiguity, the re-
sulting parse yields may be different than the gold
ones, and evalb can not be used. Instead, we use
the evaluation measure of (Tsarfaty, 2006), also
used in (Goldberg and Tsarfaty, 2008), which is
an adaptation of parseval to use characters instead
of space-delimited tokens as its basic units.

Results and Discussion
Results are presented in Table 3.

rare: < 2 rare: < 10
Prec Rec Prec Rec

Baseline 67.71 66.35 — —
LexFilter 68.25 69.45 57.72 59.17
LexProbs 73.40 73.99 70.09 73.01

Table 3: Parsing results for the joint parsing+seg
task, with varying external knowledge

The results are expectedly lower than with the
segmentation Oracle, as the joint task is much
harder, but the external lexical information greatly
benefits the parser also in the joint setting. While
significant, the improvement from the Baseline to
LexFilter is quite small, which is due to the Base-
line’s own rather strong illegal analyses filtering
heuristic. However, unlike the oracle segmenta-
tion case, here the semisupervised lexical prob-
abilities (LexProbs) have a major effect on the
parser performance (∼ 69 to ∼ 73.5 F-score), an
overall improvement of ∼ 6.6 F-points over the
Baseline, which is the previous state-of-the art for
this joint task. This supports our intuition that rare
lexical events are better estimated using a large
unannotated corpus, and not using a generic tree-
bank distribution, or sparse treebank based counts,
and that lexical probabilities have a crucial role in
resolving segmentation ambiguities.

15While we use the same software as (Goldberg and Tsar-
faty, 2008), the results reported here are significantly lower.
This is due to differences in annotation scheme between V1
and V2 of the Hebrew TB

The parsers with the extended lexicon were un-
able to assign a parse to about 10 of the 483 test
sentences. We count them as having 0-Fscore
in the table results.16 The Baseline parser could
not assign a parse to more than twice that many
sentences, suggesting its lexical pruning heuris-
tic is quite harsh. In fact, the unparsed sen-
tences amount to most of the difference between
the Baseline and LexFilter parsers.

Here, changing the rare tokens threshold has
a significant effect on parsing accuracy, which
suggests that the segmentation for rare tokens is
highly consistent within the corpus. When an un-
known token is encountered, a clear bias should
be taken toward segmentations that were previ-
ously seen in the same corpus. Given that that ef-
fect is remedied to some extent by introducing the
semi-supervised lexical probabilities, we believe
that segmentation accuracy for unseen tokens can
be further improved, perhaps using resources such
as (Gabay et al., 2008), and techniques for incor-
porating some document, as opposed to sentence
level information, into the parsing process.

6 Conclusions
We present a framework for interfacing a parser
with an external lexicon following a differ-
ent annotation scheme. Unlike other studies
(Yang Huang et al., 2005; Szolovits, 2003) in
which such interfacing is achieved by a restricted
heuristic mapping, we propose a novel, stochastic
approach, based on a layered representation. We
show that using an external lexicon for dealing
with rare lexical events greatly benefits a PCFG
parser for Hebrew, and that results can be further
improved by the incorporation of lexical probabil-
ities estimated in a semi-supervised manner using
a wide-coverage lexicon and a large unannotated
corpus. In the future, we plan to integrate this
framework with a parsing model that is specifi-
cally crafted to cope with morphologically rich,
free-word order languages, as proposed in (Tsar-
faty and Sima’an, 2008).

Apart from Hebrew, our method is applicable
in any setting in which there exist a small tree-
bank and a wide-coverage lexical resource. For
example parsing Arabic using the Arabic Tree-
bank and the Buckwalter analyzer, or parsing En-
glish biomedical text using a biomedical treebank
and the UMLS Specialist Lexicon.

16When discarding these sentences from the test set, result
on the better LexProbs model leap to 74.95P/75.56R.
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Abstract 

 

In this paper, we describe experiments con-

ducted on identifying a person using a novel 

unique correlated corpus of text and audio 

samples of the person’s communication in six 

genres.  The text samples include essays, 

emails, blogs, and chat.  Audio samples were 

collected from individual interviews and group 

discussions and then transcribed to text.  For 

each genre, samples were collected for six top-

ics.  We show that we can identify the com-

municant with an accuracy of 71% for six fold 

cross validation using an average of 22,000 

words per individual across the six genres.  

For person identification in a particular genre 

(train on five genres, test on one), an average 

accuracy of 82% is achieved.  For identifica-

tion from topics (train on five topics, test on 

one), an average accuracy of 94% is achieved.  

We also report results on identifying a per-

son’s communication in a genre using text ge-

nres only as well as audio genres only.  

1 Introduction 

Can one identify a person from samples of 

his/her communication?  What common patterns 

of communication can be used to identify 

people?  Are such patterns consistent across va-

rying genres? 

People tend to be interested in subjects and 

topics that they discuss with friends, family, col-

leagues and acquaintances.  They can communi-

cate with these people textually via email, text 

messages and chat rooms.  They can also com-

municate via verbal conversations.  Other forms 

of communication could include blogs or even 

formal writings such as essays or scientific ar-

ticles.  People communicating in these different 

“genres” may have different stylistic patterns and 

we are interested in whether or not we could 

identify people from their communications in 

different genres. 

The attempt to identify authorship of written 

text has a long history that predates electronic 

computing.  The idea that features such as aver-

age word length and average sentence length 

could allow an author to be identified dates to 

Mendenhall (1887).  Mosteller and Wallace 

(1964) used function words in a groundbreaking 

study that identified authors of The Federalist 

Papers.  Since then many attempts at authorship 

attribution have used function words and other 

features, such as word class frequencies and 

measures derived from syntactic analysis, often 

combined using multivariable statistical tech-

niques.  

Recently, McCarthy (2006) was able to diffe-

rentiate three authors’ works, and Hill and Prov-

ost (2003), using a feature of co-citations, 

showed that they could successfully identify 

scientific articles by the same person, achieving 

85% accuracy when the person has authored over 

100 papers.  Levitan and Argamon (2006) and 

McCombe (2002) further investigated authorship 

identification of The Federalist Papers (three 

authors).   

The genre of the text may affect the authorship 

identification task.  The attempt to characterize 

genres dates to Biber (1988) who selected 67 

linguistic features and analyzed samples of 23 

spoken and written genres.  He determined six 

factors that could be used to identify written text.  

Since his study, new “cybergenres” have 

evolved, including email, blogs, chat, and text 

messaging.  Efforts have been made to character-

ize the linguistic features of these genres (Baron, 

2003; Crystal, 2001; Herring, 2001; Shepherd 

and Watters, 1999; Yates, 1996).  The task is 

complicated by the great diversity that can be 

exhibited within even a single genre.  Email can 

be business-related, personal, or spam; the style 
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can be tremendously affected by demographic 

factors, including gender and age of the sender.  

The context of communication influences lan-

guage style (Thomson and Murachver, 2001; 

Coupland, et al., 1988).  Some people use ab-

breviations to ease the efficiency of communica-

tion in informal genres – items that one would 

not find in a formal essay.  Informal writing may 

also contain emoticons (e.g., “:-)” or “”) to 

convey mood. 

Successes have been achieved in categorizing 

web page decriptions (Calvo, et al., 2004) and 

genre determination (Goldstein-Stewart, et al., 

2007; Santini 2007).  Genders of authors have 

been successfully identified within the British 

National Corpus (Koppel, et al., 2002). In 

authorship identification, recent research has fo-

cused on identifying authors within a particular 

genre: email collections, news stories, scientific 

papers, listserv forums, and computer programs 

(de Vel, et al., 2001; Krsul and Spafford, 1997; 

Madigan, et al., 2005; McCombe, 2002).  In the 

KDD Cup 2003 Competitive Task, systems at-

tempted to identify successfully scientific articles 

authored by the same person.  The best system 

(Hill and Provost, 2003) was able to identify 

successfully scientific articles by the same per-

son 45% of the time; for authors with over 100 

papers, 85% accuracy was achieved. 

Are there common features of communication 

of an individual across and within genres?  Un-

doubtedly, the lack of corpora has been an impe-

diment to answering this question, as gathering 

personal communication samples faces consider-

able privacy and accessibility hurdles.  To our 

knowledge, all previous studies have focused on 

individual communications in one or possibly 

two genres.  

To analyze, compare, and contrast the com-

munication of individuals across and within dif-

ferent modalities, we collected a corpus consist-

ing of communication samples of 21 people in 

six genres on six topics.  We believe this corpus 

is the first attempt to create such a correlated 

corpus.   

From this corpus, we are able to perform expe-

riments on person identification.  Specifically, 

this means recognizing which individual of a set 

of people composed a document or spoke an ut-

terance which was transcribed.  We believe using 

text and transcribed speech in this manner is a 

novel research area.  In particular, the following 

types of experiments can be performed: 

- Identification of person in a novel genre 

(using five genres as training) 

- Identification of person in a novel topic 

(using five topics as training) 

- Identification of person in written genres, 

after training on the two spoken genres 

- Identification of person in spoken genres, 

after training on the written genres 

- Identification of person in written genres, 

after training on the other written genres 

In this paper, we discuss the formation and 

statistics of this corpus and report results for 

identifying individual people using techniques 

that utilize several different feature sets.  

2 Corpus Collection 

Our interest was in the research question: can a 

person be identified from their writing and audio 

samples?  Since we hypothesize that people 

communicate about items of interest to them 

across various genres, we decided to test this 

theory.  Email and chat were chosen as textual 

genres (Table 1), since text messages, although 

very common, were not easy to collect.  We also 

collected blogs and essays as samples of textual 

genres.  For audio genres, to simulate 

conversational speech as much as possible, we 

collected data from interviews and discussion 

groups that consisted of sets of subjects 

participating in the study.  Genres labeled “peer 

give and take” allowed subjects to interact. 

Such a collection of genres allows us to 

examine both conversational and non-

conversational genres, both written and spoken 

modalities, and both formal and informal writing 

with the aim of contrasting and comparing 

computer-mediated and non-computer-mediated 

genres as well as informal and formal genres. 

 

Genre 

Com-

puter-

me-

diated 

Peer 

Give 

and 

Take 

Mode 

Con 

versa-

tional 

Au-

dience 

Email yes no text yes ad-

dressee 

Essay No no text no unspec 

Inter-

view 

No no speech yes inter-

viewer 

Blog yes yes text no world 

Chat yes yes text yes group 

Dis-

cussion 

No yes speech yes group 

Table 1.  Genres 

 

In order to ensure that the students could pro-

duce enough data, we chose six topics that were 

controversial and politically and/or socially rele-
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vant for college students from among whom the 

subjects would be drawn.  These six topics were 

chosen from a pilot study consisting of twelve 

topics, in which we analyzed the amount of in-

formation that people tended to “volunteer” on 

the topics as well as their thoughts about being 

able to write/speak on such a topic.  The six top-

ics are listed in Table 2.  

 

Topic Question 

Church Do you feel the Catholic Church 

needs to change its ways to adapt to 

life in the 21st Century? 

Gay Marriage While some states have legalized gay 

marriage, others are still opposed to 

it.  Do you think either side is right or 

wrong? 

Privacy Rights Recently, school officials prevented a 

school shooting because one of the 

shooters posted a myspace bulletin.  

Do you think this was an invasion of 

privacy? 

Legalization of 

Marijuana 

The city of Denver has decided to 

legalize small amounts of marijuana 

for persons over 21.  How do you feel 

about this? 

War in Iraq The controversial war in Iraq has 

made news headlines almost every 

day since it began.  How do you feel 

about the war? 

Gender  

Discrimination 

Do you feel that gender discrimina-

tion is still an issue in the present-day 

United States? 

Table 2. Topics 

 

The corpus was created in three phases 

(Goldstein-Stewart, 2008).  In Phase I, emails, 

essays and interviews were collected.  In Phase 

II, blogs and chat and discussion groups were 

created and samples collected.  For blogs, sub-

jects blogged over a period of time and could 

read and/or comment on other subjects’ blogs in 

their own blog.  A graduate research assistant 

acted as interviewer and discussion and chat 

group moderator. 

Of the 24 subjects who completed Phase I, 7 

decided not to continue into Phase II.  Seven 

additional students were recruited for Phase II.  

In Phase III, these replacement students were 

then asked to provide samples for the Phase I 

genres.  Four students fully complied, resulting 

in a corpus with a full set of samples for 21 

subjects, 11 women and 10 men. 

All audio recordings, interviews and discus-

sions, were transcribed.  Interviewer/moderator 

comments were removed and, for each discus-

sion, four individual files, one for each partici-

pant’s contribution, were produced. 

Our data is somewhat homogeneous: it sam-

ples only undergraduate university students and 

was collected in controlled settings.  But we be-

lieve that controlling the topics, genres, and de-

mographics of subjects allows the elimination of 

many variables that effect communicative style 

and aids the identification of common features. 

3 Corpus Statistics 

3.1 Word Count 

The mean word counts for the 21 students per 

genre and per topic are shown in Figures 1 and 2, 

respectively.  Figure 1 shows that the students 

produced more content in the directly interactive 

genres – interview and discussion (the spoken 

genres) as well as chat (a written genre). 

 

 
Figure 1.  Mean word counts for gender and genre 
 

 
Figure 2.  Mean word counts for gender and topic 
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The email genre had the lowest mean word 

count, perhaps indicating that it is a genre in-

tended for succinct messaging. 

3.2 Word Usage By Individuals 

We performed an analysis of the word usage of 

individuals.  Among the top 20 most frequently 

occurring words, the most frequent word used by 

all males was “the”.  For the 11 females, six most 

frequently used “the”, four used “I”, and one 

used “like”.  Among abbreviations, 13 individu-

als used “lol”.  Abbreviations were mainly used 

in chat.  Other abbreviations were used to vary-

ing degrees such as the abbreviation “u”.  Emoti-

cons were used by five participants.   

4 Classification 

4.1 Features 

Frequencies of words in word categories were 

determined using Linguistic Inquiry and Word 

Count (LIWC).  LIWC2001 analyzes text and 

produces 88 output variables, among them word 

count and average words per sentence.  All oth-

ers are percentages, including percentage of 

words that are parts of speech or belong to given 

dictionaries (Pennebaker, et al., 2001).  Default 

dictionaries contain categories of words that in-

dicate basic emotional and cognitive dimensions 

and were used here.  LIWC was designed for 

both text and speech and has categories, such 

negations, numbers, social words, and emotion.  

Refer to LIWC (www.liwc.net) for a full descrip-

tion of categories.  Here the 88 LIWC features 

are denoted feature set L. 

From the original 24 participants’ documents 

and the new 7 participants’ documents from 

Phase II, we aggregated all samples from all ge-

nres and computed the top 100 words for males 

and for females, including stop words.  Six 

words differed between males and females.  Of 

these top words, the 64 words with counts that 

varied by 10% or more between male and female 

usage were selected.  Excluded from this list 

were 5 words that appeared frequently but were 

highly topic-specific: “catholic”, “church”, “ma-

rijuana”, “marriage”, and “school.” 

Most of these words appeared on a large stop 

word list (www.webconfs.com/stop-words.php).  

Non-stop word terms included the word “feel”, 

which was used more frequently by females than 

males, as well as the terms “yea” and “lot” (used 

more commonly by women) and “uh” (used 

more commonly by men).  Some stop words 

were used more by males (“some”, “any”), oth-

ers by females (“I”, “and”).  Since this set mainly 

consists of stop words, we refer to it as the func-

tional word features or set F. 

The third feature set (T) consisted of the five 

topic specific words excluded from F. 

The fourth feature set (S) consisted of the stop 

word list of 659 words mentioned above. 

The fifth feature set (I) we consider informal 

features.  It contains nine common words not in 

set S: “feel”, “lot”, “uh”, “women”, “people”, 

“men”, “gonna”, “yea” and “yeah”.  This set also 

contains the abbreviations and emotional expres-

sions “lol”, “ur”, “tru”, “wat”, and “haha”. Some 

of the expressions could be characteristic of par-

ticular individuals. For example the term “wat” 

was consistently used by one individual in the 

informal chat genre. 

Another feature set (E) was built around the 

emoticons that appeared in the corpus.  These 

included “:)”, “:(”, “:-(”, “;)”, “:-/”, and “>:o)”. 

For our results, we use eight feature set com-

binations: 1. All 88 LIWC features (denoted L); 

2. LIWC and functional word features, (L+F); 3. 

LIWC plus all functional word features and the 

topic words (L+F+T); 4. LIWC plus all function-

al word features and emoticons (L+F+E); 5. 

LIWC plus all stop word features (L+S); 6. 

LIWC plus all stop word and informal features 

(L+S+I); 7. LIWC supplemented by informal, 

topic, and stop word features, (L+S+I+T).  Note 

that, when combined, sets S and I cover set F. 

4.2 Classifiers 

Classification of all samples was performed us-

ing four classifiers of the Weka workbench, ver-

sion 3.5 (Witten and Frank, 2005).  All were 

used with default settings except the Random 

Forest classifier (Breiman, 2001), which used 

100 trees.  We collected classification results for 

Naïve-Bayes, J48 (decision tree), SMO (support 

vector machine) (Cortes and Vapnik, 1995; Platt, 

1998) and RF (Random Forests) methods. 

5 Person Identification Results 

5.1 Cross Validation Across Genres 

To identify a person as the author of a text, six 

fold cross validation was used.  All 756 samples 

were divided into 126 “documents,” each con-

sisting of all six samples of a person’s expression 

in a single genre, regardless of topic.  There is a 

baseline of approximately 5% accuracy if ran-

domly guessing the person.  Table 3 shows the 
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accuracy results of classification using combina-

tions of the feature sets and classifiers. 

The results show that SMO is by far the best 

classifier of the four and, thus, we used only this 

classifier on subsequent experiments.  L+S per-

formed better alone than when adding the infor-

mal features – a surprising result. 

Table 4 shows a comparison of results using 

feature sets L+F and L+F+T.  The five topic 

words appear to grant a benefit in the best trained 

case (SMO). 

Table 5 shows a comparison of results using 

feature sets L+F and L+F+E, and this shows that 

the inclusion of the individual emoticon features 

does provide a benefit, which is interesting con-

sidering that these are relatively few and are typ-

ically concentrated in the chat documents. 

 

Feature SMO RF100 J48 NB 

L 52 30 15 17 

L+F 60 44 21 25 

L+S 71 42 19 33 

L+S+I 71 39 17 33 

L+S+I+T 71 40 17 33 

Table 3. Person identification accuracy (%) using six 

fold cross validation 

 

Feature SMO RF100 J48 NB 

L+F 60 44 21 25 

L+F+T 67 40 21 25 

Table 4. Accuracy (%) using six fold cross validation 

with and without topic word features (T) 

 

Feature SMO RF100 J48 NB 

L+F 60 44 21 25 

L+F+E 65 41 21 25 

Table 5. Accuracy (%) using six fold cross validation 

with and without emoticon features (E) 

5.2 Predict Communicant in One Genre 

Given Information on Other Genres 

The next set of experiments we performed was to 

identify a person based on knowledge of the per-

son’s communication in other genres.  We first 

train on five genres, and we then test on one – a 

“hold out” or test genre.   

Again, as in six fold cross validation, a total of 

126 “documents” were used: for each genre, 21 

samples were constructed, each the concatena-

tion of all text produced by an individual in that 

genre, across all topics.  Table 6 shows the re-

sults of this experiment.  The result of 100% for 

L+F, L+F+T, and L+F+E in email was surpris-

ing, especially since the word counts for email 

were the lowest.  The lack of difference in L+F 

and L+F+E results is not surprising since the 

emoticon features appear only in chat docu-

ments, with one exception of a single emoticon 

in a blog document (“:-/”), which did not appear 

in any chat documents.  So there was no emoti-

con feature that appeared across different genres. 

 

SMO HOLD OUT (TEST GENRE) 
Features A B C D E S I 

L 60 76 52 43 76 81 29 

L+F 75 81 57 48 100 90 71 

L+F+T 76 86 62 52 100 86 71 

L+F+E 75 81 57 48 100 90 71 

L+S 82 81 67 67 86 90 100 

L+S+I 79 86 52 57 86 90 100 

L+S+I+T 81 86 52 67 90 90 100 

Table 6.  Person identification accuracy (%) training 

with SMO on 5 genres and testing on 1. A=Average 

over all genres, B=Blog, C=Chat, D=Discussion, 

E=Email, S=Essay, I=Interview 

 

Train Test L+F L+F+T 

CDSI Email 67 95 

BDSI Email 71 52 

BCSI Email 76 100 

BCDI Email 57 90 

BCDS Email 57 81 

Table 7. Accuracy (%) using SMO for predicting 

email author after training on 4 other genres. B=Blog, 

C=Chat, D=Discussion, S=Essay, I=Interview 

 

We attempted to determine which genres were 

most influential in identifying email authorship, 

by reducing the number of genres in its training 

set.  Results are reported in Table 7.  The differ-

ence between the two sets, which differ only in 

five topic specific word features, is more marked 

here.  The lack of these features causes accuracy 

to drop far more rapidly as the training set is re-

duced.  It also appears that the chat genre is im-

portant when identifying the email genre when 

topical features are included.  This is probably 

not just due to the volume of data since discus-

sion groups also have a great deal of data.  We 

need to investigate further the reason for such a 

high performance on the email genre. 

The results in Table 6 are also interesting for 

the case of L+S (which has more stop words than 

L+F).  With this feature set, classification for the 

interview genre improved significantly, while 

that of email decreased.  This may indicate that 

the set of stop words may be very genre specific 

– a hypothesis we will test in future work.  If this 

in indeed the case, perhaps certain different sets 
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of stop words may be important for identifying 

certain genres, genders and individual author-

ship.  Previous results indicate that the usage of 

certain stop words as features assists with identi-

fying gender (Sabin, et al., 2008). 

Table 6 also shows that, using the informal 

words (feature set I) decreased performance in 

two genres: chat (the genre in which the abbrevi-

ations are mostly used) and discussion.  We plan 

to run further experiments to investigate this.  

The sections that follow will typically show the 

results achieved with L+F and L+S features.  

 
Train\Test B C D E S I 

Blog 100 14 14 76 57 5 

Chat 24 100 29 38 19 10 

Discussion 10 5 100 5 10 29 

Email 43 10 5 100 48 0 

Essay 67 5 5 33 100 5 

Interview 5 5 5 5 5 100 

Table 8. Accuracy (%) using SMO for predicting per-

son between genres after training on one genre using 

L+F features 

 

Table 8 displays the accuracies when the L+F 

feature set of single genre is used for training a 

model tested on one genre.  This generally sug-

gests the contribution of each genre when all are 

used in training.  When the training and testing 

sets are the same, 100% accuracy is achieved.  

Examining this chart, the highest accuracies are 

achieved when training and test sets are textual.  

Excluding models trained and tested on the same 

genre, the average accuracy for training and test-

ing within written genres is 36% while the aver-

age accuracy for training and testing within spo-

ken genres is 17%.  Even lower are average ac-

curacies of the models trained on spoken and 

tested on textual genres (9%) and the models 

trained on textual and tested on spoken genres 

(6%). This indicates that the accuracies that fea-

ture the same mode (textual or spoken) in train-

ing and testing tend to be higher. 

Of particular interest here is further examina-

tion of the surprising results of testing on email 

with the L+F feature set. Of these tests, a model 

trained on blogs achieved the highest score, per-

haps due to a greater stylistic similarity to email 

than the other genres.  This is also the highest 

score in the chart apart from cases where train 

and test genres were the same.  Training on chat 

and essay genres shows some improvement over 

the baseline, but models trained with the two 

spoken genres do not rise above baseline accura-

cy when tested on the textual email genre. 

5.3 Predict Communicant in One Topic 

Given Information on Five Topics 

This set of experiments was designed to deter-

mine if there was no training data provided for a 

certain topic, yet there were samples of commu-

nication for an individual across genres for other 

topics, could an author be determined? 

 

SMO HOLD OUT (TEST TOPIC) 
Features Avg Ch Gay Iraq Mar Pri Sex 

L+F 87 81 95 86 95 100 67 

L+F+T 65 76 71 86 29 62 67 

L+F+E 87 81 95 86 95 95 67 

L+S 94 95 95 81 100 100 95 

Table 9.  Person identification accuracy (%) training 

with SMO on 5 topics and testing on 1. Avg = Aver-

age over all topics: Ch=Catholic Church, Gay=Gay 

Marriage, Iraq=Iraq War, Mar=Marijuana Legaliza-

tion, Pri=Privacy Rights, Sex=Sex Discrimination 

 

Again a total of 126 “documents” were used: 

for each topic, 21 samples were constructed, 

each the concatenation of all text produced by an 

individual on that topic, across all genres.  One 

topic was withheld and 105 documents (on the 

other 5 topics) were used for training.  Table 9 

shows that overall the L+S feature set performed 

better than either the L+F or L+F+T sets.  The 

most noticeable differences are the drops in the 

accuracy when the five topic words are added, 

particularly on the topics of marijuana and priva-

cy rights.  For L+F+T, if “marijuana” is withheld 

from the topic word features when the marijuana 

topic is the test set, the accuracy rises to 90%.  

Similarly, if “school” is withheld from the topic 

word features when the privacy rights topic is the 

test set, the accuracy rises to 100%.  This indi-

cates the topic words are detrimental to deter-

mining the communicant, and this appears to be 

supported by the lack of an accuracy drop in the 

testing on the Iraq and sexual discrimination top-

ics, both of which featured the fewest uses of the 

five topic words.  That the results rise when us-

ing the L+S features shows that more features 

that are independent of the topic tend to help dis-

tinguish the person (as only the Iraq set expe-

rienced a small drop using these features in train-

ing and testing, while the others either increased 

or remained the same).  The similarity here of the 

results using L+F features when compared to 

L+F+E is likely due to the small number of emo-

ticons observed in the corpus (16 total exam-

ples).  
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5.4 Predict Communicant in a Speech Ge-

nre Given Information on the Other  

One interesting experiment used one speech ge-

nre for training, and the other speech genre for 

testing.  The results (Table 10) show that the ad-

ditional stop words (S compared to F) make a 

positive difference in both sets.  We hypothesize 

that the increased performance of training with 

discussion data and testing on interview data is 

due to the larger amount of training data availa-

ble in discussions.  We will test this in future 

work. 

 

Train Test L+F L+S 

Inter Disc 5 19 

Disc Inter 29 48 

Table 10.  Person identification accuracy (%) training 

and testing SMO on spoken genres 

5.5 Predict Authorship in a Textual Genre 

Given Information on Speech Genres  

Train Test L+F L+S 

Disc+Inter Blog 19 24 

Disc+Inter Chat 5 14 

Disc+Inter Email 5 10 

Disc+Inter Essay 10 29 
Table 11.  Person identification accuracy (%) training 

SMO on spoken genres and testing on textual genres 
 

Table 11 shows the results of training on speech 

data only and predicting the author of the text 

genre.  Again, the speech genres alone do not do 

well at determining the individual author of the 

text genre.  The best score was 29% for essays. 

5.6 Predict Authorship in a Textual Genre 

Given Information on Other Textual 

Genres  

Table 12 shows the results of training on text 

data only and predicting authorship for one of the 

four text genres.  Recognizing the authors in chat 

is the most difficult, which is not surprising since 

the blogs, essays and emails are more similar to 

each other than the chat genre, which uses ab-

breviations and more informal language as well 

as being immediately interactive. 

 

Train Test L+F L+S 

C+E+S Blog 76 86 

B+E+S Chat 10 19 

B+C+S Email 90 81 

B+C+E Essay 90 86 
Table 12.  Person identification accuracy (%) train-

ing and testing SMO on textual genres 

5.7 Predict Communicant in a Speech Ge-

nre Given Information on Textual Ge-

nres 

Training on text and classifying speech-based 

samples by author showed poor results.  Similar 

to the results for speech genres, using the text 

genres alone to determine the individual in the 

speech genre results in a maximum score of 29% 

for the interview genre (Table 13). 

 

Train Test L+F L+S 

B+C+E+S Discussion 14 23 

B+C+E+S Interview 14 29 

Table 13. Person identification accuracy (%) training 

SMO on textual genres and testing on speech genres 

5.8 Error Analysis 

Results for different training and test sets vary 

considerably.  A key factor in determining which 

sets can successfully be used to train other sets 

seems to be the mode, that is, whether or not a 

set is textual or spoken, as the lowest accuracies 

tend to be found between genres of different 

modes.  This suggests that how people write and 

how they speak may be somewhat distinct. 

Typically, more data samples in the training 

tends to increase the accuracy of the tests, but 

more features does not guarantee the same result.  

An examination of the feature sets revealed fur-

ther explanations for this apart from any inherent 

difficulties in recognizing authors between sets.  

For many tests, there is a tendency for the same 

person to be chosen for classification, indicating 

a bias to that person in the training data.  This is 

typically caused by features that have mostly, but 

not all, zero values in training samples, but have 

many non-zero values in testing.  The most 

striking examples of this are described in 5.3, 

where the removal of certain topic-related 

features was found to dramatically increase the 

accruacy.  Targetted removal of other features 

that have the same biasing effect could increase 

accuracy. 

While Weka normalizes the incoming features 

for SMO, it was also discovered that a simple 

initial normalization of the feature sets by 

dividing by the maximum or standardization by 

subtracting the mean and dividing by the 

standard deviation of the feature sets could 

increase the accuracy across the different tests.  

6 Conclusion 

In this paper, we have described a novel unique 

corpus consisting of samples of communication 
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of 21 individuals in six genres across six topics 

as well as experiments conducted to identify a 

person’s samples within the corpus.  We have 

shown that we can identify individuals with rea-

sonably high accuracy for several cases: (1) 

when we have samples of their communication 

across genres (71%), (2) when we have samples 

of their communication in specific genres other 

than the one being tested (81%), and (3) when 

they are communicating on a new topic (94%). 

For predicting a person’s communication in 

one text genre using other text genres only, we 

were able to achieve a good accuracy for all 

genres (above 76%) except chat.  We believe this 

is because chat, due to its “real-time 

communication” nature is quite different from 

the other text genres of emails, essays and blogs. 

Identifying a person in one speech genre after 

training with the other speech genre had lower 

accuracies (less than 48%).  Since these results 

differed significantly, we hypothesize this is due 

to the amount of data available for training – a 

hypothesis we plan to test in the future.  

Future plans also include further investigation 

of some of the suprising results mentioned in this 

paper as well investigation of stop word lists 

particular to communicative genres.  We also 

plan to investigate if it is easier to identify those 

participants who have produced more data 

(higher total word count) as well as perform a 

systematic study the effects of the number of 

words gathered on person identificaton. 

İn addition, we plan to investigate the efficacy 

of using other features besides those available in 

LIWC, stopwords and emoticons in person 

identification.  These include spelling errors, 

readability measures, complexity measures, 

suffixes, and content analysis measures. 
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Abstract

This paper presents the end-to-end evalu-
ation of an automatic simultaneous trans-
lation system, built with state-of-the-art
components. It shows whether, and for
which situations, such a system might be
advantageous when compared to a human
interpreter. Using speeches in English
translated into Spanish, we present the
evaluation procedure and we discuss the
results both for the recognition and trans-
lation components as well as for the over-
all system. Even if the translation process
remains the Achilles’ heel of the system,
the results show that the system can keep
at least half of the information, becoming
potentially useful for final users.

1 Introduction

Anyone speaking at least two different languages
knows that translation and especially simultaneous
interpretation are very challenging tasks. A human
translator has to cope with the special nature of
different languages, comprising phenomena like
terminology, compound words, idioms, dialect
terms or neologisms, unexplained acronyms or ab-
breviations, proper names, as well as stylistic and
punctuation differences. Further, translation or in-
terpretation are not a word-by-word rendition of
what was said or written in a source language. In-
stead, the meaning and intention of a given sen-
tence have to be reexpressed in a natural and fluent
way in another language.

Most professional full-time conference inter-
preters work for international organizations like
the United Nations, the European Union, or the
African Union, whereas the world’s largest em-
ployer of translators and interpreters is currently
the European Commission. In 2006, the European
Parliament spent about 300 million Euros, 30% of

its budget, on the interpretation and translation of
the parliament speeches and EU documents. Gen-
erally, about 1.1 billion Euros are spent per year
on the translating and interpreting services within
the European Union, which is around 1% of the
total EU-Budget (Volker Steinbiss, 2006).

This paper presents the end-to-end evaluation
of an automatic simultaneous translation system,
built with state-of-the-art components. It shows
whether, and in which cases, such a system might
be advantageous compared to human interpreters.

2 Challenges in Human Interpretation

According to Al-Khanji et al. (2000), researchers
in the field of psychology, linguistics and interpre-
tation seem to agree that simultaneous interpre-
tation (SI) is a highly demanding cognitive task
involving a basic psycholinguistic process. This
process requires the interpreter to monitor, store
and retrieve the input of the source language in
a continuous manner in order to produce the oral
rendition of this input in the target language. It is
clear that this type of difficult linguistic and cog-
nitive operation will force even professional in-
terpreters to elaborate lexical or synthetic search
strategies.

Fatigueandstresshave a negative effect on the
interpreter, leading to a decrease in simultaneous
interpretation quality. In a study by Moser-Mercer
et al. (1998), in which professional speakers were
asked to work until they could no longer provide
acceptable quality, it was shown that (1) during
the first 20 minutes the frequency of errors rose
steadily, (2) the interpreters, however, seemed to
be unaware of this decline in quality, (3) after 60
minutes, all subjects made a total of 32.5 mean-
ing errors, and (4) in the category of nonsense the
number of errors almost doubled after 30 minutes
on the task.

Since the audience is only able to evaluate the
simultaneously interpreted discourse by its form,

345



the fluencyof an interpretation is of utmost im-
portance. According to a study by Kopczynski
(1994), fluencyand style were third on a list of
priorities (after content and terminology) of el-
ements rated by speakers and attendees as con-
tributing to quality. Following the overview in
(Yagi, 2000), an interpretation should be as natu-
ral and as authentic as possible, which means that
artificial pauses in the middle of a sentence, hes-
itations, and false-starts should be avoided, and
tempo and intensity of the speaker’s voice should
be imitated.

Another point to mention is the time span be-
tween a source language chunk and its target lan-
guage chunk, which is often referred to asear-
voice-span. Following the summary in (Yagi,
2000), the ear-voice-span is variable in duration
depending on some source and target language
variables, like speech delivery rate, information
density, redundancy, word order, syntactic charac-
teristics, etc. Short delays are usually preferred for
several reasons. For example, the audience is irri-
tated when the delay is too large and is soon asking
whether there is a problem with the interpretation.

3 Automatic Simultaneous Translation

Given the explanations above on human interpre-
tation, one has to weigh two factors when consid-
ering the use of simultaneous translation systems:
translation qualityandcost.

The major disadvantage of an automatic system
compared to human interpretation is its translation
quality, as we will see in the following sections.
Current state-of-the-art systems may reach satis-
factory quality for people not understanding the
lecturer at all, but are still worse than human inter-
pretation. Nevertheless, an automatic system may
have considerable advantages.

One such advantage is its considerable short-
term memory: storing long sequences of words is
not a problem for a computer system. Therefore,
compensatory strategies are not necessary, regard-
less of the speaking rate of the speaker. However,
depending on the system’s translation speed, la-
tency may increase. While it is possible for hu-
mans to compress the length of an utterance with-
out changing its meaning (summarization), it is
still a challenging task for automatic systems.

Human simultaneous interpretation is quite ex-
pensive, especially due to the fact that usually two
interpreters are necessary. In addition, human in-

terpreters require preparation time to become fa-
miliar with the topic. Moreover, simultaneous in-
terpretation requires a soundproof booth with au-
dio equipment, which adds an overall cost that is
unacceptable for all but the most elaborate multi-
lingual events. On the other hand, a simultaneous
translation system also needs time and effort for
preparation and adaptation towards the target ap-
plication, language and domain. However, once
adapted, it can be easily re-used in the same do-
main, language, etc. Another advantage is that the
transcript of a speech or lecture is produced for
free by using an automatic system in the source
and target languages.

3.1 The Simultaneous Translation System

Figure 1 shows a schematic overview of the si-
multaneous translation system developed at Uni-
versität Karlsruhe (TH) (Fügen et al., 2006b). The
speech of the lecturer is recorded with the help
of a close-talk microphone and processed by the
speech recognition component (ASR). The par-
tial hypotheses produced by the ASR module are
collected in the resegmentation component, for
merging and re-splitting at appropriate “seman-
tic” boundaries. The resegmented hypotheses are
then transferred to one or more machine transla-
tion components (MT), at least one per language
pair. Different output technologies may be used
for presenting the translations to the audience. For
a detailed description of the components as well
as the client-server framework used for connect-
ing the components please refer to (Fügen et al.,
2006b; Fügen et al., 2006a; Kolss et al., 2006; Fü-
gen and Kolss, 2007; Fügen et al., 2001).

3.2 End-to-End Evaluation

The evaluation in speech-to-speech translation
jeopardises many concepts and implies a lot of
subjectivity. Three components are involved and
an overall system may grow the difficulty of esti-
mating the output quality. However, two criteria
are mainly accepted in the community: measuring
the information preservation and determining how
much of the translation is understandable.

Several end-to-end evaluations in speech-to-
speech translation have been carried out in the last
few years, in projects such as JANUS (Gates et
al., 1996), Verbmobil (Nübel, 1997) or TC-STAR
(Hamon et al., 2007). Those projects use the
main criteria depicted above, and protocols differ
in terms of data preparation, rating, procedure, etc.
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Figure 1: Schematic overview and information flow of the simultaneous translation system. The main
components of the system are represented by cornered boxes and the models used for theses components
by ellipses. The different output forms are represented by rounded boxes.

To our opinion, to evaluate the performance of a
complete speech-to-speech translation system, we
need to compare the source speech used as input to
the translated output speech in the target language.
To that aim, we reused a large part of the evalua-
tion protocol from the TC-STAR project(Hamon
et al., 2007).

4 Evaluation Tasks

The evaluation is carried out on the simultaneously
translated speech of a single speaker’s talks and
lectures in the field of speech processing, given in
English, and translated into Spanish.

4.1 Data used

Two data sets were selected from the talks and
lectures. Each set contained three excerpts, no
longer than 6 minutes each and focusing on dif-
ferent topics. The former set deals with speech
recognition and the latter with the descriptions of
European speech research projects, both from the
same speaker. This represents around 7,200 En-
glish words. The excerpts were manually tran-
scribed to produce the reference for the ASR eval-
uation. Then, these transcriptions were manually
translated into Spanish by two different transla-
tors. Two reference translations were thus avail-
able for the spoken language translation (SLT)
evaluation. Finally, one human interpretation was
produced from the excerpts as reference for the
end-to-end evaluation. It should be noted that for
the translation system, speech synthesis was used
to produce the spoken output.

4.2 Evaluation Protocol

The system is evaluated as a whole (black box
evaluation) and component by component (glass
box evaluation):

ASR evaluation. The ASR module is evaluated
by computing the Word Error Rate (WER) in case
insensitive mode.

SLT evaluation. For the SLT evaluation, the au-
tomatically translated text from the ASR output is
compared with two manual reference translations
by means of automatic and human metrics. Two
automatic metrics are used: BLEU (Papineni et
al., 2001) and mWER (Niessen et al., 2000).

For the human evaluation, each segment is eval-
uated in relation toadequacyandfluency(White
and O’Connell, 1994). For the evaluation of ad-
equacy, the target segment is compared to a ref-
erence segment. For the evaluation of fluency,
the quality of the language is evaluated. The two
types of evaluation are done independently, but
each evaluator did both evaluations (first that of
fluency, then that of adequacy) for a certain num-
ber of segments. For the evaluation of fluency,
evaluators had to answer the question: “Is the text
written in good Spanish?”. For the evaluation of
adequacy, evaluators had to answer the question:
“How much of the meaning expressed in the ref-
erence translation is also expressed in the target
translation?”.

For both evaluations, a five-point scale is pro-
posed to the evaluators, where only extreme val-
ues are explicitly defined. Three evaluations are
carried out per segment, done by three different
evaluators, and segments are divided randomly,
because evaluators must not recreate a “story”
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and thus be influenced by the context. The total
number of judges was 10, with around 100 seg-
ments per judge. Furthermore, the same number
of judges was recruited for both categories: ex-
perts, from the domain with a knowledge of the
technology, and non-experts, without that knowl-
edge.

End-to-End evaluation. The End-to-End eval-
uation consists in comparing the speech in the
source language to the output speech in the tar-
get language. Two important aspects should be
taken into account when assessing the quality of
a speech-to-speech system.

First, the information preservation is measured
by using “comprehension questionnaires”. Ques-
tions are created from the source texts (the En-
glish excerpts), then questions and answers are
translated into Spanish by professional translators.
These questions are asked to human judges after
they have listened to the output speech in the tar-
get language (Spanish). At a second stage, the an-
swers are analysed: for each answer a Spanish val-
idator gives a score according to a binary scale (the
information is either correct or incorrect). This al-
lows us to measure theinformation preservation.
Three types of questions are used in order to di-
versify the difficulty of the questions and test the
system at different levels: simple Factual (70%),
yes/no (20%) and list (10%) questions. For in-
stance, questions were:What is the larynx respon-
sible for?, Have all sites participating in CHIL
built a CHIL room?, Which types of knowledge
sources are used by the decoder?, respectively.

The second important aspect of a speech-to-
speech system is the quality of the speech output
(hereafterquality evaluation). For assessing the
quality of the speech output one question is asked
to the judges at the end of each comprehension
questionnaire: “Rate the overall quality of this au-
dio sample”, and values go from 1 (“1: Very bad,
unusable”) to 5 (“It is very useful”). Both auto-
matic system and interpreter outputs were evalu-
ated with the same methodology.

Human judges are real users and native Span-
ish speakers, experts and non-experts, but different
from those of the SLT evaluation. Twenty judges
were involved (12 excerpts, 10 evaluations per ex-
cerpt and 6 evaluations per judge) and each judge
evaluated both automatic and human excerpts on a
50/50 percent basis.

5 Components Results

5.1 Automatic Speech Recognition

The ASR output has been evaluated using the
manual transcriptions of the excerpts. The overall
Word Error Rate (WER) is 11.9%. Table 1 shows
the WER level for each excerpt.

Excerpts WER [%]

L043-1 14.5
L043-2 14.5
L043-3 9.6
T036-1 11.3
T036-2 11.7
T036-3 9.2

Overall 11.9

Table 1: Evaluation results for ASR.

T036excerpts seem to be easier to recognize au-
tomatically thanL043 ones, probably due to the
more general language of the former.

5.2 Machine Translation

5.2.1 Human Evaluation

Each segment within the human evaluation is eval-
uated 4 times, each by a different judge. This aims
at having a significant number of judgments and
measuring the consistency of the human evalua-
tions. The consistency is measured by computing
the Cohen’s Kappa coefficient (Cohen, 1960).

Results show a substantial agreement for flu-
ency (kappa of 0.64) and a moderate agreement
for adequacy (0.52).The overall results of the hu-
man evaluation are presented in Table 2. Regard-
ing both experts’ and non-experts’ details, agree-
ment is very similar (0.30 and 0.28, respectively).

All judges Experts Non experts

Fluency 3.13 2.84 3.42
Adequacy 3.26 3.21 3.31

Table 2: Average rating of human evalua-
tions [1<5].

Both fluency and adequacy results are over the
mean. They are lower for experts than for non-
experts. This may be due to the fact that experts
are more familiar with the domain and therefore
more demanding than non experts. Regarding the
detailed evaluation per judge, scores are generally
lower for non-experts than for experts.
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5.2.2 Automatic Evaluation

Scores are computed using case-sensitive metrics.
Table 3 shows the detailed results per excerpt.

Excerpts BLEU [%] mWER [%]

L043-1 25.62 58.46
L043-2 22.60 62.47
L043-3 28.73 62.64
T036-1 34.46 55.13
T036-2 29.41 59.91
T036-3 35.17 50.77

Overall 28.94 58.66

Table 3: Automatic Evaluation results for SLT.

Scores are rather low, with a mWER of 58.66%,
meaning that more than half of the translation is
correct. According to the scoring, theT036 ex-
cerpts seem to be easier to translate than theL043
ones, the latter being of a more technical nature.

6 End-to-End Results

6.1 Evaluators Agreement

In this study, ten judges carried out the evaluation
for each excerpt. In order to observe the inter-
judges agreement, the global Fleiss’s Kappa co-
efficient was computed, which allows to measure
the agreement betweenm judges withr criteria of
judgment. This coefficient shows a global agree-
ment between all the judges, which goes beyond
Cohen’s Kappa coefficient. However, a low co-
efficient requires a more detailed analysis, for in-
stance, by using Kappa for each pair of judges.
Indeed, this allows to see how deviant judges are
from the typical judge behaviour. Form judges,
n evaluations andr criteria, the global Kappa is
defined as follows:

κ = 1 −

nm2
−

∑n
i=1

∑r
j=1 X2

ij

nm(m − 1)
∑r

j=1 Pj(1 − Pj)

where:

Pj =

∑n
i=1 Xij

nm

and: Xij is the number of judgments for theith

evaluation and thejth criteria.
Regarding quality evaluation (n = 6, m = 10,

r = 5), Kappa values are low for both human in-
terpreters (κ = 0.07) and the automatic system
(κ = 0.01), meaning that judges agree poorly
(Landis and Koch, 1977). This is explained by

the extreme subjectivity of the evaluation and the
small number of evaluated excerpts. Looking at
each pair of judges and the Kappa coefficients
themselves, there is no real agreement, since most
of the Kappa values are around zero. However,
some judge pairs show fair agreement, and some
others show moderate or substantial agreement. It
is observed, though, that some criteria are not fre-
quently selected by the judges, which limits the
statistical significance of the Kappa coefficient.

The limitations are not the same for the com-
prehension evaluation (n = 60, m = 10, r = 2),
since the criteria are binary (i.e.trueor false). Re-
garding the evaluated excerpts, Kappa values are
0.28 for the automatic system and 0.30 for the in-
terpreter. According to Landis and Koch (1977),
those values mean that judges agree fairly. In
order to go further, the Kappa coefficients were
computed for each pair of judges. Results were
slightly better for the interpreter than for the au-
tomatic system. Most of them were between 0.20
and 0.40, implying a fair agreement. Some judges
agreed moderately.

Furthermore, it was also observed that for the
120 available questions, 20 had been answered
correctly by all the judges (16 for the interpreter
evaluation and 4 for the automatic system one)
and 6 had been answered wrongly by all judges (1
for the former and 5 for the latter). That shows a
trend where the interpreter comprehension would
be easier than that of the automatic system, or at
least where the judgements are less questionable.

6.2 Quality Evaluation

Table 4 compares the quality evaluation results of
the interpreter to those of the automatic system.

Samples Interpreter Automatic system

L043-1 3.1 1.6
L043-2 2.9 2.3
L043-3 2.4 2.1
T036-1 3.6 3.1
T036-2 2.7 2.5
T036-3 3.5 2.5

Mean 3.03 2.35

Table 4: Quality evaluation results for the inter-
preter and the automatic system [1<5].

As can be seen, with a mean score of 3.03 even
for the interpreter , the excerpts were difficult to
interpret and translate. This is particularly so for
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L043, which is more technical thanT036. The
L043-3excerpt is particularly technical, with for-
mulae and algorithm descriptions, and even a com-
plex description of the human articulatory system.
In fact, L043provides a typical presentation with
an introduction, followed by a deeper description
of the topic. This increasing complexity is re-
flected on the quality scores of the three excerpts,
going from 3.1 to 2.4.

T036is more fluent due to the less technical na-
ture of the speech and the more general vocabu-
lary used. However, theT036-2and T036-3ex-
cerpts get a lower quality score, due to the descrip-
tion of data collections or institutions, and thus the
use of named entities. The interpreter does not
seem to be at ease with them and is mispronounc-
ing some of them, such as “Grenoble” pronounced
like in English instead of in Spanish. The inter-
preter seems to be influenced by the speaker, as
can also be seen in his use of the neologism “el ce-
nario” (“the scenario”) instead of “el escenario”.
Likewise, “Karlsruhe” is pronounced three times
differently, showing some inconsistency of the in-
terpreter.

The general trend in quality errors is similar to
those of previous evaluations: lengthening words
(“seeeeñales”), hesitations, pauses between syl-
lables and catching breath (“caracterís...ticas”),
careless mistakes (“probibilidad” instead of “prob-
abilidad”), self-correction of wrong interpreting
(“reconocien-/reconocimiento”), etc.

An important issue concerns gender and num-
ber agreement. Those errors are explained by
the presence of morphological gender in Spanish,
like in “estos señales” instead of “estas señales”
(“these signals”) together with the speaker’s speed
of speech. The speaker seems to start by default
with a masculine determiner (which has no gen-
der in English), adjusting the gender afterward de-
pending on the noun following. A quick transla-
tion may also be the cause for this kind of errors,
like “del señal acustico” (“of the acoustic signal”)
with a masculine determiner, a feminine substan-
tive and ending in a masculine adjective. Some
translation errors are also present, for instance
“computerizar” instead of “calcular” (“compute”).

The errors made by the interpreter help to un-
derstand how difficult oral translation is. This
should be taken into account for the evaluation of
the automatic system.

The automatic system results, like those of

the interpreter, are higher forT036than forL043.
However, scores are lower, especially for the
L043-1 excerpt. This seems to be due to the
type of lexicon used by the speaker for this ex-
cerpt, more medical, since the speaker describes
the articulatory system. Moreover, his description
is sometimes metaphorical and uses a rather col-
loquial register. Therefore, while the interpreter
finds it easier to deal with these excerpts (known
vocabulary among others) andL043-3seems to be
more complicated (domain-specific, technical as-
pect), the automatic system finds it more compli-
cated with the former and less with the latter. In
other words, the interpreter has to “understand”
what is said inL043-3, contrary to the automatic
system, in order to translate.

Scores are higher for theT036 excerpts. In-
deed, there is a high lexical repetition, a large
number of named entities, and the quality of the
excerpt is very training-dependant. However, the
system runs into trouble to process foreign names,
which are very often not understandable. Differ-
ences betweenT036-1and the otherT036excerpts
are mainly due to the change in topic. While the
former deals with a general vocabulary (i.e. de-
scription of projects), the other two excerpts de-
scribe the data collection, the evaluation metrics,
etc., thus increasing the complexity of translation.

Generally speaking, quality scores of the au-
tomatic system are mainly due to the transla-
tion component, and to a lesser extent to the
recognition component. Many English words are
not translated (“bush”, “keyboards”, “squeaking”,
etc.), and word ordering is not always correct.
This is the case for the sentence “how we solve
it”, translated into “cómo nos resolvers lo” instead
of “cómo lo resolvemos”. Funnily enough, the
problems of gender (“maravillosos aplicaciones”
- masc. vs fem.) and number (“pueden real-
mente ser aplicado” - plu. vs sing.) the in-
terpreter has, are also found for the automatic
system. Moreover, the translation of compound
nouns often shows wrong word ordering, in partic-
ular when they are long, i.e. up to three words (e.g.
“reconocimiento de habla sistemas” for “speech
recognition system” instead of “sistemas de re-
conocimiento de habla”).

Finally, some error combinations result in fully
non-understandable sentences, such as:

“usted tramoseen emacses squeaking
ruido y driestodos demencial”
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where the following errors take place:

• tramo: this translation of “stretch” results
from the choice of a substantive instead of a
verb, giving rise to two choices due to the lex-
ical ambiguity: “estiramiento” and “tramo”,
which is more alinear distancethan astretch
in that context;

• se: the pronoun “it” becomes the reflexive
“se” instead of the personal pronoun “lo”;

• emacs: the recognition module transcribed
the couple of words “it makes” into “emacs”,
not translated by the translation module;

• squeaking: the word is not translated by the
translation module;

• dries: again, two successive errors are made:
the word “drives” is transcribed into “dries”
by the recognition module, which is then left
untranslated.

The TTS component also contributes to decreas-
ing the output quality. The prosody module finds it
hard to make the sentences sound natural. Pauses
between words are not very frequent, but they do
not sound natural (i.e. like catching breath) and
they are not placed at specific points, as it would
be done by a human. For instance, the prosody
module does not link the noun and its determiner
(e.g. “otros aplicaciones”). Finally, a not user-
friendly aspect of the TTS component is the rep-
etition of the same words always pronounced in
the same manner, what is quite disturbing for the
listener.

6.3 Comprehension Evaluation

Tables 5 and 6 present the results of the compre-
hension evaluation, for the interpreter and for the
automatic system, respectively. They provide the
following information:

identifiers of the excerpt: Source data are the
same for the interpreter and the automatic
system, namely the English speech;

subj. E2E: The subjective results of the end-to-
end evaluation are done by the same assessors
who did the quality evaluation. This shows
the percentage of good answers;

fair E2E: The objective verification of the an-
swers. The audio files are validated to check

whether they contain the answers to the ques-
tions or not (as the questions were created
from the English source). This shows the
maximum percentage of answers an evalua-
tor managed to find from either the interpreter
(speaker audio) or the automatic system out-
put (TTS) in Spanish. For instance, informa-
tion in English could have been missed by
the interpreter because he/she felt that this in-
formation was meaningless and could be dis-
carded. We consider those results as an ob-
jective evaluation.

SLT, ASR: Verification of the answers in each
component of the end-to-end process. In or-
der to determine where the information for
the automatic system is lost, files from each
component (recognised files for ASR, trans-
lated files for SLT, and synthesised files for
TTS in the “fair E2E” column) are checked.

Excerpts subj. E2E fair E2E

L043-1 69 90
L043-2 75 80
L043-3 72 60
T036-1 80 100
T036-2 73 80
T036-3 76 100

Mean 74 85

Table 5: Comprehension evaluation results for the
interpreter [%].

Regarding Table 5,the interpreter loses 15%
of the information (i.e. 15% of the answers were
incorrect or not present in the interpreter’s trans-
lation) and judges correctly answered 74% of the
questions. Five documents get above 80% of cor-
rect results, while judges find almost above 70%
of the answers for the six documents.

Regardingthe automatic systemresults (Table
6), the information rate found by judges is just
above 50% since, by extension, more than half the
questions were correctly answered. The lowest
excerpt,L043-1, gets a rate of 25%, the highest,
T036-1, a rate of 76%, which is in agreement with
the observation for the quality evaluation. Infor-
mation loss can be found in each component, es-
pecially for the SLT module (35% of the informa-
tion is lost here). It should be noticed that the TTS
module made also errors which prevented judges
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Excerpts subj. E2E fair E2E SLT ASR

L043-1 25 30 30 70
L043-2 62 70 80 70
L043-3 43 40 60 100
T036-1 76 80 90 100
T036-2 61 70 60 80
T036-3 47 60 70 80

Mean 52 58 65 83

Table 6: Comprehension evaluation results for the
automatic system [%].

from answering related questions. Moreover, the
ASR module loses 17% of the information. Those
results are certainly due to the specific vocabulary
used in this experiment.

So as toobjectively comparethe interpreter with
the automatic system, we selected the questions
for which the answers were included in the inter-
preter files (i.e. those in the “fair E2E” column
of Table 5). The goal was to compare the overall
quality of the speech-to-speech translation to in-
terpreters’ quality, without the noise factor of the
information missing. The assumption is that the
interpreter translates the “important information”
and skips the useless parts of the original speech.
This experiment is to measure the level of this in-
formation that is preserved by the automatic sys-
tem. So a new subset of results was obtained, on
the information kept by the interpreter. The same
study was repeated for the three components and
the results are shown in Tables 7 and 8.

Excerpts subj. E2E fair E2E SLT ASR

L043-1 27 33 33 78
L043-2 65 75 88 75
L043-3 37 67 83 100
T036-1 76 80 90 100
T036-2 69 88 75 100
T036-3 47 60 70 80

Mean 53 60 70 80

Table 7: Evaluation results for the automatic sys-
tem restricted to the questions for which answers
can be found in the interpreter speech [%].

Comparing the automatic system to the inter-
preter, the automatic system keeps 40% of the in-
formation where the interpreter translates the doc-
uments correctly. Those results confirm that ASR
loses a lot of information (20%), while SLT loses

10% further, and so does the TTS. Judges are quite
close to the objective validation and found most of
the answers they could possibly do.

Excerpts subj. E2E

L043-1 66
L043-2 90
L043-3 88
T036-1 80
T036-2 81
T036-3 76

Mean 80

Table 8: Evaluation results for interpreter, re-
stricted to the questions for which answers can be
found in the interpreter speech [%].

Subjective results for the restricted evaluation
are similar to the previous results, on the full data
(80% vs 74% of the information found by the
judges). Performance is good for the interpreter:
98% of the information correctly translated by the
automatic system is also correctly interpreted by
the human. Although we can not compare the
performance of the restricted automatic system to
that of the restricted interpreter (since data sets of
questions are different), it seems that of the inter-
preter is better. However, the loss due to subjective
evaluation seems to be higher for the interpreter
than for the automatic system.

7 Conclusions

Regarding the SLT evaluation, the results achieved
with the simultaneous translation system are still
rather low compared to the results achieved with
offline systems for translating European parlia-
ment speeches in TC-STAR. However, the offline
systems had almost no latency constraints, and
parliament speeches are much easier to recognize
and translate when compared to the more spon-
taneous talks and lectures focused in this paper.
This clearly shows the difficulty of the whole task.
However, the human end-to-end evaluation of the
system in which the system is compared with hu-
man interpretation shows that the current transla-
tion quality allows for understanding of at least
half of the content, and therefore, may be already
quite helpful for people not understanding the lan-
guage of the lecturer at all.
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Abstract

Named entity recognition for morpholog-
ically rich, case-insensitive languages, in-
cluding the majority of semitic languages,
Iranian languages, and Indian languages,
is inherently more difficult than its English
counterpart. Worse still, progress on ma-
chine learning approaches to named entity
recognition for many of these languages
is currently hampered by the scarcity of
annotated data and the lack of an accu-
rate part-of-speech tagger. While it is
possible to rely on manually-constructed
gazetteers to combat data scarcity, this
gazetteer-centric approach has the poten-
tial weakness of creating irreproducible
results, since these name lists are not
publicly available in general. Motivated
in part by this concern, we present a
learning-based named entity recognizer
that does not rely on manually-constructed
gazetteers, using Bengali as our represen-
tative resource-scarce, morphologically-
rich language. Our recognizer achieves
a relative improvement of 7.5% in F-
measure over a baseline recognizer. Im-
provements arise from (1) using in-
duced affixes, (2) extracting information
from online lexical databases, and (3)
jointly modeling part-of-speech tagging
and named entity recognition.

1 Introduction

While research in natural language processing has
gained a lot of momentum in the past several
decades, much of this research effort has been fo-
cusing on only a handful of politically-important

languages such as English, Chinese, and Arabic.
On the other hand, being the fifth most spoken lan-
guage1 with more than 200 million native speakers
residing mostly in Bangladesh and the Indian state
of West Bengal, Bengali has far less electronic
resources than the aforementioned languages. In
fact, a major obstacle to the automatic processing
of Bengali is the scarcity of annotated corpora.

One potential solution to the problem of data
scarcity is to hand-annotate a small amount of
data with the desired linguistic information and
then develop bootstrapping algorithms for com-
bining this small amount of labeled data with
a large amount of unlabeled data. In fact, co-
training (Blum and Mitchell, 1998) has been suc-
cessfully applied to English named entity recog-
nition (NER) (Collins & Singer [henceforth C&S]
(1999)). In C&S’s approach, consecutive words
tagged as proper nouns are first identified as poten-
tial NEs, and each such NE is then labeled by com-
bining the outputs of two co-trained classifiers.
Unfortunately, there are practical difficulties in ap-
plying this technique to Bengali NER. First, one
of C&S’s co-trained classifiers uses features based
on capitalization, but Bengali is case-insensitive.
Second, C&S identify potential NEs based on
proper nouns, but unlike English, (1) proper noun
identification for Bengali is non-trivial, due to the
lack of capitalization; and (2) there does not ex-
ist an accurate Bengali part-of-speech (POS) tag-
ger for providing such information, owing to the
scarcity of annotated data for training the tagger.

In other words, Bengali NER is complicated not
only by the scarcity of annotated data, but also by
the lack of an accurate POS tagger. One could
imagine building a Bengali POS tagger using un-

1See http://en.wikipedia.org/wiki/Bengalilanguage.
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supervised induction techniques that have been
successfully developed for English (e.g., Schütze
(1995), Clark (2003)), including the recently-
proposed prototype-driven approach (Haghighi
and Klein, 2006) and Bayesian approach (Gold-
water and Griffiths, 2007). The majority of these
approaches operate by clustering distributionally
similar words, but they are unlikely to work well
for Bengali for two reasons. First, Bengali is a
relatively free word order language, and hence
the distributional information collected for Ben-
gali words may not be as reliable as that for En-
glish words. Second, many closed-class words
that typically appear in the distributional repre-
sentation of an English word (e.g., prepositions
and particles such as “in” and “to”) are realized
as inflections in Bengali, and the absence of these
informative words implies that the context vector
may no longer capture sufficient information for
accurately clustering the Bengali words.

In view of the above problems, many learning-
based Bengali NE recognizers have relied heavily
on manually-constructed name lists for identify-
ing persons, organizations, and locations. There
are at least two weaknesses associated with this
gazetteer-centric approach. First, these name lists
are typically not publicly available, making it dif-
ficult to reproduce the results of these NE recog-
nizers. Second, it is not clear how comprehen-
sive these lists are. Relying on comprehensive lists
that comprise a large portion of the names in the
test set essentially reduces the NER problem to a
dictionary-lookup problem, which is arguably not
very interesting from a research perspective.

In addition, many existing learning-based Ben-
gali NE recognizers have several common weak-
nesses. First, they use as featurespseudo-affixes,
which are created by extracting the firstn and the
last n characters of a word (where 1≤ n ≤ 4)
(e.g., Dandapat et al. (2007)). While affixes en-
code essential grammatical information in Ben-
gali due to its morphological richness, this extrac-
tion method is arguably too ad-hoc and does not
cover many useful affixes. Second, they typically
adopt apipelined NER architecture, performing
POS tagging prior to NER and encoding the result-
ing not-so-accurate POS information as a feature.
In other words, errors in POS tagging are propa-
gated to the NE recognizer via the POS feature,
thus limiting its performance.

Motivated in part by these weaknesses, we in-

vestigate how to improve a learning-based NE rec-
ognizer that doesnotrely on manually-constructed
gazetteers. Specifically, we investigate two learn-
ing architectures for our NER system. The first
one is the aforementioned pipelined architecture
in which the NE recognizer uses as features the
output of a POS tagger that is trained indepen-
dently of the recognizer. Unlike existing Bengali
POS and NE taggers, however, we examine two
new knowledge sources for training these taggers:
(1) affixes induced from an unannotated corpus
and (2) semantic class information extracted from
Wikipedia. In the second architecture, wejointly
learn the POS tagging and the NER tasks, allow-
ing features for one task to be accessible to the
other task during learning. The goal is to exam-
ine whether any benefits can be obtained via joint
modeling, which could address the error propaga-
tion problem with the pipelined architecture.

While we focus on Bengali NER in this pa-
per, none of the proposed techniques are language-
specific. In fact, we believe that these techniques
are of relevance and interest to the EACL com-
munity because they can be equally applicable to
the numerous resource-scarce European and Mid-
dle Eastern languages that share similar linguis-
tic and extra-linguistic properties as Bengali. For
instance, the majority of semitic languages and
Iranian languages are, like Bengali, morpholog-
ically productive; and many East European lan-
guages such as Czech and Polish resemble Bengali
in terms of not only their morphological richness,
but also their relatively free word order.

The rest of the paper is organized as follows.
In Section 2, we briefly describe the related work.
Sections 3 and 4 show how we induce affixes from
an unannotated corpus and extract semantic class
information from Wikipedia. In Sections 5 and
6, we train and evaluate a POS tagger and an NE
recognizer independently, augmenting the feature
set typically used for these two tasks with our new
knowledge sources. Finally, we describe and eval-
uate our joint model in Section 7.

2 Related Work

Cucerzan and Yarowsky (1999) exploit morpho-
logical and contextual patterns to propose a
language-independent solution to NER. They use
affixes based on the paradigm that named enti-
ties corresponding to a particular class have sim-
ilar morphological structure. Their bootstrapping

355



approach is tested on Romanian, English, Greek,
Turkish, and Hindi. The recall for Hindi is the
lowest (27.84%) among the five languages, sug-
gesting that the lack of case information can sig-
nificantly complicate the NER task.

To investigate the role of gazetteers in NER,
Mikheev et al. (1999) combine grammar rules with
maximum entropy models and vary the gazetteer
size. Experimental results show that (1) the F-
scores for NE classes like person and organiza-
tion are still high without gazetteers, ranging from
85% to 92%; and (2) a small list of country names
can improve the low F-score for locations substan-
tially. It is worth noting that their recognizer re-
quires that the input data contain POS tags and
simple semantic tags, whereas ours automatically
acquires such linguistic information. In addition,
their approach uses part of the dataset to extend the
gazetteer. Therefore, the resulting gazetteer list is
specific to a particular domain; on the other hand,
our approach does not generate a domain-specific
list, since it makes use of Wikipedia articles.

Kozareva (2006) generates gazetteer lists for
person and location names from unlabeled data
using common patterns and a graph exploration
algorithm. The location pattern is essentially
a preposition followed by capitalized context
words. However, this approach is inadequate for a
morphologically-rich language like Bengali, since
prepositions are often realized as inflections.

3 Affix Induction

Since Bengali is morphologically productive, a lot
of grammatical information about Bengali words
is expressed via affixes. Hence, these affixes could
serve as useful features for training POS and NE
taggers. In this section, we show how to induce
affixes from an unannotated corpus.

We rely on a simple idea proposed by Keshava
and Pitler (2006) for inducing affixes. Assume that
(1) V is a vocabulary (i.e., a set of distinct words)
extracted from a large, unannotated corpus, (2)α

andβ are two character sequences, and (3)αβ is
the concatenation ofα and β. If αβ and α are
found inV , we extractβ as a suffix. Similarly, if
αβ andβ are found inV , we extractα as a prefix.

In principle, we can use all of the induced af-
fixes as features for training a POS tagger and an
NE recognizer. However, we choose to use only
those features that survive our feature selection
process (to be described below), for the follow-

ing reasons. First, the number of induced affixes
is large, and using only a subset of them as fea-
tures could make the training process more effi-
cient. Second, the above affix induction method is
arguably overly simplistic and hence many of the
induced affixes could be spurious.

Our feature selection process is fairly simple:
we (1) score each affix by multiplying itsfre-
quency(i.e., the number of distinct words inV to
which each affix attaches) and itslength2, and (2)
select only those whose score is above a certain
threshold. In our experiments, we set this thresh-
old to 50, and generate our vocabulary of 140K
words from five years of articles taken from the
Bengali newspaperProthom Alo. This enables us
to induce 979 prefixes and 975 suffixes.

4 Semantic Class Induction from
Wikipedia

Wikipedia has recently been used as a knowl-
edge source for various language processing tasks,
including taxonomy construction (Ponzetto and
Strube, 2007a), coreference resolution (Ponzetto
and Strube, 2007b), and English NER (e.g.,
Bunescu and Paşca (2006), Cucerzan (2007),
Kazama and Torisawa (2007), Watanabe et al.
(2007)). Unlike previous work on using Wikipedia
for NER, our goal here is to (1) generate a list
of phrases and tokens that are potentially named
entities from the 16914 articles in the Bengali
Wikipedia3 and (2) heuristically annotate each of
them with one of four classes, namely,PER (per-
son),ORG (organization),LOC (location), orOTH-
ERS(i.e., anything other thanPER, ORGandLOC).

4.1 Generating an Annotated List of Phrases

We employ the steps below to generate our anno-
tated list.

Generating and annotating the titles Recall
that each Wikipedia article has been optionally as-
signed to one or more categories by its creator
and/or editors. We use these categories to help an-
notate the title of an article. Specifically, if an ar-
ticle has a category whose name starts with “Born
on” or “Death on,” we label the corresponding ti-
tle with PER. Similarly, if it has a category whose
name starts with “Cities of” or “Countries of,” we

2The dependence on frequency and length is motivated by
the observation that less frequent and shorter affixes are more
likely to be erroneous (see Goldsmith (2001)).

3See http://bn.wikipedia.org. In our experiments, we used
the Bengali Wikipedia dump obtained on October 22, 2007.

356



NE Class Keywords
PER “born,” “died,” “one,” “famous”
LOC “city,” “area,” “population,” “located,” “part of”
ORG “establish,” “situate,” “publish”

Table 1: Keywords for each named entity class

label the title asLOC. If an article does not be-
long to one of the four categories above, we label
its title with the help of a small set of seed key-
words shown in Table 1. Specifically, for each of
the three NE classes shown on the left of Table
1, we compute a weighted sum of its keywords:
a keyword that appears in the first paragraph has
a weight of 3, a keyword that appears elsewhere
in the article has a weight of 1, and a keyword
that does not appear in the article has a weight of
0. The rationale behind using different weights is
simple: the first paragraph is typically a brief ex-
position of the title, so it should in principle con-
tain words that correlate more closely with the ti-
tle than words appearing in the rest of the article.
We then label the title with the class that has the
largest weighted sum. Note, however, that we ig-
nore any article that contains fewer than two key-
words, since we do not have reliable evidence for
labeling its title as one of the NE classes. We put
all these annotated titles into atitle list.

Getting more location names To get more loca-
tion names, we search for the character sequences
“birth place:” and “death place:” in each article,
extracting the phrase following any of these se-
quences and label it asLOC. We put all such la-
beled locations into the title list.

Generating and annotating the tokens in the ti-
tles Next, we extract the word tokens from each
title in the title list and label each token with an
NE class. The reason for doing this is to improve
generalization: if “Dhaka University” is labeled as
ORG in the title list, then it is desirable to also label
the token “University” asORG, because this could
help identify an unseen phrase that contains the
term “University” as an organization. Our token
labeling method is fairly simple. First, we gener-
ate the tokens from each title in the title list, as-
signing to each token the same NE label as that
of the title from which it is generated. For in-
stance, from the title “Anna Frank,” “Anna” will
be labeled asPER; and from “Anna University,” “
Anna” will be labeled asLOC. To resolve such
ambiguities (i.e., assigning different labels to the
same token), we keep a count of how many times

“Anna” is labeled with each NE class, and set its
final label to be the most frequent NE class. We
put all these annotated tokens into atoken list. If
the title list and the token list have an element in
common, we remove the element from the token
list, since we have a higher confidence in the la-
bels of the titles.

Merging the lists Finally, we append the token
list to the title list. The resulting title list contains
4885PERs, 15176LOCs, and 188ORGs.

4.2 Applying the Annotated List to a Text

We can now use the title list to annotate a text.
Specifically, we process each wordw in the text in
a left-to-right manner, using the following steps:

1. Check whetherw has been labeled. If so, we
skip this word and process the next one.

2. Check whetherw appears in the Samsad
Bengali-English Dictionary4. If so, we as-
sume thatw is more likely to be used as a
non-named entity, thus leaving the word un-
labeled and processing the next word instead.

3. Find the longest unlabeled word sequence5

that begins withw and appears in the title
list. If no such sequence exists, we leavew

unlabeled and process the next word. Oth-
erwise, we label it with the NE tag given
by the title list. To exemplify, consider a
text that starts with the sentence “Smith Col-
lege is in Massachusetts.” When processing
“Smith,” “Smith College” is the longest se-
quence that starts with “Smith” and appears
in the title list (as anORG). As a result, we
label all occurrences of “Smith College” in
the text as anORG. (Note that without using
the longest match heuristic, “Smith” would
likely be mislabeled asPER.) In addition, we
take the last word of theORG (which in this
case is “College”) and annotate each of its oc-
currence in the rest of the text asORG.6

These automatic annotations will then be used
to derive a set ofWIKI features for training our
POS tagger and NE recognizer. Hence, unlike
existing Bengali NE recognizers, our “gazetteers”
are induced rather than manually created.

4See http://dsal.uchicago.edu/dictionaries/biswasbengali/.
5This is a sequence in which each word is unlabeled.
6However, if we have aPER match (e.g., “Anna Frank”)

or aLOC match (e.g., “Las Vegas”), we takeeachword in the
matched phrase and label each of its occurrence in the rest of
the text with the same NE tag.
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Current word wi

Previous word wi−1

2nd previous word wi−2

Next word wi+1

2nd next word wi+2

Current pseudo-affixes pfi (prefix),sfi (suffix)
Current induced affixes pii (prefix),sii (suffix)
Previous induced affixes pii−1 (prefix), sii−1 (suffix)
Induced affix bigrams pii−1pii (prefix),sii−1sii (suffix)
Current Wiki tag wikii
Previous Wiki tag wikii−1

Wiki bigram wikii−1wikii
Word bigrams wi−2wi−1, wi−1wi, wiwi+1,

wi+1wi+2

Word trigrams wi−2wi−1wi

Current number qi

Table 2: Feature templates for the POS tagging
experiments

5 Part-of-Speech Tagging

In this section, we will show how we train and
evaluate our POS tagger. As mentioned before, we
hypothesize that introducing our two knowledge
sources into the feature set for the tagger could
improve its performance: using the induced affixes
could improve the extraction of grammatical infor-
mation from the words, and using the Wikipedia-
induced list, which in principle should comprise
mostly of names, could help improve the identifi-
cation of proper nouns.

Corpus Our corpus is composed of 77942 words
and is annotated with one of 26 POS tags in the
tagset defined by IIIT Hyderabad7. Using this cor-
pus, we perform 5-fold cross-validation (CV) ex-
periments in our evaluation. It is worth noting that
this dataset has a high unknown word rate of 15%
(averaged over the five folds), which is due to the
small size of the dataset. While this rate is compa-
rable to another Bengali POS dataset described in
Dandapat et al. (2007), it is much higher than the
2.6% unknown word rate in the test set for Ratna-
parkhi’s (1996) English POS tagging experiments.

Creating training instances Following previ-
ous work on POS tagging, we create one train-
ing instance for each word in the training set. The
class value of an instance is the POS tag of the cor-
responding word. Each instance is represented by
a set of linguistic features, as described next.

7A detailed description of these POS tags can be found in
http://shiva.iiit.ac.in/SPSAL2007/iiittagsetguidelines.pdf,
and are omitted here due to space limitations. This tagset
and the Penn Treebank tagset differ in that (1) nouns do not
have a number feature; (2) verbs do not have a tense feature;
and (3) adjectives and adverbs are not subcategorized.

Features Our feature set consists of (1)base-
line features motivated by those used in Danda-
pat et al.’s (2007) Bengali POS tagger and Singh
et al.’s (2006) Hindi POS tagger, as well as (2)
features derived from our induced affixes and the
Wikipedia-induced list. More specifically, the
baseline feature set has (1) word unigrams, bi-
grams and trigrams; (2) pseudo-affix features that
are created by taking the first three characters and
the last three characters of the current word; and
(3) a binary feature that determines whether the
current word is a number. As far as our new fea-
tures are concerned, we create one induced prefix
feature and one induced suffix feature from both
the current word and the previous word, as well
as two bigrams involving induced prefixes and in-
duced suffixes. We also create threeWIKI features,
including the Wikipedia-induced NE tag of the
current word and that of the previous word, as well
as the combination of these two tags. Note that
the Wikipedia-induced tag of a word can be ob-
tained by annotating the test sentence under con-
sideration using the list generated from the Ben-
gali Wikipedia (see Section 4). To make the de-
scription of these features more concrete, we show
the feature templates in Table 2.

Learning algorithm We used CRF++8, a C++
implementation of conditional random fields (Laf-
ferty et al., 2001), as our learning algorithm for
training a POS tagging model.

Evaluating the model To evaluate the resulting
POS tagger, we generate test instances in the same
way as the training instances. 5-fold CV results of
the POS tagger are shown in Table 3. Each row
consists of three numbers: the overall accuracy,
as well as the accuracies on the seen and the un-
seen words. Row 1 shows the accuracy when the
baseline feature set is used; row 2 shows the ac-
curacy when the baseline feature set is augmented
with our two induced affix features; and the last
row shows the results when both the induced af-
fix and the WIKI features are incorporated into
the baseline feature set. Perhaps not surprisingly,
(1) adding more features improves performance,
and (2) accuracies on the seen words are substan-
tially better than those on the unseen words. In
fact, adding the induced affixes to the baseline fea-
ture set yields a 7.8% reduction in relative error
in overall accuracy. We also applied a two-tailed
pairedt-test (p < 0.01), first to the overall accura-

8Available from http://crfpp.sourceforge.net
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Experiment Overall Seen Unseen
Baseline 89.83 92.96 72.08
Baseline+Induced Affixes 90.57 93.39 74.64
Baseline+Induced Affixes+Wiki 90.80 93.50 75.58

Table 3: 5-fold cross-validation accuracies for
POS tagging

Predicted Tag Correct Tag % of Error
NN NNP 22.7
NN JJ 9.6
JJ NN 7.4

NNP NN 5.0
NN VM 4.9

Table 4: Most frequent errors for POS tagging

cies in rows 1 and 2, and then to the overall accu-
racies in rows 2 and 3. Both pairs of numbers are
statistically significantly different from each other,
meaning that incorporating the two induced affix
features and then theWIKI features both yields sig-
nificant improvements.

Error analysis To better understand the results,
we examined the errors made by the tagger. The
most frequent errors are shown in Table 4. From
the table, we see that the largest source of errors
arises from mislabeling proper nouns as common
nouns. This should be expected, as proper noun
identification is difficult due to the lack of capital-
ization information. Unfortunately, failure to iden-
tify proper nouns could severely limit the recall of
an NE recognizer. Also, adjectives and common
nouns are difficult to distinguish, since these two
syntactic categories are morphologically and dis-
tributionally similar to each other. Finally, many
errors appear to involve mislabeling a word as a
common noun. The reason is that there is a larger
percentage of common nouns (almost 30%) in the
training set than other POS tags, thus causing the
model to prefer tagging a word as a common noun.

6 Named Entity Recognition

In this section, we show how to train and evaluate
our NE recognizer. The recognizer adopts a tradi-
tional architecture, assuming that POS tagging is
performed prior to NER. In other words, the NE
recognizer will use the POS acquired in Section 5
as one of its features. As in Section 5, we will fo-
cus on examining how our knowledge sources (the
induced affixes and theWIKI features) impact the
performance of our recognizer.

Corpus The corpus we used for NER evaluation
is the same as the one described in the previous

POS of current word ti
POS of previous word ti−1

POS of 2nd previous word ti−2

POS of next word ti+1

POS of 2nd next word ti+2

POS bigrams ti−2ti−1, ti−1ti, titi+1, ti+1ti+2

First word fwi

Table 5: Additional feature templates for the NER
experiments

section. Specifically, in addition to POS infor-
mation, each sentence in the corpus is annotated
with NE information. We focus on recognizing the
three major NE types in this paper, namely persons
(PER), organizations (ORG), and locations (LOC).
There are 1721PERs, 104ORGs, and 686LOCs in
the corpus. As far as evaluation is concerned, we
conduct 5-fold CV experiments, dividing the cor-
pus into the same five folds as in POS tagging.

Creating training instances We view NE
recognition as a sequence labeling problem. In
other words, we combine NE identification and
classification into one step, labeling each word in
a test text with its NE tag. Any word that does not
belong to one of our three NE tags will be labeled
as OTHERS. We adopt theIOB convention, pre-
ceding an NE tag with aB if the word is the first
word of an NE and anI otherwise. Now, to train
the NE recognizer, we create one training instance
from each word in a training text. The class value
of an instance is the NE tag of the corresponding
word, orOTHERSif the word is not part of an NE.
Each instance is represented by a set of linguistic
features, as described next.

Features Our feature set consists of (1)base-
line features motivated by those used in Ekbal
et al.’s (2008) Bengali NE recognizer, as well as
(2) features derived from our induced affixes and
the Wikipedia-induced list. More specifically, the
baseline feature set has (1) word unigrams; (2)
pseudo-affix features that are created by taking the
first three characters and the last three characters
of the current word; (3) a binary feature that deter-
mines whether the current word is the first word of
a sentence; and (4) a set of POS-related features,
including the POS of the current word and its sur-
rounding words, as well as POS bigrams formed
from the current and surrounding words. Our in-
duced affixes andWIKI features are incorporated
into the baseline NE feature set in the same man-
ner as in POS tagging. In essence, the feature tem-
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Experiment R P F
Baseline 60.97 74.46 67.05

Person 66.18 74.06 69.90
Organization 29.81 44.93 35.84
Location 52.62 80.40 63.61

Baseline+Induced Affixes 60.45 73.30 66.26
Person 65.70 72.61 69.02
Organization 31.73 46.48 37.71
Location 51.46 80.05 62.64

Baseline+Induced Affixes+Wiki 63.24 75.19 68.70
Person 66.47 75.16 70.55
Organization 30.77 43.84 36.16
Location 60.06 79.69 68.50

Table 6: 5-fold cross-validation results for NER

plates employed by the NE recognizer are the top
12 templates in Table 2 and those in Table 5.

Learning algorithm We again use CRF++ as
our sequence learner for acquiring the recognizer.

Evaluating the model To evaluate the resulting
NE tagger, we generate test instances in the same
way as the training instances. To score the output
of the recognizer, we use the CoNLL-2000 scor-
ing program9, which reports performance in terms
of recall (R), precision (P), and F-measure (F). All
NE results shown in Table 6 are averages of the
5-fold CV experiments. The first block of the Ta-
ble 6 shows the overall results when the baseline
feature set is used; in addition, we also show re-
sults for each of the three NE tags. As we can see,
the baseline achieves an F-measure of 67.05. The
second block shows the results when the baseline
feature set is augmented with our two induced af-
fix features. Somewhat unexpectedly, F-measure
drops by 0.8% in comparison to the baseline. Ad-
ditional experiments are needed to determine the
reason. Finally, when theWIKI features are in-
corporated into the augmented feature set, the sys-
tem achieves an F-measure of 68.70 (see the third
block), representing a statistically significant in-
crease of 1.6% in F-measure over the baseline.
As we can see, improvements stem primarily from
dramatic gains in recall for locations.

Discussions Several points deserve mentioning.
First, the model performs poorly on theORGs, ow-
ing to the small number of organization names
in the corpus. Worse still, the recall drops after
adding theWIKI features. We examined the list
of inducedORG names and found that it is fairly
noisy. This can be attributed in part to the diffi-
culty in forming a set of seed words that can ex-
tractORGs with high precision (e.g., theORGseed
“situate” extracted manyLOCs). Second, using the

9http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

WIKI features does not help recalling thePERs. A
closer examination of the corpus reveals the rea-
son: many sentences describe fictitious characters,
whereas Wikipedia would be most useful for arti-
cles that describe famous people. Overall, while
the WIKI features provide our recognizer with a
small, but significant, improvement, the useful-
ness of the Bengali Wikipedia is currently lim-
ited by its small size. Nevertheless, we believe the
Bengali Wikipedia will become a useful resource
for language processing as its size increases.

7 A Joint Model for POS Tagging and
NER

The NE recognizer described thus far has adopted
a pipelined architecture, and hence its perfor-
mance could be limited by the errors of the POS
tagger. In fact, as discussed before, the major
source of errors made by our POS tagger concerns
the confusion between proper nouns and common
nouns, and this type of error, when propagated
to the NE recognizer, could severely limit its re-
call. Also, there is strong empirical support for
this argument: the NE recognizers, when given ac-
cess to the correct POS tags, have F-scores rang-
ing from 76-79%, which are 10% higher on aver-
age than those with POS tags that were automat-
ically computed. Consequently, we hypothesize
that modeling POS tagging and NER jointly would
yield better performance than learning the two
tasks separately. In fact, many approaches have
been developed to jointly model POS tagging and
noun phrase chunking, including transformation-
based learning (Ngai and Florian, 2001), factorial
HMMs (Duh, 2005), and dynamic CRFs (Sutton
et al., 2007). Some of these approaches are fairly
sophisticated and also require intensive computa-
tions during inference. For instance, when jointly
modeling POS tagging and chunking, Sutton et al.
(2007) reduce the number of POS tags from 45
to 5 when training a factorial dynamic CRF on a
small dataset (with only 209 sentences) in order to
reduce training and inference time.

In contrast, we propose a relatively simple
model for jointly learning Bengali POS tagging
and NER, by exploiting the limited dependencies
between the two tasks. Specifically, we make the
observation that most of the Bengali words that are
part of an NE are also proper nouns. In fact, based
on statistics collected from our evaluation corpus
(see Sections 5 and 6), this observation is correct

360



Experiment R P F
Baseline 54.76 81.70 65.57
Baseline+Induced Affixes 56.79 88.96 69.32
Baseline+Induced Affixes+Wiki 61.73 86.35 71.99

Table 7: 5-fold cross-validation joint modeling re-
sults for NER

97.3% of the time. Note, however, that this ob-
servation does not hold for English, since many
prepositions and determiners are part of an NE.
On the other hand, this observation largely holds
for Bengali because prepositions and determiners
are typically realized as noun suffixes.

This limited dependency between the POS tags
and the NE tags allows us to develop a simple
model for jointly learning the two tasks. More
specifically, we will use CRF++ to learn the joint
model. Training and test instances are generated
as described in the previous two subsections (i.e.,
one instance per word). The feature set will con-
sist of the union of the features that were used to
train the POS tagger and the NE tagger indepen-
dently, minus the POS-related features that were
used in the NE tagger. The class value of an in-
stance is computed as follows. If a word is not a
proper noun, its class is simply its POS tag. Oth-
erwise, its class is its NE tag, which can bePER,
ORG, LOC, or OTHERS. In other words, our joint
model exploits the observation that we made ear-
lier in the section by assuming that only proper
nouns can be part of a named entity. This allows
us to train a joint model without substantially in-
creasing the number of classes.

We again evaluate our joint model using 5-fold
CV experiments. The NE results of the model are
shown in Table 7. The rows here can be interpreted
in the same manner as those in Table 6. Compar-
ing these three experiments with their counterparts
in Table 6, we can see that, except for the base-
line, jointly modeling offers a significant improve-
ment of 3.3% in overall F-measure.10 In particu-
lar, the joint model benefits significantly from our

10The POS tagging results are not shown due to space lim-
itations. Overall, the POS accuracies drop insignificantlyas
a result of joint modeling, for the following reason. Recall
from Section 5 that the major source of POS tagging errors
arises from the mislabeling of many proper nouns as com-
mon nouns, due primarily to the large number of common
nouns in the corpus. The joint model aggravates this prob-
lem by subcategorizing the proper nouns into different NE
classes, causing the tagger to have an even stronger bias to-
wards labeling a proper noun as a common noun than before.
Nevertheless, as seen from the results in Tables 6 and 7, such
a bias has yielded an increase in NER precision.

two knowledge sources, achieving an F-measure
of 71.99% when both of them are incorporated.

Finally, to better understand the value of the in-
duced affix features in the joint model as well as
the pipelined model described in Section 6, we
conducted an ablation experiment, in which we in-
corporated only theWIKI features into the base-
line feature set. With pipelined modeling, the F-
measure for NER is 68.87%, which is similar to
the case where both induced affixes and theWIKI

features are used. With joint modeling, however,
the F-measure for NER is 70.87%, which is 1%
lower than the best joint modeling score. These
results provide suggestive evidence that the in-
duced affix features play a significant role in the
improved performance of the joint model.

8 Conclusions

We have explored two types of linguistic fea-
tures, namely the induced affix features and the
Wikipedia-related features, to improve a Bengali
POS tagger and NE recognizer. Our experimen-
tal results have demonstrated that (1) both types of
features significantly improve a baseline POS tag-
ger and (2) the Wikipedia-related features signif-
icantly improve a baseline NE recognizer. More-
over, by exploiting the limited dependencies be-
tween Bengali POS tags and NE tags, we pro-
posed a new model for jointly learning the two
tasks, which not only avoids the error-propagation
problem present in the pipelined system architec-
ture, but also yields statistically significant im-
provements over the NE recognizer that is trained
independently of the POS tagger. When applied in
combination, our three extensions contributed to a
relative improvement of 7.5% in F-measure over
the baseline NE recognizer. Most importantly, we
believe that these extensions are of relevance and
interest to the EACL community because many
European and Middle Eastern languages resemble
Bengali in terms of not only their morphological
richness but also their scarcity of annotated cor-
pora. We plan to empirically verify our belief in
future work.
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Abstract

This paper examines unsupervised ap-
proaches to part-of-speech (POS) tagging
for morphologically-rich, resource-scarce
languages, with an emphasis on Goldwa-
ter and Griffiths’s (2007) fully-Bayesian
approach originally developed for En-
glish POS tagging. We argue that ex-
isting unsupervised POS taggers unreal-
istically assume as input a perfect POS
lexicon, and consequently, we propose
a weakly supervised fully-Bayesian ap-
proach to POS tagging, which relaxes the
unrealistic assumption by automatically
acquiring the lexicon from a small amount
of POS-tagged data. Since such relaxation
comes at the expense of a drop in tag-
ging accuracy, we propose two extensions
to the Bayesian framework and demon-
strate that they are effective in improv-
ing a fully-Bayesian POS tagger for Ben-
gali, our representative morphologically-
rich, resource-scarce language.

1 Introduction

Unsupervised POS tagging requires neither man-
ual encoding of tagging heuristics nor the avail-
ability of data labeled with POS information.
Rather, an unsupervised POS tagger operates by
only assuming as input a POS lexicon, which con-
sists of a list of possible POS tags for each word.
As we can see from the partial POS lexicon for
English in Figure 1, “the” isunambiguouswith re-
spect to POS tagging, since it can only be a deter-
miner (DT), whereas “sting” isambiguous, since
it can be a common noun (NN), a proper noun
(NNP) or a verb (VB). In other words, the lexi-
con imposes constraints on the possible POS tags

Word POS tag(s)
... ...
running NN, JJ
sting NN, NNP, VB
the DT
... ...

Figure 1: A partial lexicon for English

of each word, and such constraints are then used
by an unsupervised tagger to label a new sentence.
Conceivably, tagging accuracy decreases with the
increase in ambiguity: unambiguous words such
as “the” will always be tagged correctly; on the
other hand,unseenwords (or words not present
in the POS lexicon) are among the most ambigu-
ous words, since they are not constrained at all
and therefore can receive any of the POS tags.
Hence, unsupervised POS tagging can present sig-
nificant challenges to natural language processing
researchers, especially when a large fraction of
the words are ambiguous. Nevertheless, the de-
velopment of unsupervised taggers potentially al-
lows POS tagging technologies to be applied to a
substantially larger number of natural languages,
most of which are resource-scarce and, in particu-
lar, have little or no POS-tagged data.

The most common approach to unsupervised
POS tagging to date has been to train a hidden
Markov model (HMM) in an unsupervised man-
ner to maximize the likelihood of an unannotated
corpus, using a special instance of the expectation-
maximization (EM) algorithm (Dempster et al.,
1977) known as Baum-Welch (Baum, 1972).
More recently, a fully-Bayesian approach to un-
supervised POS tagging has been developed by
Goldwater and Griffiths (2007) [henceforth G&G]
as a viable alternative to the traditional maximum-
likelihood-based HMM approach. While unsuper-
vised POS taggers adopting both approaches have
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demonstrated promising results, it is important to
note that they are typically evaluated by assuming
the availability of aperfectPOS lexicon. This as-
sumption, however, is fairly unrealistic in practice,
as a perfect POS lexicon can only be constructed
by having a linguist manually label each word in
a language with its possible POS tags.1 In other
words, the labor-intensive POS lexicon construc-
tion process renders unsupervised POS taggers a
lot less unsupervised than they appear. To make
these unsupervised taggers practical, one could at-
tempt to automatically construct a POS lexicon, a
task commonly known asPOS induction. How-
ever, POS induction is by no means an easy task,
and it is not clear how well unsupervised POS tag-
gers work when used in combination with an au-
tomatically constructed POS lexicon.

The goals of this paper are three-fold. First,
motivated by the successes of unsupervised ap-
proaches to English POS tagging, we aim to inves-
tigate whether such approaches, especially G&G’s
fully-Bayesian approach, can deliver similar per-
formance for Bengali, our representative resource-
scarce language. Second, to relax the unrealis-
tic assumption of employing a perfect lexicon as
in existing unsupervised POS taggers, we propose
a weakly supervisedfully-Bayesian approach to
POS tagging, where we automatically construct a
POS lexicon from a small amount of POS-tagged
data. Hence, unlike a perfect POS lexicon, our au-
tomatically constructed lexicon is necessarilyin-
complete, yielding a large number of words that
are completely ambiguous. The high ambiguity
rate inherent in our weakly supervised approach
substantially complicates the POS tagging pro-
cess. Consequently, our third goal of this paper is
to propose two potentially performance-enhancing
extensions to G&G’s Bayesian POS tagging ap-
proach, which exploit morphology and techniques
successfully used in supervised POS tagging.

The rest of the paper is organized as follows.
Section 2 presents related work on unsupervised
approaches to POS tagging. Section 3 gives an
introduction to G&G’s fully-Bayesian approach
to unsupervised POS tagging. In Section 4, we
describe our two extensions to G&G’s approach.
Section 5 presents experimental results on Bengali
POS tagging, focusing on evaluating the effective-

1When evaluating an unsupervised POS tagger, re-
searchers typically construct apseudo-perfectPOS lexicon
by collecting the possible POS tags of a word directly from
the corpus on which the tagger is to be evaluated.

ness of our two extensions in improving G&G’s
approach. Finally, we conclude in Section 6.

2 Related Work

With the notable exception of Synder et
al.’s (2008; 2009) recent work on unsupervised
multilingual POS tagging, existing approaches to
unsupervised POS tagging have been developed
and tested primarily on English data. For instance,
Merialdo (1994) uses maximum likelihood esti-
mation to train a trigram HMM. Schütze (1995)
and Clark (2000) apply syntactic clustering and
dimensionality reduction in a knowledge-free
setting to obtain meaningful clusters. Haghighi
and Klein (2006) develop a prototype-driven
approach, which requires just a few prototype
examples for each POS tag and exploits these
labeled words to constrain the labels of their
distributionally similar words. Smith and Eisner
(2005) train an unsupervised POS tagger using
contrastive estimation, which seeks to move
probability mass to a positive examplee from
its neighbors (i.e., negative examples are created
by perturbinge). Wang and Schuurmans (2005)
improve an unsupervised HMM-based tagger by
constraining the learned structure to maintain
appropriate marginal tag probabilities and using
word similarities to smooth the lexical parameters.

As mentioned before, Goldwater and Griffiths
(2007) have recently proposed an unsupervised
fully-Bayesian POS tagging framework that op-
erates by integrating over the possible parameter
values instead of fixing a set of parameter values
for unsupervised sequence learning. Importantly,
this Bayesian approach facilitates the incorpora-
tion of sparse priors that result in a more practical
distribution of tokens to lexical categories (John-
son, 2007). Similar to Goldwater and Griffiths
(2007) and Johnson (2007), Toutanova and John-
son (2007) also use Bayesian inference for POS
tagging. However, their work departs from exist-
ing Bayesian approaches to POS tagging in that
they (1) introduce a new sparse prior on the dis-
tribution over tags for each word, (2) extend the
Latent Dirichlet Allocation model, and (3) explic-
itly model ambiguity class. While their tagging
model, like Goldwater and Griffiths’s, assumes as
input an incomplete POS lexicon and a large unla-
beled corpus, they consider their approach “semi-
supervised” simply because of the human knowl-
edge involved in constructing the POS lexicon.
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3 A Fully Bayesian Approach

3.1 Motivation

As mentioned in the introduction, the most com-
mon approach to unsupervised POS tagging is to
train an HMM on an unannotated corpus using the
Baum-Welch algorithm so that the likelihood of
the corpus is maximized. To understand what the
HMM parameters are, let us revisit how an HMM
simultaneously generates an output sequencew
= (w0, w1, ..., wn) and the associated hidden state
sequencet = (t0, t1, ..., tn). In the context of POS
tagging, each state of the HMM corresponds to a
POS tag, the output sequencew is the given word
sequence, and the hidden state sequencet is the
associated POS tag sequence. To generatew and
t, the HMM begins by guessing a statet0 and then
emitting w0 from t0 according to a state-specific
output distribution over word tokens. After that,
we move to the next statet1, the choice of which
is based ont0’s transition distribution, and emit
w1 according tot1’s output distribution. This gen-
eration process repeats until the end of the word
sequence is reached. In other words, the parame-
ters of an HMM,θ, are composed of a set of state-
specific (1) output distributions (over word tokens)
and (2) transition distributions, both of which can
be learned using the EM algorithm. Once learning
is complete, we can use the resulting set of param-
eters to find the most likely hidden state sequence
given a word sequence using the Viterbi algorithm.

Nevertheless, EM sometimes fails to find good
parameter values.2 The reason is that EM tries to
assign roughly the same number of word tokens to
each of the hidden states (Johnson, 2007). In prac-
tice, however, the distribution of word tokens to
POS tags is highly skewed (i.e., some POS cate-
gories are more populated with tokens than oth-
ers). This motivates a fully-Bayesian approach,
which, rather than committing to a particular set
of parameter values as in an EM-based approach,
integrates over all possible values ofθ and, most
importantly, allows the use of priors to favor the
learning of the skewed distributions, through the
use of the termP (θ|w) in the following equation:

P (t|w) =

∫
P (t|w, θ)P (θ|w)dθ (1)

The question, then, is: which priors onθ would
allow the acquisition of skewed distributions? To

2When given good parameter initializations, however, EM
can find good parameter values for an HMM-based POS tag-
ger. See Goldberg et al. (2008) for details.

answer this question, recall that in POS tagging,θ

is composed of a set of tag transition distributions
and output distributions. Each such distribution is
a multinomial (i.e., each trial produces exactly one
of some finite number of possible outcomes). For
a multinomial withK outcomes, aK-dimensional
Dirichlet distribution, which is conjugate to the
multinomial, is a natural choice of prior. For sim-
plicity, we assume that a distribution inθ is drawn
from a symmetric Dirichlet with a certain hyper-
parameter (see Teh et al. (2006) for details).

The value of a hyperparameter,α, affects the
skewness of the resulting distribution, as it as-
signs different probabilities to different distribu-
tions. For instance, whenα < 1, higher proba-
bilities are assigned tosparsemultinomials (i.e.,
multinomials in which only a few entries are non-
zero). Intuitively, the tag transition distributions
and the output distributions in an HMM-based
POS tagger are sparse multinomials. As a re-
sult, it is logical to choose a Dirichlet prior with
α < 1. By integrating over all possible param-
eter values, the probability thati-th outcome,yi,
takes the valuek, given the previousi − 1 out-
comesy

−i= (y1, y2, ..., yi−1), is

P (k|y
−i, α) =

∫
P (k|θ)P (θ|y

−i, α)dθ (2)

=
nk + α

i − 1 + Kα
(3)

where nk is the frequency ofk in y
−i. See

MacKay and Peto (1995) for the derivation.

3.2 Model

Our baseline POS tagging model is a standard tri-
gram HMM with tag transition distributions and
output distributions, each of which is a sparse
multinomial that is learned by applying a symmet-
ric Dirichlet prior:

ti | ti−1, ti−2, τ
(ti−1,ti−2) ∼ Mult(τ (ti−1,ti−2))

wi | ti, ω
(ti) ∼ Mult(ω(ti))

τ (ti−1,ti−2) | α ∼ Dirichlet(α)
ω(ti) | β ∼ Dirichlet(β)

wherewi andti denote thei-th word and tag. With
a tagset of sizeT (including a special tag used as
sentence delimiter), each of the tag transition dis-
tributions hasT components. For the output sym-
bols, each of theω(ti) hasWti components, where
Wti denotes the number of word types that can be
emitted from the state corresponding toti.
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From the closed form in Equation 3, given pre-
vious outcomes, we can compute the tag transition
and output probabilities of the model as follows:

P (ti|t−i, α) =
n(ti−2,ti−1,ti) + α

n(ti−2,ti−1) + Tα
(4)

P (wi|ti, t−i,w−i, β) =
n(ti,wi) + β

nti + Wtiβ
(5)

wheren(ti−2,ti−1,ti) and n(ti,wi) are the frequen-
cies of observing the tag trigram(ti−2, ti−1, ti)
and the tag-word pair(ti, wi), respectively. These
counts are taken from thei − 1 tags and words
generated previously. The inference procedure de-
scribed next exploits the property that trigrams
(and outputs) areexchangeable; that is, the prob-
ability of a set of trigrams (and outputs) does not
depend on the order in which it was generated.

3.3 Inference Procedure

We perform inference using Gibbs sampling (Ge-
man and Geman, 1984), using the following pos-
terior distribution to generate samples:

P (t|w, α, β) ∝ P (w|t, β)P (t|α)

Starting with a random assignment of a POS tag
to each word (subject to the constraints in the POS
lexicon), we resample each POS tag,ti, accord-
ing to the conditional distribution shown in Figure
2. Note that the current counts of other trigrams
and outputs can be used as “previous” observa-
tions due to the property of exchangeability.

Following G&G, we use simulated annealing to
find the MAP tag sequence. The temperature de-

creases by a factor ofexp(
log(

θ2
θ1

)

N−1 ) after each iter-
ation, whereθ1 is the initial temperature andθ2 is
the temperature afterN sampling iterations.

4 Two Extensions

In this section, we present two extensions to
G&G’s fully-Bayesian framework to unsupervised
POS tagging, namely, induced suffix emission and
discriminative prediction.

4.1 Induced Suffix Emission

For morphologically-rich languages like Bengali,
a lot of grammatical information (e.g., POS) is ex-
pressed via suffixes. In fact, several approaches to
unsupervised POS induction for morphologically-
rich languages have exploited the observation that
some suffixes can only be associated with a small

number of POS tags (e.g., Clark (2003), Dasgupta
and Ng (2007)). To exploit suffixes in HMM-
based POS tagging, one can (1) convert the word-
based POS lexicon to asuffix-based POS lexicon,
which lists the possible POS tags for each suffix;
and then (2) have the HMM emit suffixes rather
than words, subject to the constraints in the suffix-
based POS lexicon. Such a suffix-based HMM,
however, may suffer from over-generalization. To
prevent over-generalization and at the same time
exploit suffixes, we propose as our first exten-
sion to G&G’s framework a hybrid approach to
word/suffix emission: a word is emitted if it is
present in the word-based POS lexicon; otherwise,
its suffix is emitted. In other words, our approach
imposes suffix-based constraints on the tagging of
words that are unseen w.r.t. the word-based POS
lexicon. Below we show how to induce the suffix
of a word and create the suffix-based POS lexicon.

Inducing suffixes To induce suffixes, we rely on
Keshava and Pitler’s (2006) method. Assume that
(1) V is a vocabulary (i.e., a set of distinct words)
extracted from a large, unannotated corpus, (2)C1

andC2 are two character sequences, and (3)C1C2

is the concatenation ofC1 andC2. If C1C2 and
C1 are found inV , we extractC2 as a suffix.

However, this unsupervised suffix induction
method is arguably overly simplistic and hence
many of the induced affixes could be spurious. To
identify suffixes that are likely to be correct, we
employ a simple procedure: we (1) score each suf-
fix by multiplying its frequency(i.e., the number
of distinct words inV to which each suffix at-
taches) and itslength3, and (2) select only those
whose score is above a certain threshold. In our
experiments, we set this threshold to 50, and gen-
erate our vocabulary from five years of articles
taken from the Bengali newspaperProthom Alo.
This enables us to induce 975 suffixes.

Constructing a suffix-based POS lexicon
Next, we construct a suffix-based POS lexicon.
For each wordw in the original word-based
POS lexicon, we (1) use the induced suffix list
obtained in the previous step to identify the
longest-matching suffix ofw, and then (2) assign
all the POS tags associated withw to this suffix.

Incorporating suffix-based output distributions
Finally, we extend our trigram model by introduc-

3The dependence on frequency and length is motivated by
the observation that less frequent and shorter affixes are more
likely to be erroneous (see Goldsmith (2001)).
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P (ti|t−i,w, α, β) ∝
n(ti,wi) + β

nti + Wtiβ
.
n(ti−2,ti−1,ti) + α

n(ti−2,ti−1) + Tα
.
n(ti−1,ti,ti+1) + I(ti−2 = ti−1 = ti = ti+1) + α

n(ti−1,ti) + I(ti−2 = ti−1 = ti) + Tα

.
n(ti,ti+1,ti+2) + I(ti−2 = ti = ti+2, ti−1 = ti+1) + I(ti−1 = ti = ti+1 = ti+2) + α

n(ti,ti+1) + I(ti−2 = ti, ti−1 = ti+1) + I(ti−1 = ti = ti+1) + Tα

Figure 2: The sampling distribution forti (taken directly from Goldwater and Griffiths (2007)). Allnx

values are computed from the current values of all tags except for ti. Here,I(arg) is a function that
returns 1 ifarg is true and 0 otherwise, andt

−i refers to the current values of all tags except forti.

ing a state-specific probability distribution over in-
duced suffixes. Specifically, if the current word is
present in the word-based POS lexicon, or if we
cannot find any suffix for the word using the in-
duced suffix list, then we emit the word. Other-
wise, we emit its suffix according to a suffix-based
output distribution, which is drawn from a sym-
metric Dirichlet with hyperparameterγ:

si | ti, σ
(ti) ∼ Mult(σ(ti))

σ(ti) | γ ∼ Dirichlet(γ)

where si denotes the induced suffix of thei-th
word. The distribution,σ(ti), hasSti components,
whereSti denotes the number of induced suffixes
that can be emitted from the state corresponding to
ti. We compute the induced suffix emission prob-
abilities of the model as follows:

P (si|ti, t−i, s−i, γ) =
n(ti,si) + γ

nti + Stiγ
(6)

where n(ti,si) is the frequency of observing the
tag-suffix pair(ti, si).

This extension requires that we slightly modify
the inference procedure. Specifically, if the cur-
rent word is unseen (w.r.t. the word-based POS
lexicon) and has a suffix (according to the induced
suffix list), then we sample from a distribution that
is almost identical to the one shown in Figure 2,
except that we replace the first fraction (i.e., the
fraction involving the emission counts) with the
one shown in Equation (6). Otherwise, we simply
sample from the distribution in Figure 2.

4.2 Discriminative Prediction

As mentioned in the introduction, the (word-
based) POS lexicons used in existing approaches
to unsupervised POS tagging were created some-
what unrealistically by collecting the possible
POS tags of a word directly from the corpus on
which the tagger is to be evaluated. To make the

lexicon formation process more realistic, we pro-
pose aweakly supervisedapproach to Bayesian
POS tagging, in which weautomaticallycreate the
word-based POS lexicon from a small set of POS-
tagged sentences that is disjoint from the test data.
Adopting a weakly supervised approach has an ad-
ditional advantage: the presence of POS-tagged
sentences makes it possible to exploit techniques
developed for supervised POS tagging, which is
the idea behind discriminative prediction, our sec-
ond extension to G&G’s framework.

Given a small set of POS-tagged sentencesL,
discriminative prediction uses the statistics col-
lected fromL to predict the POS of a word in a
discriminative fashion whenever possible. More
specifically, discriminative prediction relies on
two simple ideas typically exploited by supervised
POS tagging algorithms: (1) if the target word
(i.e., the word whose POS tag is to be predicted)
appears inL, we can label the word with its POS
tag inL; and (2) if the target word does not appear
in L but its context does, we can use its context to
predict its POS tag. In bigram and trigram POS
taggers, the context of a word is represented us-
ing the preceding one or two words. Nevertheless,
sinceL is typically small in a weakly supervised
setting, it is common for a target word not to sat-
isfy any of the two conditions above. Hence, if it is
not possible to predict a target word in a discrim-
inative fashion (due to the limited size ofL), we
resort to the sampling equation in Figure 2.

To incorporate the above discriminative deci-
sion steps into G&G’s fully-Bayesian framework
for POS tagging, the algorithm estimates three
types of probability distributions fromL. First,
to capture context, it computes (1) a distribu-
tion over the POS tags following a word bi-
gram,(wi−2, wi−1), that appears inL [henceforth
D1(wi−2, wi−1)] and (2) a distribution over the
POS tags following a word unigram,wi−1, that ap-
pears inL [henceforthD2(wi−1)]. Then, to cap-
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Algorithm 1 Algorithm for incorporating discrim-
inative prediction
Input: wi: current word

wi−1: previous word
wi−2: second previous word
L: a set of POS-tagged sentences

Output: Predicted tag,ti

1: if wi ∈ L then
2: ti ← Tag drawn from the distribution ofwi’s candi-

date tags
3: else if(wi−2, wi−1) ∈ L then
4: ti ← Tag drawn from the distribution of the POS tags

following the word bigram(wi−2, wi−1)
5: else ifwi−1 ∈ L then
6: ti ← Tag drawn from the distribution of the POS tags

following the word unigramwi−1

7: else
8: ti ← Tag obtained using the sampling equation
9: end if

ture the fact that a word can have more than one
POS tag, it also estimates a distribution over POS
tags for each wordwi that appears inL [hence-
forth D3(wi)].

Implemented as a set of if-else clauses, the al-
gorithm uses these three types of distributions to
tag a target word,wi, in a discriminative manner.
First, it checks whetherwi appears inL (line 1). If
so, it tagswi according toD3(wi). Otherwise, it
attempts to labelwi based on its context. Specifi-
cally, if (wi−2, wi−1), the word bigram preceding
wi, appears inL (line 3), thenwi is tagged accord-
ing to D1(wi−2, wi−1). Otherwise, it backs off to
a unigram distribution: ifwi−1, the word preced-
ing wi, appears inL (line 5), thenwi is tagged
according toD2(wi−1). Finally, if it is not possi-
ble to tag the word discriminatively (i.e., if all the
above cases fail), it resorts to the sampling equa-
tion (lines 7–8). We apply simulated annealing to
all four cases in this iterative tagging procedure.

5 Evaluation

5.1 Experimental Setup

Corpus Our evaluation corpus is the one used
in the shared task of the IJCNLP-08 Workshop on
NER for South and South East Asian Languages.4

Specifically, we use the portion of the Bengali
dataset that is manually POS-tagged. IIIT Hy-
derabad’s POS tagset5, which consists of 26 tags
specifically developed for Indian languages, has
been used to annotate the data. The corpus is com-
posed of a training set and a test set with approxi-

4The corpus is available from http://ltrc.iiit.ac.in/ner-ssea-
08/index.cgi?topic=5.

5http://shiva.iiit.ac.in/SPSAL2007/iiittagsetguidelines.pdf

mately 50K and 30K tokens, respectively. Impor-
tantly, all our POS tagging results will be reported
using only the test set; the training set will be used
for lexicon construction, as we will see shortly.

Tagset We collapse the set of 26 POS tags into
15 tags. Specifically, while we retain the tags cor-
responding to the major POS categories, we merge
some of the infrequent tags designed to capture
Indian language specific structure (e.g., reduplica-
tion, echo words) into a category calledOTHERS.

Hyperparameter settings Recall that our tag-
ger consists of three types of distributions — tag
transition distributions, word-based output distri-
butions, and suffix-based output distributions —
drawn from a symmetric Dirichlet withα, β,
andγ as the underlying hyperparameters, respec-
tively. We automatically determine the values of
these hyperparameters by (1) randomly initializ-
ing them and (2) resampling their values by using
a Metropolis-Hastings update (Gilks et al., 1996)
at the end of each sampling iteration. Details of
this update process can be found in G&G.

Inference Inference is performed by running a
Gibbs sampler for 5000 iterations. The initial tem-
perature is set to 2.0, which is gradually lowered
to 0.08 over the iterations. Owing to the random-
ness involved in hyperparameter initialization, all
reported results are averaged over three runs.

Lexicon construction methods To better under-
stand the role of a POS lexicon in tagging perfor-
mance, we evaluate each POS tagging model by
employing lexicons constructed by three methods.

The first lexicon construction method, arguably
the most unrealistic among the three, follows that
of G&G: for each word,w, in the testset, we (1)
collect from each occurrence ofw in the training
setand the test set its POS tag, and then (2) insert
w and all the POS tags collected forw into the
POS lexicon. This method is unrealistic because
(1) in practice, a human needs to list all possible
POS tags for each word in order to construct this
lexicon, thus rendering the resulting tagger con-
siderably less unsupervised than it appears; and
(2) constructing the lexicon using the dataset on
which the tagger is to be evaluated implies that
there is nounseenword w.r.t. the lexicon, thus un-
realistically simplifies the POS tagging task. To
make the method more realistic, G&G also create
a set ofrelaxed lexicons. Each of these lexicons
includes the tags for only the words that appear
at leastd times in the test corpus, whered ranges
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Figure 3: Accuracies of POS tagging models using (a) Lexicon1 and (b) Lexicon 2

from 1 to 10 in our experiments. Any unseen (i.e.,
out-of-dictionary) word is ambiguous among the
15 possible tags. Not surprisingly, both ambigu-
ity and the unseen word rate increase withd. For
instance, the ambiguous token rate increases from
40.0% with 1.7 tags/token (d=1) to 77.7% with 8.1
tags/token (d=10). Similarly, the unseen word rate
increases from 16% (d=2) to 46% (d=10). We will
refer to this set of tag dictionaries asLexicon 1.

The second method generates a set of relaxed
lexicons,Lexicon 2, in essentially the same way
as the first method, except that these lexicons in-
clude only the words that appear at leastd times
in the training data. Importantly, the words that
appear solely in the test data are not included in
any of these relaxed POS lexicons. This makes
Lexicon 2 a bit more realistic than Lexicon 1 in
terms of the way they are constructed. As a result,
in comparison to Lexicon 1, Lexicon 2 has a con-
siderably higher ambiguous token rate and unseen
word rate: its ambiguous token rate ranges from
64.3% with 5.3 tags/token (d=1) to 80.5% with 8.6
tags/token (d=10), and its unseen word rate ranges
from 25% (d=1) to 50% (d=10).

The third method, arguably the most realistic
among the three, is motivated by our proposed
weakly supervised approach. In this method, we
(1) form ten different datasets from the (labeled)
training data of sizes 5K words, 10K words,. . .,
50K words, and then (2) create one POS lexicon
from each datasetL by listing, for each wordw in
L, all the tags associated withw in L. This set of
tag dictionaries, which we will refer to asLexicon

3, has an ambiguous token rate that ranges from
57.7% with 5.1 tags/token (50K) to 61.5% with
8.1 tags/token (5K), and an unseen word rate that
ranges from 25% (50K) to 50% (5K).

5.2 Results and Discussion

5.2.1 Baseline Systems

We use as our first baseline system G&G’s
Bayesian POS tagging model, as our goal is to
evaluate the effectiveness of our two extensions
in improving their model. To further gauge the
performance of G&G’s model, we employ another
baseline commonly used in POS tagging exper-
iments, which is an unsupervised trigram HMM
trained by running EM to convergence.

As mentioned previously, we evaluate each tag-
ging model by employing the three POS lexicons
described in the previous subsection. Figure 3(a)
shows how the tagging accuracy varies withd

when Lexicon 1 is used. Perhaps not surpris-
ingly, the trigram HMM (MLHMM) and G&G’s
Bayesian model (BHMM) achieve almost identi-
cal accuracies whend=1 (i.e., the complete lexi-
con with a zero unseen word rate). Asd increases,
both ambiguity and the unseen word rate increase;
as a result, the tagging accuracy decreases. Also,
consistent with G&G’s results, BHMM outper-
forms MLHMM by a large margin (4–7%).

Similar performance trends can be observed
when Lexicon 2 is used (see Figure 3(b)). How-
ever, both baselines achieve comparatively lower
tagging accuracies, as a result of the higher unseen
word rate associated with Lexicon 2.
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Figure 4: Accuracies of the POS tagging models
using Lexicon 3

Results using Lexicon 3 are shown in Figure
4. Owing to the availability of POS-tagged sen-
tences, we replace MLHMM with itssupervised
counterpart that is trained on the available labeled
data, yielding the SHMM baseline. The accuracies
of SHMM range from 48% to 67%, outperforming
BHMM as the amount of labeled data increases.

5.2.2 Adding Induced Suffix Emission

Next, we augment BHMM with our first
extension, induced suffix emission, yielding
BHMM+IS. For Lexicon 1, BHMM+IS achieves
the same accuracy as the two baselines whend=1.
The reason is simple: as all the test words are
in the POS lexicon, the tagger never emits an in-
duced suffix. More importantly, BHMM+IS beats
BHMM and MLHMM by 4–9% and 10–14%, re-
spectively. Similar trends are observed for Lex-
icon 2, where BHMM+IS outperforms BHMM
and MLHMM by a larger margin of 5–10% and
12–16%, respectively. For Lexicon 3, BHMM+IS
outperforms SHMM, the stronger baseline, by 6–
11%. Overall, these results suggest that induced
suffix emission is a strong performance-enhancing
extension to G&G’s approach.

5.2.3 Adding Discriminative Prediction

Finally, we augment BHMM+IS with discrimi-
native prediction, yielding BHMM+IS+DP. Since
this extension requires labeled data, it can only be
applied in combination with Lexicon 3. As seen
in Figure 4, BHMM+IS+DP outperforms SHMM
by 10–14%. Its discriminative nature proves to be

Predicted Tag Correct Tag % of Error
NN NNP 8.4
NN JJ 6.9
VM VAUX 5.9

Table 1: Most frequent POS tagging errors for
BHMM+IS+DP on the 50K-word training set

strong as it even beats BHMM+IS by 3–4%.

5.2.4 Error Analysis

Table 1 lists the most common types of er-
rors made by the best-performing tagging model,
BHMM+IS+DP (50K-word labeled data). As we
can see, common nouns and proper nouns (row
1) are difficult to distinguish, due in part to the
case insensitivity of Bengali. Also, it is difficult
to distinguish Bengali common nouns and adjec-
tives (row 2), as they are distributionally similar
to each other. The confusion between main verbs
[VM] and auxiliary verbs [VAUX] (row 3) arises
from the fact that certain Bengali verbs can serve
as both a main verb and an auxiliary verb, depend-
ing on the role the verb plays in the verb sequence.

6 Conclusions

While Goldwater and Griffiths’s fully-Bayesian
approach and the traditional maximum-likelihood
parameter-based approach to unsupervised POS
tagging have offered promising results for English,
we argued in this paper that such results were ob-
tained under the unrealistic assumption that a per-
fect POS lexicon is available, which renders these
taggers less unsupervised than they appear. As a
result, we investigated a weakly supervised fully-
Bayesian approach to POS tagging, which relaxes
the unrealistic assumption by automatically ac-
quiring the lexicon from a small amount of POS-
tagged data. Since such relaxation comes at the
expense of a drop in tagging accuracy, we pro-
posed two performance-enhancing extensions to
the Bayesian framework, namely, induced suffix
emission and discriminative prediction, which ef-
fectively exploit morphology and techniques from
supervised POS tagging, respectively.
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Abstract

We extend the factored translation model
(Koehn and Hoang, 2007) to allow trans-
lations of longer phrases composed of fac-
tors such as POS and morphological tags
to act as templates for the selection and re-
ordering of surface phrase translation. We
also reintroduce the use of alignment in-
formation within the decoder, which forms
an integral part of decoding in the Align-
ment Template System (Och, 2002), into
phrase-based decoding.

Results show an increase in transla-
tion performance of up to 1.0% BLEU

for out-of-domain French–English transla-
tion. We also show how this method com-
pares and relates to lexicalized reordering.

1 Introduction

One of the major issues in statistical machine
translation is reordering due to systematic word-
ordering differences between languages. Often re-
ordering is best explained by linguistic categories,
such as part-of-speech tags. In fact, prior work
has examined the use of part-of-speech tags in
pre-reordering schemes, Tomas and Casacuberta
(2003).

Re-ordering can also be viewed as composing
of a number of related problems which can be ex-
plained or solved by a variety of linguistic phe-
nomena. Firstly, differences between phrase or-
dering account for much of the long-range re-
ordering. Syntax-based and hierarchical models
such as (Chiang, 2005) attempts to address this
problem. Shorter range re-ordering, such as intra-
phrasal word re-ordering, can often be predicted
from the underlying property of the words and
its context, the most obvious property being POS
tags.

In this paper, we tackle the issue of shorter-
range re-ordering in phrase-based decoding by
presenting an extension of the factored transla-
tion which directly models the translation of non-
surface factors such as POS tags. We shall call this

extension the factored template model. We use the
fact that factors such as POS-tags are less sparse
than surface words to obtain longer phrase trans-
lations. These translations are used to inform the
re-ordering of surface phrases.

Despite the ability of phrase-based systems to
use multi-word phrases, the majority of phrases
used during decoding are one word phrases, which
we will show in later sections. Using word trans-
lations negates the implicit capability of phrases
to re-order words. We show that the proposed
extension increases the number of multi-word
phrases used during decoding, capturing the im-
plicit ordering with the phrase translation, lead-
ing to overall better sentence translation. In
our tests, we obtained 1.0% increase in absolute
for French-English translation, and 0.8% increase
for German-English translation, trained on News
Commentary corpora 1.

We will begin by recounting the phrase-based
and factored model in Section 2 and describe the
language model and lexicalized re-ordering model
and the advantages and disadvantages of using
these models to influence re-ordering. The pro-
posed model is described in Section 4.

2 Background

Let us first provide some background on phrase-
based and factored translation, as well as the use
of part-of-speech tags in reordering.

2.1 Phrase-Based Models

Phrase-based statistical machine translation has
emerged as the dominant paradigm in machine
translation research. We model the translation of
a given source language sentence s into a target
language sentence t with a probability distribution
p(t|s). The goal of translation is to find the best
translation according to the model

tBEST = argmaxt p(t|s) (1)

The argmax function defines the search objec-
tive of the decoder. We estimate p(t|s) by decom-

1http://www.statmt.org/wmt07/shared-task.html
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posing it into component models

p(t|s) =
1
Z

∏
m

h′
m(t, s)λm (2)

where h′
m(t, s) is the feature function for compo-

nent m and λm is the weight given to component
m. Z is a normalization factor which is ignored in
practice. Components are translation model scor-
ing functions, language model, reordering models
and other features.

The problem is typically presented in log-space,
which simplifies computations, but otherwise does
not change the problem due to the monotonicity of
the log function (hm = log h′

m)

log p(t|s) =
∑
m

λm hm(t, s) (3)

Phrase-based models (Koehn et al., 2003) are
limited to the mapping of small contiguous chunks
of text. In these models, the source sentence s is
segmented into a number of phrases s̄k, which are
translated one-to-one into target phrases t̄k. The
translation feature functions hTM(t, s) are com-
puted as sum of phrase translation feature func-
tions h̄TM(t̄k, s̄k):

hTM(t, s) =
∑
k

h̄TM(t̄k, s̄k) (4)

where t̄k and s̄k are the phrases that make up the
target and source sentence. Note that typically
multiple feature functions for one translation table
are used (such as forward and backward probabil-
ities and lexical backoff).

2.2 Reordering in Phrase Models
Phrase-based systems implicitly perform short-
range reordering by translating multi-word
phrases where the component words may be
reordered relative to each other. However, multi-
word phrases have to have been seen and learnt
from the training corpus. This works better when
the parallel corpus is large and the training corpus
and input are from the same domain. Otherwise,
the ability to apply multi-word phrases is lessened
due to data sparsity, and therefore most used
phrases are only 1 or 2 words long.

A popular model for phrasal reordering is lexi-
calized reordering (Tillmann, 2004) which intro-
duces a probability distribution for each phrase
pair that indicates the likelihood of being trans-
lated monotone, swapped, or placed discontinu-
ous to its previous phrase. However, whether a

phrase is reordered may depend on its neighboring
phrases, which this model does not take into ac-
count. For example, the French phrase noir would
be reordered if preceded by a noun when translat-
ing into English, as in as in chat noir, but would re-
main in the same relative position when preceded
by a conjunction such as rouge et noir.

The use of language models on the decoding
output also has a significant effect on reorder-
ing by preferring hypotheses which are more flu-
ent. However, there are a number of disadvantages
with this low-order Markov model over consecu-
tive surface words. Firstly, the model has no infor-
mation about the source and may prefer orderings
of target words that are unlikely given the source.
Secondly, data sparsity may be a problem, even
if language models are trained on a large amount
of monolingual data which is easier to obtain than
parallel data. When the test set is out-of-domain
or rare words are involved, it is likely that the lan-
guage model backs off to lower order n-grams,
thus further reducing the context window.

2.3 POS-Based Reordering

This paper will look at the use of POS tags to con-
dition reordering of phrases which are closely po-
sitioned in the source and target, such as intra-
clausal reordering, however, we do not explicit
segment along clausal boundaries. By mid-range
reordering we mean a maximum distortion of
about 5 or 6 words.

The phrase-based translation model is gener-
ally believed to perform short-range reordering
adequately. It outperforms more complex mod-
els such as hierarchical translation when the most
of the reordering in a particular language pair is
reasonably short (Anonymous, 2008), as is the
case with Arabic–English. However, phrase-based
models can fail to reorder words or phrases which
would seem obvious if it had access to the POS
tags of the individual words. For example, a trans-
lation from French to English will usually cor-
rectly reorder the French phrase with POS tags
NOUN ADJECTIVE if the surface forms exists in
the phrase table or language model, e.g.,

Union Européenne → European Union

However, phrase-based models may not reorder
even these small two-word phrases if the phrase
is not in the training data or involves rare words.
This situation worsens for longer phrases where
the likelihood of the phrase being previously un-
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seen is higher. The following example has a source
POS pattern NOUN ADJECTIVE CONJUNCTION

ADJECTIVE but is incorrectly ordered as the sur-
face phrase does not occur in training,

difficultés économiques et socials
→ economic and social difficulties

However, even if the training data does not con-
tain this particular phrase, it contains many similar
phrases with the same underlying POS tags. For
example, the correct translation of the correspond-
ing POS tags of the above translation

NOUN ADJ CONJ ADJ

→ ADJ CONJ ADJ NOUN

is typically observed many times in the training
corpus.

The alignment information in the training cor-
pus shows exactly how the individual words in this
phrase should be distorted, along with the POS
tag of the target words. The challenge addressed
by this paper is to integrate POS tag phrase trans-
lations and alignment information into a phrase-
based decoder in order to improve reordering.

2.4 Factor Model Decomposition
Factored translation models (Koehn and Hoang,
2007) extend the phrase-based model by inte-
grating word level factors into the decoding pro-
cess. Words are represented by vectors of fac-
tors, not simple tokens. Factors are user-definable
and do not have any specific meaning within the
model. Typically, factors are obtained from lin-
guistic tools such as taggers and parsers.

The factored decoding process can be decom-
posed into multiple steps to fully translate the in-
put. Formally, this decomposes Equation 4 further
into sub-component models (also called transla-
tion steps)

h̄TM(t̄, s̄) =
∑
i

h̄iTM(t̄, s̄) (5)

with an translation feature function h̄iTM for each
translation step for each factor (or sets of factors).
There may be also generation models which create
target factors from other target factors but we ex-
clude this in our presentation for the sake of clar-
ity.

Decomposition is a convenient and flexible
method for integrating word level factors into
phrase-based decoding, allowing source and tar-
get sentences to be augmented with factors, while

at the same time controlling data sparsity. How-
ever, decomposition also implies certain indepen-
dence assumptions which may not be justified.
Various internal experiments show that decompo-
sition may decrease performance and that better
results can often be achieved by simply translat-
ing all factors jointly. While we can gain benefit
from adding factor information into phrase-based
decoding, our experience also shows the short-
comings of decomposing phrase translation.

3 Related Work

Efforts have been made to integrate syntactic in-
formation into the decoding process to improve re-
ordering.

Collins et al. (2005) reorder the source sentence
using a sequence of six manually-crafted rules,
given the syntactic parse tree of the source sen-
tence. While the transformation rules are specific
to the German parser that was used, they could
be adapted to other languages and parsers. Xia
and McCord (2004) automatically create rewrite
rules which reorder the source sentence. Zhang
and Zens (2007) take a slightly different approach
by using chunk level tags to reorder the source
sentence, creating a confusion network to repre-
sent the possible reorderings of the source sen-
tence. All these approaches seek to improve re-
ordering by making the ordering of the source sen-
tence similar to the target sentence.

Costa-jussà and Fonollosa (2006) use a two
stage process to reorder translation in an n-gram
based decoder. The first stage uses word classes of
source words to reorder the source sentence into
a string of word classes which can be translated
monotonically to the target sentences in the sec-
ond stage.

The Alignment Template System (Och, 2002)
performs reordering by translating word classes
with their corresponding alignment information,
then translates each surface word to be consis-
tent with the alignment. Tomas and Casacuberta
(2003) extend ATS by using POS tags instead of
automatically induced word classes.

Note the limitation of the existing work of POS-
driven reordering in phrase-based models: the re-
ordering model is separated from the translation
model and the two steps are pipelined, with pass-
ing the 1-best reordering or at most a lattice to the
translation stage. The ATS models do provide an
integrated approach, but their lexical translation is
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limited to the word level.
In contrast to prior work, we present a inte-

grated approach that allows POS-based reordering
and phrase translation. It is also open to the use of
any other factors, such as driving reordering with
automatic word classes.

Our proposed solution is similar to structural
templates described in Phillips (2007) which was
applied to an example-based MT system.

4 Translation Using Templates of Factors

A major motivation for the introduction of fac-
tors into machine translation is to generalize
phrase translation over longer segments using less
sparse factors than is possible with surface forms.
(Koehn and Hoang, 2007) describes various strate-
gies for the decomposition of the decoding into
multiple translation models using the Moses de-
coder. We shall focus on POS-tags as an example
of a less-sparsed factor.

Decomposing the translation by separately de-
coding the POS tags and surface forms is be the
obvious option, which also has a probabilistic in-
terpretation. However, this combined factors into
target words which don’t exist naturally and bring
down translation quality. Therefore, the decoding
is constrained by decomposing into two transla-
tion models; a model with POS-tag phrase pairs
only and one which jointly translates POS-tags
and surface forms. This can be expressed using
feature-functions

h̄TM(t̄, s̄) = h̄posTM (t̄, s̄)h̄surfaceTM (t̄, s̄) (6)

Source segment must be decoded by both trans-
lation models but only phrase pairs where the over-
lapping factors are the same are used. As an ad-
ditional constraint, the alignment information is
retained in the translation model from the train-
ing data for every phrase pair, and both translation
models must produce consistent alignments. This
is expressed formally in Equation 7 to 9.

An alignment is a relationship which maps a
source word at position i to a target word at po-
sition j:

a : i→ j (7)

Each word at each position can be aligned to
multiple words, therefore, we alter the alignment
relation to express this explicitly:

a : i→ j (8)

where J is the set of positions, jεJ , that I is
aligned to in the other language. Phrase pairs
for each translation model are used only if they
can satisfy condition 9 for each position of every
source word covered.

∀a, b ε T ∀p : JpaJ
p
b 6= ∅ (9)

where Jpa is the alignment information for trans-
lation model, a, at word position, p and T is the set
of translation models.

4.1 Training

The training procedure is identical to the fac-
tored phrase-based training described in (Koehn
and Hoang, 2007). The phrase model retains the
word alignment information found during train-
ing. Where multiple alignment exists in the train-
ing data for a particular phrase pair, the most fre-
quent is used, in a similar manner to the calcula-
tion of the lexicalized probabilities.

Words positions which remain unaligned are ar-
tificially aligned to every word in the other lan-
guage in the phrase translation during decoding to
allow the decoder to cover the position.

4.2 Decoding

The beam search decoding algorithm is unchanged
from traditional phrase-based and factored decod-
ing. However, the creation of translation options is
extended to include the use of factored templates.
Translation options are the intermediate represen-
tation between the phrase pairs from the transla-
tion models and the hypotheses in the stack de-
coder which cover specific source spans of a sen-
tence and are applied to hypotheses to create new
hypotheses.

In phrase-based decoding, a translation option
strictly contains one phrase pair. In factored de-
coding, strictly one phrase pair from each trans-
lation model is used to create a translation op-
tions. This is possible only when the segmenta-
tion is identical for both source and target span of
each phrase pair in each translation model. How-
ever, this constraint limits the ability to use long
POS-tag phrase pairs in conjunction with shorter
surface phrase pairs.

The factored template approach extend factored
decoding by constructing translation options from
a single phrase pair from the POS-tag translation
model, but allowing multiple phrase pairs from
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other translation models. A simplified stack de-
coder is used to compose phrases from the other
translation models. This so called intra-phrase de-
coder is constrained to creating phrases which ad-
heres to the constraint described in Section 4. The
intra-phrase decoder uses the same feature func-
tions as the main beam decoder but uses a larger
stack size due to the difficulty of creating com-
pleted phrases which satisfy the constraint. Every
source position must be covered by every transla-
tion model.

The intra-phrase decoder is used for each con-
tiguous span in the input sentence to produce
translation options which are then applied as usual
by the main decoder.

5 Experiments

We performed our experiments on the news com-
mentary corpus2 which contains 60,000 parallel
sentences for German–English and 43,000 sen-
tences for French–English. Tuning was done on
a 2000 sentence subset of the Europarl corpus
(Koehn, 2005) and tested on a 2000 sentence Eu-
roparl subset for out-of-domain, and a 1064 news
commentary sentences for in-domain.

The training corpus is aligned using Giza++
(Och and Ney, 2003). To create POS tag trans-
lation models, the surface forms on both source
and target language training data are replaced with
POS tags before phrases are extracted. The taggers
used were the Brill Tagger (Brill, 1995) for En-
glish, the Treetagger for French (Schmid, 1994),
and the LoPar Tagger (Schmidt and Schulte im
Walde, 2000) for German. The training script sup-
plied with the Moses toolkit (Koehn et al., 2007)
was used, extended to enable alignment informa-
tion of each phrase pair. The vanilla Moses MERT
tuning script was used throughout.

Results are also presented for models trained on
the larger Europarl corpora3.

5.1 German–English

We use as a baseline the traditional, non-factored
phrase model which obtained a BLEU score of
14.6% on the out-of-domain test set and 18.2% on
the in-domain test set (see Table 1, line 1).

POS tags for both source and target languages
were augmented to the training corpus and used in
the decoding and an additional trigram language

2
http://www.statmt.org/wmt07/shared-task.html

3http://www.statmt.org/europarl/

# Model out-domain in-domain
1 Unfactored 14.6 18.2
2 Joint factors 15.0 18.8
3 Factored template 15.3 18.8

Table 1: German–English results, in %BLEU

# Model out-domain in-domain
1 Unfactored 19.6 23.1
2 Joint factors 19.8 23.0
3 Factored template 20.6 24.1

Table 2: French–English results

model was used on the target POS tags. This
increased translation performance (line 2). This
model has the same input and output factors, and
the same language models, as the factored model
we will present shortly and it therefore offers a
fairer comparison of the factored template model
than the non-factored baseline.

The factored template model (line 3) outper-
forms the baseline on both sets and the joint factor
model on the out-of-domain set.

However, we believe the language pair
German–English is not particularly suited for
the factored template approach as many of the
short-range ordering properties of German and
English are similar. For example, ADJECTIVE

NOUN phrases are ordered the same in both
languages.

5.2 French–English

Repeating the same experiments for French–
English produces bigger gains for the factored
template model. See Table 4 for details. Using
the factored template model produces the best re-
sult, with gains of 1.0 %BLEU over the unfactored
baseline on both test sets. It also outperforms the
joint factor model.

5.3 Maximum Size of Templates

Typical phrase-based model implementation use a
maximum phrase length of 7 but such long phrases
are rarely used. Long templates over POS may be
more valuable. The factored template models were
retrained with increased maximum phrase length
but this made no difference or negatively impacted
translation performance, Figure 1.

However, using larger phrase lengths over 5
words does not increase translation performance,
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Figure 1: Varying max phrase length

as had been expected. Translation is largely un-
affected until the maximum phrase length reaches
10 when performance drops dramatically. This re-
sults suggested that the model is limited to mid-
range reordering.

6 Lexicalized Reordering Models

There has been considerable effort to improve re-
ordering in phrase-based systems. One of the most
well known is the lexicalized reordering model
(Tillmann, 2004).

The model uses the same word alignment that is
used for phrase table construction to calculate the
probability that a phrase is reordered, relative to
the previous and next source phrase.

6.1 Smoothing

Tillmann (2004) proposes a block orientation
model, where phrase translation and reordering
orientation is predicted by the same probability
distribution p(o, s̄|t̄). The variant of this imple-
mented in Moses uses a separate phrase translation
model p(s̄|t̄) and lexicalized reordering model
p(o|s̄, t̄)

The parameters for the lexicalized reordering
model are calculated using maximum likelihood
with a smoothing value α

p(o|s̄, t̄) =
count(o, s̄, t̄) + α∑
o′(count(o, s̄, t̄) + α)

(10)

where the predicted orientation o is either mono-
tonic, swap or discontinuous.

The effect of smoothing lexical reordering ta-
bles on translation is negligible for both surface
forms and POS tags, except when smoothing is
disabled (α=0). Then, performance decreases
markedly, see Figure 2 for details. Note that the

Figure 2: Effect of smoothing on lexicalized re-
ordering

# Model out-domain in-domain
1 Unfactored 19.6 23.1
1a + word LR 20.2 24.0
2 Joint factors 19.8 23.0
2a + POS LR 20.1 24.0
2b + POS LR + word LR 20.3 24.1
3 Factored template 20.6 24.1
3a + POS LR 20.6 24.3

Table 3: Extending the models with lexicalized re-
ordering (LR)

un-smoothed setting is closer to the block orienta-
tion model by Tillmann (2004).

6.2 Factors and Lexicalized Reordering

The model can easily be extended to take advan-
tage of the factored approach available in Moses.
In addition to the lexicalized reordering model
trained on surface forms (see line 1a in Table 3),
we also conducted various experiments with the
lexicalized reordering model for comparison.

In the joint factored model, we have both sur-
face forms and POS tags available to train the lex-
icalized reordering models on. The lexicalized re-
ordering model can be trained on the surface form,
the POS tags, jointly on both factors, or indepen-
dent models can be trained on each factor. It can
be seen from Table 3 that generalizing the reorder-
ing model on POS tags (line 2a) improves perfor-
mance, compared to the non-lexicalized reorder-
ing model (line 2). However, this performance
does not improve over the lexicalized reordering
model on surface forms (line 1a). The surface and
POS tag models complement each other to give an
overall better BLEU score (line 2b).

In the factored template model, we add a POS-
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based lexicalized reordering model on the level of
the templates (line 3a). This gives overall the best
performance. However, the use of lexicalized re-
ordering models in the factored template model
only shows improvements in the in-domain test
set.

Lexicalized reordering model on POS tags in
factored models underperforms factored template
model as the latter includes a larger context of the
source and target POS tag sequence, while the for-
mer is limited to the extent of the surface word
phrase.

7 Analysis

A simple POS sequence that phrase-based systems
often fail to reorder is the French–English

NOUN ADJ → ADJ NOUN

We analyzed a random sample of such phrases
from the out-of-domain corpus. The baseline
system correctly reorders 58% of translations.
Adding a lexicalized reordering model or the fac-
tored template significantly improves the reorder-
ing to above 70% (Figure 3).

Figure 3: Percentage of correctly ordered NOUN

ADJ phrases (100 samples)

A more challenging phrase to translate, such as

NOUN ADJ CONJ ADJ → ADJ CONJ ADJ NOUN

was judge in the same way and the results show the
variance between the lexicalized reordering and
factored template model (Figure 4).

The factored template model successfully uses
POS tag templates to enable longer phrases to
be used in decoding. It can be seen from Fig-
ure 5, that the majority of input sentence is de-
coded word-by-word even in a phrase-based sys-
tem. However, the factored template configura-

Figure 4: Percentage of correctly ordered NOUN

ADJ CONJ ADJ phrases (69 samples)

Figure 5: Length of source segmentation when de-
coding out-of-domain test set

tion contains more longer phrases which enhances
mid-range reordering.

8 Larger training corpora

It is informative to compare the relative per-
formance of the factored template model when
trained with more data. We therefore used the Eu-
roparl corpora to train and tuning the models for
French to English translation. The BLEU scores
are shown below, showing no significant advan-
tage to adding POS tags or using the factored tem-
plate model. This result is similar to many others
which have shown that the large amounts of addi-
tional data negates the improvements from better
models.

# Model out-domain in-domain
1 Unfactored 31.8 32.2
2 Joint factors 31.6 32.0
3 Factored template 31.7 32.2

Table 4: French–English results, trained on Eu-
roparl corpus
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9 Conclusion

We have shown the limitations of the current fac-
tored decoding model which restrict the use of
long phrase translations of less-sparsed factors.
This negates the effectiveness of decomposing
the translation process, dragging down translation
quality.

An extension to the factored model was imple-
mented which showed that using POS tag transla-
tions to create templates for surface word trans-
lations can create longer phrase translation and
lead to higher performance, dependent on lan-
guage pair.

For French–English translation, we obtained a
1.0% BLEU increase on the out-of-domain and in-
domain test sets, over the non-factored baseline.
The increase was also 0.4%/0.3% when using a
lexicalized reordering model in both cases.

In future work, we would like to apply the fac-
tored template model to reorder longer phrases.
We believe that this approach has the potential for
longer range reordering which has not yet been re-
alized in this paper. It also has some similarity to
example-based machine translation (Nagao, 1984)
which we would like to draw experience from.

We would also be interested in applying this to
other language pairs and using factor types other
than POS tags, such as syntactic chunk labels or
automatically clustered word classes.
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Abstract

We describe refinements to hierarchical
translation search procedures intended to
reduce both search errors and memory us-
age through modifications to hypothesis
expansion in cube pruning and reductions
in the size of the rule sets used in transla-
tion. Rules are put into syntactic classes
based on the number of non-terminals and
the pattern, and various filtering strate-
gies are then applied to assess the impact
on translation speed and quality. Results
are reported on the 2008 NIST Arabic-to-
English evaluation task.

1 Introduction

Hierarchical phrase-based translation (Chiang,
2005) has emerged as one of the dominant cur-
rent approaches to statistical machine translation.
Hiero translation systems incorporate many of
the strengths of phrase-based translation systems,
such as feature-based translation and strong tar-
get language models, while also allowing flexi-
ble translation and movement based on hierarchi-
cal rules extracted from aligned parallel text. The
approach has been widely adopted and reported to
be competitive with other large-scale data driven
approaches, e.g. (Zollmann et al., 2008).

Large-scale hierarchical SMT involves auto-
matic rule extraction from aligned parallel text,
model parameter estimation, and the use of cube
pruning k-best list generation in hierarchical trans-
lation. The number of hierarchical rules extracted
far exceeds the number of phrase translations typ-
ically found in aligned text. While this may lead
to improved translation quality, there is also the
risk of lengthened translation times and increased
memory usage, along with possible search errors
due to the pruning procedures needed in search.

We describe several techniques to reduce mem-
ory usage and search errors in hierarchical trans-

lation. Memory usage can be reduced in cube
pruning (Chiang, 2007) through smart memoiza-
tion, and spreading neighborhood exploration can
be used to reduce search errors. However, search
errors can still remain even when implementing
simple phrase-based translation. We describe a
‘shallow’ search through hierarchical rules which
greatly speeds translation without any effect on
quality. We then describe techniques to analyze
and reduce the set of hierarchical rules. We do
this based on the structural properties of rules and
develop strategies to identify and remove redun-
dant or harmful rules. We identify groupings of
rules based on non-terminals and their patterns and
assess the impact on translation quality and com-
putational requirements for each given rule group.
We find that with appropriate filtering strategies
rule sets can be greatly reduced in size without im-
pact on translation performance.

1.1 Related Work

The search and rule pruning techniques described
in the following sections add to a growing lit-
erature of refinements to the hierarchical phrase-
based SMT systems originally described by Chi-
ang (2005; 2007). Subsequent work has addressed
improvements and extensions to the search proce-
dure itself, the extraction of the hierarchical rules
needed for translation, and has also reported con-
trastive experiments with other SMT architectures.

Hiero Search RefinementsHuang and Chiang
(2007) offer several refinements to cube pruning
to improve translation speed. Venugopal et al.
(2007) introduce a Hiero variant with relaxed con-
straints for hypothesis recombination during pars-
ing; speed and results are comparable to those of
cube pruning, as described by Chiang (2007). Li
and Khudanpur (2008) report significant improve-
ments in translation speed by taking unseen n-
grams into account within cube pruning to mini-
mize language model requests. Dyer et al. (2008)

380



extend the translation of source sentences to trans-
lation of input lattices following Chappelier et al.
(1999).

Extensions to HieroBlunsom et al. (2008)
discuss procedures to combine discriminative la-
tent models with hierarchical SMT. The Syntax-
Augmented Machine Translation system (Zoll-
mann and Venugopal, 2006) incorporates target
language syntactic constituents in addition to the
synchronous grammars used in translation. Shen
at al. (2008) make use of target dependency trees
and a target dependency language model during
decoding. Marton and Resnik (2008) exploit shal-
low correspondences of hierarchical rules with
source syntactic constituents extracted from par-
allel text, an approach also investigated by Chiang
(2005). Zhang and Gildea (2006) propose bina-
rization for synchronous grammars as a means to
control search complexity arising from more com-
plex, syntactic, hierarchical rules sets.

Hierarchical rule extractionZhang et al. (2008)
describe a linear algorithm, a modified version of
shift-reduce, to extract phrase pairs organized into
a tree from which hierarchical rules can be directly
extracted. Lopez (2007) extracts rules on-the-fly
from the training bitext during decoding, search-
ing efficiently for rule patterns using suffix arrays.

Analysis and Contrastive ExperimentsZollman
et al. (2008) compare phrase-based, hierarchical
and syntax-augmented decoders for translation of
Arabic, Chinese, and Urdu into English, and they
find that attempts to expedite translation by simple
schemes which discard rules also degrade transla-
tion performance. Lopez (2008) explores whether
lexical reordering or the phrase discontiguity in-
herent in hierarchical rules explains improvements
over phrase-based systems. Hierarchical transla-
tion has also been used to great effect in combina-
tion with other translation architectures (e.g. (Sim
et al., 2007; Rosti et al., 2007)).

1.2 Outline

The paper proceeds as follows. Section 2 de-
scribes memoization and spreading neighborhood
exploration in cube pruning intended to reduce
memory usage and search errors, respectively. A
detailed comparison with a simple phrase-based
system is presented. Section 3 describes pattern-
based rule filtering and various procedures to se-
lect rule sets for use in translation with an aim
to improving translation quality while minimizing

rule set size. Finally, Section 4 concludes.

2 Two Refinements in Cube Pruning

Chiang (2007) introduced cube pruning to apply
language models in pruning during the generation
of k-best translation hypotheses via the application
of hierarchical rules in the CYK algorithm. In the
implementation of Hiero described here, there is
the parser itself, for which we use a variant of the
CYK algorithm closely related to CYK+ (Chap-
pelier and Rajman, 1998); it employs hypothesis
recombination, without pruning, while maintain-
ing back pointers. Before k-best list generation
with cube pruning, we apply asmart memoiza-
tion procedure intended to reduce memory con-
sumption during k-best list expansion. Within the
cube pruning algorithm we usespreading neigh-
borhood explorationto improve robustness in the
face of search errors.

2.1 Smart Memoization

Each cell in the chart built by the CYK algorithm
contains all possible derivations of a span of the
source sentence being translated. After the parsing
stage is completed, it is possible to make a very ef-
ficient sweep through the backpointers of the CYK
grid to count how many times each cell will be ac-
cessed by the k-best generation algorithm. When
k-best list generation is running, the number of
times each cell is visited is logged so that, as each
cell is visited for the last time, the k-best list as-
sociated with each cell is deleted. This continues
until the one k-best list remaining at the top of the
chart spans the entire sentence. Memory reduc-
tions are substantial for longer sentences: for the
longest sentence in the tuning set described later
(105 words in length), smart memoization reduces
memory usage during the cube pruning stage from
2.1GB to 0.7GB. For average length sentences of
approx. 30 words, memory reductions of 30% are
typical.

2.2 Spreading Neighborhood Exploration

In generation of a k-best list of translations for
a source sentence span, every derivation is trans-
formed into a cube containing the possible trans-
lations arising from that derivation, along with
their translation and language model scores (Chi-
ang, 2007). These derivations may contain non-
terminals which must be expanded based on hy-
potheses generated by lower cells, which them-
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HIERO MJ1 HIERO HIERO SHALLOW
X → 〈V2V1,V1V2〉 X → 〈γ,α〉 X → 〈γs,αs〉

X → 〈V ,V 〉 γ, α ∈ ({X} ∪T)+ X → 〈V ,V 〉
V → 〈s,t〉 V → 〈s,t〉
s, t ∈ T

+ s, t ∈ T
+; γs, αs ∈ ({V } ∪ T)+

Table 1: Hierarchical grammars (not including glue rules).T is the set of terminals.

selves may contain non-terminals. For efficiency
each cube maintains a queue of hypotheses, called
here thefrontier queue, ranked by translation and
language model score; it is from these frontier
queues that hypotheses are removed to create the
k-best list for each cell. When a hypothesis is ex-
tracted from a frontier queue, that queue is updated
by searching through the neighborhood of the ex-
tracted item to find novel hypotheses to add; if no
novel hypotheses are found, that queue necessar-
ily shrinks. This shrinkage can lead to search er-
rors. We therefore require that, when a hypothe-
sis is removed, new candidates must be added by
exploring a neighborhood which spreads from the
last extracted hypothesis. Each axis of the cube
is searched (here, to a depth of 20) until a novel
hypothesis is found. In this way, up to three new
candidates are added for each entry extracted from
a frontier queue.

Chiang (2007) describes an initialization pro-
cedure in which these frontier queues are seeded
with a single candidate per axis; we initialize each
frontier queue to a depth ofbNnt+1, where Nnt is
the number of non-terminals in the derivation and
b is a search parameter set throughout to 10. By
starting with deep frontier queues and by forcing
them to grow during search we attempt to avoid
search errors by ensuring that the universe of items
within the frontier queues does not decrease as the
k-best lists are filled.

2.3 A Study of Hiero Search Errors in
Phrase-Based Translation

Experiments reported in this paper are based
on the NIST MT08 Arabic-to-English transla-
tion task. Alignments are generated over all al-
lowed parallel data, (∼150M words per language).
Features extracted from the alignments and used
in translation are in common use: target lan-
guage model, source-to-target and target-to-source
phrase translation models, word and rule penalties,
number of usages of the glue rule, source-to-target
and target-to-source lexical models, and three rule

Figure 1: Spreading neighborhood exploration
within a cube, just before and after extraction
of the item C. Grey squares represent the fron-
tier queue; black squares are candidates already
extracted. Chiang (2007) would only consider
adding items X to the frontier queue, so the queue
would shrink. Spreading neighborhood explo-
ration adds candidates S to the frontier queue.

count features inspired by Bender et al. (2007).
MET (Och, 2003) iterative parameter estimation
under IBM BLEU is performed on the develop-
ment set. The English language used model is a
4-gram estimated over the parallel text and a 965
million word subset of monolingual data from the
English Gigaword Third Edition. In addition to the
MT08 set itself, we use a development setmt02-
05-tuneformed from the odd numbered sentences
of the NIST MT02 through MT05 evaluation sets;
the even numbered sentences form the validation
setmt02-05-test. Themt02-05-tuneset has 2,075
sentences.

We first compare the cube pruning decoder to
the TTM (Kumar et al., 2006), a phrase-based
SMT system implemented with Weighted Finite-
State Tansducers (Allauzen et al., 2007). The sys-
tem implements either a monotone phrase order
translation, or an MJ1 (maximum phrase jump of
1) reordering model (Kumar and Byrne, 2005).
Relative to the complex movement and translation
allowed by Hiero and other models, MJ1 is clearly
inferior (Dreyer et al., 2007); MJ1 was developed
with efficiency in mind so as to run with a mini-
mum of search errors in translation and to be eas-
ily and exactly realized via WFSTs. Even for the
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large models used in an evaluation task, the TTM
system is reported to run largely without pruning
(Blackwood et al., 2008).

The Hiero decoder can easily be made to
implement MJ1 reordering by allowing only a
restricted set of reordering rules in addition to
the usual glue rule, as shown in left-hand column
of Table 1, whereT is the set of terminals.
Constraining Hiero in this way makes it possible
to compare its performance to the exact WFST
TTM implementation and to identify any search
errors made by Hiero.

Table 2 shows the lowercased IBM BLEU
scores obtained by the systems formt02-05-tune
with monotone and reordered search, and with
MET-optimised parameters for MJ1 reordering.
For Hiero, an N-best list depth of 10,000 is used
throughout. In the monotone case, all phrase-
based systems perform similarly although Hiero
does make search errors. For simple MJ1 re-
ordering, the basic Hiero search procedure makes
many search errors and these lead to degradations
in BLEU. Spreading neighborhood expansion re-
duces the search errors and improves BLEU score
significantly but search errors remain a problem.
Search errors are even more apparent after MET.
This is not surprising, given thatmt02-05-tuneis
the set over which MET is run: MET drives up the
likelihood of good hypotheses at the expense of
poor hypotheses, but search errors often increase
due to the expanded dynamic range of the hypoth-
esis scores.

Our aim in these experiments was to demon-
strate that spreading neighborhood exploration can
aid in avoiding search errors. We emphasize that
we are not proposing that Hiero should be used to
implement reordering models such as MJ1 which
were created for completely different search pro-
cedures (e.g. WFST composition). However these
experiments do suggest that search errors may be
an issue, particularly as the search space grows
to include the complex long-range movement al-
lowed by the hierarchical rules. We next study
various filtering procedures to reduce hierarchi-
cal rule sets to find a balance between translation
speed, memory usage, and performance.

3 Rule Filtering by Pattern

Hierarchical rulesX → 〈γ,α〉 are composed of
sequences of terminals and non-terminals, which

Monotone MJ1 MJ1+MET
BLEU SE BLEU SE BLEU SE

a 44.7 - 47.2 - 49.1 -
b 44.5 342 46.7 555 48.4 822
c 44.7 77 47.1 191 48.9 360

Table 2: Phrase-based TTM and Hiero perfor-
mance onmt02-05-tunefor TTM (a), Hiero (b),
Hiero with spreading neighborhood exploration
(c). SE is the number of Hiero hypotheses with
search errors.

we call elements. In the source, a maximum of
two non-adjacent non-terminals is allowed (Chi-
ang, 2007). Leaving aside rules without non-
terminals (i.e. phrase pairs as used in phrase-
based translation), rules can be classed by their
number of non-terminals, Nnt, and their number
of elements, Ne. There are 5 possible classes:
Nnt.Ne= 1.2, 1.3, 2.3, 2.4, 2.5.

During rule extraction we search each class sep-
arately to control memory usage. Furthermore, we
extract from alignments only those rules which are
relevant to our given test set; for computation of
backward translation probabilities we log general
counts of target-side rules but discard unneeded
rules. Even with this restriction, our initial ruleset
for mt02-05-tuneexceeds 175M rules, of which
only 0.62M are simple phrase pairs.

The question is whether all these rules are
needed for translation. If the rule set can be re-
duced without reducing translation quality, both
memory efficiency and translation speed can be
increased. Previously published approaches to re-
ducing the rule set include: enforcing a mini-
mum span of two words per non-terminal (Lopez,
2008), which would reduce our set to 115M rules;
or a minimum count (mincount) threshold (Zoll-
mann et al., 2008), which would reduce our set
to 78M (mincount=2) or 57M (mincount=3) rules.
Shen et al. (2008) describe the result of filter-
ing rules by insisting that target-side rules are
well-formed dependency trees. This reduces their
rule set from 140M to 26M rules. This filtering
leads to a degradation in translation performance
(see Table 2 of Shen et al. (2008)), which they
counter by adding a dependency LM in translation.
As another reference point, Chiang (2007) reports
Chinese-to-English translation experiments based
on 5.5M rules.

Zollmann et al. (2008) report that filtering rules
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en masse leads to degradation in translation per-
formance. Rather than apply a coarse filtering,
such as a mincount for all rules, we follow a more
syntactic approach and further classify our rules
according to theirpatternand apply different fil-
ters to each pattern depending on its value in trans-
lation. The premise is that some patterns are more
important than others.

3.1 Rule Patterns

Class Rule Pattern
Nnt.Ne 〈source, target〉 Types

〈wX1 , wX1〉 1185028
1.2 〈wX1 , wX1w〉 153130

〈wX1 , X1w〉 97889
1.3 〈wX1w , wX1w〉 32903522

〈wX1w , wX1〉 989540
2.3 〈X1wX2 , X1wX2〉 1554656

〈X2wX1 , X1wX2〉 39163
〈wX1wX2 , wX1wX2〉 26901823
〈X1wX2w , X1wX2w〉 26053969

2.4 〈wX1wX2 , wX1wX2w〉 2534510
〈wX2wX1 , wX1wX2〉 349176
〈X2wX1w , X1wX2w〉 259459

〈wX1wX2w , wX1wX2w〉 61704299
〈wX1wX2w , wX1X2w〉 3149516

2.5 〈wX1wX2w , X1wX2w〉 2330797
〈wX2wX1w , wX1wX2w〉 275810
〈wX2wX1w , wX1X2w〉 205801

Table 3: Hierarchical rule patterns classed by
number of non-terminals, Nnt, number of ele-
ments Ne, source and target patterns, and types in
the rule set extracted formt02-05-tune.

Given a rule set, we definesource patternsand
target patternsby replacing every sequence of
non-terminals by a single symbol ‘w’ (indicating
word, i.e. terminal string,w ∈ T

+). Each hierar-
chical rule has a unique source and target pattern
which together define therule pattern.

By ignoring the identity and the number of ad-
jacent terminals, the rule pattern represents a nat-
ural generalization of any rule, capturing its struc-
ture and the type of reordering it encodes. In to-
tal, there are 66 possible rule patterns. Table 3
presents a few examples extracted formt02-05-
tune, showing that some patterns are much more
diverse than others. For example, patterns with
two non-terminals (Nnt=2) are richer than pat-
terns with Nnt=1, as they cover many more dis-

tinct rules. Additionally, patterns with two non-
terminals which also have a monotonic relation-
ship between source and target non-terminals are
much more diverse than their reordered counter-
parts.

Some examples of extracted rules and their cor-
responding pattern follow, where Arabic is shown
in Buckwalter encoding.

Pattern 〈wX1 , wX1w〉 :
〈w+ qAl X1 , the X1said〉

Pattern 〈wX1w , wX1〉 :
〈fy X1kAnwn Al>wl , on december X1〉

Pattern 〈wX1wX2 , wX1wX2w〉 :
〈Hl X1lAzmp X2 , a X1solution to the X2crisis〉

3.2 Building an Initial Rule Set

We describe a greedy approach to building a rule
set in which rules belonging to a pattern are added
to the rule set guided by the improvements they
yield on mt02-05-tunerelative to the monotone
Hiero system described in the previous section.
We find that certain patterns seem not to con-
tribute to any improvement. This is particularly
significant as these patterns often encompass large
numbers of rules, as with patterns with match-
ing source and target patterns. For instance, we
found no improvement when adding the pattern
〈X1w,X1w〉, of which there were 1.2M instances
(Table 3). Since concatenation is already possible
under the general glue rule, rules with this pattern
are redundant. By contrast, the much less frequent
reordered counterpart, i.e. the〈wX1,X1w〉 pat-
tern (0.01M instances), provides substantial gains.
The situation is analogous for rules with two non-
terminals (Nnt=2).

Based on exploratory analyses (not reported
here, for space) an initial rule set was built by
excluding patterns reported in Table 4. In to-
tal, 171.5M rules are excluded, for a remaining
set of 4.2M rules, 3.5M of which are hierarchi-
cal. We acknowledge that adding rules in this way,
by greedy search, is less than ideal and inevitably
raises questions with respect to generality and re-
peatability. However in our experience this is a
robust approach, mainly because the initial trans-
lation system runs very fast; it is possible to run
many exploratory experiments in a short time.
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Excluded Rules Types
a 〈X1w,X1w〉 , 〈wX1,wX1〉 2332604
b 〈X1wX2,∗〉 2121594

〈X1wX2w,X1wX2w〉 ,
c

〈wX1wX2,wX1wX2〉
52955792

d 〈wX1wX2w,∗〉 69437146
e Nnt.Ne= 1.3 w mincount=5 32394578
f Nnt.Ne= 2.3 w mincount=5 166969
g Nnt.Ne= 2.4 w mincount=10 11465410
h Nnt.Ne= 2.5 w mincount=5 688804

Table 4: Rules excluded from the initial rule set.

3.3 Shallow versus Fully Hierarchical
Translation

In measuring the effectiveness of rules in transla-
tion, we also investigate whether a ‘fully hierarchi-
cal’ search is needed or whether a shallow search
is also effective. In constrast to full Hiero, in the
shallow search, only phrases are allowed to be sub-
stituted into non-terminals. The rules used in each
case can be expressed as shown in the 2nd and 3rd
columns of Table 1. Shallow search can be con-
sidered (loosely) to be a form of rule filtering.

As can be seen in Table 5 there is no impact on
BLEU, while translation speed increases by a fac-
tor of 7. Of course, these results are specific to this
Arabic-to-English translation task, and need not
be expected to carry over to other language pairs,
such as Chinese-to-English translation. However,
the impact of this search simplification is easy to
measure, and the gains can be significant enough,
that it may be worth investigation even for lan-
guages with complex long distance movement.

mt02-05- -tune -test

System Time BLEU BLEU
HIERO 14.0 52.1 51.5
HIERO - shallow 2.0 52.1 51.4

Table 5: Translation performance and time (in sec-
onds per word) for full vs. shallow Hiero.

3.4 Individual Rule Filters

We now filter rules individually (not by class) ac-
cording to their number of translations. For each
fixed γ /∈ T

+ (i.e. with at least 1 non-terminal),
we define the following filters over rulesX →
〈γ,α〉:

• Number of translations (NT). We keep the
NT most frequentα, i.e. eachγ is allowed to
have at mostNT rules.

• Number of reordered translations (NRT).
We keep theNRT most frequentα with
monotonic non-terminals and theNRT most
frequentα with reordered non-terminals.

• Count percentage (CP). We keep the most
frequentα until their aggregated number of
counts reaches a certain percentageCP of the
total counts ofX → 〈γ,∗〉. Someγ’s are al-
lowed to have moreα’s than others, depend-
ing on their count distribution.

Results applying these filters with various
thresholds are given in Table 6, including num-
ber of rules and decoding time. As shown, all
filters achieve at least a 50% speed-up in decod-
ing time by discarding 15% to 25% of the base-
line rules. Remarkably, performance is unaffected
when applying the simpleNT and NRT filters
with a threshold of 20 translations. Finally, the
CM filter behaves slightly worse for thresholds of
90% for the same decoding time. For this reason,
we selectNRT=20 as our general filter.

mt02-05- -tune -test

Filter Time Rules BLEU BLEU
baseline 2.0 4.20 52.1 51.4
NT=10 0.8 3.25 52.0 51.3
NT=15 0.8 3.43 52.0 51.3
NT=20 0.8 3.56 52.1 51.4
NRT=10 0.9 3.29 52.0 51.3
NRT=15 1.0 3.48 52.0 51.4
NRT=20 1.0 3.59 52.1 51.4
CP=50 0.7 2.56 51.4 50.9
CP=90 1.0 3.60 52.0 51.3

Table 6: Impact of general rule filters on transla-
tion (IBM BLEU), time (in seconds per word) and
number of rules (in millions).

3.5 Pattern-based Rule Filters

In this section we first reconsider whether reintro-
ducing the monotonic rules (originally excluded as
described in rows ’b’, ’c’, ’d’ in Table 4) affects
performance. Results are given in the upper rows
of Table 7. For all classes, we find that reintroduc-
ing these rules increases the total number of rules
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mt02-05- -tune -test

Nnt.Ne Filter Time Rules BLEU BLEU

baselineNRT=20 1.0 3.59 52.1 51.4
2.3 +monotone 1.1 4.08 51.5 51.1
2.4 +monotone 2.0 11.52 51.6 51.0
2.5 +monotone 1.8 6.66 51.7 51.2
1.3 mincount=3 1.0 5.61 52.1 51.3
2.3 mincount=1 1.2 3.70 52.1 51.4
2.4 mincount=5 1.8 4.62 52.0 51.3
2.4 mincount=15 1.0 3.37 52.0 51.4
2.5 mincount=1 1.1 4.27 52.2 51.5
1.2 mincount=5 1.0 3.51 51.8 51.3
1.2 mincount=10 1.0 3.50 51.7 51.2

Table 7: Effect of pattern-based rule filters. Time in seconds per word. Rules in millions.

substantially, despite the NRT=20 filter, but leads
to degradation in translation performance.

We next reconsider the mincount threshold val-
ues for Nnt.Ne classes 1.3, 2.3, 2.4 and 2.5 origi-
nally described in Table 4 (rows ’e’ to ’h’). Results
under various mincount cutoffs for each class are
given in Table 7 (middle five rows). For classes
2.3 and 2.5, the mincount cutoff can be reduced
to 1 (i.e. all rules are kept) with slight translation
improvements. In contrast, reducing the cutoff for
classes 1.3 and 2.4 to 3 and 5, respectively, adds
many more rules with no increase in performance.
We also find that increasing the cutoff to 15 for
class 2.4 yields the same results with a smaller rule
set. Finally, we consider further filtering applied to
class 1.2 with mincount 5 and 10 (final two rows
in Table 7). The number of rules is largely un-
changed, but translation performance drops con-
sistently as more rules are removed.

Based on these experiments, we conclude that it
is better to apply separate mincount thresholds to
the classes to obtain optimal performance with a
minimum size rule set.

3.6 Large Language Models and Evaluation

Finally, in this section we report results of our
shallow hierarchical system with the 2.5 min-
count=1 configuration from Table 7, after includ-
ing the following N-best list rescoring steps.

• Large-LM rescoring. We build sentence-
specific zero-cutoff stupid-backoff (Brants et
al., 2007) 5-gram language models, estimated
using∼4.7B words of English newswire text,
and apply them to rescore each 10000-best

list.

• Minimum Bayes Risk (MBR). We then rescore
the first 1000-best hypotheses with MBR,
taking the negative sentence level BLEU
score as the loss function to minimise (Ku-
mar and Byrne, 2004).

Table 8 shows results formt02-05-tune, mt02-
05-test, the NIST subsets from the MT06 evalu-
ation (mt06-nist-nwfor newswire data andmt06-
nist-ngfor newsgroup) andmt08, as measured by
lowercased IBM BLEU and TER (Snover et al.,
2006). Mixed case NIST BLEU for this system on
mt08 is 42.5. This is directly comparable to offi-
cial MT08 evaluation results1.

4 Conclusions

This paper focuses on efficient large-scale hierar-
chical translation while maintaining good trans-
lation quality. Smart memoization and spreading
neighborhood exploration during cube pruning are
described and shown to reduce memory consump-
tion and Hiero search errors using a simple phrase-
based system as a contrast.

We then define a general classification of hi-
erarchical rules, based on their number of non-
terminals, elements and their patterns, for refined
extraction and filtering.

For a large-scale Arabic-to-English task, we
show that shallow hierarchical decoding is as good

1Full MT08 results are available at
http://www.nist.gov/speech/tests/mt/2008/. It is worth
noting that many of the top entries make use of system
combination; the results reported here are for single system
translation.
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mt02-05-tune mt02-05-test mt06-nist-nw mt06-nist-ng mt08
HIERO+MET 52.2 / 41.6 51.5 / 42.2 48.4 / 43.6 35.3 / 53.2 42.5 / 48.6

+rescoring 53.2 / 40.8 52.6 / 41.4 49.4 / 42.9 36.6 / 53.5 43.4 / 48.1

Table 8: Arabic-to-English translation results (lower-cased IBM BLEU / TER) with large language mod-
els and MBR decoding.

as fully hierarchical search and that decoding time
is dramatically decreased. In addition, we describe
individual rule filters based on the distribution of
translations with further time reductions at no cost
in translation scores. This is in direct contrast
to recent reported results in which other filtering
strategies lead to degraded performance (Shen et
al., 2008; Zollmann et al., 2008).

We find that certain patterns are of much greater
value in translation than others and that separate
minimum count filters should be applied accord-
ingly. Some patterns were found to be redundant
or harmful, in particular those with two monotonic
non-terminals. Moreover, we show that the value
of a pattern is not directly related to the number of
rules it encompasses, which can lead to discarding
large numbers of rules as well as to dramatic speed
improvements.

Although reported experiments are only for
Arabic-to-English translation, we believe the ap-
proach will prove to be general. Pattern relevance
will vary for other language pairs, but we expect
filtering strategies to be equally worth pursuing.
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Deparment of Software and Computing Systems

University of Alicante. Spain
{ruben,armando}@dlsi.ua.es

German Rigau
IXA NLP Group.

EHU. Donostia, Spain
german.rigau@ehu.es

Abstract

As empirically demonstrated by the last
SensEval exercises, assigning the appro-
priate meaning to words in context has re-
sisted all attempts to be successfully ad-
dressed. One possible reason could be the
use of inappropriate set of meanings. In
fact, WordNet has been used as a de-facto
standard repository of meanings. How-
ever, to our knowledge, the meanings rep-
resented by WordNet have been only used
for WSD at a very fine-grained sense level
or at a very coarse-grained class level. We
suspect that selecting the appropriate level
of abstraction could be on between both
levels. We use a very simple method for
deriving a small set of appropriate mean-
ings using basic structural properties of
WordNet. We also empirically demon-
strate that this automatically derived set of
meanings groups senses into an adequate
level of abstraction in order to perform
class-based Word Sense Disambiguation,
allowing accuracy figures over 80%.

1 Introduction

Word Sense Disambiguation (WSD) is an inter-
mediate Natural Language Processing (NLP) task
which consists in assigning the correct semantic
interpretation to ambiguous words in context. One
of the most successful approaches in the last years
is the supervised learning from examples, in which
statistical or Machine Learning classification mod-
els are induced from semantically annotated cor-
pora (Màrquez et al., 2006). Generally, super-
vised systems have obtained better results than
the unsupervised ones, as shown by experimental
work and international evaluation exercises such

∗This paper has been supported by the European Union
under the projects QALL-ME (FP6 IST-033860) and KY-
OTO (FP7 ICT-211423), and the Spanish Government under
the project Text-Mess (TIN2006-15265-C06-01) and KNOW
(TIN2006-15049-C03-01)

as Senseval1. These annotated corpora are usu-
ally manually tagged by lexicographers with word
senses taken from a particular lexical semantic re-
source –most commonly WordNet2 (WN) (Fell-
baum, 1998).

WN has been widely criticized for being a sense
repository that often provides too fine–grained
sense distinctions for higher level applications
like Machine Translation or Question & Answer-
ing. In fact, WSD at this level of granularity
has resisted all attempts of inferring robust broad-
coverage models. It seems that many word–sense
distinctions are too subtle to be captured by auto-
matic systems with the current small volumes of
word–sense annotated examples. Possibly, build-
ing class-based classifiers would allow to avoid
the data sparseness problem of the word-based ap-
proach. Recently, using WN as a sense reposi-
tory, the organizers of the English all-words task
at SensEval-3 reported an inter-annotation agree-
ment of 72.5% (Snyder and Palmer, 2004). In-
terestingly, this result is difficult to outperform by
state-of-the-art sense-based WSD systems.

Thus, some research has been focused on deriv-
ing different word-sense groupings to overcome
the fine–grained distinctions of WN (Hearst and
Schütze, 1993), (Peters et al., 1998), (Mihalcea
and Moldovan, 2001), (Agirre and LopezDeLa-
Calle, 2003), (Navigli, 2006) and (Snow et al.,
2007). That is, they provide methods for grouping
senses of the same word, thus producing coarser
word sense groupings for better disambiguation.

Wikipedia3 has been also recently used to over-
come some problems of automatic learning meth-
ods: excessively fine–grained definition of mean-
ings, lack of annotated data and strong domain de-
pendence of existing annotated corpora. In this
way, Wikipedia provides a new very large source
of annotated data, constantly expanded (Mihalcea,
2007).

1http://www.senseval.org
2http://wordnet.princeton.edu
3http://www.wikipedia.org
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In contrast, some research have been focused on
using predefined sets of sense-groupings for learn-
ing class-based classifiers for WSD (Segond et al.,
1997), (Ciaramita and Johnson, 2003), (Villarejo
et al., 2005), (Curran, 2005) and (Ciaramita and
Altun, 2006). That is, grouping senses of different
words into the same explicit and comprehensive
semantic class.

Most of the later approaches used the origi-
nal Lexicographical Files of WN (more recently
called SuperSenses) as very coarse–grained sense
distinctions. However, not so much attention has
been paid on learning class-based classifiers from
other available sense–groupings such as WordNet
Domains (Magnini and Cavaglià, 2000), SUMO
labels (Niles and Pease, 2001), EuroWordNet
Base Concepts (Vossen et al., 1998), Top Con-
cept Ontology labels (Alvez et al., 2008) or Ba-
sic Level Concepts (Izquierdo et al., 2007). Obvi-
ously, these resources relate senses at some level
of abstraction using different semantic criteria and
properties that could be of interest for WSD. Pos-
sibly, their combination could improve the overall
results since they offer different semantic perspec-
tives of the data. Furthermore, to our knowledge,
to date no comparative evaluation has been per-
formed on SensEval data exploring different levels
of abstraction. In fact, (Villarejo et al., 2005) stud-
ied the performance of class–based WSD com-
paring only SuperSenses and SUMO by 10–fold
cross–validation on SemCor, but they did not pro-
vide results for SensEval2 nor SensEval3.

This paper empirically explores on the super-
vised WSD task the performance of different
levels of abstraction provided by WordNet Do-
mains (Magnini and Cavaglià, 2000), SUMO la-
bels (Niles and Pease, 2001) and Basic Level Con-
cepts (Izquierdo et al., 2007). We refer to this ap-
proach as class–based WSD since the classifiers
are created at a class level instead of at a sense
level. Class-based WSD clusters senses of differ-
ent words into the same explicit and comprehen-
sive grouping. Only those cases belonging to the
same semantic class are grouped to train the clas-
sifier. For example, the coarser word grouping ob-
tained in (Snow et al., 2007) only has one remain-
ing sense for “church”. Using a set of Base Level
Concepts (Izquierdo et al., 2007), the three senses
of “church” are still represented by faith.n#3,
building.n#1 and religious ceremony.n#1.

The contribution of this work is threefold. We

empirically demonstrate that a) Basic Level Con-
cepts group senses into an adequate level of ab-
straction in order to perform supervised class–
based WSD, b) that these semantic classes can
be successfully used as semantic features to boost
the performance of these classifiers and c) that
the class-based approach to WSD reduces dramat-
ically the required amount of training examples to
obtain competitive classifiers.

After this introduction, section 2 presents the
sense-groupings used in this study. In section 3 the
approach followed to build the class–based system
is explained. Experiments and results are shown in
section 4. Finally some conclusions are drawn in
section 5.

2 Semantic Classes

WordNet (Fellbaum, 1998) synsets are organized
in forty five Lexicographer Files, more recetly
called SuperSenses, based on open syntactic cat-
egories (nouns, verbs, adjectives and adverbs) and
logical groupings, such as person, phenomenon,
feeling, location, etc. There are 26 basic cate-
gories for nouns, 15 for verbs, 3 for adjectives and
1 for adverbs.

WordNet Domains4 (Magnini and Cavaglià,
2000) is a hierarchy of 165 Domain Labels which
have been used to label all WN synsets. Informa-
tion brought by Domain Labels is complementary
to what is already in WN. First of all a Domain La-
bels may include synsets of different syntactic cat-
egories: for instance MEDICINE groups together
senses from nouns, such as doctor and hospital,
and from Verbs such as to operate. Second, a Do-
main Label may also contain senses from differ-
ent WordNet subhierarchies. For example, SPORT
contains senses such as athlete, deriving from life
form, game equipment, from physical object, sport
from act, and playing field, from location.

SUMO5 (Niles and Pease, 2001) was created as
part of the IEEE Standard Upper Ontology Work-
ing Group. The goal of this Working Group is
to develop a standard upper ontology to promote
data interoperability, information search and re-
trieval, automated inference, and natural language
processing. SUMO consists of a set of concepts,
relations, and axioms that formalize an upper on-
tology. For these experiments, we used the com-
plete WN1.6 mapping with 1,019 SUMO labels.

4http://wndomains.itc.it/
5http://www.ontologyportal.org/
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Basic Level Concepts6 (BLC) (Izquierdo et al.,
2007) are small sets of meanings representing the
whole nominal and verbal part of WN. BLC can
be obtained by a very simple method that uses ba-
sic structural WN properties. In fact, the algorithm
only considers the relative number of relations of
each synset along the hypernymy chain. The pro-
cess follows a bottom-up approach using the chain
of hypernymy relations. For each synset in WN,
the process selects as its BLC the first local maxi-
mum according to the relative number of relations.
The local maximum is the synset in the hypernymy
chain having more relations than its immediate
hyponym and immediate hypernym. For synsets
having multiple hypernyms, the path having the
local maximum with higher number of relations
is selected. Usually, this process finishes having
a number of preliminary BLC. Obviously, while
ascending through this chain, more synsets are
subsumed by each concept. The process finishes
checking if the number of concepts subsumed by
the preliminary list of BLC is higher than a cer-
tain threshold. For those BLC not representing
enough concepts according to the threshold, the
process selects the next local maximum following
the hypernymy hierarchy. Thus, depending on the
type of relations considered to be counted and the
threshold established, different sets of BLC can be
easily obtained for each WN version.

In this paper, we empirically explore the perfor-
mance of the different levels of abstraction pro-
vided by Basic Level Concepts (BLC) (Izquierdo
et al., 2007).

Table 1 presents the total number of BLC and
its average depth for WN1.6, varying the threshold
and the type of relations considered (all relations
or only hyponymy).

Thres. Rel. PoS #BLC Av. depth.

0
all

Noun 3,094 7.09
Verb 1,256 3.32

hypo
Noun 2,490 7.09
Verb 1,041 3.31

20
all

Noun 558 5.81
Verb 673 1.25

hypo
Noun 558 5.80
Verb 672 1.21

50
all

Noun 253 5.21
Verb 633 1.13

hypo
Noun 248 5.21
Verb 633 1.10

Table 1: BLC for WN1.6 using all or hyponym relations

6http://adimen.si.ehu.es/web/BLC

Classifier Examples # of examples
church.n#2 (sense approach) church.n#2 58

church.n#2 58
building.n#1 48

hotel.n#1 39
building, edifice (class approach) hospital.n#1 20

barn.n#1 17
....... ......

TOTAL= 371 examples

Table 2: Examples and number of them in Semcor, for
sense approach and for class approach

3 Class-based WSD

We followed a supervised machine learning ap-
proach to develop a set of class-based WSD tag-
gers. Our systems use an implementation of a Sup-
port Vector Machine algorithm to train the clas-
sifiers (one per class) on semantic annotated cor-
pora for acquiring positive and negative examples
of each class and on the definition of a set of fea-
tures for representing these examples. The system
decides and selects among the possible semantic
classes defined for a word. In the sense approach,
one classifier is generated for each word sense, and
the classifiers choose between the possible senses
for the word. The examples to train a single clas-
sifier for a concrete word are all the examples of
this word sense. In the semantic–class approach,
one classifier is generated for each semantic class.
So, when we want to label a word, our program
obtains the set of possible semantic classes for
this word, and then launch each of the semantic
classifiers related with these semantic categories.
The most likely category is selected for the word.
In this approach, contrary to the word sense ap-
proach, to train a classifier we can use all examples
of all words belonging to the class represented by
the classifier. In table 2 an example for a sense
of “church” is shown. We think that this approach
has several advantages. First, semantic classes re-
duce the average polysemy degree of words (some
word senses are grouped together within the same
class). Moreover, the well known problem of ac-
quisition bottleneck in supervised machine learn-
ing algorithms is attenuated, because the number
of examples for each classifier is increased.

3.1 The learning algorithm: SVM
Support Vector Machines (SVM) have been
proven to be robust and very competitive in many
NLP tasks, and in WSD in particular (Màrquez et
al., 2006). For these experiments, we used SVM-
Light (Joachims, 1998). SVM are used to learn
an hyperplane that separates the positive from the
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negative examples with the maximum margin. It
means that the hyperplane is located in an interme-
diate position between positive and negative ex-
amples, trying to keep the maximum distance to
the closest positive example, and to the closest
negative example. In some cases, it is not possi-
ble to get a hyperplane that divides the space lin-
early, or it is better to allow some errors to obtain a
more efficient hyperplane. This is known as “soft-
margin SVM”, and requires the estimation of a pa-
rameter (C), that represent the trade-off allowed
between training errors and the margin. We have
set this value to 0.01, which has been proved as a
good value for SVM in WSD tasks.

When classifying an example, we obtain the
value of the output function for each SVM clas-
sifier corresponding to each semantic class for the
word example. Our system simply selects the class
with the greater value.

3.2 Corpora

Three semantic annotated corpora have been used
for training and testing. SemCor has been used
for training while the corpora from the English
all-words tasks of SensEval-2 and SensEval-3
has been used for testing. We also consid-
ered SemEval-2007 coarse–grained task corpus
for testing, but this dataset was discarded because
this corpus is also annotated with clusters of word
senses.

SemCor (Miller et al., 1993) is a subset of the
Brown Corpus plus the novel The Red Badge of
Courage, and it has been developed by the same
group that created WordNet. It contains 253 texts
and around 700,000 running words, and more than
200,000 are also lemmatized and sense-tagged ac-
cording to Princeton WordNet 1.6.

SensEval-27 English all-words corpus (here-
inafter SE2) (Palmer et al., 2001) consists on 5,000
words of text from three WSJ articles represent-
ing different domains from the Penn TreeBank II.
The sense inventory used for tagging is WordNet
1.7. Finally, SensEval-38 English all-words cor-
pus (hereinafter SE3) (Snyder and Palmer, 2004),
is made up of 5,000 words, extracted from two
WSJ articles and one excerpt from the Brown Cor-
pus. Sense repository of WordNet 1.7.1 was used
to tag 2,041 words with their proper senses.

7http://www.sle.sharp.co.uk/senseval2
8http://www.senseval.org/senseval3

3.3 Feature types
We have defined a set of features to represent the
examples according to previous works in WSD
and the nature of class-based WSD. Features
widely used in the literature as in (Yarowsky,
1994) have been selected. These features are
pieces of information that occur in the context of
the target word, and can be organized as:

Local features: bigrams and trigrams that
contain the target word, including part-of-speech
(PoS), lemmas or word-forms.

Topical features: word–forms or lemmas ap-
pearing in windows around the target word.

In particular, our systems use the following ba-
sic features:

Word–forms and lemmas in a window of 10
words around the target word

PoS: the concatenation of the preced-
ing/following three/five PoS

Bigrams and trigrams formed by lemmas and
word-forms and obtained in a window of 5 words.
We use of all tokens regardless their PoS to build
bi/trigrams. The target word is replaced by X
in these features to increase the generalization of
them for the semantic classifiers

Moreover, we also defined a set of Semantic
Features to explode different semantic resources
in order to enrich the set of basic features:

Most frequent semantic class calculated over
SemCor, the most frequent semantic class for the
target word.

Monosemous semantic classes semantic
classes of the monosemous words arround the
target word in a window of size 5. Several types
of semantic classes have been considered to create
these features. In particular, two different sets
of BLC (BLC20 and BLC509), SuperSenses,
WordNet Domains (WND) and SUMO.

In order to increase the generalization capabil-
ities of the classifiers we filter out irrelevant fea-
tures. We measure the relevance of a feature10. f
for a class c in terms of the frequency of f. For each
class c, and for each feature f of that class, we cal-
culate the frequency of the feature within the class
(the number of times that it occurs in examples

9We have selected these set since they represent different
levels of abstraction. Remember that 20 and 50 refer to the
threshold of minimum number of synsets that a possible BLC
must subsume to be considered as a proper BLC. These BLC
sets were built using all kind of relations.

10That is, the value of the feature, for example a feature
type can be word-form, and a feature of that type can be
“houses”
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of the class), and also obtain the total frequency
of the feature, for all the classes. We divide both
values (classFreq / totalFreq) and if the result is
not greater than a certain threshold t, the feature
is removed from the feature list of the class c11.
In this way, we ensure that the features selected
for a class are more frequently related with that
class than with others. We set this threshold t to
0.25, obtained empirically with very preliminary
versions of the classifiers on SensEval3 test.

4 Experiments and Results

To analyze the influence of each feature type in the
class-based WSD, we designed a large set of ex-
periments. An experiment is defined by two sets of
semantic classes. First, the semantic class type for
selecting the examples used to build the classifiers
(determining the abstraction level of the system).
In this case, we tested: sense12, BLC20, BLC50,
WordNet Domains (WND), SUMO and Super-
Sense (SS). Second, the semantic class type used
for building the semantic features. In this case, we
tested: BLC20, BLC50, SuperSense, WND and
SUMO. Combining them, we generated the set of
experiments described later.

Test pos Sense BLC20 BLC50 WND SUMO SS

SE2 N 4.02 3.45 3.34 2.66 3.33 2.73
V 9.82 7.11 6.94 2.69 5.94 4.06

SE3 N 4.93 4.08 3.92 3.05 3.94 3.06
V 10.95 8.64 8.46 2.49 7.60 4.08

Table 3: Average polysemy on SE2 and SE3

Table 3 presents the average polysemy on SE2
and SE3 of the different semantic classes.

4.1 Baselines

The most frequent classes (MFC) of each word
calculated over SemCor are considered to be the
baselines of our systems. Ties between classes on
a specific word are solved obtaining the global fre-
quency in SemCor of each of these tied classes,
and selecting the more frequent class over the
whole training corpus. When there are no occur-
rences of a word of the test corpus in SemCor (we
are not able to calculate the most frequent class of
the word), we obtain again the global frequency
for each of its possible semantic classes (obtained

11Depending on the experiment, around 30% of the origi-
nal features are removed by this filter.

12We included this evaluation for comparison purposes
since the current system have been designed for class-based
evaluation only.

from WN) over SemCor, and we select the most
frequent.

4.2 Results

Tables 4 and 5 present the F1 measures (harmonic
mean of recall and precision) for nouns and verbs
respectively when training our systems on Sem-
Cor and testing on SE2 and SE3. Those results
showing a statistically significant13 positive dif-
ference when compared with the baseline are in
marked bold. Column labeled as “Class” refers to
the target set of semantic classes for the classifiers,
that is, the desired semantic level for each exam-
ple. Column labeled as “Sem. Feat.” indicates
the class of the semantic features used to train the
classifiers. For example, class BLC20 combined
with Semantic Feature BLC20 means that this set
of classes were used both to label the test exam-
ples and to define the semantic features. In order
to compare their contribution we also performed
a “basicFeat” test without including semantic fea-
tures.

As expected according to most literature in
WSD, the performances of the MFC baselines are
very high. In particular, those corresponding to
nouns (ranging from 70% to 80%). While nom-
inal baselines seem to perform similarly in both
SE2 and SE3, verbal baselines appear to be con-
sistently much lower for SE2 than for SE3. In
SE2, verbal baselines range from 44% to 68%
while in SE3 verbal baselines range from 52% to
79%. An exception is the results for verbs con-
sidering WND: the results are very high due to
the low polysemy for verbs according to WND.
As expected, when increasing the level of abstrac-
tion (from senses to SuperSenses) the results also
increase. Finally, it also seems that SE2 task is
more difficult than SE3 since the MFC baselines
are lower.

As expected, the results of the systems increase
while augmenting the level of abstraction (from
senses to SuperSenses), and almost in every case,
the baseline results are reached or outperformed.
This is very relevant since the baseline results are
very high.

Regarding nouns, a very different behaviour is
observed for SE2 and SE3. While for SE3 none
of the system presents a significant improvement
over the baselines, for SE2 a significant improve-
ment is obtained by using several types of seman-

13Using the McNemar’s test.
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tic features. In particular, when using WordNet
Domains but also BLC20. In general, BLC20 se-
mantic features seem to be better than BLC50 and
SuperSenses.

Regarding verbs, the system obtains significant
improvements over the baselines using different
types of semantic features both in SE2 and SE3.
In particular, when using again WordNet Domains
as semantic features.

In general, the results obtained by BLC20 are
not so much different to the results of BLC50
(in a few cases, this difference is greater than
2 points). For instance, for nouns, if we con-
sider the number of classes within BLC20 (558
classes), BLC50 (253 classes) and SuperSense (24
classes), BLC classifiers obtain high performance
rates while maintaining much higher expressive
power than SuperSenses. In fact, using Super-
Senses (40 classes for nouns and verbs) we can
obtain a very accurate semantic tagger with per-
formances close to 80%. Even better, we can use
BLC20 for tagging nouns (558 semantic classes
and F1 over 75%) and SuperSenses for verbs (14
semantic classes and F1 around 75%).

Obviously, the classifiers using WordNet Do-
mains as target grouping obtain very high per-
formances due to its reduced average polysemy.
However, when used as semantic features it seems
to improve the results in most of the cases.

In addition, we obtain very competitive classi-
fiers at a sense level.

4.3 Learning curves

We also performed a set of experiments for mea-
suring the behaviour of the class-based WSD sys-
tem when gradually increasing the number of
training examples. These experiments have been
carried for nouns and verbs, but only noun results
are shown since in both cases, the trend is very
similar but more clear for nouns.

The training corpus has been divided in portions
of 5% of the total number of files. That is, com-
plete files are added to the training corpus of each
incremental test. The files were randomly selected
to generate portions of 5%, 10%, 15%, etc. of the
SemCor corpus14. Then, we train the system on
each of the training portions and we test the sys-
tem on SE2 and SE3. Finally, we also compare the

14Each portion contains also the same files than the previ-
ous portion. For example, all files in the 25% portion are also
contained in the 30% portion.

Class Sem. Feat. SensEval2 SensEval3
Poly All Poly All

Sense

baseline 59.66 70.02 64.45 72.30
basicFeat 61.13 71.20 65.45 73.15
BLC20 61.93 71.79 65.45 73.15
BLC50 61.79 71.69 65.30 73.04

SS 61.00 71.10 64.86 72.70
WND 61.13 71.20 65.45 73.15
SUMO 61.66 71.59 65.45 73.15

BLC20

baseline 65.92 75.71 67.98 76.29
basicFeat 65.65 75.52 64.64 73.82
BLC20 68.70 77.69 68.29 76.52
BLC50 68.83 77.79 67.22 75.73

SS 65.12 75.14 64.64 73.82
WND 68.97 77.88 65.25 74.24
SUMO 68.57 77.60 64.49 73.71

BLC50

baseline 67.20 76.65 68.01 76.74
basicFeat 64.28 74.57 66.77 75.84
BLC20 69.72 78.45 68.16 76.85
BLC50 67.20 76.65 68.01 76.74

SS 65.60 75.52 65.07 74.61
WND 70.39 78.92 65.38 74.83
SUMO 71.31 79.58 66.31 75.51

WND

baseline 78.97 86.11 76.74 83.8
basicFeat 70.96 80.81 67.85 77.64
BLC20 72.53 81.85 72.37 80.79
BLC50 73.25 82.33 71.41 80.11

SS 74.39 83.08 68.82 78.31
WND 78.83 86.01 76.58 83.71
SUMO 75.11 83.55 73.02 81.24

SUMO

baseline 66.40 76.09 71.96 79.55
basicFeat 68.53 77.60 68.10 76.74
BLC20 65.60 75.52 68.10 76.74
BLC50 65.60 75.52 68.72 77.19

SS 68.39 77.50 68.41 76.97
WND 68.92 77.88 69.03 77.42
SUMO 68.92 77.88 70.88 78.76

SS

baseline 70.48 80.41 72.59 81.50
basicFeat 69.77 79.94 69.60 79.48
BLC20 71.47 81.07 72.43 81.39
BLC50 70.20 80.22 72.92 81.73

SS 70.34 80.32 65.12 76.46
WND 73.59 82.47 70.10 79.82
SUMO 70.62 80.51 71.93 81.05

Table 4: Results for nouns

resulting system with the baseline computed over
the same training portion.

Figures 1 and 2 present the learning curves over
SE2 and SE3, respectively, of a class-based WSD
system based on BLC20 using the basic features
and the semantic features built with WordNet Do-
mains.

Surprisingly, in SE2 the system only improves
the F1 measure around 2% while increasing the
training corpus from 25% to 100% of SemCor.
In SE3, the system again only improves the F1
measure around 3% while increasing the training
corpus from 30% to 100% of SemCor. That is,
most of the knowledge required for the class-based
WSD system seems to be already present on a
small part of SemCor.

Figures 3 and 4 present the learning curves over
SE2 and SE3, respectively, of a class-based WSD
system based on SuperSenses using the basic fea-
tures and the semantic features built with WordNet
Domains.

Again, in SE2 the system only improves the F1
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Class Sem. Feat. SensEval2 SensEval3
Poly All Poly All

Sense

baseline 41.20 44.75 49.78 52.88
basicFeat 42.01 45.53 54.19 57.02
BLC20 41.59 45.14 53.74 56.61
BLC50 42.01 45.53 53.6 56.47

SS 41.80 45.34 53.89 56.75
WND 42.01 45.53 53.89 56.75
SUMO 42.22 45.73 54.19 57.02

BLC20

baseline 50.21 55.13 54.87 58.82
basicFeat 52.36 57.06 57.27 61.10
BLC20 52.15 56.87 56.07 59.92
BLC50 51.07 55.90 56.82 60.60

SS 51.50 56.29 57.57 61.29
WND 54.08 58.61 57.12 60.88
SUMO 52.36 57.06 57.42 61.15

BLC50

baseline 49.78 54.93 55.96 60.06
basicFeat 53.23 58.03 58.07 61.97
BLC20 52.59 57.45 57.32 61.29
BLC50 51.72 56.67 57.01 61.01

SS 52.59 57.45 57.92 61.83
WND 55.17 59.77 58.52 62.38
SUMO 52.16 57.06 57.92 61.83

WND

baseline 84.80 90.33 84.96 92.20
basicFeat 84.50 90.14 78.63 88.92
BLC20 84.50 90.14 81.53 90.42
BLC50 84.50 90.14 81.00 90.15

SS 83.89 89.75 78.36 88.78
WND 85.11 90.52 84.96 92.20
SUMO 85.11 90.52 80.47 89.88

SUMO

baseline 54.24 60.35 59.69 64.71
basicFeat 56.25 62.09 61.41 66.21
BLC20 55.13 61.12 61.25 66.07
BLC50 56.25 62.09 61.72 66.48

SS 53.79 59.96 59.69 64.71
WND 55.58 61.51 61.56 66.35
SUMO 54.69 60.74 60.00 64.98

SS

baseline 62.79 68.47 76.24 79.07
basicFeat 66.89 71.95 75.47 78.39
BLC20 63.70 69.25 74.69 77.70
BLC50 63.70 69.25 74.69 77.70

SS 63.70 69.25 74.84 77.84
WND 66.67 71.76 77.02 79.75
SUMO 64.84 70.21 74.69 77.70

Table 5: Results for verbs

measure around 2% while increasing the training
corpus from 25% to 100% of SemCor. In SE3,
the system again only improves the F1 measure
around 2% while increasing the training corpus
from 30% to 100% of SemCor. That is, with only
25% of the whole corpus, the class-based WSD
system reaches a F1 close to the performance us-
ing all corpus. This evaluation seems to indicate
that the class-based approach to WSD reduces dra-
matically the required amount of training exam-
ples.

In both cases, when using BLC20 or Super-
Senses as semantic classes for tagging, the be-
haviour of the system is similar to MFC baseline.
This is very interesting since the MFC obtains high
results due to the way it is defined, since the MFC
over the total corpus is assigned if there are no oc-
currences of the word in the training corpus. With-
out this definition, there would be a large number
of words in the test set with no occurrences when
using small training portions. In these cases, the
recall of the baselines (and in turn F1) would be
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Figure 1: Learning curve of BLC20 on SE2
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Figure 2: Learning curve of BLC20 on SE3

much lower.

5 Conclusions and discussion

We explored on the WSD task the performance
of different levels of abstraction and sense group-
ings. We empirically demonstrated that Base
Level Concepts are able to group word senses into
an adequate medium level of abstraction to per-
form supervised class–based disambiguation. We
also demonstrated that the semantic classes pro-
vide a rich information about polysemous words
and can be successfully used as semantic fea-
tures. Finally we confirm the fact that the class–
based approach reduces dramatically the required
amount of training examples, opening the way to
solve the well known acquisition bottleneck prob-
lem for supervised machine learning algorithms.

In general, the results obtained by BLC20 are
not very different to the results of BLC50. Thus,
we can select a medium level of abstraction, with-
out having a significant decrease of the perfor-
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Figure 4: Learning curve of SuperSense on SE3

mance. Considering the number of classes, BLC
classifiers obtain high performance rates while
maintaining much higher expressive power than
SuperSenses. However, using SuperSenses (46
classes) we can obtain a very accurate semantic
tagger with performances around 80%. Even bet-
ter, we can use BLC20 for tagging nouns (558 se-
mantic classes and F1 over 75%) and SuperSenses
for verbs (14 semantic classes and F1 around
75%).

As BLC are defined by a simple and fully au-
tomatic method, they can provide a user–defined
level of abstraction that can be more suitable for
certain NLP tasks.

Moreover, the traditional set of features used for
sense-based classifiers do not seem to be the most
adequate or representative for the class-based ap-
proach. We have enriched the usual set of fea-
tures, by adding semantic information from the
monosemous words of the context and the MFC
of the target word. With this new enriched set of

features, we can generate robust and competitive
class-based classifiers.

To our knowledge, the best results for class–
based WSD are those reported by (Ciaramita and
Altun, 2006). This system performs a sequence
tagging using a perceptron–trained HMM, using
SuperSenses, training on SemCor and testing on
SensEval3. The system achieves an F1–score of
70.54, obtaining a significant improvement from
a baseline system which scores only 64.09. In
this case, the first sense baseline is the SuperSense
of the most frequent synset for a word, according
to the WN sense ranking. Although this result is
achieved for the all words SensEval3 task, includ-
ing adjectives, we can compare both results since
in SE2 and SE3 adjectives obtain very high per-
formance figures. Using SuperSenses, adjectives
only have three classes (WN Lexicographic Files
00, 01 and 44) and more than 80% of them belong
to class 00. This yields to really very high perfor-
mances for adjectives which usually are over 90%.

As we have seen, supervised WSD systems are
very dependent of the corpora used to train and
test the system. We plan to extend our system by
selecting new corpora to train or test. For instance,
by using the sense annotated glosses from Word-
Net.
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Abstract
We describe a method for creating a non-
English subjectivity lexicon based on an
English lexicon, an online translation ser-
vice and a general purpose thesaurus:
Wordnet. We use a PageRank-like algo-
rithm to bootstrap from the translation of
the English lexicon and rank the words
in the thesaurus by polarity using the net-
work of lexical relations in Wordnet. We
apply our method to the Dutch language.
The best results are achieved when using
synonymy and antonymy relations only,
and ranking positive and negative words
simultaneously. Our method achieves an
accuracy of 0.82 at the top 3,000 negative
words, and 0.62 at the top 3,000 positive
words.

1 Introduction

One of the key tasks in subjectivity analysis is
the automatic detection of subjective (as opposed
to objective, factual) statements in written doc-
uments (Mihalcea and Liu, 2006). This task is
essential for applications such as online market-
ing research, where companies want to know what
customers say about the companies, their prod-
ucts, specific products’ features, and whether com-
ments made are positive or negative. Another
application is in political research, where pub-
lic opinion could be assessed by analyzing user-
generated online data (blogs, discussion forums,
etc.).

Most current methods for subjectivity identi-
fication rely on subjectivity lexicons, which list
words that are usually associated with positive or
negative sentiments or opinions (i.e., words with
polarity). Such a lexicon can be used, e.g., to clas-
sify individual sentences or phrases as subjective
or not, and as bearing positive or negative senti-
ments (Pang et al., 2002; Kim and Hovy, 2004;

Wilson et al., 2005a). For English, manually cre-
ated subjectivity lexicons have been available for
a while, but for many other languages such re-
sources are still missing.

We describe a language-independent method
for automatically bootstrapping a subjectivity lex-
icon, and apply and evaluate it for the Dutch lan-
guage. The method starts with an English lexi-
con of positive and negative words, automatically
translated into the target language (Dutch in our
case). A PageRank-like algorithm is applied to the
Dutch wordnet in order to filter and expand the set
of words obtained through translation. The Dutch
lexicon is then created from the resulting ranking
of the wordnet nodes. Our method has several ben-
efits:

• It is applicable to any language for which a
wordnet and an automatic translation service
or a machine-readable dictionary (from En-
glish) are available. For example, the Eu-
roWordnet project (Vossen, 1998), e.g., pro-
vides wordnets for 7 languages, and free on-
line translation services such as the one we
have used in this paper are available for many
other languages as well.

• The method ranks all (or almost all) entries of
a wordnet by polarity (positive or negative),
which makes it possible to experiment with
different settings of the precision/coverage
threshold in applications that use the lexicon.

We apply our method to the most recent version
of Cornetto (Vossen et al., 2007), an extension of
the Dutch WordNet, and we experiment with vari-
ous parameters of the algorithm, in order to arrive
at a good setting for porting the method to other
languages. Specifically, we evaluate the quality of
the resulting Dutch subjectivity lexicon using dif-
ferent subsets of wordnet relations and informa-
tion in the glosses (definitions). We also examine
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the effect of the number of iterations on the per-
formance of our method. We find that best perfor-
mance is achieved when using only synonymy and
antonymy relations and, moreover, the algorithm
converges after about 10 iterations.

The remainder of the paper is organized as fol-
lows. We summarize related work in section 2,
present our method in section 3 and describe the
manual assessment of the lexicon in section 4. We
discuss experimental results in section 5 and con-
clude in section 6.

2 Related work

Creating subjectivity lexicons for languages other
than English has only recently attracted attention
of the research community. (Mihalcea et al., 2007)
describes experiments with subjectivity classifica-
tion for Romanian. The authors start with an En-
glish subjectivity lexicon with 6,856 entries, Opin-
ionFinder (Wiebe and Riloff, 2005), and automat-
ically translate it into Romanian using two bilin-
gual dictionaries, obtaining a Romanian lexicon
with 4,983 entries. A manual evaluation of a sam-
ple of 123 entries of this lexicon showed that 50%
of the entries do indicate subjectivity.

In (Banea et al., 2008) a different approach
based on boostrapping was explored for Roma-
nian. The method starts with a small seed set of
60 words, which is iteratively (1) expanded by
adding synonyms from an online Romanian dic-
tionary, and (2) filtered by removing words which
are not similar (at a preset threshold) to the orig-
inal seed, according to an LSA-based similarity
measure computed on a half-million word cor-
pus of Romanian. The lexicon obtained after 5
iterations of the method was used for sentence-
level sentiment classification, indicating an 18%
improvement over the lexicon of (Mihalcea et al.,
2007).

Both these approaches produce unordered sets
of positive and negative words. Our method,
on the other hand, assigns polarity scores to
words and produces a ranking of words by polar-
ity, which provides a more flexible experimental
framework for applications that will use the lexi-
con.

Esuli and Sebastiani (Esuli and Sebastiani,
2007) apply an algorithm based on PageRank to
rank synsets in English WordNet according to pos-
itive and negativite sentiments. The authors view
WordNet as a graph where nodes are synsets and

synsets are linked with the synsets of terms used
in their glosses (definitions). The algorithm is ini-
tialized with positivity/negativity scores provided
in SentiWordNet (Esuli and Sebastiani, 2006), an
English sentiment lexicon. The weights are then
distributed through the graph using an the algo-
rithm similar to PageRank. Authors conclude that
larger initial seed sets result in a better ranking
produced by the method. The algorithm is always
run twice, once for positivity scores, and once for
negativity scores; this is different in our approach,
which ranks words from negative to positive in
one run. See section 5.4 for a more detailed com-
parison between the existing approaches outlined
above and our approach.

3 Approach

Our approach extends the techniques used in
(Esuli and Sebastiani, 2007; Banea et al., 2008)
for mining English and Romanian subjectivity lex-
icons.

3.1 Boostrapping algorithm
We hypothesize that concepts (synsets) that are
closely related in a wordnet have similar meaning
and thus similar polarity. To determine relatedness
between concepts, we view a wordnet as a graph
of lexical relations between words and synsets:

• nodes correspond to lexical units (words) and
synsets; and

• directed arcs correspond to relations between
synsets (hyponymy, meronymy, etc.) and be-
tween synsets and words they contain; in one
of our experiments, following (Esuli and Se-
bastiani, 2007), we also include relations be-
tween synsets and all words that occur in their
glosses (definitions).

Nodes and arcs of such a graph are assigned
weights, which are then propagated through the
graph by iteratively applying a PageRank-like al-
gorithm.

Initially, weights are assigned to nodes and arcs
in the graph using translations from an English po-
larity lexicon as follows:

• words that are translations of the positive
words from the English lexicon are assigned
a weight of 1, words that are translations of
the negative words are initialized to -1; in
general, weight of a word indicates its polar-
ity;
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• All arcs are assigned a weight of 1, except
for antonymy relations which are assigned
a weight of -1; the intuition behind the arc
weights is simple: arcs with weight 1 would
usually connect synsets of the same (or simi-
lar) polarity, while arcs with weight -1 would
connect synsets with opposite polarities.

We use the following notation. Our algorithm
is iterative and k = 0, 1, . . . denotes an iteration.
Let ak

i be the weight of the node i at the k-th iter-
ation. Let wjm be the weight of the arc that con-
nects node j with node m; we assume the weight is
0 if the arc does not exist. Finally, α is a damping
factor of the PageRank algorithm, set to 0.8. This
factor balances the impact of the initial weight of
a node with the impact of weight received through
connections to other nodes.

The algorithm proceeds by updating the weights
of nodes iteratively as follows:

ak+1
i = α ·

∑
j

ak
j · wji∑
m |wjm|

+ (1 − α) · a0
i

Furthermore, at each iterarion, all weights ak+1
i

are normalized by maxj |ak+1
j |.

The equation above is a straightforward exten-
sion of the PageRank method for the case when
arcs of the graph are weighted. Nodes propagate
their polarity mass to neighbours through outgoing
arcs. The mass transferred depends on the weight
of the arcs. Note that for arcs with negative weight
(in our case, antonymy relation), the polarity of
transferred mass is inverted: i.e., synsets with neg-
ative polarity will enforce positive polarity in their
antonyms.

We iterate the algorithm and read off the result-
ing weight of the word nodes. We assume words
with the lowest resulting weight to have negative
polarity, and word nodes with the highest weight
positive polarity. The output of the algorithm is a
list of words ordered by polarity score.

3.2 Resources used
We use an English subjectivity lexicon of Opinion-
Finder (Wilson et al., 2005b) as the starting point
of our method. The lexicon contains 2,718 English
words with positive polarity and 4,910 words with
negative polarity. We use a free online translation
service1 to translate positive and negative polar-
ity words into Dutch, resulting in 974 and 1,523

1http://translate.google.com

Dutch words, respectively. We assumed that a
word was translated into Dutch successfully if the
translation occurred in the Dutch wordnet (there-
fore, the result of the translation is smaller than the
original English lexicon).

The Dutch wordnet we used in our experiments
is the most recent version of Cornetto (Vossen et
al., 2007). This wordnet contains 103,734 lexical
units (words), 70,192 synsets, and 157,679 rela-
tions between synsets.

4 Manual assessments

To assess the quality of our method we re-used
assessments made for earlier work on comparing
two resources in terms of their usefulness for au-
tomatically generating subjectivity lexicons (Jij-
koun and Hofmann, 2008). In this setting, the
goal was to compare two versions of the Dutch
Wordnet: the first from 2001 and the other from
2008. We applied the method described in sec-
tion 3 to both resources and generated two subjec-
tivity rankings. From each ranking, we selected
the 2000 words ranked as most negative and the
1500 words ranked as most positive, respectively.
More negative than positive words were chosen to
reflect the original distribution of positive vs. neg-
ative words. In addition, we selected words for
assessment from the remaining parts of the ranked
lists, randomly sampling chunks of 3000 words at
intervals of 10000 words with a sampling rate of
10%. The selection was made in this way because
we were mostly interested in negative and positive
words, i.e., the words near either end of the rank-
ings.

4.1 Assessment procedure
Human annotators were presented with a list of
words in random order, for each word its part-of-
speech tag was indicated. Annotators were asked
to identify positive and negative words in this list,
i.e., words that indicate positive (negative) emo-
tions, evaluations, or positions.

Annotators were asked to classify each word on
the list into one of five classes:

++ the word is positive in most contexts (strongly
positive)

+ the word is positive in some contexts (weakly
positive)

0 the word is hardly ever positive or negative
(neutral)

400



− the a word is negative in some contexts
(weakly negative)

−− the word is negative in most contexts
(strongly negative)

Cases where assessors were unable to assign a
word to one of the classes, were separately marked
as such.

For the purpose of this study we were only inter-
ested in identifying subjective words without con-
sidering subjectivity strength. Furthermore, a pi-
lot study showed assessments of the strength of
subjectivity to be a much harder task (54% inter-
annotator agreement) than distinguishing between
positive, neutral and negative words only (72%
agreement). We therefore collapsed the classes of
strongly and weakly subjective words for evalua-
tion. These results for three classes are reported
and used in the remainder of this paper.

4.2 Annotators

The data were annotated by two undergraduate
university students, both native speakers of Dutch.
Annotators were recruited through a university
mailing list. Assessment took a total of 32 work-
ing hours (annotating at approximately 450-500
words per hour) which were distributed over a to-
tal of 8 annotation sessions.

4.3 Inter-annotator Agreement

In total, 9,089 unique words were assessed, of
which 6,680 words were assessed by both anno-
tators. For 205 words, one or both assessors could
not assign an appropriate class; these words were
excluded from the subsequent study, leaving us
with 6,475 words with double assessments.

Table 1 shows the number of assessed words
and inter-annotator agreement overall and per
part-of-speech. Overall agreement is 69% (Co-
hen’s κ=0.52). The highest agreement is for ad-
jectives, at 76% (κ=0.62) . This is the same
level of agreement as reported in (Kim and Hovy,
2004) for English. Agreement is lowest for verbs
(55%, κ=0.29) and adverbs (56%, κ=0.18), which
is slightly less than the 62% agreement on verbs
reported by Kim and Hovy. Overall we judge
agreement to be reasonable.

Table 2 shows the confusion matrix between the
two assessors. We see that one assessor judged
more words as subjective overall, and that more
words are judged as negative than positive (this

POS Count % agreement κ

noun 3670 70% 0.51
adjective 1697 76% 0.62
adverb 25 56% 0.18
verb 1083 55% 0.29
overall 6475 69% 0.52

Table 1: Inter-annotator agreement per part-of-
speech.

can be explained by our sampling method de-
scribed above).

− 0 + Total
− 1803 137 39 1979
0 1011 1857 649 3517
+ 81 108 790 979

Total 2895 2102 1478 6475

Table 2: Contingency table for all words assessed
by two annotators.

5 Experiments and results

We evaluated several versions of the method of
section 3 in order to find the best setting.

Our baseline is a ranking of all words in the
wordnet with the weight -1 assigned to the trans-
lations of English negative polarity words, 1 as-
signed to the translations of positive words, and
0 assigned to the remaining words. This corre-
sponds to simply translating the English subjec-
tivity lexicon.

In the run all.100 we applied our method to all
words, synsets and relations from the Dutch Word-
net to create a graph with 153,386 nodes (70,192
synsets, 83,194 words) and 362,868 directed arcs
(103,734 word-to-synset, 103,734 synset-to-word,
155,400 synset-to-synset relations). We used 100
iterations of the PageRank algorihm for this run
(and all runs below, unless indicated otherwise).

In the run syn.100 we only used synset-to-
word, word-to-synset relations and 2,850 near-
synonymy relations between synsets. We added
1,459 near-antonym relations to the graph to
produce the run syn+ant.100. In the run
syn+hyp.100 we added 66,993 hyponymy and
66,993 hyperonymy relations to those used in run
syn.100.

We also experimented with the information pro-
vided in the definitions (glosses) of synset. The
glosses were available for 68,122 of the 70,192
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synsets. Following (Esuli and Sebastiani, 2007),
we assumed that there is a semantic relationship
between a synset and each word used in its gloss.
Thus, the run gloss.100 uses a graph with 70,192
synsets, 83,194 words and 350,855 directed arcs
from synsets to lemmas of all words in their
glosses. To create these arcs, glosses were lemma-
tized and lemmas not found in the wordnet were
ignored.

To see if the information in the glosses can com-
plement the wordnet relations, we also generated
a hybrid run syn+ant+gloss.100 that used arcs de-
rived from word-to-synset, synset-to-word, syn-
onymy, antonymy relations and glosses.

Finally, we experimented with the number of
iterations of PageRank in two setting: using all
wordnet relations and using only synonyms and
antonyms.

5.1 Evaluation measures

We used several measures to evaluate the quality
of the word rankings produced by our method.

We consider the evaluation of a ranking parallel
to the evaluation for a binary classification prob-
lem, where words are classified as positive (resp.
negative) if the assigned score exceeds a certain
threshold value. We can select a specific thresh-
old and classify all words exceeding this score as
positive. There will be a certain amount of cor-
rectly classified words (true positives), and some
incorrectly classified words (false positives). As
we move the threshold to include a larger portion
of the ranking, both the number of true positives
and the number of false positives increase.

We can visualize the quality of rankings by plot-
ting their ROC curves, which show the relation be-
tween true positive rate (portion of the data cor-
rectly labeled as positive instances) and false pos-
itive rate (portion of the data incorrectly labeled
as positive instances) at all possible threshold set-
tings.

To compare rankings, we compute the area un-
der the ROC curve (AUC), a measure frequently
used to evaluate the performance of ranking clas-
sifiers. The AUC value corresponds to the proba-
bility that a randomly drawn positive instance will
be ranked higher than a randomly drawn negative
instance. Thus, an AUC of 0.5 corresponds to ran-
dom performance, a value of 1.0 corresponds to
perfect performance. When evaluating word rank-
ings, we compute AUC− and AUC+ as evalua-

Run τk Dk AUC− AUC+

baseline 0.395 0.303 0.701 0.733
syn.10 0.641 0.180 0.829 0.837
gloss.100 0.637 0.181 0.829 0.835
all.100 0.565 0.218 0.792 0.787
syn.100 0.645 0.177 0.831 0.839
syn+ant.100 0.650 0.175 0.833 0.841
syn+ant+gloss.100 0.643 0.178 0.831 0.838
syn+hyp.100 0.594 0.203 0.807 0.810

Table 3: Evaluation results

tion measures for the tasks of identifying words
with negative (resp., positive) polarity.

Other measures commonly used to evalu-
ate rankings are Kendall’s rank correlation, or
Kendall’s tau coefficient, and Kendall’s dis-
tance (Fagin et al., 2004; Esuli and Sebastiani,
2007). When comparing rankings, Kendall’s mea-
sures look at the number of pairs of ranked items
that agree or disagree with the ordering in the gold
standard. The measures can deal with partially
ordered sets (i.e., rankings with ties): only pairs
that are ordered in the gold standard are used.
Let T = {(ai, bi)}i denote the set of pairs or-
dered in the gold standard, i.e., ai ≺g bi. Let
C = {(a, b) ∈ T | a ≺r b} be the set of con-
cordant pairs, i.e., pairs ordered the same way in
the gold standard and in the ranking. Let D =
{(a, b) ∈ T | b ≺r a} be the set of discordant
pairs and U = T \ (C ∪ D) the set of pairs or-
dered in the gold standard, but tied in the rank-
ing. Kendall’s rank correlation coefficient τk and
Kendall’s distance Dk are defined as follows:

τk =
|C| − |D|

|T |
Dk =

|D| + p · |U |
|T |

where p is a penalization factor for ties, which we
set to 0.5, following (Esuli and Sebastiani, 2007).

The value of τk ranges from -1 (perfect dis-
agreement) to 1 (perfect agreement), with 0 indi-
cating an almost random ranking. The value of
Dk ranges from 0 (perfect agreement) to 1 (per-
fect disagreement).

When applying Kendall’s measures we assume
that the gold standard defines a partial order: for
two words a and b, a ≺g b holds when a ∈ Ng, b ∈
Ug ∪ Pg or when a ∈ Ug, b ∈ Pg; here Ng, Ug, Pg

are sets of words judged as negative, neutral and
positive, respectively, by human assessors.

5.2 Types of wordnet relations
The results in Table 3 indicate that the method per-
forms best when only synonymy and antonymy
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Figure 1: ROC curves showing the impact of using different sets of relations for negative and positive
polarity. Graphs were generated using ROCR (Sing et al., 2005).

relations are considered for ranking. Adding hy-
ponyms and hyperonyms, or adding relations be-
tween synsets and words in their glosses substan-
tially decrease the performance, according to all
four evaluation measures. With all relations, the
performance degrades even further. Our hypothe-
sis is that with many relations the polarity mass of
the seed words is distributed too broadly. This is
supported by the drop in the performance early in
the ranking at the “negative” side of runs with all
relations and with hyponyms (Figure 1, left). An-
other possible explanation can be that words with
many incoming arcs (but without strong connec-
tions to the seed words) get substantial weights,
thereby decreasing the quality of the ranking.

Antonymy relations also prove useful, as using
them in addition to synonyms results in a small
improvement. This justifies our modification of
the PageRank algorithm, when we allow negative
node and arc weights.

In the best setting (syn+ant.100), our method
achieves an accuracy of 0.82 at top 3,000 negative
words, and 0.62 at top 3,000 positive words (esti-
mated from manual assessments of a sample, see
section 4). Moreover, Figure 1 indicates that the
accuracy of the seed set (i.e., the baseline transla-
tions of the English lexicon) is maintained at the
positive and negative ends of the ranking for most
variants of the method.

5.3 The number of iterations

In Figure 2 we plot how the AUC− measure
changes when the number of PageRank iterations
increases (for positive polarity; the plots are al-
most identical for negative polarity). Although the
absolute maximum of AUC is achieved at 110 iter-
ation (60 iterations for positive polarity), the AUC
clearly converges after 20 iterations. We conclude
that after 20 iterations all useful information has
been propagated through the graph. Moreover, our
version of PageRank reaches a stable weight dis-
tribution and, at the same time, produces the best
ranking.

5.4 Comparison to previous work

Although the values in the evaluation results are,
obviously, language-dependent, we tried to repli-
cate the methods used in the literature for Roma-
nian and English (section 2), to the degree possi-
ble.

Our baseline replicates the method of (Mihal-
cea et al., 2007): i.e., a simple translation of the
English lexicon into the target language. The
run syn.10 is similar to the iterative method used
in (Banea et al., 2008), except that we do not per-
form a corpus-based filtering. We run PageRank
for 10 iterations, so that polarity is propagated
from the seed words to all their 5-step-synonymy
neighbours. Table 3 indicates that increasing the
number of iterations in the method of (Banea et
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Figure 2: The number of iterations and the ranking
quality (AUC), for positive polarity. Rankings for
negative polarity behave similarly.

al., 2008) might help to generate a better subjec-
tivity lexicon.

The run gloss.100 is similar to the PageRank-
based method of (Esuli and Sebastiani, 2007).
The main difference is that Esuli and Sebastiani
used the extended English WordNet, where words
in all glosses are manually assigned to their cor-
rect synsets: the PageRank method then uses re-
lations between synsets and synsets of words in
their glosses. Since such a resource is not avail-
able for our target language (Dutch), we used rela-
tions between synsets and words in their glosses,
instead. With this simplification, the PageRank
method using glosses produces worse results than
the method using synonyms. Further experiments
with the extended English WordNet are neces-
sary to investigate whether this decrease can be at-
tributed to the lack of disambiguation for glosses.

An important difference between our method
and (Esuli and Sebastiani, 2007) is that the lat-
ter produces two independent rankings: one for
positive and one for negative words. To evalu-
ate the effect of this choice, we generated runs
gloss.100.N and gloss.100.P that used only nega-
tive (resp., only positive) seed words. We compare
these runs with the run gloss.100 (that starts with
both positive and negative seeds) in Table 4. To
allow a fair comparison of the generated rankings,
the evaluation measures in this case are calculated
separately for two binary classification problems:
words with negative polarity versus all words, and
words with positive polarity versus all.

The results in Table 4 clearly indicate that in-

Run τ−k D−k AUC−

gloss.100 0.669 0.166 0.829
gloss.100.N 0.562 0.219 0.782

τ+
k D+

k AUC+

gloss.100 0.665 0.167 0.835
gloss.100.P 0.580 0.210 0.795

Table 4: Comparison of separate and simultaneous
rankings of negative and positive words.

formation about words of one polarity class helps
to identify words of the other polarity: negative
words are unlikely to be also positive, and vice
versa. This supports our design choice: ranking
words from negative to positive in one run of the
method.

6 Conclusion

We have presented a PageRank-like algorithm that
bootstraps a subjectivity lexicon from a list of
initial seed examples (automatic translations of
words in an English subjectivity lexicon). The al-
gorithm views a wordnet as a graph where words
and concepts are connected by relations such as
synonymy, hyponymy, meronymy etc. We initial-
ize the algorithm by assigning high weights to pos-
itive seed examples and low weights to negative
seed examples. These weights are then propagated
through the wordnet graph via the relations. After
a number of iterations words are ranked according
to their weight. We assume that words with lower
weights are likely negative and words with high
weights are likely positive.

We evaluated several variants of the method for
the Dutch language, using the most recent version
of Cornetto, an extension of Dutch WordNet. The
evaluation was based on the manual assessment
of 9,089 words (with inter-annotator agreement
69%, κ=0.52). Best results were achieved when
the method used only synonymy and antonymy
relations, and was ranking positive and negative
words simultaneously. In this setting, the method
achieves an accuracy of 0.82 at the top 3,000 neg-
ative words, and 0.62 at the top 3,000 positive
words.

Our method is language-independent and can
easily be applied to other languages for which
wordnets exist. We plan to make the implemen-
tation of the method publicly available.

An additional important outcome of our experi-
ments is the first (to our knowledge) manually an-
notated sentiment lexicon for the Dutch language.
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The lexicon contains 2,836 negative polarity and
1,628 positive polarity words. The lexicon will be
made publicly available as well. Our future work
will focus on using the lexicon for sentence- and
phrase-level sentiment extraction for Dutch.
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eklett@sfs.uni-tuebingen.de

Abstract

The present paper is concerned with sta-
tistical parsing of constituent structures
in German. The paper presents four ex-
periments that aim at improving parsing
performance of coordinate structure: 1)
reranking the n-best parses of a PCFG
parser, 2) enriching the input to a PCFG
parser by gold scopes for any conjunct, 3)
reranking the parser output for all possi-
ble scopes for conjuncts that are permissi-
ble with regard to clause structure. Exper-
iment 4 reranks a combination of parses
from experiments 1 and 3.

The experiments presented show that n-
best parsing combined with reranking im-
proves results by a large margin. Provid-
ing the parser with different scope possi-
bilities and reranking the resulting parses
results in an increase in F-score from
69.76 for the baseline to 74.69. While the
F-score is similar to the one of the first ex-
periment (n-best parsing and reranking),
the first experiment results in higher re-
call (75.48% vs. 73.69%) and the third one
in higher precision (75.43% vs. 73.26%).
Combining the two methods results in the
best result with an F-score of 76.69.

1 Introduction

The present paper is concerned with statistical
parsing of constituent structures in German. Ger-
man is a language with relatively flexible phrasal
ordering, especially of verbal complements and
adjuncts. This makes processing complex cases
of coordination particularly challenging and error-
prone. The paper presents four experiments that
aim at improving parsing performance of coor-
dinate structures: the first experiment involves
reranking of n-best parses produced by a PCFG

parser, the second experiment enriches the input
to a PCFG parser by offering gold pre-bracketings
for any coordinate structures that occur in the sen-
tence. In the third experiment, the reranker is
given all possible pre-bracketed candidate struc-
tures for coordinated constituents that are permis-
sible with regard to clause macro- and microstruc-
ture. The parsed candidates are then reranked.
The final experiment combines the parses from the
first and the third experiment and reranks them.
Improvements in this final experiment corroborate
our hypothesis that forcing the parser to work with
pre-bracketed conjuncts provides parsing alterna-
tives that are not present in the n-best parses.

Coordinate structures have been a central is-
sue in both computational and theoretical linguis-
tics for quite some time. Coordination is one of
those phenomena where the simple cases can be
accounted for by straightforward empirical gen-
eralizations and computational techniques. More
specifically, it is the observation that coordination
involves two or more constituents of the same cat-
egories. However, there are a significant number
of more complex cases of coordination that defy
this generalization and that make the parsing task
of detecting the right scope of individual conjuncts
and correctly delineating the correct scope of the
coordinate structure as a whole difficult. (1) shows
some classical examples of this kind from English.

(1) a. Sandy is a Republican and proud of it.
b. Bob voted, but Sandy did not.
c. Bob supports him and Sandy me.

In (1a), unlike categories (NP and adjective) are
conjoined. (1b) and (1c) are instances of ellipsis
(VP ellipsis and gapping). Yet another difficult set
of examples present cases of non-constituent con-
junction, as in (2), where the direct and indirect
object of a ditransitive verb are conjoined.

(2) Bob gave a book to Sam and a record to Jo.
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2 Coordination in German

The above phenomena have direct analogues in
German.1 Due to the flexible ordering of phrases,
their variability is even higher. For example, due
to constituent fronting to clause-initial position in
German verb-second main clauses, cases of non-
constituent conjunction can involve any two NPs
(including the subject) of a ditransitive verb to the
exclusion of the third NP complement that appears
in clause-initial position. In addition, German ex-
hibits cases of asymmetric coordination first dis-
cussed by Höhle (1983; 1990; 1991) and illus-
trated in (3).2

(3) In
Into

den
the

Wald
woods

ging
went

ein
a

Jäger
hunter

und
and

schoss
shot

einen
a

Hasen.
hare.

Such cases of subject gap coordination are fre-
quently found in text corpora (cf. (4) below) and
involve conjunction of a full verb-second clause
with a VP whose subject is identical to the subject
in the first conjunct.

3 Experimental Setup and Baseline

3.1 The Treebank

The data source used for the experiments is the
Tübingen Treebank of Written German (TüBa-
D/Z) (Telljohann et al., 2005). TüBa-D/Z uses
the newspaper ’die tageszeitung’ (taz) as its data
source, version 3 comprises approximately 27 000
sentences. The treebank annotation scheme dis-
tinguishes four levels of syntactic constituency:
the lexical level, the phrasal level, the level of
topological fields, and the clausal level. The pri-
mary ordering principle of a clause is the inventory
of topological fields (VF, LK, MF, VC, and NF),
which characterize the word order regularities
among different clause types of German. TüBa-
D/Z annotation relies on a context-free backbone
(i.e. proper trees without crossing branches) of
phrase structure combined with edge labels that
specify the grammatical function of the phrase in
question. Conjuncts are generally marked with the

1To avoid having to gloss German examples, they were
illustrated for English.

2Yet, another case of such asymmetric coordination dis-
cussed by Höhle involves cases of conjunction of different
clause types: [V−final Wenn du nach Hause kommst ] und
[V−2nd da warten Polizeibeamte vor der Tür. ’If you come
home and there are policemen waiting in front of the door ] .’

function label KONJ. Figure 1 shows the anno-
tation that sentence (4) received in the treebank.
Syntactic categories are displayed as nodes, gram-
matical functions as edge labels in gray (e.g. OA:
direct object, PRED: predicate). This is an exam-
ple of a subject-gap coordination, in which both
conjuncts (FKONJ) share the subject (ON) that is
realized in the first conjunct.

(4) Damit
So

hat
has

sich
itself

der
the

Bevölkerungs-
decline in

rückgang
population

zwar
though

abgeschwächt,
lessened,

ist
is

aber
however

noch
still

doppelt
double

so
so

groß
big

wie
as

1996.
1996.

’For this reason, although the decline in
population has lessened, it is still twice as
big as in 1996.’

The syntactic annotation scheme of the TüBa-
D/Z is described in more detail in Telljohann et al.
(2004; 2005).

All experiments reported here are based on a
data split of 90% training data and 10% test data.

3.2 The Parsers and the Reranker

Two parsers were used to investigate the influ-
ence of scope information on parser performance
on coordinate structures: BitPar (Schmid, 2004)
and LoPar (Schmid, 2000). BitPar is an effi-
cient implementation of an Earley style parser that
uses bit vectors. However, BitPar cannot han-
dle pre-bracketed input. For this reason, we used
LoPar for the experiments where such input was
required. LoPar, as it is used here, is a pure
PCFG parser, which allows the input to be par-
tially bracketed. We are aware that the results
that can be obtained by pure PCFG parsers are
not state of the art as reported in the shared task
of the ACL 2008 Workshop on Parsing German
(Kübler, 2008). While BitPar reaches an F-score
of 69.76 (see next section), the best performing
parser (Petrov and Klein, 2008) reaches an F-
score of 83.97 on TüBa-D/Z (but with a different
split of training and test data). However, our ex-
periments require certain features in the parsers,
namely the capability to provide n-best analyses
and to parse pre-bracketed input. To our knowl-
edge, the parsers that took part in the shared task
do not provide these features. Should they become
available, the methods presented here could be ap-
plied to such parsers. We see no reason why our
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Figure 1: A tree with coordination.

methods should not be able to improve the results
of these parsers further.

Since we are interested in parsing coordina-
tions, all experiments are conducted with gold
POS tags, so as to abstract away from POS tag-
ging errors. Although the treebank contains mor-
phological information, this type of information is
not used in the experiments presented here.

The reranking experiments were conducted us-
ing the reranker by Collins and Koo (2005). This
reranker uses a set of candidate parses for a sen-
tence and reranks them based on a set of features
that are extracted from the trees. The reranker uses
a boosting method based on the approach by Fre-
und et al. (1998). We used a similar feature set
to the one Collins and Koo used; the following
types of features were included: rules, bigrams,
grandparent rules, grandparent bigrams, lexical
bigrams, two-level rules, two-level bigrams, tri-
grams, head-modifiers, PPs, and distance for head-
modifier relations, as well as all feature types in-
volving rules extended by closed class lexicaliza-
tion. For a more detailed description of the rules,
the interested reader is referred to Collins and
Koo (2005). For coordination, these features give
a wider context than the original parser has and
should thus result in improvements for this phe-
nomenon.

3.3 The Baseline

When trained on 90% of the approximately 27,000
sentences of the TüBa-D/Z treebank, BitPar
reaches an F-Score of 69.73 (precision: 68.63%,
recall: 70.93%) on the full test set of 2611 sen-

tences. These results as well as all further re-
sults presented here are labeled results, including
grammatical functions. Since German has a rela-
tively free word order, it is impossible to deduce
the grammatical function of a noun phrase from
the configuration of the sentence. Consequently,
an evaluation based solely on syntactic constituent
labels would be meaningless (cf. (Kübler, 2008)
for a discussion of this point). The inclusion of
grammatical labels in the trees, makes the parsing
process significantly more complex.

Looking at sentences with coordination (i.e.
sentences that contain a conjunction which is not
in sentence-initial position), we find that 34.9%
of the 2611 test sentences contain coordinations.
An evaluation of only sentences with coordina-
tion shows that there is a noticeable difference: the
F-score reaches 67.28 (precision: 66.36%, recall:
68.23%) as compared to 69.73 for the full test set.

The example of a wrong parse shown below il-
lustrates why parsing of complex coordinations is
so hard. Complex coordinations can take up a con-
siderable part of the input string and accordingly
of the overall sentence structure. Such global phe-
nomena are particularly hard for pure PCFG pars-
ing, due to the independence assumption inherent
in the statistical models for PCFGs.

Sentence (4) has the following Viterbi parse:
(VROOT
(SIMPX

(VF
(SIMPX-OS
(VF (PX-MOD (PROP-HD Damit)))
(LK

(VXFIN-HD (VAFIN-HD hat)))
(MF
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(NX-OA (PRF-HD sich))
(NX-ON (ART der)

(NN-HD Bevölkerungsrückgang))
(ADVX-MOD (ADV-HD zwar)))

(VC (VXINF-OV
(VVPP-HD abgeschwächt)))))

($, ,)
(LK

(VXFIN-HD (VAFIN-HD ist)))
(MF

(ADVX-MOD (ADV-HD aber))
(ADVX-MOD (ADV-HD noch))
(ADJX-PRED

(ADJX-HD (ADVX (ADV-HD mehr))
(ADJX (KOKOM als)

(ADJD-HD doppelt))
(ADVX (ADV-HD so))
(ADJD-HD groß))

(NX (KOKOM wie)
(CARD-HD 1996)))))

($. .))

The parse shows that the parser did not
recognize the coordination. Instead, the first con-
junct including the fronted constituent, Damit
hat sich der Bevölkerungsrückgang
zwar abgeschwächt, is treated as a fronted
subordinate clause.

4 Experiment 1: n-Best Parsing and
Reranking

The first hypothesis for improving coordination
parsing is based on the assumption that the correct
parse may not be the most probable one in Viterbi
parsing but may be recovered by n-best parsing
and reranking, a technique that has become stan-
dard in the last few years. If this hypothesis holds,
we should find the correct parse among the n-best
parses. In order to test this hypothesis, we con-
ducted an experiment with BitPar (Schmid, 2004).
We parsed the test sentences in a 50-best setting.

A closer look at the 50-best parses shows that of
the 2611 sentences, 195 (7.5%) were assigned the
correct parse as the best parse. For 325 more sen-
tences (12.4%), the correct parse could be found
under the 50 best analyses. What is more, in
90.2% of these 520 sentences, for which the cor-
rect parse was among the 50 best parses, the best
parse was among the first 10 parses. Additionally,
only in 4 cases were the correct analyses among
the 40-best to 50-best parses, an indication that in-
creasing n may not result in improving the results
significantly. These findings resulted in the deci-
sion not to conduct experiments with higher n.

That the 50 best analyses contain valuable infor-
mation can be seen from an evaluation in which an
oracle chooses from the 50 parses. In this case, we

reach an F-score of 80.28. However, this F-score
is also the upper limit for improvement that can be
achieved by reranking the 50-best parses.

For reranking, the features of Collins and
Koo (2005) were extended in the following way:
Since the German treebank used for our exper-
iments includes grammatical function informa-
tion on almost all levels in the tree, all feature
types were also included with grammatical func-
tions attached: All nodes except the root node
of the subtree in question were annotated with
their grammatical information. Thus, for the noun
phrase (NX) rule with grandparent prepositional
phrase (PX) PXGP NX→ ART ADJX NN, we add
an additional rule PXGP NX-HD → ART ADJX
NN-HD.

After pruning all features that occurred in the
training data with a frequency lower than 5, the ex-
tractions produced more than 5 mio. different fea-
tures. The reranker was optimized on the training
data, the 50-best parses were produced in a 5-fold
cross-validation setting. A non-exhaustive search
for the best value for the α parameter showed that
Collins and Koo’s value of 0.0025 produced the
best results. The row for exp. 1 in Table 1 shows
the results of this experiment. The evaluation of
the full data set shows an improvement of 4.77
points in the F-score, which reached 74.53. This is
a relative reduction in error rate of 18.73%, which
is slightly higher that the error rate reduction re-
ported by Collins and Koo for the Penn Treebank
(13%). However, the results for Collins and Koo’s
original parses were higher, and they did not eval-
uate on grammatical functions.

The evaluation of coordination sentences shows
that such sentences profit from reranking to the
same degree. These results prove that while coor-
dination structures profit from reranking, they do
not profit more than other phenomena. We thus
conclude that reranking is no cure-all for solving
the problem of accurate coordination parsing.

5 Experiment 2: Gold Scope

The results of experiment 1 lead to the conclusion
that reranking the n-best parses can only result
in restricted improvements on coordinations. The
fact that the correct parse often cannot be found
in the 50-best analyses suggests that the different
possible scopes of a coordination are so different
in their probability distribution that not all of the
possible scopes are present in the 50-best analyses.
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all sentences coord. sentences
precision recall F-score precision recall F-score

baseline: 68.63 70.93 69.76 66.36 68.23 67.28
exp. 1: 50-best reranking: 73.26 75.84 74.53 70.67 72.72 71.68
exp. 2: with gold scope: 76.12 72.87 74.46 75.78 72.22 73.96
exp. 3: automatic scope: 75.43 73.96 74.69 72.88 71.42 72.14
exp. 4: comb. 1 and 3: 76.15 77.23 76.69 73.79 74.73 74.26

Table 1: The results of parsing all sentences and coordinated sentences only

If this hypothesis holds, forcing the parser to con-
sider the different scope readings should increase
the accuracy of coordination parsing. In order to
force the parser to use the different scope readings,
we first extract these scope readings, and then for
each of these scope readings generate a new sen-
tence with partial bracketing that represents the
corresponding scope (see below for an example).
LoPar is equipped to parse partially-bracketed in-
put. Given input sentences with partial brackets,
the parser restricts analyses to such cases that do
not contradict the brackets in the input.

(5) Was
Which

stimmt,
is correct,

weil
because

sie
they

unterhaltsam
entertaining

sind,
are,

aber
but

auch
also

falsche
wrong

Assoziationen
associations

weckt.
wakes.

’Which is correct because they are enter-
taining, but also triggers wrong associa-
tions.’

In order to test the validity of this hypothe-
sis, we conducted an experiment with coordination
scopes extracted from the treebank trees. These
scopes were translated into partial brackets that
were included in the input sentences. For the sen-
tence in (5) from the treebank (sic), the input for
LoPar would be the following:
Was/PWS stimmt/VVFIN ,/$, weil/
KOUS ( sie/PPER unterhalt-
sam/ADJD sind/VAFIN ) ,/$,
aber/KON ( auch/ADV falsche/ADJA
Assoziationen/NN weckt/VVFIN )

The round parentheses delineate the conjuncts.
LoPar was then forced to parse sentences contain-
ing coordination with the correct scope for the co-
ordination. The results for this experiment are
shown in Table 1 as exp. 2.

The introduction of partial brackets that delimit
the scope of the coordination improve overall re-

sults on the full test set by 4.7 percent points, a
rather significant improvement when we consider
that only approximately one third of the test sen-
tences were modified. The evaluation of the set
of sentences that contain coordination shows that
here, the difference is even higher: 6.7 percent
points. It is also worth noticing that provided with
scope information, the parser parses such sen-
tences with the same accuracy as other sentences.
The difference in F-scores between all sentences
and only sentences with coordination in this ex-
periment is much lower (0.5 percent points) than
for all other experiments (2.5–3.0 percent points).

When comparing the results of experiment 1 (n-
best parsing) with the present one, it is evident that
the F-scores are very similar: 74.53 for the 50-best
reranking setting, and 74.46 for the one where we
provided the gold scope. However, a comparison
of precision and recall shows that there are differ-
ences: 50-best reranking results in higher recall,
providing gold scope for coordinations in higher
precision. The lower recall in the latter experiment
indicates that the provided brackets in some cases
are not covered by the grammar. This is corrob-
orated by the fact that in n-best parsing, only 1
sentence could not be parsed; but in parsing with
gold scope, 8 sentences could not be parsed.

6 Experiment 3: Extracting Scope

The previous experiment has shown that providing
the scope of a coordination drastically improves
results for sentences with coordination as well as
for the complete test set (although to a lower de-
gree). The question that remains to be answered is
whether automatically generated possible scopes
can provide enough information for the reranker
to improve results.

The first question that needs to be answered is
how to find the possible scopes for a coordina-
tion. One possibility is to access the parse forest
of a chart parser such as LoPar and extract infor-
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mation about all the possible scope analyses that
the parser found. If the same parser is used for
this step and for the final parse, we can be cer-
tain that only scopes are extracted that are com-
patible with the grammar of the final parser. How-
ever, parse forests are generally stored in a highly
packed format so that an exhaustive search of the
structures is very inefficient and proved impossi-
ble with present day computing power.

(6) ”Es
”There

gibt
are

zwar
indeed

ein
a

paar
few

Niederflurbusse,
low-floor buses,

aber
but

das
that

reicht
suffices

ja
part.

nicht”,
not”,

sagt
says

er.
he.

’”There are indeed a few low-floor buses,
but that isn’t enough”, he says.

Another solution consists of generating all pos-
sible scopes around the coordination. Thus, for
the sentence in (6), the conjunction is aber. The
shortest possible left conjunct is Niederflurbusse,
the next one paar Niederflurbusse, etc. Clearly,
many of these possibilities, such as the last exam-
ple, are nonsensical, especially when the proposed
conjunct crosses into or out of base phrase bound-
aries. Another type of boundary that should not
be crossed is a clause boundary. Since the con-
junction is part of the subordinated clause in the
present example, the right conjunct cannot extend
beyond the end of the clause, i.e. beyond nicht.

For this reason, we used KaRoPars (Müller and
Ule, 2002), a partial parser for German, to parse
the sentences. From the partial parses, we ex-
tracted base phrases and clauses. For (6), the rel-
evant bracketing provided by KaRoPars is the fol-
lowing:
( " Es gibt zwar { ein paar

Niederflurbusse } , ) aber ( das
reicht ja nicht ) " , sagt er .

The round parentheses mark clause boundaries,
the curly braces the one base phrase that is longer
than one word. In the creation of possible con-
juncts, only such conjuncts are listed that do not
cross base phrase or clause boundaries. In order to
avoid unreasonably high numbers of pre-bracketed
versions, we also use higher level phrases, such as
coordinated noun phrases. KaRoPars groups such
higher level phrases only in contexts that allow
a reliable decision. While a small percentage of
such decisions is wrong, the heuristic used turns

out to be reliable and efficient.
For each scope, a partially bracketed version

of the input sentence is created, in which only
the brackets for the suggested conjuncts are in-
serted. Each pre-bracketed version of the sentence
is parsed with LoPar. Then all versions for one
sentence are reranked. The reranker was trained
on the data from experiment 1 (n-best parsing).
The results of the reranker show that our restric-
tions based on the partial parser may have been
too restrictive. Only 375 sentences had more than
one pre-bracketed version, and only 328 sentence
resulted in more than one parse. Only the latter set
could then profit from reranking.

The results of this experiment are shown in Ta-
ble 1 as exp. 3. They show that extracting pos-
sible scopes for conjuncts from a partial parse
is possible. The difference in F-score between
this experiment and the baseline reaches 5.93 per-
cent points. The F-score is also minimally higher
than the F-score for experiment 2 (gold scope),
and recall is increased by approximately 1 per-
cent point (even though only 12.5% of the sen-
tences were reranked). This can be attributed to
two factors: First, we provide different scope pos-
sibilities. This means that if the correct scope is
not covered by the grammar, the parser may still
be able to parse the next closest possibility in-
stead of failing completely. Second, reranking is
not specifically geared towards improving coordi-
nated structures. Thus, it is possible that a parse is
reranked higher because of some other feature. It
is, however, not the case that the improvement re-
sults completely from reranking. This can be de-
duced from two points: First, while the F-score
for experiment 1 (50-best analyses plus reranking)
and the present experiment are very close (74.53
vs. 74.69), there are again differences in precision
and recall: In experiment 1, recall is higher, and in
the present experiment precision. Second, a look
at the evaluation on only sentences with coordi-
nation shows that the F-score for the present ex-
periment is higher than the one for experiment 1
(72.14 vs. 71.68). Additionally, precision for the
present experiment is more than 2 percent points
higher.

7 Experiment 4: Combining n-Best
Parses and Extracted Scope Parses

As described above, the results for reranking the
50-best analyses and for reranking the versions
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with automatically extracted scope readings are
very close. This raises the question whether the
two methods produce similar improvements in the
parse trees. One indicator that this is not the case
can be found in the differences in precision and re-
call. Another possibility of verifying our assump-
tion that the improvements do not overlap lies in
the combination of the 50-best parses with the
parses resulting from the automatically extracted
scopes. This increases the number of parses be-
tween which the reranker can choose. In effect,
this means a combination of the methods of exper-
iments 1 (n-best) and 3 (automatic scope). Con-
sequently, if the results from this experiment are
very close to the results from experiment 1 (n-
best), we can conclude that adding the parses with
automatic scope readings does not add new infor-
mation. If, however, adding these parses improves
results, we can conclude that new information was
present in the parses with automatic scope that
was not covered in the 50-best parses. Note that
the combination of the two types of input for the
reranker should not be regarded as a parser ensem-
ble but rather as a resampling of the n-best search
space since both parsers use the same grammar,
parsing model, and probability model. The only
difference is that LoPar can accept partially brack-
eted input, and BitPar can list the n-best analyses.

The results of this experiment are shown in Ta-
ble 1 as exp. 4. For all sentences, both precision
and recall are higher than for experiment 1 and 3,
resulting in an F-score of 76.69. This is more than
2 percent points higher than for the 50-best parses.
This is a very clear indication that the parses con-
tributed by the automatically extracted scopes pro-
vide parses that were not present in the 50 best
parses from experiment 1 (n-best). The same trend
can be seen in the evaluation of the sentences con-
taining coordination: Here, the improvement in F-
score is higher than for the whole set, a clear in-
dication that this method is suitable for improving
coordination parsing. A comparison of the results
of the present experiment and experiment 3 (with
automatic scope only) shows that the gain in pre-
cision is rather small, but the combination clearly
improves recall, from 73.96% to 77.23%. We can
conclude that adding the 50 best parses remedies
the lacking coverage that was the problem of ex-
periment 3. More generally, experiment 4 suggests
that for the notoriously difficult problem of pars-
ing coordination structures, a hybrid approach that

combines parse selection of n best analyses with
pre-bracketed scope in the input results in a con-
siderable reduction in error rate compared to each
of these methods used in isolation.

8 Related Work

Parsing of coordinate structures for English has
received considerable attention in computational
linguistics. Collins (1999), among many other au-
thors, reports in the error analysis of his WSJ pars-
ing results that coordination is one of the most fre-
quent cases of incorrect parses, particularly if the
conjuncts involved are complex. He manages to
reduce errors for simple cases of NP coordination
by introducing a special phrasal category of base
NPs. In the experiments presented above, no ex-
plicit distinction is made between simple and com-
plex cases of coordination, and no transformations
are performed on the treebank annotations used for
training.

Our experiment 1, reranking 50-best parses, is
similar to the approaches of Charniak and John-
son (2005) and of Hogan (2007). However, it dif-
fers from their experiments in two crucial ways: 1)
Compared to Charniak and Johnson, who use 1.1
mio. features, our feature set is appr. five times
larger (more than 5 mio. features), with the same
threshold of at least five occurrences in the training
set. 2) Both Hogan and Charniak and Johnson use
special features for coordinate structures, such as a
Boolean feature for marking parallelism (Charniak
and Johnson) or for distinguishing between coor-
dination of base NPs and coordination of complex
conjuncts (Hogan), while our approach refrains
from such special-purpose features.

Our experiments using scope information are
similar to the approaches of Kurohashi and Na-
gao (1994) and Agarwal and Bogges (1992) in that
they try to identify coordinate structure bracket-
ings. However, the techniques used by Agarwal
and Bogges and in the present paper are quite dif-
ferent. Agarwal and Bogges and Kurohashi and
Nagao rely on shallow parsing techniques to de-
tect parallelism of conjuncts while we use a par-
tial parser only for suggesting possible scopes of
conjuncts. Both of these approaches are limited
to coordinate structures with two conjuncts only,
while our approach has no such limitation. More-
over, the goal of Agarwal and Bogges is quite dif-
ferent from ours. Their goal is robust detection of
coordinate structures only (with the intended ap-
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plication of term extraction), while our goal is to
improve the performance of a parser that assigns a
complete sentence structure to an input sentence.

Finally, our approach at present is restricted to
purely syntactic structural properties. This is in
contrast to approaches that incorporate semantic
information. Hogan (2007) uses bi-lexical head-
head co-occurrences in order to identify nominal
heads of conjuncts more reliably than by syntactic
information alone. Chantree et al. (2005) resolve
attachment ambiguities in coordinate structures, as
in (7a) and (7b), by using word frequency informa-
tion obtained from generic corpora as an effective
estimate of the semantic compatibility of a modi-
fier vis-à-vis the candidate heads.

(7) a. Project managers and designers
b. Old shoes and boots

We view the work by Hogan and by Chantree
et al. as largely complementary to, but at the same
time as quite compatible with our approach. We
must leave the integration of structural syntac-
tic and lexical semantic information to future re-
search.

9 Conclusion and Future Work

We have presented a study on improving the treat-
ment of coordinated structures in PCFG parsing.
While we presented experiments for German, the
methods are applicable for any language. We have
chosen German because it is a language with rel-
atively flexible phrasal ordering (cf. Section 2)
which makes parsing coordinations particularly
challenging. The experiments presented show that
n-best parsing combined with reranking improves
results by a large margin. However, the number
of cases in which the correct parse is present in
the n-best parses is rather low. This led us to the
assumption that the n-best analyses often do not
cover the whole range of different scope possibil-
ities but rather present minor variations of parses
with few differences in coordination scope. The
experiments in which the parser was forced to as-
sume predefined scopes show that the scope infor-
mation is important for parsing quality. Provid-
ing the parser with different scope possibilities and
reranking the resulting parses results in an increase
in F-score from 69.76 for the baseline to 74.69.
One of the major challenges for this approach lies
in extracting a list of possible conjuncts. Forc-
ing the parser to parse all possible sequences re-

sults in a prohibitively large number of possibili-
ties, especially for sentences with 3 or more con-
junctions. For this reason, we used chunks above
base phases, such as coordinated noun chunks, to
restrict the space. However, an inspection of the
lists of bracketed versions of the sentences shows
that the definition of base phrases is one of the ar-
eas that must be refined. As mentioned above, the
partial parser groups sequences of ”NP KON NP”
into a single base phrase. This may be correct in
many cases, but there are exceptions such as (8).

(8) Die
The

31jährige
31-year-old

Gewerkschaftsmitarbei-
union staff member

terin und
and

ausgebildete
trained

Industriekauffrau
industrial clerk

aus
from

Oldenburg
Oldenburg

bereitet
is preparing

nun
now

ihre
her

erste
first

eigene
own

CD
CD

vor.
part..

For (8), the partial parser groups Die 31jährige
Gewerkschaftsmitarbeiterin und ausgebildete In-
dustriekauffrau as one noun chunk. Since our
proposed conjuncts cannot cross these boundaries,
the correct second conjunct, ausgebildete Indus-
triekauffrau aus Oldenburg, cannot be suggested.
However, if we remove these chunk boundaries,
the number of possible conjuncts increases dra-
matically, and parsing times become prohibitive.
As a consequence, we will need to find a good bal-
ance between these two needs. Our plan is to in-
crease flexibility very selectively, for example by
enabling the use of wider scopes in cases where
the conjunction is preceded and followed by base
noun phrases. For the future, we are planning to
repeat experiment 3 (automatic scope) with differ-
ent phrasal boundaries extracted from the partial
parser. It will be interesting to see if improvements
in this experiment will still improve results in ex-
periment 4 (combining 50-best parses with exp. 3).

Another area of improvement is the list of fea-
tures used for reranking. At present, we use a fea-
ture set that is similar to the one used by Collins
and Koo (2005). However, this feature set does
not contain any coordination specific features. We
are planning to extend the feature set by features
on structural parallelism as well as on lexical sim-
ilarity of the conjunct heads.
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Tilman Höhle. 1990. Assumptions about asymmetric
coordination in German. In Joan Mascaró and Ma-
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Abstract
This paper addresses the problem of ex-
tracting the most important facts from a
news article. Our approach uses syntac-
tic, semantic, and general statistical fea-
tures to identify the most important sen-
tences in a document. The importance
of the individual features is estimated us-
ing generalized iterative scaling methods
trained on an annotated newswire corpus.
The performance of our approach is evalu-
ated against 300 unseen news articles and
shows that use of these features results in
statistically significant improvements over
a provenly robust baseline, as measured
using metrics such as precision, recall and
ROUGE.

1 Introduction

The increasing amount of information that is avail-
able to both professional users (such as journal-
ists, financial analysts and intelligence analysts)
and lay users has called for methods condensing
information, in order to make the most important
content stand out. Several methods have been pro-
posed over the last two decades, among which
keyword extraction and summarization are the
most prominent ones. Keyword extraction aims
to identify the most relevant words or phrases in
a document, e.g., (Witten et al., 1999), while sum-
marization aims to provide a short (commonly 100
words), coherent full-text summary of the docu-
ment, e.g., (McKeown et al., 1999). Key fact ex-
traction falls in between key word extraction and
summarization. Here, the challenge is to identify
the most relevant facts in a document, but not nec-
essarily in a coherent full-text form as is done in
summarization.

Evidence of the usefulness of key fact extraction
is CNN’s web site which since 2006 has most of its
news articles preceded by a list of story highlights,
see Figure 1. The advantage of the news highlights
as opposed to full-text summaries is that they are
much ‘easier on the eye’ and are better suited for
quick skimming.

So far, only CNN.com offers this service and we
are interested in finding out to what extent it can
be automated and thus applied to any newswire
source. Although these highlights could be eas-
ily generated by the respective journalists, many
news organization shy away from introducing an
additional manual stage into the workflow, where
pushback times of minutes are considered unac-
ceptable in an extremely competitive news busi-
ness which competes in terms of seconds rather
than minutes. Automating highlight generation
can help eliminate those delays.

Journalistic training emphasizes that news arti-
cles should contain the most important informa-
tion in the beginning, while less important infor-
mation, such as background or additional details,
appears further down in the article. This is also
the main reason why most summarization systems
applied to news articles do not outperform a sim-
ple baseline that just uses the first 100 words of an
article (Svore et al., 2007; Nenkova, 2005).

On the other hand, most of CNN’s story high-
lights are not taken from the beginning of the ar-
ticles. In fact, more than 50% of the highlights
stem from sentences that are not among the first
100 words of the articles. This makes identify-
ing story highlights a much more challenging task
than single-document summarization in the news
domain.

In order to automate story highlight identifica-
tion we automatically extract syntactic, semantic,
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Figure 1: CNN.com screen shot of a story excerpt
with highlights.

and purely statistical features from the document.
The weights of the features are estimated using
machine learning techniques, trained on an anno-
tated corpus. In this paper, we focus on identify-
ing the relevant sentences in the news article from
which the highlights were generated. The system
we have implemented is named AURUM: AUto-
matic Retrieval of Unique information with Ma-
chine learning. A full system would also contain
a sentence compression step (Knight and Marcu,
2000), but since both steps are largely indepen-
dent of each other, existing sentence compression
or simplification techniques can be applied to the
sentences identified by our approach.

The remainder of this paper is organized as fol-
lows: The next section describes the relevant work
done to date in keyfact extraction and automatic
summarization. Section 3 lays out our features
and explains how they were learned and estimated.
Section 4 presents the experimental setup and our
results, and Section 5 concludes with a short dis-
cussion.

2 Related Work

As mentioned above, the problem of identifying
story highlight lies somewhere between keyword
extraction and single-document summarization.

The KEA keyphrase extraction system (Witten
et al., 1999) mainly relies on purely statistical
features such as term frequencies, using the tf.idf

measure from Information Retrieval,1 as well as
on a term’s position in the text. In addition to tf.idf
scores, Hulth (2004) uses part-of-speech tags and
NP chunks and complements this with machine
learning; the latter has been used to good results
in similar cases (Turney, 2000; Neto et al., 2002).
The B&C system (Barker and Cornacchia, 2000),
also used linguistic methods to a very limited ex-
tent, identifying NP heads.

INFORMATIONFINDER (Krulwich and Burkey,
1996) requires user feedback to train the system,
whereby a user notes whether a given document
is of interest to them and specifies their own key-
words which are then learned by the system.

Over the last few years, numerous single-
as well as multi-document summarization ap-
proaches have been developed. In this paper we
will focus mainly on single-document summariza-
tion as it is more relevant to the issue we aim to
address and traditionally proves harder to accom-
plish. A good example of a powerful approach is
a method named Maximum Marginal Relevance
which extracts a sentence for the summary only
if it is different than previously selected ones,
thereby striving to reduce redundancy (Carbonell
and Goldstein, 1998).

More recently, the work of Svore et al. (2007)
is closely related to our approach as it has also ex-
ploited the CNN Story Highlights, although their
focus was on summarization and using ROUGE
as an evaluation and training measure. Their ap-
proach also heavily relies on additional data re-
sources, mainly indexed Wikipedia articles and
Microsoft Live query logs, which are not readily
available.

Linguistic features are today used mostly in
summarization systems, and include the standard
features sentence length, n-gram frequency, sen-
tence position, proper noun identification, similar-
ity to title, tf.idf, and so-called ‘bonus’/‘stigma’
words (Neto et al., 2002; Leite et al., 2007; Pol-
lock and Zamora, 1975; Goldstein et al., 1999).
On the other hand, for most of these systems, sim-
ple statistical features and tf.idf still turn out to be
the most important features.

Attempts to integrate discourse models have
also been made (Thione et al., 2004), hand in hand
with some of Marcu’s (1995) earlier work.

1tf(t, d) = frequency of term t in document d.
idf(t,N) = inverse frequency of documents d containing
term t in corpus N , log( |N||dt| )
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Regarding syntax, it seems to be used mainly
in sentence compression or trimming. The algo-
rithm used by Dorr et al. (2003) removes subor-
dinate clauses, to name one example. While our
approach does not use syntactical features as such,
it is worth noting these possible enhancements.

3 Approach

In this section we describe which features were
used and how the data was annotated to facilitate
feature extraction and estimation.

3.1 Training Data

In order to determine the features used for pre-
dicting which sentences are the sources for story
highlights, we gathered statistics from 1,200 CNN
newswire articles. An additional 300 articles were
set aside to serve as a test set later on. The arti-
cles were taken from a wide range of topics: poli-
tics, business, sport, health, world affairs, weather,
entertainment and technology. Only articles with
story highlights were considered.

For each article we extracted a number of n-
gram statistics, where n ∈ {1, 2, 3}.

n-gram score. We observed the frequency and
probability of unigrams, bigrams and trigrams ap-
pearing in both the article body and the highlights
of a given story. An important phrase (of length
n ≤ 3) in the article would likely be used again
in the highlights. These phrases were ranked and
scored according to the probability of their appear-
ing in a given text and its highlights.

Trigger phrases. These are phrases which cause
adjacent words to appear in the highlights. Over
the entire set, such phrases become significant. We
specified a limit of 2 words to the left and 4 words
to the right of a phrase. For example, the word ac-
cording caused other words in the same sentence
to appear in the highlights nearly 25% of the time.
Consider the highlight/sentence pair in Table 1:

highlight: 61 percent of those polled now say it was not
worth invading Iraq, poll says

Text: Now, 61 percent of those surveyed say it was
not worth invading Iraq, according to the poll.

Table 1: Example highlight with source sentence.

The word according receives a score of 3 since
{invading, Iraq, poll} are all in the highlight. It
should be noted that the trigram {invading Iraq

according} would receive an identical score, since
{not, worth, poll} are in the highlights as well.

Spawned phrases. Conversely, spawned
phrases occur frequently in the highlights and in
close proximity to trigger phrases. Continuing
the example in Table 1, {invading, Iraq, poll, not,
worth} are all considered to be spawned phrases.

Of course, simply using the identities of words
neglects the issue of lexical paraphrasing, e.g.,
involving synonyms, which we address to some
extent by using WordNet and other features de-
scribed in this Section. Table 2 gives an example
involving paraphrasing.

highlight: Sources say men were planning to shoot sol-
diers at Army base

Text: The federal government has charged five al-
leged Islamic radicals with plotting to kill U.S.
soldiers at Fort Dix in New Jersey.

Table 2: An example of paraphrasing between a
highlight and its source sentence.

Other approaches have tried to select linguistic
features which could be useful (Chuang and Yang,
2000), but these gather them under one heading
rather than treating them as separate features. The
identification of common verbs has been used both
as a positive (Turney, 2000) and as a negative
feature (Goldstein et al., 1999) in some systems,
whereas we score such terms according to a scale.
Turney also uses a ‘final adjective‘ measure. Use
of a thesaurus has also shown to improve results in
automatic summarization, even in multi-document
environments (McKeown et al., 1999) and other
languages such as Portuguese (Leite et al., 2007).

3.2 Feature Selection

By manually inspecting the training data, the lin-
guistic features were selected. AURUM has two
types of features: sentence features, such as the
position of the sentence or the existence of a nega-
tion word, receive the same value for the entire
sentence. On the other hand, word features are
evaluated for each of the words in the sentence,
normalized over the number of words in the sen-
tence.

Our features resemble those suggested by previ-
ous works in keyphrase extraction and automatic
summarization, but map more closely to the jour-
nalistic characteristics of the corpus, as explained
in the following.
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Figure 2: Positions of sentences from which high-
lights (HLs) were generated.

3.2.1 Sentence Features
These are the features which apply once for each
sentence.

Position of the sentence in the text. Intuitively,
facts of greater importance will be placed at the
beginning of the text, and this is supported by the
data, as can be seen in Figure 2. Only half of the
highlights stem from sentences in the first fifth of
the article. Nevertheless, selecting sentences from
only the first few lines is not a sure-fire approach.
Table 3 presents an article in which none of the
first four sentences were in the highlights. While
the baseline found no sentences, AURUM’s perfor-
mance was better.

The sentence positions score is defined as pi =
1 − (log i/logN), where i is the position of the
sentence in the article and N the total number of
sentences in the article.

Numbers or dates. This is especially evident
in news reports mentioning figures of casualties,
opinion poll results, or financial news.

Source attribution. Phrasings such as accord-
ing to a source or officials say.

Negations. Negations are often used for intro-
ducing new or contradictory information: “Kelly
is due in a Chicago courtroom Friday for yet an-
other status hearing, but there’s still no trial date
in sight.2” We selected a number of typical nega-
tion phrases to this end.

Causal adverbs. Manually compiled list of
phrases, including in order to, hoping for and be-
cause.

2This sentence was included in the highlights

Temporal adverbs. Manually compiled list of
phrases, such as after less than, for two weeks and
Thursday.

Mention of the news agency’s name. Journal-
istic scoops and other exclusive nuggets of infor-
mation often recall the agency’s name, especially
when there is an element of self-advertisement
involved, as in “. . . The debates are being held
by CNN, WMUR and the New Hampshire Union
Leader.” It is interesting to note that an opposite
approach has previously been taken (Goldstein et
al., 1999), albeit involving a different corpus.

Story Highlights:
•Memorial Day marked by parades, cookouts, cer-
emonies
• AAA: 38 million Americans expected to travel at
least 50 miles during weekend
• President Bush gives speech at Arlington National
Cemetery
• Gulf Coast once again packed with people cele-
brating holiday weekend

First sentences of article:
1. Veterans and active soldiers unfurled a 90-by-
100-foot U. S. flag as the nation’s top commander
in the Middle East spoke to a Memorial Day crowd
gathered in Central Park on Monday.
2. Navy Adm. William Fallon, commander of U. S.
Central Command, said America should remember
those whom the holiday honors.
3. “Their sacrifice has enabled us to enjoy the things
that we, I think in many cases, take for granted,”
Fallon said.
4. Across the nation, flags snapped in the wind over
decorated gravestones as relatives and friends paid
tribute to their fallen soldiers.

Sentences the Highlights were derived from:
5. Millions more kicked off summer with trips to
beaches or their backyard grills.
6. AAA estimated 38 million Americans would
travel 50 miles or more during the weekend – up
1.7 percent from last year – even with gas aver-
aging $3.20 a gallon for self-service regular.
7. In the nation’s capital, thousands of motorcy-
cles driven by military veterans and their loved ones
roared through Washington to the Vietnam Veterans
Memorial.
9. President Bush spoke at nearby Arlington Na-
tional Cemetery, honoring U. S. troops who have
fought and died for freedom and expressing his re-
solve to succeed in the war in Iraq.
21. Elsewhere, Alabama’s Gulf Coast was once
again packed with holiday-goers after the damage
from hurricanes Ivan and Katrina in 2004 and 2005
kept the tourists away.

Table 3: Sentence selection outside the first four
sentences (correctly identified sentence by AURUM
in boldface).
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3.2.2 Word Features
These features are tested on each word in the sen-
tence.

‘Bonus’ words. A list of phrases similar to sen-
sational, badly, ironically, historic, identified from
the training data. This is akin to ‘bonus’/‘stigma’
words (Neto et al., 2002; Leite et al., 2007; Pol-
lock and Zamora, 1975; Goldstein et al., 1999).

Verb classes. After exploring the training data
we manually compiled two classes of verbs,
each containing 15-20 inflected and uninflected
lexemes, talkVerbs and actionVerbs.
talkVerbs include verbs such as {report, men-
tion, accuse} and actionVerbs refer to verbs
such as {provoke, spend, use}. Both lists also con-
tain the WordNet synonyms of each word in the
list (Fellbaum, 1998).

Proper nouns. Proper nouns and other parts of
speech were identified running Charniak’s parser
(Charniak, 2000) on the news articles.

3.2.3 Sentence Scoring
The overall score of a sentence is computed as the
weighted linear combination of the sentence and
word scores. The score σ(s) of sentence s is de-
fined as follows:

σ(s) = wposppos(s) +
n∑

k=1

wkfk +
|s|∑

j=1

m∑
k=1

wkgjk

Each of the sentences s in the article was tested
against the position feature ppos(s) and against
each of the sentence features fk, see Section 3.2.1,
where pos(s) returns the position of sentence s.
Each word j of sentence s is tested against all ap-
plicable word features gjk, see Section 3.2.2. A
weight (wpos and wk) is associated with each fea-
ture. How to estimate the weights is discussed
next.

3.3 Parameter Estimation

There are various optimization methods that allow
one to estimate the weights of features, includ-
ing generalized iterative scaling and quasi-Newton
methods (Malouf, 2002). We opted for general-
ized iterative scaling as it is commonly used for
other NLP tasks and off-the-shelf implementations
exist. Here we used YASMET.3

3A maximum entropy toolkit by Franz Josef Och, http:
//www.fjoch.com/YASMET.html

We used a development set of 240 news arti-
cles to train YASMET. As YASMET is a supervised
optimizer, we had to generate annotated data on
which it was to be trained. For each document in
the development set, we labeled each sentence as
to whether a story highlight was generated from it.
For instance, in the article presented in Figure 3,
sentences 5, 6, 7, 9 and 21 were marked as high-
light sources, whereas all other sentences in the
document were not.4

When annotating, all sentences that were di-
rectly relevant to the highlights were marked, with
preference given to those appearing earlier in the
story or containing more precise information. At
this point it is worth noting that while the over-
lap between different editors is unknown, the high-
lights were originally written by a number of dif-
ferent people, ensuring enough variation in the
data and helping to avoid over-fitting to a specific
editor.

4 Experiments and Results

The CNN corpus was divided into a training set
and a development and test set. As we had
only 300 manually annotated news articles and we
wanted to maximize the number of documents us-
able for parameter estimation, we applied cross-
folding, which is commonly used for situations
with limited data. The dev/test set was randomly
partitioned into five folds. Four of the five folds
were used as development data (i.e. for parame-
ter estimation with YASMET), while the remaining
fold was used for testing. The procedure was re-
peated five times, each time with four folds used
for development and a separate one for testing.
Cross-folding is safe to use as long as there are
no dependencies between the folds, which is safe
to assume here.

Some statistics on our training and develop-
ment/test data can be found in Table 4.

Corpus subset Dev/Test Train

Documents 300 1220
Avg. sentences per article 33.26 31.02
Avg. sentence length 20.62 20.50
Avg. number of highlights 3.71 3.67
Avg. number of highlight sources 4.32 -
Avg. highlight length in words 10.26 10.28

Table 4: Characteristics of the evaluation corpus.

4The annotated data set is available at: http://www.
science.uva.nl/˜christof/data/hl/.
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Most summarization evaluation campaigns,
such as NIST’s Document Understanding Confer-
ences (DUC), impose a maximum length on sum-
maries (e.g., 75 characters for the headline gen-
eration task or 100 words for the summarization
task). When identifying sentences from which
story highlights are generated, the situation is
slightly different, as the number of story highlights
is not fixed. On the other hand, most stories have
between three and four highlights, and on aver-
age between four and five sentences per story from
which the highlights were generated. This varia-
tion led to us to carry out two sets of experiments:
In the first experiment (fixed), the number of
highlight sources is fixed and our system always
returns exactly four highlight sources. In the sec-
ond experiment (thresh), our system can return
between three and six highlight sources, depend-
ing on whether a sentence score passes a given
threshold. The threshold θ was used to allocate
sentences si of article a to the highlight list HL
by first finding the highest-scoring sentence for
that article σ(sh). The threshold score was thus
θ ∗ σ(sh) and sentences were judged accordingly.
The algorithm used is given in Figure 3.

initialize HL, sh

sort si in s by σ(si)
set sh = s0
for each sentence si in article a:

if |HL| < 3
include si

else if (θ ∗ σ(sh) ≤ σ(si))&& (|HL| ≤ 5)
include si

else
discard si

return HL

Figure 3: Procedure for selecting highlight
sources.

All scores were compared to a baseline, which
simply returns the first n sentences of a news
article. n = 4 in the fixed experiment.
For the thresh experiment, the baseline al-
ways selected the same number of sentences as
AURUM-thresh, but from the beginning of the
article. Although this is a very simple baseline, it
is worth reiterating that it is also a very compet-
itive baseline, which most single-document sum-
marization systems fail to beat due to the nature of
news articles.

Since we are mainly interested in determining
to what extent our system is able to correctly iden-
tify the highlight sources, we chose precision and

recall as evaluation metrics. Precision is the per-
centage of all returned highlight sources which are
correct:

Precision =
|R ∩ T |
|R|

where R is the set of returned highlight sources
and T is the set of manually identified true sources
in the test set. Recall is defined as the percentage
of all true highlight sources that have been cor-
rectly identified by the system:

Recall =
|R ∩ T |
|T |

Precision and recall can be combined by using the
F-measure, which is the harmonic mean of the
two:

F-measure =
2(precision ∗ recall)
precision+ recall

Table 5 shows the results for both experiments
(fixed and thresh) as an average over the
folds. To determine whether the observed differ-
ences between two approaches are statistically sig-
nificant and not just caused by chance, we applied
statistical significance testing. As we did not want
to make the assumption that the score differences
are normally distributed, we used the bootstrap
method, a powerful non-parametric inference test
(Efron, 1979). Improvements at a confidence level
of more than 95% are marked with “∗”.

We can see that our approach consistently
outperforms the baseline, and most of the
improvements—in particular the F-measure
scores—are statistically significant at the 0.95
level. As to be expected, AURUM-fixed
achieves higher precision gains, while
AURUM-thresh achieves higher recall gains. In
addition, for 83.3 percent of the documents, our
system’s F-measure score is higher than or equal
to that of the baseline.

Figure 4 shows how far down in the documents
our system was able to correctly identify highlight
sources. Although the distribution is still heavily
skewed towards extracting sentences from the be-
ginning of the document, it is so to a lesser extent
than just using positional information as a prior;
see Figure 2.

In a third set of experiments we measured the
n-gram overlap between the sentences we have
identified as highlight sources and the actual story
highlights in the ground truth. To this end we use
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System Recall Precision F-Measure Extracted
Baseline-fixed 40.69 44.14 42.35 240
AURUM-fixed 41.88 (+2.96%∗) 45.40 (+2.85%) 43.57 (+2.88%∗) 240
Baseline-thresh 42.91 41.82 42.36 269
AURUM-thresh 44.49 (+3.73%∗) 43.30 (+3.53%) 43.88 (+3.59%∗) 269

Table 5: Evaluation scores for the four extraction systems.

System ROUGE-1 ROUGE-2
Baseline-fixed 47.73 15.98
AURUM-fixed 49.20 (+3.09%∗) 16.53 (+3.63%∗)
Baseline-thresh 55.11 19.31
AURUM-thresh 56.73 (+2.96%∗) 19.66 (+1.87%)

Table 6: ROUGE scores for AURUM-fixed, returning 4 sentences, and AURUM-thresh, returning
between 3 and 6 sentences.

Figure 4: Position of correctly extracted sources
by AURUM-thresh.

ROUGE (Lin, 2004), a recall-oriented evaluation
package for automatic summarization. ROUGE
operates essentially by comparing n-gram co-
occurrences between a candidate summary and a
number of reference summaries, and comparing
that number in turn to the total number of n-grams
in the reference summaries:
ROUGE-n =∑

S∈References

∑
ngramn∈S

Match(ngramn)

∑
S∈References

∑
ngramn∈S

Count(ngramn)

Where n is the length of the n-gram, with lengths
of 1 and 2 words most commonly used in current
evaluations. ROUGE has become the standard tool
for evaluating automatic summaries, though it is
not the optimal system for this experiment. This is
due to the fact that it is geared towards a different
task—as ours is not automatic summarization per
se—and that ROUGE works best judging between
a number of candidate and model summaries. The

ROUGE scores are shown in Table 6.
Similar to the precision and recall scores, our

approach consistently outperforms the baseline,
with all but one difference being statistically sig-
nificant. Furthermore, in 76.2 percent of the doc-
uments, our system’s ROUGE-1 score is higher
than or equal to that of the baseline, and like-
wise for 85.2 percent of ROUGE-2 scores. Our
ROUGE scores and their improvements over the
baseline are comparable to the results of Svore
et al. (2007), who optimized their approach to-
wards ROUGE and gained significant improve-
ments from using third-party data resources, both
of which our approach does not require.5

Table 7 shows the unique sentences extracted by
every system, which are the number of sentences
one system extracted correctly while the other did
not; this is thus an intuitive measure of how much
two systems differ. Essentially, a system could
simply pick the first two sentences of each arti-
cle and might thus achieve higher precision scores,
since it is less likely to return ‘wrong’ sentences.
However, if the scores are similar but there is a
difference in the number of unique sentences ex-
tracted, this means a system has gone beyond the
first 4 sentences and extracted others from deeper
down inside the text.

To get a better understanding of the impor-
tance of the individual features we examined the
weights as determined by YASMET. Table 8 con-
tains example output from the development sets,
with feature selection determined implicitly by
the weights the MaxEnt model assigns, where
non-discriminative features receive a low weight.

5Since the test data of (Svore et al., 2007) is not publicly
available we were unable to carry out a more detailed com-
parison.
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Clearly, sentence position is of highest impor-
tance, while trigram ‘trigger’ phrases were quite
important as well. Simple bigrams continued to
be a good indicator of data value, as is often
the case. Proper nouns proved to be a valuable
pointer to new information, but mention of the
news agency’s name had less of an impact than
originally thought. Other particularly significant
features included temporal adjectives, superlatives
and all n-gram measures.

System Unique highlight sources Baseline
AURUM-fixed 11.8 7.2
AURUM-thresh 14.2 7.6

Table 7: Unique recall scores for the systems.

Feature Weight Feature Weight
Sentence pos. 10.23 Superlative 4.15
Proper noun 5.18 Temporal adj. 1.75
Trigger 3-gram 3.70 1-gram score 2.74
Spawn 2-gram 3.73 3-gram score 3.75
CNN mention 1.30 Trigger 2-gram 3.74

Table 8: Typical weights learned from the data.

5 Conclusions

A system for extracting essential facts from a news
article has been outlined here. Finding the data
nuggets deeper down is a cross between keyphrase
extraction and automatic summarization, a task
which requires more elaborate features and param-
eters.

Our approach emphasizes a wide variety of fea-
tures, including many linguistic features. These
features range from the standard (n-gram fre-
quency), through the essential (sentence position),
to the semantic (spawned phrases, verb classes and
types of adverbs).

Our experimental results show that a combina-
tion of statistical and linguistic features can lead
to competitive performance. Our approach not
only outperformed a notoriously difficult baseline
but also achieved similar performance to the ap-
proach of (Svore et al., 2007), without requiring
their third-party data resources.

On top of the statistically significant improve-
ments of our approach over the baseline, we see
value in the fact that it does not settle for sentences
from the beginning of the articles.

Most single-document automatic summariza-
tion systems use other features, ranging from

discourse structure to lexical chains. Consider-
ing Marcu’s conclusion (2003) that different ap-
proaches should be combined in order to create
a good summarization system (aided by machine
learning), there seems to be room yet to use ba-
sic linguistic cues. Seeing as how our linguis-
tic features—which are predominantly semantic—
aid in this task, it is quite possible that further in-
tegration will aid in both automatic summarization
and keyphrase extraction tasks.
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Abstract

In this paper we compare and contrast
two approaches to Machine Translation
(MT): the CMU-UKA Syntax Augmented
Machine Translation system (SAMT) and
UPC-TALP N-gram-based Statistical Ma-
chine Translation (SMT). SAMT is a hier-
archical syntax-driven translation system
underlain by a phrase-based model and a
target part parse tree. In N-gram-based
SMT, the translation process is based on
bilingual units related to word-to-word
alignment and statistical modeling of the
bilingual context following a maximum-
entropy framework. We provide a step-
by-step comparison of the systems and re-
port results in terms of automatic evalu-
ation metrics and required computational
resources for a smaller Arabic-to-English
translation task (1.5M tokens in the train-
ing corpus). Human error analysis clari-
fies advantages and disadvantages of the
systems under consideration. Finally, we
combine the output of both systems to
yield significant improvements in transla-
tion quality.

1 Introduction

There is an ongoing controversy regarding
whether or not information about the syntax of
language can benefit MT or contribute to a hybrid
system.

Classical IBM word-based models were re-
cently augmented with a phrase translation ca-
pability, as shown in Koehn et al. (2003), or in
more recent implementation, the MOSES MT sys-
tem1 (Koehn et al., 2007). In parallel to the phrase-
based approach, the N -gram-based approach ap-
peared (Mariño et al., 2006). It stemms from

1www.statmt.org/moses/

the Finite-State Transducers paradigm, and is ex-
tended to the log-linear modeling framework, as
shown in (Mariño et al., 2006). A system follow-
ing this approach deals with bilingual units, called
tuples, which are composed of one or more words
from the source language and zero or more words
from the target one. The N -gram-based systems
allow for linguistically motivated word reordering
by implementing word order monotonization.

Prior to the SMT revolution, a major part
of MT systems was developed using rule-based
algorithms; however, starting from the 1990’s,
syntax-driven systems based on phrase hierar-
chy have gained popularity. A representative
sample of modern syntax-based systems includes
models based on bilingual synchronous grammar
(Melamed, 2004), parse tree-to-string translation
models (Yamada and Knight, 2001) and non-
isomorphic tree-to-tree mappings (Eisner, 2003).

The orthodox phrase-based model was en-
hanced in Chiang (2005), where a hierarchical
phrase model allowing for multiple generaliza-
tions within each phrase was introduced. The
open-source toolkit SAMT2 (Zollmann and Venu-
gopal, 2006) is a further evolution of this ap-
proach, in which syntactic categories extracted
from the target side parse tree are directly assigned
to the hierarchically structured phrases.

Several publications discovering similarities
and differences between distinct translation mod-
els have been written over the last few years. In
Crego et al. (2005b), the N -gram-based system
is contrasted with a state-of-the-art phrase-based
framework, while in DeNeefe et al. (2007), the
authors seek to estimate the advantages, weak-
est points and possible overlap between syntax-
based MT and phrase-based SMT. In Zollmann et
al. (2008) the comparison of phrase-based , "Chi-
ang’s style" hirearchical system and SAMT is pro-

2www.cs.cmu.edu/∼zollmann/samt
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vided.
In this study, we intend to compare the differ-

ences and similarities of the statistical N -gram-
based SMT approach and the SAMT system. The
comparison is performed on a small Arabic-to-
English translation task from the news domain.

2 SAMT system

A criticism of phrase-based models is data sparse-
ness. This problem is even more serious when the
source, the target, or both languages are inflec-
tional and rich in morphology. Moreover, phrase-
based models are unable to cope with global re-
ordering because the distortion model is based
on movement distance, which may face computa-
tional resource limitations (Och and Ney, 2004).

This problem was successfully addressed when
the MT system based on generalized hierarchi-
cally structured phrases was introduced and dis-
cussed in Chiang (2005). It operates with only two
markers (a substantial phrase category and "a glue
marker"). Moreover, a recent work (Zollmann and
Venugopal, 2006) reports significant improvement
in terms of translation quality if complete or par-
tial syntactic categories (derived from the target
side parse tree) are assigned to the phrases.

2.1 Modeling
A formalism for Syntax Augmented Translation
is probabilistic synchronous context-free grammar
(PSynCFG), which is defined in terms of source
and target terminal sets and a set of non-terminals:

X −→ 〈γ, α,∼, ω〉
where X is a non-terminal, γ is a sequence of
source-side terminals and non-terminals, α is a se-
quence of target-side terminals and non-terminals,
∼ is a one-to-one mapping from non-terminal to-
kens space in γ to non-terminal space in α, and ω
is a non-negative weight assigned to the rule.

The non-terminal set is generated from the syn-
tactic categories corresponding to the target-side
Penn Treebank set, a set of glue rules and a spe-
cial marker representing the "Chiang-style" rules,
which do not span the parse tree. Consequently, all
lexical mapping rules are covered by the phrases
mapping table.

2.2 Rules annotation, generalization and
pruning

The SAMT system is based on a purely lexi-
cal phrase table, which is identified as shown in

Koehn et al. (2003), and word alignment, which is
generated by the grow-diag-final-and method (ex-
panding the alignment by adding directly neigh-
boring alignment points and alignment points in
the diagonal neighborhood) (Och and Ney, 2003).

Meanwhile, the target of the training corpus is
parsed with Charniak’s parser (Charniak, 2000),
and each phrase is annotated with the constituent
that spans the target side of the rules. The set of
non-terminals is extended by means of conditional
and additive categories according to Combinatory
Categorical Grammar (CCG) (Steedman, 1999).
Under this approach, new rules can be formed. For
example, RB+VB, can represent an additive con-
stituent consisting of two synthetically generated
adjacent categories 3, i.e., an adverb and a verb.
Furthermore, DT\NP can indicate an incomplete
noun phrase with a missing determiner to the left.

The rule recursive generalization procedure co-
incides with the one proposed in Chiang (2005),
but violates the restrictions introduced for single-
category grammar; for example, rules that contain
adjacent generalized elements are not discarded.

Thus, each rule

N −→ f1 . . . fm/e1 . . . en

can be extended by another existing rule

M −→ fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to
obtain a new rule

N −→ f1 . . . fi−1Mkfu+1 . . . fm/
e1 . . . ej−1Mkev+1 . . . en

where k is an index for the non-terminal M that in-
dicates a one-to-one correspondence between the
new M tokens on the two sides.

Figure 1 shows an example of initial rules ex-
traction, which can be further extended using the
hierarchical model, as shown in Figure 2 (conse-
quently involving more general elements in rule
description).

Rules pruning is necessary because the set of
generalized rules can be huge. Pruning is per-
formed according to the relative frequency and
the nature of the rules: non-lexical rules that
have been seen only once are discarded; source-
conditioned rules with a relative frequency of ap-
pearance below a threshold are also eliminated.

3Adjacent generalized elements are not allowed in Chi-
ang’s work because of over-generation. However, over-
generation is not an issue within the SAMT framework due
to restrictions introduced by target-side syntax
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Rules that do not contain non-terminals are not
pruned.

2.3 Decoding and feature functions

The decoding process is accomplished using a top-
down log-linear model. The source sentence is de-
coded and enriched with the PSynCFG in such a
way that translation quality is represented by a set
of feature functions for each rule, i.e.:

• rule conditional probabilities, given a source,
a target or a left-hand-side category;

• lexical weights features, as described in
Koehn et al. (2003);

• counters of target words and rule applica-
tions;

• binary features reflecting rule context (purely
lexical and purely abstract, among others);

• rule rareness and unbalancedness penalties.

The decoding process can be represented as
a search through the space of neg log probabil-
ity of the target language terminals. The set of
feature functions is combined with a finite-state
target-side n-gram language model (LM), which
is used to derive the target language sequence dur-
ing a parsing decoding. The feature weights are
optimized according to the highest BLEU score.
For more details refer to Zollmann and Venu-
gopal (2006).

3 UPC n-gram SMT system

A description of the UPC-TALP N -gram transla-
tion system can be found in Mariño et al. (2006).

SMT is based on the principle of translating a
source sentence (f ) into a sentence in the target
language (e). The problem is formulated in terms
of source and target languages; it is defined ac-
cording to equation (1) and can be reformulated as
selecting a translation with the highest probability
from a set of target sentences (2):

Figure 1: Example of SAMT and N-gram elements extraction.

Figure 2: Example of SAMT generalized rules.
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where I and J represent the number of words in
the target and source languages, respectively.

Modern state-of-the-art SMT systems operate
with the bilingual units extracted from the parallel
corpus based on word-to-word alignment. They
are enhanced by the maximum entropy approach
and the posterior probability is calculated as a log-
linear combination of a set of feature functions
(Och and Ney, 2002). Using this technique, the
additional models are combined to determine the
translation hypothesis, as shown in (3):

êI
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1, f

J
1 )

}
(3)

where the feature functions hm refer to the system
models and the set of λm refers to the weights cor-
responding to these models.

3.1 N-gram-based translation system
The N -gram approach to SMT is considered to
be an alternative to the phrase-based translation,
where a given source word sequence is decom-
posed into monolingual phrases that are then trans-
lated one by one (Marcu and Wong, 2002).

The N -gram-based approach regards transla-
tion as a stochastic process that maximizes the
joint probability p(f, e), leading to a decomposi-
tion based on bilingual n-grams. The core part of
the system constructed in this way is a translation
model (TM), which is based on bilingual units,
called tuples, that are extracted from a word align-
ment (performed with GIZA++ tool4) according to
certain constraints. A bilingual TM actually con-
stitutes an n-gram LM of tuples, which approxi-
mates the joint probability between the languages
under consideration and can be seen here as a LM,
where the language is composed of tuples.

3.2 Additional features
The N -gram translation system implements a log-
linear combination of five additional models:

• an n-gram target LM;
4http://code.google.com/p/giza-pp/

• a target LM of Part-of-Speech tags;

• a word penalty model that is used to compen-
sate for the system’s preference for short out-
put sentences;

• source-to-target and target-to-source lexicon
models as shown in Och and Ney (2004)).

3.3 Extended word reordering
An extended monotone distortion model based
on the automatically learned reordering rules was
implemented as described in Crego and Mariño
(2006). Based on the word-to-word alignment, tu-
ples were extracted by an unfolding technique. As
a result, the tuples were broken into smaller tuples,
and these were sequenced in the order of the target
words. An example of unfolding tuple extraction,
contrasted with the SAMT chunk-based rules con-
struction, is presented in Figure 1.

The reordering strategy is additionally sup-
ported by a 4-gram LM of reordered source POS
tags. In training, POS tags are reordered according
to the extracted reordering patterns and word-to-
word links. The resulting sequence of source POS
tags is used to train the n-gram LM.

3.4 Decoding and optimization
The open-source MARIE5 decoder was used as a
search engine for the translation system. Details
can be found in Crego et al. (2005a). The de-
coder implements a beam-search algorithm with
pruning capabilities. All the additional fea-
ture models were taken into account during the
decoding process. Given the development set
and references, the log-linear combination of
weights was adjusted using a simplex optimization
method and an n-best re-ranking as described in
http://www.statmt.org/jhuws/.

4 Experiments

4.1 Evaluation framework
As training corpus, we used the 50K first-lines ex-
traction from the Arabic-English corpus that was
provided to the NIST’086 evaluation campaign
and belongs to the news domain. The corpus
statistics can be found in Table 1. The develop-
ment and test sets were provided with 4 reference
translations, belong to the same domain and con-
tain 663 and 500 sentences, respectively.

5http://gps-tsc.upc.es/veu/soft/soft/marie/
6www.nist.gov/speech/tests/mt/2008/
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Arabic English

Sentences 50 K 50 K
Words 1.41 M 1.57 K

Average sentence length 28.15 31.22
Vocabulary 51.10 K 31.51 K

Table 1: Basic statistics of the training corpus.

Evaluation conditions were case-insensitive and
sensitive to tokenization. The word alignment is
automatically computed by using GIZA++ (Och
and Ney, 2004) in both directions, which are made
symmetric by using the grow-diag-final-and oper-
ation.

The experiments were done on a dual-processor
Pentium IV Intel Xeon Quad Core X5355 2.66
GHz machine with 24 G of RAM. All computa-
tional times and memory size results are approxi-
mated.

4.2 Arabic data preprocessing

Arabic is a VSO (SVO in some cases) pro-
drop language with rich templatic morphology,
where words are made up of roots and affixes
and clitics agglutinate to words. For prepro-
cessing, a similar approach to that shown in
Habash and Sadat (2006) was employed, and the
MADA+TOKAN system for disambiguation and
tokenization was used. For disambiguation, only
diacritic unigram statistics were employed. For to-
kenization, the D3 scheme with -TAGBIES option
was used. The scheme splits the following set of
clitics: w+, f+, b+, k+, l+, Al+ and pronominal cl-
itics. The -TAGBIES option produces Bies POS
tags on all taggable tokens.

4.3 SAMT experiments

The SAMT guideline was used to perform
the experiments and is available on-line:
http://www.cs.cmu.edu/∼zollmann/samt/.
Moses MT script was used to create the
grow − diag − final word alignment and
extract purely lexical phrases, which are then used
to induce the SAMT grammar. The target side
(English) of the training corpus was parsed with
the Charniak’s parser (Charniak, 2000).

Rule extraction and filtering procedures were
restricted to the concatenation of the development
and test sets, allowing for rules with a maximal
length of 12 elements in the source side and with a

zero minimum occurrence criterion for both non-
lexical and purely lexical rules.

Moses-style phrases extracted with a phrase-
based system were 4.8M , while a number of gen-
eralized rules representing the hierarchical model
grew dramatically to 22.9M . 10.8M of them were
pruned out on the filtering step.

The vocabulary of the English Penn Treebank
elementary non-terminals is 72, while a number of
generalized elements, including additive and trun-
cated categories, is 35.7K.

The FastTranslateChart beam-search de-
coder was used as an engine of MER training aim-
ing to tune the feature weight coefficients and pro-
duce final n-best and 1-best translations by com-
bining the intensive search with a standard 4-gram
LM as shown in Venugopal et al. (2007). The it-
eration limit was set to 10 with 1000-best list and
the highest BLEU score as optimization criteria.
We did not use completely abstract rules (with-
out any source-side lexical utterance), since these
rules significantly slow down the decoding process
(noAllowAbstractRules option).

Table 2 shows a summary of computational time
and RAM needed at each step of the translation.

Step Time Memory

Parsing 1.5h 80Mb
Rules extraction 10h 3.5Gb
Filtering&merging 3h 4.0Gb
Weights tuning 40h 3Gb
Testing 2h 3Gb

Table 2: SAMT: Computational resources.

Evaluation scores including results of system
combination (see subsection 4.6) are reported in
Table 3.

4.4 N-gram system experiments

The core model of the N -gram-based system is a
4-gram LM of bilingual units containing: 184.345
1-grams7, 552.838 2-grams, 179.466 3-grams and
176.221 4-grams.

Along with this model, an N -gram SMT sys-
tem implements a log-linear combination of a 5-
gram target LM estimated on the English portion
of the parallel corpus, as well as supporting 4-
gram source and target models of POS tags. Bies

7This number also corresponds to the bilingual model vo-
cabulary.
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BLEU NIST mPER mWER METEOR
SAMT 43.20 9.26 36.89 49.45 58.50

N-gram-based SMT 46.39 10.06 32.98 48.47 62.36
System combination 48.00 10.15 33.20 47.54 62.27

MOSES Factored System 44.73 9.62 33.92 47.23 59.84
Oracle 61.90 11.41 28.84 41.52 66.19

Table 3: Test set evaluation results

POS tags were used for the Arabic portion, as
shown in subsection 4.2; a TnT tool was used for
English POS tagging (Brants, 2000).

The number of non-unique initially extracted
tuples is 1.1M , which were pruned according to
the maximum number of translation options per
tuple on the source side (30). Tuples with a NULL
on the source side were attached to either the pre-
vious or the next unit (Mariño et al., 2006). The
feature models weights were optimized according
to the same optimization criteria as in the SAMT
experiments (the highest BLEU score).

Stage-by-stage RAM and time requirements are
presented in Table 4, while translation quality
evaluation results can be found in Table 3.

Step Time Memory

Models estimation 0.2h 1.9Gb
Reordering 1h —
Weights tuning 15h 120Mb
Testing 2h 120Mb

Table 4: Tuple-based SMT: Computational re-
sources.

4.5 Statistical significance

A statistical significance test based on a bootstrap
resampling method, as shown in Koehn (2004),
was performed. For the 98% confidence interval
and 1000 set resamples, translations generated by
SAMT and N -gram system are significantly dif-
ferent according to BLEU (43.20±1.69 for SAMT
vs. 46.42± 1.61 for tuple-based system).

4.6 System combination

Many MT systems generate very different trans-
lations of similar quality, even if the models
involved into translation process are analogous.
Thus, the outputs of syntax-driven and purely sta-
tistical MT systems were combined at the sentence
level using 1000-best lists of the most probable

translations produced by the both systems.
For system combination, we followed a Mini-

mum Bayes-risk algorithm, as introduced in Ku-
mar and Byrne (2004). Table 3 shows the results
of the system combination experiments on the test
set, which are contrasted with the oracle transla-
tion results, performed as a selection of the transla-
tions with the highest BLEU score from the union
of two 1000-best lists generated by SAMT and N -
gram SMT.

We also analyzed the percentage contribution of
each system to the system combination: 55-60%
of best translations come from the tuples-based
system 1000-best list, both for system combina-
tion and oracle experiments on the test set.

4.7 Phrase-based reference system

In order to understand the obtained results com-
pared to the state-of-the-art SMT, a reference
phrase-based factored SMT system was trained
and tested on the same data using the MOSES
toolkit. Surface forms of words (factor “0“), POS
(factor “1“) and canonical forms of the words
(lemmata) (factor “2“) were used as English fac-
tors, and surface forms and POS were the Arabic
factors.

Word alignment was performed according to
the grow-diag-final algorithm with the GIZA++
tool, a msd-bidirectional-fe conditional reordering
model was trained; the system had access to the
target-side 4-gram LMs of words and POS. The 0-
0,1+0-1,2+0-1 scheme was used on the translation
step and 1,2-0,1+1-0,1 to create generation tables.
A detailed description of the model training can
be found on the MOSES tutorial web-page8. The
results may be seen in Table 3.

5 Error analysis

To understand the strong and weak points of both
systems under consideration, a human analysis of

8http://www.statmt.org/moses/
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the typical translation errors generated by each
system was performed following the framework
proposed in Vilar et al. (2006) and contrasting the
systems output with four reference translations.
Human evaluation of translation output is a time-
consuming process, thus a set of 100 randomly
chosen sentences was picked out from the corre-
sponding system output and was considered as a
representative sample of the automatically gener-
ated translation of the test corpus. According to
the proposed error topology, some classes of errors
can overlap (for example, an unknown word can
lead to a reordering problem), but it allows finding
the most prominent source of errors in a reliable
way (Vilar et al., 2006; Povovic et al., 2006). Ta-
ble 5 presents the comparative statistics of errors
generated by the SAMT and the N -gram-based
SMT systems. The average length of the generated
translations is 32.09 words for the SAMT transla-
tion and 35.30 for the N -gram-based system.

Apart from unknown words, the most important
sources of errors of the SAMT system are missing
content words and extra words generated by the
translation system, causing 17.22 % and 10.60 %
of errors, respectively. A high number of missing
content words is a serious problem affecting the
translation accuracy. In some cases, the system
is able to construct a grammatically correct

translation, but omitting an important content
word leads to a significant reduction in translation
accuracy:

SAMT translation: the ministers of arab
environment for the closure of the Israeli dymwnp
reactor .
Ref 1: arab environment ministers demand the
closure of the Israeli daemona nuclear reactor .
Ref 2: arab environment ministers demand the
closure of Israeli dimona reactor .
Ref 3: arab environment ministers call for Israeli
nuclear reactor at dimona to be shut down .
Ref 4: arab environmental ministers call for the
shutdown of the Israeli dimona reactor .

Extra words embedded into the correctly trans-
lated phrases are a well-known problem of MT
systems based on hierarchical models operating on
the small corpora. For example, in many cases
the Arabic expression AlbHr Almyt is trans-
lated into English as dead sea side and not
as dead sea, since the bilingual instances con-
tain only the whole English phrase, like following:

AlbHr Almyt#the dead sea side#@NP

The N -gram-based system handles miss-
ing words more correctly – only 9.40 % of
the errors come from the missing content

Type Sub-type SAMT N-gram
Missing words 152 (25.17 %) 92 (15.44 %)

Content words 104 (17.22 %) 56 (9.40 %)
Filler words 48 (7.95 %) 36 (6.04 %)

Word order 96 (15.89 %) 140 (23.49 %)
Local word order 20 (3.31 %) 68 (11.41 %)
Local phrase order 20 (3.31 %) 20 (3.36 %)
Long range word order 32 (5.30 %) 48 (8.05 %)
Long range phrase order 24 (3.97 %) 4 (0.67 %)

Incorrect words 164 (27.15 %) 204 (34.23 %)
Sense: wrong lexical choice 24 (3.97 %) 60 (10.07 %)
Sense: incorrect disambiguation 16 (2.65 %) 8 (1.34 %)
Incorrect form 24 (3.97 %) 56 (9.40 %)
Extra words 64 (10.60 %) 56 (9.40 %)
Style 28 (4.64 %) 20 (3.36 %)
Idioms 4 (0.07 %) 4 (0.67 %)

Unknown words 132 (21.85 %) 104 (17.45 %)
Punctuation 60 (9.93 %) 56 (9.40 %)
Total 604 596

Table 5: Human made error statistics for a representative test set.
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words; however, it does not handle local and
long-term reordering, thus the main problem
is phrase reordering (11.41 % and 8.05 %
of errors). In the example below, the un-
derlined block (Circumstantial Complement:
from local officials in the tour-
ism sector) is embedded between the verb
and the direct object, while in correct translation
it must be placed in the end of the sentence.

N-gram translation: the winner received
from local officials in the tourism sector three
gold medals .
Ref 1: the winner received three gold medals
from local officials from the tourism sector .
Ref 2: the winner received three gold medals
from the local tourism officials .
Ref 3: the winner received his prize of 3 gold
medals from local officials in the tourist industry .
Ref 4: the winner received three gold medals
from local officials in the tourist sector .

Along with inserting extra words and wrong
lexical choice, another prominent source of
incorrect translation, generated by the N -
gram system, is an erroneous grammatical
form selection, i.e., a situation when the sys-
tem is able to find the correct translation but
cannot choose the correct form. For example,
arab environment minister call for
closing dymwnp Israeli reactor,
where the verb-preposition combination
call for was correctly translated on the
stem level, but the system was not able to generate
a third person conjugation calls for. In spite
of the fact that English is a language with nearly
no inflection, 9.40 % of errors stem from poor
word form modeling. This is an example of the
weakest point of the SMT systems having access
to a small training material; the decoder does not
use syntactic information about the subject of
the sentence (singular) and makes a choice only
concerning the tuple probability.

The difference in total number of errors is neg-
ligible, however a subjective evaluation of the sys-
tems output shows that the translation generated
by the N -gram system is more understandable
than the SAMT one, since more content words are
translated correctly and the meaning of the sen-
tence is still preserved.

6 Discussion and conclusions

In this study two systems are compared: the UPC-
TALP N -gram-based and the CMU-UKA SAMT
systems, originating from the ideas of Finite-State
Transducers and hierarchical phrase translation,
respectively. The comparison was created to be as
fair as possible, using the same training material
and the same tools on the preprocessing, word-
to-word alignment and language modeling steps.
The obtained results were also contrasted with the
state-of-the-art phrase-based SMT.

Analyzing the automatic evaluation scores, the
N -gram-based approach shows good performance
for the small Arabic-to-English task and signifi-
cantly outperforms the SAMT system. The results
shown by the modern phrase-based SMT (factored
MOSES) lie between the two systems under con-
sideration. Considering memory size and compu-
tational time, the tuple-based system has obtained
significantly better results than SAMT, primarily
because of its smaller search space.

Interesting results were obtained for the PER
and WER metrics: according to the PER,
the UPC-TALP system outperforms the SAMT
by 10%, while the WER improvement hardly
achieves a 2% difference. The N -gram-based
SMT can translate the context better, but pro-
duces more reordering errors than SAMT. This
may be explained by the fact that Arabic and En-
glish are languages with high disparity in word
order, and the N -gram system deals worse with
long-distance reordering because it attempts to use
shorter units. However, by means of introducing
the word context into the TM, short-distance bilin-
gual dependencies can be captured effectively.

The main conclusion that can be made from
the human evaluation analysis is that the systems
commit a comparable number of errors, but they
are distributed dissimilarly. In case of the SAMT
system, the frequent errors are caused by missing
or incorrectly inserted extra words, while the N -
gram-based system suffers from reordering prob-
lems and wrong words/word form choice

Significant improvement in translation quality
was achieved by combining the outputs of the two
systems based on different translating principles.
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Abstract

We present a Hebrew to English transliter-
ation method in the context of a machine
translation system. Our method uses ma-
chine learning to determine which terms
are to be transliterated rather than trans-
lated. The training corpus for this purpose
includes only positive examples, acquired
semi-automatically. Our classifier reduces
more than 38% of the errors made by a
baseline method. The identified terms are
then transliterated. We present an SMT-
based transliteration model trained with a
parallel corpus extracted from Wikipedia
using a fairly simple method which re-
quires minimal knowledge. The correct re-
sult is produced in more than 76% of the
cases, and in 92% of the instances it is one
of the top-5 results. We also demonstrate a
small improvement in the performance of
a Hebrew-to-English MT system that uses
our transliteration module.

1 Introduction

Transliteration is the process of converting terms
written in one language into their approximate
spelling or phonetic equivalents in another lan-
guage. Transliteration is defined for a pair of lan-
guages, a source language and a target language.
The two languages may differ in their script sys-
tems and phonetic inventories. This paper ad-
dresses transliteration from Hebrew to English as
part of a machine translation system.

Transliteration of terms from Hebrew into En-
glish is a hard task, for the most part because of the
differences in the phonological and orthographic
systems of the two languages. On the one hand,
there are cases where a Hebrew letter can be pro-
nounced in multiple ways. For example, Hebrew
ב! can be pronounced either as [b] or as [v]. On

the other hand, two different Hebrew sounds can
be mapped into the same English letter. For exam-
ple, both ת! and ט! are in most cases mapped to [t].
A major difficulty stems from the fact that in the
Hebrew orthography (like Arabic), words are rep-
resented as sequences of consonants where vow-
els are only partially and very inconsistently rep-
resented. Even letters that are considered as rep-
resenting vowels may sometimes represent conso-
nants, specifically ו! [v]/[o]/[u] and י! [y]/[i]. As a
result, the mapping between Hebrew orthography
and phonology is highly ambiguous.

Transliteration has acquired a growing inter-
est recently, particularly in the field of Machine
Translation (MT). It handles those terms where no
translation would suffice or even exist. Failing to
recognize such terms would result in poor perfor-
mance of the translation system. In the context
of an MT system, one has to first identify which
terms should be transliterated rather than trans-
lated, and then produce a proper transliteration for
these terms. We address both tasks in this work.

Identification of Terms To-be Transliterated
(TTT) must not be confused with recognition of
Named Entities (NE) (Hermjakob et al., 2008).
On the one hand, many NEs should be translated
rather than transliterated, for example:1

m$rd hm$p@im
misrad hamishpatim
ministry-of the-sentences
‘Ministry of Justice’

1To facilitate readability, examples are presented with in-
terlinear gloss, including an ASCII representation of Hebrew
orthography followed by a broad phonemic transcription, a
word-for-word gloss in English where relevant, and the cor-
responding free text in English. The following table presents
the ASCII encoding of Hebrew used in this paper:

א! ב! ג! ד! ה! ו! ז! ח! ט! י! כ|!
a b g d h w z x @ i k
ל! מ|! נ|! ס! ע! פ|! צ|! ק! ר! ש! ת!
l m n s & p c q r $ t
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him htikwn
hayam hatichon
the-sea the-central
‘the Mediterranean Sea’

On the other hand, there are terms that are not
NEs, such as borrowed words or culturally specific
terms that are transliterated rather than translated,
as shown by the following examples:

aqzis@ncializm
eqzistentzializm
‘Existentialism’

@lit
talit
‘Tallit’

As these examples show, transliteration cannot
be considered the default strategy to handle NEs
in MT and translation does not necessarily apply
for all other cases.

Candidacy for either transliteration or transla-
tion is not necessarily determined by orthographic
features. In contrast to English (and many other
languages), proper names in Hebrew are not cap-
italized. As a result, the following homographs
may be interpreted as either a proper name, a noun,
or a verb:

alwn
alon
‘oak’

alwn
alun
‘I will sleep’

alwn
alon
‘Alon’ (name)

One usually distinguishes between two types of
transliteration (Knight and Graehl, 1997): For-
ward transliteration, where an originally Hebrew
term is to be transliterated to English; and Back-
ward transliteration, in which a foreign term that
has already been transliterated into Hebrew is to
be recovered. Forward transliteration may result in
several acceptable alternatives. This is mainly due
to phonetic gaps between the languages and lack
of standards for expressing Hebrew phonemes in
English. For example, the Hebrew term cdiq may
be transliterated as Tzadik, Tsadik, Tsaddiq, etc.
On the other hand, backward transliteration is re-
strictive. There is usually only one acceptable way
to express the transliterated term. So, for exam-
ple, the name wiliam can be transliterated only
to William and not, for example, to Viliem, even
though the Hebrew character w may stand for the
consonant [v] and the character a may be vow-
elized as [e].

We approach the task of transliteration in the
context of Machine Translation in two phases.
First, we describe a lightly-supervised classifier
that can identify TTTs in the text (section 4). The
identified terms are then transliterated (section 5)
using a transliteration model based on Statistical

Machine Translation (SMT). The two modules are
combined and integrated in a Hebrew to English
MT system (section 6).

The main contribution of this work is the actual
transliteration module, which has already been in-
tegrated in a Hebrew to English MT system. The
accuracy of the transliteration is comparable with
state-of-the-art results for other language pairs,
where much more training material is available.
More generally, we believe that the method we de-
scribe here can be easily adapted to other language
pairs, especially those for which few resources are
available. Specifically, we did not have access to
a significant parallel corpus, and most of the re-
sources we used are readily available for many
other languages.

2 Previous Work

In this section we sketch some related works, fo-
cusing on transliteration from Hebrew and Arabic,
and on the context of machine translation.

Arbabi et al. (1994) present a hybrid algorithm
for romanization of Arabic names using neural
networks and a knowledge based system. The pro-
gram applies vowelization rules, based on Arabic
morphology and stemming from the knowledge
base, to unvowelized names. This stage, termed
the broad approach, exhaustively yields all valid
vowelizations of the input. To solve this over-
generation, the narrow approach is then used. In
this approach, the program uses a neural network
to filter unreliable names, that is, names whose
vowelizations are not in actual use. The vowelized
names are converted into a standard phonetic rep-
resentation which in turn is used to produce var-
ious spellings in languages which use Roman al-
phabet. The broad approach covers close to 80%
of the names given to it, though with some extra-
neous vowelization. The narrow approach covers
over 45% of the names presented to it with higher
precision than the broad approach.

This approach requires a vast linguistic knowl-
edge in order to create the knowledge base of vow-
elization rules. In addition, these rules are appli-
cable only to names that adhere to the Arabic mor-
phology.

Stalls and Knight (1998) propose a method for
back transliteration of names that originate in En-
glish and occur in Arabic texts. The method uses a
sequence of probabilistic models to convert names
written in Arabic into the English script. First,
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an Arabic name is passed through a phonemic
model producing a network of possible English
sound sequences, where the probability of each
sound is location dependent. Next, phonetic se-
quences are transformed into English phrases. Fi-
nally, each possible result is scored according to a
unigram word model. This method translates cor-
rectly about 32% of the tested names. Those not
translated are frequently not foreign names.

This method uses a pronunciation dictionary
and is therefore restricted to transliterating only
words of known pronunciation. Both of the above
methods perform only unidirectional translitera-
tion, that is, either forward- or backward- translit-
eration, while our work handles both.

Al-Onaizan and Knight (2002) describe a sys-
tem which combines a phonetic based model with
a spelling model for transliteration. The spelling
based model directly maps sequences of English
letters into sequences of Arabic letters without the
need of English pronunciation. The method uses a
translation model based on IBM Model 1 (Brown
et al., 1993), in which translation candidates of
a phrase are generated by combining translations
and transliterations of the phrase components, and
matching the result against a large corpus. The
system’s overall accuracy is about 72% for top-1
results and 84% for top-20 results.

This method is restricted to transliterating NEs,
and performs best for person names. As noted
above, the TTT problem is not identical to the
NER problem. In addition, the method requires a
list of transliteration pairs from which the translit-
eration model could be learned.

Yoon et al. (2007) use phonetic distinctive
features and phonology-based pseudo features
to learn both language-specific and language-
universal transliteration characteristics. Distinc-
tive features are the characteristics that define the
set of phonemic segments (consonants, vowels) in
a given language. Pseudo features capture sound
change patterns that involve the position in the syl-
lable. Distinctive features and pseudo features are
extracted from source- and target-language train-
ing data to train a linear classifier. The classifier
computes compatibility scores between English
source words and target-language words. When
several target-language strings are transliteration
candidates for a source word, the one with the
highest score is selected as the transliteration. The
method was evaluated using parallel corpora of

English with each of four target languages. NEs
were extracted from the English side and were
compared with all the words in the target lan-
guage to find proper transliterations. The baseline
presented for the case of transliteration from En-
glish to Arabic achieves Mean Reciprocal Rank
(MRR) of 0.66 and this method improves its re-
sults by 7%. This technique involves knowledge
about phonological characteristics, such as elision
of consonants based on their position in the word,
which requires expert knowledge of the language.
In addition, conversion of terms into a phonemic
representation poses hurdles in representing short
vowels in Arabic and will have similar behavior in
Hebrew. Moreover, English to Arabic transliter-
ation is easier than Arabic to English, because in
the former, vowels should be deleted whereas in
the latter they should be generated.

Matthews (2007) presents a model for translit-
eration from Arabic to English based on SMT.
The parallel corpus from which the translation
model is acquired contains approximately 2500
pairs, which are part of a bilingual person names
corpus (LDC2005G02). This biases the model to-
ward transliterating person names. The language
model presented for that method consisted of 10K
entries of names which is, again, not complete.
This model also uses different settings for maxi-
mum phrase length in the translation model and
different n-gram order for the language model. It
achieves an accuracy of 43% when transliterating
from Arabic to English.

Goldwasser and Roth (2008) introduce a dis-
criminative method for identifying NE transliter-
ation pairs in English-Hebrew. Given a word pair
(ws, wt), where ws is an English NE, the system
determines whether wt, a string in Hebrew, is its
transliteration. The classification is based on pair-
wise features: sets of substrings are extracted from
each of the words, and substrings from the two sets
are then coupled to form the features. The accu-
racy of correctly identifying transliteration pairs
in top-1 and top-5 was 52% and 88%, respec-
tively. Whereas this approach selects most suitable
transliteration out of a list of candidates, our ap-
proach generates a list of possible transliterations
ranked by their accuracy.

Despite the importance of identifying TTTs,
this task has only been addressed recently. Gold-
berg and Elhadad (2008) present a loosely super-
vised method for non contextual identification of
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transliterated foreign words in Hebrew texts. The
method is a Naive-Bayes classifier which learns
from noisy data. Such data are acquired by over-
generation of transliterations for a set of words in
a foreign script, using mappings from the phone-
mic representation of words to the Hebrew script.
Precision and recall obtained are 80% and 82%,
respectively. However, although foreign words
are indeed often TTTs, many originally Hebrew
words should sometimes be transliterated. As
explained in section 4, there are words in He-
brew that may be subject to either translation or
transliteration, depending on the context. A non-
contextual approach would not suffice for our task.

Hermjakob et al. (2008) describe a method for
identifying NEs that should be transliterated in
Arabic texts. The method first tries to find a
matching English word for each Arabic word in a
parallel corpus, and tag the Arabic words as either
names or non-names based on a matching algo-
rithm. This algorithm uses a scoring model which
assigns manually-crafted costs to pairs of Arabic
and English substrings, allowing for context re-
strictions. A number of language specific heuris-
tics, such as considering only capitalized words
as candidates and using lists of stop words, are
used to enhance the algorithm’s accuracy. The
tagged Arabic corpus is then divided: One part is
used to collect statistics about the distribution of
name/non-name patterns among tokens, bigrams
and trigrams. The rest of the tagged corpus is
used for training using an averaged perceptron.
The precision of the identification task is 92.1%
and its recall is 95.9%. This work also presents
a novel transliteration model, which is integrated
into a machine translation system. Its accuracy,
measured by the percentage of correctly translated
names, is 89.7%.

Our work is very similar in its goals and the
overall framework, but in contrast to Hermjakob
et al. (2008) we use much less supervision, and in
particular, we do not use a parallel corpus. We also
do not use manually-crafted weights for (hundreds
of) bilingual pairs of strings. More generally, our
transliteration model is much more language-pair
neutral.

3 Resources and Methodology

Our work consists of of two sub-tasks: Identifying
TTTs and then transliterating them. Specifically,
we use the following resources for this work: For

the identification task we use a large un-annotated
corpus of articles from Hebrew press and web-
forums (Itai and Wintner, 2008) consisting of 16
million tokens. The corpus is POS-tagged (Bar-
Haim et al., 2008). We bootstrap a training cor-
pus for one-class SVM (section 4.2) using a list
of rare Hebrew character n-grams (section 4.1) to
generate a set of positive, high-precision exam-
ples for TTTs in the tagged corpus. POS tags for
the positive examples and their surrounding tokens
are used as features for the one-class SVM (sec-
tion 4.2).

For the transliteration itself we use a list that
maps Hebrew consonants to their English counter-
parts to extract a list of Hebrew-English transla-
tion pairs from Wikipedia (section 5.2). To learn
the transliteration model we utilize Moses (sec-
tion 5) which is also used for decoding. Decod-
ing also relies on a target language model, which
is trained by applying SRILM to Web 1T corpus
(section 5.1).

Importantly, the resources we use for this work
are readily available for a large number of lan-
guages and can be easily obtained. None of these
require any special expertise in linguistics. Cru-
cially, no parallel corpus was used.

4 What to transliterate

The task in this phase, then, is to determine for
each token in a given text whether it should be
translated or transliterated. We developed a set
of guidelines to determine which words are to be
transliterated. For example, person names are al-
ways transliterated, although many of them have
homographs that can be translated. Foreign words,
which retain the sound patterns of their original
language with no semantic translation involved,
are also (back-)transliterated. On the other hand,
names of countries may be subject to translation
or transliteration, as demonstrated in the follow-
ing examples:

crpt
tsarfat
‘France’

sprd
sfarad
‘Spain’

qwngw
kongo
‘Congo’

We use information obtained from POS tagging
(Bar-Haim et al., 2008) to address the problem of
identifying TTTs. Each token is assigned a POS
and is additionally marked if it was not found in a
lexicon (Itai et al., 2006). As a baseline, we tag for
transliteration Out Of Vocabulary (OOV) tokens.
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Our evaluation metric is tagging accuracy, that is,
the percentage of correctly tagged tokens.

4.1 Rule-based tagging
Many of the TTTs do appear in the lexicon,
though, and their number will grow with the avail-
ability of more language resources. As noted
above, some TTTs can be identified based on their
surface forms; these words are mainly loan words.
For example, the word brwdqsting (broadcasting)
contains several sequences of graphemes that are
not frequent in Hebrew (e.g., ng in a word-final
position).

We manually generated a list of such features to
serve as tagging rules. To create this list we used
a few dozens of character bigrams, about a dozen
trigrams and a couple of unigrams and four-grams,
that are highly unlikely to occur in words of He-
brew origin. Rules associate n-grams with scores
and these scores are summed when applying the
rules to tokens. A typical rule is of the form: if
σ1σ2 are the final characters of w, add c to the
score of w, where w is a word in Hebrew, σ1 and
σ2 are Hebrew characters, and c is an positive in-
teger. A word is tagged for transliteration if the
sum of the scores associated with its substrings is
higher than a predefined threshold.

We apply these rules to a large Hebrew corpus
and create an initial set of instances of terms that,
with high probability, should be be transliterated
rather than translated. Of course, many TTTs, es-
pecially those whose surface forms are typical of
Hebrew, will be missed when using this tagging
technique. Our solution is to learn the contexts in
which TTTs tend to occur, and contrast these con-
texts with those for translated terms. The underly-
ing assumption is that the former contexts are syn-
tactically determined, and are independent of the
actual surface form of the term (and of whether or
not it occurs in the lexicon). Since the result of
the rule-based tagging is considered as examples
of TTTs, this automatically-annotated corpus can
be used to extract such contexts.

4.2 Training with one class classifier
The above process provides us with 40279 exam-
ples of TTTs out of a total of more than 16 mil-
lion tokens. These examples, however, are only
positive examples. In order to learn from the in-
complete data we utilized a One Class Classifier.
Classification problems generally involve two or
more classes of objects. A function separating

these classes is to be learned and used by the clas-
sifier. One class classification utilizes only target
class objects to learn a function that distinguishes
them from any other objects.

SVM (Support Vector Machine) (Vapnik, 1995)
is a classification technique which finds a linear
separating hyperplane with maximal margins be-
tween data instances of two classes. The sepa-
rating hyperplane is found for a mapping of data
instances into a higher dimension, using a ker-
nel function. Schölkopf et al. (2000) introduce
an adaptation of the SVM methodology to the
problem of one-class classification. We used one-
class SVM as implemented in LIBSVM (Chang
and Lin, 2001). The features selected to represent
each TTT were its POS and the POS of the token
preceding it in the sentence. The kernel function
which yielded the best results on this problem was
a sigmoid with standard parameters.

4.3 Results

To evaluate the TTT identification model we cre-
ated a gold standard, tagged according to the
guidelines described above, by a single lexicog-
rapher. The testing corpus consists of 25 sen-
tences from the same sources as the training cor-
pus and contains 518 tokens, of which 98 are
TTTs. We experimented with two different base-
lines: the naı̈ve baseline always decides to trans-
late; a slightly better baseline consults the lexicon,
and tags as TTT any token that does not occur in
the lexicon. We measure our performance in error
rate reduction of tagging accuracy, compared with
the latter baseline.

Our initial approach consisted of consulting
only the decision of the one-class SVM. How-
ever, since there are TTTs that can be easily iden-
tified using features obtained from their surface
form, our method also examines each token using
surface-form features, as described in section 4.1.
If a token has no surface features that identify it
as a TTT, we take the decision of the one-class
SVM. Table 1 presents different configurations we
experimented with, and their results. The first two
columns present the two baselines we used, as ex-
plained above. The third column (OCS) shows the
results based only on decisions made by the One
Class SVM. The penultimate column shows the re-
sults obtained by our method combining the SVM
with surface-based features. The final column
presents the Error Rate Reduction (ERR) achieved
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when using our method, compared to the base-
line of transliterating OOV words. As can be ob-
served, our method increases classification accu-
racy: more than 38% of the errors over the base-
line are reduced.

Naı̈ve Baseline OCS Our ERR
79.9 84.23 88.04 90.26 38.24

Table 1: TTT identification results (% of the in-
stances identified correctly)

The importance of the recognition process is
demonstrated in the following example. The un-
derlined phrase was recognized correctly by our
method.

kbwdw habwd $l bn ari
kvodo heavud shel ben ari
His-honor the-lost of Ben Ari

‘Ben Ari’s lost honor ’

Both the word ben and the word ari have literal
meanings in Hebrew (son and lion, respectively),
and their combination might be interpreted as a
phrase since it is formed as a Hebrew noun con-
struct. Recognizing them as transliteration candi-
dates is crucial for improving the performance of
MT systems.

5 How to transliterate

Once a token is classified as a TTT, it is sent to
the transliteration module. Our approach handles
the transliteration task as a case of phrase-based
SMT, based on the noisy channel model. Accord-
ing to this model, when translating a string f in the
source language into the target language, a string
ê is chosen out of all target language strings e if it
has the maximal probability given f (Brown et al.,
1993):

ê = arg max
e
{Pr(e|f)}

= arg max
e
{Pr(f |e) · Pr(e)}

where Pr(f |e) is the translation model and Pr(e)
is the target language model. In phrase-based
translation, f is divided into phrases f̄1 . . . f̄I ,
and each source phrase f̄i is translated into target
phrase ēi according to a phrase translation model.
Target phrases may then be reordered using a dis-
tortion model.

We use SMT for transliteration; this approach
views transliteration pairs as aligned sentences and

characters are viewed as words. In the case of
phrase-based SMT, phrases are sequences of char-
acters. We used Moses (Koehn et al., 2007), a
phrase-based SMT toolkit, for training the transla-
tion model (and later for decoding). In order to ex-
tract phrases, bidirectional word level alignments
are first created, both source to target and target
to source. Alignments are merged heuristically if
they are consistent, in order to extract phrases.

5.1 Target language model

We created an English target language model from
unigrams of Web 1T (Brants and Franz, 2006).
The unigrams are viewed as character n-grams to
fit into the SMT system. We used SRILM (Stol-
cke, 2002) with a modified Kneser-Ney smooth-
ing, to generate a language model of order 5.

5.2 Hebrew-English translation model

No parallel corpus of Hebrew-English transliter-
ation pairs is available, and compiling one man-
ually is time-consuming and labor-intensive. In-
stead, we extracted a parallel list of Hebrew and
English terms from Wikipedia and automatically
generated such a corpus. The terms are paral-
lel titles of Wikipedia articles and thus can safely
be assumed to denote the same entity. In many
cases these titles are transliterations of one an-
other. From this list we extracted transliteration
pairs according to similarity of consonants in par-
allel English and Hebrew entries.

The similarity measure is based only on conso-
nants since vowels are often not represented at all
in Hebrew. We constructed a table relating He-
brew and English consonants, based on common
knowledge patterns that relate sound to spelling in
both languages. Sound patterns that are not part of
the phoneme inventory of Hebrew but are nonethe-
less represented in Hebrew orthography were also
included in the table. Every entry in the mapping
table consists of a Hebrew letter and a possible
Latin letter or letter sequences that might match
it. A typical entry is the following:

$:SH|S|CH

such that SH, S or CH are possible candidates for
matching the Hebrew letter $.

Both Hebrew and English titles in Wikipedia
may be composed of several words. However,
words composing the entries in each of the lan-
guages may be ordered differently. Therefore, ev-
ery word in Hebrew is compared with every word
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in English, assuming that titles are short enough.
The example in Table 2 presents an aligned pair of
multi-lingual Wikipedia entries with high similar-
ity of consonants. This is therefore considered as a
transliteration pair. In contrast, the title empty set
which is translated to hqbwch hriqh shows a low
similarity of consonants. This pair is not selected
for the training corpus.

g r a t e f u l d e a d
g r i i @ p w l d d

Table 2: Titles of Wikipedia entries

Out of 41914 Hebrew and English terms re-
trieved from Wikipedia, more than 20000 were de-
termined as transliteration pairs. Out of this set,
500 were randomly chosen to serve as a test set,
500 others were chosen to serve as a development
set, and the rest are the training set. Minimum
error rate training was done on the development
set to optimize translation performance obtained
by the training phase.2 For decoding, we prohib-
ited Moses form performing character reordering
(distortion). While reordering may be needed for
translation, we want to ensure the monotone na-
ture of transliteration.

5.3 Results
We applied Moses to the test set to get a list of
top-n transliteration options for each entry in the
set. The results obtained by Moses were further
re-ranked to take into account their frequency as
reflected in the unigrams of Web 1T (Brants and
Franz, 2006). The re-ranking method first nor-
malizes the scores of Moses’ results to the range
of [0, 1]. The respective frequencies of these re-
sults in Web1T corpus are also normalized to this
range. The score s of each transliteration op-
tion is a linear combination of these two elements:
s = αsM + (1− α)sW , where sM is the normal-
ized score obtained for the transliteration option
by Moses, and sW is its normalized frequency.
α is empirically set to 0.75. Table 3 summarizes
the proportion of the terms transliterated correctly
across top-n results as achieved by Moses, and
their improvement after re-ranking.

We further experimented with two methods for
reducing the list of transliteration options to the
most prominent ones by taking a variable number
of candidates rather than a fixed number. This is

2We used moses-mert.pl in the Moses package.

Results Top-1 Top-2 Top-5 Top-10
Moses 68.4 81.6 90.2 93.6

Re-ranked 76.6 86.6 92.6 93.6

Table 3: Transliteration results (% of the instances
transliterated correctly)

important for limiting the search space of MT sys-
tems. The first method (var1) measures the ratio
between the scores of each two consecutive op-
tions and generates the option that scored lower
only if this ratio exceeds a predefined threshold.
We found that the best setting for the threshold
is 0.75, resulting in an accuracy of 88.6% and
an average of 2.32 results per token. Our sec-
ond method (var2) views the score as a probabil-
ity mass, and generates all the results whose com-
bined probabilities are at most p. We found that
the best value for p is 0.5, resulting in an accuracy
of 87.4% and 1.92 results per token on average.
Both methods outperform the top-2 accuracy.

Table 4 presents a few examples from the
test set that were correctly transliterated by our
method. Some incorrect transliterations are
demonstrated in Table 5.

Source Transliteration
np$ nefesh
hlmsbrgr hellmesberger
smb@iwn sambation
hiprbwlh hyperbola
$prd shepard
ba$h bachet
xt$pswt hatshepsut
brgnch berganza
ali$r elissar
g’wbani giovanni

Table 4: Transliteration examples generated cor-
rectly from the test set

6 Integration with machine translation

We have integrated our system as a module in a
Machine Translation system, based on Lavie et
al. (2004a). The system consults the TTT clas-
sifier described in section 4 for each token, before
translating it. If the classifier determines that the
token should be transliterated, then the transliter-
ation procedure described in section 5 is applied
to the token to produce the transliteration results.
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Source Transliteration Target
rbindrnt rbindrant rabindranath
aswirh asuira essaouira
kmpi@ champit chamaephyte
bwdlr bodler baudelaire
lwrh laura lorre
hwlis ollies hollies
wnwm onom venom

Table 5: Incorrect transliteration examples

We provide an external evaluation in the form of
BLEU (Papineni et al., 2001) and Meteor (Lavie
et al., 2004b) scores for SMT with and without the
transliteration module.

When integrating our method in the MT system
we use the best transliteration options as obtained
when using the re-ranking procedure described in
section 5.3. The translation results for all condi-
tions are presented in Table 6, compared to the
basic MT system where no transliteration takes
place. Using the transliteration module yields a
statistically significant improvement in METEOR
scores (p < 0.05). METEOR scores are most rel-
evant since they reflect improvement in recall. The
MT system cannot yet take into consideration the
weights of the transliteration options. Translation
results are expected to improve once these weights
are taken into account.

System BLEU METEOR
Base 9.35 35.33127
Top-1 9.85 38.37584
Top-10 9.18 37.95336
var1 8.72 37.28186
var2 8.71 37.11948

Table 6: Integration of transliteration module in
MT system

7 Conclusions

We presented a new method for transliteration in
the context of Machine Translation. This method
identifies, for a given text, tokens that should
be transliterated rather than translated, and ap-
plies a transliteration procedure to the identified
words. The method uses only positive exam-
ples for learning which words to transliterate and
achieves over 38% error rate reduction when com-
pared to the baseline. In contrast to previous stud-

ies this method does not use any parallel corpora
for learning the features which define the translit-
erated terms. The simple transliteration scheme is
accurate and requires minimal resources which are
general and easy to obtain. The correct transliter-
ation is generated in more than 76% of the cases,
and in 92% of the instances it is one of the top-5
results.

We believe that some simple extensions could
further improve the accuracy of the translitera-
tion module, and these are the focus of current
and future research. First, we would like to use
available gazetteers, such as lists of place and
person names available from the US census bu-
reau, http://world-gazetteer.com/ or
http://geonames.org. Then, we consider
utilizing the bigram and trigram parts of Web
1T (Brants and Franz, 2006), to improve the
TTT identifier with respect to identifying multi-
token expressions which should be transliterated.
In addition, we would like to take into account
the weights of the different transliteration options
when deciding which to select in the translation.
Finally, we are interested in applying this module
to different language pairs, especially ones with
limited resources.
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Abstract
We show how global constraints such as transitiv-
ity can be treated intensionally in a Zero-One Inte-
ger Linear Programming (ILP) framework which is
geared to find the optimal and coherent partition of
coreference sets given a number of candidate pairs
and their weights delivered by a pairwise classifier
(used as reliable clustering seed pairs). In order to
find out whether ILP optimization, which is NP-
complete, actually is the best we can do, we com-
pared the first consistent solution generated by our
adaptation of an efficient Zero-One algorithm with
the optimal solution. The first consistent solution,
which often can be found very fast, is already as
good as the optimal solution; optimization is thus
not needed.

1 Introduction

One of the main advantages of Integer Linear Pro-
gramming (ILP) applied to NLP problems is that
prescriptive linguistic knowledge can be used to
pose global restrictions on the set of desirable so-
lutions. ILP tries to find an optimal solution while
adhering to the global constraints. One of the
central global constraints in the field of corefer-
ence resolution evolves from the interplay of intra-
sentential binding constraints and the transitivity
of the anaphoric relation. Consider the following
sentence taken from the Internet: ’He told him that
he deeply admired him’. ’He’ and ’him’ are ex-
clusive (i.e. they could never be coreferent) within
their clauses (the main and the subordinate clause,
respectively). A pairwise classifier could learn this
given appropriate features or, alternatively, bind-
ing constraints could act as a hard filter preventing
such pairs from being generated at all. But in ei-
ther case, since pairwise classification is trapped
in its local perspective, nothing can prevent the
classifier to resolve the ’he’ and ’him’ from the
subordinate clause in two independently carried
out steps to the same antecedent from the main
clause. It is transitivity that prohibits such an as-
signment: if two elements are both coreferent to
a common third element, then the two are (transi-
tively given) coreferent as well. If they are known

to be exclusive, such an assignment is disallowed.
But transitivity is beyond the scope of pairwise
classification—it is a global phenomena. The so-
lution is to take ILP as a clustering device, where
the probabilities of the pairwise classifier are in-
terpreted as weights and transitivity and other re-
strictions are acting as global constraints.

Unfortunately, in an ILP program every con-
straint has to be extensionalized (i.e. all instantia-
tions of the constraint are to be generated). Cap-
turing transitivity for e.g. 150 noun phrases (about
30 sentences) already produces 1,500,000 equa-
tions (cf. Section 4). Solving such ILP programs
is far too slow for real applications (let alone its
brute force character).

A closer look at existing ILP approaches to NLP
reveals that they are of a special kind, namely
Zero-One ILP with unweighted constraints. Al-
though still NP-complete there exist a number of
algorithms such as the Balas algorithm (Balas,
1965) that efficiently explore the search space and
reduce thereby run time complexity in the mean.
We have adapted Balas’ algorithm to the special
needs of coreference resolution. First and fore-
most, this results in an optimization algorithm that
treats global constraints intensionally, i.e. that
generates instantiations of a constraint only on de-
mand. Thus, transitivity can be captured for even
the longest texts. But more important, we found
out empirically that ’full optimization’ is not re-
ally needed. The first consistent solution, which
often can be found very fast, is already as good—
in terms of F-measure values—as the optimal so-
lution. This is good news, since it reduces runtime
and at same time maintains the empirical results.

We first introduce Zero-One ILP, discuss our
baseline model and give an ILP formalization of
coreference resolution. Then we go into the de-
tails of our Balas adaptation and provide empiri-
cal evidence for our central claim—that optimiza-
tion search can already be stopped (without qual-
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ity loss) when the first consistent solution has been
found.

2 Zero-One Integer Linear
Programming (ILP)

The algorithm in (Balas, 1965) solves Zero-
One Integer Linear Programming (ILP), where a
weighted linear function (the objective function)
of binary variables F(x1, . . . ,xn) = w1x1 + . . . +
wnxn is to be minimized under the regiment of
linear inequalities a1x1 + . . .+ anxn ≥ A.1 Unlike
its real-valued counterpart, Zero-One ILP is NP-
complete (cf., say, (Papadimitriou and Steiglitz,
1998)), but branch-and-bound algorithms with ef-
ficient heuristics exist, as the Balas Algorithm:
Balas (1965) proposes an approach where the ob-
jective function’s addends are sorted according to
the magnitude of the weights: 0 ≤ w1 ≤ . . . ≤
wn. This preliminary ordering induces the follow-
ing functioning principles for the algorithm (see
(Chinneck, 2004, Chap. 13) for more details):

1. It seeks to minimize F , so that a solution with
as few 1s as possible is preferred.

2. If, during exploration of solutions, con-
straints force an xi to be set to 1, then it should
bear as small an index as possible.

The Balas algorithm follows a depth-first search
while checking feasibility (i.e., through the con-
straints) of the branches partially explored: Upon
branching, the algorithm bounds the cost of set-
ting the current variable xN to 1 by the costs ac-
cumulated so far: w1x1 + . . .+ wN−1xN−1 + wN is
now the lowest cost this branch may yield. If,
on the contrary, xN is set to 0, a violated ≥-
constraint may only be satisfied via an xi set to 1
(i > N), so the cheapest change to ameliorate the
partial solution is to set the right-next variable to
1: w1x1 + . . . + wN−1xN−1 + wN+1 would be the
cheapest through this branch.

If setting all weights past the branching variable
to 0 yields a cheaper solution than the so far mini-
mal solution obtained, then it is worthwile explor-
ing this branch, and the algorithms goes on to the
next weighted variable, until it reaches a feasible
solution; otherwise it backtracks to the last unex-
plored branching. The complexity thus remains
exponential in the worst case, but the initial order-
ing of weights is a clever guide.

1Maximization and coping with≤-constraints are also ac-
cessible via simple transformations.

3 Our Baseline Model

The memory-based learner TiMBL (Daelemans
et al., 2004) is used as a (pairwise) classifier.
TiMBL stores all training examples, learns fea-
ture weights and classifies test instances accord-
ing to the majority class of the k-nearest (i.e. most
similar) neighbors. We have experimented with
various features; Table 1 lists the set we have fi-
nally used (Soon et al. (2001) and Ng and Cardie
(2002) more thoroughly discuss different features
and their benefits):

- distance in sentences and markables
- part of speech of the head of the markables
- the grammatical functions
- parallelism of grammatical functions
- do the heads match or not
- where is the pronoun (if any): left or right
- word form if POS is pronoun
- salience of the non-pronominal phrases
- semantic class of noun phrase heads

Table 1: Features for Pairwise Classification

As a gold standard the TüBa-D/Z (Telljohann
et al., 2005; Naumann, 2006) coreference corpus
is used. The TüBa is a treebank (1,100 German
newspaper texts, 25,000 sentences) augmented
with coreference annotations2. In total, there are
13,818 anaphoric, 1,031 cataphoric and 12,752
coreferential relations. There are 3,295 relative
pronouns, 8,929 personal pronouns, 2,987 reflex-
ive pronouns, and 3,921 possessive pronouns.

There are some rather long texts in the TüBa
corpus. Which pair generation algorithm is rea-
sonable? Should we pair every markable (even
from the beginning of the text) with every other
succeeding markable? This is linguistically im-
plausible. Pronouns are acting as a kind of local
variables. A ’he’ at the beginning of a text and
a second distant ’he’ at the end of the text hardly
tend to corefer, except if there is a long chain of
coreference ’renewals’ that lead somehow from
the first ’he’ to the second ’he’. But the plain ’he’-
’he’ pair does not reliably indicate coreference.

A smaller window seems to be appropriate. We
have experimented with various window sizes and
found that a size of 3 sentences worked best.
Candidate pairs are generated only within that

2Recently, a new version of the TüBa was released with
35,000 sentences with coreference annotations.
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window, which is moved sentence-wise over the
whole text.

4 Our Constraint-Based Model

The output of the TiMBL classifier is the input
to the optimization step, it provides the set of
variables and their weights. In order to utilize
TiMBL’s classification results as weights in a min-
imization task, we have defined a measure called
classification costs (see Fig. 1).

wi j =
| negi j |

| negi j ∪ posi j |

Figure 1: Score for Classification Costs

| negi j | (| posi j |) denotes the number of instances
similar (according to TiMBL’s metric) to 〈i, j〉 that
are negative (positive) examples. If no negative in-
stances are found, a safe positive classification de-
cision is proposed at zero cost. Accordingly, the
cost of a decision without any positive instances is
high, namely one. If both sets are non-empty, the
ratio of the negative instances to the total of all in-
stances is taken. For example, if TiMBL finds 10
positive and 5 negative examples similar to the yet
unclassified new example 〈i, j〉 the cost of a posi-
tive classification is 5/15 while a negative classifi-
cation costs 10/15.

We introduce our model in an ILP style. In sec-
tion 6 we discuss our Balas adaptation which al-
lows us to define constraints intensionally.

The objective function is:

min : ∑
〈i, j〉∈ O0.5

wi j · ci j +(1−wi j) · c ji (1)

O0.5 is the set of pairs 〈i, j〉 that have received
a weight ≤ 0.5 according to our weight function
(see Fig. 1). Any binary variable ci j combines the
ith markable (of the text) with the jth markable
(i < j) within a fixed window3.

c ji represents the (complementary) decision that
i and j are not coreferent. The weight of this
decision is (1−wi j). Please note that every op-
timization model of coreference resolution must
include both variables4. Otherwise optimization

3As already discussed, the window is realized as part of
the vector generation component, so O0.5 automatically only
captures pairs within the window.

4Even if an anaphoricity classifier is used.

would completely ignore the classification deci-
sions of the pairwise classifier (i.e., that≤ 0.5 sug-
gests coreference). For example, the choice not
to set ci j = 1 at costs wi j ≤ 0.5 must be sanc-
tioned by instantiating its inverse variable c ji = 1
and adding (1− wi j) to the objective function’s
value. Otherwise minimization would turn—in
the worst case—everything to be non-coreferent,
while maximization would preferentially set ev-
erything to be actually coreferent (as long as no
constraints are violated, of course).5

The first constraint then is:

ci j + c ji = 1, ∀〈i, j〉 ∈ O0.5 (2)

A pair 〈i, j〉 is either coreferent or not.
Transitivity is captured by (see (Finkel and

Manning, 2008) for an alternative but equivalent
formalization):

ci j + c jk ≤ cik +1, ∀i, j,k (i < j < k)
cik + c jk ≤ ci j +1, ∀i, j,k (i < j < k)
ci j + cik ≤ c jk +1, ∀i, j,k (i < j < k)

(3)

In order to take full advantage of ILP’s reason-
ing capacities, three equations are needed given
three markables. The extensionalization of tran-
sitivity thus produces n!

3!(n−3)! · 3 equations for n
markables. Note that transitivity—as a global
constraint—ought to spread over the whole can-
didate set, not just within in the window.

Transitivity without further constraints is point-
less.6 What we really can gain from transitivity is
consistency at the linguistic level, namely (glob-
ally) adhering to exclusiveness constraints (cf. the
example in the introduction). We have defined two
predicates that replace the traditional c-command
(which requires full syntactical analysis) and ap-
proximate it: clause bound and np bound.

Two mentions are clause-bound if they occur in
the same subclause, none of them being a reflex-
ive or a possessive pronoun, and they do not form
an apposition. There are only 16 cases in our data
set where this predicate produces false negatives
(e.g. in clauses with predicative verbs: ’Hei is still
prime ministeri’). We currently regard this short-
coming as noise.

5The need for optimization or other numerical preference
mechanisms originates from the fact that coreference reso-
lution is underconstrained—due to the lack of a deeper text
understanding.

6Although it might lead to a reordering of coreference sets
by better ’balancing the weights’.
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Two markables that are clause-bound (in the
sense defined above) are exclusive, i.e.

ci j = 0, ∀i, j (clause bound(i, j)). (4)

A possessive pronoun is exclusive to all markables
in the noun phrase it is contained in (e.g. ci j = 0
given a noun phrase “[heri manager j]”), but might
get coindexed with markables outside of such a lo-
cal context (“Annei talks to heri manager”). We
define a predicate np bound that is true of two
markables, if they occur in the same noun phrase.
In general, two markables that np-bind each other
are exclusive:

ci j = 0, ∀i, j (np bound(i, j)) (5)

5 Representing ILP Constraints
Intensionally

Existing ILP-based approaches to NLP (e.g. (Pun-
yakanok et al., 2004; Althaus et al., 2004;
Marciniak and Strube, 2005)) belong to the
class of Zero-One ILP: only binary variables are
needed. This has been seldom remarked (but
see (Althaus et al., 2004)) and generic (out-of-
the-box) ILP implementations are used. More-
over, these models form a very restricted variant of
Zero-One ILP: the constraints come without any
weights. The reason for this lies in the logical na-
ture of NLP constraints. For example in the case of
coreference, we have the following types of con-
straints:

1. exclusivity of two instantiations (e.g. either
coreferent or not, equation 2)

2. dependencies among three instantiations
(transitivity: if two are coreferent then so the
third, equation 3)

3. the prohibition of pair instantiation (binding
constraints, equations 4 and 5)

4. enforcement of at least one instantiation of a
markable in some pair (equation 6 below).

We call the last type of constraints ’boundness en-
forcement constraints’. Only two classes of pro-
nouns strictly belong to this class: relative (POS
label ’PRELS’) and possessive pronouns (POS
label ’PPOSAT’)7. The corresponding ILP con-
straint is, e.g. for possessive pronouns:

∑
i

ci j ≥ 1, ∀ j s.t. pos( j) = ′PPOSAT′ (6)

7In rare cases, even reflexive pronouns are (correctly)
used non-anaphorically, and, more surprisingly, 15% of the
personal pronouns in the TüBa are used non-anaphorically.

Note that boundness enforcement constraints lead
to exponential time in the worst case. Given that
such a constraint holds on a pair with the highest
costs of all pairs (thus being the last element of
the Balas ordered list with n elements): in order to
prove whether it can be bound (set to one), 2n (bi-
nary) variable flips need to be checked in the worst
case. All other constraints can be satisfied by set-
ting some ci j = 0 (i.e. non-coreferent) which does
not affect already taken or (any) yet to be taken
assignments. Although exponential in the worst
case, the integration of constraint (6) has slowed
down CPU time only slightly in our experiments.

A closer look at these constraints reveals that
most of them can be treated intensionally in an
efficient manner. This is a big advantage, since
now transitivity can be captured even for long texts
(which is infeasible for most generic ILP models).

To intensionally capture transitivity, we only
need to explicitly maintain the evolving corefer-
ence sets. If a new markable is about to enter a
set (e.g. if it is related to another markable that is
already member of the set) it is verified that it is
compatible with all members of the set.

A markable i is compatible with a coreference
set if, for all members j of the set, 〈i, j〉 does
not violate binding constraints, agrees morpholog-
ically and semantically. Morphological agreement
depends on the POS tags of a pair. Two personal
pronouns must agree in person, number and gen-
der. In German, a possessive pronoun must only
agree in person with its antecedent. Two nouns
might even have different grammatical gender, so
no morphological agreement is checked here.

Checking binding for the clause bound con-
straint is simple: each markable has a subclause ID
attached (extracted from the TüBa). If two mark-
ables (except reflexive or possessive pronouns)
share an ID they are exclusive. Possessive pro-
nouns must not be np-bound. All members of the
noun phrase containing the possessive pronoun are
exclusive to it.

Note that such a representation of constraints is
intensional since we need not enumerate all exclu-
sive pairs as an ILP approach would have to. We
simply check (on demand) the identity of IDs.

There is also no need to explicitly maintain con-
straint (2), either, which states that a pair is either
coreferent or not. In the case that a pair cannot be
set to 1 (representing coreference), it is set to 0;
i.e. ci j and c ji are represented by the same index
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position p of a Balas solution v (cf. Section 6); no
extensional modelling is necessary.

Although our special-purpose Balas adaptation
no longer constitutes a general framework that can
be fed with each and every Zero-One ILP formal-
ization around, the algorithm is simple enough to
justify this. Even if one uses an ILP translator such
as Zimpl8, writing a program for a concrete ILP
problem quickly becomes comparably complex.

6 A Variant of the Balas Algorithm

Our algorithm proceeds as follows: we generate
the first consistent solution according to the Balas
algorithm (Balas-First, henceforth). The result is a
vector v of dimension n, where n is the size of O0.5.
The dimensions take binary values: a value 1 at
position p represents the decision that the pth pair
ci j from the (Balas-ordered) objective function is
coreferent (0 indicates non-coreference). One mi-
nor difference to the original Balas algorithm is
that the primary choice of our algorithm is to set a
variable to 1, not to 0—thus favoring coreference.
However, in our case, 1 is the cheapest solution
(with cost wi j ≤ 0.5). Setting a variable to zero
has cost 1−wi j which is more expensive in any
case. But aside from this assignment convention,
the principal idea is preserved, namely that the as-
signment is guided by lowest cost decisions.

The search for less expensive solutions is done
a bit differently from the original. The Balas algo-
rithm takes profit from weighted constraints. As
discussed in Section 5, constraints in existing ILP
models for NLP are unweighted. Another differ-
ence is that in the case of coreference resolution
both decisions have costs: setting a variable to 1
(wi j) and setting it to 0 (1−wi j). This is the key to
our cost function that guides the search.

Let us first make some properties of the search
space explicit. First of all, given no constraints
were violated, the optimal solution would be the
one with all pairs from O0.5 set to 1 (since any 0
would add a suboptimal weight, namely 1−wi j).
Now we can see that any less expensive solution
than Balas-First must be longer than Balas-First,
where the length (1-length, henceforth) of a Balas
solution is defined as the number of dimensions
with value 1. A shorter solution would turn at least
a single 1 into 0, which leads to a higher objective
function value.

8http://zimpl.zib.de/

Any solution with the same 1-length is more ex-
pensive since it requires swapping a 1 to 0 at one
position and a 0 to 1 at a farther position. The per-
mutation of 1/0s from Balas-First is induced by
the weights and the constraints. A 0 at position q
is forced by (a constraint together with) some (or
more) 1 at position p (p < q). Thus, we can only
swap a 0 to 1 if we swap at least one preceding 1
to 0. The costs of swapping a preceding 1 to 0 are
higher than the gain from swapping the 0 to 1 (as
a consequence of the Balas ordering). So no solu-
tion with the same 1-length can be less expensive
than Balas-First.

We then have to search for solutions with higher
1-length. In Section 7 we will argue that this actu-
ally goes in the wrong direction.

Any longer solution must swap—for every 1
swapped to 0—at least two 0s to 1. Otherwise the
costs are higher than the gain. We can utilize this
for a reduction of the search space.

Let p be a position index of Balas-First (v),
where the value of the dimension at p is 1 and
there exist at least two 0s with position indices
q > p.

Consider v = 〈1,0,1,1,0,0〉. Positions 1, 3
and 4 are such positions (identifying the follow-
ing parts of v resp.: 〈1,0,1,1,0,0〉,〈1,1,0,0〉 and
〈1,0,0〉).

We define a projection c(p) that returns the
weight wi j of the pth pair ci j from the Balas or-
dering. v(p) is the value of dimension p in v (0 or
1). The cost of swapping 1 at position p to 0 is the
difference between the cost of c ji (1− c(p)) and
ci j (c(p)): costs(p) = 1−2 · c(p).

We define the potential gain pg(p) of swapping
a 1 at position p to 0 and every succeeding 0 to 1
by:

pg(p) = costs(p)− ∑
q>p s.t. v(q)=0

1−2 · c(q) (7)

For example, let v = 〈1,0,1,1,0,0〉, p = 4,
c(4) = 0.2 and (the two 0s) c(5) = 0.3, c(6) =
0.35. costs(4) = 1−0.4 = 0.6 and pg(4) = 0.6−
(0.4+0.3) =−0.1. Even if all 0s (after position 4)
can be swapped to 1, the objective function value
is lower that before, namely by 0.1. Thus, we need
not consider this branch.

In general, each time a 0 is turned into 1, the
potential gain is preserved, but if we have to turn
another 1 to 0 (due to a constraint), or if a 0 cannot
be swapped to 1, the potential gain is decremented
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by a certain cost factor. If the potential gain is
exhausted that way, we can stop searching.

7 Is Optimization Really Needed?
Empirical Evidence

The first observation we made when running our
algorithm was that in more than 90% of all cases,
Balas-First already constitutes the optimal solu-
tion. That is, the time-consuming search for a less
expensive solution ended without further success.

As discussed in Section 6, any less expensive
solution must be longer (1-length) than Balas-
First. But can longer solutions be better (in terms
of F-measure scores) than shorter ones? They
might: if the 1-length re-assignment of variables
removes as much false positives as possible and
raises instead as much of the true positives as can
be found in O0.5. Such a solution might have a bet-
ter F-measure score. But what about its objective
function value? Is it less expensive than Balas-
First?

We have designed an experiment with all (true)
coreferent pairs from O0.5 (as indicated by the gold
standard) set to 1. Note that this is just another
kind of constraints: the enforcement of corefer-
ence (this time extensionally given).

The result was surprising: The objective func-
tion values that our algorithm finds under these
constraints were in any case higher than Balas-
First without that constraint.

Fig. 2 illustrates this schematically (Fig. 4 be-
low justifies the curve’s shape). The curve rep-

Figure 2: The best solution is ’less optimal’

resents a function mapping objective values to F-
measure scores. Note that it is not monotoni-
cally decreasing (from lower objective values to
higher ones)—as one would expect (less expensive
= higher F-measure). The vertical line labelled b

identifies Balas-First. Starting with Balas-First,
optimization searches to the left, i.e. searching
for smaller objective function values. The hori-
zontal line labelled m shows the local maximum
of that search region (the arrow from left points to
it). But unfortunately, the global maximum (the
arrow from right), i.e. the 1-length solution with
all (true) coreferent pairs set to 1, lies to the right-
hand side of Balas-First.

This indicates that, in our experimental con-
ditions, optimization efforts can never reach the
global maximum, but it also indicates that search-
ing for less expensive solutions nevertheless might
lead (at least) to a local maximum. However, if
it is true that the goal function is not monotonic,
there is no guarantee that the optimal solution ac-
tually constitutes the local maximum, i.e. the best
solution in terms of F-measure scores.

Unfortunately, we cannot prove mathematically
any hypotheses about the optimal values and their
behavior. However, we can compare the opti-
mal value’s F-measure scores to the Balas-First
F-measure scores empirically. Two experiments
were designed to explore this. In the first exper-
iment, we computed for each text the difference
between the F-measure value of the optimal so-
lution and the F-measure value of Balas-First. It
is positive if the optimal solution has higher F-
measure score than Balas-First and negative oth-
erwise. This was done for each text (99) that has
more than one objective function value (remem-
ber that in more than 90% of texts Balas-First was
already the optimal solution).

Fig. 3 shows the results. The horizontal line is

Figure 3: Balas-First or Optimal Solution

separating gain from loss. Points above it indicate
that the optimal solution has a better F-measure
score, points below indicate a loss in percentage
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(for readability, we have drawn a curve). Taking
the mean of loss and gain across all texts, we found
that the optimal solution shows no significant F-
measure difference with the Balas-First solution:
the optimal solution even slightly worsens the F-
measure compared to Balas-First by −0.086%.

The second experiment was meant to explore
the curve shape of the goal function that maps
an objective function value to a F-measure value.
This is shown in Fig. 4. The values of that func-
tion are empirically given, i.e. they are produced
by our algorithm. The x-axis shows the mean of
the nth objective function value better than Balas-
First. The y-value of the nth x-value thus marks the
effect (positive or negative) in F-measure scores
while proceeding to find the optimal solution. As
can be seen from the figure, the function (at least
empirically) is rather erratic. In other words,
searching for the optimal solution beyond Balas-
First does not seem to lead reliably (and monoton-
ically) to better F-measure values.

Figure 4: 1st Compared to Balas-nth Value

In the next section, we show that Balas-First as
the first optimization step actually is a significant
improvement over the classifier output. So we are
not saying that we should dispense with optimiza-
tion efforts completely.

8 Does Balas-First help? Empirical
Evidence

Besides the empirical fact that Balas-First slightly
outperforms the optimal solution, we must demon-
strate that Balas-First actually improves the base-
line. Our experiments are based on a five-fold
cross-validation setting (1100 texts from the TüBa
coreference corpus). Each experiment was carried
out in two variants. One where all markables have
been taken as input—an application-oriented set-

ting, and one where only markables that represent
true mentions have been taken (cf. (Luo et al.,
2004; Ponzetto and Strube, 2006) for other ap-
proaches with an evaluation based on true men-
tions only). The assumption is that if only true
mentions are considered, the effects of a model
can be better measured.

We have used the Entity-Constrained Measure
(ECM), introduced in (Luo et al., 2004; Luo,
2005). As argued in (Klenner and Ailloud, 2008),
it is more appropriate to evaluate the quality of
coreference sets than the MUC score.9

To obtain the baseline, we merged all pairs that
TiMBL classified as coreferent into coreference
sets. Table 2 shows the results.

all mentions true mentions
Timbl B-First Timbl B-First

F 61.83 64.27 71.47 78.90
P 66.52 72.05 73.81 84.10
R 57.76 58.00 69.28 74.31

Table 2: Balas-First (B-First) vs. Baseline

In the ’all mentions setting’, 2.4% F-measure im-
provement was achieved, with ’true mentions’ it is
7.43%. These improvements clearly demonstrate
that Balas-First is superior to the results based on
the classifier output.

But is the specific order proposed by the Balas
algorithm itself useful? Since we have dispensed
with ’full optimization’, why not dispense with the
Balas ordering as well? Since the ordering of the
pairs does not affect the rest of our algorithm we
have been able to compare the Balas order to the
more natural linear order. Note that all constraints
are applied in the linear variant as well, so the only
difference is the ordering. Linear ordering over
pairs is established by sorting according to the in-
dex of the first pair element (the i from ci j).

all mentions true mentions
linear B-First linear B-First

F 62.83 64.27 76.08 78.90
P 70.39 72.05 81.40 84.10
R 56.73 58.00 71.41 74.31

Table 3: Balas Order vs. Linear Order

Our experiments (cf. Table 3) indicate that the
9Various authors have remarked on the shortcomings of

the MUC evaluation scheme (Bagga and Baldwin, 1998; Luo,
2005; Nicolae and Nicolae, 2006).
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Balas ordering does affect the empirical results.
The F-measure improvement is 1.44% (’all men-
tions’) and 2.82% (’true mentions’).

The search for Balas-First remains, in general,
NP-complete. However, constraint models with-
out boundness enforcement constraints (cf. Sec-
tion 5) pose no computational burden, they can be
solved in quadratic time. In the presence of bound-
ness enforcement constraints, exponential time is
required in the worst case. In our experiments,
boundness enforcement constraints have proved to
be unproblematic. Most of the time, the classi-
fier has assigned low costs to candidate pairs con-
taining a relative or a possessive pronoun, which
means that they get instantiated rather soon (al-
though this is not guaranteed).

9 Related Work

The focus of our paper lies on the evaluation of the
benefits optimization could have for coreference
resolution. Accordingly, we restrict our discus-
sion to methodologically related approaches (i.e.
ILP approaches). Readers interested in other work
on anaphora resolution for German on the basis
of the TüBa coreference corpus should consider
(Hinrichs et al., 2005) (pronominal anaphora) and
(Versley, 2006) (nominal anaphora).

Common to all ILP approaches (incl. ours)
is that they apply ILP on the output of pairwise
machine-learning. Denis and Baldridge (2007;
2008) have an ILP model to jointly determine
anaphoricity and coreference, but take neither
transitivity nor exclusivity into account. So no
complexity problems arise in their approach. The
model from (Finkel and Manning, 2008) utilizes
transitivity, but not exclusivity. The benefits of
transitivity are thus restricted to an optimal bal-
ancing of the weights (e.g. given two positively
classified pairs, the transitively given third pair
in some cases is negative, ILP globally resolves
these cases to the optimal solution). The authors
do not mention complexity problems with exten-
sionalizing transitivity. Klenner (2007) utilizes
both transitivity and exclusivity. To overcome the
overhead of transitivity extensionalization, he pro-
poses a fixed transitivity window. This, however,
is bound to produce transitivity gaps, so the bene-
fits of complete transitivity propagation are lost.

Another attempt to overcome the problem of
complexity with ILP models is described in
(Riedel and Clarke, 2006) (dependency parsing).

Here an incremental—or better, cascaded—ILP
model is proposed, where at each cascade only
those constraints are added that have been vio-
lated in the preceding one. The search stops with
the first consistent solution (as we suggest in the
present paper). However, it is difficult to quantify
the number of cascades needed to come to it and
moreover, the full ILP machinery is being used (so
again, constraints need to be extensionalized).

To the best of our knowledge, our work is the
first that studies the proper utility of ILP optimiza-
tion for NLP, while offering an intensional alter-
native to ILP constraints.

10 Conclusion and Future Work

In this paper, we have argued that ILP for NLP
reduces to Zero-One ILP with unweighted con-
straints. We have proposed such a Zero-One ILP
model that combines exclusivity, transitivity and
boundness enforcement constraints in an inten-
sional model driven by best-first inference.

We furthermore claim and empirically demon-
strate for the domain of coreference resolution that
NLP approaches can take advantage from that new
perspective. The pitfall of ILP, namely the need
to extensionalize each and every constraint, can
be avoided. The solution is an easy to carry out
reimplementation of a Zero-One algorithm such
as Balas’, where (most) constraints can be treated
intensionally. Moreover, we have found empiri-
cal evidence that ’full optimization’ is not needed.
The first found consistent solution is as good as the
optimal one. Depending on the constraint model
this can reduce the costs from exponential time to
polynomial time.

Optimization efforts, however, are not superflu-
ous, as we have showed. The first consistent so-
lution found with our Balas reimplementation im-
proves the baseline significantly. Also, the Balas
ordering itself has proven superior over other or-
ders, e.g. linear order.

In the future, we will experiment with more
complex constraint models in the area of corefer-
ence resolution. But we will also consider other
domains in order to find out whether our results
actually are widely applicable.
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Abstract

One way to construct semantic represen-
tations in a robust manner is to enhance
shallow language processors with seman-
tic components. Here, we provide a model
theory for a semantic formalism that is de-
signed for this, namely Robust Minimal
Recursion Semantics (RMRS). We show
that RMRS supports a notion of entailment
that allows it to form the basis for compar-
ing the semantic output of different parses
of varying depth.

1 Introduction

Representing semantics as a logical form that sup-
ports automated inference and model construc-
tion is vital for deeper language engineering tasks,
such as dialogue systems. Logical forms can be
obtained from hand-crafted deep grammars (Butt
et al., 1999; Copestake and Flickinger, 2000) but
this lacks robustness: not all words and con-
structions are covered and by design ill-formed
phrases fail to parse. There has thus been a trend
recently towards robust wide-coverage semantic
construction (e.g., (Bos et al., 2004; Zettlemoyer
and Collins, 2007)). But there are certain seman-
tic phenomena that these robust approaches don’t
capture reliably, including quantifier scope, op-
tional arguments, and long-distance dependencies
(for instance, Clark et al. (2004) report that the
parser used by Bos et al. (2004) yields 63% ac-
curacy on object extraction; e.g., the man that I
met. . . ). Forcing a robust parser to make a de-
cision about these phenomena can therefore be
error-prone. Depending on the application, it may
be preferable to give the parser the option to leave
a semantic decision open when it’s not sufficiently
informed—i.e., to compute a partial semantic rep-
resentation and to complete it later, using informa-
tion extraneous to the parser.

In this paper, we focus on an approach to se-
mantic representation that supports this strategy:
Robust Minimal Recursion Semantics (RMRS,
Copestake (2007a)). RMRS is designed to support
underspecification of lexical information, scope,
and predicate-argument structure. It is an emerg-
ing standard for representing partial semantics,
and has been applied in several implemented sys-
tems. For instance, Copestake (2003) and Frank
(2004) use it to specify semantic components to
shallow parsers ranging in depth from POS tag-
gers to chunk parsers and intermediate parsers
such as RASP (Briscoe et al., 2006). MRS anal-
yses (Copestake et al., 2005) derived from deep
grammars, such as the English Resource Grammar
(ERG, (Copestake and Flickinger, 2000)) are spe-
cial cases of RMRS. But RMRS, unlike MRS and re-
lated formalisms like dominance constraints (Egg
et al., 2001), is able to express semantic infor-
mation in the absence of full predicate argument
structure and lexical subcategorisation.

The key contribution we make is to cast RMRS,
for the first time, as a logic with a well-defined
model theory. Previously, no such model theory
existed, and so RMRS had to be used in a some-
what ad-hoc manner that left open exactly what
any given RMRS representation actually means.
This has hindered practical progress, both in terms
of understanding the relationship of RMRS to other
frameworks such as MRS and predicate logic and
in terms of the development of efficient algo-
rithms. As one application of our formalisation,
we use entailment to propose a novel way of char-
acterising consistency of RMRS analyses across
different parsers.

Section 2 introduces RMRS informally and illus-
trates why it is necessary and useful for represent-
ing semantic information across deep and shallow
language processors. Section 3 defines the syntax
and model-theory of RMRS. We finish in Section 4
by pointing out some avenues for future research.
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2 Deep and shallow semantic
construction

Consider the following (toy) sentence:

(1) Every fat cat chased some dog.

It exhibits several kinds of ambiguity, includ-
ing a quantifier scope ambiguity and lexical
ambiguities—e.g., the nouns “cat” and “dog” have
8 and 7 WordNet senses respectively. Simplifying
slightly by ignoring tense information, two of its
readings are shown as logical forms below; these
can be represented as trees as shown in Fig. 1.

(2) every q 1(x, fat j 1(e′, x) ∧ cat n 1(x),
some q 1(y, dog n 1(y),
chase v 1(e, x, y)))

(3) some q 1(y, dog n 2(y),
every q 1(x, fat j 1(e′, x) ∧ cat n 2(x),
chase v 1(e, x, y)))

Now imagine trying to extract semantic infor-
mation from the output of a part-of-speech (POS)
tagger by using the word lemmas as lexical pred-
icate symbols. Such a semantic representation
is highly partial. It will use predicate symbols
such as cat n, which might resolve to the pred-
icate symbols cat n 1 or cat n 2 in the com-
plete semantic representation. (Notice the dif-
ferent fonts for the ambiguous and unambiguous
predicate symbols.) But most underspecification
formalisms (e.g., MRS (Copestake et al., 2005) and
CLLS (Egg et al., 2001)) are unable to represent se-
mantic information that is as partial as what we get
from a POS tagger because they cannot underspec-
ify predicate-argument structure. RMRS (Copes-
take, 2007a) is designed to address this problem.
In RMRS, the information we get from the POS tag-
ger is as follows:

(4) l1 : a1 : every q(x1),
l41 : a41 : fat j(e′),
l42 : a42 : cat n(x3)
l5 : a5 : chase v(e),
l6 : a6 : some q(x6),
l9 : a9 : dog n(x7)

This RMRS expresses only that certain predica-
tions are present in the semantic representation—
it doesn’t say anything about semantic scope,
about most arguments of the predicates (e.g.,
chase v(e) doesn’t say who chases whom), or

about the coindexation of variables ( every q

_every_q_1

x !

_fat_j_1

e' x

_cat_n_1

x

_some_q_1

y _dog_n_1

y

_chase_v_1

e x y

_every_q_1

x !

_fat_j_1

e' x

_cat_n_2

x

_some_q_1

y _dog_n_2

y _chase_v_1

e x y

Figure 1: Semantic representations (2) and (3) as
trees.

binds the variable x1, whereas cat n speaks about
x3), and it maintains the lexical ambiguities. Tech-
nically, it consists of six elementary predications
(EPs), one for each word lemma in the sentence;
each of them is prefixed by a label and an anchor,
which are essentially variables that refer to nodes
in the trees in Fig. 1. We can say that the two trees
satisfy this RMRS because it is possible to map the
labels and anchors in (4) into nodes in each tree
and variable names like x1 and x3 into variable
names in the tree in such a way that the predica-
tions of the nodes that labels and anchors denote
are consistent with those in the EPs of (4)—e.g., l1
and a1 can map to the root of the first tree in Fig. 1,
x1 to x, and the root label every q 1 is consistent
with the EP predicate every q.

There are of course many other trees (and thus,
fully specific semantic representations such as (2))
that are described equally well by the RMRS (4);
this is not surprising, given that the semantic out-
put from the POS tagger is so incomplete. If we
have information about subjects and objects from
a chunk parser like Cass (Abney, 1996), we can
represent it in a more detailed RMRS:

(5) l1 : a1 : every q(x1),
l41 : a41 : fat j(e′),
l42 : a42 : cat n(x3)
l5 : a5 : chase v(e),

ARG1(a5, x4),ARG2(a5, x5)
l6 : a6 : some q(x6),
l9 : a9 : dog n(x7)
x3 = x4, x5 = x7

This introduces two new types of atoms. x3 =
x4 means that x3 and x4 map to the same variable
in any fully specific logical form; e.g., both to the
variable x in Fig. 1. ARGi(a, z) (and ARGi(a, h))
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express that the i-th child (counting from 0) of the
node to which the anchor a refers is the variable
name that z denotes (or the node that the hole h
denotes). So unlike earlier underspecification for-
malisms, RMRS can specify the predicate of an
atom separately from its arguments; this is nec-
essary for supporting parsers where information
about lexical subcategorisation is absent. If we
also allow atoms of the form ARG{2,3}(a, x) to ex-
press uncertainty as to whether x is the second or
third child of the anchor a, then RMRS can even
specify the arguments to a predicate while under-
specifying their position. This is useful for speci-
fying arguments to give v when a parser doesn’t
handle unbounded dependencies and is faced with
Which bone did you give the dog? vs. To which
dog did you give the bone?

Finally, the RMRS (6) is a notational variant of
the MRS derived by the ERG, a wide-coverage deep
grammar:

(6) l1 : a1: every q 1(x1),
RSTR(a1, h2),BODY(a1, h3)

l41 : a41: fat j 1(e′),ARG1(a41, x2)
l42 : a42: cat n 1(x3)
l5 : a5: chase v 1(e),
ARG1(a5, x4),ARG2(a5, x5)

l6 : a6: some q 1(x6),
RSTR(a6, h7),BODY(a6, h8)

l9 : a9: dog n 1(x7)
h2 =q l42, l41 = l42, h7 =q l9
x1 = x2, x2 = x3, x3 = x4,
x5 = x6, x5 = x7

RSTR and BODY are conventional names for
the ARG1 and ARG2 of a quantifier predicate sym-
bol. Atoms like h2 =q l42 (“qeq”) specify a cer-
tain kind of “outscopes” relationship between the
hole and the label, and are used here to underspec-
ify the scope of the two quantifiers. Notice that the
labels of the EPs for “fat” and “cat” are stipulated
to be equal in (6), whereas the anchors are not. In
the tree, it is the anchors that are mapped to the
nodes with the labels fat j 1 and cat n 1; the la-
bel is mapped to the conjunction node just above
them. In other words, the role of the anchor in an
EP is to connect a predicate to its arguments, while
the role of the label is to connect the EP to the sur-
rounding formula. Representing conjunction with
label sharing stems from MRS and provides com-
pact representations.

Finally, (6) uses predicate symbols like
dog n 1 that are meant to be more specific than

symbols like dog n which the earlier RMRSs
used. This reflects the fact that the deep gram-
mar performs some lexical disambiguation that the
chunker and POS tagger don’t. The fact that the
former symbol should be more specific than the
latter can be represented using SPEC atoms like
dog n 1 " dog n. Note that even a deep gram-

mar will not fully disambiguate to semantic pred-
icate symbols, such as WordNet senses, and so
dog n 1 can still be consistent with multiple sym-

bols like dog n 1 and dog n 2 in the semantic
representation. However, unlike the output of a
POS tagger, an RMRS symbol that’s output by a
deep grammar is consistent with symbols that all
have the same arity, because a deep grammar fully
determines lexical subcategorisation.

In summary, RMRS allows us to represent in a
uniform way the (partial) semantics that can be
extracted from a wide range of NLP tools. This
is useful for hybrid systems which exploit shal-
lower analyses when deeper parsing fails, or which
try to match deeply parsed queries against shal-
low parses of large corpora; and in fact, RMRS is
gaining popularity as a practical interchange for-
mat for exactly these purposes (Copestake, 2003).
However, RMRS is still relatively ad-hoc in that its
formal semantics is not defined; we don’t know,
formally, what an RMRS means in terms of seman-
tic representations like (2) and (3), and this hin-
ders our ability to design efficient algorithms for
processing RMRS. The purpose of this paper is to
lay the groundwork for fixing this problem.

3 Robust Minimal Recursion Semantics

We will now make the basic ideas from Section
2 precise. We will first define the syntax of the
RMRS language; this is a notational variant of ear-
lier definitions in the literature. We will then de-
fine a model theory for our version of RMRS, and
conclude this section by carrying over the notion
of solved forms from CLLS (Egg et al., 2001).

3.1 RMRS Syntax

We define RMRS syntax in the style of CLLS (Egg
et al., 2001). We assume an infinite set of node
variables NVar = {X, Y, X1, . . .}, used as labels,
anchors, and holes; the distinction between these
will come from their position in the formulas. We
also assume an infinite set of base variables BVar,
consisting of individual variables {x, x1, y, . . .}
and event variables {e1, . . .}, and a vocabulary of
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predicate symbols Pred = {P,Q, P1, . . .}. RMRS
formulas are defined as follows.

Definition 1. An RMRS is a finite set ϕ of atoms
of one of the following forms; S ⊆ N is a set of
numbers that is either finite or N itself (throughout
the paper, we assume 0 ∈ N).

A ::= X:Y :P
| ARGS(X, v)
| ARGS(X, Y )
| X !∗ Y
| v1 = v2 | v1 %= v2

| X = Y | X %= Y
| P " Q

A node variable X is called a label iff ϕ con-
tains an atom of the form X:Y :P or Y !∗ X; it
is an anchor iff ϕ contains an atom of the form
Y :X:P or ARGS(X, i); and it is a hole iff ϕ con-
tains an atom of the form ARGS(Y,X) or X!∗Y .

Def. 1 combines similarities to earlier presen-
tations of RMRS (Copestake, 2003; Copestake,
2007b) and to CLLS/dominance constraints (Egg
et al., 2001). For the most part, our syntax
generalises that of older versions of RMRS: We
use ARG{i} (with a singleton set S) instead of
ARGi and ARGN instead of ARGn, and the EP
l:a:P (v) (as in Section 2) is an abbreviation of
{l:a:P,ARG{0}(a, v)}. Similarly, we don’t as-
sume that labels, anchors, and holes are syntacti-
cally different objects; they receive their function
from their positions in the formula. One major dif-
ference is that we use dominance (!∗) rather than
qeq; see Section 3.4 for a discussion. Compared
to dominance constraints, the primary difference
is that we now have a mechanism for representing
lexical ambiguity, and we can specify a predicate
and its arguments separately.

3.2 Model Theory
The model theory formalises the relationship be-
tween an RMRS and the fully specific, alternative
logical forms that it describes, expressed in the
base language. We represent such a logical form
as a tree τ , such as the ones in Fig. 1, and we can
then define satisfaction of formulas in the usual
way, by taking the tree as a model structure that
interprets all predicate symbols specified above.

In this paper, we assume for simplicity that the
base language is as in MRS; essentially, τ becomes
the structure tree of a formula of predicate logic.
We assume that Σ is a ranked signature consist-
ing of the symbols of predicate logic: a unary con-

structor ¬ and binary constructors ∧,→, etc.; a set
of 3-place quantifier symbols such as every q 1
and some q 1 (with the children being the bound
variable, the restrictor, and the scope); and con-
structors of various arities for the predicate sym-
bols; e.g., chase v 1 is of arity 3. Other base lan-
guages may require a different signature Σ and/or
a different mapping between formulas and trees;
the only strict requirement we make is that the
signature contains a binary constructor ∧ to rep-
resent conjunction. We write Σi and Σ≥i for the
set of all constructors in Σ with arity i and at least
i, respectively. We will follow the typographical
convention that non-logical symbols in Σ are writ-
ten in sans-serif, as opposed to the RMRS predicate
symbols like cat n and cat n 1.

The models of RMRS are then defined to be fi-
nite constructor trees (see also (Egg et al., 2001)):

Definition 2. A finite constructor tree τ is a func-
tion τ : D → Σ such that D is a tree domain (i.e.,
a subset of N∗ which is closed under prefix and left
sibling) and the number of children of each node
u ∈ D is equal to the arity of τ(u).

We write D(τ) for the tree domain of a con-
structor tree τ , and further define the following re-
lations between nodes in a finite constructor tree:

Definition 3. u !∗ v (dominance) iff u is a prefix
of v, i.e. the node u is equal to or above the node
v in the tree. u !∗

∧ v iff u !∗ v, and all symbols on
the path from u to v (not including v) are ∧.

The satisfaction relation between an RMRS ϕ
and a finite constructor tree τ is defined in terms
of several assignment functions. First, a node
variable assignment function α : NVar → D(τ)
maps the node variables in an RMRS to the nodes
of τ . Second, a base language assignment func-
tion g : BVar → Σ0 maps the base variables to
nullary constructors representing variables in the
base language. Finally, a function σ from Pred to
the power set of Σ≥1 maps each RMRS predicate
symbol to a set of constructors from Σ. As we’ll
see shortly, this function allows an RMRS to under-
specify lexical ambiguities.

Definition 4. Satisfaction of atoms is defined as
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follows:

τ, α, g, σ |= X:Y :P iff
τ(α(Y )) ∈ σ(P ) and α(X) !∗

∧ α(Y )
τ, α, g, σ |= ARGS(X, a) iff exists i ∈ S s.t.

α(X) · i ∈ D(τ) and τ(α(X) · i) = g(a)
τ, α, g, σ |= ARGS(X, Y ) iff exists i ∈ S s.t.

α(X) · i ∈ D(τ), α(X) · i = α(Y )
τ, α, g, σ |= X !∗ Y iff α(X) !∗ α(Y )
τ, α, g, σ |= X =/%= Y iff α(X) =/%= α(Y )
τ, α, g, σ |= v1 =/%= v2 iff g(v1) =/%= g(v2)
τ, α, g, σ |= P " Q iff σ(P ) ⊆ σ(Q)

A 4-tuple τ, α, g, σ satisfies an RMRS ϕ (written
τ, α, g, σ |= ϕ) iff it satisfies all of its elements.

Notice that one RMRS may be satisfied by mul-
tiple trees; we can take the RMRS to be a par-
tial description of each of these trees. In partic-
ular, RMRSs may represent semantic scope ambi-
guities and/or missing information about seman-
tic dependencies, lexical subcategorisation and
lexical senses. For j = {1, 2}, suppose that
τj , αj , gj , σ |= ϕ. Then ϕ exhibits a semantic
scope ambiguity if there are variables Y, Y ′ ∈
NVar such that α1(Y ) !∗ α1(Y ′) and α2(Y ′) !∗

α2(Y ). It exhibits missing information about se-
mantic dependencies if there are base-language
variables v, v′ ∈ BVar such that g1(v) = g1(v′)
and g2(v) %= g2(v′). It exhibits missing lex-
ical subcategorisation information if there is a
Y ∈ NVar such that τ1(α1(Y )) is a construc-
tor of a different type from τ2(α2(Y )) (i.e., the
constructors are of a different arity or they dif-
fer in whether their arguments are scopal vs. non-
scopal). And it exhibits missing lexical sense in-
formation if τ1(α1(Y )) and τ2(α2(Y )) are differ-
ent base-language constructors, but of the same
type.

Let’s look again at the RMRS (4). This is sat-
isfied by the trees in Fig. 1 (among others) to-
gether with some particular α, g, and σ. For in-
stance, consider the left-hand side tree in Fig. 1.
The RMRS (4) satisfies this tree with an assign-
ment function α that maps the variables l1 and a1

to the root node, l41 and l42 to its second child
(labeled with “∧”), a41 to the first child of that
node (i.e. the node 21, labelled with “fat”) and
a42 to the node 22, and so forth. g will map x1

and x3 to x, and x6 and x7 to y, and so on. And
σ will map each RMRS predicate symbol (which
represents a word) to the set of its fully resolved
meanings, e.g. cat n to a set containing cat n 1

_every_q_1

x !

_fat_j_1

e' x

_cat_n_1

x

_some_q_1

y _dog_n_1

y

_chase_v_1

e x y

!

!

_sleep_v_1

e'' x

_run_v_1

e''' y

Figure 2: Another tree which satisfies (6).

and possibly others. It is then easy to verify
that every single atom in the RMRS is satisfied—
most interestingly, the EPs l41:a41: fat j(e′) and
l42:a42: cat n(x3) are satisfied because α(l41)!∗

∧
α(a41) and α(l42) !∗

∧ α(a42).
Truth, validity and entailment can now be de-

fined in terms of satisfiability in the usual way:

Definition 5. truth: τ |= ϕ iff ∃α, g, σ such that
τ, α, g, σ |= ϕ

validity: |= ϕ iff ∀τ , τ |= ϕ.

entailment: ϕ |= ϕ′ iff ∀τ , if τ |= ϕ then τ |= ϕ′.

3.3 Solved Forms
One aspect in which our definition of RMRS is like
dominance constraints and unlike MRS is that any
satisfiable RMRS has an infinite number of mod-
els which only differ in the areas that the RMRS
didn’t “talk about”. Reading (6) as an MRS or as
an RMRS of the previous literature, this formula
is an instruction to build a semantic representa-
tion out of the pieces for “every fat cat”, “some
dog”, and “chased”; a semantic representation as
in Fig. 2 would not be taken as described by this
RMRS. However, under the semantics we proposed
above, this tree is a correct model of (6) because
all atoms are still satisfied; the RMRS didn’t say
anything about “sleep” or “run”, but it couldn’t en-
force that the tree shouldn’t contain those subfor-
mulas either.

In the context of robust semantic processing,
this is a desirable feature, because it means that
when we enrich an RMRS obtained from a shal-
low processor with more semantic information—
such as the relation symbols introduced by syntac-
tic constructions such as appositives, noun-noun
compounds and free adjuncts—we don’t change
the set of models; we only restrict the set of mod-
els further and further towards the semantic rep-
resentation we are trying to reconstruct. Further-
more, it has been shown in the literature that a
dominance-constraint style semantics for under-
specified representations gives us more room to
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manoeuvre when developing efficient solvers than
an MRS-style semantics (Althaus et al., 2003).

However, enumerating an infinite number of
models is of course infeasible. For this reason,
we will now transfer the concept of solved forms
from dominance constraints to RMRS. An RMRS
in solved form is guaranteed to be satisfiable, and
thus each solved form represents an infinite class
of models. However, each satisfiable RMRS has
only a finite number of solved forms which parti-
tion the space of possible models into classes such
that models within a class differ only in ‘irrele-
vant’ details. A solver can then enumerate the
solved forms rather than all models.

Intuitively, an RMRS in solved form is fully
specified with respect to the predicate-argument
structure, all variable equalities and inequalities
and scope ambiguities have been resolved, and
only lexical sense ambiguities remain. This is
made precise below.

Definition 6. An RMRS ϕ is in solved form iff:

1. every variable in ϕ is either a hole, a label or
an anchor (but not two of these);

2. ϕ doesn’t contain equality, inequality, and
SPEC (") atoms;

3. if ARGS(Y, i) is in ϕ, then |S| = 1;

4. for any label Y and index set S, there are no
two atoms ARGS(Y, i) and ARGS(Y, i′) in ϕ;

5. if Y is an anchor in some EP X:Y :P
and k is the maximum number such that
ARG{k}(X, i) is in ϕ for any i, then there is a
constructor p ∈ σ(P ) whose arity is at least
k;

6. no label occurs on the right-hand side of two
different !∗ atoms.

Because solved forms are so restricted, we can
‘read off’ at least one model from each solved
form:

Proposition 1. Every RMRS in solved form is sat-
isfiable.

Proof (sketch; see also (Duchier and Niehren, 2000)).
For each EP, we choose to label the anchor with
the constructor p of sufficiently high arity whose
existence we assumed; we determine the edges
between an anchor and its children from the
uniquely determined ARG atoms; plugging labels

into holes is straightforward because no label is
dominated by more than one hole; and spaces
between the labels and anchors are filled with
conjunctions.

We can now define the solved forms of an RMRS
ϕ; these finitely many RMRSs in solved form parti-
tion the space of models of ϕ into classes of mod-
els with trivial differences.

Definition 7. The syntactic dominance relation
D(ϕ) in an RMRS ϕ is the reflexive, transitive clo-
sure of the binary relation

{(X, Y ) | ϕ contains X !∗ Y or
ARGS(X,Y ) for some S}

An RMRS ϕ′ is a solved form of the RMRS ϕ iff
ϕ′ is in solved form and there is a substitution s
that maps the node and base variables of ϕ to the
node and base variables of ϕ′ such that

1. ϕ′ contains the EP X ′:Y ′:P iff there are vari-
ables X, Y such that X:Y :P is in ϕ, X ′ =
s(X), and Y ′ = s(Y );

2. for every atom ARGS(X, i) in ϕ, there is
exactly one atom ARGS′(X ′, i′) in ϕ′ with
X ′ = s(X), i′ = s(i), and S′ ⊆ S;

3. D(ϕ′) ⊇ s(D(ϕ)).

Proposition 2. For every tuple (τ, α, g, σ) that
satisfies some RMRS ϕ, there is a solved form ϕ′

of ϕ such that (τ, α, g, σ) also satisfies ϕ′.

Proof. We construct the substitution s from α and
g. Then we add all dominance atoms that are satis-
fied by α and restrict the ARG atoms to those child
indices that are actually used in τ . The result is in
solved form because τ is a tree; it is a solved form
of ϕ by construction.

Proposition 3. Every RMRS ϕ has only a finite
number of solved forms, up to renaming of vari-
ables.

Proof. Up to renaming of variables, there is only a
finite number of substitutions on the node and base
variables of ϕ. Let s be such a substitution. This
fixes the set of EPs of any solved form of ϕ that is
based on s uniquely. There is only a finite set of
choices for the subsets S′ in condition 2 of Def. 7,
and there is only a finite set of choices of new dom-
inance atoms that satisfy condition 3. Therefore,
the set of solved forms of ϕ is finite.
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Let’s look at an example for all these defini-
tions. All the RMRSs presented in Section 2 (re-
placing =q by !∗) are in solved form; this is least
obvious for (6), but becomes clear once we notice
that no label is on the right-hand side of two dom-
inance atoms. However, the model constructed in
the proof of Prop. 1 looks a bit like Fig. 2; both
models are problematic in several ways and in par-
ticular contain an unbound variable y even though
they also contains a quantifier that binds y. If we
restrict the class of models to those in which such
variables are bound (as Copestake et al. (2005)
do), we can enforce that the quantifiers outscope
their bound variables without changing models of
the RMRS further—i.e., we add the atoms h3 !∗ l5
and h8!∗ l5. Fig. 2 is no longer a model for the ex-
tended RMRS, which in turn is no longer in solved
form because the label l5 is on the right-hand side
of two dominance atoms. Instead, it has the fol-
lowing two solved forms:

(7) l1:a1: every q 1(x1),
RSTR(a1, h2), BODY(a1, h3),

l41:a41: fat j 1(e′),ARG1(a41, x1),
l41:a42: cat n 1(x1),
l6:a6: some q 1(x6),
RSTR(a6, h7), BODY(a6, h8),

l9:a9: dog n 1(x6),
l5:a5: chase v 1(e),

ARG1(a5, x1), ARG2(a5, x6),
h2 !∗ l41, h3 !∗ l6, h7 !∗ l9, h8 !∗ l5

(8) l1:a1: every q 1(x1),
RSTR(a1, h2), BODY(a1, h3),

l41:a41: fat j 1(e′),ARG1(a41, x1),
l41:a42: cat n 1(x1),
l6:a6: some q 1(x6),
RSTR(a6, h7), BODY(a6, h8),

l9:a9: dog n 1(x6),
l5:a5: chase v 1(e),

ARG1(a5, x1), ARG2(a5, x6),
h2 !∗ l41, h3 !∗ l5, h7 !∗ l9, h8 !∗ l1

Notice that we have eliminated all equalities by
unifying the variable names, and we have fixed the
relative scope of the two quantifiers. Each of these
solved forms now stands for a separate class of
models; for instance, the first model in Fig. 1 is
a model of (7), whereas the second is a model of
(8).

3.4 Extensions
So far we have based the syntax and semantics of
RMRS on the dominance relation from Egg et al.

(2001) rather than the qeq relation from Copestake
et al. (2005). This is partly because dominance is
the weaker relation: If a dependency parser links a
determiner to a noun and this noun to a verb, then
we can use dominance but not qeq to represent that
the predicate introduced by the verb is outscoped
by the quantifier introduced by the determiner (see
earlier discussion). However, it is very straightfor-
ward to extend the syntax and semantics of the lan-
guage to include the qeq relation. This extension
adds a new atom X =q Y to Def. 1, and τ, α, g, σ
will satisfy X =q Y iff α(X)!∗α(Y ), each node
on the path is a quantifier, and each step in the path
goes to the rightmost child. All the above proposi-
tions about solved forms still hold if “dominance”
is replaced with “qeq”.

Furthermore, grammar developers such as those
in the DELPH-IN community typically adopt con-
ventions that restrict them to a fragment of the lan-
guage from Def. 1 (once qeq is added to it), or they
restrict attention to only a subset of the models
(e.g., ones with correctly bound variables, or ones
which don’t contain extra material like Fig. 2).
Our formalism provides a general framework into
which all these various fragments fit, and it’s a
matter of future work to explore these fragments
further.

Another feature of the existing RMRS literature
is that each term of an RMRS is equipped with a
sort. In particular, individual variables x, event
variables e and holes h are arranged together with
their subsorts (e.g., epast) and supersorts (e.g.,
sort i abstracts over x and e) into a sort hierar-
chy S. For simplicity we defined RMRS without
sorts, but it is straightforward to add them. For
this, one assumes that the signature Σ is sorted, i.e.
assigns a sort s1 × . . . sn → s to each constructor,
where n is the constructor’s arity (possibly zero)
and s, s1, . . . , sn ∈ S are atomic sorts. We restrict
the models of RMRS to trees that are well-sorted in
the usual sense, i.e. those in which we can infer a
sort for each subtree, and require that the variable
assignment functions likewise respect the sorts. If
we then modify Def. 6 such that the constructor p
of sufficiently high arity is also consistent with the
sorts of the known arguments—i.e., if p has sort
s1× . . .× sn → s and the RMRS contains an atom
ARG{k}(Y, i) and i is of sort s′, then s′ is a sub-
sort of sk—all the above propositions about solved
forms remain true.
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4 Future work

The above definitions serve an important theoret-
ical purpose: they formally underpin the use of
RMRS in practical systems. Next to the peace of
mind that comes with the use of a well-understood
formalism, we hope that the work reported here
will serve as a starting point for future research.

One direction to pursue from this paper is the
development of efficient solvers for RMRS. As a
first step, it would be interesting to define a practi-
cally useful fragment of RMRS with polynomial-
time satisfiability. Our definition is sufficiently
close to that of dominance constraints that we ex-
pect that it should be feasible to carry over the def-
inition of normal dominance constraints (Althaus
et al., 2003) to RMRS; neither the lexical ambigu-
ity of the node labels nor the separate specification
of predicates and arguments should make satisfia-
bility harder.

Furthermore, the above definition of RMRS pro-
vides new concepts which can help us phrase ques-
tions of practical grammar engineering in well-
defined formal terms. For instance, one crucial is-
sue in developing a hybrid system that combines
or compares the outputs of deep and shallow pro-
cessors is to determine whether the RMRSs pro-
duced by the two systems are compatible. In the
new formal terms, we can characterise compati-
bility of a more detailed RMRS ϕ (perhaps from a
deep grammar) and a less detailed RMRS ϕ′ sim-
ply as entailment ϕ |= ϕ′. If entailment holds,
this tells us that all claims that ϕ′ makes about the
semantic content of a sentence are consistent with
the claims that ϕ makes.

At this point, we cannot provide an efficient al-
gorithm for testing entailment of RMRS. However,
we propose the following novel syntactic charac-
terisation as a starting point for research along
those lines. We call an RMRS ϕ′ an extension of
the RMRS ϕ if ϕ′ contains all the EPs of ϕ and
D(ϕ′) ⊇ D(ϕ).

Proposition 4. Let ϕ,ϕ′ be two RMRSs. Then
ϕ |= ϕ′ iff for every solved form S of ϕ, there is a
solved form S′ of ϕ′ such that S is an extension of
S′.

Proof (sketch). “⇐” follows from Props. 1 and 2.
“⇒”: We construct a solved form for ϕ′ by

choosing a solved form for ϕ and appropriate sub-
stitutions for mapping the variables of ϕ and ϕ′

onto each other, and removing all atoms using

variables that don’t occur in ϕ′ . The hard part
is the proof that the result is a solved form of ϕ′;
this step involves proving that if ϕ |= ϕ′ with the
same variable assignments, then all EPs in ϕ′ also
occur in ϕ.

5 Conclusion

In this paper, we motivated and defined RMRS—a
semantic framework that has been used to repre-
sent, compare, and combine semantic information
computed from deep and shallow parsers. RMRS
is designed to be maximally flexible on the type
of semantic information that can be left under-
specified, so that the semantic output of a shallow
parser needn’t over-determine or under-determine
the semantics that can be extracted from the shal-
low syntactic analysis. Our key contribution was
to lay the formal foundations for a formalism that
is emerging as a standard in robust semantic pro-
cessing.

Although we have not directly provided new
tools for modelling or processing language, we
believe that a cleanly defined model theory for
RMRS is a crucial prerequisite for the future de-
velopment of such tools; this strategy was highly
successful for dominance constraints (Althaus et
al., 2003). We hope that future research will build
upon this paper to develop efficient algorithms and
implementations for solving RMRSs, performing
inferences that enrich RMRSs from shallow analy-
ses with deeper information, and checking consis-
tency of RMRSs that were obtained from different
parsers.
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Abstract
We propose a novel algorithm for extract-
ing dependencies from the derivations of
a large fragment of CCG. Unlike earlier
proposals, our dependency structures are
always tree-shaped. We then use these de-
pendency trees to compare the strong gen-
erative capacities of CCG and TAG and
obtain surprising results: Both formalisms
generate the same languages of derivation
trees – but the mechanisms they use to
bring the words in these trees into a linear
order are incomparable.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man (2001)) is an increasingly popular grammar
formalism. Next to being theoretically well-mo-
tivated due to its links to combinatory logic and
categorial grammar, it is distinguished by the avail-
ability of efficient open-source parsers (Clark and
Curran, 2007), annotated corpora (Hockenmaier
and Steedman, 2007; Hockenmaier, 2006), and
mechanisms for wide-coverage semantic construc-
tion (Bos et al., 2004).

However, there are limits to our understanding
of the formal properties of CCG and its relation
to other grammar formalisms. In particular, while
it is well-known that CCG belongs to a family of
mildly context-sensitive formalisms that all gener-
ate the same string languages (Vijay-Shanker and
Weir, 1994), there are few results about the strong
generative capacity of CCG. This makes it difficult
to gauge the similarities and differences between
CCG and other formalisms in how they model lin-
guistic phenomena such as scrambling and relat-
ive clauses (Hockenmaier and Young, 2008), and
hampers the transfer of algorithms from one form-
alism to another.

In this paper, we propose a new method for deriv-
ing a dependency tree from a CCG derivation tree

for PF-CCG, a large fragment of CCG. We then
explore the strong generative capacity of PF-CCG
in terms of dependency trees. In particular, we cast
new light on the relationship between CCG and
other mildly context-sensitive formalisms such as
Tree-Adjoining Grammar (TAG; Joshi and Schabes
(1997)) and Linear Context-Free Rewrite Systems
(LCFRS; Vijay-Shanker et al. (1987)). We show
that if we only look at valencies and ignore word
order, then the dependency trees induced by a PF-
CCG grammar form a regular tree language, just
as for TAG and LCFRS. To our knowledge, this is
the first time that the regularity of CCG’s deriva-
tional structures has been exposed. However, if we
take the word order into account, then the classes
of PF-CCG-induced and TAG-induced dependency
trees are incomparable; in particular, CCG-induced
dependency trees can be unboundedly non-project-
ive in a way that TAG-induced dependency trees
cannot.

The fact that all our dependency structures are
trees brings our approach in line with the emerging
mainstream in dependency parsing (McDonald et
al., 2005; Nivre et al., 2007) and TAG derivation
trees. The price we pay for restricting ourselves to
trees is that we derive fewer dependencies than the
more powerful approach by Clark et al. (2002). In-
deed, we do not claim that our dependencies are lin-
guistically meaningful beyond recording the way in
which syntactic valencies are filled. However, we
show that our dependency trees are still informative
enough to reconstruct the semantic representations.

The paper is structured as follows. In Section 2,
we introduce CCG and the fragment PF-CCG that
we consider in this paper, and compare our contri-
bution to earlier research. In Section 3, we then
show how to read off a dependency tree from a
CCG derivation. Finally, we explore the strong
generative capacity of CCG in Section 4 and con-
clude with ideas for future work.
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mer
np : we′ L

em Hans
np : Hans′ L

es huus
np : house′ L

hälfed
((s\np)\np)/vp : help′ L

aastriche
vp\np : paint′

L

((s\np)\np)\np : λx. help′(paint′(x))
F

(s\np)\np : help′ (paint′(house′))
B

s\np : help′ (paint′(house′)) Hans′ B

s : help′ (paint′(house′)) Hans′ we′ B

Figure 1: A PF-CCG derivation

2 Combinatory Categorial Grammars

We start by introducing the Combinatory Categorial
Grammar (CCG) formalism. Then we introduce
the fragment of CCG that we consider in this paper,
and discuss some related work.

2.1 CCG

Combinatory Categorial Grammar (Steedman,
2001) is a grammar formalism that assigns categor-
ies to substrings of an input sentence. There are
atomic categories such as s and np; and if A and B
are categories, then A\B and A/B are functional
categories representing a constituent that will have
category A once it is combined with another con-
stituent of type B to the left or right, respectively.
Each word is assigned a category by the lexicon;
adjacent substrings can then be combined by com-
binatory rules. As an example, Steedman and Bald-
ridge’s (2009) analysis of Shieber’s (1985) Swiss
German subordinate clause (das) mer em Hans es
huus hälfed aastriiche (‘(that) we help Hans paint
the house’) is shown in Figure 1.

Intuitively, the arguments of a functional cat-
egory can be thought of as the syntactic valencies
of the lexicon entry, or as arguments of a func-
tion that maps categories to categories. The core
combinatory mechanism underlying CCG is the
composition and application of these functions. In
their most general forms, the combinatory rules of
(forward and backward) application and compos-
ition can be written as in Figure 2. The symbol |
stands for an arbitrary (forward or backward) slash;
it is understood that the slash before each Bi above
the line is the same as below. The rules derive state-
ments about triples w ` A : f , expressing that the
substring w can be assigned the category A and the
semantic representation f ; an entire string counts
as grammatical if it can be assigned the start cat-
egory s. In parallel to the combination of substrings
by the combinatory rules, their semantic represent-
ations are combined by functional composition.

We have presented the composition rules of CCG
in their most general form. In the literature, the
special cases for n = 0 are called forward and
backward application; the cases for n > 0 where
the slash before Bn is the same as the slash be-
fore B are called composition of degree n; and
the cases where n > 0 and the slashes have dif-
ferent directions are called crossed composition of
degree n. For instance, the F application that com-
bines hälfed and aastriche in Figure 1 is a forward
crossed composition of degree 1.

2.2 PF-CCG

In addition to the composition rules introduced
above, CCG also allows rules of substitution and
type-raising. Substitution is used to handle syn-
tactic phenomena such as parasitic gaps; type-rais-
ing allows a constituent to serve syntactically as a
functor, while being used semantically as an argu-
ment. Furthermore, it is possible in CCG to restrict
the instances of the rule schemata in Figure 2—for
instance, to say that the application rule may only
be used for the case A = s. We call a CCG gram-
mar pure if it does not use substitution, type-raising,
or restricted rule schemata. Finally, the argument
categories of a CCG category may themselves be
functional categories; for instance, the category of
a VP modifier like passionately is (s\np)\(s\np).
We call a category that is either atomic or only has
atomic arguments a first-order category, and call a
CCG grammar first-order if all categories that its
lexicon assigns to words are first-order.

In this paper, we only consider CCG grammars
that are pure and first-order. This fragment, which
we call PF-CCG, is less expressive than full CCG,
but it significantly simplifies the definitions in Sec-
tion 3. At the same time, many real-world CCG
grammars do not use the substitution rule, and type-
raising can be compiled into the grammar in the
sense that for any CCG grammar, there is an equi-
valent CCG grammar that does not use type-raising
and assigns the same semantic representations to
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(a,A, f) is a lexical entry

a ` A : f
L

v ` A/B : λx. f(x) w ` B |Bn | . . . |B1 : λy1, . . . , yn. g(y1, . . . , yn)
vw ` A |Bn | . . . |B1 : λy1, . . . , yn. f(g(y1, . . . , yn))

F

v ` B |Bn | . . . |B1 : λy1, . . . , yn. g(y1, . . . , yn) w ` A\B : λx. f(x)
vw ` A |Bn | . . . |B1 : λy1, . . . , yn. f(g(y1, . . . , yn))

B

Figure 2: The generalized combinatory rules of CCG

each string. On the other hand, the restriction to
first-order grammars is indeed a limitation in prac-
tice. We take the work reported here as a first step
towards a full dependency-tree analysis of CCG,
and discuss ideas for generalization in the conclu-
sion.

2.3 Related work

The main objective of this paper is the definition
of a novel way in which dependency trees can
be extracted from CCG derivations. This is sim-
ilar to Clark et al. (2002), who aim at capturing
‘deep’ dependencies, and encode these into annot-
ated lexical categories. For instance, they write
(npi\npi)/(s\npi) for subject relative pronouns to
express that the relative pronoun, the trace of the
relative clause, and the modified noun phrase are
all semantically the same. This means that the rel-
ative pronoun has multiple parents; in general, their
dependency structures are not necessarily trees. By
contrast, we aim to extract only dependency trees,
and achieve this by recording only the fillers of syn-
tactic valencies, rather than the semantic dependen-
cies: the relative pronoun gets two dependents and
one parent (the verb whose argument the modified
np is), just as the category specifies. So Clark et
al.’s and our dependency approach represent two
alternatives of dealing with the tradeoff between
simple and expressive dependency structures.

Our paper differs from the well-known results
of Vijay-Shanker and Weir (1994) in that they es-
tablish the weak equivalence of different grammar
formalisms, while we focus on comparing the deriv-
ational structures. Hockenmaier and Young (2008)
present linguistic motivations for comparing the
strong generative capacities of CCG and TAG, and
the beginnings of a formal comparison between
CCG and spinal TAG in terms of Linear Indexed
Grammars.

3 Induction of dependency trees

We now explain how to extract a dependency tree
from a PF-CCG derivation. The basic idea is to
associate, with every step of the derivation, a cor-
responding operation on dependency trees, in much
the same way as derivation steps can be associated
with operations on semantic representations.

3.1 Dependency trees
When talking about a dependency tree, it is usually
convenient to specify its tree structure and the lin-
ear order of its nodes separately. The tree structure
encodes the valency structure of the sentence (im-
mediate dominance), whereas the linear precedence
of the words is captured by the linear order.

For the purposes of this paper, we represent a
dependency tree as a pair d = (t, s), where t is a
ground term over some suitable alphabet, and s is
a linearization of the nodes (term addresses) of t,
where by a linearization of a set S we mean a list of
elements of S in which each element occurs exactly
once (see also Kuhlmann and Möhl (2007)). As
examples, consider

(f(a, b), [1, ε, 2]) and (f(g(a)), [1 · 1, ε, 1]) .

These expressions represent the dependency trees

d1 =
a f b

and d2 =
a f g

.

Notice that it is because of the separate specifica-
tion of the tree and the order that dependency trees
can become non-projective; d2 is an example.

A partial dependency tree is a pair (t, s) where t
is a term that may contain variables, and s is a
linearization of those nodes of t that are not labelled
with variables. We restrict ourselves to terms in
which each variable appears exactly once, and will
also prefix partial dependency trees with λ-binders
to order the variables.
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e = (a,A |Am · · · |A1) is a lexical entry

a ` A |Am · · · |A1 : λx1, . . . , xm. (e(x1, . . . , xm), [ε])
L

v ` A |Am · · · |A1/B : λx, x1, . . . , xm. d w ` B |Bn · · · |B1 : λy1, . . . , yn. d
′

vw ` A |Am · · · |A1 |Bn · · · |B1 : λy1, . . . , yn, x1, . . . , xm. d[x := d′ ]F
F

w ` B |Bn · · · |B1 : λy1, . . . , yn. d
′ v ` A |Am · · · |A1\B : λx, x1, . . . , xm. d

wv ` A |Am · · · |A1 |Bn · · · |B1 : λy1, . . . , yn, x1, . . . , xm. d[x := d′ ]B
B

Figure 3: Computing dependency trees in CCG derivations

3.2 Operations on dependency trees
Let t be a term, and let x be a variable in t. The
result of the substitution of the term t′ into t for x
is denoted by t[x := t′ ]. We extend this opera-
tion to dependency trees as follows. Given a list
of addresses s, let xs be the list of addresses ob-
tained from s by prefixing every address with the
address of the (unique) node that is labelled with x
in t. Then the operations of forward and backward
concatenation are defined as

(t, s)[x := (t′, s′) ]F = (t[x := t′ ], s · xs′) ,
(t, s)[x := (t′, s′) ]B = (t[x := t′ ], xs′ · s) .

The concatenation operations combine two given
dependency trees (t, s) and (t′, s′) into a new tree
by substituting t′ into t for some variable x of t,
and adding the (appropriately prefixed) list s′ of
nodes of t′ either before or after the list s of nodes
of t. Using these two operations, the dependency
trees d1 and d2 from above can be written as fol-
lows. Let da = (a, [ε]) and db = (b, [ε]).

d1 = (f(x, y), [ε])[x := da ]F [ y := db ]F
d2 = (f(x), [ε])[x := (g(y), [ε]) ]F [ y := da ]B

Here is an alternative graphical notation for the
composition of d2:

f g
y

264 y :=

a

375
B

=

a f g

In this notation, nodes that are not marked with
variables are positioned (indicated by the dotted
projection lines), while the (dashed) variable nodes
dangle unpositioned.

3.3 Dependency trees for CCG derivations
To encode CCG derivations as dependency trees,
we annotate each composition rule of PF-CCG with

instructions for combining the partial dependency
trees for the substrings into a partial dependency
tree for the larger string. Essentially, we now com-
bine partial dependency trees using forward and
backward concatenation rather than combining se-
mantic representations by functional composition
and application. From now on, we assume that the
node labels in the dependency trees are CCG lex-
icon entries, and represent these by just the word
in them.

The modified rules are shown in Figure 3. They
derive statements about triples w ` A : p, where w
is a substring, A is a category, and p is a lambda
expression over a partial dependency tree. Each
variable of p corresponds to an argument category
in A, and vice versa. Rule L covers the base case:
the dependency tree for a lexical entry e is a tree
with one node for the item itself, labelled with e,
and one node for each of its syntactic arguments,
labelled with a variable. Rule F captures forward
composition: given two dependency trees d and d′,
the new dependency tree is obtained by forward
concatenation, binding the outermost variable in d.
Rule B is the rule for backward composition. The
result of translating a complete PF-CCG derivation
δ in this way is always a dependency tree without
variables; we call it d(δ).

As an example, Figure 4 shows the construc-
tion for the derivation in Figure 1. The induced
dependency tree looks like this:

mer em Hans es huus hälfed aastriche

For instance, the partial dependency tree for the
lexicon entry of aastriiche contains two nodes: the
root (with address ε) is labelled with the lexicon
entry, and its child (address 1) is labelled with the
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mer
(mer, [ε])

L

em Hans
(Hans, [ε])

L

es huus
(huus, [ε])

L

hälfed
λx, y, z. (hälfed(x, y, z), [ε])

L
aastriiche

λw. (aastriiche(w), [ε])
L

λw, y, z. (hälfed(aastriiche(w), y, z), [ε, 1])
F

λy, z. (hälfed(aastriiche(huus), y, z), [11, ε, 1])
B

λz. (hälfed(aastriiche(huus),Hans, z), [2, 11, ε, 1])
B

(hälfed(aastriiche(huus),Hans,mer), [3, 2, 11, ε, 1])
B

Figure 4: Computing a dependency tree for the derivation in Figure 1

variable x. This tree is inserted into the tree from
hälfed by forward concatenation. The variable w is
passed on into the new dependency tree, and later
filled by backward concatenation to huus. Passing
the argument slot of aastriiche to hälfed to be filled
on its left creates a non-projectivity; it corresponds
to a crossed composition in CCG terms. Notice
that the categories derived in Figure 1 mirror the
functional structure of the partial dependency trees
at each step of the derivation.

3.4 Semantic equivalence

The mapping from derivations to dependency trees
loses some information: different derivations may
induce the same dependency tree. This is illus-
trated by Figure 5, which provides two possible
derivations for the phrase big white rabbit, both
of which induce the same dependency tree. Espe-
cially in light of the fact that our dependency trees
will typically contain fewer dependencies than the
DAGs derived by Clark et al. (2002), one could ask
whether dependency trees are an appropriate way
of representing the structure of a CCG derivation.

However, at the end of the day, the most import-
ant information that can be extracted from a CCG
derivation is the semantic representation it com-
putes; and it is possible to reconstruct the semantic
representation of a derivation δ from d(δ) alone. If
we forget the word order information in the depend-
ency trees, the rules F and B in Figure 3 are merely
η-expanded versions of the semantic construction
rules in Figure 2. This means that d(δ) records
everything we need to know about constructing the
semantic representation: We can traverse it bottom-
up and apply the lexical semantic representation
of each node to those of its subterms. So while
the dependency trees obliterate some information
in the CCG derivations (particularly its associative
structure), they are indeed appropriate represent-
ations because they record all syntactic valencies
and encode enough information to recompute the
semantics.

4 Strong generative capacity

Now that we know how to see PF-CCG derivations
as dependency trees, we can ask what sets of such
trees can be generated by PF-CCG grammars. This
is the question about the strong generative capa-
city of PF-CCG, measured in terms of dependency
trees (Miller, 2000). In this section, we give a
partial answer to this question: We show that the
sets of PF-CCG-induced valency trees (dependency
trees without their linear order) form regular tree
languages, but that the sets of dependency trees
themselves are irregular. This is in contrast to other
prominent mildly context-sensitive grammar form-
alisms such as Tree Adjoining Grammar (TAG;
Joshi and Schabes (1997)) and Linear Context-
Free Rewrite Systems (LCFRS; Vijay-Shanker et
al. (1987)), in which both languages are regular.

4.1 CCG term languages
Formally, we define the language of all dependency
trees generated by a PF-CCG grammar G as the set

LD(G) = { d(δ) | δ is a derivation of G } .

Furthermore, we define the set of valency trees to
be the set of just the term parts of each d(δ):

LV (G) = { t | (t, s) ∈ LD(G) } .

By our previous assumption, the node labels of a
valency tree are CCG lexicon entries.

We will now show that the valency tree lan-
guages of PF-CCG grammars are regular tree lan-
guages (Gécseg and Steinby, 1997). Regular tree
languages are sets of trees that can be generated
by regular tree grammars. Formally, a regular tree
grammar (RTG) is a construct Γ = (N,Σ, S, P ),
where N is an alphabet of non-terminal symbols,
Σ is an alphabet of ranked term constructors called
terminal symbols, S ∈ N is a distinguished start
symbol, and P is a finite set of production rules of
the form A → γ, where A ∈ N and γ is a term
over Σ and N , where the nonterminals can be used
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big
np/np

white
np/np

np/np

rabbit
np

np big white rabbit

big
np/np

white
np/np

rabbit
np

np/np

np

Figure 5: Different derivations may induce the same dependency tree

as constants. The grammar Γ generates trees from
the start symbol by successively expanding occur-
rences of nonterminals using production rules. For
instance, the grammar that contains the productions
S → f(A,A), A → g(A), and A → a generates
the tree language { f(gm(a), gn(a)) | m,n ≥ 0 }.

We now construct an RTG Γ (G) that generates
the set of valency trees of a PF-CCG G. For the
terminal alphabet, we choose the lexicon entries:
If e = (a,A | B1 . . . | Bn, f) is a lexicon entry of
G, we take e as an n-ary term constructor. We also
take the atomic categories of G as our nonterminal
symbols; the start category s of G counts as the
start symbol. Finally, we encode each lexicon entry
as a production rule: The lexicon entry e above
encodes to the rule A→ e(Bn, . . . , B1).

Let us look at our running example to see how
this works. Representing the lexicon entries as just
the words for brevity, we can write the valency tree
corresponding to the CCG derivation in Figure 4
as t0 = hälfed(aastriiche(huus),Hans,mer); here
hälfed is a ternary constructor, aastriiche is unary,
and all others are constants. Taking the lexical
categories into account, we obtain the RTG with

s→ hälfed(vp, np, np)
vp→ aastriiche(np)
np→ huus | Hans | mer

This grammar indeed generates t0, and all other
valency trees induced by the sample grammar.

More generally, LV (G) ⊆ L(Γ (G)) because
the construction rules in Figure 3 ensure that if
a node v becomes the i-th child of a node u in
the term, then the result category of v’s lexicon
entry equals the i-th argument category of u’s lex-
icon entry. This guarantees that the i-th nonter-
minal child introduced by the production for u can
be expanded by the production for v. The con-
verse inclusion can be shown by reconstructing,
for each valency tree t, a CCG derivation δ that
induces t. This construction can be done by ar-
ranging the nodes in t into an order that allows
us to combine every parent in t with its children
using only forward and backward application. The

CCG derivation we obtain for the example is shown
in Figure 6; it is a derivation for the sentence
das mer em Hans hälfed es huus aastriiche, using
the same lexicon entries. Together, this shows that
L(Γ (G)) = LV (G). Thus:

Theorem 1 The sets of valency trees generated by
PF-CCG are regular tree languages. 2

By this result, CCG falls in line with context-free
grammars, TAG, and LCFRS, whose sets of deriva-
tional structures are all regular (Vijay-Shanker et
al., 1987). To our knowledge, this is the first time
the regular structure of CCG derivations has been
exposed. It is important to note that while CCG
derivations themselves can be seen as trees as well,
they do not always form regular tree languages
(Vijay-Shanker et al., 1987). Consider for instance
the CCG grammar from Vijay-Shanker and Weir’s
(1994) Example 2.4, which generates the string lan-
guage anbncndn; Figure 7 shows the derivation of
aabbccdd. If we follow this derivation bottom-up,
starting at the first c, the intermediate categories
collect an increasingly long tail of\a arguments; for
longer words from the language, this tail becomes
as long as the number of cs in the string. The in-
finite set of categories this produces translates into
the need for an infinite nonterminal alphabet in an
RTG, which is of course not allowed.

4.2 Comparison with TAG
If we now compare PF-CCG to its most promin-
ent mildly context-sensitive cousin, TAG, the reg-
ularity result above paints a suggestive picture: A
PF-CCG valency tree assigns a lexicon entry to
each word and says which other lexicon entry fills
each syntactic valency. In this respect, it is the
analogue of a TAG derivation tree (in which the
lexicon entries are elementary trees), and we just
saw that PF-CCG and TAG generate the same tree
languages. On the other hand, CCG and TAG are
weakly equivalent (Vijay-Shanker and Weir, 1994),
i.e. they generate the same linear word orders. So
one could expect that CCG and TAG also induce
the same dependency trees. Interestingly, this is
not the case.
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mer
np

L

em Hans
np

L

hälfed
s\np\np/vp

L

es huus
np

L
aastriiche

vp\np
L

vp
B

s\np\np
F

s\np
B

s
B

Figure 6: CCG derivation reconstructed from the dependency tree from Figure 4 using only applications

We know from the literature that those depend-
ency trees that can be constructed from TAG deriva-
tion trees are exactly those that are well-nested and
have a block-degree of at most 2 (Kuhlmann and
Möhl, 2007). The block-degree of a node u in a de-
pendency tree is the number of ‘blocks’ into which
the subtree below u is separated by intervening
nodes that are not below u, and the block-degree
of a dependency tree is the maximum block-degree
of its nodes. So for instance, the dependency tree
on the right-hand side of Figure 8 has block-degree
two. It is also well-nested, and can therefore be
induced by TAG derivations.

Things are different for the dependency trees that
can be induced by PF-CCG. Consider the left-hand
dependency tree in Figure 8, which is induced by
a PF-CCG derivation built from words with the
lexical categories a/a, b\a, b\b, and a. While
this dependency tree is well-nested, it has block-
degree three: The subtree below the leftmost node
consists of three parts. More generally, we can in-
sert more words with the categories a/a and b\b
in the middle of the sentence to obtain depend-
ency trees with arbitrarily high block-degrees from
this grammar. This means that unlike for TAG-
induced dependency trees, there is no upper bound
on the block-degree of dependency trees induced
by PF-CCG—as a consequence, there are CCG
dependency trees that cannot be induced by TAG.

On the other hand, there are also dependency
trees that can be induced by TAG, but not by PF-
CCG. The tree on the right-hand side of Figure 8
is an example. We have already argued that this
tree can be induced by a TAG. However, it con-
tains no two adjacent nodes that are connected by

a/a b\a a/a b\b a b\b 1 2 3 4

Figure 8: The divergence between CCG and TAG

an edge; and every nontrivial PF-CCG derivation
must combine two adjacent words at least at one
point during the derivation. Therefore, the tree
cannot be induced by a PF-CCG grammar. Further-
more, it is known that all dependency languages
that can be generated by TAG or even, more gener-
ally, by LCRFS, are regular in the sense of Kuhl-
mann and Möhl (2007). One crucial property of
regular dependency languages is that they have a
bounded block-degree; but as we have seen, there
are PF-CCG dependency languages with unboun-
ded block-degree. Therefore there are PF-CCG
dependency languages that are not regular. Hence:
Theorem 2 The sets of dependency trees gener-
ated by PF-CCG and TAG are incomparable. 2

We believe that these results will generalize to
full CCG. While we have not yet worked out the
induction of dependency trees from full CCG, the
basic rule that CCG combines adjacent substrings
should still hold; therefore, every CCG-induced
dependency tree will contain at least one edge
between adjacent nodes. We are thus left with
a very surprising result: TAG and CCG both gener-
ate the same string languages and the same sets of
valency trees, but they use incomparable mechan-
isms for linearizing valency trees into sentences.

4.3 A note on weak generative capacity
As a final aside, we note that the construction for
extracting purely applicative derivations from the
terms described by the RTG has interesting con-
sequences for the weak generative capacity of PF-
CCG. In particular, it has the corollary that for any
PF-CCG derivation δ over a string w, there is a per-
mutation of w that can be accepted by a PF-CCG
derivation that uses only application—that is, every
string language L that can be generated by a PF-
CCG grammar has a context-free sublanguage L′

such that all words in L are permutations of words
in L′.

This means that many string languages that we
commonly associate with CCG cannot be generated
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L
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L
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L

b
b

L
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s\a\a\b F

s\a\a B
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d
d

L

s\a F

s/d
B

d
d

L

s
F

Figure 7: The CCG derivation of aabbccdd using Example 2.4 in Vijay-Shanker and Weir (1994)

by PF-CCG. One such language is anbncndn. This
language is not itself context-free, and therefore
any PF-CCG grammar whose language contains it
also contains permutations in which the order of
the symbols is mixed up. The culprit for this among
the restrictions that distinguish PF-CCG from full
CCG seems to be that PF-CCG grammars must
allow all instances of the application rules. This
would mean that the ability of CCG to generate non-
context-free languages (also linguistically relevant
ones) hinges crucially on its ability to restrict the
allowable instances of rule schemata, for instance,
using slash types (Baldridge and Kruijff, 2003).

5 Conclusion

In this paper, we have shown how to read deriva-
tions of PF-CCG as dependency trees. Unlike pre-
vious proposals, our view on CCG dependencies
is in line with the mainstream dependency parsing
literature, which assumes tree-shaped dependency
structures; while our dependency trees are less in-
formative than the CCG derivations themselves,
they contain sufficient information to reconstruct
the semantic representation. We used our new de-
pendency view to compare the strong generative
capacity of PF-CCG with other mildly context-
sensitive grammar formalisms. It turns out that
the valency trees generated by a PF-CCG grammar
form regular tree languages, as in TAG and LCFRS;
however, unlike these formalisms, the sets of de-
pendency trees including word order are not regular,
and in particular can be more non-projective than
the other formalisms permit. Finally, we found
new formal evidence for the importance of restrict-
ing rule schemata for describing non-context-free
languages in CCG.

All these results were technically restricted to
the fragment of PF-CCG, and one focus of future

work will be to extend them to as large a fragment
of CCG as possible. In particular, we plan to extend
the lambda notation used in Figure 3 to cover type-
raising and higher-order categories. We would then
be set to compare the behavior of wide-coverage
statistical parsers for CCG with statistical depend-
ency parsers.

We anticipate that our results about the strong
generative capacity of PF-CCG will be useful to
transfer algorithms and linguistic insights between
formalisms. For instance, the CRISP generation
algorithm (Koller and Stone, 2007), while specified
for TAG, could be generalized to arbitrary gram-
mar formalisms that use regular tree languages—
given our results, to CCG in particular. On the
other hand, we find it striking that CCG and TAG
generate the same string languages from the same
tree languages by incomparable mechanisms for
ordering the words in the tree. Indeed, the exact
characterization of the class of CCG-inducable de-
pendency languages is an open issue. This also
has consequences for parsing complexity: We can
understand why TAG and LCFRS can be parsed in
polynomial time from the bounded block-degree
of their dependency trees (Kuhlmann and Möhl,
2007), but CCG can be parsed in polynomial time
(Vijay-Shanker and Weir, 1990) without being re-
stricted in this way. This constitutes a most inter-
esting avenue of future research that is opened up
by our results.
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Abstract

In this paper, we present a novel approach
to integrate speech recognition and rule-
based machine translation by lattice pars-
ing. The presented approach is hybrid
in two senses. First, it combines struc-
tural and statistical methods for language
modeling task. Second, it employs a
chart parser which utilizes manually cre-
ated syntax rules in addition to scores ob-
tained after statistical processing during
speech recognition. The employed chart
parser is a unification-based active chart
parser. It can parse word graphs by using a
mixed strategy instead of being bottom-up
or top-down only. The results are reported
based on word error rate on the NIST
HUB-1 word-lattices. The presented ap-
proach is implemented and compared with
other syntactic language modeling tech-
niques.

1 Introduction

The integration of speech and language technolo-
gies plays an important role in speech to text
translation. This paper describes a unification-
based active chart parser and how it is utilized
for language modeling in speech recognition or
speech translation. The fundamental idea behind
the proposed solution is to combine the strengths
of unification-based chart parsing and statistical
language modeling. In the solution, all sentence
hypotheses, which are represented in word-lattice
format at the end of automatic speech recognition
(ASR), are parsed simultaneously. The chart is
initialized with the lattice and it is processed un-
til the first sentence hypothesis is selected by the

parser. The parser also utilizes the scores assigned
to words during the speech recognition process.
This leads to a hybrid solution.

An important benefit of this approach is that it
allows one to make use of the available grammars
and parsers for language modeling task. So as to
be used for this task, syntactic analyzer compo-
nents developed for a rule-based machine trans-
lation (RBMT) system are modified. In speech
translation (ST), this approach leads to a perfect
integration of the ASR and RBMT components.
Language modeling effort in ASR and syntac-
tic analysis effort in RBMT are overlapped and
merged into a single task. Its advantages are
twofold. First, this allows us to avoid unnecessary
duplication of similar jobs. Secondly, by using the
available components, we avoid the difficulty of
building a syntactic language model all from the
beginning.

There are two basic methods that are being
used to integrate ASR and rule-based MT systems:
First-best method and the N-best list method. Both
techniques are motivated from a software engi-
neering perspective. In the First-best approach
(Figure 1.a), the ASR module sends a single rec-
ognized text to the MT component to translate.
Any ambiguity existing in the recognition process
is resolved inside the ASR. In contrast to the First-
best approach, in the N-best List approach (Figure
1.b); the ASR outputs N possible recognition hy-
potheses to be evaluated by the MT component.
The MT picks the first hypothesis and translates it
if it is grammatically correct. Otherwise, it moves
to the second hypothesis and so on. If none of the
available hypotheses are syntactically correct, then
it translates the first one.

We propose a new method to couple ASR and
rule-based MT system as an alternative to the ap-
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proaches mentioned above. Figure 1 represents
the two currently in-use coupling methods fol-
lowed by the new approach we introduce (Fig-
ure 1.c). In the newly proposed technique, which
we call the N-best word graph approach, the ASR
module outputs a word graph containing all N-best
hypotheses. The MT component parses the word
graph, thus, all possible hypotheses at one time.

c)

Speech

Speech

Recognizer

Recognizer

Speech

Recognizer

Rule−based

MT

Rule−based

Rule−based

MT

MT

Target Text

Target Text

Target Text

Recognized Text

1. Recognized Text

N. Recognized Text
...

a)

b)

Figure 1: ASR and rule-based MT coupling: a)
First-best b) N-best list c) N-best word graph.

While integrating the SR system with the rule-
based MT system, this study uses word graphs
and chart parsing with new extensions. Parsing of
word lattices has been a topic of research over the
past decade. The idea of chart parsing the word
graph in SR systems has been previously used
in different studies in order to resolve ambigu-
ity. Tomita (1986) introduced the concept of word-
lattice parsing for the purpose of speech recogni-
tion and used an LR parser. Next, Paeseler (1988)
used a chart parser to process word-lattices. How-
ever, to the best of our knowledge, the specific
method for chart parsing a word graph introduced
in this paper has not been previously used for cou-
pling purposes.

Recent studies point out the importance of uti-
lizing word graphs in speech tasks (Dyer et al.,
2008). Previous work on language modeling can
be classified according to whether a system uses
purely statistical methods or whether it uses them
in combination with syntactic methods. In this pa-
per, the focus is on systems that contain syntactic
approaches. In general, these language modeling
approaches try to parse the ASR output in word-
lattice format in order to choose the most prob-
able hypothesis. Chow and Roukos (1989) used
a unification-based CYK parser for the purpose of
speech understanding. Chien et al. (1990) and We-
ber (1994) utilized probabilistic context free gram-

mars in conjunction with unification grammars to
chart-parse a word-lattice. There are various dif-
ferences between the work of Chien et al. (1990)
and Weber (1994) and the work presented in this
paper. First, in the previously mentioned studies,
the chart is populated with the same word graph
that comes from the speech recognizer without any
pruning, whereas in our approach the word graph
is reduced to an acceptable size. Otherwise, the
efficiency becomes a big challenge because the
search space introduced by a chart with over thou-
sands of initial edges can easily be beyond current
practical limits. Another important difference in
our approach is the modification of the chart pars-
ing algorithm to eliminate spurious parses.

Ney (1991) deals with the use of probabilis-
tic CYK parser for continous speech recognition
task. Stolcke (1995) summarizes extensively their
approach to utilize probabilistic Earley parsing.
Chappelier et al. (1999) gives an overview of dif-
ferent approaches to integrate linguistic models
into speech recognition systems. They also re-
search various techniques of producing sets of hy-
potheses that contain more “semantic” variabil-
ity than the commonly used ones. Some of the
recent studies about structural language model-
ing extract a list of N-best hypotheses using an
N-gram and then apply structural methods to de-
cide on the best hypothesis (Chelba, 2000; Roark,
2001). This contrasts with the approach presented
in this study where, instead of a single sentence,
the word-lattice is parsed. Parsing all sentence hy-
potheses simultaneously enables a reduction in the
number of edges produced during the parsing pro-
cess. This is because the shared word hypothe-
ses are processed only once compared to the N-
best list approach, where the shared words are pro-
cessed each time they occur in a hypothesis. Sim-
ilar to the current work, other studies parse the
whole word-lattice without extracting a list (Hall,
2005). A significant distinction between the work
of Hall (2005) and our study is the parsing algo-
rithm. In contrast to our chart parsing approach
augmented by unification based feature structures,
Charniak parser is used in Hall (2005)’s along with
PCFG.

The rest of the paper is organized as follows:
In the following section, an overview of the pro-
posed language model is presented. Next, in Sec-
tion 3, the parsing process of the word-lattice is
described in detail. Section 4 describes the exper-
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iments and reports the obtained results. Finally,
Section 5 concludes the paper.

2 Hybrid language modeling

The general architecture of the system is depicted
in Figure 2. The HTK toolkit (Woodland, 2000)
word-lattice file format is used as the default file
format in the proposed solution. The word-lattice
output from ASR is converted into a finite state
machine (FSM). This conversion enables us to
benefit from standard theory and algorithms on
FSMs. In the converted FSM, non-determinism is
removed and it is minimized by eliminating redun-
dant nodes and arcs. Next, the chart is initialized
with the deterministic and minimal FSM. Finally,
this chart is used in the structural analysis.

Selected Hypothesis

ASR

Morphological Analysis

FSM Conversion

Minimization

Initialization

Chart Parsing

Word Graph

FSM

Minimized FSM

Initial Chart

Chart w/ feature structures

LexiconMorphology Rules

Syntax Rules

Speech

Figure 2: The hybrid language model architecture.

Structural analysis of the word-lattice is accom-
plished in two consecutive tasks. First, morpho-
logical analysis is performed on the word level and
any information carried by the word is extracted
to be used in the following stages. Second, syn-
tactic analysis is performed on the sentence level.
The syntactic analyzer consists of a chart parser in
which the rules modeling the language grammar
are augmented with functional expressions.

3 Word Graph Processing

The word graphs produced by an ASR are beyond
the limits of a unification-based chart parser. A
small-sized lattice from the NIST HUB-1 data set
(Pallett et al., 1994) can easily contain a couple of
hundred states and more than one thousand arcs.

The largest lattice in the same data set has 25 000
states and almost 1 million arcs. No unification-
based chart parser is capable of coping with an in-
put of this size. It is unpractical and unreasonable
to parse the lattice in the same form as it is output
from the ASR. Instead, the word graph is pruned
to a reasonable size so that it can be parsed accord-
ing to acceptable time and memory limitations.

3.1 Word graph to FSM conversion

The pruning process starts by converting the time-
state lattice to a finite state machine. This way,
algorithms and data structures for FSMs are uti-
lized in the following processing steps. Each word
in the time-state lattice corresponds to a state node
in the new FSM. The time slot information is also
dropped in the recently built automata. The links
between the words in the lattice are mapped as the
FSM arcs.

In the original representation, the word labels
in the time-state lattices are on the nodes, and the
acoustic scores and the statistical language model
scores are on the arcs. Similarly, the words are
also on the nodes. This representation does not fit
into the chart definition where the words are on
the arcs. Therefore, the FSM is converted to an
arc labeled FSM. The conversion is accomplished
by moving back the word label on a state to the
incoming arcs. The weights on the arcs represent
the negative logarithms of probabilities. In order
to find the weight of a path in the FSM, all weights
on the arcs existing on that path are added up.

The resulting FSM contains redundant arcs that
are inherited from the word graph. Many arcs cor-
respond to the same word with a different score.
The FSM is nondeterministic because, at a given
state, there are different alternative arcs with the
same word label. Before parsing the converted
FSM, it is essential to find an equivalent finite au-
tomata that is deterministic and that has as few
nodes as possible. This way, the work necessary
during parsing is reduced and efficient processing
is ensured.

The minimization process serves to shrink down
the FSM to an equivalent automata with a suitable
size for parsing. However, it is usually the case
that the size is not small enough to meet the time
and memory limitations in parsing. N-best list se-
lection can be regarded as the last step in constrict-
ing the size. A subset of possible hypotheses is se-
lected among many that are contained in the mini-
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mized FSM. The selection mechanism favors only
the best hypotheses according to the scores present
in the FSM arcs.

3.2 Chart parsing
The parsing engine implemented for this work is
an active chart parser similar to the one described
in Kay (1986). The language grammar that is pro-
cessed by the parser can be designed top-down,
bottom-up or in a combined manner. It employs
an agenda to store the edges prior to inserting to
the chart. Edges are defined to be either complete
or incomplete. Incomplete edges describe the rule
state where one or more syntactic categories are
expected to be matched. An incomplete edge be-
comes complete if all syntactic categories on the
right-hand-side of the rule are matched.

Parsing starts from the rules that are associ-
ated to the lexical entries. This corresponds to
the bottom-up parsing strategy. Moreover, pars-
ing also starts from the rules that build the final
symbol in the grammar. This corresponds to the
top-down parsing strategy. Bottom-up rules and
top-down rules differ in that the former contains
a non-terminal that is marked as the trigger or
central element on the left-hand-side of the rule.
This central element is the starting point for the
execution of the bottom-up rule. After the cen-
tral element is matched, the extension continues
in a bidirectional manner to complete the missing
constituents. Bottom-up incomplete edges are de-
scribed with double-dotted rules to keep track of
the beginning and end of the matched fragment.

The anticipated edges are first inserted into the
agenda. Edges popped out from the agenda are
processed with the fundamental rule of chart pars-
ing. The agenda allows the reorganization of the
edge processing order. After the application of the
fundamental rule, new edges are predicted accord-
ing to either bottom-up or top-down parsing strat-
egy. This strategy is determined by how the cur-
rent edge has been created.

3.3 Chart initialization
The chart initialization procedure creates from an
input FSM, which is derived from the ASR word
lattice, a valid chart that can be parsed in an active
chart parser. The initialization starts with filling
in the distance value for each node. The distance
of a node in the FSM is defined as the number of
nodes on the longest path from the start state to
the current state. After the distance value is set

for all nodes in the FSM, an edge is created for
each arc. The edge structure contains the start and
end values in addition to the weight and label data
fields. These position values represent the edge
location relative to the beginning of the chart. The
starting and ending node information for the arc is
also copied to the edge. This node information is
later utilized in chart parsing to eliminate spurious
parses. The number of edges in the chart equals to
the number of edges in the input FSM at the end
of initialization.

Consider the simple FSM F1 depicted in Fig-
ure 3, the corresponding two-dimensional chart
and the related hypotheses. The chart is populated
with the converted word graph before parsing be-
gins. Words in the same column can be regarded
as a single lexical entry with different senses (e.g.,
‘boy’ and ‘boycott’ in column 2). Words span-
ning more than one column can be regarded as id-
iomatic entries (e.g. ‘escalated’ from column 3
to 5). Merged cells in the chart (e.g., ‘the’ and
‘yesterday’ at columns 1 and 6, respectively) are
shared in both sentence hypotheses.

F1:

0 1the

2boycott

3

escalated

4
yesterday

5
boy

6
goes

7to
school

Chart:
0 1 2 3 4 5 6

0 the 1
1 boy 5 5 goes 6 6 to 7 7 school 3

3 yesterday 4
1 boycott 2 2 escalated 3

Hypotheses:

• The boy goes to school yesterday

• The boycott escalated yesterday

Figure 3: Sample FSM F4, the corresponding
chart and the hypotheses.

3.4 Extended Chart Parsing

In a standard active chart parser, the chart depicted
in Figure 3 could produce some spurious parses.
For example, both of the complete edges in the ini-
tial chart at location [1-2] (i.e. ‘boy’ and ‘boycott)
can be combined with the word ‘goes’, although
‘boycott goes’ is not allowed in the original word
graph. We have eliminated these kinds of spuri-
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ous parses by making use of the arcstart and ar-
cfinish values. These labels indicate the starting
and ending node identifiers of the path spanned by
the edge in subject. The application of this idea
is illustrated in Figure 4. Different from the orig-
inal implementation of the fundamental rule, the
procedure has the additional parameters to define
starting and ending node identifiers. Before creat-
ing a new incomplete edge, it is checked whether
the node identifiers match or not.

When we consider the chart given in Figure 3,
‘1 boycott 2’ and ‘5 goes 6’ cannot be combined ac-
cording to the new fundamental rule in a parse
tree because the ending node id, i.e. 2, of the for-
mer does not match the starting node id, i.e. 5,
of the latter. In another example, ‘0 the 1’ can be
combined with both ‘1 boy 5’ and ‘1 boycott 2’ be-
cause their respective node identifiers match. Af-
ter the two edges, ‘boycott’ and ‘escalated’, are
combined and a new edge is generated, the start-
ing node identifiers for the entire edge will be as
in ‘1 boycott escalated 3’.

The utilization of the node identifiers enables
the two-dimensional modeling of a word graph in
a chart. This extension to chart parsing makes
the current approach word-graph based rather than
confusion-network based. Parse trees that con-
flict with the input word graph are blocked and all
the processing resources are dedicated to proper
edges. The chart parsing algorithm is listed in Fig-
ure 4.

3.5 Unification-based chart parsing

The grammar rules are implemented using Lexical
Functional Grammar (LFG) paradigm. The pri-
mary data structure to represent the features and
values is a directed acyclic graph (dag). The sys-
tem also includes an expressive Boolean formal-
ism, used to represent functional equations to ac-
cess, inspect or modify features or feature sets in
the dag. Complex feature structures (e.g. lists,
sets, strings, and conglomerate lists) can be asso-
ciated with lexical entries and grammatical cate-
gories using inheritance operations. Unification is
used as the fundamental mechanism to integrate
information from lexical entries into larger gram-
matical constituents.

The constituent structure (c-structure) repre-
sents the composition of syntactic constituents for
a phrase. It is the term used for parse tree in
LFG. The functional structure (f-structure) is the

input : grammar , word−graph
output : c h a r t

a lgor i thm CHART−PARSE ( grammar , word−graph )
I N I T I A L I Z E ( c h a r t , agenda , word−graph )
whi le agenda i s not empty

edge ← POP ( agenda )
PROCESS−EDGE ( edge )

end whi l e
end algor i thm

procedure PROCESS−EDGE (A → B • α • C, [j, k], [ns, ne] )
PUSH ( c h a r t , A → B • α • C, [j, k], [ns, ne] )
FUNDAMENTAL−RULE (A → B • α • C, [j, k], [ns, ne] )
PR ED I CT (A → B • α • C, [j, k], [ns, ne] )

end procedure

procedure FUNDAMENTAL−RULE (A → B • α • C, [j, k], [ns, ne] )
i f B = βD / / edge i s i n c o m p l e t e

f o r each (D → •δ•, [i, j], [nr, ns] ) in c h a r t
PUSH ( agenda , (A → β • Dα • C, [i, k], [nr, ne] ) )

end f o r
end i f
i f C = Dγ / / edge i s i n c o m p l e t e

f o r each (D → •δ•, [k, l], [ne, nf ] ) in c h a r t
PUSH ( agenda , (A → B • αD•γ, [j, l], [ns, nf ] ) )

end f o r
end i f
i f B i s n u l l and C i s n u l l / / edge i s c o m p l e t e

f o r each (D → βA • γ • δ, [k, l], [ne, nf ] ) in c h a r t
PUSH ( agenda , (D → β • Aγ • δ, [j, l], [ns, nf ] ) )

end f o r
f o r each (D → β • γ • Aδ, [i, j], [nr, ns] ) in c h a r t

PUSH ( agenda , (D → β • γA • δ, [i, k], [nr, ne] ) )
end f o r

end i f
end procedure

procedure PR ED I CT (A → B • α • C, [j, k], [ns, ne] )
i f B i s n u l l and C i s n u l l / / edge i s c o m p l e t e

f o r each D → βAγ in grammar where A i s t r i g g e r
PUSH ( agenda , (D → β • A • γ, [j, k], [ns, ne] ) )

end f o r
e l s e

i f B = βD / / edge i s i n c o m p l e t e
f o r each D → γ in grammar

PUSH ( agenda , (D → γ•, [j, j], [ns, ns] ) )
end f o r

end i f
i f C = Dγ / / edge i s i n c o m p l e t e

f o r each D → γ in grammar
PUSH ( agenda , (D → •γ, [k, k], [ne, ne] ) )

end f o r
end i f

end i f
end procedure

Figure 4: Extended chart parsing algorithm used
to parse word graphs. Fundamental rule and pre-
dict procedures are updated to handle word graphs
in a bidirectional manner.

representation of grammatical functions in LFG.
Attribute-value-matrices are used to describe f-
structures. A sample c-structure and the corre-
sponding f-structures in English are shown in Fig-
ure 5. For simplicity, many details and feature val-
ues are not given. The dag containing the infor-
mation originated from the lexicon and the infor-
mation extracted from morphological analysis is
shown on the leaf levels of the parse tree in Figure
5. The final dag corresponding to the root node is
built during the parsing process in cascaded unifi-
cation operations specified in the grammar rules.
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Figure 5: The c-structure and the associated f-
structures.

3.6 Parse evaluation and recovery

After all rules are executed and no more edges are
left in the agenda, the chart parsing process ends
and parse evaluation begins. The chart is searched
for complete edges with the final symbol of the
grammar (e.g. SBAR) as their category. Any such
edge spanning the entire input represents the full
parse. If there is no such edge then the parse re-
covery process takes control.

If the input sentence is ambiguous, then, at the
end of parsing, there will multiple parse trees in
the chart that span the entire input. Similarly,
a grammar built with insufficient constraints can
lead to multiple parse trees. In this case, all possi-
ble edges are evaluated for completeness and co-
herence (Bresnan, 1982) starting from the edge
with the highest weight. A parse tree is complete
if all the functional roles (SUBJ, OBJ, SCOMP etc.)
governed by the verb are actually present in the c-
structure; it is coherent if all the functional roles
present are actually governed by the verb. The
parse tree that is evaluated as complete and co-
herent and has the highest weight is selected for
further processing.

In general, a parsing process is said to be suc-
cessful if a parse tree can be built according to the
input sentence. The building of the parse tree fails
when the sentence is ungrammatical. For the goal
of MT, however, a parse tree is required for the

transfer stage and the generation stage even if the
input is not grammatical. Therefore, for any input
sentence, a corresponding parse tree is built at the
end of parsing.

If parsing fails, i.e. if all rules are exhausted and
no successful parse tree has been produced, then
the system tries to recover from the failure by cre-
ating a tree like structure. Appropriate complete
edges in the chart are used for this purpose. The
idea is to piece together all partial parses for the
input sentence, so that the number of constituent
edges is minimum and the score of the final tree is
maximum. While selecting the constituents, over-
lapping edges are not chosen.

The recovery process functions as follows:

• The whole chart is traversed and a complete
edge is inserted into a candidate list if it has
the highest score for that start-end position.
If two edges have the same score, then the
farthest one to the leaf level is preferred.

• The candidate list is traversed and a com-
bination with the minimum number of con-
stituents is selected. The edges with the
widest span get into the winning combina-
tion.

• The c-structures and f-structures of the edges
in the winning combination are joined into a
whole c-structure and f-structure which rep-
resent the final parse tree for the input.

4 Experiments

The experiments carried out in this paper are run
on word graphs based on 1993 benchmark tests for
the ARPA spoken language program (Pallett et al.,
1994). In the large-vocabulary continuous speech
recognition (CSR) tests reported by Pallett et al.
(1994), Wall Street Journal-based CSR corpus ma-
terial was made use of. Those tests intended to
measure basic speaker-independent performance
on a 64K-word read-speech test set which con-
sists of 213 utterances. Each of the 10 different
speakers provided 20 to 23 utterances. An acous-
tic model and a trigram language model is trained
using Wall Street Journal data by Chelba (2000)
who also generated the 213 word graphs used in
the current experiments. The word graphs, re-
ferred as HUB-1 data set, contain both the acous-
tic scores and the trigram language model scores.
Previously, the same data set was used in other

474



studies (Chelba, 2000; Roark, 2001; Hall, 2005)
for language modeling task in ASR.

4.1 N-best list pruning

The 213 word graphs in the HUB-1 data set are
pruned as described in Section 3 in order to pre-
pare them for chart parsing. AT&T toolkit (Mohri
et al., 1998) is used for determinization and min-
imization of the word graphs and for n-best path
extraction. Prior to feeding in the word graphs to
the FSM tools, the acoustic model and the trigram
language model in the original lattices are com-
bined into a single score using Equation 1, where
S represents the combined score of an arc, A is
the acoustic model (AM) score, L is the language
model (LM) score, α is the AM scale factor and β
is the LM scale factor.

S = αA+ β L (1)

Figure 6 depicts the word error rates for the
first-best hypotheses obtained heuristically by us-
ing α = 1 and β values from 1 to 25. The low-
est WER (13.32) is achieved when α is set to 1
and β to 15. This result is close with the findings
from Hall (2005) who reported to use 16 as the LM
scale factor for the same data set. WER score for
LM-only was 26.8 where in comparison the AM-
only score was 29.64. The results imply that the
language model has more predicting power over
the acoustic model in the HUB-1 lattices. For the
rest of the experiments, we used 1 and 15 as the
acoustic model and language model scale factors,
respectively.

4.2 Word graph accuracy

Using the scale factors found in the previous sec-
tion we built N-best word graphs for different N
values. In order to measure the word graph ac-
curacy we constructed the FSM for reference hy-
potheses, FRef , and we took the intersection of all
the word graphs with the reference FSM. Table 1
lists the word graph accuracy rate for different N
values. For example, an accuracy rate of 30.98 de-
notes that 66 word graphs out of 213 contain the
correct sentences. The accuracy rate for the origi-
nal word graphs in the data set (last row in Table 1)
is 66.67 which indicates that only 142 out of 213
contain the reference sentence. That is, in 71 of the
instances, the reference sentence is not included in
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Figure 6: WER for HUB-1 first-best hypotheses
obtained using different language-model scaling
factors and α = 1. The unsteadiness of the WER
for β = 10 needs further investigation.

Table 1: Word graph accuracy for different N val-
ues in the data set with 213 word graphs.

N Accuracy
1 30.98
10 51.17
20 56.34
30 58.22
40 59.15
50 59.15

N Accuracy
60 59.15
70 59.15
80 59.15
90 60.10

100 60.10
full 66.67

the untouched word graph. The accurate rates ex-
press the maximum sentence error rate (SER) that
can be achieved for the data set.

4.3 Linguistic Resources

The English grammar used in the chart parser con-
tained 20 morphology analysis rules and 225 syn-
tax analysis rules. All the rules and the unification
constraints are implemented in LFG formalism.
The number of rules to model the language gram-
mar is quite few compared to probabilistic CFGs
which contain more than 10 000 rules. The mono-
lingual analysis lexicon consists of 40 000 lexical
entries.

4.4 Chart parsing experiment

We conducted experiments to compare the per-
formance for N-best list parsing and N-best word
graph parsing. Compared to the N-best list ap-
proach, in N-best word graph parsing approach,
the shared edges are processed only once for all
hypotheses. This saves a lot on the number of
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Table 2: Number of complete and incomplete
edges generated for the NIST HUB-1 data set us-
ing different approaches.

Approach Hypotheses Complete
edges

Incomplete
edges

N-best list 4869 798 K 12.125 M
1 164 2490

N-best 4869 150.8 K 1.662 M
word graph 1 31 341

complete and incomplete edges generated during
parsing. Hence, the overall processing time re-
quired to analyze the hypotheses are reduced. In
an N-best list approach, where each hypothesis is
processed separately in the analyzer, there are dif-
ferent charts and different parsing instances for
each sentence hypothesis. Shared words in dif-
ferent sentences are parsed repeatedly and same
edges will be created at each instance.

Table 2 represents the number of complete and
incomplete edges generated for the NIST HUB-1
data set. For each hypothesis, 164 complete edges
and 2490 incomplete edges are generated on the
average in the N-best list approach. In the N-best
word graph approach, the average number of com-
plete edges and incomplete edges reduced to 31
and 341, respectively. The decrease is 81.1% in
complete edges and 86.3% in incomplete edges for
the NIST HUB-1 data set. The profit introduced
in the number of edges by using the N-best word
graph approach is immense.

4.5 Language modeling experiment

In order to compare this approach to previous
language modeling approaches we used the same
data set. Table 3 lists the WER for the NIST
HUB-1 data set for different approaches includ-
ing ours. The N-best word graph approach pre-
sented in this paper scored 12.6 WER and still
needs some improvements. The English analy-
sis grammar that was used in the experiments was
designed to parse typed text containing punctua-
tion information. The speech data, however, does
not contain any punctuation. Therefore, the gram-
mar has to be adjusted accordingly to improve the
WER. Another common source of error in parsing
is because of unnormalized text.

Table 3: WER taken from Hall and Johnson
(2003) for various language models on HUB-1 lat-
tices in addition to our approach presented in the
fifth row.

Model WER
Charniak Parser (Charniak, 2001) 11.8
Attention Shifting 11.9
(Hall and Johnson, 2004)
PCFG (Hall, 2005) 12.0
A* decoding (Xu et al., 2002) 12.3
N-best word graph (this study) 12.6
PCFG (Roark, 2001) 12.7
PCFG (Hall and Johnson, 2004) 13.0
40m-word trigram 13.7
(Hall and Johnson, 2003)
PCFG (Hall and Johnson, 2003) 15.5

5 Conclusions

The primary aim of this research was to propose
a new and efficient method for integrating an SR
system with an MT system employing a chart
parser. The main idea is to populate the initial
chart parser with the word graph that comes out
of the SR component.

This paper presents an attempt to blend statisti-
cal SR systems with rule-based MT systems. The
goal of the final assembly of these two compo-
nents was to achieve an enhanced Speech Transla-
tion (ST) system. Specifically, we propose to parse
the word graph generated by the SR module inside
the rule-based parser. This approach can be gener-
alized to any MT system employing chart parsing
in its analysis stage. In addition to utilizing rule-
based MT in ST, this study used word graphs and
chart parsing with new extensions.

For further improvement of the overall system,
our future studies include the following: 1. Ad-
justing the English syntax analysis rules to handle
spoken text which does not include any punctua-
tion. 2. Normalization of the word arcs in the in-
put lattice to match words in the analysis lexicon.
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Abstract

An open problem in dependency parsing
is the accurate and efficient treatment of
non-projective structures. We propose to
attack this problem using chart-parsing
algorithms developed for mildly context-
sensitive grammar formalisms. In this pa-
per, we provide two key tools for this ap-
proach. First, we show how to reduce non-
projective dependency parsing to parsing
with Linear Context-Free Rewriting Sys-
tems (LCFRS), by presenting a technique
for extracting LCFRS from dependency
treebanks. For efficient parsing, the ex-
tracted grammars need to be transformed
in order to minimize the number of nonter-
minal symbols per production. Our second
contribution is an algorithm that computes
this transformation for a large, empirically
relevant class of grammars.

1 Introduction

Dependency parsing is the task of predicting the
most probable dependency structure for a given
sentence. One of the key choices in dependency
parsing is about the class of candidate structures
for this prediction. Many parsers are confined to
projective structures, in which the yield of a syn-
tactic head is required to be continuous. A major
benefit of this choice is computational efficiency:
an exhaustive search over all projective structures
can be done in cubic, greedy parsing in linear time
(Eisner, 1996; Nivre, 2003). A major drawback of
the restriction to projective dependency structures
is a potential loss in accuracy. For example, around
23% of the analyses in the Prague Dependency
Treebank of Czech (Hajič et al., 2001) are non-
projective, and for German and Dutch treebanks,
the proportion of non-projective structures is even
higher (Havelka, 2007).

The problem of non-projective dependency pars-
ing under the joint requirement of accuracy and
efficiency has only recently been addressed in the
literature. Some authors propose to solve it by tech-
niques for recovering non-projectivity from the out-
put of a projective parser in a post-processing step
(Hall and Novák, 2005; Nivre and Nilsson, 2005),
others extend projective parsers by heuristics that
allow at least certain non-projective constructions
to be parsed (Attardi, 2006; Nivre, 2007). McDon-
ald et al. (2005) formulate dependency parsing as
the search for the most probable spanning tree over
the full set of all possible dependencies. However,
this approach is limited to probability models with
strong independence assumptions. Exhaustive non-
projective dependency parsing with more powerful
models is intractable (McDonald and Satta, 2007),
and one has to resort to approximation algorithms
(McDonald and Pereira, 2006).

In this paper, we propose to attack non-project-
ive dependency parsing in a principled way, us-
ing polynomial chart-parsing algorithms developed
for mildly context-sensitive grammar formalisms.
This proposal is motivated by the observation that
most dependency structures required for the ana-
lysis of natural language are very nearly projective,
differing only minimally from the best projective
approximation (Kuhlmann and Nivre, 2006), and
by the close link between such ‘mildly non-project-
ive’ dependency structures on the one hand, and
grammar formalisms with mildly context-sensitive
generative capacity on the other (Kuhlmann and
Möhl, 2007). Furthermore, as pointed out by Mc-
Donald and Satta (2007), chart-parsing algorithms
are amenable to augmentation by non-local inform-
ation such as arity constraints and Markovization,
and therefore should allow for more predictive stat-
istical models than those used by current systems
for non-projective dependency parsing. Hence,
mildly non-projective dependency parsing prom-
ises to be both efficient and accurate.
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Contributions In this paper, we contribute two
key tools for making the mildly context-sensitive
approach to accurate and efficient non-projective
dependency parsing work.

First, we extend the standard technique for ex-
tracting context-free grammars from phrase-struc-
ture treebanks (Charniak, 1996) to mildly con-
text-sensitive grammars and dependency treebanks.
More specifically, we show how to extract, from
a given dependency treebank, a lexicalized Linear
Context-Free Rewriting System (LCFRS) whose
derivations capture the dependency analyses in the
treebank in the same way as the derivations of
a context-free treebank grammar capture phrase-
structure analyses. Our technique works for arbit-
rary, even non-projective dependency treebanks,
and essentially reduces non-projective dependency
to parsing with LCFRS. This problem can be solved
using standard chart-parsing techniques.

Our extraction technique yields a grammar
whose parsing complexity is polynomial in the
length of the sentence, but exponential in both a
measure of the non-projectivity of the treebank and
the maximal number of dependents per word, re-
flected as the rank of the extracted LCFRS. While
the number of highly non-projective dependency
structures is negligible for practical applications
(Kuhlmann and Nivre, 2006), the rank cannot eas-
ily be bounded. Therefore, we present an algorithm
that transforms the extracted grammar into a nor-
mal form that has rank 2, and thus can be parsed
more efficiently. This contribution is important
even independently of the extraction procedure:
While it is known that a rank-2 normal form of
LCFRS does not exist in the general case (Rambow
and Satta, 1999), our algorithm succeeds for a large
and empirically relevant class of grammars.

2 Preliminaries

We start by introducing dependency trees and
Linear Context-Free Rewriting Systems (LCFRS).
Throughout the paper, for positive integers i and j ,
we write Œi; j � for the interval f k j i � k � j g,
and use Œn� as a shorthand for Œ1; n�.

2.1 Dependency Trees

Dependency parsing is the task to assign depend-
ency structures to a given sentence w. For the
purposes of this paper, dependency structures are
edge-labelled trees. More formally, let w be a sen-
tence, understood as a sequence of tokens over

some given alphabet T , and let L be an alphabet
of edge labels. A dependency tree for w is a con-
structD D .w;E; �/, where E forms a rooted tree
(in the standard graph-theoretic sense) on the set
Œjwj�, and � is a total function that assigns every
edge in E a label in L. Each node of D represents
a (position of a) token in w.

Example 1 Figure 2 shows a dependency tree for
the sentence A hearing is scheduled on the issue
today, which consists of 8 tokens and the edges
f .2; 1/; .2; 5/; .3; 2/; .3; 4/; .4; 8/; .5; 7/; .7; 6/ g.
The edges are labelled with syntactic functions
such as sbj for ‘subject’. The root node is marked
by a dotted line. �

Let u be a node of a dependency treeD. A node u0

is a descendant of u, if there is a (possibly empty)
path from u to u0. A block of u is a maximal
interval of descendants of u. The number of blocks
of u is called the block-degree of u. The block-
degree of a dependency tree is the maximum among
the block-degrees of its nodes. A dependency tree
is projective, if its block-degree is 1.

Example 2 The tree shown in Figure 2 is not
projective: both node 2 (hearing) and node 4
(scheduled) have block-degree 2. Their blocks are
f 2 g; f 5; 6; 7 g and f 4 g; f 8 g, respectively.

2.2 LCFRS
Linear Context-Free Rewriting Systems (LCFRS)
have been introduced as a generalization of sev-
eral mildly context-sensitive grammar formalisms.
Here we use the standard definition of LCFRS
(Vijay-Shanker et al., 1987) and only fix our nota-
tion; for a more thorough discussion of this formal-
ism, we refer to the literature.

Let G be an LCFRS. Recall that each nonter-
minal symbol A of G comes with a positive integer
called the fan-out of A, and that a production p
of G has the form

A! g.A1; : : : ; Ar/ I g.Ex1; : : : ; Exr/ D Ę ;

whereA;A1; : : : ; Ar are nonterminals with fan-out
f; f1; : : : ; fr , respectively, g is a function symbol,
and the equation to the right of the semicolon spe-
cifies the semantics of g. For each i 2 Œr�, Exi is
an fi -tuple of variables, and Ę D h˛1; : : : ; f̨ i is a
tuple of strings over the variables on the left-hand
side of the equation and the alphabet of terminal
symbols in which each variable appears exactly
once. The production p is said to have rank r ,
fan-out f , and length j˛1jC � � �C j f̨ jC .f �1/.
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3 Grammar Extraction

We now explain how to extract an LCFRS from a
dependency treebank, in very much the same way
as a context-free grammar can be extracted from a
phrase-structure treebank (Charniak, 1996).

3.1 Dependency Treebank Grammars

A simple way to induce a context-free grammar
from a phrase-structure treebank is to read off the
productions of the grammar from the trees. We will
specify a procedure for extracting, from a given
dependency treebank, a lexicalized LCFRS G that
is adequate in the sense that for every analysis D
of a sentencew in the treebank, there is a derivation
tree of G that is isomorphic to D, meaning that
it becomes equal to D after a suitable renaming
and relabelling of nodes, and has w as its derived
string. Here, a derivation tree of an LCFRS G is
an ordered tree such that each node u is labelled
with a production p of G, the number of children
of u equals the rank r of p, and for each i 2 Œr�,
the i th child of u is labelled with a production that
has as its left-hand side the i th nonterminal on the
right-hand side of p.

The basic idea behind our extraction procedure
is that, in order to represent the compositional struc-
ture of a possibly non-projective dependency tree,
one needs to represent the decomposition and relat-
ive order not of subtrees, but of blocks of subtrees
(Kuhlmann and Möhl, 2007). We introduce some
terminology. A component of a node u in a de-
pendency tree is either a block B of some child u0

of u, or the singleton interval that contains u; this
interval will represent the position in the string that
is occupied by the lexical item corresponding to u.
We say that u0 contributes B , and that u contrib-
utes Œu; u� to u. Notice that the number of com-
ponents that u0 contributes to its parent u equals
the block-degree of u0. Our goal is to construct
for u a production of an LCFRS that specifies how
each block of u decomposes into components, and
how these components are ordered relative to one
another. These productions will make an adequate
LCFRS, in the sense defined above.

3.2 Annotating the Components

The core of our extraction procedure is an efficient
algorithm that annotates each node u of a given de-
pendency tree with the list of its components, sor-
ted by their left endpoints. It is helpful to think of
this algorithm as of two independent parts, one that

1: Function Annotate-L.D/
2: for each u of D, from left to right do
3: if u is the first node of D then
4: b WD the root node of D
5: else
6: b WD the lca of u and its predecessor
7: for each u0 on the path b � � �u do
8: leftŒu0� WD leftŒu0� � u

Figure 1: Annotation with components

annotates each node u with the list of the left end-
points of its components (Annotate-L) and one
that annotates the corresponding right endpoints
(Annotate-R). The list of components can then
be obtained by zipping the two lists of endpoints
together in linear time.

Figure 1 shows pseudocode for Annotate-L;
the pseudocode for Annotate-R is symmetric. We
do a single left-to-right sweep over the nodes of the
input treeD. In each step, we annotate all nodes u0

that have the current node u as the left endpoint of
one of their components. Since the sweep is from
left to right, this will get us the left endpoints of u0

in the desired order. The nodes that we annotate are
the nodes u0 on the path between u and the least
common ancestor (lca) b of u and its predecessor,
or the path from the root node to u, in case that u
is the leftmost node of D.

Example 3 For the dependency tree in Figure 2,
Annotate-L constructs the following lists leftŒu�
of left endpoints, for u D 1; : : : ; 8:

1; 1 � 2 � 5; 1 � 3 � 4 � 5 � 8; 4 � 8; 5 � 6; 6; 6 � 7; 8

The following Lemma establishes the correctness
of the algorithm:

Lemma 1 Let D be a dependency tree, and let u
and u0 be nodes of D. Let b be the least common
ancestor of u and its predecessor, or the root node
in case that u is the leftmost node of D. Then u is
the left endpoint of a component of u0 if and only
if u0 lies on the path from b to u. �

Proof It is clear that u0 must be an ancestor of u.
If u is the leftmost node of D, then u is the left
endpoint of the leftmost component of all of its
ancestors. Now suppose that u is not the leftmost
node of D, and let Ou be the predecessor of u. Dis-
tinguish three cases: If u0 is not an ancestor of Ou,
then Ou does not belong to any component of u0;
therefore, u is the left endpoint of a component
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of u0. If u0 is an ancestor of Ou but u0 ¤ b, then Ou
and u belong to the same component of u0; there-
fore, u is not the left endpoint of this component.
Finally, if u0 D b, then Ou and u belong to different
components of u0; therefore, u is the left endpoint
of the component it belongs to. �

We now turn to an analysis of the runtime of the
algorithm. Let n be the number of components
of D. It is not hard to imagine an algorithm that
performs the annotation task in time O.n logn/:
such an algorithm could construct the components
for a given node u by essentially merging the list of
components of the children of u into a new sorted
list. In contrast, our algorithm takes time O.n/.
The crucial part of the analysis is the assignment
in line 6, which computes the least common an-
cestor of u and its predecessor. Using markers for
the path from the root node to u, it is straightfor-
ward to implement this assignment in time O.j�j/,
where � is the path b � � �u. Now notice that, by our
correctness argument, line 8 of the algorithm is ex-
ecuted exactly n times. Therefore, the sum over the
lengths of all the paths � , and hence the amortized
time of computing all the least common ancest-
ors in line 6, is O.n/. This runtime complexity is
optimal for the task we are solving.

3.3 Extraction Procedure

We now describe how to extend the annotation al-
gorithm into a procedure that extracts an LCFRS
from a given dependency tree D. The basic idea is
to transform the list of components of each node u
of D into a production p. This transformation will
only rename and relabel nodes, and therefore yield
an adequate derivation tree. For the construction
of the production, we actually need an extended
version of the annotation algorithm, in which each
component is annotated with the node that contrib-
uted it. This extension is straightforward, and does
not affect the linear runtime complexity.

Let D be a dependency tree for a sentence w.
Consider a single node u of D, and assume that u
has r children, and that the block-degree of u is f .
We construct for u a production p with rank r
and fan-out f . For convenience, let us order the
children of u, say by their leftmost descendants,
and let us write ui for the i th child of u according
to this order, and fi for the block-degree of ui ,
i 2 Œr�. The production p has the form

L! g.L1; : : : ; Lr/ I g.Ex1; : : : ; Exr/ D Ę ;

where L is the label of the incoming edge of u
(or the special label root in case that u is the root
node of D) and for each i 2 Œr�: Li is the label of
the incoming edge of ui ; Exi is a fi -tuple of vari-
ables of the form xi;j , where j 2 Œfi �; and Ę is
an f -tuple that is constructed in a single left-to-
right sweep over the list of components computed
for u as follows. Let k 2 Œfi � be a pointer to a cur-
rent segment of Ę; initially, k D 1. If the current
component is not adjacent (as an interval) to the
previous component, we increase k by one. If the
current component is contributed by the child ui ,
i 2 Œr�, we add the variable xi;j to ˛k , where j
is the number of times we have seen a component
contributed by ui during the sweep. Notice that
j 2 Œfi �. If the current component is the (unique)
component contributed by u, we add the token cor-
responding to u to ˛k . In this way, we obtain a
complete specification of how the blocks of u (rep-
resented by the segments of the tuple Ę) decompose
into the components of u, and of the relative order
of the components. As an example, Figure 2 shows
the productions extracted from the tree above.

3.4 Parsing the Extracted Grammar

Once we have extracted the grammar for a depend-
ency treebank, we can apply any parsing algorithm
for LCFRS to non-projective dependency parsing.
The generic chart-parsing algorithm for LCFRS
runs in timeO.jP j � jwjf .rC1//, where P is the set
of productions of the input grammar G, w is the in-
put string, r is the maximal rank, and f is the max-
imal fan-out of a production inG (Seki et al., 1991).
For a grammar G extracted by our technique, the
number f equals the maximal block-degree per
node. Hence, without any further modification, we
obtain a parsing algorithm that is polynomial in the
length of the sentence, but exponential in both the
block-degree and the rank. This is clearly unaccept-
able in practical systems. The relative frequency
of analyses with a block-degree � 2 is almost neg-
ligible (Havelka, 2007); the bigger obstacle in ap-
plying the treebank grammar is the rank of the res-
ulting LCFRS. Therefore, in the remainder of the
paper, we present an algorithm that can transform
the productions of the input grammar G into an
equivalent set of productions with rank at most 2,
while preserving the fan-out. This transformation,
if it succeeds, yields a parsing algorithm that runs
in time O.jP j � r � jwj3f /.
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1A 2hearing 3is 4scheduled 5on 6the 7issue 8today

nmod sbj

root node

vc

pp

nmod

np

tmp

nmod! g1 g1 D hAi
sbj! g2.nmod; pp/ g2.hx1;1i; hx2;1i/ D hx1;1 hearing; x2;1i

root! g3.sbj; vc/ g3.hx1;1; x1;2i; hx2;1; x2;2i/ D hx1;1 is x2;1 x1;2 x2;2i

vc! g4.tmp/ g4.hx1;1i/ D hscheduled; x1;1i

pp! g5.np/ g5.hx1;1i/ D hon x1;1i

nmod! g6 g6 D hthei
np! g7.nmod/ g7.hx1;1i/ D hx1;1 issuei

tmp! g8 g8 D htodayi

Figure 2: A dependency tree, and the LCFRS extracted for it

4 Adjacency

In this section we discuss a method for factorizing
an LCFRS into productions of rank 2. Before start-
ing, we get rid of the ‘easy’ cases. A production p
is connected if any two strings ˛i , j̨ in p’s defini-
tion share at least one variable referring to the same
nonterminal. It is not difficult to see that, when p is
not connected, we can always split it into new pro-
ductions of lower rank. Therefore, throughout this
section we assume that LCFRS only have connec-
ted productions. We can split p into its connected
components using standard methods for finding the
strongly connected components of an undirected
graph. This can be implemented in time O.r � f /,
where r and f are the rank and the fan-out of p,
respectively.

4.1 Adjacency Graphs
Let p be a production with length n and fan-out f ,
associated with function a g. The set of positions
of p is the set Œn�. Informally, each position rep-
resents a variable or a lexical element in one of the
components of the definition of g, or else a ‘gap’
between two of these components. (Recall that n
also accounts for the f � 1 gaps in the body of g.)
Example 4 The set of positions of the production
for hearing in Figure 2 is Œ4�: 1 for variable x1, 2
for hearing, 3 for the gap, and 4 for y1. �

Let i1; j1; i2; j2 2 Œn�. An interval Œi1; j1� is ad-
jacent to an interval Œi2; j2� if either j1 D i2 � 1

(left-adjacent) or i1 D j2 C 1 (right-adjacent). A
multi-interval, or m-interval for short, is a set v of
pairwise disjoint intervals such that no interval in v
is adjacent to any other interval in v. The fan-out
of v, written f .v/, is defined as jvj.

We use m-intervals to represent the nonterminals
and the lexical element heading p. The i th nonter-
minal on the right-hand side of p is represented by
the m-interval obtained by collecting all the pos-
itions of p that represent a variable from the i th
argument of g. The head of p is represented by the
m-interval containing the associated position. Note
that all these m-intervals are pairwise disjoint.

Example 5 Consider the production for is in
Figure 2. The set of positions is Œ5�. The
first nonterminal is represented by the m-inter-
val f Œ1; 1�; Œ4; 4� g, the second nonterminal by
f Œ3; 3�; Œ5; 5� g, and the lexical head by f Œ2; 2� g. �

For disjoint m-intervals v1; v2, we say that v1 is
adjacent to v2, denoted by v1 ! v2, if for every
interval I1 2 v1, there is an interval I2 2 v2 such
that I1 is adjacent to I2. Adjacency is not symmet-
ric: if v1 D f Œ1; 1�; Œ4; 4� g and v2 D f Œ2; 2� g, then
v2 ! v1, but not vice versa.

Let V be some collection of pairwise disjoint
m-intervals representing p as above. The ad-
jacency graph associated with p is the graph
G D .V;!G/ whose vertices are the m-intervals
in V , and whose edges!G are defined by restrict-
ing the adjacency relation! to the set V .

For m-intervals v1; v2 2 V , the merger of v1

and v2, denoted by v1 ˚ v2, is the (uniquely
determined) m-interval whose span is the union
of the spans of v1 and v2. As an example, if
v1 D f Œ1; 1�; Œ3; 3� g and v2 D f Œ2; 2� g, then
v1 ˚ v2 D f Œ1; 3� g. Notice that the way in which
we defined m-intervals ensures that a merging oper-
ation collapses all adjacent intervals. The proof of
the following lemma is straightforward and omitted
for space reasons:
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1: Function Factorize.G D .V;!G//

2: R WD ;;
3: while!G ¤ ; do
4: choose .v1; v2/ 2 !G ;
5: R WD R [ f .v1; v2/ g;
6: V WD V � f v1; v2 g [ f v1 ˚ v2 g;
7: !G WD f .v; v

0/ j v; v0 2 V; v ! v0 g;
8: if jV j D 1 then
9: output R and accept;

10: else
11: reject;

Figure 3: Factorization algorithm

Lemma 2 If v1 ! v2, then f .v1 ˚ v2/ � f .v2/.

4.2 The Adjacency Algorithm

Let G D .V;!G/ be some adjacency graph, and
let v1!G v2. We can derive a new adjacency
graph from G by merging v1 and v2. The resulting
graph G0 has vertices V 0 D V �f v1; v2 g[ f v1˚

v2 g and set of edges!G0 obtained by restricting
the adjacency relation ! to V 0. We denote the
derive relation as G ).v1;v2/ G

0.
Informally, ifG represents some LCFRS produc-

tion p and v1; v2 represent nonterminals A1; A2,
thenG0 represents a production p0 obtained from p

by replacing A1; A2 with a fresh nonterminal A. A
new production p00 can also be constructed, expand-
ing A into A1; A2, so that p0; p00 together will be
equivalent to p. Furthermore, p0 has a rank smaller
than the rank of p and, from Lemma 2, A does not
increase the overall fan-out of the grammar.

In order to simplify the notation, we adopt the
following convention. Let G ).v1;v2/ G

0 and
let v!G v1, v ¤ v2. If v!G0 v1 ˚ v2, then
edges .v; v1/ and .v; v1 ˚ v2/ will be identified,
and we say that G0 inherits .v; v1 ˚ v2/ from G.
If v 6!G0 v1˚v2, then we say that .v; v1/ does not
survive the derive step. This convention is used for
all edges incident upon v1 or v2.

Our factorization algorithm is reported in Fig-
ure 3. We start from an adjacency graph repres-
enting some LCFRS production that needs to be
factorized. We arbitrarily choose an edge e of the
graph, and push it into a set R, in order to keep
a record of the candidate factorization. We then
merge the two m-intervals incident to e, and we
recompute the adjacency relation for the new set
of vertices. We iterate until the resulting graph has
an empty edge set. If the final graph has one one

vertex, then we have managed to factorize our pro-
duction into a set of productions with rank at most
two that can be computed from R.

Example 6 Let V D f v1; v2; v3 g with v1 D

f Œ4; 4� g, v2 D f Œ1; 1�; Œ3; 3� g, and v3 D

f Œ2; 2�; Œ5; 5� g. Then !G D f .v1; v2/ g. After
merging v1; v2 we have a new graph G with V D
f v1 ˚ v2; v3 g and!G D f .v1 ˚ v2; v3/ g. We
finally merge v1 ˚ v2; v3 resulting in a new graph
G with V D f v1 ˚ v2 ˚ v3 g and!G D ;. We
then accept and stop. �

4.3 Mathematical Properties
We have already argued that, if the algorithm ac-
cepts, then a binary factorization that does not
increase the fan-out of the grammar can be built
from R. We still need to prove that the algorithm
answers consistently on a given input, despite of
possibly different choices of edges at line 4. We do
this through several intermediate results.

A derivation for an adjacency graph G is a se-
quence of edges d D he1; : : : ; eni, n � 1, such
that G D G0 and Gi�1 )ei

Gi for every i with
1 � i � n. For short, we write G0 )d Gn.
Two derivations for G are competing if one is a
permutation of the other.

Lemma 3 If G )d1
G1 and G )d2

G2 with d1

and d2 competing derivations, then G1 D G2.

Proof We claim that the statement of the lemma
holds for jd1j D 2. To see this, let G )e1

G01 )e2
G1 and G )e2

G02 )e1
G2 be valid

derivations. We observe that G1 and G2 have the
same set of vertices. Since the edges of G1 and G2

are defined by restricting the adjacency relation to
their set of vertices, our claim immediately follows.

The statement of the lemma then follows from
the above claim and from the fact that we can al-
ways obtain the sequence d2 starting from d1 by
repeatedly switching consecutive edges. �

We now consider derivations for the same adja-
cency graph that are not competing, and show that
they always lead to isomorphic adjacency graphs.
Two graphs are isomorphic if they become equal
after some suitable renaming of the vertices.

Lemma 4 The out-degree of G is bounded by 2.

Proof Assume v!G v1 and v!G v2, with v1 ¤

v2, and let I 2 v. I must be adjacent to some in-
terval I1 2 v1. Without loss of generality, assume
that I is left-adjacent to I1. I must also be adja-
cent to some interval I2 2 v2. Since v1 and v2
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are disjoint, I must be right-adjacent to I2. This
implies that I cannot be adjacent to an interval in
any other m-interval v0 of G. �

A vertex v of G such that v!G v1 and v!G v2

is called a bifurcation.

Example 7 Assume v D f Œ2; 2� g, v1 D

f Œ3; 3�; Œ5; 5� g, v2 D f Œ1; 1� g with v!G v1 and
v!G v2. The m-interval v˚ v1 D f Œ2; 3�; Œ5; 5� g

is no longer adjacent to v2. �

The example above shows that, when choosing one
of the two outgoing edges in a bifurcation for mer-
ging, the other edge might not survive. Thus, such
a choice might lead to distinguishable derivations
that are not competing (one derivation has an edge
that is not present in the other). As we will see (in
the proof of Theorem 1), bifurcations are the only
cases in which edges might not survive a merging.

Lemma 5 Let v be a bifurcation of G with outgo-
ing edges e1; e2, and let G )e1

G1, G )e2
G2.

Then G1 and G2 are isomorphic.

Proof (Sketch) Assume e1 has the form
v!G v1 and e2 has the form v!G v2. Let
also VS be the set of vertices shared by G1 and
G2. We show that the statement holds under the
isomorphism mapping v ˚ v1 and v2 in G1 to v1

and v ˚ v2 in G2, respectively.
When restricted to VS , the graphs G1 and G2

are equal. Let us then consider edges from G1 and
G2 involving exactly one vertex in VS . We show
that, for v0 2 VS , v0!G1

v ˚ v1 if and only if
v0!G2

v1. Consider an arbitrary interval I 0 2 v0.
If v0!G1

v˚v1, then I 0 must be adjacent to some
interval I1 2 v ˚ v1. If I1 2 v1 we are done.
Otherwise, I1 must be the concatenation of two
intervals I1v and I1v1

with I1v 2 v and I1v1
2

v1. Since v!G2
v2, I1v is also adjacent to some

interval in v2. However, v0 and v2 are disjoint.
Thus I 0 must be adjacent to I1v1

2 v1. Conversely,
if v0!G2

v1, then I 0 must be adjacent to some
interval I1 2 v1. Because v0 and v are disjoint, I 0

must also be adjacent to some interval in v ˚ v1.
Using very similar arguments, we can conclude

that G1 and G2 are isomorphic when restricted to
edges with at most one vertex in VS .

Finally, we need to consider edges from G1 and
G2 that are not incident upon vertices in VS . We
show that v ˚ v1!G1

v2 only if v1!G2
v ˚ v2;

a similar argument can be used to prove the con-
verse. Consider an arbitrary interval I1 2 v˚v1. If
v ˚ v1!G1

v2, then I1 must be adjacent to some

interval I2 2 v2. If I1 2 v1 we are done. Other-
wise, I1 must be the concatenation of two adjacent
intervals I1v and I1v1

with I1v 2 v and I1v1
2 v1.

Since I1v is also adjacent to some interval I 02 2 v2

(here I 02 might as well be I2), we conclude that
I1v1

2 v1 is adjacent to the concatenation of I1v

and I 02, which is indeed an interval in v˚ v2. Note
that our case distinction is exhaustive. We thus
conclude that v1!G2

v ˚ v2.
A symmetrical argument can be used to show

that v2!G1
v ˚ v1 if and only if v ˚ v2!G2

v1,
which concludes our proof. �

Theorem 1 Let d1 and d2 be derivations for G,
describing two different computations c1 and c2 of
the algorithm of Figure 3 on input G. Computation
c1 is accepting if and only if c2 is accepting.

Proof First, we prove the claim that if e is not an
edge outgoing from a bifurcation vertex, then in the
derive relation G )e G

0 all of the edges of G but
e and its reverse are inherited by G0. Let us write
e in the form v1!G v2. Obviously, any edge of
G not incident upon v1 or v2 will be inherited by
G0. If v!G v2 for some m-interval v ¤ v1, then
every interval I 2 v is adjacent to some interval
in v2. Since v and v1 are disjoint, I will also be
adjacent to some interval in v1˚v2. Thus we have
v!G0 v1 ˚ v2. A similar argument shows that
v!G v1 implies v!G0 v1 ˚ v2.

If v2!G v for some v ¤ v1, then every in-
terval I 2 v2 is adjacent to some interval in v.
From v1!G v2 we also have that each interval
I12 2 v1 ˚ v2 is either an interval in v2 or else
the concatenation of exactly two intervals I1 2 v1

and I2 2 v2. (The interval I2 cannot be adjacent
to more than an interval in v1, because v2!G v).
In both cases I12 is adjacent to some interval in
v, and hence v1 ˚ v2!G0 v. This concludes the
proof of our claim.

Let d1, d2 be as in the statement of the the-
orem, with G )d1

G1 and G )d2
G2. If d1

and d2 are competing, then the theorem follows
from Lemma 3. Otherwise, assume that d1 and d2

are not competing. From our claim above, some
bifurcation vertices must appear in these deriva-
tions. Let us reorder the edges in d1 in such a way
that edges outgoing from a bifurcation vertex are
processed last and in some canonical order. The
resulting derivation has the form dd 01, where d 01
involves the processing of all bifurcation vertices.
We can also reorder edges in d2 to obtain dd 02,
where d 02 involves the processing of all bifurcation
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not context-free 102 687 100.00%
not binarizable 24 0.02%
not well-nested 622 0.61%

Table 1: Properties of productions extracted from
the CoNLL 2006 data (3 794 605 productions)

vertices in exactly the same order as in d 01, but with
possibly different choices for the outgoing edges.

Let G )d Gd )d 0
1
G01 and G )d Gd )d 0

2

G02. Derivations dd 01 and d1 are competing. Thus,
by Lemma 3, we haveG01 D G1. Similarly, we can
conclude that G02 D G2. Since bifurcation vertices
in d 01 and in d 02 are processed in the same canonical
order, from repeated applications of Lemma 5 we
have that G01 and G02 are isomorphic. We then con-
clude that G1 and G2 are isomorphic as well. The
statement of the theorem follows immediately. �

We now turn to a computational analysis of the
algorithm of Figure 3. Let G be the representation
of an LCFRS production p with rank r . G has
r vertices and, following Lemma 4, O.r/ edges.
Let v be an m-interval of G with fan-out fv. The
incoming and outgoing edges for v can be detected
in time O.fv/ by inspecting the 2 � fv endpoints of
v. Thus we can compute G in time O.jpj/.

The number of iterations of the while cycle in the
algorithm is bounded by r , since at each iteration
one vertex of G is removed. Consider now an
iteration in which m-intervals v1 and v2 have been
chosen for merging, with v1!G v2. (These m-
intervals might be associated with nonterminals
in the right-hand side of p, or else might have
been obtained as the result of previous merging
operations.) Again, we can compute the incoming
and outgoing edges of v1˚v2 in time proportional
to the number of endpoints of such an m-interval.
By Lemma 2, this number is bounded by O.f /, f
the fan-out of the grammar. We thus conclude that
a run of the algorithm on G takes time O.r � f /.

5 Discussion

We have shown how to extract mildly context-
sensitive grammars from dependency treebanks,
and presented an efficient algorithm that attempts
to convert these grammars into an efficiently par-
seable binary form. Due to previous results (Ram-
bow and Satta, 1999), we know that this is not
always possible. However, our algorithm may fail
even in cases where a binarization exists—our no-
tion of adjacency is not strong enough to capture

all binarizable cases. This raises the question about
the practical relevance of our technique.

In order to get at least a preliminary answer to
this question, we extracted LCFRS productions
from the data used in the 2006 CoNLL shared task
on data-driven dependency parsing (Buchholz and
Marsi, 2006), and evaluated how large a portion
of these productions could be binarized using our
algorithm. The results are given in Table 1. Since it
is easy to see that our algorithm always succeeds on
context-free productions (productions where each
nonterminal has fan-out 1), we evaluated our al-
gorithm on the 102 687 productions with a higher
fan-out. Out of these, only 24 (0.02%) could not be
binarized using our technique. We take this number
as an indicator for the usefulness of our result.

It is interesting to compare our approach
with techniques for well-nested dependency trees
(Kuhlmann and Nivre, 2006). Well-nestedness is
a property that implies the binarizability of the
extracted grammar; however, the classes of well-
nested trees and those whose corresponding pro-
ductions can be binarized using our algorithm are
incomparable—in particular, there are well-nested
productions that cannot be binarized in our frame-
work. Nevertheless, the coverage of our technique
is actually higher than that of an approach that
relies on well-nestedness, at least on the CoNLL
2006 data (see again Table 1).

We see our results as promising first steps in a
thorough exploration of the connections between
non-projective and mildly context-sensitive pars-
ing. The obvious next step is the evaluation of our
technique in the context of an actual parser.

As a final remark, we would like to point out
that an alternative technique for efficient non-pro-
jective dependency parsing, developed by Gómez
Rodríguez et al. independently of this work, is
presented elsewhere in this volume.
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Abstract

Handling terminology is an important
matter in a translation workflow. However,
current Machine Translation (MT) sys-
tems do not yet propose anything proactive
upon tools which assist in managing termi-
nological databases. In this work, we in-
vestigate several enhancements to analog-
ical learning and test our implementation
on translating medical terms. We show
that the analogical engine works equally
well when translating from and into a mor-
phologically rich language, or when deal-
ing with language pairs written in differ-
ent scripts. Combining it with a phrase-
based statistical engine leads to significant
improvements.

1 Introduction

If machine translation is to meet commercial
needs, it must offer a sensible approach to trans-
lating terms. Currently, MT systems offer at best
database management tools which allow a human
(typically a translator, a terminologist or even the
vendor of the system) to specify bilingual ter-
minological entries. More advanced tools are
meant to identify inconsistencies in terminological
translations and might prove useful in controlled-
language situations (Itagaki et al., 2007).

One approach to translate terms consists in us-
ing a domain-specific parallel corpus with stan-
dard alignment techniques (Brown et al., 1993) to
mine new translations. Massive amounts of par-
allel data are certainly available in several pairs
of languages for domains such as parliament de-
bates or the like. However, having at our disposal
a domain-specific (e.g. computer science) bitext

with an adequate coverage is another issue. One
might argue that domain-specific comparable (or
perhaps unrelated) corpora are easier to acquire,
in which case context-vector techniques (Rapp,
1995; Fung and McKeown, 1997) can be used
to identify the translation of terms. We certainly
agree with that point of view to a certain extent,
but as discussed by Morin et al. (2007), for many
specific domains and pairs of languages, such re-
sources simply do not exist. Furthermore, the task
of translation identification is more difficult and
error-prone.

Analogical learning has recently regained some
interest in the NLP community. Lepage and De-
noual (2005) proposed a machine translation sys-
tem entirely based on the concept of formal anal-
ogy, that is, analogy on forms. Stroppa and
Yvon (2005) applied analogical learning to sev-
eral morphological tasks also involving analogies
on words. Langlais and Patry (2007) applied it to
the task of translating unknown words in several
European languages, an idea investigated as well
by Denoual (2007) for a Japanese to English trans-
lation task.

In this study, we improve the state-of-the-art of
analogical learning by (i) proposing a simple yet
effective implementation of an analogical solver;
(ii) proposing an efficient solution to the search is-
sue embedded in analogical learning, (iii) investi-
gating whether a classifier can be trained to recog-
nize bad candidates produced by analogical learn-
ing. We evaluate our analogical engine on the task
of translating terms of the medical domain; a do-
main well-known for its tendency to create new
words, many of which being complex lexical con-
structions. Our experiments involve five language
pairs, including languages with very different mor-
phological systems.
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In the remainder of this paper, we first present
in Section 2 the principle of analogical learn-
ing. Practical issues in analogical learning are
discussed in Section 3 along with our solutions.
In Section 4, we report on experiments we con-
ducted with our analogical device. We conclude
this study and discuss future work in Section 5.

2 Analogical Learning

2.1 Definitions
A proportional analogy, or analogy for short, is a
relation between four items noted [x : y = z : t ]
which reads as “x is to y as z is to t”. Among pro-
portional analogies, we distinguish formal analo-
gies, that is, those we can identify at a graphemic
level, such as [adrenergic beta-agonists, adren-
ergic beta-antagonists, adrenergic alpha-agonists,
adrenergic alpha-antagonists].

Formal analogies can be defined in terms of
factorizations1. Let x be a string over an alpha-
bet Σ, a factorization of x, noted fx, is a se-
quence of n factors fx = (f1

x, . . . , f
n
x ), such that

x = f1
x � f2

x � . . . � fn
x , where � denotes the

concatenation operator. After (Stroppa and Yvon,
2005) we thus define a formal analogy as:

Definition 1 ∀(x, y, z, t) ∈ Σ?4
, [x : y = z : t] iff

there exist factorizations (fx, fy, fz, ft) ∈ (Σ?d
)4

of (x, y, z, t) such that, ∀i ∈ [1, d], (f i
y, f

i
z) ∈{

(f i
x, f

i
t ), (f i

t , f
i
x)

}
. The smallest d for which this

definition holds is called the degree of the analogy.

Intuitively, this definition states that (x, y, z, t)
are made up of a common set of alternating sub-
strings. It is routine to check that it captures the
exemplar analogy introduced above, based on the
following set of factorizations:

fx ≡ (adrenergic bet, a-agonists)
fy ≡ (adrenergic bet, a-antagonists)
fz ≡ (adrenergic alph, a-agonists)
ft ≡ (adrenergic alph, a-antagonists)

As no smaller factorization can be found, the de-
gree of this analogy is 2. In the sequel, we call
an analogical equation an analogy where one item
(usually the fourth) is missing and we note it [x :
y = z : ? ].

1Factorizations of strings correspond to segmentations.
We keep the former term, to emphasize the genericity of the
definition, which remains valid for other algebraic structures,
for which factorization and segmentation are no longer syno-
mymous.

2.2 Analogical Inference

Let L = {(i, o) | i ∈ I, o ∈ O} be a learning set
of observations, where I (O) is the set of possible
forms of the input (output) linguistic system under
study. We denote I(u) (O(u)) the projection of u
into the input (output) space; that is, if u = (i, o),
then I(u) ≡ i and O(u) ≡ o. For an incomplete
observation u = (i, ?), the inference procedure is:

1. building EI(u) = {(x, y, z) ∈ L3 | [I(x) :
I(y) = I(z) : I(u) ]}, the set of input triplets
that define an analogy with I(u) .

2. building EO(u) = {o ∈ O | ∃(x, y, z) ∈
EI(u) s.t. [O(x) : O(y) = O(z) : o]} the set
of solutions to the equations obtained by pro-
jecting the triplets of EI(u) into the output
space.

3. selecting candidates among EO(u).

In the sequel, we distinguish the generator
which implements the first two steps, from the se-
lector which implements step 3.

To give an example, assume L contains
the following entries: (beeta-agonistit, adren-
ergic beta-agonists), (beetasalpaajat, adrenergic
beta-antagonists) and (alfa-agonistit, adrener-
gic alpha-agonists). We might translate the
Finnish term alfasalpaajat into the English term
adrenergic alpha-antagonists by 1) identifying
the input triplet: (beeta-agonistit, beetasalpaa-
jat, alfa-agonistit) ; 2) projecting it into the equa-
tion [adrenergic beta-agonists : adrenergic beta-
antagonists = adrenergic alpha-agonists : ? ]; and
solving it: adrenergic alpha-antagonists is one of
its solutions.

During inference, analogies are recognized in-
dependently in the input and the output space, and
nothing pre-establishes which subpart of one in-
put form corresponds to which subpart of the out-
put one. This “knowledge” is passively captured
thanks to the inductive bias of the learning strat-
egy (an analogy in the input space corresponds to
one in the output space). Also worth mentioning,
this procedure does not rely on any pre-defined no-
tion of word. This might come at an advantage for
languages that are hard to segment (Lepage and
Lardilleux, 2007).

3 Practical issues

Each step of analogical learning, that is, search-
ing for input triplets, solving output equations and
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selecting good candidates involves some practical
issues. Since searching for input triplets might in-
volve the need for solving (input) equations, we
discuss the solver first.

3.1 The solver
Lepage (1998) proposed an algorithm for solving
an analogical equation [x : y = z : ? ]. An
alignment between x and y and between x and z
is first computed (by edit-distance) as illustrated
in Figure 1. Then, the three strings are synchro-
nized using x as a backbone of the synchroniza-
tion. The algorithm can be seen as a deterministic
finite-state machine where a state is defined by the
two edit-operations being visited in the two tables.
This is schematized by the two cursors in the fig-
ure. Two actions are allowed: copy one symbol
from y or z into the solution and move one or both
cursors.

x: r e a d e r x: r e a d e r
y: r e a d a b l e z: d o e r

4 4

Figure 1: Illustration of the synchronization done
by the solver described in (Lepage, 1998).

There are two things to realize with this algo-
rithm. First, since several (minimal-cost) align-
ments can be found between two strings, several
synchronizations are typically carried out while
solving an equation, leading to (possibly many)
different solutions. Indeed, in adverse situations,
an exponential number of synchronizations will
have to be computed. Second, the algorithm fails
to deliver an expected form in a rather frequent
situation where two identical symbols align fortu-
itously in two strings. This is for instance the case
in our running example where the symbol d in
doer aligns to the one in reader, which puzzles the
synchronization. Indeed, dabloe is the only form
proposed to [reader : readable = doer : ? ], while
the expected one is doable. The algorithm would
have no problem, however, to produce the form
writable out of the equation [reader : readable =
writer : ? ].

Yvon et al. (2004) proposed an analogical
solver which is not exposed to the latter prob-
lem. It consists in building a finite state transducer
which generates the solutions to [x : y = z : ? ]
while recognizing the form x.

Theorem 1 t is a solution to [x : y = z : ?] iff

t belongs to {y ◦ z}\x.

shuffle and complement are two rational op-
erations. The shuffle of two strings w and
v, noted w ◦ v, is the regular language con-
taining the strings obtained by selecting (with-
out replacement) alternatively in w and v, se-
quences of characters in a left-to-right man-
ner. For instance, spondyondontilalgiatis and
ondspondonylaltitisgia are two strings belong-
ing to spondylalgia ◦ ondontitis). The comple-
mentary set of w with respect to v, noted w\v, is
the set of strings formed by removing from w, in
a left-to-right manner, the symbols in v. For in-
stance, spondylitis and spydoniltis are belong-
ing to spondyondontilalgiatis \ ondontalgia.
Our implementation of the two rational operations
are sketched in Algorithm 1.

Because the shuffle of two strings may con-
tain an exponential number of elements with re-
spect to the length of those strings, building such
an automaton may face combinatorial problems.
Our solution simply consists in randomly sam-
pling strings in the shuffle set. Our solver, depicted
in Algorithm 2, is thus controlled by a sampling
size s, the impact of which is illustrated in Ta-
ble 1. By increasing s, the solver generates more
(mostly spurious) solutions, but also increases the
relative frequency with which the expected output
is generated. In practice, provided a large enough
sampling size,2 the expected form very often ap-
pears among the most frequent ones.

s nb (solution,frequency)
10 11 (doable,7) (dabloe,3) (adbloe,3)
102 22 (doable,28) (dabloe,21) (abldoe,21)
103 29 (doable,333) (dabloe,196) (abldoe,164)

Table 1: The 3-most frequent solutions generated
by our solver, for different sampling sizes s, for
the equation [reader : readable = doer : ? ]. nb
indicates the number of (different) solutions gen-
erated. According to our definition, there are 32
distinct solutions to this equation. Note that our
solver has no problem producing doable.

3.2 Searching for input triplets
A brute-force approach to identifying the input
triplets that define an analogy with the incom-
plete observation u = (t, ?) consists in enumerat-
ing triplets in the input space and checking for an

2We used s = 2 000 in this study.
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function shuffle(y,z)
Input: 〈y, z〉 two forms
Output: a random word in y ◦ z
if y = ε then

return z
else

n← rand(1,|y|)
return y[1:n] . shuffle(z,y[n+1:])

function complementary(m,x,r,s)
Input: m ∈ y ◦ z, x
Output: the set m \ x
if (m = ε) then

if (x = ε) then
s← s ∪ r

else
complementary(m[2:],x,r.m[1],s)
if m[1] = x[1] then
complementary(m[2:],x[2:],r,s)

Algorithm 1: Simulation of the two rational op-
erations required by the solver. x[a:b] denotes the
sequence of symbols x starting from index a to
index b inclusive. x[a:] denotes the suffix of x
starting at index a.

analogical relation with t. This amounts to check
o(|I|3) analogies, which is manageable for toy
problems only. Instead, Langlais and Patry (2007)
proposed to solve analogical equations [y : x = t :
? ] for some pairs 〈x, y〉 belonging to the neighbor-
hood3 of I(u), denotedN (t). Those solutions that
belong to the input space are the z-forms retained;

EI(u) = { 〈x, y, z〉 : x ∈ N (t) , y ∈ N (x),
z ∈ [y : x = t : ? ] ∩ I }

This strategy (hereafter named LP) directly fol-
lows from a symmetrical property of an analogy
([x : y = z : t ] ⇔ [y : x = t : z]), and reduces
the search procedure to the resolution of a number
of analogical equations which is quadratic with the
number of pairs 〈x, y〉 sampled.

We found this strategy to be of little use for
input spaces larger than a few tens of thousands
forms. To solve this problem, we exploit a prop-
erty on symbol counts that an analogical relation
must fulfill (Lepage, 1998):

[x : y = z : t ]⇒ |x|c + |t|c = |y|c + |z|c ∀c ∈ A
3The authors proposed to sample x and y among the clos-

est forms in terms of edit-distance to I(u).

function solver(〈x, y, z〉, s)
Input: 〈x, y, z〉, a triplet, s the sampling size
Output: a set of solutions to [x : y = z : ? ]
sol← φ
for i← 1 to s do
〈a, b〉 ← odd(rand(0, 1))? 〈z, y〉 : 〈y, z〉
m ← shuffle(a,b )
c← complementary(m,x,ε,{})
sol← sol ∪ c

return sol
Algorithm 2: A Stroppa&Yvon flavored solver.
rand(a, b) returns a random integer between a
and b (included). The ternary operator ?: is to
be understood as in the C language.

where A is the alphabet on which the forms are
built, and |x|c stands for the number of occur-
rences of symbol c in x.

Our search strategy (named TC) begins by se-
lecting an x-form in the input space. This en-
forces a set of necessary constraints on the counts
of characters that any two forms y and z must sat-
isfy for [x : y = z : t ] to be true. By considering
all forms x in turn,4 we collect a set of candidate
triplets for t. A verification of those that define
with t an analogy must then be carried out. For-
mally, we built:

EI(u) = { 〈x, y, z〉 : x ∈ I,
〈y, z〉 ∈ C(〈x, t〉),
[x : y = z : t ] }

where C(〈x, t〉) denotes the set of pairs 〈y, z〉
which satisfy the count property.

This strategy will only work if (i) the number
of quadruplets to check is much smaller than the
number of triplets we can form in the input space
(which happens to be the case in practice), and
if (ii) we can efficiently identify the pairs 〈y, z〉
that satisfy a set of constraints on character counts.
To this end, we proposed in (Langlais and Yvon,
2008) to organize the input space into a data struc-
ture which supports efficient runtime retrieval.

3.3 The selector
Step 3 of analogical learning consists in selecting
one or several solutions from the set of candidate
forms produced by the generator. We trained in
a supervised manner a binary classifier to distin-
guish good translation candidates (as defined by

4Anagram forms do not have to be considered separately.
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a reference) from spurious ones. We applied to
this end the voted-perceptron algorithm described
by Freund and Schapire (1999). Online voted-
perceptrons have been reported to work well in a
number of NLP tasks (Collins, 2002; Liang et al.,
2006). Training such a classifier is mainly a matter
of feature engineering. An example e is a pair of
source-target analogical relations (r, r̂) identified
by the generator, and which elects t̂ as a transla-
tion for the term t:

e ≡ (r, r̂) ≡ ([x : y = z : t], [x̂ : ŷ = ẑ : t̂])

where x̂, ŷ, and ẑ are respectively the projections
of the source terms x, y and z. We investigated
many features including (i) the degree of r and r̂,
(ii) the frequency with which a form is generated,5

(iii) length ratios between t and t̂, (iv) likelihoods
scores (min, max, avg.) computed by a character-
based n-gram model trained on a large general cor-
pus (without overlap to DEV or TRAIN), etc.

4 Experiments

4.1 Calibrating the engine

We compared the two aforementioned searching
strategies on a task of identifying triplets in an
input space of French words for 1 000 randomly
selected test words. We considered input spaces
of various sizes. The results are reported in Ta-
ble 2. TC clearly outperforms LP by systemati-
cally identifying more triplets in much less time.
For the largest input space of 84 000 forms, TC

could identify an average of 746 triplets for 946
test words in 1.2 seconds, while the best compro-
mise we could settle with LP allows the identifi-
cation of 56 triplets on average for 889 words in
6.3 seconds on average. Note that in this exper-
iment, LP was calibrated for each input space so
that the best compromise between recall (%s) and
speed could be found. Reducing the size of the
neighborhood in LP improves computation time,
but significantly affects recall. In the following,
we only consider the TC search strategy.

4.2 Experimental Protocol

Datasets The data we used in this study comes
from the Medical Subject Headings (MeSH) the-
saurus. This thesaurus is used by the US National
Library of Medicine to index the biomedical sci-

5A form t̂ may be generated thanks to many examples.

s %s (s) s %s (s) s %s (s)
TC 34 83.1 0.2 261 94.1 0.5 746 96.4 1.2
LP 17 71.7 7.4 46 85.0 7.6 56 88.9 6.3
|I| 20 000 50 000 84 076

Table 2: Average number s of input analogies
found over 1 000 test words as a function of the
size of the input space. %s stands for the percent-
age of source forms for which (at least) one source
triplet is found; and (s) indicates the average time
(counted in seconds) to treat one form.

entific literature in the MEDLINE database.6 Its
preferred terms are called ”Main Headings”. We
collected pairs of source and target Main Head-
ings (TTY = ’MH’) with the same MeSH identi-
fiers (SDUI).

We considered five language pairs with three
relatively close European languages (English-
French, English-Spanish and English-Swedish), a
more distant one (English-Finnish) and one pair
involving different scripts (English-Russian).7

The material was split in three randomly se-
lected parts, so that the development and test ma-
terial contain exactly 1 000 terms each. The char-
acteristics of this material are reported in Table 3.
For the Finnish-English and Swedish-English lan-
guage pairs, the ratio of uni-terms in the Foreign
language (uf %) is twice the ratio of uni-terms in
the English counterpart. This is simply due to
the agglutinative nature of these two languages.
For instance, according to MeSH, the English
multi-term speech articulation tests corresponds
to the Finnish uni-term ääntämiskokeet and to the
Swedish one artikulationstester. The ratio of out-
of-vocabulary forms (space-separated words un-
seen in TRAIN) in the TEST material is rather
high: between 36% and 68% for all Foreign-
to-English translation directions, but Finnish-to-
English, where surprisingly, only 6% of the word
forms are unknown.

Evaluation metrics For each experimental con-
dition, we compute the following measures:
Coverage the fraction of input words for which
the system can generate translations. If Nt words
receive translations among N , coverage is Nt/N .

6The MeSH thesaurus and its translations are included in
the UMLS Metathesaurus.

7Russian MeSH is normally written in Cyrillic, but some
terms are simply English terms written in uppercase Latin
script (e.g., ACHROMOBACTER for English Achromobac-
ter). We removed those terms.
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TRAIN TEST DEV TEST

f nb uf % ue% nb uf % uf % oov%
FI 19 787 63.7 33.7 1 000 64.2 64.0 5.7
FR 17 230 29.8 29.3 1 000 30.8 28.3 36.3
RU 21 407 38.6 38.6 1 000 38.5 40.2 44.4
SP 19 021 31.1 31.1 1 000 31.7 33.3 36.6
SW 17 090 67.9 32.5 1 000 67.4 67.9 68.4

Table 3: Main characteristics of our datasets. nb
indicates the number of pairs of terms in a bi-
text, uf % (ue%) stands for the percentage of uni-
terms in the Foreign (English) part. oov% indi-
cates the percentage of out-of-vocabulary forms
(space-separated forms of TEST unseen in TRAIN).

Precision among the Nt words for which the
system proposes an answer, precision is the pro-
portion of those for which a correct translation is
output. Depending on the number of output trans-
lations k that one is willing to examine, a correct
translation will be output for Nk input words. Pre-
cision at rank k is thus defined as Pk = Nk/Nt.

Recall is the proportion of the N input words
for which a correct translation is output. Recall at
rank k is defined as Rk = Nk/N .

In all our experiments, candidate translations
are sorted in decreasing order of frequency with
which they were generated.

4.3 The generator

The performances of the generator on the 10
translation sessions are reported in Table 4.
The coverage of the generator varies between
38.5% (French-to-English) and 47.1% (English-
to-Finnish), which is rather low. In most cases, the
silence of the generator is due to a failure to iden-
tify analogies in the input space (step 1). The last
column of Table 4 reports the maximum recall we
can obtain if we consider all the candidates output
by the generator. The relative accuracy of the gen-
erator, expressed by the ratio ofR∞ to cov, ranges
from 64.3% (English-French) to 79.1% (Spanish-
to-English), for an average value of 73.8% over
all translation directions. This roughly means that
one fourth of the test terms with at least one solu-
tion do not contain the reference.

Overall, we conclude that analogical learning
offers comparable performances for all transla-
tion directions, although some fluctuations are ob-
served. We do not observe that the approach is
affected by language pairs which do not share the

Cov P1 R1 P100 R100 R∞
→ FI 47.1 31.6 14.9 57.7 27.2 31.9

FR 41.2 35.4 14.6 60.4 24.9 26.5
RU 46.2 40.5 18.7 69.9 32.3 34.8
SP 47.0 41.5 19.5 69.1 32.5 35.9

SW 42.8 36.0 15.4 66.8 28.6 31.9
← FI 44.8 36.6 16.4 66.7 29.9 33.2

FR 38.5 47.0 18.1 69.9 26.9 29.4
RU 42.1 49.4 20.8 70.3 29.6 32.3
SP 42.6 47.7 20.3 75.1 32.0 33.7

SW 44.6 40.8 18.2 69.5 31.0 32.9

Table 4: Main characteristics of the generator, as a
function of the translation directions (TEST).

same script (Russian/English). The best (worse)
case (as far as R∞ is concerned) corresponds to
translating into Spanish (French).

Admittedly, the largest recall andR∞ values re-
ported in Table 4 are disappointing. Clearly, for
analogical learning to work efficiently, enough lin-
guistic phenomena must be attested in the TRAIN

material. To illustrate this, we collected for the
Spanish-English language pair a set of medical
terms from the Medical Drug Regulatory Activi-
ties thesaurus (MedDRA) which contains roughly
three times more terms than the Spanish-English
material used in this study. This extra material al-
lows to raise the coverage to 73.4% (Spanish to
English) and 79.7% (English to Spanish), an abso-
lute improvement of more than 30%.

4.4 The selector

We trained our classifiers on the several millions
of examples generated while translating the devel-
opment material. Since we considered numerous
feature representations in this study, this implies
saving many huge datafiles on disk. In order to
save some space, we decided to remove forms that
were generated less than 3 times.8 Each classifier
was trained using 20 epochs.

It is important to note that we face a very unbal-
anced task. For instance, for the English to Finnish
task, the generator produces no less than 2.7 mil-
lions of examples, among which only 4 150 are
positive ones. Clearly, classifying all the examples
as negative will achieve a very high classification
accuracy, but will be of no practical use. There-
fore, we measure the ability of a classifier to iden-

8Averaged over all translation directions, this incurs an
absolute reduction of the coverage of 3.4%.
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FI→EN FR→EN RU→EN SP→EN SW→EN
p r p r p r p r p r

argmax-f1 41.3 56.7 46.7 63.9 48.1 65.6 49.2 63.4 43.2 61.0
s-best 53.6 61.3 57.5 68.4 61.9 66.7 64.3 70.0 53.1 64.4

Table 5: Precision (p) and recall (r) of some classifiers on the TEST material.

tify the few positive forms among the set of candi-
dates. We measure precision as the percentage of
forms selected by the classifier that are sanctioned
by the reference lexicon, and recall as the percent-
age of forms selected by the classifier over the to-
tal number of sanctioned forms that the classifier
could possibly select. (Recall that the generator
often fails to produce oracle forms.)

The performance measured on the TEST mate-
rial of the best classifier we monitored on DEV

are reported in Table 5 for the Foreign-to-English
translation directions (we made consistent obser-
vations on the reverse directions). For compari-
son purposes, we implemented a baseline classi-
fier (lines argmax-f1) which selects the most-
frequent candidate form. This is the selector
used as a default in several studies on analogi-
cal learning (Lepage and Denoual, 2005; Stroppa
and Yvon, 2005). The baseline identifies between
56.7% to 65.6% of the sanctioned forms, at pre-
cision rates ranging from 41.3% to 49.2%. We
observe for all translation directions that the best
classifier we trained systematically outperforms
this baseline, both in terms of precision and recall.

4.4.1 The overall system

Table 6 shows the overall performance of the ana-
logical translation device in terms of precision, re-
call and coverage rates as defined in Section 4.2.
Overall, our best configuration (the one embed-
ding the s-best classifier) translates between
19.3% and 22.5% of the test material, with a preci-
sion ranging from 50.4% to 63.2%. This is better
than the variant which always proposes the most
frequent generated form (argmax-f1). Allowing
more answers increases both precision and recall.
If we allow up to 10 candidates per source term,
the analogical translator translates one fourth of
the terms (26.1%) with a precision of 70.9%, aver-
aged over all translation directions. The oracle
variant, which looks at the reference for select-
ing the good candidates produced by the genera-
tor, gives an upper bound of the performance that
could be obtained with our approach: less than

a third of the source terms can be translated cor-
rectly. Recall however that increasing the TRAIN

material leads to drastic improvements in cover-
age.

4.5 Comparison with a PB-SMT engine

To put these figures in perspective, we mea-
sured the performance of a phrase-based statisti-
cal MT (PB-SMT) engine trained to handle the
same translation task. We trained a phrase table
on TRAIN, using the standard approach.9 How-
ever, because of the small training size, and the
rather huge OOV rate of the translation tasks we
address, we did not train translation models on
word-tokens, but at the character level. There-
fore a phrase is indeed a sequence of charac-
ters. This idea has been successively investigated
in a Catalan-to-Spanish translation task by Vi-
lar et al. (2007). We tuned the 8 coefficients of
the so-called log-linear combination maximized
at decoding time on the first 200 pairs of terms
of the DEV corpora. On the DEV set, BLEU

scores10 range from 67.2 (English-to-Finnish) to
77.0 (Russian-to-English).

Table 7 reports the precision and recall of both
translation engines. Note that because the SMT
engine always propose a translation, its precision
equals its recall. First, we observe that the preci-
sion of the SMT engine is not high (between 17%
and 31%), which demonstrates the difficulty of
the task. The analogical device does better for all
translation directions (see Table 6), but at a much
lower recall, remaining silent more than half of
the time. This suggests that combining both sys-
tems could be advantageous. To verify this, we
ran a straightforward combination: whenever the
analogical device produces a translation, we pick
it; otherwise, the statistical output is considered.
The gains of the resulting system over the SMT
alone are reported in column ∆B. Averaged over

9We used the scripts distributed by Philipp Koehn to train
the phrase-table, and Pharaoh (Koehn, 2004) for producing
the translations.

10We computed BLEU scores at the character level.
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FI→EN FR→EN RU→EN SP→EN SW→EN
k Pk Rk Pk Rk Pk Rk Pk Rk Pk Rk

argmax-f 1 41.3 17.3 46.7 16.8 47.8 18.6 48.7 19.2 43.4 18.1
10 61.6 25.8 62.8 22.6 61.7 24.0 69.3 27.3 62.1 25.9

s-best 1 53.5 20.8 56.9 19.3 58.5 20.3 63.2 22.5 50.4 21
10 69.4 27.0 69.0 23.4 71.8 24.9 78.4 27.9 65.7 27.4

oracle 1 100 30.5 100 26.3 100 28.5 100 30.6 100 29.5

Table 6: Precision and recall at rank 1 and 10 for the Foreign-to-English translation tasks (TEST).

all translation directions, BLEU scores increase on
TEST from 66.2 to 71.5, that is, an absolute im-
provement of 5.3 points.

→ EN ← EN
Psmt ∆B Psmt ∆B

FI 20.2 +7.4 21.6 +6.4
FR 19.9 +5.3 17.0 +6.0
RU 24.1 +3.1 28.0 +6.4
SP 22.1 +4.9 26.4 +5.5
SW 25.9 +4.2 31.6 +3.2

Table 7: Translation performances on TEST. Psmt

stands for the precision and recall of the SMT en-
gine. ∆B indicates the absolute gain in BLEU

score of the combined system.

We noticed a tendency of the statistical engine
to produce literal translations; a default the ana-
logical device does not show. For instance, the
Spanish term instituciones de atención ambulato-
ria is translated word for word by Pharaoh into
institutions, atention ambulatory while analogical
learning produces ambulatory care facilities. We
also noticed that analogical learning sometimes
produces wrong translations based on morpholog-
ical regularities that are applied blindly. This is,
for instance, the case in a Russian/English exam-
ple where mouthal manifestations is produced, in-
stead of oral manifestations.

5 Discussion and future work
In this study, we proposed solutions to practical is-
sues involved in analogical learning. A simple yet
effective implementation of a solver is described.
A search strategy is proposed which outperforms
the one described in (Langlais and Patry, 2007).
Also, we showed that a classifier trained to se-
lect good candidate translations outperforms the
most-frequently-generated heuristic used in sev-
eral works on analogical learning.

Our analogical device was used to translate
medical terms in different language pairs. The
approach rates comparably across the 10 transla-
tion directions we considered. In particular, we
do not see a drop in performance when trans-
lating into a morphology rich language (such as
Finnish), or when translating into languages with
different scripts. Averaged over all translation di-
rections, the best variant could translate in first po-
sition 21% of the terms with a precision of 57%,
while at best, one could translate 30% of the terms
with a perfect precision. We show that the ana-
logical translations are of better quality than those
produced by a phrase-based engine trained at the
character level, albeit with much lower recall. A
straightforward combination of both approaches
led an improvement of 5.3 BLEU points over the
SMT alone. Better SMT performance could be
obtained with a system based on morphemes, see
for instance (Toutanova et al., 2008). However,
since lists of morphemes specific to the medical
domain do not exist for all the languages pairs we
considered here, unsupervised methods for acquir-
ing morphemes would be necessary, which is left
as a future work. In any case, this comparison is
meaningful, since both the SMT and the analogi-
cal device work at the character level.

This work opens up several avenues. First, we
will test our approach on terminologies from dif-
ferent domains, varying the size of the training
material. Second, analyzing the segmentation in-
duced by analogical learning would be interesting.
Third, we need to address the problem of com-
bining the translations produced by analogy into a
front-end statistical translation engine. Last, there
is no reason to constrain ourselves to translating
terminology only. We targeted this task in the first
place, because terminology typically plugs trans-
lation systems, but we think that analogical learn-
ing could be useful for translating infrequent enti-
ties.
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Abstract

We present a language-pair independent
terminology extraction module that is
based on a sub-sentential alignment sys-
tem that links linguistically motivated
phrases in parallel texts. Statistical filters
are applied on the bilingual list of candi-
date terms that is extracted from the align-
ment output.

We compare the performance of both
the alignment and terminology extrac-
tion module for three different language
pairs (French-English, French-Italian and
French-Dutch) and highlight language-
pair specific problems (e.g. different com-
pounding strategy in French and Dutch).

Comparisons with standard terminology
extraction programs show an improvement
of up to 20% for bilingual terminology ex-
traction and competitive results (85% to
90% accuracy) for monolingual terminol-
ogy extraction, and reveal that the linguis-
tically based alignment module is particu-
larly well suited for the extraction of com-
plex multiword terms.

1 Introduction

Automatic Term Recognition (ATR) systems are
usually categorized into two main families. On the
one hand, the linguistically-based or rule-based
approaches use linguistic information such as PoS
tags, chunk information, etc. to filter out stop
words and restrict candidate terms to predefined
syntactic patterns (Ananiadou, 1994), (Dagan and
Church, 1994). On the other hand, the statistical
corpus-based approaches select n-gram sequences
as candidate terms that are filtered by means of

statistical measures. More recent ATR systems
use hybrid approaches that combine both linguis-
tic and statistical information (Frantzi and Anani-
adou, 1999).

Most bilingual terminology extraction systems
first identify candidate terms in the source lan-
guage based on predefined source patterns, and
then select translation candidates for these terms
in the target language (Kupiec, 1993).

We present an alternative approach that gen-
erates candidate terms directly from the aligned
words and phrases in our parallel corpus. In a sec-
ond step, we use frequency information of a gen-
eral purpose corpus and the n-gram frequencies
of the automotive corpus to determine the term
specificity. Our approach is more flexible in the
sense that we do not first generate candidate terms
based on language-dependent predefined PoS pat-
terns (e.g. for French, N N, N Prep N, and N
Adj are typical patterns), but immediately link lin-
guistically motivated phrases in our parallel cor-
pus based on lexical correspondences and syntac-
tic similarity.

This article reports on the term extraction ex-
periments for 3 language pairs, i.e. French-Dutch,
French-English and French-Italian. The focus was
on the extraction of automative lexicons.

The remainder of this paper is organized as fol-
lows: Section 2 describes the corpus. In Section 3
we present our linguistically-based sub-sentential
alignment system and in Section 4 we describe
how we generate and filter our list of candidate
terms. We compare the performance of our sys-
tem with both bilingual and monolingual state-of-
the-art terminology extraction systems. Section 5
concludes this paper.
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2 Corpus

The focus of this research project was on the au-
tomatic extraction of 20 bilingual automative lex-
icons. All work was carried out in the framework
of a customer project for a major French automo-
tive company. The final goal of the project is to
improve vocabulary consistency in technical texts
across the 20 languages in the customer’s portfo-
lio. The French database contains about 400,000
entries (i.e. sentences and parts of sentences with
an average length of 9 words) and the translation
percentage of the database into 19 languages de-
pends on the target market.

For the development of the alignment and termi-
nology extraction module, we created three paral-
lel corpora (Italian, English, Dutch) with French
as a central language. Figures about the size of
each parallel corpus can be found in table 1.

Target Lang. # Sentence pairs # words
French Italian 364,221 6,408,693
French English 363,651 7,305,151
French Dutch 364,311 7,100,585

Table 1: Number of sentence pairs and total num-
ber of words in the three parallel corpora

2.1 Preprocessing

We PoS-tagged and lemmatized the French, En-
glish and Italian corpora with the freely available
TreeTagger tool (Schmid, 1994) and we used Tad-
Pole (Van den Bosch et al., 2007) to annotate the
Dutch corpus.

In a next step, chunk information was added
by a rule-based language-independent chunker
(Macken et al., 2008) that contains distituency
rules, which implies that chunk boundaries are
added between two PoS codes that cannot occur
in the same constituent.

2.2 Test and development corpus

As we presume that sentence length has an impact
on the alignment performance, and thus on term
extraction, we created three test sets with vary-
ing sentence lengths. We distinguished short sen-
tences (2-7 words), medium-length sentences (8-
19 words) and long sentences (> 19 words). Each
test corpus contains approximately 9,000 words;
the number of sentence pairs per test set can be
found in table 2. We also created a development
corpus with sentences of varying length to debug

the linguistic processing and the alignment mod-
ule as well as to define the thresholds for the sta-
tistical filtering of the candidate terms (see 4.1).

# Words # Sentence pairs
Short (< 8 words) +- 9,000 823
Medium (8-19 words) +- 9,000 386
Long (> 19 words) +- 9,000 180
Development corpus +-5,000 393

Table 2: Number of words and sentence pairs in
the test and development corpora

3 Sub-sentential alignment module

As the basis for our terminology extraction sys-
tem, we used the sub-sentential alignment sys-
tem of (Macken and Daelemans, 2009) that links
linguistically motivated phrases in parallel texts
based on lexical correspondences and syntactic
similarity. In the first phase of this system, anchor
chunks are linked, i.e. chunks that can be linked
with a very high precision. We think these anchor
chunks offer a valid and language-independent al-
ternative to identify candidate terms based on pre-
defined PoS patterns. As the automotive corpus
contains rather literal translations, we expect that a
high percentage of anchor chunks can be retrieved.

Although the architecture of the sub-sentential
alignment system is language-independent, some
language-specific resources are used. First, a
bilingual lexicon to generate the lexical correspon-
dences and second, tools to generate additional
linguistic information (PoS tagger, lemmatizer and
a chunker). The sub-sentential alignment system
takes as input sentence-aligned texts, together with
the additional linguistic annotations for the source
and the target texts.

The source and target sentences are divided into
chunks based on PoS information, and lexical cor-
respondences are retrieved from a bilingual dic-
tionary. In order to extract bilingual dictionaries
from the three parallel corpora, we used the Perl
implementation of IBM Model One that is part of
the Microsoft Bilingual Sentence Aligner (Moore,
2002).

In order to link chunks based on lexical clues
and chunk similarity, the following steps are taken
for each sentence pair:

1. Creation of the lexical link matrix

2. Linking chunks based on lexical correspon-
dences and chunk similarity
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3. Linking remaining chunks

3.1 Lexical Link Matrix
For each source and target word, all translations
for the word form and the lemma are retrieved
from the bilingual dictionary. In the process of
building the lexical link matrix, function words are
neglected. For all content words, a lexical link is
created if a source word occurs in the set of pos-
sible translations of a target word, or if a target
word occurs in the set of possible translations of
the source words. Identical strings in source and
target language are also linked.

3.2 Linking Anchor chunks
Candidate anchor chunks are selected based on the
information available in the lexical link matrix.
The candidate target chunk is built by concatenat-
ing all target chunks from a begin index until an
end index. The begin index points to the first target
chunk with a lexical link to the source chunk un-
der consideration. The end index points to the last
target chunk with a lexical link to the source chunk
under consideration. This way, 1:1 and 1:n candi-
date target chunks are built. The process of select-
ing candidate chunks as described above, is per-
formed a second time starting from the target sen-
tence. This way, additional n:1 candidates are con-
structed. For each selected candidate pair, a simi-
larity test is performed. Chunks are considered to
be similar if at least a certain percentage of words
of source and target chunk(s) are either linked by
means of a lexical link or can be linked on the basis
of corresponding part-of-speech codes. The per-
centage of words that have to be linked was em-
pirically set at 85%.

3.3 Linking Remaining Chunks
In a second step, chunks consisting of one function
word – mostly punctuation marks and conjunc-
tions – are linked based on corresponding part-of-
speech codes if their left or right neighbour on the
diagonal is an anchor chunk. Corresponding final
punctuation marks are also linked.

In a final step, additional candidates are con-
structed by selecting non-anchor chunks in the
source and target sentence that have correspond-
ing left and right anchor chunks as neigbours. The
anchor chunks of the first step are used as contex-
tual information to link n:m chunks or chunks for
which no lexical link was found in the lexical link
matrix.

In Figure 1, the chunks [Fr: gradient] – [En:
gradient] and the final punctuation mark have been
retrieved in the first step as anchor chunk. In the
last step, the n:m chunk [Fr: de remontée pédale
d’ embrayage] – [En: of rising of the clutch pedal]
is selected as candidate anchor chunk because it is
enclosed within anchor chunks.

Figure 1: n:m candidate chunk: ’A’ stands for an-
chor chunks, ’L’ for lexical links, ’P’ for words
linked on the basis of corresponding PoS codes
and ’R’ for words linked by language-dependent
rules.

As the contextual clues (the left and right neig-
bours of the additional candidate chunks are an-
chor chunks) provide some extra indication that
the chunks can be linked, the similarity test for
the final candidates was somewhat relaxed: the
percentage of words that have to be linked was
lowered to 0.80 and a more relaxed PoS matching
function was used.

3.4 Evaluation
To test our alignment module, we manually indi-
cated all translational correspondences in the three
test corpora. We used the evaluation methodology
of Och and Ney (2003) to evaluate the system’s
performance. They distinguished sure alignments
(S) and possible alignments (P) and introduced the
following redefined precision and recall measures
(where A refers to the set of alignments):

precision =
|A ∩ P |
|A|

, recall =
|A ∩ S|
|S|

(1)

and the alignment error rate (AER):

AER(S, P ; A) = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

(2)
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Table 3 shows the alignment results for the three
language pairs. (Macken et al., 2008) showed that
the results for French-English were competitive to
state-of-the-art alignment systems.

SHORT MEDIUM LONG
p r e p r e p r e

Italian .99 .93 .04 .95 .89 .08 .95 .89 .07
English .97 .91 .06 .95 .85 .10 .92 .85 .12
Dutch .96 .83 .11 .87 .73 .20 .87 .67 .24

Table 3: Precision (p), recall (r) and alignment er-
ror rate (e) for our sub-sentential alignment sys-
tem evaluated on French-Italian, French-English
and French-Dutch

As expected, the results show that the align-
ment quality is closely related to the similarity be-
tween languages. As shown in example (1), Ital-
ian and French are syntactically almost identical
– and hence easier to align, English and French
are still close but show some differences (e.g dif-
ferent compounding strategy and word order) and
French and Dutch present a very different lan-
guage structure (e.g. in Dutch the different com-
pound parts are not separated by spaces, separable
verbs, i.e. verbs with prefixes that are stripped off,
occur frequently (losmaken as an infinitive versus
maak los in the conjugated forms) and a different
word order is adopted).

(1) Fr: déclipper le renvoi de ceinture de sécurité.

(En: unclip the mounting of the belt of safety)

It: sganciare il dispositivo di riavvolgimento della

cintura di sicurezza.

(En: unclip the mounting of the belt of satefy)

En: unclip the seat belt mounting.

Du: maak de oprolautomaat van de autogordel los.

(En: clip the mounting of the seat-belt un)

We tried to improve the low recall for French-
Dutch by adding a decompounding module to our
alignment system. In case the target word does
not have a lexical correspondence in the source
sentence, we decompose the Dutch word into its
meaningful parts and look for translations of the
compound parts. This implies that, without de-
compounding, in example 2 only the correspon-
dences doublure – binnenpaneel, arc – dakverste-
viging and arrière – achter will be found. By de-
composing the compound into its meaningful parts
(binnenpaneel = binnen + paneel, dakversteviging
= dak + versteviging) and retrieving the lexical

links for the compound parts, we were able to link
the missing correspondence: pavillon – dakverste-
viging.

(2) Fr: doublure arc pavillon arrière.

(En: rear roof arch lining)

Du: binnenpaneel dakversteviging achter.

We experimented with the decompounding mod-
ule of (Vandeghinste, 2008), which is based on
the Celex lexical database (Baayen et al., 1993).
The module, however, did not adapt well to the
highly technical automotive domain, which is re-
flected by its low recall and the low confidence
values for many technical terms. In order to adapt
the module to the automotive domain, we imple-
mented a domain-dependent extension to the de-
compounding module on the basis of the devel-
opment corpus. This was done by first running the
decompounding module on the Dutch sentences to
construct a list with possible compound heads, be-
ing valid compound parts in Dutch. This list was
updated by inspecting the decompounding results
on the development corpus. While decomposing,
we go from right to left and strip off the longest
valid part that occurs in our preconstructed list
with compound parts and we repeat this process
on the remaining part of the word until we reach
the beginning of the word.

Table 4 shows the impact of the decompound-
ing module, which is more prominent for short
and medium sentences than for long sentences. A
superficial error analysis revealed that long sen-
tences combine a lot of other French – Dutch
alignment difficulties next to the decompounding
problem (e.g. different word order and separable
verbs).

SHORT MEDIUM LONG
p r e p r e p r e

Dutch
no dec .95 .76 .16 .88 .67 .24 .88 .64 .26
dec .96 .83 .11 .87 .73 .20 .87 .67 .24

Table 4: Precision (p), recall (r) and alignment er-
ror rate (e) for French-Dutch without and with de-
compounding information

4 Term extraction module

As described in Section 1, we generate candi-
date terms from the aligned phrases. We believe
these anchor chunks offer a more flexible approach
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because the method is language-pair independent
and is not restricted to a predefined set of PoS pat-
terns to identify valid candidate terms. In a second
step, we use a general-purpose corpus and the n-
gram frequency of the automotive corpus to deter-
mine the specificity of the candidate terms.

The candidate terms are generated in several
steps, as illustrated below for example (3).

(3) Fr: Tableau de commande de climatisation automa-

tique

En: Automatic air conditioning control panel

1. Selection of all anchor chunks (minimal
chunks that could be linked together) and lex-
ical links within the anchor chunks:

tableau de commande control panel
climatisation air conditioning
commande control
tableau panel

2. combine each NP + PP chunk:

commande de climatisa-
tion automatique

automatic air condition-
ing control

tableau de commande de
climatisation automatique

automatic air condition-
ing control panel

3. strip off the adjectives from the anchor
chunks:

commande de climatisa-
tion

air conditioning control

tableau de commande de
climatisation

air conditioning control
panel

4.1 Filtering candidate terms
To filter our candidate terms, we keep following
criteria in mind:

• each entry in the extracted lexicon should re-
fer to an object or action that is relevant for
the domain (notion of termhood that is used
to express “the degree to which a linguis-
tic unit is related to domain-specific context”
(Kageura and Umino, 1996))

• multiword terms should present a high de-
gree of cohesiveness (notion of unithood that
expresses the “degree of strength or stability
of syntagmatic combinations or collocations”
(Kageura and Umino, 1996))

• all term pairs should contain valid translation
pairs (translation quality is also taken into
consideration)

To measure the termhood criterion and to fil-
ter out general vocabulary words, we applied
Log-Likelihood filters on the French single-word
terms. In order to filter on low unithood values,
we calculated the Mutual Expectation Measure for
the multiword terms in both source and target lan-
guage.

4.1.1 Log-Likelihood Measure
The Log-Likehood measure (LL) should allow us
to detect single word terms that are distinctive
enough to be kept in our bilingual lexicon (Daille,
1995). This metric considers word frequencies
weighted over two different corpora (in our case a
technical automotive corpus and the more general
purpose corpus “Le Monde”1), in order to assign
high LL-values to words having much higher or
lower frequencies than expected. We implemented
the formula for both the expected values and the
Log-Likelihood values as described by (Rayson
and Garside, 2000).
Manual inspection of the Log-Likelihood fig-
ures confirmed our hypothesis that more domain-
specific terms in our corpus were assigned high
LL-values. We experimentally defined the thresh-
old for Log-Likelihood values corresponding to
distinctive terms on our development corpus. Ex-
ample (4) shows some translation pairs which are
filtered out by applying the LL threshold.

(4) Fr: cependant – En: however – It: tuttavia – Du:

echter

Fr: choix – En: choice – It: scelta – Du: keuze

Fr: continuer – En: continue – It: continuare – Du:

verdergaan

Fr: cadre – En: frame – It: cornice – Du: frame

(erroneous filtering)

Fr: allégement – En: lightening – It: alleggerire –

Du: verlichten (erroneous filtering)

4.1.2 Mutual Expectation Measure
The Mutual Expectation measure as described by
Dias and Kaalep (2003) is used to measure the
degree of cohesiveness between words in a text.
This way, candidate multiword terms whose com-
ponents do not occur together more often than ex-
pected by chance get filtered out. In a first step,
we have calculated all n-gram frequencies (up to
8-grams) for our four automotive corpora and then
used these frequencies to derive the Normalised

1http://catalog.elra.info/product info.php?products id=438
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Expectation (NE) values for all multiword entries,
as specified by the formula of Dias and Kaalep:

NE =
prob(n− gram)

1
n

∑
prob(n− 1− grams)

(3)

The Normalised Expectation value expresses the
cost, in terms of cohesiveness, of the possible loss
of one word in an n-gram. The higher the fre-
quency of the n-1-grams, the smaller the NE, and
the smaller the chance that it is a valid multiword
expression. The final Mutual Expectation (ME)
value is then obtained by multiplying the NE val-
ues by the n-gram frequency. This way, the Mu-
tual Expectation between n words in a multiword
expression is based on the Normalised Expecta-
tion and the relative frequency of the n-gram in
the corpus.

We calculated Mutual Expectation values for all
candidate multiword term pairs and filtered out in-
complete or erroneous terms having ME values be-
low an experimentally set threshold (being below
0.005 for both source and target multiword or be-
low 0.0002 for one of the two multiwords in the
translation pair). The following incomplete can-
didate terms in example (5) were filtered out by
applying the ME filter:

(5) Fr: fermeture embout - En: end closing - It:

chiusura terminale - Du: afsluiting deel

(should be: Fr: fermeture embout de brancard - En:

chassis member end closing panel - It: chiusura ter-

minale del longherone - Du: afsluiting voorste deel

van langsbalk)

4.2 Evaluation
The terminology extraction module was tested on
all sentences from the three test corpora. The out-
put was manually labeled and the annotators were
asked to judge both the translational quality of the
entry (both languages should refer to the same ref-
erential unit) as well as the relevance of the term
in an automotive context. Three labels were used:
OK (valid entry), NOK (not a valid entry) and
MAYBE (in case the annotator was not sure about
the relevance of the term).

First, the impact of the statistical filtering was
measured on the bilingual term extraction. Sec-
ondly, we compared the output of our system with
the output of a commercial bilingual terminology
extraction module and with the output of a set of
standard monolingual term extraction modules.

Since the annotators labeled system output, the
reported scores all refer to precision scores. In fu-
ture work, we will develop a gold standard corpus
which will enable us to also calculate recall scores.

4.2.1 Impact of filtering

Table 5 shows the difference in performance for
both single and multiword terms with and with-
out filtering. Single-word filtering seems to have a
bigger impact on the results than multiword filter-
ing. This can be explained by the fact that our can-
didate multiword terms are generated from anchor
chunks (chunks aligned with a very high preci-
sion) that already answer to strict syntactical con-
straints. The annotators also mentioned the diffi-
culty of judging the relevance of single word terms
for the automotive domain (no clear distinction be-
tween technical and common vocabulary).

NOT FILTERED FILTERED
OK NOK MAY OK NOK MAY

FR-EN
Sing w 82% 17% 1% 86.5% 12% 1.5%
Mult w 81% 16.5% 2.5% 83% 14.5% 2.5%
FR-IT
Sing w 80.5% 19% 0.5% 84.5% 15% 0.5%
Mult w 69% 30% 1.0% 72% 27% 1.0%
FR-DU
Sing w 72% 25% 3% 75% 22% 3%
Mult w 83% 15% 2% 84% 14% 2%

Table 5: Impact of statistical filters on Single and
Multiword terminology extraction

4.2.2 Comparison with bilingual terminology
extraction

We compared the three filtered bilingual lexi-
cons (French versus English-Italian-Dutch) with
the output of a commercial state-of-the-art termi-
nology extraction program SDL MultiTerm Ex-
tract2. MultiTerm is a statistically based system
that first generates a list of candidate terms in the
source language (French in our case) and then
looks for translations of these terms in the target
language. We ran MultiTerm with its default set-
tings (default noise-silence threshold, default stop-
word list, etc.) on a large portion of our parallel
corpus that also contains all test sentences3. We
ran our system (where term extraction happens on
a sentence per sentence basis) on the three test
sets.

2www.translationzone.com/en/products/sdlmultitermextract
370,000 sentences seemed to be the maximum size of

the corpus that could be easily processed within MultiTerm
Extract.
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Table 6 shows that even after applying statistical
filters, our term extraction module retains a much
higher number of candidate terms than MultiTerm.

# Extracted terms # Terms after filtering MultiTerm
FR-EN 4052 3386 1831
FR-IT 4381 3601 1704
FR-DU 3285 2662 1637

Table 6: Number of terms before and after apply-
ing Log-Likelihood and ME filters

Table 7 lists the results of both systems and
shows the differences in performance for single
and multiword terms. Following observations can
be made:

• The performance of both systems is compa-
rable for the extraction of single word terms,
but our system clearly outperforms Multi-
Term when it comes to the extraction of more
complex multiword terms.

• Although the alignment results for French-
Italian were very good, we do not achieve
comparable results for Italian multiword ex-
traction. This can be due to the fact that the
syntactic structure is very similar in both lan-
guages. As a result, smaller syntactic chunks
are linked. However one can argue that, just
because of the syntactic resemblance of both
languages, the need for complex multiword
terms is less prominent in closely related lan-
guages as translators can just paste smaller
noun phrases together in the same order in
both languages. If we take the following ex-
ample for instance:

déposer – l’ embout – de brancard
togliere – il terminale – del sotto-
porta

we can recompose the larger compound
l’embout de brancard or il terminale del sot-
toporta by translating the smaller parts in the
same order (l’embout – il terminale and de
brancard – del sottoporta

• Despite the worse alignment results for
Dutch, we achieve good accuracy results on
the multiword term extraction. Part of that
can be explained by the fact that French and
Dutch use a different compounding strategy:
whereas French compounds are created by
concatenating prepositional phrases, Dutch

usually tends to concatenate noun phrases
(even without inserting spaces between the
different compound parts). This way we can
extract larger Dutch chunks that correspond
to several French chunks, for instance:

Fr: feu régulateur – de pression
carburant.
Du: brandstofdrukregelaar.

ANCHOR CHUNK APPROACH MULTITERM
OK NOK MAY OK NOK MAY

FR-EN
Sing w 86.5% 12% 1.5% 77% 21% 2%
Mult w 83% 14.5% 2.5% 47% 51% 2%
Total 84.5% 13.5% 2 % 64% 34% 2%
FR-IT
Sing w 84.5% 15% 0.5% 85% 14% 1%
Mult w 72% 27% 1.0% 65% 34% 1%
Total 77.5% 22% 1% 76.5% 22.5% 1%
FR-DU
Sing w 75% 22% 3% 64.5% 33% 2.5%
Mult w 84% 14% 2% 49.5% 49.5% 1%
Total 79.5% 20% 2.5% 58% 40% 2%

Table 7: Precision figures for our term extraction
system and for SDL MultiTerm Extract

4.2.3 Comparison with monolingual
terminology extraction

In order to have insights in the performance of
our terminology extraction module, without con-
sidering the validity of the bilingual terminology
pairs, we contrasted our extracted English terms
with state-of-the art monolingual terminology sys-
tems. As we want to include both single words and
multiword terms in our technical automotive lex-
icon, we only considered ATR systems which ex-
tract both categories. We used the implementation
for these systems from (Zhang et al., 2008) which
is freely available at1.

We compared our system against 5 other ATR
systems:

1. Baseline system (Simple Term Frequency)

2. Weirdness algorithm (Ahmad et al., 2007)
which compares term frequencies in the tar-
get and reference corpora

3. C-value (Frantzi and Ananiadou, 1999)
which uses term frequencies as well as
unit-hood filters (to measure the collocation
strength of units)

1http://www.dcs.shef.ac.uk/˜ziqizhang/resources/tools/
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4. Glossex (Kozakov et al., 2004) which uses
term frequency information from both the tar-
get and reference corpora and compares term
frequencies with frequencies of the multi-
word components

5. TermExtractor (Sclano and Velardi, 2007)
which is comparable to Glossex but intro-
duces the ”domain consensus” which ”sim-
ulates the consensus that a term must gain in
a community before being considered a rele-
vant domain term”

For all of the above algorithms, the input auto-
motive corpus is PoS tagged and linguistic filters
(selecting nouns and noun phrases) are applied to
extract candidate terms. In a second step, stop-
words are removed and the same set of extracted
candidate terms (1105 single words and 1341 mul-
tiwords) is ranked differently by each algorithm.
To compare the performance of the ranking algo-
rithms, we selected the top terms (300 single and
multiword terms) produced by all algorithms and
compared these with our top candidate terms that
are ranked by descending Log-likelihood (calcu-
lated on the BNC corpus) and Mutual Expectation
values. Our filtered list of unique English automo-
tive terms contains 1279 single words and 1879
multiwords in total. About 10% of the terms do
not overlap between the two term lists. All can-
didate terms have been manually labeled by lin-
guists. Table 8 shows the results of this compari-
son.

SINGLE WORD TERMS MULTIWORD TERMS
OK NOK MAY OK NOK MAY

Baseline 80% 19.5% 0.5% 84.5% 14.5% 1%
Weirdness 95.5% 3.5% 1% 96% 2.5% 1.5%
C-value 80% 19.5% 0.5% 94% 5% 1%
Glossex 94.5% 4.5% 1% 85.5% 14% 0.5%
TermExtr. 85% 15% 0% 79% 20% 1%
AC 85.5% 14.5% 0% 90% 8% 2%
approach

Table 8: Results for monolingual Term Extraction
on the English part of the automotive corpus

Although our term extraction module has been tai-
lored towards bilingual term extraction, the results
look competitive to monolingual state-of-the-art
ATR systems. If we compare these results with
our bilingual term extraction results, we can ob-
serve that we gain more in performance for mul-
tiwords than for single words, which might mean
that the filtering and ranking based on the Mutual

Expectation works better than the Log-Likelihood
ranking.

An error analysis of the results leads to the fol-
lowing insights:

• All systems suffer from partial retrieval of
complex multiwords (e.g. ATR management
ecu instead of engine management ecu, AC
approach chassis leg end piece closure in-
stead of chassis leg end piece closure panel).

• We manage to extract nice sets of multiwords
that can be associated with a given concept,
which could be nice for automatic ontology
population (e.g. AC approach gearbox cas-
ing, gearbox casing earth, gearbox casing
earth cable, gearbox control, gearbox control
cables, gearbox cover, gearbox ecu, gearbox
ecu initialisation procedure, gearbox fixing,
gearbox lower fixings, gearbox oil, gearbox
oil cooler protective plug).

• Sometimes smaller compounds are not ex-
tracted because they belong to the same syn-
tactic chunk (E.g we extract passenger com-
partment assembly, passenger compartment
safety, passenger compartment side panel,
etc. but not passenger compartment as such).

5 Conclusions and further work

We presented a bilingual terminology extraction
module that starts from sub-sentential alignments
in parallel corpora and applied it on three differ-
ent parallel corpora that are part of the same auto-
motive corpus. Comparisons with standard termi-
nology extraction programs show an improvement
of up to 20% for bilingual terminology extraction
and competitive results (85% to 90% accuracy) for
monolingual terminology extraction. In the near
future we want to experiment with other filtering
techniques, especially to measure the domain dis-
tinctiveness of terms and work on a gold standard
for measuring recall next to accuracy. We will
also investigate our approach on languages which
are more distant from each other (e.g. French –
Swedish).
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Abstract

We use a machine learner trained on a
combination of acoustic and contextual
features to predict the accuracy of incom-
ing n-best automatic speech recognition
(ASR) hypotheses to a spoken dialogue
system (SDS). Our novel approach is to
use a simple statistical User Simulation
(US) for this task, which measures the
likelihood that the user would say each
hypothesis in the current context. Such
US models are now common in machine
learning approaches to SDS, are trained on
real dialogue data, and are related to the-
ories of “alignment” in psycholinguistics.
We use a US to predict the user’s next dia-
logue move and thereby re-rank n-best hy-
potheses of a speech recognizer for a cor-
pus of 2564 user utterances. The method
achieved a significant relative reduction of
Word Error Rate (WER) of 5% (this is
44% of the possible WER improvement
on this data), and 62% of the possible se-
mantic improvement (Dialogue Move Ac-
curacy), compared to the baseline policy
of selecting the topmost ASR hypothesis.
The majority of the improvement is at-
tributable to the User Simulation feature,
as shown by Information Gain analysis.

1 Introduction

A crucial problem in the design of spoken dia-
logue systems (SDS) is to decide for incoming
recognition hypotheses whether a system should
accept (consider correctly recognized), reject (as-
sume misrecognition), or ignore (classify as noise
or speech not directed to the system) them.

Obviously, incorrect decisions at this point can
have serious negative effects on system usability
and user satisfaction. On the one hand, accept-

ing misrecognized hypotheses leads to misunder-
standings and unintended system behaviors which
are usually difficult to recover from. On the other
hand, users might get frustrated with a system that
behaves too cautiously and rejects or ignores too
many utterances. Thus an important feature in di-
alogue system engineering is the tradeoff between
avoiding task failure (due to misrecognitions) and
promoting overall dialogue efficiency, flow, and
naturalness.

In this paper, we investigate the use of machine
learning trained on a combination of acoustic fea-
tures and features computed from dialogue context
to predict the quality of incoming n-best recogni-
tion hypotheses to a SDS. These predictions are
then used to select a “best” hypothesis and to de-
cide on appropriate system reactions. We evalu-
ate this approach in comparison with a baseline
system that works in the standard way: always
choosing the topmost hypothesis in the n-best list.
In such systems, complex repair strategies are re-
quired when the top hypothesis is incorrect.

The main novelty of this work is that we ex-
plore the use of predictions from simple statisti-
cal User Simulations to re-rank n-best lists of ASR
hypotheses. These User Simulations are now com-
monly used in statistical learning approaches to di-
alogue management (Williams and Young, 2003;
Schatzmann et al., 2006; Young, 2006; Young et
al., 2007; Schatzmann et al., 2007), but they have
not been used for context-sensitive ASR before.

In our model, the system’s “belief” b(h) in a
recognition hypothesis h is factored in two parts:
the observation probability P (o|h) (approximated
by the ASR confidence score) and the User Simu-
lation probability P (h|us, C) of the hypothesis:

b(h) = P (o|h).P (h|us, C) (1)

where us is the state of the User Simulation in
context C. The context is simply a window of di-
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alogue acts in the dialogue history, that the US is
sensitive to (see section 3).

The paper is organized as follows. After a short
relation to previous work, we describe the data
(Section 5) and derive baseline results (Section
6). Section 3 describes the User Simulations that
we use for re-ranking hypotheses. Section 7 de-
scribes our learning experiments for classifying
and selecting from n-best recognition hypotheses
and Section 9 reports our results.

2 Relation to Previous Work

In psycholinguistics, the idea that human dialogue
participants simulate each other to some extent is
gaining currency. (Pickering and Garrod, 2007)
write:

“if B overtly imitates A, then A’s com-
prehension of B’s utterance is facilitated
by A’s memory for A’s previous utter-
ance.”

We explore aspects of this idea in a computa-
tional manner. Similar work in the area of spoken
dialogue systems is described below.

(Litman et al., 2000) use acoustic-prosodic in-
formation extracted from speech waveforms, to-
gether with information derived from their speech
recognizer, to automatically predict misrecog-
nized turns in a corpus of train-timetable informa-
tion dialogues. In our experiments, we also use
recognizer confidence scores and a limited num-
ber of acoustic-prosodic features (e.g. amplitude
in the speech signal) for hypothesis classification,
but we also use User Simulation predictions.

(Walker et al., 2000) use a combination of fea-
tures from the speech recognizer, natural language
understanding, and dialogue manager/discourse
history to classify hypotheses as correct, partially
correct, or misrecognized. Our work is related to
these experiments in that we also combine con-
fidence scores and higher-level features for clas-
sification. However, both (Litman et al., 2000)
and (Walker et al., 2000) consider only single-best
recognition results and thus use their classifiers as
“filters” to decide whether the best recognition hy-
pothesis for a user utterance is correct or not. We
go a step further in that we classify n-best hypothe-
ses and then select among the alternatives. We also
explore the use of more dialogue and task-oriented
features (e.g. the dialogue move type of a recogni-
tion hypothesis) for classification.

(Gabsdil and Lemon, 2004) similarly perform
reordering of n-best lists by combining acoustic
and pragmatic features. Their study shows that di-
alogue features such as the previous system ques-
tion and whether a hypothesis is the correct answer
to a particular question contributed more to classi-
fication accuracy than the other attributes.

(Jonson, 2006) classifies recognition hypothe-
ses with labels denoting acceptance, clarification,
confirmation and rejection. These labels were
learned in a similar way to (Gabsdil and Lemon,
2004) and correspond to varying levels of con-
fidence, being essentially potential directives to
the dialogue manager. Apart from standard fea-
tures Jonson includes attributes that account for
the whole n-best list, i.e. standard deviation of
confidence scores.

As well as the use of a User Simulation, the
main difference between our approach and work
on hypothesis reordering (e.g. (Chotimongkol and
Rudnicky, 2001)) is that we make a decision re-
garding whether a dialogue system should accept,
clarify, reject, or ignore a user utterance. Like
(Gabsdil and Lemon, 2004; Jonson, 2006), our
approach is more generally applicable than pre-
ceding research, since we frame our methodology
in the Information State Update (ISU) approach
to dialogue management (Traum et al., 1999) and
therefore expect it to be applicable to a range of
related multimodal dialogue systems.

3 User Simulations

What makes this study different from the previous
work in the area of post-processing of the ASR hy-
potheses is the incorporation of a User Simulation
output as an additional feature. The history of a di-
alogue between a user and a dialogue system plays
an important role as to what the user might be ex-
pected to say next. As a result, most of the stud-
ies mentioned in the previous section make vari-
ous efforts to capture history by including relevant
features directly in their classifiers.

Various statistical User Simulations have been
trained on corpora of dialogue data in order to
simulate real user behaviour (Schatzmann et al.,
2006; Young, 2006; Georgila et al., 2006; Young
et al., 2007; Schatzmann et al., 2007). We devel-
oped a simple n-gram User Simulation, using n-
grams of dialogue moves. It treats a dialogue as
a sequence of lists of consecutive user and system
turns in a high level semantic representation, i.e.
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< SpeechAct >, < Task > pairs, for example
< provide info >,< music genre(punk) >.
It takes as input the n − 1 most recent lists of
< SpeechAct >, < Task > pairs in the dialogue
history, and uses the statistics in the training set
to compute a distribution over the possible next
user actions. If no n-grams match the current his-
tory, the model can back-off to n-grams of lower
order. We use this model to assess the likelihood
of each candidate ASR hypothesis. Intuitively, this
is the likelihood that the user really would say the
hypothesis in the current dialogue situation. The
benefit of using n-gram models is that they are fast
and simple to train even on large corpora.

The main hypothesis that we investigate is that
by using the User Simulation model to predict the
next user utterance, we can effectively increase the
performance of the speech recogniser module.

4 Evaluation metrics

To evaluate performance we use Dialogue Move
Accuracy (DMA), a strict variant of Concept Er-
ror Rate (CER) as defined by (Boros et al., 1996),
which takes into account the semantic aspects of
the difference between the classified utterance and
the true transcription. CER is similar to WER,
since it takes into account deletions, insertions
and substitutions on the semantic (rather than the
word) level of the utterance. DMA is stricter than
CER in the sense that it does not allow for par-
tial matches in the semantic representation. In
other words, if the classified utterance corresponds
to the same semantic representation as the tran-
scribed then we have 100% DMA, otherwise 0%.

Sentence Accuracy (SA) is the alignment of a
single hypothesis in the n-best list with the true
transcription. Similarly to DMA, it accounts for
perfect alignment between the hypothesis and the
transcription, i.e. if they match perfectly we have
100% SA, otherwise 0%.

5 Data Collection

For our experiments, we use data collected in a
user study with the Town-Info spoken dialogue
system, using the HTK speech recognizer (Young,
2007). In this study 18 subjects had to solve 10
search/browsing tasks with the system, resulting in
180 complete dialogues and 2564 utterances (av-
erage 14.24 user utterances per dialogue).

For each utterance we have a series of files of
60-best lists produced by the speech recogniser,

namely the transcription hypotheses on a sentence
level along with the acoustic model score and the
equivalent transcriptions on a word level, with in-
formation such as the duration of each recognised
frame and the confidence score of the acoustic and
language model of each word.

5.1 Labeling
We transcribed all user utterances and parsed the
transcriptions offline using a natural language un-
derstanding component (a robust Keyword Parser)
in order to get a gold-standard labeling of the data.

We devised four labels with decreasing order of
confidence: ’opt’ (optimal), ’pos’ (positive), ’neg’
(negative), ’ign’ (ignore). These are automatically
generated using two different modules: a key-
word parser that computes the < SpeechAct ><
Task > pair as described in the previous sec-
tion and a Levenshtein Distance calculator, for the
computation of the DMA and WER of each hy-
pothesis respectively. The reason for opting for a
more abstract level, namely the semantics of the
hypotheses rather than individual word recogni-
tion, is that in SDS it is usually sufficient to rely
on the meaning of message that is being conveyed
by the user rather than the precise words that they
used.

Similar to (Gabsdil and Lemon, 2004; Jonson,
2006) we ascribe to each utterance either of the
’opt’, ’pos’, ’neg’, ’ign’ labels according to the
following schema:

• opt: The hypothesis is perfectly aligned and
semantically identical to the transcription

• pos: The hypothesis is not entirely aligned
(WER < 50) but is semantically identical to
the transcription

• neg: The hypothesis is semantically identical
to the transcription but does not align well
(WER > 50) or is semantically different to
the transcription

• ign: The hypothesis was not addressed to
the system (crosstalk), or the user laughed,
coughed, etc.

The 50% value for the WER as a threshold for
the distinction between the ’pos’ and ’neg’ cate-
gory is adopted from (Gabsdil, 2003), based on
the fact that WER is affected by concept accuracy
(Boros et al., 1996). In other words, if a hypothe-
sis is erroneous as far as its transcript is concerned
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Transcript: I’d like to find a bar please
I WOULD LIKE TO FIND A BAR PLEASE pos

I LIKE TO FIND A FOUR PLEASE neg

I’D LIKE TO FIND A BAR PLEASE opt

WOULD LIKE TO FIND THE OR PLEASE ign

Table 1: Example hypothesis labelling

then it is highly likely that it does not convey the
correct message from a semantic point of view.
We always label conceptually equivalent hypothe-
ses to a particular transcription as potential candi-
date dialogue strategy moves, and total misrecog-
nitions as rejections. In table 5.1 we show exam-
ples of the four labels. Note that in the case of
silence, we give an ’opt’ to the empty hypothesis.

6 The Baseline and Oracle Systems

The baseline for our experiments is the behavior
of the Town-Info spoken dialogue system that was
used to collect the experimental data. We evaluate
the performance of the baseline system by analyz-
ing the dialogue logs from the user study.

As an oracle for the system we defined the
choice of either the first ’opt’ in the n-best list,
or if this does not exist the first ’pos’ in the list.
In this way it is guaranteed that we always get as
output a perfect match to the true transcript as far
as its Dialogue Move is concerned, provided there
exists a perfect match somewhere in the list.

6.1 Baseline and Oracle Results
Table 2 summarizes the evaluation of the baseline
and oracle systems. We note that the Baseline sys-
tem already performs quite well on this data, when
we consider that in about 20% of n-best lists there
is no semantically correct hypothesis.

Baseline Oracle
WER 47.72% 42.16%
DMA 75.05% 80.20%
SA 40.48% 45.27%

Table 2: Baseline and Oracle results (statistically
significant at p < 0.001)

7 Classifying and Selecting N-best
Recognition Hypotheses

We use a threshold (50%) on a hypothesis’ WER
as an indicator for whether hypotheses should be

clarified or rejected. This is adopted from (Gabs-
dil, 2003), based on the fact that WER correlates
with concept accuracy (CA, (Boros et al., 1996)).

7.1 Classification: Feature Groups

We represent recognition hypotheses as 13-
dimensional feature vectors for automatic classi-
fication. The feature vectors combine recognizer
confidence scores, low-level acoustic information,
and information from the User Simulation.

All the features used by the system are extracted
by the dialogue logs, the n-best lists per utterance
and per word and the audio files. The majority
of the features chosen are based on their success
in previous systems as described in the literature
(see section 2). The novel feature here is the User
Simulation score which may make redundant most
of the dialogue features used in other studies.

In order to measure the usefulness of each can-
didate feature and thus choose the most important
we use the metrics of Information Gain and Gain
Ratio (see table 3 in section 8.1) on the whole
training set, i.e. 93240 hypotheses.

In total 13 attributes were extracted, that can be
grouped into 4 main categories; those that concern
the current hypothesis to be classified, those that
concern low-level statistics of the audio files, those
that concern the whole n-best list, and finally the
User Simulation feature.

• Current Hypothesis Features (CHF) (6):
acoustic score, overall model confidence
score, minimum word confidence score,
grammar parsability, hypothesis length and
hypothesis duration.

• Acoustic Features (AF) (3): minimum, max-
imum and RMS amplitude

• List Features (LF) (3): n-best rank, deviation
of confidence scores in the list, match with
most frequent Dialogue Move

• User Simulation (US) (1): User Simulation
confidence score

The Current Hypothesis features (CHF) were
extracted from the n-best list files that contained
the hypotheses’ transcription along with overall
acoustic score per utterance and from the equiv-
alent files that contained the transcription of each
word along with the start of frame, end of frame
and confidence score:
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Acoustic score is the negative log likelihood as-
cribed by the speech recogniser to the whole hy-
pothesis, being the sum of the individual word
acoustic scores. Intuitively this is considered to
be helpful since it depicts the confidence of the
statistical model only for each word and is also
adopted in previous studies. Incorrect alignments
shall tend to adapt less well to the model and thus
have low log likelihood.

Overall model confidence score is the average
of the individual word confidence scores.

Minimum word confidence score is also com-
puted by the individual word transcriptions and ac-
counts for the confidence score of the word which
the speech recogniser is least certain of. It is ex-
pected to help our classifier distinguish between
poor overall hypothesis recognitions since a high
overall confidence score can sometimes be mis-
leading.

Grammar Parsability is the negative log
likelihood of the transcript for the current hy-
pothesis as produced by the Stanford Parser, a
wide-coverage Probabilistic Context-Free Gram-
mar (PCFG) (Klein and Manning, 2003) 1. This
feature seems helpful since we expect that a highly
ungrammatical hypothesis is likely not to match
with the true transcription semantically.

Hypothesis duration is the length of the hy-
pothesis in milliseconds as extracted from the n-
best list files with transcriptions per word that in-
clude the start and the end time of the recognised
frame. The reason for the inclusion of this fea-
ture is that it can help distinguish between short
utterances such as yes/no answers, medium-sized
utterances of normal answers and long utterances
caused by crosstalk.

Hypothesis length is the number of words in a
hypothesis and is considered to help in a similar
way as the above feature.

The Acoustic Features (AF) were extracted di-
rectly from the wave files using SoX: Minimum,
maximum and RMS amplitude are straightforward
features common in the previous studies men-
tioned in section 2.

The List Features (LF) were calculated based
on the n-best list files with transcriptions per utter-
ance and per word and take into account the whole
list:

N-best rank is the position of the hypothesis in
the list and could be useful in the sense that ’opt’

1http://nlp.stanford.edu/software/lex-parser.shtml

and ’pos’ may be found in the upper part of the list
rather than the bottom.

Deviation of confidence scores in the list is
the deviation of the overall model confidence score
of the hypothesis from the mean confidence score
in the list. This feature is extracted in the hope
that it will indicate potential clusters of confidence
scores in particular positions in the list, i.e. group
hypotheses that deviate in a specific fashion from
the mean and thus indicating them being classified
with the same label.

Match with most frequent Dialogue Move is
the only boolean feature and indicates whether the
Dialogue Move of the current hypothesis, i.e. the
pair of < SpeechAct >< Task > coincides with
the most frequent one. The trend in n-best lists
is to have a majority of utterances that belong to
one or two labels and only one hypothesis belong-
ing to the ’opt’ category and/or a few to the ’pos’
category. As a result, the idea behind this feature
is to extract such potential outliers which are the
desired goal for the re-ranker.

Finally, the User Simulation score is given as
an output from the User Simulation model and
adapted for the purposes of this study (see section
3 for more details). The model is operating with 5-
grams. Its input is given by two different sources:
the history of the dialogue, namely the 4 previous
Dialogue Moves, is taken from the dialogue log
and the current hypothesis’ semantic parse which
is generated on the fly by the same keyword parser
used in the automatic labelling.

User Simulation score is the probability that
the current hypothesis’ Dialogue Move has really
been said by the user given the 4 previous Dia-
logue Moves. The potential advantages of this fea-
ture have been discussed in section 3.

7.2 Learner and Selection Procedure

We use the memory based learner TiMBL (Daele-
mans et al., 2002) to predict the class of each of
the 60-best recognition hypotheses for a given ut-
terance.

TiMBL was trained using different parameter
combinations mainly choosing between number of
k-nearest neighbours (1 to 5) and distance metrics
(Weighted Overlap and Modified Value Difference
Metric). In a second step, we decide which (if any)
of the classified hypotheses we actually want to
pick as the best result and how the user utterance
should be classified as a whole.
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1. Scan the list of classified n-best recognition
hypotheses top-down. Return the first result
that is classified as ’opt’.

2. If 1. fails, scan the list of classified n-best
recognition hypotheses top-down. Return the
first result that is classified as ’pos’.

3. If 2. fails, count the number of negs and igns
in the classified recognition hypotheses. If
the number of negs is larger or equal than the
number of igns then return the first ’neg’.

4. Else return the first ’ign’ utterance.

8 Experiments

Experiments were conducted in two layers: the
first layer concerns only the classifier, i.e. the abil-
ity of the system to correctly classify each hypoth-
esis to either of the four labels ’opt’, ’pos’, ’neg’,
’ign’ and the second layer the re-ranker, i.e. the
ability of the system to boost the speech recog-
niser’s accuracy.

All results are drawn from the TiMBL classi-
fier trained with the Weighted Overlap metric and
k = 1 nearest neighbours settings. Both layers
are trained on 75% of the same Town-Info Corpus
of 126 dialogues containing 60-best lists for 1554
user utterances or a total of 93240 hypotheses. The
first layer was tested against a separate Town-Info
Corpus of 58 dialogues containing 510 user utter-
ances or a total of 30600 hypotheses, while the
second was tested on the whole training set with
10-fold cross-validation.

Using this corpus, a series of experiments was
carried out using different sets of features in order
to both determine and illustrate the increasing per-
formance of the classifier. These sets were deter-
mined not only by the literature but also by the In-
formation Gain measures that were calculated on
the training set using WEKA, as shown in table 3.

8.1 Information Gain

Quite surprisingly, we note that the rank given by
the Information Gain measure coincides perfectly
with the logical grouping of the attributes that was
initially performed (see table 3).

As a result, we chose to use this grouping for
the final 4 feature sets on which the classifier
experiments were performed, in the following
order:
Experiment 1: List Features (LF)

InfoGain Attribute
1.0324 userSimulationScore
0.9038 rmsAmp
0.8280 minAmp
0.8087 maxAmp
0.4861 parsability
0.3975 acousScore
0.3773 hypothesisDuration
0.2545 hypothesisLength
0.1627 avgConfScore
0.1085 minWordConfidence
0.0511 nBestRank
0.0447 standardDeviation
0.0408 matchesFrequentDM

Table 3: Information Gain

Experiment 2: List Features + Current Hypothe-
sis Features (LF+CHF)
Experiment 3: List Features + Current Hypothe-
sis Features + Acoustic Features (LF+CHF+AF)
Experiment 4: List Features + Current Hy-
pothesis Features + Acoustic Features + User
Simulation (LF+CHF+AF+US)

Note that the User Simulation score is a very
strong feature, scoring first in the Information
Gain rank, validating our central hypothesis.

The testing of the classifier using each of the
above feature sets was performed on the remain-
ing 25% of the Town-Info corpus comprising of 58
dialogues, consisting of 510 utterances and taking
the 60-best lists resulting in a total of 30600 vec-
tors. In each experiment we measured Precision,
Recall, F-measure per class and total Accuracy of
the classifier .

For the second layer, we used a trained instance
of the TiMBL classifier on the 4th feature set (List
Features + Current Hypothesis Features + Acous-
tic Features + User Simulation) and performed re-
ranking using the algorithm presented in section
7.2 on the same training set used in the first layer
using 10-fold cross validation.

9 Results and Evaluation

We performed two series of experiments in two
layers: the first corresponds to the training of the
classifier alone and the second to the system as a
whole measuring the re-ranker’s output.
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Feature set (opt) Precision Recall F1
LF 42.5% 58.4% 49.2%
LF+CHF 62.4% 65.7% 64.0%
LF+CHF+AF 55.6% 61.6% 58.4%
LF+CHF+AF+US 70.5% 73.7% 72.1%

Table 4: Results for the ’opt’ category

Feature set (pos) Precision Recall F1
LF 25.2% 1.7% 3.2%
LF+CHF 51.2% 57.4% 54.1%
LF+CHF+AF 51.5% 54.6% 53.0%
LF+CHF+AF+US 64.8% 61.8% 63.3%

Table 5: Results for the ’pos’ category

9.1 First Layer: Classifier Experiments

In these series of experiments we measure preci-
sion, recall and F1-measure for each of the four
labels and overall F1-measure and accuracy of the
classifier. In order to have a better view of the
classifier’s performance we have also included the
confusion matrix for the final experiment with all
13 attributes. Tables 4 -7 show per class and per
attribute set measures, while Table 8 shows a col-
lective view of the results for the four sets of at-
tributes and the baseline being the majority class
label ’neg’. Table 9 shows the confusion matrix
for the final experiment.

In tables 4 - 8 we generally notice an increase
in precision, recall and F1-measure as we pro-
gressively add more attributes to the system with
the exception of the addition of the Acoustic Fea-
tures which seem to impair the classifier’s perfor-
mance. We also make note of the fact that in the
case of the 4th attribute set the classifier can dis-
tinguish very well the ’neg’ and ’ign’ categories
with 86.3% and 99.9% F1-measure respectively.
Most importantly, we observe a remarkable boost
in F1-measure and accuracy with the addition of
the User Simulation score. We find a 37.36% rel-
ative increase in F1-measure and 34.02% increase

Feature set (neg) Precision Recall F1
LF 54.2% 96.4% 69.4%
LF+CHF 70.7% 75.0% 72.8%
LF+CHF+AF 69.5% 73.4% 71.4%
LF+CHF+AF+US 85.6% 87.0% 86.3%

Table 6: Results for the ’neg’ category

Feature set (ign) Precision Recall F1
LF 19.6% 1.3% 2.5%
LF+CHF 63.5% 48.7% 55.2%
LF+CHF+AF 59.3% 48.9% 53.6%
LF+CHF+AF+US 99.9% 99.9% 99.9%

Table 7: Results for the ’ign’ category

Feature set F1 Accuracy
Baseline - 51.1%
LF 37.3% 53.1%
LF+CHF 64.1% 64.8%
LF+CHF+AF 62.6% 63.4%
LF+CHF+AF+US 86.0% 84.9%

Table 8: F1-Measure and Accuracy for the four
attribute sets

in the accuracy compared to the 3rd experiment,
which contains all but the User Simulation score
attribute and a 66.20% relative increase of the ac-
curacy compared to the Baseline. In table 7 we
make note of a rather low recall measure for the
’ign’ category in the case of the LF experiment,
suggesting that the list features do not add extra
value to the classifier, partially validating the In-
formation Gain measure (Table 3).

Taking a closer look at the 4th experiment with
all 13 features we notice in table 9 that most er-
rors occur between the ’pos’ and ’neg’ category.
In fact, for the ’neg’ category the False Positive
Rate (FPR) is 18.17% and for the ’pos’ 8.9%, all
in all a lot larger than for the other categories.

9.2 Second Layer: Re-ranker Experiments

In these experiments we measure WER, DMA
and SA for the system as a whole. In order to
make sure that the improvement noted was re-
ally attributed to the classifier we computed the
p-values for each of these measures using the
Wilcoxon signed rank test for WER and McNemar
chi-square test for the DMA and SA measures.

In table 10 we note that the classifier scores

opt pos neg ign
opt 232 37 46 0
pos 47 4405 2682 8
neg 45 2045 13498 0
ign 5 0 0 7550

Table 9: Confusion Matrix for LF+CHF+AF+US
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Baseline Classifier Oracle
WER 47.72% 45.27% ** 42.16%***
DMA 75.05% 78.22% * 80.20% ***
SA 40.48% 42.26% 45.27%***

Table 10: Baseline, Classifier, and Oracle results
(*** = p < 0.001, ** = p < 0.01, * = p < 0.05)

Label Precision Recall F1
opt 74.0% 64.1% 68.7%
pos 76.3% 46.2% 57.6%
neg 81.9% 94.4% 87.7%
ign 99.9% 99.9% 99.9%

Table 11: Precision, Recall and F1: high-level fea-
tures

45.27% WER making a notable relative reduction
of 5.13% compared to the baseline and 78.22%
DMA incurring a relative improvement of 4.22%.
The classifier scored 42.26% on SA but it was
not considered significant compared to the base-
line (0.05 < p < 0.10). Comparing the classifier’s
performance with the Oracle it achieves a 44.06%
of the possible WER improvement on this data,
61.55% for the DMA measure and 37.16% for the
SA measure.

Finally, we also notice that the Oracle has a
80.20% for the DMA, which means that 19.80%
of the n-best lists did not include at all a hypothe-
sis that matched semantically to the true transcript.

10 Experiment with high-level features

We trained a Memory Based Classifier based only
on the higher level features of merely the User
Simulation score and the Grammar Parsability
(US + GP). The idea behind this choice is to try
and find a combination of features that ignores low
level characteristics of the user’s utterances as well
as features that heavily rely on the speech recog-
niser and thus by default are not considered to be
very trustworthy.

Quite surprisingly, the results taken from an ex-
periment with just the User Simulation score and
the Grammar Parsability are very promising and
comparable with those acquired from the 4th ex-
periment with all 13 attributes. Table 11 shows
the precision, recall and F1-measure per label and
table 12 illustrates the classifier’s performance in
comparison with the 4th experiment.

Table 12 shows that there is a somewhat consid-

Feature set F1 Accuracy Ties
LF+CHF+AF+US 86.0% 84.9% 4993
US+GP 85.7% 85.6% 115

Table 12: F1, Accuracy and number of ties cor-
rectly resolved for LF+CHF+AF+US and US+GP
feature sets

erable decrease in the recall and a corresponding
increase in the precision of the ’pos’ and ’opt’ cat-
egories compared to the LF + CHF + AF + US at-
tribute set, which account for lower F1-measures.
However, all in all the US + GP set manages to
classify correctly 207 more vectors and quite in-
terestingly commits far fewer ties and manages to
resolve more compared to the full 13 attribute set.

11 Conclusion

We used a combination of acoustic features and
features computed from dialogue context to pre-
dict the quality of incoming recognition hypothe-
ses to an SDS. In particular we use a score com-
puted from a simple statistical User Simulation,
which measures the likelihood that the user re-
ally said each hypothesis. The approach is novel
in combining User Simulations, machine learning,
and n-best processing for spoken dialogue sys-
tems. We employed a User Simulation model,
trained on real dialogue data, to predict the user’s
next dialogue move. This prediction was used to
re-rank n-best hypotheses of a speech recognizer
for a corpus of 2564 user utterances. The results,
obtained using TiMBL and an n-gram User Sim-
ulation, show a significant relative reduction of
Word Error Rate of 5% (this is 44% of the pos-
sible WER improvement on this data), and 62%
of the possible Dialogue Move Accuracy improve-
ment, compared to the baseline policy of selecting
the topmost ASR hypothesis. The majority of the
improvement is attributable to the User Simulation
feature. Clearly, this improvement would result in
better dialogue system performance overall.
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Abstract

We present the results of a large-scale,
end-to-end human evaluation of various
sentiment summarization models. The
evaluation shows that users have a strong
preference for summarizers that model
sentiment over non-sentiment baselines,
but have no broad overall preference be-
tween any of the sentiment-based models.
However, an analysis of the human judg-
ments suggests that there are identifiable
situations where one summarizer is gener-
ally preferred over the others. We exploit
this fact to build a new summarizer by
training a ranking SVM model over the set
of human preference judgments that were
collected during the evaluation, which re-
sults in a 30% relative reduction in error
over the previous best summarizer.

1 Introduction

The growth of the Internet as a commerce
medium, and particularly the Web 2.0 phe-
nomenon of user-generated content, have resulted
in the proliferation of massive numbers of product,
service and merchant reviews. While this means
that users have plenty of information on which to
base their purchasing decisions, in practice this is
often too much information for a user to absorb.
To alleviate this information overload, research on
systems that automatically aggregate and summa-
rize opinions have been gaining interest (Hu and
Liu, 2004a; Hu and Liu, 2004b; Gamon et al.,
2005; Popescu and Etzioni, 2005; Carenini et al.,
2005; Carenini et al., 2006; Zhuang et al., 2006;
Blair-Goldensohn et al., 2008).

Evaluating these systems has been a challenge,
however, due to the number of human judgments
required to draw meaningful conclusions. Of-
ten systems are evaluated piecemeal, selecting

pieces that can be evaluated easily and automati-
cally (Blair-Goldensohn et al., 2008). While this
technique produces meaningful evaluations of the
selected components, other components remain
untested, and the overall effectiveness of the entire
system as a whole remains unknown. When sys-
tems are evaluated end-to-end by human judges,
the studies are often small, consisting of only a
handful of judges and data points (Carenini et
al., 2006). Furthermore, automated summariza-
tion metrics like ROUGE (Lin and Hovy, 2003)
are non-trivial to adapt to this domain as they re-
quire human curated outputs.

We present the results of a large-scale, end-to-
end human evaluation of three sentiment summa-
rization models applied to user reviews of con-
sumer products. The evaluation shows that there
is no significant difference in rater preference be-
tween any of the sentiment summarizers, but that
raters do prefer sentiment summarizers over non-
sentiment baselines. This indicates that even sim-
ple sentiment summarizers provide users utility.
An analysis of the rater judgments also indicates
that there are identifiable situations where one sen-
timent summarizer is generally preferred over the
others. We attempt to learn these preferences by
training a ranking SVM that exploits the set of
preference judgments collected during the evalu-
ation. Experiments show that the ranking SVM
summarizer’s cross-validation error decreases by
as much as 30% over the previous best model.

Human evaluations of text summarization have
been undertaken in the past. McKeown et al.
(2005) presented a task-driven evaluation in the
news domain in order to understand the utility of
different systems. Also in the news domain, the
Document Understanding Conference1 has run a
number of multi-document and query-driven sum-
marization shared-tasks that have used a wide

1http://duc.nist.gov/
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iPod Shuffle: 4/5 stars
“In final analysis the iPod Shuffle is a decent player that offers a sleek
compact form factor an excessively simple user interface and a low
price” ... “It’s not good for carrying a lot of music but for a little bit of
music you can quickly grab and go with this nice little toy” ... “Mine came
in a nice bright orange color that makes it easy to locate.”

Figure 1: An example summary.

range of automatic and human-based evaluation
criteria. This year, the new Text Analysis Con-
ference2 is running a shared-task that contains an
opinion component. The goal of that evaluation is
to summarize answers to opinion questions about
entities mentioned in blogs.

Our work most closely resembles the evalua-
tions in Carenini et al. (2006, 2008). Carenini et
al. (2006) had raters evaluate extractive and ab-
stractive summarization systems. Mirroring our
results, they show that both extractive and abstrac-
tive summarization outperform a baseline, but that
overall, humans have no preference between the
two. Again mirroring our results, their analysis in-
dicates that even though there is no overall differ-
ence, there are situations where one system gener-
ally outperforms the other. In particular, Carenini
and Cheung (2008) show that an entity’s contro-
versiality, e.g., mid-range star rating, is correlated
with which summary has highest value.

The study presented here differs from Carenini
et al. in many respects: First, our evaluation is
over different extractive summarization systems in
an attempt to understand what model properties
are correlated with human preference irrespective
of presentation; Secondly, our evaluation is on a
larger scale including hundreds of judgments by
hundreds of raters; Finally, we take a major next
step and show that it is possible to automatically
learn significantly improved models by leveraging
data collected in a large-scale evaluation.

2 Sentiment Summarization

A standard setting for sentiment summarization
assumes a set of documents D = {d1, . . . , dm}
that contain opinions about some entity of interest.
The goal of the system is to generate a summary S
of that entity that is representative of the average
opinion and speaks to its important aspects. An
example summary is given in figure 1. For sim-
plicity we assume that all opinions in D are about
the entity being summarized. When this assump-
tion fails, one can parse opinions at a finer-level

2http://www.nist.gov/tac/

(Jindal and Liu, 2006; Stoyanov and Cardie, 2008)
In this study, we look at an extractive summa-

rization setting where S is built by extracting rep-
resentative bits of text from the set D, subject to
pre-specified length constraints. Specifically, as-
sume each document di is segmented into can-
didate text excerpts. For ease of discussion we
will assume all excerpts are sentences, but in prac-
tice they can be phrases or multi-sentence groups.
Viewed this way, D is a set of candidate sentences
for our summary, D = {s1, . . . , sn}, and summa-
rization becomes the following optimization:

arg max
S⊆D

L(S) s.t.: LENGTH(S) ≤ K (1)

where L is some score over possible summaries,
LENGTH(S) is the length of the summary and K
is the pre-specified length constraint. The defini-
tion of L will be the subject of much of this sec-
tion and it is precisely different forms of L that
will be compared in our evaluation. The nature of
LENGTH is specific to the particular use case.

Solving equation 1 is typically NP-hard, even
under relatively strong independence assumptions
between the sentences selected for the summary
(McDonald, 2007). In cases where solving L is
non-trivial we use an approximate hill climbing
technique. First we randomly initialize the sum-
mary S to length ∼K. Then we greedily in-
sert/delete/swap sentences in and out of the sum-
mary to maximize L(S) while maintaining the
bound on length. We run this procedure until no
operation leads to a higher scoring summary. In
all our experiments convergence was quick, even
when employing random restarts.

Alternate formulations of sentiment summa-
rization are possible, including aspect-based sum-
marization (Hu and Liu, 2004a), abstractive sum-
marization (Carenini et al., 2006) or related tasks
such as opinion attribution (Choi et al., 2005). We
choose a purely extractive formulation as it makes
it easier to develop baselines and allows raters to
compare summaries with a simple, consistent pre-
sentation format.

2.1 Definitions
Before delving into the details of the summariza-
tion models we must first define some useful func-
tions. The first is the sentiment polarity func-
tion that maps a lexical item t, e.g., word or short
phrase, to a real-valued score,

LEX-SENT(t) ∈ [−1, 1]
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The LEX-SENT function maps items with positive
polarity to higher values and items with negative
polarity to lower values. To build this function we
constructed large sentiment lexicons by seeding a
semantic word graph induced from WordNet with
positive and negative examples and then propagat-
ing this score out across the graph with a decaying
confidence. This method is common among sen-
timent analysis systems (Hu and Liu, 2004a; Kim
and Hovy, 2004; Blair-Goldensohn et al., 2008).
In particular, we use the lexicons that were created
and evaluated by Blair-Goldensohn et al. (2008).

Next we define sentiment intensity,

INTENSITY(s) =
∑
t∈s

|LEX-SENT(t)|

which simply measures the magnitude of senti-
ment in a sentence. INTENSITY can be viewed as a
measure of subjectiveness irrespective of polarity.

A central function in all our systems is a sen-
tences normalized sentiment,

SENT(s) =
∑

t∈s LEX-SENT(t)
α+ INTENSITY(s)

This function measures the (signed) ratio of lexical
sentiment to intensity in a sentence. Sentences that
only contain lexical items of the same polarity will
have high absolute normalized sentiment, whereas
sentences with mixed polarity items or no polar-
ity items will have a normalized sentiment near
zero. We include the constant α in the denomi-
nator so that SENT gives higher absolute scores to
sentences containing many strong sentiment items
of the same polarity over sentences with a small
number of weak items of the same polarity.

Most sentiment summarizers assume that as in-
put, a system is given an overall rating of the en-
tity it is attempting to summarize, R ∈ [−1, 1],
where a higher rating indicates a more favorable
opinion. This rating may be obtained directly from
user provided information (e.g., star ratings) or au-
tomatically derived by averaging the SENT func-
tion over all sentences in D. Using R, we can de-
fine a mismatch function between the sentiment of
a summary and the known sentiment of the entity,

MISMATCH(S) = (R− 1
|S|

∑
si∈S

SENT(si))2

Summaries with a higher mismatch are those
whose sentiment disagrees most with R.

Another key input many sentiment summarizers
assume is a list of salient entity aspects, which are
specific properties of an entity that people tend to
rate when expressing their opinion. For example,
aspects of a digital camera could include picture
quality, battery life, size, color, value, etc. Find-
ing such aspects is a challenging research problem
that has been addressed in a number of ways (Hu
and Liu, 2004b; Gamon et al., 2005; Carenini et
al., 2005; Zhuang et al., 2006; Branavan et al.,
2008; Blair-Goldensohn et al., 2008; Titov and
McDonald, 2008b; Titov and McDonald, 2008a).
We denote the set of aspects for an entity as A and
each aspect as a ∈ A. Furthermore, we assume
that given A it is possible to determine whether
some sentence s ∈ D mentions an aspect in A.
For our experiments we use a hybrid supervised-
unsupervised method for finding aspects as de-
scribed and evaluated in Blair-Goldensohn et al.
(2008).

Having defined what an aspect is, we next de-
fine a summary diversity function over aspects,

DIVERSITY(S) =
∑
a∈A

COVERAGE(a)

where COVERAGE(a) ∈ R is a function that
weights how well the aspect is covered in the
summary and is proportional to the importance of
the aspect as some aspects are more important to
cover than others, e.g., “picture quality” versus
“strap” for digital cameras. The diversity func-
tion rewards summaries that cover many important
aspects and plays the redundancy reducing role
that is common in most extractive summarization
frameworks (Goldstein et al., 2000).

2.2 Systems
For our evaluation we developed three extractive
sentiment summarization systems. Each system
models increasingly complex objectives.

2.2.1 Sentiment Match (SM)
The first system that we look at attempts to ex-
tract sentences so that the average sentiment of the
summary is as close as possible to the entity level
sentiment R, which was previously defined in sec-
tion 2.1. In this case L can be simply defined as,

L(S) = −MISMATCH(S)

Thus, the model prefers summaries with average
sentiment as close as possible to the average sen-
timent across all the reviews.
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There is an obvious problem with this model.
For entities that have a mediocre rating, i.e., R ≈
0, the model could prefer a summary that only
contains sentences with no opinion whatsoever.
There are two ways to alleviate this problem. The
first is to include the INTENSITY function into L,

L(S) = α · INTENSITY(S)− β · MISMATCH(S)

Where the coefficients allow one to trade-off sen-
timent intensity versus sentiment mismatch.

The second method, and the one we chose based
on initial experiments, was to address the problem
at inference time. This is done by prohibiting the
algorithm from including a given positive or nega-
tive sentence in the summary if another more pos-
itive/negative sentence is not included. Thus the
summary is forced to consist of only the most pos-
itive and most negative sentences, the exact mix
being dependent upon the overall star rating.

2.2.2 Sentiment Match + Aspect Coverage
(SMAC)

The SM model extracts sentences for the summary
without regard to the content of each sentence rel-
ative to the others in the summary. This is in con-
trast to standard summarization models that look
to promote sentence diversity in order to cover as
many important topics as possible (Goldstein et
al., 2000). The sentiment match + aspect cov-
erage system (SMAC) attempts to model diver-
sity by building a summary that trades-off max-
imally covering important aspects with matching
the overall sentiment of the entity. The model does
this through the following linear score,

L(S) = α · INTENSITY(S)− β · MISMATCH(S)
+γ · DIVERSITY(S)

This score function rewards summaries for be-
ing highly subjective (INTENSITY), reflecting the
overall product rating (MISMATCH), and covering
a variety of product aspects (DIVERSITY). The co-
efficients were set by inspection.

This system has its roots in event-based summa-
rization (Filatova and Hatzivassiloglou, 2004) for
the news domain. In that work an optimization
problem was developed that attempted to maxi-
mize summary informativeness while covering as
many (weighted) sub-events as possible.

2.2.3 Sentiment-Aspect Match (SAM)
Because the SMAC model only utilizes an entity’s
overall sentiment when calculating MISMATCH, it

is susceptible to degenerate solutions. Consider a
product with aspects A and B, where reviewers
overwhelmingly like A and dislike B, resulting in
an overall SENT close to zero. If the SMAC model
finds a very negative sentence describing A and
a very positive sentence describing B, it will as-
sign that summary a high score, as the summary
has high intensity, has little overall mismatch, and
covers both aspects. However, in actuality, the
summary is entirely misleading.

To address this issue, we constructed the
sentiment-aspect match model (SAM), which not
only attempts to cover important aspects, but cover
them with appropriate sentiment. There are many
ways one might design a model to do this, includ-
ing linear combinations of functions similar to the
SMAC model. However, we decided to employ a
probabilistic approach as it provided performance
benefits based on development data experiments.
Under the SAM model, each sentence is treated as
a bag of aspects and their corresponding mentions’
sentiments. For a given sentence s, we define As

as the set of aspects mentioned within it. For a
given aspect a ∈ As, we denote SENT(as) as the
sentiment associated with the textual mention of a
in s. The probability of a sentence is defined as,

p(s) = p(a1, . . . , an, SENT(a1
s), . . . , SENT(an

s ))

which can be re-written as,∏
a∈As

p(a, SENT(as)) =
∏

a∈As

p(a)p(SENT(as)|a)

if we assume aspect mentions are generated inde-
pendently of one another. Thus we need to esti-
mate both p(a) and p(SENT(as)|a). The probabil-
ity of seeing an aspect, p(a), is simply set to the
maximum likelihood estimates over the data set
D. Furthermore, we assume that p(SENT(as)|a)
is normal about the mean sentiment for the as-
pect µa with a constant standard deviation, σa.
The mean and standard deviation are estimated
straight-forwardly using the data set D. Note that
the number of parameters our system must es-
timate is very small. For every possible aspect
a ∈ A we need three values: p(a), µa, and σa.
Since |A| is typically small – on the order of 5-10
– it is not difficult to estimate these models even
from small sets of data.

Having constructed this model, one logical ap-
proach to summarization would be to select sen-
tences for the summary that have highest proba-
bility under the model trained on D. We found,
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however, that this produced very redundant sum-
maries – if one aspect is particularly prevalent in
a product’s reviews, this approach will select all
sentences about that aspect, and discuss nothing
else. To combat this we developed a technique that
scores the summary as a whole, rather than by in-
dividual components. First, denote SAM(D) as the
previously described model learned over the set of
entity documents D. Next, denote SAM(S) as an
identical model, but learned over a candidate sum-
mary S, i.e., given a summary S, compute p(a),
ma, and σa for all a ∈ A using only the sentences
from S. We can then measure the difference be-
tween these models using KL-divergence:

L(S) = −KL(SAM(D), SAM(S))

In our case we have 1 + |A| distributions – p(a),
and p(·|a) for all a ∈ A – so we just sum the KL-
divergence of each. The key property of the SAM
system is that it naturally builds summaries where
important aspects are discussed with appropriate
sentiment, since it is precisely these aspects that
will contribute the most to the KL-divergence. It
is important to note that the short length of a can-
didate summary S can make estimates in SAM(S)
rather crude. But we only care about finding the
“best” of a set of crude models, not about finding
one that is “good” in absolute terms. Between the
few parameters we must learn and the specific way
we use these models, we generally get models use-
ful for our purposes.

Alternatively we could have simply incorpo-
rated the DIVERSITY measure into the objec-
tive function or used an inference algorithm that
specifically accounts for redundancy, e.g., maxi-
mal marginal relevance (Goldstein et al., 2000).
However, we found that this solution was well
grounded and required no tuning of coefficients.

Initial experiments indicated that the SAM sys-
tem, as described above, frequently returned sen-
tences with low intensity when important aspects
had luke-warm sentiment. To combat this we re-
moved low intensity sentences from consideration,
which had the effect of encouraging important
luke-warm aspects to mentioned multiple times in
order to balance the overall sentiment.

Though the particulars of this model are unique,
fundamentally it is closest to the work of Hu and
Liu (2004a) and Carenini et al. (2006).

3 Experiments

We evaluated summary performance for reviews
of consumer electronics. In this setting an entity
to be summarized is one particular product, D is
a set of user reviews about that product, and R is
the normalized aggregate star ratings left by users.
We gathered reviews for 165 electronics products
from several online review aggregators. The prod-
ucts covered a variety of electronics, such as MP3
players, digital cameras, printers, wireless routers,
and video game systems. Each product had a min-
imum of four reviews and up to a maximum of
nearly 3000. The mean number of reviews per
product was 148, and the median was 70. We
ran each of our algorithms over the review corpus
and generated summaries for each product with
K = 650. All summaries were roughly equal
length to avoid length-based rater bias3. In total
we ran four experiments for a combined number of
1980 rater judgments (plus additional judgments
during the development phase of this study).

Our initial set of experiments were over the
three opinion-based summarization systems: SM,
SMAC, and SAM. We ran three experiments com-
paring SMAC to SM, SAM to SM, and SAM to
SMAC. In each experiment two summaries of the
same product were placed side-by-side in a ran-
dom order. Raters were also shown an overall rat-
ing, R, for each product (these ratings are often
provided in a form such as “3.5 of 5 stars”). The
two summaries on either side were shown below
this information with links to the full text of the
reviews for the raters to explore.

Raters were asked to express their preference
for one summary over the other. For two sum-
maries SA and SB they could answer,

1. No preference
2. Strongly preferred SA (or SB)
3. Preferred SA (or SB)
4. Slightly preferred SA (or SB)

Raters were free to choose any rating, but were
specifically instructed that their rating should ac-
count for a summaries representativeness of the
overall set of reviews. Raters were also asked
to provide a brief comment justifying their rat-
ing. Over 100 raters participated in each study,
and each comparison was evaluated by three raters
with no rater making more than five judgments.

3In particular our systems each extracted four text ex-
cerpts of roughly 160-165 characters.
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Comparison (A v B) Agreement (%) No Preference (%) Preferred A (%) Preferred B (%) Mean Numeric
SM v SMAC 65.4 6.0 52.0 42.0 0.01

SAM v SM 69.3 16.8 46.0 37.2 0.01
SAM v SMAC† 73.9 11.5 51.6 36.9 0.08

SMAC v LT† 64.1 4.1 70.4 25.5 0.24

Table 1: Results of side-by-side experiments. Agreement is the percentage of items for which all raters
agreed on a positive/negative/no-preference rating. No Preference is the percentage of agreement items
in which the raters had no preference. Preferred A/B is the percentage of agreement items in which the
raters preferred either A or B respectively. Mean Numeric is the average of the numeric ratings (converted
from discreet preference decisions) indicating on average the raters preferred system A over B on a scale
of -1 to 1. Positive scores indicate a preference for system A. † significant at a 95% confidence interval
for the mean numeric score.

We chose to have raters leave pairwise prefer-
ences, rather than evaluate each candidate sum-
mary in isolation, because raters can make a pref-
erence decisions more quickly than a valuation
judgment, which allowed for collection of more
data points. Furthermore, there is evidence that
rater agreement is much higher in preference deci-
sions than in value judgments (Ariely et al., 2008).

Results are shown in the first three rows of ta-
ble 1. The first column of the table indicates the
experiment that was run. The second column indi-
cates the percentage of judgments for which the
raters were in agreement. Agreement here is a
weak agreement, where three raters are defined to
be in agreement if they all gave a no preference rat-
ing, or if there was a preference rating, but no two
preferences conflicted. The next three columns in-
dicate the percentage of judgments for each pref-
erence category, grouped here into three coarse as-
signments. The final column indicates a numeric
average for the experiment. This was calculated
by converting users ratings to a scale of 1 (strongly
preferred SA) to -1 (strongly preferred SB) at 0.33
intervals. Table 1 shows only results for items in
which the raters had agreement in order to draw
reliable conclusions, though the results change lit-
tle when all items are taken into account.

Ultimately, the results indicate that none of the
sentiment summarizers are strongly preferred over
any other. Only the SAM v SMAC model has a
difference that can be considered statistically sig-
nificant. In terms of order we might conclude that
SAM is the most preferred, followed by SM, fol-
lowed by SMAC. However, the slight differences
make any such conclusions tenuous at best. This
leads one to wonder whether raters even require
any complex modeling when summarizing opin-
ions. To test this we took the lowest scoring model

overall, SMAC, and compared it to a leading text
baseline (LT) that simply selects the first sentence
from a ranked list of reviews until the length con-
straint is violated. The results are given in the last
row of 1. Here there is a clear distinction as raters
preferred SMAC to LT, indicating that they did
find usefulness in systems that modeled aspects
and sentiment. However, there are still 25.5%
of agreement items where the raters did choose a
simple leading text baseline.

4 Analysis

Looking more closely at the results we observed
that, even though raters did not strongly prefer
any one sentiment-aware summarizer over another
overall, they mostly did express preferences be-
tween systems on individual pairs of comparisons.
For example, in the SAM vs SM experiment, only
16.8% of the comparisons yielded a “no prefer-
ence” judgment from all three raters – by far the
highest percentage of any experiment. This left
83.2% “slight preference” or higher judgments.

With this in mind we began examining the com-
ments left by raters throughout all our experi-
ments, including a set of additional experiments
used during development of the systems. We ob-
served several trends: 1) Raters tended to pre-
fer summaries with lists, e.g., pros-cons lists; 2)
Raters often did not like text without sentiment,
hence the dislike of the leading text system where
there is no guarantee that the first sentence will
have any sentiment; 3) Raters disliked overly gen-
eral comments, e.g., “The product was good”.
These statements carry no additional information
over a product’s overall star rating; 4) Raters did
recognize (and strongly disliked) when the overall
sentiment of the summary was inconsistent with
the star rating; 5) Raters tended to prefer different
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systems depending on what the star rating was. In
particular, the SMAC system was generally pre-
ferred for products with neutral overall ratings,
whereas the SAM system is preferred for products
with ratings at the extremes. We hypothesize that
SAM’s low performance on neutral rated products
is because the system suffers from the dual imper-
atives of selecting high intensity snippets and of
selecting snippets that individually reflect partic-
ular sentiment polarities. When the desired senti-
ment polarity is neutral, it is difficult to find a snip-
pet with lots of sentiment, whose overall polarity
is still neutral, thus SAM may either ignore that
aspect or include multiple mentions of that aspect
at the expense of others; 6) Raters also preferred
summaries with grammatically fluent text, which
benefitted the leading text baseline.

These observations suggest that we could build
a new system that takes into account all these
factors (weighted accordingly) or we could build
a rule-based meta-classifier that selects a single
summary from the four systems described in this
paper based on the global characteristics of each.
The problem with the former is that it will require
hand-tuning of coefficients for many different sig-
nals that are all, for the most part, weakly corre-
lated to summary quality. The problem with the
latter is inefficiency, i.e., it will require the main-
tenance and output of all four systems. In the next
section we explore an alternate method that lever-
ages the data gathered in the evaluation to auto-
matically learn a new model. This approach is
beneficial as it will allow any coefficients to be au-
tomatically tuned and will result in a single model
that can be used to build new summaries.

5 Summarization with Ranking SVMs

Besides allowing us to assess the relative perfor-
mance of our summarizers, our evaluation pro-
duced several hundred points of empirical data in-
dicating which among two summaries raters pre-
fer. In this section we explore how to build im-
proved summarizers with this data by learning
preference ranking SVMs, which are designed to
learn relative to a set of preference judgments
(Joachims, 2002).

A ranking SVM typically assumes as input a set
of queries and associated partial ordering on the
items returned by the query. The training data is
defined as pairs of points, T = {(xk

i , x
k
j )t}|T |t=1,

where each pair indicates that the ith item is pre-

ferred over the jth item for the kth query. Each
input point xk

i ∈ Rm is a feature vector repre-
senting the properties of that particular item rel-
ative to the query. The goal is to learn a scoring
function s(xk

i ) ∈ R such that s(xk
i ) > s(xk

j ) if
(xk

i , x
k
j ) ∈ T . In other words, a ranking SVM

learns a scoring function whose induced ranking
over data points respects all preferences in the
training data. The most straight-forward scoring
function, and the one used here, is a linear classi-
fier, s(xk

i ) = w · xk
i , making the goal of learning

to find an appropriate weight vector w ∈ Rm.
In its simplest form, the ranking SVM opti-

mization problem can be written as the following
quadratic programming problem,

min
1
2
||w||2 s.t.: ∀(xk

i , x
k
j ) ∈ T ,

s(xk
i )− s(xk

j ) ≥ PREF(xk
i , x

k
j )

where PREF(xk
i , x

k
j ) ∈ R is a function indicating

to what degree item xk
i is preferred over xk

j (and
serves as the margin of the classifier). This opti-
mization is well studied and can be solved with a
wide variety of techniques. In our experiments we
used the SVM-light software package4.

Our summarization evaluation provides us with
precisely a large collection of preference points
over different summaries for different product
queries. Thus, we naturally have a training set T
where each query is analogous to a specific prod-
uct of interest and training points are two possi-
ble summarizations produced by two different sys-
tems with corresponding rater preferences. As-
suming an appropriate choice of feature represen-
tation it is straight-forward to then train the model
on our data using standard techniques for SVMs.

To train and test the model we compiled 1906
pairs of summary comparisons, each judged by
three different raters. These pairs were extracted
from the four experiments described in section 3
as well as the additional experiments we ran dur-
ing development. For each pair of summaries
(Sk

i , S
k
j ) (for some product query indexed by k),

we recorded how many raters preferred each of the
items as vk

i and vk
j respectively, i.e., vk

i is the num-
ber of the three raters who preferred summary Si

over Sj for product k. Note that vk
i + vk

j does not
necessarily equal 3 since some raters expressed no
preference between them. We set the loss function
PREF(Sk

i , S
k
j ) = vk

i − vk
j , which in some cases

4http://svmlight.joachims.org/
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could be zero, but never negative since the pairs
are ordered. Note that this training set includes all
data points, even those in which raters disagreed.
This is important as the model can still learn from
these points as the margin function PREF encodes
the fact that these judgments are less certain.

We used a variety of features for a candidate
summary: how much capitalization, punctuation,
pros-cons, and (unique) aspects a summary had;
the overall intensity, sentiment, min sentence sen-
timent, and max sentence sentiment in the sum-
mary; the overall ratingR of the product; and con-
junctions of these. Note that none of these fea-
tures encode which system produced the summary
or which experiment it was drawn from. This is
important, as it allows the model to be used as
standalone scoring function, i.e., we can set L to
the learned linear classifier s(S). Alternatively
we could have included features like what system
was the summary produced from. This would have
helped the model learn things like the SMAC sys-
tem is typically preferred for products with mid-
range overall ratings. Such a model could only be
used to rank the outputs of other summarizers and
cannot be used standalone.

We evaluated the trained model by measuring
its accuracy on predicting a single preference pre-
diction, i.e., given pairs of summaries (Sk

i , S
k
j ),

how accurate is the model at predicting that Si is
preferred to Sj for product query k? We measured
10-fold cross-validation accuracy on the subset of
the data for which the raters were in agreement.
We measure accuracy for both weak agreement
cases (at least one rater indicated a preference and
the other two raters were in agreement or had no
preference) and strong agreement cases (all three
raters indicated the same preference). We ignored
pairs in which all three raters made a no preference
judgment as both summaries can can be consid-
ered equally valid. Furthermore, we ignored pairs
in which two raters indicated conflicting prefer-
ences as there is no gold standard for such cases.

Results are given in table 2. We compare the
ranking SVM summarizer to a baseline system
that always selects the overall-better-performing
summarization system from the experiment that
the given datapoint was drawn from, e.g., for all
the data points drawn from the SAM versus SMAC
experiment, the baseline always chooses the SAM
summary as its preference. Note that in most ex-
periments the two systems emerged in a statistical

Preference Prediction Accuracy
Weak Agr. Strong Agr.

Baseline 54.3% 56.9%
Ranking SVM 61.8% 69.9%

Table 2: Accuracies for learned summarizers.

tie, so this baseline performs only slightly better
than chance. Table 2 clearly shows that the rank-
ing SVM can predict preference accuracy much
better than chance, and much better than that ob-
tained by using only one summarizer (a reduction
in error of 30% for strong agreement cases).

We can thus conclude that the data gathered
in human preference evaluation experiments, such
as the one presented here, have a beneficial sec-
ondary use as training data for constructing a new
and more accurate summarizer. This raises an
interesting line of future research: can we iter-
ate this process to build even better summariz-
ers? That is, can we use this trained summarizer
(and variants of it) to generate more examples for
raters to judge, and then use that data to learn even
more powerful summarizers, which in turn could
be used to generate even more training judgments,
etc. This could be accomplished using Mechani-
cal Turk5 or another framework for gathering large
quantities of cheap annotations.

6 Conclusions

We have presented the results of a large-scale eval-
uation of different sentiment summarization algo-
rithms. In doing so, we explored different ways
of using sentiment and aspect information. Our
results indicated that humans prefer sentiment in-
formed summaries over a simple baseline. This
shows the usefulness of modeling sentiment and
aspects when summarizing opinions. However,
the evaluations also show no strong preference be-
tween different sentiment summarizers. A detailed
analysis of the results led us to take the next step
in this line of research – leveraging preference
data gathered in human evaluations to automati-
cally learn new summarization models. These new
learned models show large improvements in pref-
erence prediction accuracy over the previous sin-
gle best model.

Acknowledgements: The authors would like to
thank Kerry Hannan, Raj Krishnan, Kristen Parton
and Leo Velikovich for insightful discussions.

5http://www.mturk.com
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Abstract
The quality of the part-of-speech (PoS)
annotation in a corpus is crucial for the
development of PoS taggers. In this pa-
per, we experiment with three complemen-
tary methods for automatically detecting
errors in the PoS annotation for the Ice-
landic Frequency Dictionary corpus. The
first two methods are language indepen-
dent and we argue that the third method
can be adapted to other morphologically
complex languages. Once possible errors
have been detected, we examine each er-
ror candidate and hand-correct the cor-
responding PoS tag if necessary. Over-
all, based on the three methods, we hand-
correct the PoS tagging of 1,334 tokens
(0.23% of the tokens) in the corpus. Fur-
thermore, we re-evaluate existing state-of-
the-art PoS taggers on Icelandic text using
the corrected corpus.

1 Introduction

Part-of-speech (PoS) tagged corpora are valuable
resources for developing PoS taggers, i.e. pro-
grams which automatically tag each word in run-
ning text with morphosyntactic information. Cor-
pora in various languages, such as the English
Penn Treebank corpus (Marcus et al., 1993), the
Swedish Stockholm-Umeå corpus (Ejerhed et al.,
1992), and the Icelandic Frequency Dictionary
(IFD) corpus (Pind et al., 1991), have been used
to train (in the case of data-driven methods) and
develop (in the case of linguistic rule-based meth-
ods) different taggers, and to evaluate their accu-
racy, e.g. (van Halteren et al., 2001; Megyesi,
2001; Loftsson, 2006). Consequently, the quality
of the PoS annotation in a corpus (the gold stan-
dard annotation) is crucial.

Many corpora are annotated semi-
automatically. First, a PoS tagger is run on the

corpus text, and, then, the text is hand-corrected
by humans. Despite human post-editing, (large)
tagged corpora are almost certain to contain
errors, because humans make mistakes. Thus, it is
important to apply known methods and/or develop
new methods for automatically detecting tagging
errors in corpora. Once an error has been detected
it can be corrected by humans or an automatic
method.

In this paper, we experiment with three differ-
ent methods of PoS error detection using the IFD
corpus. First, we use the variation n-gram method
proposed by Dickinson and Meurers (2003). Sec-
ondly, we run five different taggers on the cor-
pus and examine those cases where all the tag-
gers agree on a tag, but, at the same time, disagree
with the gold standard annotation. Lastly, we use
IceParser (Loftsson and Rögnvaldsson, 2007) to
generate shallow parses of sentences in the corpus
and then develop various patterns, based on fea-
ture agreement, for finding candidates for annota-
tion errors.

Once error candidates have been detected by
each method, we examine the candidates man-
ually and correct the errors. Overall, based on
these methods, we hand-correct the PoS tagging
of 1,334 tokens or 0.23% of the tokens in the IFD
corpus. We are not aware of previous corpus er-
ror detection/correction work applying the last two
methods above. Note that the first two methods are
completely language-independent, and the third
method can be tailored to the language at hand,
assuming the existence of a shallow parser.

Our results show that the three methods are
complementary. A large ratio of the tokens that get
hand-corrected based on each method is uniquely
corrected by that method1.

1To be precise, when we say that an error is corrected by
a method, we mean that the method detected the error candi-
date which was then found to be a true error by the separate
error correction phase.
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After hand-correcting the corpus, we retrain and
re-evaluate two of the best three performing tag-
gers on Icelandic text, which results in up to 0.18%
higher accuracy than reported previously.

The remainder of this paper is organised as fol-
lows. In Section 2 we describe related work, with
regard to error detection and PoS tagging of Ice-
landic text. Our three methods of error detection
are described in Section 3 and results are provided
in Section 4. We re-evaluate taggers in Section 5
and we conclude with a summary in Section 6.

2 Related work

2.1 Error detection

The field of automatic error detection/correction
in corpora has gained increased interest during the
last few years. Most work in this field has focused
on finding elements in corpora that violate consis-
tency, i.e. finding inconsistent tagging of a word
across comparable occurrences.

The variation n-gram algorithm is of this na-
ture. This method finds identical strings (n-grams
of words) in a corpus that are annotated differently.
The difference in PoS tags between the strings is
called a variation and the word(s) exhibiting the
variation is called a variation nucleus (Dickinson
and Meurers, 2003). A particular variation is thus
a possible candidate for an error. The variation
might be due to an error in the annotation or it
might exhibit different (correct) tagging because
of different contexts. Intuitively, the more similar
the context of a variation, the more likely it is for
the variation to be an error.

When Dickinson and Meurers applied their
variation n-gram algorithm to the Wall Street Jour-
nal (WSJ) corpus of about 1.3 million words, it
produced variations up to length n = 224. Note
that a variation n-gram of length n contains two
variation n-grams of length n − 1, obtained by
removing either the first or the last word. More-
over, each variation n-gram contains at least two
different annotations of the same string. There-
fore, it is not straightforward to compute the pre-
cision (the ratio of correctly detected errors to all
error candidates) of this method. However, by ig-
noring variation n-grams of length≤ 5, Dickinson
and Meurers found that 2436 of the 2495 distinct
variation nuclei (each nucleus is only counted for
the longest n-gram it appears in) were true errors,
i.e. 97.6%. This resulted in 4417 tag corrections,
i.e. about 0.34% of the tokens in the whole corpus

were found to be incorrectly tagged2.
Intuitively, the variation n-gram method is most

suitable for corpora containing specific genres,
e.g. business news like the WSJ, or very large
balanced corpora, because in both types of cor-
pora one can expect the length of the variations to
be quite large. Furthermore, this method may not
be suitable for corpora tagged with a large fine-
grained tagset, because in such cases a large ratio
of the variation n-grams may actually reflect true
ambiguity rather than inconsistent tagging.

Another example of a method, based on find-
ing inconsistent tagging of a word across compara-
ble occurrences, is the one by Nakagawa and Mat-
sumoto (2002). They use support vector machines
(SVMs) to find elements in a corpus that violate
consistency. The SVMs assign a weight to each
training example in a corpus – a large weight is
assigned to examples that are hard for the SVMs
to classify. The hard examples are thus candi-
dates for errors in the corpus. The result was a
remarkable 99.5% precision when examples from
the WSJ corpus were extracted with a large weight
greater than or equal to a threshold value. How-
ever, the disadvantage with this approach is that a
model of SVMs needs to be trained for each PoS
tag, which makes it unfeasible for large tagsets.

A set of invalid n-grams can be used to search
for annotation errors. The algorithm proposed by
Květǒn and Oliva (2002) starts from a known set
of invalid bigrams, [first,second], and incremen-
tally constructs a set of allowed inner tags appear-
ing between the tags first and second. This set is
then used to generate the complement, impossible
inner tags (the set of all tags excluding the set al-
lowed inner tags). Now, any n-gram consisting of
the tag first, followed by any number of tags from
the set impossible inner tags, finally followed by
the tag second, is a candidate for an annotation er-
ror in a corpus. When this method was applied on
the NEGRA corpus (containing 350,000 tokens)
it resulted in the hand-correction of 2,661 tokens
or 0.8% of the corpus. The main problem with
this approach is that is presupposes a set of in-
valid bigrams (e.g. constructed by a linguist). For
a large tagset, for example the Icelandic one (see
Section 2.2), constructing this set is a very hard
task. Moreover, this method fails to detect annota-
tion errors where a particular n-gram tag sequence

2In a more recent work, Dickinson (2008) has developed
a method for increasing the recall (the ratio of correctly de-
tected errors to all errors in the corpus).
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is valid but erroneous in the given context.
PoS taggers have also been used to point to pos-

sible errors in corpora. If the output of a tagger
does not agree with the gold standard then either
the tagger is incorrect or the gold standard is in-
correctly annotated. A human can then look at the
disagreements and correct the gold standard where
necessary. van Halteren (2000) trained a tagger
on the written texts of the British National Corpus
sampler CD (about 1 million words). In a random
sample of 660 disagreements, the tagger was cor-
rect and the gold standard incorrect in 84 cases,
i.e. the precision of this error detection method
was 12.7%. A natural extension of this method is
to use more than one tagger to point to disagree-
ments.

2.2 PoS tagging Icelandic

The IFD corpus is a balanced corpus, consist-
ing of 590,297 tokens. The corpus was semi-
automatically tagged using a tagger based on lin-
guistic rules and probabilities (Briem, 1989). The
main Icelandic tagset, constructed in the compi-
lation of the corpus, is large (700 possible tags)
compared to related languages. In this tagset, each
character in a tag has a particular function. The
first character denotes the word class. For each
word class there is a predefined number of ad-
ditional characters (at most six), which describe
morphological features, like gender, number and
case for nouns; degree and declension for adjec-
tives; voice, mood and tense for verbs, etc. To
illustrate, consider the word “hestarnir” (’(the)
horses’). The corresponding tag is “nkfng”, denot-
ing noun (n), masculine (k), plural (f ), nominative
(n), and suffixed definite article (g).

The large tagset mirrors the morphological
complexity of the Icelandic language. This, in
turn, is the main reason for a relatively low tag-
ging accuracy obtained by PoS taggers on Ice-
landic text, so far. The state-of-the art tagging
accuracy, measured against the IFD corpus, is
92.06%, obtained by applying a bidirectional PoS
tagging method (Dredze and Wallenberg, 2008).
We have developed a linguistic rule-based tagger,
IceTagger, achieving about 91.6% tagging accu-
racy (Loftsson, 2008). Evaluation has shown that
the well known statistical tagger, TnT (Brants,
2000), obtains about 90.4% accuracy (Helgadót-
tir, 2005; Loftsson, 2008). Finally, an accuracy of
about 93.5% has been achieved by using a tagger

combination method using five taggers (Loftsson,
2006).

3 Three methods for error detection

In this section, we describe the three methods we
used to detect (and correct) annotation errors in
the IFD corpus. Each method returns a set of error
candidates, which we then manually inspect and
correct the corresponding tag if necessary.

3.1 Variation n-grams

We used the Decca software (http:
//decca.osu.edu/) to find the variation
n-grams in the corpus. The length of the longest
variation n-gram was short, i.e. it consisted of only
20 words. The longest variation that contained
a true tagging error was 15 words long. As an
example of a tagging error found by this method,
consider the two occurrences of the 4-gram varia-
tion “henni datt í hug” (meaning ’she got an idea’):

1) henni/fpveþ datt/sfg3eþ í/aþ hug/nkeþ
2) henni/fpveþ datt/sfg3eþ í/ao hug/nkeo

In the first occurrence, the substring “í hug” (the
variation nucleus) is incorrectly tagged as a prepo-
sition governing the dative case (“aþ”), and a noun
in masculine, singular, dative (“nkeþ”). In the
latter occurrence, the same substring is correctly
tagged as a preposition governing the accusative
case (“ao”), and a noun in masculine, singular, ac-
cusative (“nkeo”). In both cases, note the agree-
ment in case between the preposition and the noun.

As discussed earlier, the longer variation n-
grams are more likely to contain true errors than
the shorter ones. Therefore, we manually in-
spected all the variations of length ≥ 5 produced
by this method (752 in total), but only “browsed
through” the variations of length 4 (like the one
above; 2070 variations) and of length 3 (7563 vari-
ations).

3.2 Using five taggers

Instead of using a single tagger to tag the text in
the IFD corpus, and compare the output of the
taggers to the gold standard (as described in Sec-
tion 2.1), we decided to use five taggers. It is
well known that a combined tagger usually ob-
tains higher accuracy than individual taggers in
the combination pool. For example, by using sim-
ple voting (in which each tagger “votes” for a tag
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and the tag with the highest number of votes is
selected by the combined tagger), the tagging ac-
curacy can increase significantly (van Halteren et
al., 2001; Loftsson, 2006). Moreover, if all the
taggers in the pool agree on a vote, one would ex-
pect the tagging accuracy for the respective words
to be high. Indeed, we have previously shown that
when five taggers all agree on a tag in the IFD cor-
pus, the corresponding accuracy is 98.9% (Lofts-
son, 2007b). For the remaining 1.1% tokens, one
would expect that the five taggers are actually cor-
rect in some of the cases, but the gold standard
incorrectly annotated. In general, both the preci-
sion and the recall should be higher when relying
on five agreeing taggers as compared to using only
a single tagger.

Thus, we used the five taggers, MBL (Daele-
mans et al., 1996), MXPOST (Ratnaparkhi, 1996),
fnTBL (Ngai and Florian, 2001), TnT, and IceTag-
ger3, in the same manner as described in (Lofts-
son, 2006), but with the following minor changes.
We extended the dictionaries of the TnT tagger
and IceTagger by using data from a full-form mor-
phological database of inflections (Bjarnadóttir,
2005). The accuracy of the two taggers increases
substantially (because the ratio of unknown words
drops dramatically) and, in turn, the correspond-
ing accuracy when all the taggers agree increases
from 98.9% to 99.1%. Therefore, we only needed
to inspect about 0.9% of the tokens in the corpus.

The following example from the IFD cor-
pus shows a disagreement found between the
five taggers and the gold standard: “fjölskylda
spákonunnar í gamla húsinu” (’family (the)
fortune-teller’s in (the) old house’).

3) fjölskylda/nven spákonunnar/nveeg í/ao
gamla/lheþvf húsinu/nheþg

In this case, the disagreement lies in the tagging
of the preposition “í”. All the five taggers suggest
the correct tag “aþ” for the preposition (because
case agreement is needed between the preposition
and the following adjective/noun).

3.3 Shallow parsing

In a morphologically complex language like Ice-
landic, feature agreement, for example inside noun
phrases or between a preposition and a noun

3The first four taggers are data-driven, but IceTagger is a
linguistic rule-based tagger.

phrase, plays an important role. Therefore, of the
total number of possible errors existing in an Ice-
landic corpus, feature agreement errors are likely
to be prevalent. A constituent parser is of great
help in finding such error candidates, because it
annotates phrases which are needed by the error
detection mechanism. We used IceParser, a shal-
low parser for parsing Icelandic text, for this pur-
pose.

The input to IceParser is PoS tagged text, using
the IFD tagset. It produces annotation of both
constituent structure and syntactic functions. To
illustrate, consider the output of IceParser when
parsing the input from 3) above:

4) {*SUBJ [NP fjölskylda nven NP] {*QUAL
[NP spákonunnar nveeg NP] *QUAL} *SUBJ}
[PP í ao [NP [AP gamla lheþvf AP] húsinu nheþg
NP] PP]

The constituent labels seen here are: PP=a
preposition phrase, AP=an adjective phrase, and
NP=a noun phrase. The syntactic functions are
*SUBJ=a subject, and *QUAL=a genitive quali-
fier.

This (not so shallow) output makes it relatively
easy to find error candidates. Recall from example
3) that the accusative preposition tag “ao”, associ-
ated with the word “í”, is incorrect (the correct tag
is the dative “aþ”). Since a preposition governs the
case of the following noun phrase, the case of the
adjective “gamla” and the noun “húsinu” should
match the case of the preposition. Finding such
error candidates is thus just a matter of writing
regular expression patterns, one for each type of
error.

Furthermore, IceParser makes it even simpler
to write such patterns than it might seem when
examining the output in 4). IceParser is designed
as a sequence of finite-state transducers. The
output of one transducer is used as the input to
the next transducer in the sequence. One of these
transducers marks the case of noun phrases, and
another one the case of adjective phrases. This is
carried out to simplify the annotation of syntactic
functions in the transducers that follow, but is
removed from the final output (Loftsson and
Rögnvaldsson, 2007). Let us illustrate again:

5) {*SUBJ [NPn fjölskylda nven NP] {*QUAL
[NPg spákonunnar nveeg NP] *QUAL} *SUBJ}
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[PP í ao [NPd [APd gamla lheþvf AP] húsinu
nheþg NP] PP]

In 5), an intermediate output is shown from
one of the transducers of IceParser, for the sen-
tence from 4). Note that letters have been ap-
pended to some of the phrase labels. This letter
denotes the case of the corresponding phrase, e.g.
“n”=nominative, “a”=accusative, “d”=dative, and
“g”=genitive.

The case letter attached to the phrase labels can
thus be used when searching for specific types
of errors. Consider, for example, the pattern
PrepAccError (slightly simplified) which is used
for detecting the error shown in 5) (some details
are left out)4:

PrepTagAcc = ao{WhiteSpace}+
PrepAcc = {Word}{PrepTagAcc}

PrepAccError =
"[PP"{PrepAcc}("[NP"[nde]~"NP]")

This pattern searches for a string starting with
“[PP” followed by a preposition governing the
accusative case ({PrepAcc}), followed by a sub-
string starting with a noun phrase “[NP”, marked
as either nominative, dative or genitive case
(“[nde]”), and ending with “NP]”.

We have designed three kinds of patterns, one
for PP errors as shown above, one for disagree-
ment errors inside NPs, and one for specific VP
(verb phrase) errors.

The NP patterns are more complicated than the
PP patterns, and due to lack of space we are not
able to describe them here in detail. Briefly, we
extract noun phrases and use string processing
to compare the gender, number and case features
in nouns to, for example, the previous adjective
or pronoun. If a disagreement is found, we print
out the corresponding noun phrase. To illustrate,
consider the sentence “í þessum landshluta
voru fjölmörg einkasjúkrahús” (’in this part-of-
the-country were numerous private-hospitals’),
annotated by IceParser in the following way:

6) [PP í aþ [NP þessum fakfþ landshluta nkeþ
NP] PP] [VPb voru sfg3fþ VPb] {*SUBJ< [NP
[AP fjölmörg lhfnsf AP] einkasjúkrahús nhfn NP]
*SUBJ<}

4For writing regular expression patterns, we used the lex-
ical analyser generator tool JFlex, http://jflex.de/.

In this example, there is a disagreement error in
number between the demonstrative pronoun “þes-
sum” and the following noun “landshluta”. The
second “f“ letter in the tag “fakfþ” for “þessum”
denotes plural and the letter “e” in the tag “nkeþ”
for “landshluta” denotes singular.

Our VP patterns mainly search for disagree-
ments (in person and number) between a subject
and the following verb5. Consider, for example,
the sentence “ég les meira um vísindin” (’I read
more about (the) science’), annotated by IceParser
in the following manner:

7) {*SUBJ> [NP ég fp1en NP] *SUBJ>} [VP
les sfg3en VP] {*OBJ< [AP meira lheovm AP]
*OBJ<} [PP um ao [NP vísindin nhfog NP] PP]

The subject “ég” is here correctly tagged as
personal pronoun, first person, (“fp1en”), but the
verb “les” is incorrectly tagged as third person
(“sfg3en”).

By applying these pattern searches to the output
of IceParser for the whole IFD corpus, we needed
to examine 1,489 error candidates, or 0.25% of
the corpus. Since shallow parsers have been de-
veloped for various languages, this error detection
method may be tailored to other morphologically
complex languages.

Notice that the above search patterns could po-
tentially be used in a grammar checking compo-
nent for Icelandic text. In that case, input text
would be PoS tagged with any available tagger,
shallow parsed with IceParser, and then the above
patterns used to find these specific types of feature
agreement error candidates.

4 Results

Table 1 shows the results of applying the three er-
ror detection methods on the IFD corpus. The col-
umn “Error candidates” shows the number of PoS
tagging error candidates detected by each method.
The column “Errors corrected” shows the num-
ber of tokens actually corrected, i.e. how many
of the error candidates were true errors. The col-
umn “Precision” shows the ratio of correctly de-
tected errors to all error candidates. The column
“Ratio of corpus” shows the ratio of tokens cor-
rected to all tokens in the IFD corpus. The column

5Additionally, one VP pattern searches for a substring
containing the infinitive marker (the word “að” (’to’)), imme-
diately followed by a verb which is not tagged as an infinitive
verb.
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Method Sub- Error Errors Precision Ratio of Uniqueness Feature
type candidates corrected (%) corpus (%) rate (%) agreement (%)

variation n-gram 254 0.04 65.0 4.7
5 taggers 5317 883 16.6 0.15 78.0 24.8

shallow parsing

All 1489 448 30.1 0.08 60.0 80.2
PP 511 226 44.2 0.04 51.3 70.4
NP 740 160 21.6 0.03 70.0 95.0
VP 238 62 26.1 0.01 61.3 77.1

Total distinct errors 1334 0.23

Table 1: Results for the three error detection methods

“Uniqueness rate” shows how large a ratio of the
errors corrected by a method were not found by
any other method. Finally, the column “Feature
agreement” shows the ratio of errors that were fea-
ture agreement errors.

As discussed in Section 2.1, it is not straight-
forward to compute the precision of the variation
n-gram method, and we did not attempt to do so.
However, we can, using our experience from ex-
amining the variations, claim that the precision is
substantially lower than the 96.7% precision ob-
tained by Dickinson and Meurers (2003). We
had, indeed, expected low precision when using
the variation n-gram on the IFD corpus, because
this corpus and the underlying tagset is not as suit-
able for the method as the WSJ corpus (again, see
the discussion in Section 2.1). Note that as a re-
sult of applying the variation n-gram method, only
0.04% of the tokens in the IFD corpus were found
to be incorrectly tagged. This ratio is 8.5 times
lower than the ratio obtained by Dickinson and
Meurers when applying the same method on the
WSJ corpus. On the other hand, the variation n-
gram method nicely complements the other meth-
ods, because 65.0% of the 254 hand-corrected er-
rors were uniquely corrected on the basis of this
method.

Table 1 shows that most errors were detected by
applying the “5 taggers” method – 0.15% of the to-
kens in the corpus were found to be incorrectly an-
notated on the basis of this method. The precision
of the method is 16.6%. Recall that by using a sin-
gle tagger for error detection, van Halteren (2000)
obtained a precision of 12.7%. One might have ex-
pected more difference in precision by using five
taggers vs. a single tagger, but note that the lan-
guages used in the two experiments, as well as the
tagsets, are totally different. Therefore, the com-
parison in precision may not be viable. Moreover,

it has been shown that tagging Icelandic text, us-
ing the IFD tagset, is a hard task (see Section 2.2).
Hence, even though five agreeing taggers disagree
with the gold standard, in a large majority of the
disagreements (83.4% in our case) the taggers are
indeed wrong.

Consider, for example, the simple sentence “þá
getur það enginn” (’then can it nobody’, meaning
’then nobody can do-it’), which exemplifies the
free word order in Icelandic. Here the subject is
“enginn” and the object is “það”. Therefore, the
correct tagging (which is the one in the corpus)
is “þá/aa getur/sfg3en það/fpheo enginn/foken”, in
which “það” is tagged with the accusative case
(the last letter in the tag “fpheo”). However, all
the five taggers make the mistake of tagging “það”
with the nominative case (“fphen”), i.e. assuming
it is the subject of the sentence.

The uniqueness ratio for the 5-taggers method
is high or 78.0%, i.e. a large number of the errors
corrected based on this method were not found
(corrected) by any of the other methods. However,
bear in mind, that this method produces most error
candidates.

The error detection method based on shallow
parsing resulted in about twice as many errors
corrected than by applying the variation n-gram
method. Even though the precision of this method
as a whole (the subtype marked “All” in Table
1) is considerably higher than when applying
the 5-taggers methods (30.1% vs. 16.6%), we
did expect higher precision. Most of the false
positives (error candidates which turned out not to
be errors) are due to incorrect phrase annotation in
IceParser. A common incorrect phrase annotation
is one which includes a genitive qualifier. To
illustrate, consider the following sentence “sumir
farþeganna voru á heimleið” (’some of-the-
passengers were on-their-way home’), matched
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by one of the NP error patterns:

8) {*QUAL [NP sumir fokfn farþeganna nkfeg
NP] *QUAL} [VPb voru sfg3fþ VPb] [PP á aþ
[NP heimleið nveþ NP] PP]

Here “sumir farþeganna” is annotated as a sin-
gle noun phrase, but should be annotated as two
noun phrases “[NP sumir fokfn NP]” and “[NP
farþeganna nkfeg NP]”, where the second one is
the genitive qualifier of the first one. If this was
correctly annotated by IceParser, the NP error pat-
tern would not detect any feature agreement error
for this sentence, because no match is carried out
across phrases.

The last column in Table 1 shows the ratio of
feature agreement errors, which are errors result-
ing from mismatch in gender/person, number or
case between two words (e.g., see examples 6) and
7) above). Examples of errors not resulting from
feature agreement are: a tag denoting the incorrect
word class, and a tag of a an object containing an
incorrect case (verbs govern the case of their ob-
jects).

Recall from Section 3.3 that rules were written
to search for feature agreement errors in the out-
put of IceParser. Therefore, a high ratio of the to-
tal errors corrected by the shallow parsing method
(80.2%) are indeed due to feature agreement mis-
matches. 95.0% and 70.4% of the NP errors and
the PP errors are feature agreement errors, respec-
tively. The reason for a lower ratio in the PP errors
is the fact that in some cases the proposed preposi-
tion should actually have been tagged as an adverb
(the proposed tag therefore denotes an incorrect
word class). In the case of the 5-taggers method,
24.8% of the errors corrected are due to feature
agreement errors but only 4.7% in the case of the
variation n-gram method.

The large difference between the three meth-
ods with regard to the ratio of feature agreement
errors, as well as the uniqueness ratio discussed
above, supports our claim that the methods are in-
deed complementary, i.e. a large ratio of the to-
kens that get hand-corrected based on each method
is uniquely corrected by that method.

Overall, we were able to correct 1,334 distinct
errors, or 0.23% of the IFD corpus, by applying
the three methods (see the last row of Table 1).
Compared to related work, this ratio is, for ex-
ample, lower than the one obtained by applying

the variation n-gram method on the WSJ corpus
(0.34%). The exact ratio is, however, not of prime
importance because the methods have been ap-
plied to different languages, different corpora and
different tagsets. Rather, our work shows that us-
ing a single method which has worked well for an
English corpus (the variation n-gram method) does
not work particularly well for an Icelandic cor-
pus but adding two other complementary methods
helps in finding errors missed by the first method.

5 Re-evaluation of taggers

Earlier work on evaluation of tagging accuracy for
Icelandic text has used the original IFD corpus
(without any error correction attempts). Since we
were able to correct several errors in the corpus,
we were confident that the tagging accuracy pub-
lished hitherto had been underestimated.

To verify this, we used IceTagger and TnT, two
of the three best performing taggers on Icelandic
text. Additionally, we used a changed version of
TnT, which utilises functionality from IceMorphy,
the morphological analyser of IceTagger, and a
changed version of IceTagger which uses a hidden
Markov Model (HMM) to disambiguate words
which can not be further disambiguated by apply-
ing rules (Loftsson, 2007b). In tables 2 and 3 be-
low, Ice denotes IceTagger, Ice* denotes IceTag-
ger+HMM, and TnT* denotes TnT+IceMorphy.

We ran 10-fold cross-validation, using the exact
same data-splits as used in (Loftsson, 2006), both
before error correction (i.e. on the original corpus)
and after the error correction (i.e. on the corrected
corpus). Note that in these two steps we did not re-
train the TnT tagger, i.e. it still used the language
model derived from the original uncorrected cor-
pus.

Using the original corpus, the average tagging
accuracy results (using the first nine splits), for
unknown words, known words, and all words, are
shown in Table 26. The average unknown word
ratio is 6.8%.

Then we repeated the evaluation, now using the
corrected corpus. The results are shown in Ta-
ble 3. By comparing the tagging accuracy for all
words in tables 2 and 3, it can be seen that the
accuracy had be underestimated by 0.13-0.18 per-
centage points. The taggers TnT* and Ice* benefit
the most from the corpus error correction – their

6The accuracy figures shown in Table 2 are comparable to
the results in (Loftsson, 2006).
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Words TnT TnT* Ice Ice*
Unknown 71.82 72.98 75.30 75.63
Known 91.82 92.60 92.78 93.01
All 90.45 91.25 91.59 91.83

Table 2: Average tagging accuracy (%) using the
original IFD corpus

Words TnT TnT* Ice Ice*
Unknown 71.88 73.03 75.36 75.70
Known 91.96 92.75 92.95 93.20
All 90.58 91.43 91.76 92.01

Table 3: Average tagging accuracy (%) using the
corrected IFD corpus

accuracy for all words increases by 0.18 percent-
age points. Recall that we hand-corrected 0.23%
of the tokens in the corpus, and therefore TnT*
and Ice* correctly annotate 78.3% (0.18/0.23) of
the corrected tokens.

Since the TnT tagger is a data-driven tagger, it
is interesting to see whether the corrected corpus
changes the language model (to the better) of the
tagger. In other words, does retraining using the
corrected corpus produce better results than using
the language model generated from the original
corpus? The answer is yes, as can be seen by com-
paring the accuracy figures for TnT and TnT* in
tables 3 and 4. The tagging accuracy for all words
increases by 0.10 and 0.07 percentage points for
TnT and TnT*, respectively.

The re-evaluation of the above taggers, with or
without retraining, clearly indicates that the qual-
ity of the PoS annotation in the IFD corpus has
significant effect on the accuracy of the taggers.

6 Conclusion

The work described in this paper consisted of two
stages. In the first stage, we used three error de-
tection methods to hand-correct PoS errors in an
Icelandic corpus. The first two methods are lan-
guage independent, and we argued that the third
method can be adapted to other morphologically
complex languages.

As we expected, the application of the first
method used, the variation n-gram method, did
result in relatively few errors being detected and
corrected (i.e. 254 errors). By adding two new
methods, the first based on the agreement of five
taggers, and the second based on shallow parsing,
we were able to detect and correct 1,334 errors in

Words TnT TnT*
Unknown 71.97 73.10
Known 92.06 92.85
All 90.68 91.50

Table 4: Average tagging accuracy (%) of TnT af-
ter retraining using the corrected IFD corpus

total, or 0.23% of the tokens in the corpus. Our
analysis shows that the three methods are comple-
mentary, i.e. a large ratio of the tokens that get
hand-corrected based on each method is uniquely
corrected by that method.

An interesting side effect of the first stage is
the fact that by inspecting the error candidates re-
sulting from the shallow parsing method, we have
noticed a number of systematic errors made by
IceParser which should, in our opinion, be rela-
tively easy to fix. Moreover, we noted that our
regular expression search patterns, for finding fea-
ture agreement errors in the output of IceParser,
could potentially be used in a grammar checking
tool for Icelandic.

In the second stage, we re-evaluated and re-
trained two PoS taggers for Icelandic based on the
corrected corpus. The results of the second stage
clearly indicate that the quality of the PoS annota-
tion in the IFD corpus has a significant effect on
the accuracy of the taggers.

It is, of course, difficult to estimate the recall
of our methods, i.e. how many of the true errors
in the corpus we actually hand-corrected. In future
work, one could try to increase the recall by a vari-
ant of the 5-taggers method. Instead of demanding
that all five taggers agree on a tag before compar-
ing the result to the gold standard, one could in-
spect those cases in which four out of the five tag-
gers agree. The problem, however, with that ap-
proach is that the number of cases that need to be
inspected grows substantially. By demanding that
all the five taggers agree on the tag, we needed
to inspect 5,317 error candidates. By relaxing the
conditions to four votes out of five, we would need
to inspect an additional 9,120 error candidates.
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Abstract

We present a unified view of many trans-

lation algorithms that synthesizes work on

deductive parsing, semiring parsing, and

efficient approximate search algorithms.

This gives rise to clean analyses and com-

pact descriptions that can serve as the ba-

sis for modular implementations. We illus-

trate this with several examples, showing

how to build search spaces for several dis-

parate phrase-based search strategies, inte-

grate non-local features, and devise novel

models. Although the framework is drawn

from parsing and applied to translation, it

is applicable to many dynamic program-

ming problems arising in natural language

processing and other areas.

1 Introduction

Implementing a large-scale translation system is

a major engineering effort requiring substantial

time and resources, and understanding the trade-

offs involved in model and algorithm design de-

cisions is important for success. As the space of

systems described in the literature becomes more

crowded, identifying their common elements and

isolating their differences becomes crucial to this

understanding. In this work, we present a com-

mon framework for model manipulation and anal-

ysis that accomplishes this, and use it to derive sur-

prising conclusions about phrase-based models.

Most translation algorithms do the same thing:

dynamic programming search over a space of

weighted rules (§2). Fortunately, we need

not search far for modular descriptions of dy-

namic programming algorithms. Deductive logic

(Pereira and Warren, 1983), extended with semir-

ings (Goodman, 1999), is an established formal-

ism used in parsing. It is occasionally used

to describe formally syntactic translation mod-

els, but these treatments tend to be brief (Chiang,

2007; Venugopal et al., 2007; Dyer et al., 2008;

Melamed, 2004). We apply weighted deduction

much more thoroughly, first extending it to phrase-

based models and showing that the set of search

strategies used by these models have surprisingly

different implications for model and search error

(§3, §4). We then show how it can be used to an-

alyze common translation problems such as non-

local parameterizations (§5), alignment, and novel

model design (§6). Finally, we show that it leads to

a simple analysis of cube pruning (Chiang, 2007),

an important approximate search algorithm (§7).

2 Translation Models

A translation model consists of two distinct ele-

ments: an unweighted ruleset, and a parameteriza-

tion (Lopez, 2008). A ruleset licenses the steps by

which a source string f1...fI may be rewritten as

a target string e1...eJ , thereby defining the finite

set of all possible rewritings of a source string. A

parameterization defines a weight function over

every sequence of rule applications.

In a phrase-based model, the ruleset is simply

the unweighted phrase table, where each phrase

pair fi...fi′/ej ...ej′ states that phrase fi...fi′ in the

source is rewritten as ej ...ej′ in the the target.

The model operates by iteratively applying

rewrites to the source sentence until each source

word has been consumed by exactly one rule. We

call a sequence of rule applications a derivation.

A target string e1...eJ yielded by a derivation D is

obtained by concatenating the target phrases of the

rules in the order in which they were applied. We

define Y (D) to be the target string yielded by D.
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Now consider the Viterbi approximation to a

noisy channel parameterization of this model,

P (f |D) · P (D).1 We define P (f |D) in the stan-

dard way.

P (f |D) =
∏

fi...fi′/ej ...ej′∈D

p(fi...fi′ |ej ...ej′)

(1)

Note that in the channel model, we can replace any

rule application with any other rule containing the

same source phrase without affecting the partial

score of the rest of the derivation. We call this a

local parameterization.

Now we define a standard n-gram model P (D).

P (D) =
∏

ej∈Y (D)

p(ej |ej−n+1...ej−1) (2)

This parameterization differs from the channel

model in an important way. If we replace a single

rule in the derivation, the partial score of the rest

of derivation is also affected, because the terms

ej−n+1...ej may come from more than one rule. In

other words, this parameterization encodes a de-

pendency between the steps in a derivation. We

call this a non-local parameterization.

3 Translation As Deduction

For the first part of the discussion that follows, we

consider deductive logics purely over unweighted

rulesets. As a way to introduce deductive logic, we

consider the CKY algorithm for context-free pars-

ing, a common example that we will revisit in §6.2.

It is also relevant since it can form the basis of a

decoder for inversion transduction grammar (Wu,

1996). In the discussion that follows, we useA,B,

and C to denote arbitrary nonterminal symbols, S
to denote the start nonterminal symbol, and a to

denote a terminal symbol. CKY works on gram-

mars in Chomsky normal form: all rules are either

binary as in A→ BC, or unary as in A→ a.

The number of possible binary-branching

parses of a sentence is defined by the Catalan num-

ber, an exponential combinatoric function (Church

and Patil, 1982), so dynamic programming is cru-

cial for efficiency. CKY computes all parses in

cubic time by reusing subparses. To parse a sen-

tence a1...aK , we compute a set of items in the

form [A, k, k′], whereA is a nonterminal category,

1The true noisy channel parameterization p(f |e) · p(e)
would require a marginalization over D, and is intractable
for most models.

k and k′ are both integers in the range [0, n]. This

item represents the fact that there is some parse of

span ak+1...ak′ rooted at A (span indices are on

the spaces between words). CKY works by creat-

ing items over successively longer spans. First it

creates items [A, k−1, k] for any ruleA→ a such

that a = ak. It then considers spans of increasing

length, creating items [A, k, k′] whenever it finds

two items [B, k, k′′] and [C, k′′, k′] for some gram-

mar ruleA→ BC and some midpoint k′′. Its goal

is an item [S, 0,K], indicating that there is a parse

of a1...aK rooted at S.

A CKY logic describes its actions as inference

rules, equivalent to Horn clauses. The inference

rule is a list of antecedents, items and rules that

must all be true for the inference to occur; and a

single consequent that is inferred. To denote the

creation of item [A, k, k′] based on existence of

rule A→ BC and items [B, k, k′′] and [C, k′′, k′],
we write an inference rule with antecedents on the

top line and consequent on the second line, follow-

ing Goodman (1999) and Shieber et al. (1995).

R(A→ BC) [B, k, k′′] [C, k′′, k′]
[A, k, k′]

We now give the complete Logic CKY.

item form: [A, k, k′] goal: [S, 0,K]

rules:


R(A→ ak)
[A, k − 1, k]

R(A→ BC) [B, k, k′′] [C, k′′, k′]
[A, k, k′]

(Logic CKY)

A benefit of this declarative description is that

complexity can be determined by inspection

(McAllester, 1999). We elaborate on complexity

in §7, but for now it suffices to point out that the

number of possible items and possible deductions

depends on the product of the domains of the free

variables. For example, the number of possible

CKY items for a grammar with G nonterminals

is O(GK2), because k and k′ are both in range

[0,K]. Likewise, the number of possible inference

rules that can fire is O(G3K3).

3.1 A Simple Deductive Decoder

For our first example of a translation logic we con-

sider a simple case: monotone decoding (Mariño

et al., 2006; Zens and Ney, 2004). Here, rewrite

rules are applied strictly from left to right on the

source sentence. Despite its simplicity, the search
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space can be very large—in the limit there could

be a translation for every possible segmentation

of the sentence, so there are exponentially many

possible derivations. Fortunately, we know that

monotone decoding can easily be cast as a dy-

namic programming problem. For any position i
in the source sentence f1...fI , we can freely com-

bine any partial derivation covering f1...fi on its

left with any partial derivation covering fi+1...fI

on its right to yield a complete derivation.

In our deductive program for monotone decod-

ing, an item simply encodes the index of the right-

most word that has been rewritten.

item form: [i]
goal: [I]

rule:
[i] R(fi+1...fi′/ej ...ej′)

[i′]

(Logic MONOTONE)

This is the algorithm of Zens and Ney (2004).

With a maximum phrase length of m, i′ will range

over [i+1,min(i+m, I)], giving a complexity of

O(Im). In the limit it is O(I2).

3.2 More Complex Decoders

Now we consider phrase-based decoders with

more permissive reordering. In the limit we al-

low arbitrary reordering, so our item must contain

a coverage vector. Let V be a binary vector of

length I; that is, V ∈ {0, 1}I . Le 0m be a vec-

tor of m 0’s. For example, bit vector 00000 will

be abbreviated 05 and bit vector 000110 will be

abbreviated 031201. Finally, we will need bitwise

AND (∧) and OR (∨). Note that we impose an ad-

ditional requirement that is not an item in the de-

ductive system as a side condition (we elaborate

on the significance of this in §4).

item form: [{0, 1}I ] goal: [1I ]

rule:

[V ] R(fi+1...fi′/ej ...ej′)
[V ∨ 0i1i′−i0I−i′ ]

V ∧ 0i1i′−i0I−i′ = 0I

(Logic PHRASE-BASED)

The runtime complexity is exponential, O(I22I).
Practical decoding strategies are more restrictive,

implementing what is frequently called a distor-

tion limit or reordering limit. We found that these

terms are inexact, used to describe a variety of

quite different strategies.2 Since we did not feel

that the relationship between these various strate-

gies was obvious or well-known, we give logics

2Costa-jussà and Fonollosa (2006) refer to the reordering
limit and distortion limit as two distinct strategies.

for several of them and a brief analysis of the

implications. Each strategy uses a parameter d,

generically called the distortion limit or reorder-

ing limit.

The Maximum Distortion d strategy (MDd)

requires that the first word of a phrase chosen for

translation be within d words of the the last word

of the most recently translated phrase (Figure 1).3

The effect of this strategy is that, up to the last

word covered in a partial derivation, there must be

a covered word in every d words. Its complexity

is O(I32d).
MDd can produce partial derivations that cannot

be completed by any allowed sequence of jumps.

To prevent this, the Window Length d strategy

(WLd) enforces a tighter restriction that the last

word of a phrase chosen for translation cannot be

more than d words from the leftmost untranslated

word in the source (Figure 1).4 For this logic we

use a bitwise shift operator (�), and a predicate

(α1) that counts the number of leading ones in a

bit array.5 Its runtime is exponential in parameter

d, but linear in sentence length, O(d22dI).
The First d Uncovered Words strategy

(FdUW) is described by Tillman and Ney (2003)

and Zens and Ney (2004), who call it the IBM

Constraint.6 It requires at least one of the leftmost

d uncovered words to be covered by a new phrase.

Items in this strategy contain the index i of the

rightmost covered word and a vector U ∈ [1, I]d

of the d leftmost uncovered words (Figure 1). Its

complexity is O(dI
(

I
d+1

)
), which is roughly ex-

ponential in d.

There are additional variants, such as the Maxi-

mum Jump d strategy (MJd), a polynomial-time

strategy described by Kumar and Byrne (2005),

and possibly others. We lack space to describe all

of them, but simply depicting the strategies as log-

ics permits us to make some simple analyses.

First, it should be clear that these reorder-

ing strategies define overlapping but not identical

search spaces: for most values of d it is impossi-

ble to find d′ such that any of the other strategies

would be identical (except for degenerate cases

3Moore and Quirk (2007) give a nice description of MDd.
4We do not know if WLd is documented anywhere, but

from inspection it is used in Moses (Koehn et al., 2007). This
was confirmed by Philipp Koehn and Hieu Hoang (p.c.).

5When a phrase covers the first uncovered word in the
source sentence, the new first uncovered word may be further
along in the sentence (if the phrase completely filled a gap),
or just past the end of the phrase (otherwise).

6We could not identify this strategy in the IBM patents.
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(1)
item form: [i, {0, 1}I ]

goal: [i ∈ [I − d, I], 1I ]
rule:

[i′′, V ] R(fi+1...fi′/ej ...ej′)
[i′, V ∨ 0i1i′−i0I−i′ ]

V ∧ 0i1i′−i0I−i′ = 0I , |i− i′′| ≤ d

(2)

item form: [i, {0, 1}d]
goal: [I, 0d]

rules:


[i, C] R(fi+1...fi′/ej ...ej′)

[i′′, C � i′′ − i]
C ∧ 1i′−i0d−i′+i = 0d, i′ − i ≤ d,
α1(C ∨ 1i′−i0d−i′+i) = i′′ − i

[i, C] R(fi′ ...fi′′/ej ...ej′)
[i, C ∨ 0i′−i1i′′−i′0d−i′′+i]

C ∧ 0i′−i1i′′−i′0d−i′′+i = 0d, i′′ − i ≤ d

(3) item form: [i, [1, I + d]d] goal: [I, [I + 1, I + d]]

rules:


[i, U ] R(fi′ ...fi′′/ej ...ej′)

[i′′, U − [i′, i′′] ∨ [i′′, i′′ + d− |U − [i′, i′′]|]]
i′ > i, fi+1 ∈ U

[i, U ] R(fi′ ...fi′′/ej ...ej′)
[i, U − [i′, i′′] ∨ [max(U ∨ i) + 1,max(U ∨ i) + 1 + d− |U − [i′, i′′]|]]

i′ < i, [fi′ , fi′′ ] ⊂ U

Figure 1: Logics (1) MDd, (2) WLd, and (3) FdUW. Note that the goal item of MDd (1) requires that the

last word of the last phrase translated be within d words of the end of the source sentence.

d = 0 and d = I). This has important ramifi-

cations for scientific studies: results reported for

one strategy may not hold for others, and in cases

where the strategy is not clearly described it may

be impossible to replicate results. Furthermore, it

should be clear that the strategy can have signifi-

cant impact on decoding speed and pruning strate-

gies (§7). For example, MDd is more complex

than WLd, and we expect implementations of the

former to require more pruning and suffer from

more search errors, while the latter would suffer

from more model errors since its space of possible

reorderings is smaller.

We emphasize that many other translation mod-

els can be described this way. Logics for the IBM

Models (Brown et al., 1993) would be similar to

our logics for phrase-based models. Syntax-based

translation logics are similar to parsing logics; a

few examples already appear in the literature (Chi-

ang, 2007; Venugopal et al., 2007; Dyer et al.,

2008; Melamed, 2004). For simplicity, we will

use the MONOTONE logic for the remainder of our

examples, but all of them generalize to more com-

plex logics.

4 Adding Local Parameterizations via

Semiring-Weighted Deduction

So far we have focused solely on unweighted log-

ics, which correspond to search using only rule-

sets. Now we turn our focus to parameterizations.

As a first step, we consider only local parame-

terizations, which make computing the score of a

derivation quite simple. We are given a set of in-

ferences in the following form (interpreting side

conditions B1...BM as boolean constraints).

A1...AL

C
B1...BM

Now suppose we want to find the highest-scoring

derivation. Each antecedent item A` has a proba-

bility p(A`): if A` is a rule, then the probability is

given, otherwise its probability is computed recur-

sively in the same way that we now compute p(C).
Since C can be the consequent of multiple deduc-

tions, we take the max of its current value (initially

0) and the result of the new deduction.

p(C) = max(p(C), (p(A1)× ...× p(AL))) (3)

If for every A` that is an item, we replace p(A`)
recursively with this expression, we end up with a

maximization over a product of rule probabilities.

Applying this to logic MONOTONE, the result will

be a maximization (over all possible derivations

D) of the algebraic expression in Equation 1.

We might also want to calculate the total prob-

ability of all possible derivations, which is useful

for parameter estimation (Blunsom et al., 2008).

We can do this using the following equation.

p(C) = p(C) + (p(A1)× ...× p(AL)) (4)
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Equations 3 and 4 are quite similar. This suggests

a useful generalization: semiring-weighted deduc-

tion (Goodman, 1999).7 A semiring 〈A,⊗,⊕〉
consists of a domain A, a multiplicative opera-

tor ⊗ and an additive operator ⊕.8 In Equa-

tion 3 we use the Viterbi semiring 〈[0, 1],×,max〉,
while in Equation 4 we use the inside semiring

〈[0, 1],×,+〉. The general form of Equations 3

and 4 can be written for weights w ∈ A.

w(C)⊕= w(A1)⊗ ...⊗ w(A`) (5)

Many quantities can be computed simply by us-

ing the appropriate semiring. Goodman (1999) de-

scribes semirings for the Viterbi derivation, k-best

Viterbi derivations, derivation forest, and num-

ber of paths.9 Eisner (2002) describes the expec-

tation semiring for parameter learning. Gimpel

and Smith (2009) describe approximation semir-

ings for approximate summing in (usually in-

tractable) models. In parsing, the boolean semir-

ing 〈{>,⊥},∩,∪〉 is used to determine grammati-

cality of an input string. In translation it is relevant

for alignment (§6.1).

5 Adding Non-Local Parameterizations

with the PRODUCT Transform

A problem arises with the semiring-weighted de-

ductive formalism when we add non-local parame-

terizations such as an n-gram model (Equation 2).

Suppose we have a derivation D = (d1, ..., dM ),
where each dm is a rule application. We can view

the language model as a function on D.

P (D) = f(d1, ..., dm, ..., dM ) (6)

The problem is that replacing dm with a lower-

scoring rule d′m may actually improve f due to

the language model dependency. This means that

f is nonmonotonic—it does not display the opti-

mal substructure property on partial derivations,

which is required for dynamic programming (Cor-

men et al., 2001). The logics still work for some

semirings (e.g. boolean), but not others. There-

fore, non-local parameterizations break semiring-

weighted deduction, because we can no longer use

7General weighted deduction subsumes semiring-
weighted deduction (Eisner et al., 2005; Eisner and Blatz,
2006; Nederhof, 2003), but semiring-weighted deduction
covers all translation models we are aware of, so it is a good
first step in applying weighted deduction to translation.

8See Goodman (1999) for additional conditions on semir-
ings used in this framework.

9Eisner and Blatz (2006) give an alternate strategy for the
best derivation.

the same logic under all semirings. We need new

logics; for this we will use a logic programming

transform called the PRODUCT transform (Cohen

et al., 2008).

We first define a logic for the non-local param-

eterization. The logic for an n-gram language

model generates sequence e1...eQ by generating

each new word given the past n− 1 words.10

item form: [eq, ..., eq+n−2] goal: [eQ−n+2, ..., eQ]

rule:
[eq, ..., eq+n−2]R(eq, ..., eq+n−1)

[eq+1, ..., eq+n−1]
(Logic NGRAM)

Now we want to combine NGRAM and MONO-

TONE. To make things easier, we modify MONO-

TONE to encode the idea that once a source phrase

has been recognized, its target words are gener-

ated one at a time. We will use ue and ve to denote

(possibly empty) sequences in ej ...e
′
j . Borrowing

the notation of Earley (1970), we encode progress

using a dotted phrase ue • ve.

item form: [i, ue • ve] goal: [I, ue • ve]

rules:

[i, ue•] R(fi+1...fi′/ejve)
[i′, ej • ve]

[i, ue • ejve]
[i, ueej • ve]

(Logic MONOTONE-GENERATE)

We combine NGRAM and MONOTONE-

GENERATE using the PRODUCT transform,

which takes two logics as input and essentially

does the following.11

1. Create a new item type from the cross-

product of item types in the input logics.

2. Create inference rules for the new item type

from the cross-product of all inference rules

in the input logics.

3. Constrain the new logic as needed. This is

done by hand, but quite simple, as we will

show by example.

The first two steps give us logic MONOTONE-

GENERATE ◦ NGRAM (Figure 2). This is close to

what we want, but not quite done. The constraint

we want to apply is that each word written by logic

MONOTONE-GENERATE is equal to the word gen-

erated by logic NGRAM. We accomplish this by

unifying variables eq and en−i in the inference

rules, giving us logic MONOTONE-GENERATE +
NGRAM (Figure 2).

10We ignore start and stop probabilities for simplicity.
11The description of Cohen et al. (2008) is much more

complete and includes several examples.
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(1)

item form: [i, ue • ve, eq, ..., eq+n−2]
goal: [I, ue•, eQ−n+2, ..., eQ]

rules:

[i, ue•, eq, ..., eq+n−2] R(fi...fi′/ejue) R(eq, ..., eq+n−1)
[i′, ej • ue, eq+1, ..., eq+n−1]

[i, ue • ejve, eq, ..., eq+n−2] R(eq, ..., eq+n−1)
[i, ueej • ve, eq+1, ..., eq+n−1]

(2)

item form: [i, ue • ve, ej , ..., ej+n−2]
goal: [I, ue•, eJ−n+2, ..., eJ ]

rules:

[i, ue•, ej−n+1, ..., ej−1] R(fi...fi′/ejve) R(ej−n+2...ej)
[i′, ej • ve, ej−n+2, ..., ej ]

[i, ue • ei+n−1ve, ei, ..., ei+n−2] R(ej−n+2...ej)
[i+ 1, ueej • ve, ej−n+2, ..., ej ]

(3) item form: [i, ue • ve, ei, ..., en−i−2] goal: [I, ue•, eI−n+2, ..., eI ]

rule:
[i, ej−n+1, ..., ej−1] R(fi...fi′/ej ...ej′)R(ej−n+1, ..., ej)...R(ej′−n+1...ej′)

[i′, ej′−n+2...ej′ ]

Figure 2: Logics (1) MONOTONE-GENERATE ◦ NGRAM, (2) MONOTONE-GENERATE + NGRAM and

(3) MONOTONE-GENERATE + NGRAM SINGLE-SHOT.

This logic restores the optimal subproblem

property and we can apply semiring-weighted de-

duction. Efficient algorithms are given in §7, but

a brief comment is in order about the new logic.

In most descriptions of phrase-based decoding,

the n-gram language model is applied all at once.

MONOTONE-GENERATE+NGRAM applies the n-

gram language model one word at a time. This

illuminates a space of search strategies that are to

our knowledge unexplored. If a four-word phrase

were proposed as an extension of a partial hypoth-

esis in a typical decoder implementation using a

five-word language model, all four n-grams will

be applied even though the first n-gram might have

a very low score. Viewing each n-gram applica-

tion as producing a new state may yield new strate-

gies for approximate search.

We can derive the more familiar logic by ap-

plying a different transform: unfolding (Eisner

and Blatz, 2006). The idea is to replace an item

with the sequence of antecedents used to pro-

duce it (similar to function inlining). This gives

us MONOTONE-GENERATE+NGRAM SINGLE-

SHOT (Figure 2).

We call the ruleset-based logic the minimal

logic and the logic enhanced with non-local pa-

rameterization the complete logic. Note that the

set of variables in the complete logic is a superset

of the set of variables in the minimal logic. We

can view the minimal logic as a projection of the

complete logic into a smaller dimensional space.

It is important to note that complete logic is sub-

stantially more complex than the minimal logic,

by a factor of O(|VE |n) for a target vocabulary of

VE . Thus, the complexity of non-local parameteri-

zations often makes search spaces large regardless

of the complexity of the minimal logic.

6 Other Uses of the PRODUCT Transform

The PRODUCT transform can also implement

alignment and help derive new models.

6.1 Alignment

In the alignment problem (sometimes called con-

strained decoding or forced decoding), we are

given a reference target sentence r1, ..., rJ , and

we require the translation model to generate only

derivations that produce that sentence. Alignment

is often used in training both generative and dis-

criminative models (Brown et al., 1993; Blunsom

et al., 2008; Liang et al., 2006). Our approach to

alignment is similar to the one for language mod-

eling. First, we implement a logic requiring an
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input to be identical to the reference.

item form: [j]
goal: [J ]

rule:
[j]

[j + 1]
ej+1 = rj+1

(Logic RECOGNIZE)

The logic only reaches its goal if the input is iden-

tical to the reference. In fact, partial derivations

must produce a prefix of the reference. When we

combine this logic with MONOTONE-GENERATE,

we obtain a logic that only succeeds if the transla-

tion logic generates the reference.

item form: [i, j, ue • ve] goal: [I, j, ue•]

rules:


[i, j, ue•] R(fi...fi′/ej ...ej′)

[i′, j, •ej ...ej′ ]

[i, j, ue • ejve]
[i, j + 1, ueej • ve]

ej+1 = rj+1

(Logic MONOTONE-ALIGN)

Under the boolean semiring, this (minimal) logic

decides if a training example is reachable by the

model, which is required by some discriminative

training regimens (Liang et al., 2006; Blunsom et

al., 2008). We can also compute the Viterbi deriva-

tion or the sum over all derivations of a training

example, needed for some parameter estimation

methods. Cohen et al. (2008) derive an alignment

logic for ITG from the product of two CKY logics.

6.2 Translation Model Design

A motivation for many syntax-based translation

models is to use target-side syntax as a language

model (Charniak et al., 2003). Och et al. (2004)

showed that simply parsing the N -best outputs

of a phrase-based model did not work; to ob-

tain the full power of a language model, we need

to integrate it into the search process. Most ap-

proaches to this problem focus on synchronous

grammars, but it is possible to integrate the target-

side language model with a phrase-based transla-

tion model. As an exercise, we integrate CKY

with the output of logic MONOTONE-GENERATE.

The constraint is that the indices of the CKY items

unify with the items of the translation logic, which

form a word lattice. Note that this logic retains the

rules in the basic MONOTONE logic, which are not

depicted (Figure 3).

The result is a lattice parser on the output of the

translation model. Lattice parsing is not new to

translation (Dyer et al., 2008), but to our knowl-

edge it has not been used in this way. Viewing

(1)

(2)

Figure 4: Example graphs corresponding to a sim-

ple minimal (1) and complete (2) logic, with cor-

responding nodes in the same color. The state-

splitting induced by non-local features produces in

a large number of arcs which must be evaluated,

which can be reduced by cube pruning.

translation as deduction is helpful for the design

and construction of novel models.

7 Algorithms

Most translation logics are too expensive to ex-

haustively search. However, the logics conve-

niently specify the full search space, which forms

a hypergraph (Klein and Manning, 2001).12 The

equivalence is useful for complexity analysis:

items correspond to nodes and deductions corre-

spond to hyperarcs. These equivalences make it

easy to compute algorithmic bounds.

Cube pruning (Chiang, 2007) is an approxi-

mate search technique for syntax-based translation

models with integrated language models. It op-

erates on two objects: a −LM graph containing

no language model state, and a +LM hypergraph

containing state. The idea is to generate a fixed

number of nodes in the +LM for each node in

the −LM graph, using a clever enumeration strat-

egy. We can view cube pruning as arising from

the interaction between a minimal logic and the

state splits induced by non-local features. Figure 4

shows how the added state information can dra-

matically increase the number of deductions that

must be evaluated. Cube pruning works by con-

sidering the most promising states paired with the

most promising extensions. In this way, it easily

fits any search space constructed using the tech-

nique of §5. Note that the efficiency of cube prun-

ing is limited by the minimal logic.

Stack decoding is a search heuristic that simpli-

fies the complexity of searching a minimal logic.

Each item is associated with a stack whose signa-

12Specifically a B-hypergraph, equivalent to an and-or
graph (Gallo et al., 1993) or context-free grammar (Neder-
hof, 2003). In the degenerate case, this is simply a graph, as
is the case with most phrase-based models.
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item forms: [i, ue • ve], [A, i, ue • ve, i
′, u′e • v′e] goal: [S, 0, •, I, ue•]

rules:

[i, ue•] R(fi+1...fi′/ejve) R(A→ ej)
[A, i, ue•, i′, ej • ve]

[i, ue • ejve] R(A→ ej)
[A, i, ue • ejve, i, ueej • ve]

[B, i, ue • ve, i
′′, u′′e • v′′e ] [C, i′′, u′′e • v′′e , i′, u′e • v′e] R(A→ BC)

[A, i, ue • ve, i′, u′e • v′e]

Figure 3: Logic MONOTONE-GENERATE + CKY

ture is a projection of the item signature (or a pred-

icate on the item signatures)—multiple items are

associated to the same stack. The strength of the

pruning (and resulting complexity improvements)

depending on how much the projection reduces the

search space. In many phrase-based implemen-

tations the stack signature is just the number of

words translated, but other strategies are possible

(Tillman and Ney, 2003).

It is worth noting that logic FdUW (§3.2), de-

pends on stack pruning for speed. Because the

number of stacks is linear in the length of the in-

put, so is the number of unpruned nodes in the

search graph. In contrast, the complexity of logic

WLd is naturally linear in input length. As men-

tioned in §3.2, this implies a wide divergence in

the model and search errors of these logics, which

to our knowledge has not been investigated.

8 Related Work

We are not the first to observe that phrase-based

models can be represented as logic programs (Eis-

ner et al., 2005; Eisner and Blatz, 2006), but to

our knowledge we are the first to provide explicit

logics for them.13 We also showed that deductive

logic is a useful analytical tool to tackle a variety

of problems in translation algorithm design.

Our work is strongly influenced by Goodman

(1999) and Eisner et al. (2005). They describe

many issues not mentioned here, including con-

ditions on semirings, termination conditions, and

strategies for cyclic search graphs. However,

while their weighted deductive formalism is gen-

eral, they focus on concerns relevant to parsing,

such as boolean semirings and cyclicity. Our work

focuses on concerns common for translation, in-

cluding a general view of non-local parameteriza-

tions and cube pruning.

13Huang and Chiang (2007) give an informal example, but
do not elaborate on it.

9 Conclusions and Future Work

We have described a general framework that syn-

thesizes and extends deductive parsing and semir-

ing parsing, and adapts it to translation. Our goal

has been to show that logics make an attractive

shorthand for description, analysis, and construc-

tion of translation models. For instance, we have

shown that it is quite easy to mechanically con-

struct search spaces using non-local features, and

to create exotic models. We showed that differ-

ent flavors of phrase-based models should suffer

from quite different types of error, a problem that

to our knowledge was heretofore unknown. How-

ever, we have only scratched the surface, and we

believe it is possibly to unify a wide variety of

translation algorithms. For example, we believe

that cube pruning can be described as an agenda

discipline in chart parsing (Kay, 1986).

Although the work presented here is abstract,

our motivation is practical. Isolating the errors

in translation systems is a difficult task which can

be made easier by describing and analyzing mod-

els in a modular way (Auli et al., 2009). Fur-

thermore, building large-scale translation systems

from scratch should be unnecessary if existing sys-

tems were built using modular logics and algo-

rithms. We aim to build such systems.
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Abstract

We address the task of automatically pre-
dicting if summarization system perfor-
mance will be good or bad based on fea-
tures derived directly from either single- or
multi-document inputs. Our labelled cor-
pus for the task is composed of data from
large scale evaluations completed over the
span of several years. The variation of data
between years allows for a comprehensive
analysis of the robustness of features, but
poses a challenge for building a combined
corpus which can be used for training and
testing. Still, we find that the problem can
be mitigated by appropriately normalizing
for differences within each year. We ex-
amine different formulations of the classi-
fication task which considerably influence
performance. The best results are 84%
prediction accuracy for single- and 74%
for multi-document summarization.

1 Introduction

The input to a summarization system significantly
affects the quality of the summary that can be pro-
duced for it, by either a person or an automatic
method. Some inputs aredifficult and summaries
produced by any approach will tend to bepoor,
while other inputs areeasyand systems will ex-
hibit goodperformance. User satisfaction with the
summaries can be improved, for example by auto-
matically flagging summaries for which a system
expects to perform poorly. In such cases the user
can ignore the summary and avoid the frustration
of reading poor quality text.

(Brandow et al., 1995) describes an intelligent
summarizer system that could identify documents

which would be difficult to summarize based on
structural properties. Documents containing ques-
tion/answer sessions, speeches, tables and embed-
ded lists were identified based on patterns and
these features were used to determine whether an
acceptable summary can be produced. If not, the
inputs were flagged as unsuitable for automatic
summarization. In our work, we provide deeper
insight into how other characteristics of the text
itself and properties of document clusters can be
used to identify difficult inputs.

The task of predicting the confidence in system
performance for a given input is in fact relevant not
only for summarization, but in general for all ap-
plications aimed at facilitating information access.
In question answering for example, a system may
be configured not to answer questions for which
the confidence of producing a correct answer is
low, and in this way increase the overall accuracy
of the system whenever it does produce an answer
(Brill et al., 2002; Dredze and Czuba, 2007).

Similarly in machine translation, some sen-
tences might contain difficult to translate phrases,
that is, portions of the input are likely to lead
to garbled output if automatic translation is at-
tempted. Automatically identifying such phrases
has the potential of improving MT as shown by
an oracle study (Mohit and Hwa, 2007). More re-
cent work (Birch et al., 2008) has shown that prop-
erties of reordering, source and target language
complexity and relatedness can be used to pre-
dict translation quality. In information retrieval,
the problem of predicting system performance has
generated considerable interest and has led to no-
tably good results (Cronen-Townsend et al., 2002;
Yom-Tov et al., 2005; Carmel et al., 2006).
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2 Task definition

In summarization, researchers have recognized
that some inputs might be more successfully han-
dled by a particular subsystem (McKeown et al.,
2001), but little work has been done to qualify the
general characteristics of inputs that lead to subop-
timal performance of systems. Only recently the
issue has drawn attention: (Nenkova and Louis,
2008) present an initial analysis of the factors that
influence system performance in content selection.
This study was based on results from the Doc-
ument Understanding Conference (DUC) evalua-
tions (Over et al., 2007) of multi-document sum-
marization of news. They showed that input, sys-
tem identity and length of the target summary were
all significant factors affecting summary quality.
Longer summaries were consistently better than
shorter ones for the same input, so improvements
can be easy in applications where varying target
size is possible. Indeed, varying summary size is
desirable in many situations (Kaisser et al., 2008).

The most predictive factor of summary quality
was input identity, prompting a closer investiga-
tion of input properties that are indicative of dete-
rioration in performance. For example, summaries
of articles describing different opinions about an
issue or of articles describing multiple distinct
events of the same type were of overall poor qual-
ity, while summaries of more focused inputs, deal-
ing with descriptions of a single event, subject or
person (biographical), were on average better.

A number of features were defined, capturing
aspects of how focused on a single topic a given
input is. Analysis of the predictive power of the
features was done using only one year of DUC
evaluations. Data from later evaluations was used
to train and test a logistic regression classifier for
prediction of expected system performance. The
task could be performed with accuracy of 61.45%,
significantly above chance levels.

The results also indicated that special care needs
to be taken when pooling data from different eval-
uations into a single dataset. Feature selection per-
formed on data from one year was not useful for
prediction on data from other years, and actually
led to worse performance than using all features.
Moreover, directly indicating which evaluation the
data came from was the most predictive feature
when testing on data from more than one year.

In the work described here, we show how the
approach for predicting performance confidence

can be improved considerably by paying special
attention to the way data from different years is
combined, as well as by adopting alternative task
formulations (pairwise comparisons of inputs in-
stead of binary class prediction), and utilizing
more representative examples for good and bad
performance. We also extend the analysis to sin-
gle document summarization, for which predict-
ing system performance turns out to be much more
accurate than for multi-document summarization.
We address three key questions.

What features are predictive of performance on
a given input? In Section 4, we discuss four
classes of features capturing properties of the in-
put, related to input size, information-theoretic
properties of the distribution of words in the input,
presence of descriptive (topic) words and similar-
ity between the documents in multi-document in-
puts. Rather than using a single year of evaluations
for the analysis, we report correlation with ex-
pected system performance for all years and tasks,
showing that in fact the power of these features
varies considerably across years (Section 5).

How to combine data from different years?The
available data spans several years of summariza-
tion evaluations. Between years, systems change,
as well as number of systems and average input
difficulty. All of these changes impact system per-
formance and make data from different years dif-
ficult to analyze when taken together. Still, one
would want to combine all of the available eval-
uations in order to have more data for developing
machine learning models. In Section 6 we demon-
strate that this indeed can be achieved, by normal-
izing within each year by the highest observed per-
formance and only then combining the data.

How to define input difficulty?There are several
possible definitions of “input difficulty” or “good
performance”. All the data can be split in two
binary classes of “good” and “bad” performance
respectively, or only representative examples in
which there is a clear difference in performance
can be used. In Section 7 we show that these alter-
natives can dramatically influence prediction ac-
curacy: using representative examples improves
accuracy by more than 10%. Formulating the task
as ranking of two inputs, predicting which one is
more difficult, also turns out to be helpful, offering
more data even within the same year of evaluation.
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3 Data

We use the data from single- and multi-document
evaluations performed as part of the Document
Understanding Conferences (Over et al., 2007)
from 2001 to 2004.1 Generic multi-document
summarization was evaluated in all of these years,
single document summaries were evaluated only
in 2001 and 2002. We use the 100-word sum-
maries from both tasks.

In the years 2002-2004, systems were eval-
uated respectively on 59, 37 and 100 (50
for generic summarization and 50 biographical)
multi-document inputs. There were 149 inputs for
single document summarization in 2001 and 283
inputs in 2002. Combining the datasets from the
different years yields a collection of 432 observa-
tions for single-document summarization, and 196
for multi-document summarization.

Input difficulty, or equivalently expected con-
fidence of system performance, was defined em-
pirically, based on actual content selection evalua-
tions of system summaries. More specifically, ex-
pected performance for each input was defined as
the average coverage score of all participating sys-
tems evaluated on that input. In this way, the per-
formance confidence is not specific to any given
system, but instead reflects what can be expected
from automatic summarizers in general.

The coverage score was manually computed by
NIST evaluators. It measures content selection by
estimating overlap between a human model and a
system summary. The scale for the coverage score
was different in 2001 compared to other years: 0
to 4 scale, switching to a 0 to 1 scale later.

4 Features

For our experiments we use the features proposed,
motivated and described in detail by (Nenkova and
Louis, 2008). Four broad classes of easily com-
putable features were used to capture aspects of
the input predictive of system performance.

Input size-related Number of sentences in the
input, number of tokens, vocabulary size, percent-
age of words used only once, type-token ratio.

Information-theoretic measures Entropy of
the input word distribution and KL divergence be-
tween the input and a large document collection.

1Evaluations from later years did not include generic sum-
marization, but introduced new tasks such as topic-focused
and update summarization.

Log-likelihood ratio for words in the input
Number of topic signature words (Lin and Hovy,
2000; Conroy et al., 2006) and percentage of sig-
nature words in the vocabulary.

Document similarity in the input set These
features apply to multi-document summarization
only. Pairwise similarity of documents within an
input were computed using tf.idf weighted vector
representations of the documents, either using all
words or using only topic signature words. In both
settings, minimum, maximum and average cosine
similarity was computed, resulting in six similar-
ity features.

Multi-document summaries from DUC 2001
were used for feature selection. The 29 sets for
that year were divided according to the average
coverage score of the evaluated systems. Sets with
coverage below the average were deemed to be the
ones that will elicit poor performance and the rest
were considered examples of sets for which sys-
tems perform well. T-tests were used to select fea-
tures that were significantly different between the
two classes. Six features were selected: vocabu-
lary size, entropy, KL divergence, percentage of
topic signatures in the vocabulary, and average co-
sine and topic signature similarity.

5 Correlations with performance

The Pearson correlations between features of the
input and average system performance for each
year is shown in Tables 1 and 2 for multi- and
single-document summarization respectively. The
last two columns show correlations for the com-
bined data from different evaluation years. For
the last column in both tables, the scores in each
year were first normalized by the highest score that
year. Features that were significantly correlated
with expected performance at confidence level of
0.95 are marked with (*). Overall, better perfor-
mance is associated with smaller inputs, lower en-
tropy, higher KL divergence and more signature
terms, as well as with higher document similarity
for multi-document summarization.

Several important observations can be made
from the correlation numbers in the two tables.
Cross-year variation There is a large variation in
the strength of correlation between performance
and various features. For example, KL diver-
gence is significantly correlated with performance
for most years, with correlation of 0.4618 for the
generic summaries in 2004, but the correlation was
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features 2001 2002 2003 2004G 2004B All(UN) All(N)
tokens -0.2813 -0.2235 -0.3834* -0.4286* -0.1596 -0.2415*-0.2610*
sentences -0.2511 -0.1906 -0.3474* -0.4197* -0.1489 -0.2311* -0.2753*
vocabulary -0.3611* -0.3026* -0.3257* -0.4286* -0.2239 -0.2568* -0.3171*
per-once -0.0026 -0.0375 0.1925 0.2687 0.2081 0.2175* 0.1813*
type/token -0.0276 -0.0160 0.1324 0.0389 -0.1537 -0.0327 -0.0993
entropy -0.4256* -0.2936* -0.1865 -0.3776* -0.1954 -0.2283* -0.2761*
KL divergence 0.3663* 0.1809 0.3220* 0.4618* 0.2359 0.2296* 0.2879*
avg cosine 0.2244 0.2351 0.1409 0.1635 0.2602 0.1894* 0.2483*
min cosine 0.0308 0.2085 -0.5330* -0.1766 0.1839 -0.0337 -0.0494
max cosine 0.1337 0.0305 0.2499 0.1044 -0.0882 0.0918 0.1982*
num sign -0.1880 -0.0773 -0.1799 -0.0149 0.1412 -0.0248 0.0084
% sign. terms 0.3277 0.1645 0.1429 0.3174* 0.3071* 0.1952* 0.2609*
avg topic 0.2860 0.3678* 0.0826 0.0321 0.1215 0.1745* 0.2021*
min topic 0.0414 0.0673 -0.0167 -0.0025 -0.0405 -0.0177 -0.0469
max topic 0.2416 0.0489 0.1815 0.0134 0.0965 0.1252 0.2082*

Table 1: Correlations between input features and average system performance for multi-document inputs
of DUC 2001-2003, 2004G (generic task), 2004B (biographical task), All data (2002-2004) - UNnor-
malized and Normalized coverage scores. P-values smaller than 0.05 are marked by *.

not significant (0.1809) for 2002 data. Similarly,
the average similarity of topic signature vectors is
significant in 2002, but has correlations close to
zero in the following two years. This shows that
no feature exhibits robust predictive power, espe-
cially when there are relatively few datapoints. In
light of this finding, developing additional features
and combining data to obtain a larger collection of
samples are important for future progress.

Normalization Because of the variation from year
to year, normalizing performance scores is benefi-
cial and leads to higher correlation for almost all
features. On average, correlations increase by 0.05
for all features. Two of the features, maximum co-
sine similarity and max topic word similarity, be-
come significant only in the normalized data. As
we will see in the next section, prediction accu-
racy is also considerably improved when scores
are normalized before pooling the data from dif-
ferent years together.

Single- vs. multi-document taskThe correla-
tions between performance and input features are
higher in single-document summarization than in
multi-document. For example, in the normalized
data KL divergence has correlation of 0.28 for
multi-document summarization but 0.40 for sin-
gle document. The number of signature terms
is highly correlated with performance in single-
document summarization (-0.25) but there is prac-
tically no correlation for multi-document sum-
maries. Consequently, we can expect that the
performance prediction will be more accurate for
single-document summarization.

features 2001 2002 All(N)
tokens -0.3784* -0.2434* -0.3819*
sentences -0.3999* -0.2262* -0.3705*
vocabulary -0.4410* -0.2706* -0.4196*
per-once -0.0718 0.0087 0.0496
type/token 0.1006 0.0952 0.1785
entropy -0.5326* -0.2329* -0.3789*
KL divergence 0.5332* 0.2676* 0.4035*
num sign -0.2212* -0.1127 -0.2519*
% sign 0.3278* 0.1573* 0.2042*

Table 2: Correlations between input features and
average system performance for single doc. inputs
of DUC’01, ’02, All (’01+’02) N-normalized. P-
values smaller than 0.05 are marked by *.

6 Classification experiments

In this section we explore how the alternative task
formulations influence success of predicting sys-
tem performance. Obviously, the two classes of
interest for the prediction will be “good perfor-
mance” and “poor performance”. But separat-
ing the real valued coverage scores for inputs into
these two classes can be done in different ways.
All the data can be used and the definition of
“good” or “bad” can be determined in relation to
the average performance on all inputs. Or only the
best and worst sets can be used as representative
examples. We explore the consequences of adopt-
ing either of these options.

For the first set of experiments, we divide all
inputs based on the mean value of the average sys-
tem scores as in (Nenkova and Louis, 2008). All
multi-document results reported in this paper are
based on the use of the six significant features dis-
cussed in Section 4. DUC 2002, 2003 and 2004
data was used for 10-fold cross validation. We ex-
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perimented with three classifiers available in R—
logistic regression (LogR), decision tree (DTree)
and support vector machines (SVM). SVM and
decision tree classifiers are libraries under CRAN
packages e1071 and rpart.2 Since our develop-
ment set was very small (only 29 inputs), we did
not perform any parameter tuning.

There is nearly equal number of inputs on either
side of the average system performance and the
random baseline performance in this case would
give 50% accuracy.

6.1 Multi-document task

The classification accuracy for the multi-
document inputs is reported in Table 3. The
partitioning into classes was done based on
the average performance (87 easy sets and 109
difficult sets).

As expected, normalization considerably im-
proves results. The absolute largest improvement
of 10% is for the logistic regression classifier. For
this classifier, prediction accuracy for the non-
normalized data is 54% while for the normalized
data, it is 64%. Logistic regression gives the best
overall classification accuracy on the normalized
data compared to SVM classifier that does best on
the unnormalized data (56% accuracy). Normal-
ization also improves precision and recall for the
SVM and logistic regression classifiers.

The differences in accuracies obtained by the
classifiers is also noticable and we discuss these
further in Section 7.

6.2 Single document task

We now turn to the task of predicting summa-
rization performance for single document inputs.
As we saw in section 5, the features are stronger
predictors for summarization performance in the
single-document task. In addition, there is more
data from evaluations of single document summa-
rizers. Stronger features and more training data
can both help achieve higher prediction accura-
cies. In this section, we separate out the two fac-
tors and demonstrate that indeed the features are
much more predictive for single document sum-
marization than for multidocument.

In order to understand the effect of having more
training data, we did not divide the single doc-
ument inputs into a separate development set to
use for feature selection. Instead, all the features

2http://cran.r-project.org/web/packages/

classifier accuracy P R F
DTree 66.744 66.846 67.382 67.113
LogR 67.907 67.089 69.806 68.421
SVM 69.069 66.277 80.317 72.625

Table 4: Single document input classification Pre-
cision (P), Recall (R),and F score (F) for difficult
inputs on DUC’01 and ’02 (total 432 examples)
divided into 2 classes based on the average cover-
age score (217 difficult and 215 easy inputs).

discussed in Section 4 except the six cosine and
topic signature similarity measures are used. The
coverage score ranges in DUC 2001 and 2002 are
different. They are normalized by the maximum
score within the year, then combined and parti-
tioned in two classes with respect to the average
coverage score. In this way, the 432 observations
are split into almost equal halves, 215 good perfor-
mance examples and 217 bad performance. Table
4 shows the accuracy, precision and recall of the
classifiers on single-document inputs.

From the results in Table 4 it is evident that
all three classifiers achieve accuracies higher than
those for multi-document summarization. The im-
provement is largest for decision tree classifica-
tion, nearly 15%. The SVM classifier has the high-
est accuracy for single document summarization
inputs, (69%), which is 7% absolute improvement
over the performance of the SVM classifier for
the multi-document task. The smallest improve-
ment of 4% is for the logistic regression classi-
fier which is the one with highest accuracy for the
multi-document task

Improved accuracy could be attributed to the
fact that almost double the amount of data is avail-
able for the single-document summarization ex-
periments. To test if this was the main reason for
improvement, we repeated the single-document
experiments using a random sample of 196 inputs,
the same amount of data as for the multi-document
case. Even with reduced data, single-document
inputs are more easily classifiable as difficult or
easy compared to multi-document, as shown in Ta-
bles 3 and 5. The SVM classifier is still the best
for single-document summarization and its accu-
racy is the same with reduced data as with all
data. With less data, the performance of the lo-
gistic regression and decision tree classifiers de-
grades more and is closer to the numbers for multi-
document inputs.
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Classifier N/UN Acc Pdiff Rdiff Peasy Reasy Fdiff Feasy

DTree UN 51.579 56.580 56.999 46.790 45.591 55.383 44.199
N 52.105 56.474 57.786 46.909 45.440 55.709 44.298

LogR
UN 54.211 56.877 71.273 50.135 34.074 62.145 39.159
N 63.684 63.974 79.536 63.714 45.980 69.815 51.652

SVM UN 55.789 57.416 73.943 50.206 32.753 63.784 38.407
N 62.632 61.905 81.714 61.286 38.829 69.873 47.063

Table 3: Multi-document input classification results onUNnormalized andNormalized data from DUC
2002 to 2004. Both Normalized and UNormalized data contain 109 difficult and 87 easy inputs. Since
the split is not balanced, the accuracy of classification as well as the Precision (P), Recall (R) and F score
(F) are reported for both classes of easy and diff(icult) inputs.

classifier accuracy P R F
DTree 53.684 54.613 53.662 51.661
LogR 61.579 63.335 60.400 60.155
SVM 69.474 66.339 85.835 73.551

Table 5: Single-document-input classification Pre-
cision (P), Recall (R), and F score (F) for difficult
inputs on a random sample of 196 observations (99
difficult/97 easy) from DUC’01 and ’02.

7 Learning with representative examples

In the experiments in the previous section, we used
the average coverage score to split inputs into two
classes of expected performance. Poor perfor-
mance was assigned to the inputs for which the
average system coverage score was lower than the
average for all inputs. Good performance was as-
signed to those with higher than average cover-
age score. The best results for this formulation
of the prediction task is 64% accuracy for multi-
document classification (logistic regression classi-
fier; 196 datapoints) and 69% for single-document
(SVM classifier; 432 and 196 datapoints).

However, inputs with coverage scores close to
the average may not be representative of either
class. Moreover, inputs for which performance
was very similar would end up in different classes.
We can refine the dataset by using only those ob-
servations that are highly representative of the cat-
egory they belong to, removing inputs for which
system performance was close to the average. It
is desirable to be able to classify mediocre inputs
as a separate category. Further studies are neces-
sary to come up with better categorization of in-
puts rather than two strict classes of difficult and
easy. For now, we examine the strength of our fea-
tures in distinguishing the extreme types by train-
ing and testing only on inputs that are representa-
tive of these classes.

We test this hypothesis by starting with 196
multi-document inputs and performing the 10-fold

cross validation using only 80%, 60% and 50%
of the data, incrementally throwing away obser-
vations around the mean. For example, the 80%
model was learnt on 156 observations, taking the
extreme 78 observations on each side into the dif-
ficult and easy categories. For the single document
case, we performed the same tests starting with
a random sample of 196 observations as 100%
data.3 All classifiers were trained and tested on
the same division of folds during cross validation
and compared using a paired t-test to determine
the significance of differences if any. Results are
shown in Table 6. In parentheses after the accu-
racy of a given classifier, we indicate the classifiers
that are significantly better than it.

Classifiers trained and tested using only repre-
sentative examples perform more reliably. The
SVM classifier is the best one for the single-
document setting and in most cases significantly
outperforms logistic regression and decision tree
classifiers on accuracy and recall. In the multi-
document setting, SVM provides better overall re-
call than logistic regression. However, with re-
spect to accuracy, SVM and logistic regression
classifiers are indistinguishable. The decision tree
classifier performs worse.

For multi-document classification, the F score
drops initially when data is reduced to only 80%.
But when using only half of the data, accuracy
of prediction reaches 74%, amounting to 10% ab-
solute improvement compared to the scenario in
which all available data is used. In the single-
document case, accuracy for the SVM classifier
increases consistently, reaching accuracy of 84%.

8 Pairwise ranking approach

The task we addressed in previous sections was to
classify inputs into ones for which we expect good

3We use the same amount of data as is available for multi-
document so that the results can be directly comparable.
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Single document classification Multi-document classification
Data CL Acc P R F Acc P R F

100%
DTree 53.684(S) 54.613 53.662(S) 51.661 52.105(S,L) 56.474 57.786(S,L) 55.709
LogR 61.579(S) 63.335 60.400(S) 60.155 63.684 63.974 79.536 69.815
SVM 69.474 66.339 85.835 73.55162.632 61.905 81.714 69.873

80%
DTree 62.000(S) 62.917(S) 67.089(S) 62.969 53.333 57.517 55.004(S) 51.817
LogR 68.000 68.829 69.324(S) 67.686 58.667 60.401 59.298(S) 57.988
SVM 71.333 70.009 86.551 75.57762.000 61.492 71.075 63.905

60%
DTree 68.182(S) 72.750 60.607(S) 64.025 57.273(S) 63.000 58.262(S) 54.882
LogR 70.909 73.381 69.250 69.86167.273 68.357 70.167 65.973
SVM 76.364 73.365 82.857 76.95966.364 68.619 75.738 67.726

50%
DTree 70.000(S) 69.238 67.905(S) 66.299 65.000 60.381(L) 70.809 64.479
LogR 76.000(S) 76.083 72.500(S) 72.919 74.000 72.905 70.381(S) 70.965
SVM 84.000 83.476 89.000 84.37972.000 67.667 79.143 71.963

Table 6: Performance of multiple classifiers on extreme observations from single and multi-document
data (100% data = 196 data points in both cases divided into 2 classes on the basis of average coverge
score). Reported precision (P), recall (R) and F score (F) are for difficult inputs. Experiments on ex-
tremes use equal number of examples from each class - baseline performance is 50%. Systems whose
performance is significantly better than the specified numbers are shown in brackets (S-SVM, D-Decision
Tree, L-Logistic Regression).

performance and ones for which poor system per-
formance is expected. In this section, we evaluate
a different approach to input difficulty classifica-
tion. Given a pair of inputs, can we identify the
one on which systems will perform better? This
ranking task is easier than requiring a strict deci-
sion on whether performance will be good or not.

Ranking approaches are widely used in text
planning and sentence ordering (Walker et al.,
2001; Karamanis, 2003) to select the text with best
structure among a set of possible candidates. Un-
der the summarization framework, (Barzilay and
Lapata, 2008) ranked different summaries for the
same input according to their coherence. Simi-
larly, ranking alternative document clusters on the
same topic to choose the best input will prove an
added advantage to summarizer systems. When
summarization is used as part of an information
access interface, the clustering of related docu-
ments that form the input to a system is done
automatically. Currently, the clustering of docu-
ments is completely independent of the need for
subsequent summarization of the resulting clus-
ters. Techniques for predicting summarizer per-
formance can be used to inform clustering so that
the clusters most suitable for summarization can
be chosen. Also, when sample inputs for which
summaries were deemed to be good are available,
these can be used as a standard with which new
inputs can be compared.

For the pairwise comparison task, the features
are the difference in feature values between the
two inputs A and B that form a pair. The dif-

ference in average system scores of inputs A and
B in the pair is used to determine the input for
which performance was better. Every pair could
give two training examples, one positive and one
negative depending on the direction in which the
differences are computed. We choose one exam-
ple from every pair, maintaining an equal number
of positive and negative instances.

The idea of using representative examples can
be applied for the pairwise formulation of the task
as well—the larger the difference in system perfor-
mance is, the better example the pair represents.
Very small score differences are not as indicative
of performance on one input being better than the
other. Hence the experiments were duplicated on
80%, 60% and 40% of the data where the retained
examples were the ones with biggest difference
between the system performance on the two sets
(as indicated by the average coverage score). The
range of score differences in each year are indi-
cated in the Table 7.

All scores are normalized by the maximum
score within the year. Therefore the smallest and
largest possible differences are 0 and 1 respec-
tively. The entries corresponding to the years
2002, 2003 and 2004 show the SVM classification
results when inputs were paired only with those
within the same year. Next inputs of all years were
paired with no restrictions. We report the classifi-
cation accuracies on a random sample of these ex-
amples equal in size to the number of datapoints
in the 2004 examples.

Using only representative examples leads to
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Amt Data Min score diff Points Acc.

All

2002 0.00028 1710 65.79
2003 0.00037 666 73.94
2004 0.00023 4948 70.71
2002-2004 0.00005 4948 68.85

80%

2002 0.05037 1368 68.39
2003 0.08771 532 78.87
2004 0.05226 3958 73.36
2002-2004 0.02376 3958 70.68

60%

2002 0.10518 1026 73.04
2003 0.17431 400 82.50
2004 0.11244 2968 77.41
2002-2004 0.04844 2968 71.39

40%

2002 0.16662 684 76.03
2003 0.27083 266 87.31
2004 0.18258 1980 79.34
2002-2004 0.07489 1980 74.95

Maximum score difference 2002 (0.8768), 2003 (0.8969),
2004 (0.8482), 2002-2004 (0.8768)

Table 7: Accuracy of SVM classification of mul-
tidocument input pairs. When inputs are paired
irrespective of year (2002-2004), datapoints equal
in number to that in 2004 were chosen at random.

consistently better results than using all the data.
The best classification accuracy is 76%, 87% and
79% for comparisons within the same year and
74% for comparisons across years. It is important
to observe that when inputs are compared with-
out any regard to the year, the classifier perfor-
mance is worse than when both inputs in the pair
are taken from the same evaluation year, present-
ing additional evidence of the cross-year variation
discussed in Section 5. A possible explanation
is that system improvements in later years might
cause better scores to be obtained on inputs which
were difficult previously.

9 Conclusions

We presented a study of predicting expected sum-
marization performance on a given input. We
demonstrated that prediction of summarization
system performance can be done with high ac-
curacy. Normalization and use of representative
examples of difficult and easy inputs both prove
beneficial for the task. We also find that per-
formance predictions for single-document sum-
marization can be done more accurately than for
multi-document summarization. The best classi-
fier for single-document classification are SVMs,
and the best for multi-document—logistic regres-
sion and SVM. We also record good prediction
performance on pairwise comparisons which can
prove useful in a variety of situations.
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Abstract

We introduce a word segmentation ap-
proach to languages where word bound-
aries are not orthographically marked,
with application to Phrase-Based Statis-
tical Machine Translation (PB-SMT). In-
stead of using manually segmentedmono-
lingual domain-specific corpora to train
segmenters, we make use of bilingual cor-
pora and statistical word alignment tech-
niques. First of all, our approach is
adapted for the specific translation task at
hand by taking the corresponding source
(target) language into account. Secondly,
this approach does not rely on manu-
ally segmented training data so that it
can be automatically adapted for differ-
ent domains. We evaluate the perfor-
mance of our segmentation approach on
PB-SMT tasks from two domains and
demonstrate that our approach scores con-
sistently among the best results across dif-
ferent data conditions.

1 Introduction

State-of-the-art Statistical Machine Translation
(SMT) requires a certain amount of bilingual cor-
pora as training data in order to achieve compet-
itive results. The only assumption of most cur-
rent statistical models (Brown et al., 1993; Vogel
et al., 1996; Deng and Byrne, 2005) is that the
aligned sentences in such corpora should be seg-
mented into sequences of tokens that are meant to
be words. Therefore, for languages where word
boundaries are not orthographically marked, tools
which segment a sentence into words are required.
However, this segmentation is normally performed
as a preprocessing step using various word seg-
menters. Moreover, most of these segmenters are
usually trained on a manually segmented domain-

specific corpus, which is not adapted for the spe-
cific translation task at hand given that the manual
segmentation is performed in amonolingual con-
text. Consequently, such segmenters cannot pro-
duce consistently good results when used across
different domains.

A substantial amount of research has been car-
ried out to address the problems of word segmen-
tation. However, most research focuses on com-
bining various segmenters either in SMT training
or decoding (Dyer et al., 2008; Zhang et al., 2008).
One important yet often neglected fact is that the
optimal segmentation of the source (target) lan-
guage is dependent on the target (source) language
itself, its domain and its genre. Segmentation con-
sidered to be “good” from amonolingual point
of view may be unadapted for training alignment
models or PB-SMT decoding (Ma et al., 2007).
The resulting segmentation will consequently in-
fluence the performance of an SMT system.

In this paper, we propose a bilingually moti-
vated automatically domain-adapted approach for
SMT. We utilise a small bilingual corpus with
the relevant language segmented into basic writ-
ing units (e.g. characters for Chinese or kana for
Japanese). Our approach consists of using the
output from an existing statistical word aligner
to obtain a set of candidate “words”. We evalu-
ate the reliability of these candidates using sim-
ple metrics based on co-occurrence frequencies,
similar to those used in associative approaches to
word alignment (Melamed, 2000). We then mod-
ify the segmentation of the respective sentences
in the parallel corpus according to these candi-
date words; these modified sentences are then
given back to the word aligner, which produces
new alignments. We evaluate the validity of our
approach by measuring the influence of the seg-
mentation process on Chinese-to-English Machine
Translation (MT) tasks in two different domains.

The remainder of this paper is organised as fol-
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lows. In section 2, we study the influence of
word segmentation on PB-SMT across different
domains. Section 3 describes the working mecha-
nism of our bilingually motivated word segmenta-
tion approach. In section 4, we illustrate the adap-
tation of our decoder to this segmentation scheme.
The experiments conducted in two different do-
mains are reported in Section 5 and 6. We discuss
related work in section 7. Section 8 concludes and
gives avenues for future work.

2 The Influence of Word Segmentation
on SMT: A Pilot Investigation

The monolingual word segmentation step in tra-
ditional SMT systems has a substantial impact on
the performance of such systems. A considerable
amount of recent research has focused on the in-
fluence of word segmentation on SMT (Ma et al.,
2007; Chang et al., 2008; Zhang et al., 2008);
however, most explorations focused on the impact
of various segmentation guidelines and the mech-
anisms of the segmenters themselves. A current
research interest concerns consistency of perfor-
mance across different domains. From our ex-
periments, we show that monolingual segmenters
cannot produce consistently good results when ap-
plied to a new domain.

Our pilot investigation into the influence of
word segmentation on SMT involves three off-
the-shelf Chinese word segmenters including
ICTCLAS (ICT) Olympic version1, LDC seg-
menter2 and Stanford segmenter version 2006-05-
113. Both ICTCLAS and Stanford segmenters
utilise machine learning techniques, with Hidden
Markov Models for ICT (Zhang et al., 2003) and
conditional random fields for the Stanford seg-
menter (Tseng et al., 2005). Both segmenta-
tion models were trained on news domain data
with named entity recognition functionality. The
LDC segmenter is dictionary-based with word fre-
quency information to help disambiguation, both
of which are collected from data in the news do-
main. We used Chinese character-based and man-
ual segmentations as contrastive segmentations.
The experiments were carried out on a range of
data sizes from news and dialogue domains using
a state-of-the-art Phrase-Based SMT (PB-SMT)

1http://ictclas.org/index.html
2http://www.ldc.upenn.edu/Projects/

Chinese
3http://nlp.stanford.edu/software/

segmenter.shtml

system—Moses (Koehn et al., 2007). The perfor-
mance of PB-SMT system is measured with BLEU

score (Papineni et al., 2002).
We firstly measure the influence of word seg-

mentation on in-domain data with respect to the
three above mentioned segmenters, namely UN
data from the NIST 2006 evaluation campaign. As
can be seen from Table 1, using monolingual seg-
menters achieves consistently better SMT perfor-
mance than character-based segmentation (CS) on
different data sizes, which means character-based
segmentation is not good enough for this domain
where the vocabulary tends to be large. We can
also observe that the ICT and Stanford segmenter
consistently outperform the LDC segmenter. Even
using 3M sentence pairs for training, the differ-
ences between them are still statistically signifi-
cant (p < 0.05) using approximate randomisation
(Noreen, 1989) for significance testing.

40K 160K 640K 3M
CS 8.33 12.47 14.40 17.80
ICT 10.17 14.85 17.20 20.50
LDC 9.37 13.88 15.86 19.59
Stanford 10.45 15.26 16.94 20.64

Table 1: Word segmentation on NIST data sets

However, when tested on out-of-domain data,
i.e. IWSLT data in the dialogue domain, the re-
sults seem to be more difficult to predict. We
trained the system on different sizes of data and
evaluated the system on two test sets: IWSLT
2006 and 2007. From Table 2, we can see that on
the IWSLT 2006 test sets, LDC achieves consis-
tently good results and the Stanford segmenter is
the worst.4 Furthermore, the character-based seg-
mentation also achieves competitive results. On
IWSLT 2007, all monolingual segmenters outper-
form character-based segmentation and the LDC
segmenter is only slightly better than the other seg-
menters.

From the experiments reported above, we
can reach the following conclusions. First of
all, character-based segmentation cannot achieve
state-of-the-art results in most experimental SMT
settings. This also motivates the necessity to
work on better segmentation strategies. Second,
monolingual segmenters cannot achieve consis-

4Interestingly, the developers themselves also note the
sensitivity of the Stanford segmenter and incorporate exter-
nal lexical information to address such problems (Chang et
al., 2008).
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40K 160K
IWSLT06 CS 19.31 23.06

Manual 19.94 -
ICT 20.34 23.36
LDC 20.37 24.34
Stanford 18.25 21.40

IWSLT07 CS 29.59 30.25
Manual 33.85 -
ICT 31.18 33.38
LDC 31.74 33.44
Stanford 30.97 33.41

Table 2: Word segmentation on IWSLT data sets

tently good results when used in another domain.
In the following sections, we propose a bilingually
motivated segmentation approach which can be
automatically derived from a small representative
data set and the experiments show that we can con-
sistently obtain state-of-the-art results in different
domains.

3 Bilingually Motivated Word
Segmentation

3.1 Notation

While in this paper, we focus on Chinese–English,
the method proposed is applicable to other lan-
guage pairs. The notation, however, assumes
Chinese–English MT. Given a Chinese sentence
cJ
1 consisting ofJ characters{c1, . . . , cJ} and

an English sentenceeI
1 consisting of I words

{e1, . . . , eI}, AC→E will denote a Chinese-to-
English word alignment betweencJ

1 andeI
1. Since

we are primarily interested in1-to-n alignments,
AC→E can be represented as a set of pairsai =
〈Ci, ei〉 denoting a link between one single En-
glish wordei and a few Chinese charactersCi.The
setCi is empty if the wordei is not aligned to any
character incJ

1 .

3.2 Candidate Extraction

In the following, we assume the availability of an
automatic word aligner that can output alignments
AC→E for any sentence pair(cJ

1 , eI
1) in a paral-

lel corpus. We also assume thatAC→E contain
1-to-n alignments. Our method for Chinese word
segmentation is as follows: whenever a single En-
glish word is aligned with several consecutive Chi-
nese characters, they are considered candidates for
grouping. Formally, given an alignmentAC→E

betweencJ
1 and eI

1, if ai = 〈Ci, ei〉 ∈ AC→E,

with Ci = {ci1 , . . . , cim} and∀k ∈ J1,m − 1K,
ik+1 − ik = 1, then the alignmentai betweenei

and the sequence of wordsCi is considered a can-
didate word. Some examples of such1-to-n align-
ments between Chinese and English we can derive
automatically are displayed in Figure 1.5

Figure 1: Example of1-to-n word alignments be-
tween English words and Chinese characters

3.3 Candidate Reliability Estimation

Of course, the process described above is error-
prone, especially on a small amount of training
data. If we want to change the input segmentation
to give to the word aligner, we need to make sure
that we are not making harmful modifications. We
thus additionally evaluate the reliability of the can-
didates we extract and filter them before inclusion
in our bilingual dictionary. To perform this filter-
ing, we use two simple statistical measures. In the
following, ai = 〈Ci, ei〉 denotes a candidate.

The first measure we consider is co-occurrence
frequency (COOC(Ci, ei)), i.e. the number of
timesCi andei co-occur in the bilingual corpus.
This very simple measure is frequently used in as-
sociative approaches (Melamed, 2000). The sec-
ond measure is the alignment confidence (Ma et
al., 2007), defined as

AC(ai) =
C(ai)

COOC(Ci, ei)
,

where C(ai) denotes the number of alignments
proposed by the word aligner that are identical to
ai. In other words,AC(ai) measures how often
the aligner alignsCi andei when they co-occur.
We also impose that|Ci | ≤ k, wherek is a fixed
integer that may depend on the language pair (be-
tween 3 and 5 in practice). The rationale behind
this is that it is very rare to get reliable alignments
between one word andk consecutive words when
k is high.

5While in this paper we are primarily concerned with lan-
guages where the word boundaries are not orthographically
marked, this approach, however, can also be applied to lan-
guages marked with word boundaries to constructbilingually
motivated “words”.
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The candidates are included in our bilingual dic-
tionary if and only if their measures are above
some fixed thresholdstCOOC andtAC , which al-
low for the control of the size of the dictionary and
the quality of its contents. Some other measures
(including the Dice coefficient) could be consid-
ered; however, it has to be noted that we are more
interested here in the filtering than in the discov-
ery of alignmentsper se, since our method builds
upon an existing aligner. Moreover, we will see
that even these simple measures can lead to an im-
provement in the alignment process in an MT con-
text.

3.4 Bootstrapped word segmentation

Once the candidates are extracted, we perform
word segmentation using the bilingual dictionar-
ies constructed using the method described above;
this provides us with an updated training corpus,
in which some character sequences have been re-
placed by a single token. This update is totally
naive: if an entryai = 〈Ci, ei〉 is present in the
dictionary and matches one sentence pair(cJ

1 , eI
1)

(i.e.Ci andei are respectively contained incJ
1 and

eI
1), then we replace the sequence of charactersCi

with a single token which becomes a new lexical
unit.6 Note that this replacement occurs even if
no alignment was found betweenCi andei for the
pair (cJ

1 , eI
1). This is motivated by the fact that the

filtering described above is quite conservative; we
trust the entryai to be correct.

This process can be applied several times: once
we have grouped some characters together, they
become the new basic unit to consider, and we can
re-run the same method to get additional group-
ings. However, we have not seen in practice much
benefit from running it more than twice (few new
candidates are extracted after two iterations).

4 Word Lattice Decoding

4.1 Word Lattices

In the decoding stage, the various segmentation
alternatives can be encoded into a compact rep-
resentation of word lattices. A word latticeG =
〈V,E〉 is a directed acyclic graph that formally is
a weighted finite state automaton. In the case of
word segmentation, each edge is a candidate word
associated with its weights. A straightforward es-

6In case of overlap between several groups of words to
replace, we select the one with the highest confidence (ac-
cording totAC).

timation of the weights is to distribute the proba-
bility mass for each node uniformly to each out-
going edge. The single node having no outgoing
edges is designated the “end node”. An example
of word lattices for a Chinese sentence is shown in
Figure 2.

4.2 Word Lattice Generation

Previous research on generating word lattices re-
lies on multiplemonolingual segmenters (Xu et
al., 2005; Dyer et al., 2008). One advantage of
our approach is that the bilingually motivated seg-
mentation process facilitates word lattice genera-
tion without relying on other segmenters. As de-
scribed in section 3.4, the update of the training
corpus based on the constructedbilingual dictio-
nary requires that the sentence pair meets the bilin-
gual constraints. Such a segmentation process in
the training stage facilitates the utilisation of word
lattice decoding.

4.3 Phrase-Based Word Lattice Decoding

Given a Chinese input sentencecJ
1 consisting ofJ

characters, the traditional approach is to determine
the best word segmentation and perform decoding
afterwards. In such a case, we first seek a single
best segmentation:

f̂K
1 = arg max

fK
1

,K

{Pr(fK
1 |cJ

1 )}

Then in the decoding stage, we seek:

êI
1 = arg max

eI
1
,I

{Pr(eI
1|f̂

K
1 )}

In such a scenario, some segmentations which are
potentially optimal for the translation may be lost.
This motivates the need for word lattice decoding.
The search process can be rewritten as:

êI
1 = arg max

eI
1
,I

{max
fK
1

,K
Pr(eI

1, f
K
1 |cJ

1 )}

= arg max
eI
1
,I

{max
fK
1

,K
Pr(eI

1)Pr(fK
1 |eI

1, c
J
1 )}

= arg max
eI
1
,I

{max
fK
1

,K
Pr(eI

1)Pr(fK
1 |eI

1)Pr(fK
1 |cJ

1 )}

Given the fact that the number of segmentations
fK
1 grows exponentially with respect to the num-

ber of charactersK, it is impractical to firstly enu-
merate all possiblefK

1 and then to decode. How-
ever, it is possible to enumerate all the alternative
segmentations for a substring ofcJ

1 , making the
utilisation of word lattices tractable in PB-SMT.

552



Figure 2: Example of a word lattice

5 Experimental Setting

5.1 Evaluation

The intrinsic quality of word segmentation is nor-
mally evaluated against a manually segmented
gold-standard corpus using F-score. While this
approach can give a direct evaluation of the qual-
ity of the word segmentation, it is faced with sev-
eral limitations. First of all, it is really difficult to
build a reliable and objective gold-standard given
the fact that there is only 70% agreement between
native speakers on this task (Sproat et al., 1996).
Second, an increase in F-score does not necessar-
ily imply an improvement in translation quality. It
has been shown that F-score has a very weak cor-
relation with SMT translation quality in terms of
BLEU score (Zhang et al., 2008). Consequently,
we chose to extrinsically evaluate the performance
of our approach via the Chinese–English transla-
tion task, i.e. we measure the influence of the
segmentation process on the final translation out-
put. The quality of the translation output is mainly
evaluated using BLEU, with NIST (Doddington,
2002) and METEOR (Banerjee and Lavie, 2005)
as complementary metrics.

5.2 Data

The data we used in our experiments are from
two different domains, namely news and travel di-
alogues. For the news domain, we trained our
system using a portion of UN data for NIST
2006 evaluation campaign. The system was de-
veloped on LDC Multiple-Translation Chinese
(MTC) Corpus and tested on MTC part 2, which
was also used as a test set for NIST 2002 evalua-
tion campaign.

For the dialogue data, we used the Chinese–
English datasets provided within the IWSLT 2007
evaluation campaign. Specifically, we used the
standard training data, to which we added devset1
and devset2. Devset4 was used to tune the param-
eters and the performance of the system was tested

on both IWSLT 2006 and 2007 test sets. We used
both test sets because they are quite different in
terms of sentence length and vocabulary size. To
test the scalability of our approach, we used HIT
corpus provided within IWSLT 2008 evaluation
campaign. The various statistics for the corpora
are shown in Table 3.

5.3 Baseline System

We conducted experiments using different seg-
menters with a standard log-linear PB-SMT
model: GIZA ++ implementation of IBM word
alignment model 4 (Och and Ney, 2003), the
refinement and phrase-extraction heuristics de-
scribed in (Koehn et al., 2003), minimum-error-
rate training (Och, 2003), a 5-gram language
model with Kneser-Ney smoothing trained with
SRILM (Stolcke, 2002) on the English side of the
training data, and Moses (Koehn et al., 2007; Dyer
et al., 2008) to translate both single best segmen-
tation and word lattices.

6 Experiments

6.1 Results

The initial word alignments are obtained using
the baseline configuration described above by seg-
menting the Chinese sentences into characters.
From these we build a bilingual1-to-n dictionary,
and the training corpus is updated by grouping the
characters in the dictionaries into a single word,
using the method presented in section 3.4. As pre-
viously mentioned, this process can be repeated
several times. We then extract aligned phrases us-
ing the same procedure as for the baseline sys-
tem; the only difference is the basic unit we are
considering. Once the phrases are extracted, we
perform the estimation of weights for the fea-
tures of the log-linear model. We then use a
simple dictionary-based maximum matching algo-
rithm to obtain a single-best segmentation for the
Chinese sentences in the development set so that
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Train Dev. Eval.
Zh En Zh En Zh En

Dialogue Sentences 40,958 489 (7 ref.) 489 (6 ref.)/489 (7 ref.)
Running words 488,303 385,065 8,141 46,904 8,793/4,377 51,500/23,181
Vocabulary size 2,742 9,718 835 1,786 936/772 2,016/1,339

News Sentences 40,000 993 (9 ref.) 878 (4 ref.)
Running words 1,412,395 956,023 41,466 267,222 38,700 105,530
Vocabulary size 6057 20,068 1,983 10,665 1,907 7,388

Table 3: Corpus statistics for Chinese (Zh) character segmentation and English (En)

minimum-error-rate training can be performed.7

Finally, in the decoding stage, we use the same
segmentation algorithm to obtain the single-best
segmentation on the test set, and word lattices can
also be generated using the bilingual dictionary.
The various parameters of the method (k, tCOOC ,
tAC , cf. section 3) were optimised on the develop-
ment set. One iteration of character grouping on
the NIST task was found to be enough; the optimal
set of values was found to bek = 3, tAC = 0.0
andtCOOC = 0, meaning that all the entries in the
bilingually dictionary are kept. On IWSLT data,
we found that two iterations of character grouping
were needed: the optimal set of values was found
to bek = 3, tAC = 0.3, tCOOC = 8 for the first
iteration, andtAC = 0.2, tCOOC = 15 for the
second.

As can be seen from Table 4, our bilingually
motivated segmenter (BS) achieved statistically
significantly better results than character-based
segmentation when enhanced with word lattice de-
coding.8 Compared to the best in-domain seg-
menter, namely the Stanford segmenter on this
particular task, our approach is inferior accord-
ing to BLEU and NIST. We firstly attribute this
to the small amount of training data, from which
a high quality bilingual dictionary cannot be ob-
tained due to data sparseness problems. We also
attribute this to the vast amount of named entity
terms in the test sets, which is extremely difficult
for our approach.9 We expect to see better re-
sults when a larger amount of data is used and the
segmenter is enhanced with a named entity recog-
niser. On IWSLT data (cf. Tables 5 and 6), our

7In order to save computational time, we used the same
set of parameters obtained above to decode both the single-
best segmentation and the word lattice.

8Note the BLEU scores are particularly low due to the
number of references used (4 references), in addition to the
small amount of training data available.

9As we previously point out, both ICT and Stanford seg-
menters are equipped with named entity recognition func-
tionality. This may risk causing data sparseness problems on
small training data. However, this is beneficial in the transla-
tion process compared to character-based segmentation.

approach yielded a consistently good performance
on both translation tasks compared to the best in-
domain segmenter—the LDC segmenter. More-
over, the good performance is confirmed by all
three evaluation measures.

BLEU NIST M ETEOR

CS 8.43 4.6272 0.3778
Stanford 10.45 5.0675 0.3699
BS-SingleBest 7.98 4.4374 0.3510
BS-WordLattice 9.04 4.6667 0.3834

Table 4: BS on NIST task

BLEU NIST M ETEOR

CS 0.1931 6.1816 0.4998
LDC 0.2037 6.2089 0.4984
BS-SingleBest 0.1865 5.7816 0.4602
BS-WordLattice 0.2041 6.2874 0.5124

Table 5: BS on IWSLT 2006 task

BLEU NIST M ETEOR

CS 0.2959 6.1216 0.5216
LDC 0.3174 6.2464 0.5403
BS-SingleBest 0.3023 6.0476 0.5125
BS-WordLattice 0.3171 6.3518 0.5603

Table 6: BS on IWSLT 2007 task

6.2 Parameter Search Graph

The reliability estimation process is computation-
ally intensive. However, this can be easily paral-
lelised. From our experiments, we observed that
the translation results are very sensitive to the pa-
rameters and this search process is essential to
achieve good results. Figure 3 is the search graph
on the IWSLT data set in the first iteration step.
From this graph, we can see that filtering of the
bilingual dictionary is essential in order to achieve
better performance.
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Figure 3: The search graph on development set of
IWSLT task

6.3 Vocabulary Size

Our bilingually motivated segmentation approach
has to overcome another challenge in order to
produce competitive results, i.e. data sparseness.
Given that our segmentation is based on bilingual
dictionaries, the segmentation process can signif-
icantly increase the size of the vocabulary, which
could potentially lead to a data sparseness prob-
lem when the size of the training data is small. Ta-
bles 7 and 8 list the statistics of the Chinese side
of the training data, including the total vocabulary
(Voc), number of character vocabulary (Char.voc)
in Voc, and the running words (Run.words) when
different word segmentations were used. From Ta-
ble 7, we can see that our approach suffered from
data sparseness on the NIST task, i.e. a large
vocabulary was generated, of which a consider-
able amount of characters still remain as separate
words. On the IWSLT task, since the dictionary
generation process is more conservative, we main-
tained a reasonable vocabulary size, which con-
tributed to the final good performance.

Voc. Char.voc Run. Words
CS 6,057 6,057 1,412,395
ICT 16,775 1,703 870,181
LDC 16,100 2,106 881,861
Stanford 22,433 1,701 880,301
BS 18,111 2,803 927,182

Table 7: Vocabulary size of NIST task (40K)

6.4 Scalability

The experimental results reported above are based
on a small training corpus containing roughly
40,000 sentence pairs. We are particularly inter-
ested in the performance of our segmentation ap-

Voc. Char.voc Run. Words
CS 2,742 2,742 488,303
ICT 11,441 1,629 358,504
LDC 9,293 1,963 364,253
Stanford 18,676 981 348,251
BS 3,828 2,740 402,845

Table 8: Vocabulary size of IWSLT task (40K)

proach when it is scaled up to larger amounts of
data. Given that the optimisation of the bilingual
dictionary is computationally intensive, it is im-
practical to directly extract candidate words and
estimate their reliability. As an alternative, we can
use the obtained bilingual dictionary optimised on
the small corpus to perform segmentation on the
larger corpus. We expect competitive results when
the small corpus is a representative sample of the
larger corpus and large enough to produce reliable
bilingual dictionaries without suffering severely
from data sparseness.

As we can see from Table 9, our segmenta-
tion approach achieved consistent results on both
IWSLT 2006 and 2007 test sets. On the NIST task
(cf. Table 10), our approach outperforms the basic
character-based segmentation; however, it is still
inferior compared to the other in-domain mono-
lingual segmenters due to the low quality of the
bilingual dictionary induced (cf. section 6.1).

IWSLT06 IWSLT07
CS 23.06 30.25
ICT 23.36 33.38
LDC 24.34 33.44
Stanford 21.40 33.41
BS-SingleBest 22.45 30.76
BS-WordLattice 24.18 32.99

Table 9: Scale-up to 160K on IWSLT data sets

160K 640K
CS 12.47 14.40
ICT 14.85 17.20
LDC 13.88 15.86
Stanford 15.26 16.94
BS-SingleBest 12.58 14.11
BS-WordLattice 13.74 15.33

Table 10: Scalability of BS on NIST task
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6.5 Using different word aligners

The above experiments rely on GIZA ++ to per-
form word alignment. We next show that our ap-
proach is not dependent on the word aligner given
that we have a conservative reliability estimation
procedure. Table 11 shows the results obtained on
the IWSLT data set using the MTTK alignment
tool (Deng and Byrne, 2005; Deng and Byrne,
2006).

IWSLT06 IWSLT07
CS 21.04 31.41
ICT 20.48 31.11
LDC 20.79 30.51
Stanford 17.84 29.35
BS-SingleBest 19.22 29.75
BS-WordLattice 21.76 31.75

Table 11: BS on IWSLT data sets using MTTK

7 Related Work

(Xu et al., 2004) were the first to question the use
of word segmentation in SMT and showed that the
segmentation proposed by word alignments can be
used in SMT to achieve competitive results com-
pared to using monolingual segmenters. Our ap-
proach differs from theirs in two aspects. Firstly,
(Xu et al., 2004) use word aligners to reconstruct
a (monolingual) Chinese dictionary and reuse this
dictionary to segment Chinese sentences as other
monolingual segmenters. Our approach features
the use of a bilingual dictionary and conducts a
different segmentation. In addition, we add a pro-
cess which optimises the bilingual dictionary ac-
cording to translation quality. (Ma et al., 2007)
proposed an approach to improve word alignment
by optimising the segmentation of both source and
target languages. However, the reported experi-
ments still rely on some monolingual segmenters
and the issue of scalability is not addressed. Our
research focuses on avoiding the use of monolin-
gual segmenters in order to improve the robustness
of segmenters across different domains.

(Xu et al., 2005) were the first to propose the
use of word lattice decoding in PB-SMT, in order
to address the problems of segmentation. (Dyer
et al., 2008) extended this approach to hierarchi-
cal SMT systems and other language pairs. How-
ever, both of these methods require some mono-
lingual segmentation in order to generate word lat-
tices. Our approach facilitates word lattice gener-

ation given that our segmentation is driven by the
bilingual dictionary.

8 Conclusions and Future Work

In this paper, we introduced a bilingually moti-
vated word segmentation approach for SMT. The
assumption behind this motivation is that the lan-
guage to be segmented can be tokenised into ba-
sic writing units. Firstly, we extract1-to-n word
alignments using statistical word aligners to con-
struct a bilingual dictionary in which each entry
indicates a correspondence between one English
word andn Chinese characters. This dictionary is
then filtered using a few simple association mea-
sures and the final bilingual dictionary is deployed
for word segmentation. To overcome the segmen-
tation problem in the decoding stage, we deployed
word lattice decoding.

We evaluated our approach on translation tasks
from two different domains and demonstrate that
our approach is (i) not as sensitive as monolingual
segmenters, and (ii) that the SMT system using
our word segmentation can achieve state-of-the-art
performance. Moreover, our approach can easily
be scaled up to larger data sets and achieves com-
petitive results if the small data used is a represen-
tative sample.

As for future work, firstly we plan to integrate
some named entity recognisers into our approach.
We also plan to try our approach in more do-
mains and on other language pairs (e.g. Japanese–
English). Finally, we intend to explore the corre-
lation between vocabulary size and the amount of
training data needed in order to achieve good re-
sults using our approach.
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Abstract

Lexical-semantic resources are used ex-
tensively for applied semantic inference,
yet a clear quantitative picture of their
current utility and limitations is largely
missing. We propose system- and
application-independent evaluation and
analysis methodologies for resources’ per-
formance, and systematically apply them
to seven prominent resources. Our find-
ings identify the currently limited recall of
available resources, and indicate the po-
tential to improve performance by exam-
ining non-standard relation types and by
distilling the output of distributional meth-
ods. Further, our results stress the need
to include auxiliary information regarding
the lexical and logical contexts in which
a lexical inference is valid, as well as its
prior validity likelihood.

1 Introduction

Lexical information plays a major role in seman-
tic inference, as the meaning of one term is of-
ten inferred form another. Lexical-semantic re-
sources, which provide the needed knowledge for
lexical inference, are commonly utilized by ap-
plied inference systems (Giampiccolo et al., 2007)
and applications such as Information Retrieval and
Question Answering (Shah and Croft, 2004; Pasca
and Harabagiu, 2001). Beyond WordNet (Fell-
baum, 1998), a wide range of resources has been
developed and utilized, including extensions to
WordNet (Moldovan and Rus, 2001; Snow et al.,
2006) and resources based on automatic distri-
butional similarity methods (Lin, 1998; Pantel
and Lin, 2002). Recently, Wikipedia is emerg-
ing as a source for extracting semantic relation-
ships (Suchanek et al., 2007; Kazama and Tori-
sawa, 2007).

As of today, only a partial comparative picture
is available regarding the actual utility and limi-
tations of available resources for lexical-semantic
inference. Works that do provide quantitative
information regarding resources utility have fo-
cused on few particular resources (Kouylekov and
Magnini, 2006; Roth and Sammons, 2007) and
evaluated their impact on a specific system. Most
often, works which utilized lexical resources do
not provide information about their isolated con-
tribution; rather, they only report overall per-
formance for systems in which lexical resources
serve as components.

Our paper provides a step towards clarify-
ing this picture. We propose a system- and
application-independent evaluation methodology
that isolates resources’ performance, and sys-
tematically apply it to seven prominent lexical-
semantic resources. The evaluation and analysis
methodology is specified within the Textual En-
tailment framework, which has become popular in
recent years for modeling practical semantic infer-
ence in a generic manner (Dagan and Glickman,
2004). To that end, we assume certain definitions
that extend the textual entailment paradigm to the
lexical level.

The findings of our work provide useful insights
and suggested directions for two research com-
munities: developers of applied inference systems
and researchers addressing lexical acquisition and
resource construction. Beyond the quantitative
mapping of resources’ performance, our analysis
points at issues concerning their effective utiliza-
tion and major characteristics. Even more impor-
tantly, the results highlight current gaps in exist-
ing resources and point at directions towards fill-
ing them. We show that the coverage of most
resources is quite limited, where a substantial
part of recall is attributable to semantic relations
that are typically not available to inference sys-
tems. Notably, distributional acquisition methods
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are shown to provide many useful relationships
which are missing from other resources, but these
are embedded amongst many irrelevant ones. Ad-
ditionally, the results highlight the need to rep-
resent and inference over various aspects of con-
textual information, which affect the applicability
of lexical inferences. We suggest that these gaps
should be addressed by future research.

2 Sub-sentential Textual Entailment

Textual entailment captures the relation between a
text t and a textual statement (termed hypothesis)
h, such that a person reading t would infer that h
is most likely correct (Dagan et al., 2005).

The entailment relation has been defined insofar
in terms of truth values, assuming that h is a com-
plete sentence (proposition). However, there are
major aspects of inference that apply to the sub-
sentential level. First, in certain applications, the
target hypotheses are often sub-sentential. For ex-
ample, search queries in IR, which play the hy-
pothesis role from an entailment perspective, typ-
ically consist of a single term, like drug legaliza-
tion. Such sub-sentential hypotheses are not re-
garded naturally in terms of truth values and there-
fore do not fit well within the scope of the textual
entailment definition. Second, many entailment
models apply a compositional process, through
which they try to infer each sub-part of the hy-
pothesis from some parts of the text (Giampiccolo
et al., 2007).

Although inferences over sub-sentential ele-
ments are being applied in practice, so far there
are no standard definitions for entailment at sub-
sentential levels. To that end, and as a prerequisite
of our evaluation methodology and our analysis,
we first establish two relevant definitions for sub-
sentential entailment relations: (a) entailment of a
sub-sentential hypothesis by a text, and (b) entail-
ment of one lexical element by another.

2.1 Entailment of Sub-sentential Hypotheses

We first seek a definition that would capture the
entailment relationship between a text and a sub-
sentential hypothesis. A similar goal was ad-
dressed in (Glickman et al., 2006), who defined
the notion of lexical reference to model the fact
that in order to entail a hypothesis, the text has
to entail each non-compositional lexical element
within it. We suggest that a slight adaptation of
their definition is suitable to capture the notion of

entailment for any sub-sentential hypotheses, in-
cluding compositional ones:

Definition 1 A sub-sentential hypothesis h is en-
tailed by a text t if there is an explicit or implied
reference in t to a possible meaning of h.

For example, the sentence “crude steel output
is likely to fall in 2000” entails the sub-sentential
hypotheses production, steel production and steel
output decrease.

Glickman et al., achieving good inter-annotator
agreement, empirically found that almost all non-
compositional terms in an entailed sentential hy-
pothesis are indeed referenced in the entailing text.
This finding suggests that the above definition is
consistent with the original definition of textual
entailment for sentential hypotheses and can thus
model compositional entailment inferences.

We use this definition in our annotation method-
ology described in Section 3.

2.2 Entailment between Lexical Elements
In the majority of cases, the reference to an
“atomic” (non-compositional) lexical element e in
h stems from a particular lexical element e′ in t,
as in the example above where the word output
implies the meaning of production.

To identify this relationship, an entailment sys-
tem needs a knowledge resource that would spec-
ify that the meaning of e′ implies the meaning of
e, at least in some contexts. We thus suggest the
following definition to capture this relationship be-
tween e′ and e:

Definition 2 A lexical element e’ entails another
lexical element e, denoted e’⇒e, if there exist
some natural (non-anecdotal) texts containing e’
which entail e, such that the reference to the mean-
ing of e can be implied solely from the meaning of
e’ in the text.

(Entailment of e by a text follows Definition 1).
We refer to this relation in this paper as lexical

entailment1, and call e’ ⇒ e a lexical entailment
rule. e′ is referred to as the rule’s left hand side
(LHS) and e as its right hand side (RHS).

Currently there are no knowledge resources de-
signed specifically for lexical entailment model-
ing. Hence, the types of relationships they cap-
ture do not fully coincide with entailment infer-
ence needs. Thus, the definition suggests a spec-
ification for the rules that should be provided by

1Section 6 discusses other definitions of lexical entailment
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a lexical entailment resource, following an oper-
ative rationale: a rule e’ ⇒ e should be included
in an entailment knowledge resource if it would be
needed, as part of a compositional process, to infer
the meaning of e from some natural texts. Based
on this definition, we perform an analysis of the re-
lationships included in lexical-semantic resources,
as described in Section 5.

A rule need not apply in all contexts, as long
as it is appropriate for some texts. Two contex-
tual aspects affect rule applicability. First is the
“lexical context” specifying the meanings of the
text’s words. A rules is applicable in a certain con-
text only when the intended sense of its LHS term
matches the sense of that term in the text. For ex-
ample, the application of the rule lay⇒ produce is
valid only in contexts where the producer is poul-
try and the products are eggs. This is a well known
issue observed, for instance, by Voorhees (1994).

A second contextual factor requiring validation
is the “logical context”. The logical context de-
termines the monotonicity of the LHS and is in-
duced by logical operators such as negation and
(explicit or implicit) quantifiers. For example, the
rule mammal ⇒ whale may not be valid in most
cases, but is applicable in universally quantified
texts like “mammals are warm-blooded”. This is-
sue has been rarely addressed in applied inference
systems (de Marneffe et al., 2006). The above
mentioned rules both comply with Definition 2
and should therefore be included in a lexical en-
tailment resource.

3 Evaluating Entailment Resources

Our evaluation goal is to assess the utility of
lexical-semantic resources as sources for entail-
ment rules. An inference system applies a rule by
inferring the rule’s RHS from texts that match its
LHS. Thus, the utility of a resource depends on the
performance of its rule applications rather than on
the proportion of correct rules it contains. A rule,
whether correct or incorrect, has insignificant ef-
fect on the resource’s utility if it rarely matches
texts in real application settings. Additionally,
correct rules might produce incorrect applications
when applied in inappropriate contexts. There-
fore, we use an instance-based evaluation method-
ology, which simulates rule applications by col-
lecting texts that contain rules’ LHS and manually
assessing the correctness of their applications.

Systems typically handle lexical context either

implicitly or explicitly. Implicit context valida-
tion occurs when the different terms of a compos-
ite hypothesis disambiguate each other. For exam-
ple, the rule waterside ⇒ bank is unlikely to be
applied when trying to infer the hypothesis bank
loans, since texts that match waterside are unlikely
to contain also the meaning of loan. Explicit meth-
ods, such as word-sense disambiguation or sense
matching, validate each rule application according
to the broader context in the text. Few systems
also address logical context validation by handling
quantifiers and negation. As we aim for a system-
independent comparison of resources, and explicit
approaches are not standardized yet within infer-
ence systems, our evaluation uses only implicit
context validation.

3.1 Evaluation Methodology

Figure 1: Evaluation methodology flow chart

The input for our evaluation methodology is a
lexical-semantic resource R, which contains lex-
ical entailment rules. We evaluate R’s utility by
testing how useful it is for inferring a sample of
test hypotheses H from a corpus. Each hypothesis
in H contains more than one lexical element in or-
der to provide implicit context validation for rule
applications, e.g. h: water pollution.

We next describe the steps of our evaluation
methodology, as illustrated in Figure 1. We refer
to the examples in the figure when needed:

1) Fetch rules: For each h ∈ H and each
lexical element e ∈ h (e.g. water), we fetch all
rules e’ ⇒ e in R that might be applied to entail e
(e.g. lake ⇒ water).

2) Generate intermediate hypotheses h’:
For each rule r: e’⇒ e, we generate an intermedi-
ate hypothesis h′ by replacing e in h with e′ (e.g.

560



h′
1: lake pollution). From a text t entailing h′, h

can be further entailed by the single application of
r. We thus simulate the process by which an en-
tailment system would infer h from t using r.

3) Retrieve matching texts: For each h′ we
retrieve from a corpus all texts that contain the
lemmatized words of h′ (not necessarily as a sin-
gle phrase). These texts may entail h′. We dis-
card texts that also match h since entailing h from
them might not require the application of any rule
from the evaluated resource. In our example, the
retrieved texts contain lake and pollution but do
not contain water.

4) Annotation: A sample of the retrieved texts
is presented to human annotators. The annotators
are asked to answer the following two questions
for each text, simulating the typical inference pro-
cess of an entailment system:

a) Does t entail h’? If t does not entail h′

then the text would not provide a useful example
for the application of r. For instance, t1 (in Fig-
ure 1) does not entail h′

1 and thus we cannot de-
duce h from it by applying the rule r. Such texts
are discarded from further evaluation.

b) Does t entail h? If t is annotated as en-
tailing h′, an entailment system would then infer
h from h′ by applying r. If h is not entailed from
t even though h′ is, the rule application is consid-
ered invalid. For instance, t2 does not entail h even
though it entails h′

2. Indeed, the application of r2:
*soil ⇒ water 2, from which h′

2 was constructed,
yields incorrect inference. If the answer is ’yes’,
as in the case of t3, the application of r for t is
considered valid.

The above process yields a sample of annotated
rule applications for each test hypothesis, from
which we can measure resources performance, as
described in Section 5.

4 Experimental Setting

4.1 Dataset and Annotation

Current available state-of-the-art lexical-semantic
resources mainly deal with nouns. Therefore, we
used nominal hypotheses for our experiment3.

We chose TREC 1-8 (excluding 4) as our test
corpus and randomly sampled 25 ad-hoc queries
of two-word compounds as our hypotheses. We
did not use longer hypotheses to ensure that

2The asterisk marks an incorrect rule.
3We suggest that the definitions and methodologies can be

applied for other parts of speech as well.

enough texts containing the intermediate hypothe-
ses are found in the corpus. For annotation sim-
plicity, we retrieved single sentences as our texts.

For each rule applied for an hypothesis h, we
sampled 10 sentences from the sentences retrieved
for that rule. As a baseline, we also sampled 10
sentences for each original hypothesis h in which
both words of h are found. In total, 1550 unique
sentences were sampled and annotated by two an-
notators.

To assess the validity of our evaluation method-
ology, the annotators first judged a sample of 220
sentences. The Kappa scores for inter-annotator
agreement were 0.74 and 0.64 for judging h′ and
h, respectively. These figures correspond to sub-
stantial agreement (Landis and Koch, 1997) and
are comparable with related semantic annotations
(Szpektor et al., 2007; Bhagat et al., 2007).

4.2 Lexical-Semantic Resources

We evaluated the following resources:
WordNet (WNd): There is no clear agreement

regarding which set of WordNet relations is use-
ful for entailment inference. We therefore took a
conservative approach using only synonymy and
hyponymy rules, which typically comply with the
lexical entailment relation and are commonly used
by textual entailment systems, e.g. (Herrera et al.,
2005; Bos and Markert, 2006). Given a term e,
we created a rule e’ ⇒ e for each e′ amongst the
synonyms or direct hyponyms for all senses of e
in WordNet 3.0.

Snow (Snow30k): Snow et al. (2006) pre-
sented a probabilistic model for taxonomy induc-
tion which considers as features paths in parse
trees between related taxonomy nodes. They show
that the best performing taxonomy was the one
adding 30,000 hyponyms to WordNet. We created
an entailment rule for each new hyponym added to
WordNet by their algorithm4.

LCC’s extended WordNet (XWN?): In
(Moldovan and Rus, 2001) WordNet glosses were
transformed into logical form axioms. From this
representation we created a rule e’⇒ e for each e′

in the gloss which was tagged as referring to the
same entity as e.

CBC: A knowledgebase of labeled clusters gen-
erated by the statistical clustering and labeling al-
gorithms in (Pantel and Lin, 2002; Pantel and

4Available at http://ai.stanford.edu/̃ rion/swn
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Ravichandran, 2004)5. Given a cluster label e, an
entailment rule e’ ⇒ e is created for each member
e′ of the cluster.

Lin Dependency Similarity (Lin-dep): A
distributional word similarity resource based on
syntactic-dependency features (Lin, 1998). Given
a term e and its list of similar terms, we construct
for each e′ in the list the rule e’⇒ e. This resource
was previously used in textual entailment engines,
e.g. (Roth and Sammons, 2007).

Lin Proximity Similarity (Lin-prox): A
knowledgebase of terms with their cooccurrence-
based distributionally similar terms. Rules are cre-
ated from this resource as from the previous one6.

Wikipedia first sentence (WikiFS): Kazama
and Torisawa (2007) used Wikipedia as an exter-
nal knowledge to improve Named Entity Recog-
nition. Using the first step of their algorithm, we
extracted from the first sentence of each page a
noun that appears in a is-a pattern referring to the
title. For each such pair we constructed a rule title
⇒ noun (e.g. Michelle Pfeiffer ⇒ actress).

The above resources represent various meth-
ods for detecting semantic relatedness between
words: Manually and semi-automatically con-
structed (WNd and XWN?, respectively), automat-
ically constructed based on a lexical-syntactic pat-
tern (WikiFS), distributional methods (Lin-dep and
Lin-prox) and combinations of pattern-based and
distributional methods (CBC and Snow30k).

5 Results and Analysis

The results and analysis described in this section
reveal new aspects concerning the utility of re-
sources for lexical entailment, and experimentally
quantify several intuitively-accepted notions re-
garding these resources and the lexical entailment
relation. Overall, our findings highlight where ef-
forts in developing future resources and inference
systems should be invested.

5.1 Resources Performance

Each resource was evaluated using two measures -
Precision and Recall-share, macro averaged over
all hypotheses. The results achieved for each re-
source are summarized in Table 1.

5Kindly provided to us by Patrick Pantel.
6Lin’s resources were downloaded from:

http://www.cs.ualberta.ca/̃ lindek/demos.htm

Resource Precision (%) Recall-share (%)
Snow30k 56 8
WNd 55 24
XWN? 51 9
WikiFS 45 7
CBC 33 9
Lin-dep 28 45
Lin-prox 24 36

Table 1: Lexical resources performance

5.1.1 Precision
The Precision of a resource R is the percentage of
valid rule applications for the resource. It is esti-
mated by the percentage of texts entailing h from
those that entail h′: countR(entailing h=yes)

countR(entailing h′=yes) .

Not surprisingly, resources such as WNd, XWN?

or WikiFS achieved relatively high precision
scores, due to their accurate construction meth-
ods. In contrast, Lin’s distributional resources are
not designed to include lexical entailment relation-
ships. They provide pairs of contextually simi-
lar words, of which many have non-entailing rela-
tionships, such as co-hyponyms7 (e.g. *doctor ⇒
journalist) or topically-related words, such as *ra-
diotherapy ⇒ outpatient. Hence their relatively
low precision.

One visible outcome is the large gap between
the perceived high accuracy of resources con-
structed by accurate methods, most notably WNd,
and their performance in practice. This finding
emphasizes the need for instance-based evalua-
tions, which capture the “real” contribution of a
resource. To better understand the reasons for
this gap we further assessed the three factors
that contribute to incorrect applications: incorrect
rules, lexical context and logical context (see Sec-
tion 2.2). This analysis is presented in Table 2.

From Table 2 we see that the gap for accurate
resources is mainly caused by applications of cor-
rect rules in inappropriate contexts. More inter-
estingly, the information in the table allows us to
asses the lexical “context-sensitivity” of resources.
When considering only the COR-LEX rules to re-
calculate resources precision, we find that Lin-dep
achieves precision of 71% ( 15%

15%+6% ), while WNd

yields only 56% ( 55%
55%+44% ). This result indicates

that correct Lin-dep rules are less sensitive to lexi-
cal context, meaning that their prior likelihoods to

7a.k.a. sister terms or coordinate terms
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(%)
Invalid Rule Applications Valid Rule Applications

INCOR COR-LOG COR-LEX Total INCOR COR-LOG COR-LEX Total (P)
WNd 1 0 44 45 0 0 55 55
WikiFS 13 0 42 55 3 0 42 45
XWN? 19 0 30 49 0 0 51 51
Snow30k 23 0 21 44 0 0 56 56
CBC 51 12 4 67 14 0 19 33
Lin-prox 59 4 13 76 8 3 13 24
Lin-dep 61 5 6 72 9 4 15 28

Table 2: The distribution of invalid and valid rule applications by rule types: incorrect rules (INCOR), correct rules requiring
“logical context” validation (COR-LOG), and correct rules requiring “lexical context” matching (COR-LEX). The numbers of each
resource’s valid applications add up to the resource’s precision.

be correct are higher. This is explained by the fact
that Lin-dep’s rules are calculated across multiple
contexts and therefore capture the more frequent
usages of words. WordNet, on the other hand, in-
cludes many anecdotal rules whose application is
rare, and thus is very sensitive to context. Simi-
larly, WikiFS turns out to be very context-sensitive.
This resource contains many rules for polysemous
proper nouns that are scarce in their proper noun
sense, e.g. Captive ⇒ computer game. Snow30k,
when applied with the same calculation, reaches
73%, which explains how it achieved a compara-
ble result to WNd, even though it contains many
incorrect rules in comparison to WNd.

5.1.2 Recall
Absolute recall cannot be measured since the total
number of texts in the corpus that entail each hy-
pothesis is unknown. Instead, we measure recall-
share, the contribution of each resource to recall
relative to matching only the words of the origi-
nal hypothesis without any rules. We denote by
yield(h) the number of texts that match h directly
and are annotated as entailing h. This figure is es-
timated by the number of sampled texts annotated
as entailing h multiplied by the sampling propor-
tion. In the same fashion, for each resource R,
we estimate the number of texts entailing h ob-
tained through entailment rules of the resource R,
denoted yieldR(h). Recall-share of R for h is the
proportion of the yield obtained by the resource’s
rules relative to the overall yield with and without
the rules from R: yieldR(h)

yield(h)+yieldR(h) .
From Table 1 we see that along with their rela-

tively low precision, Lin’s resources’ recall greatly
surpasses that of any other resource, including
WordNet8. The rest of the resources are even infe-

8A preliminary experiment we conducted showed that re-

rior to WNd in that respect, indicating their limited
utility for inference systems.

As expected, synonyms and hyponyms in Word-
Net contributed a noticeable portion to recall in all
resources. Additional correct rules correspond to
hyponyms and synonyms missing from WordNet,
many of them proper names and some slang ex-
pressions. These rules were mainly provided by
WikiFS and Snow30k, significantly supplementing
WordNet, whose HasInstance relation is quite par-
tial. However, there are other interesting types of
entailment relations contributing to recall. These
are discussed in Sections 5.2 and 5.3. Examples
for various rule types are found in Table 3.

5.1.3 Valid Applications of Incorrect Rules
We observed that many entailing sentences were
retrieved by inherently incorrect rules in the distri-
butional resources. Analysis of these rules reveals
they were matched in entailing texts when the LHS
has noticeable statistical correlation with another
term in the text that does entail the RHS. For ex-
ample, for the hypothesis wildlife extinction, the
rule *species ⇒ extinction yielded valid applica-
tions in contexts about threatened or endangered
species. Has the resource included a rule between
the entailing term in the text and the RHS, the
entailing text would have been matched without
needing the incorrect rule.

These correlations accounted for nearly a third
of Lin resources’ recall. Nonetheless, in princi-
ple, we suggest that such rules, which do not con-
form with Definition 2, should not be included in a
lexical entailment resource, since they also cause
invalid rule applications, while the entailing texts
they retrieve will hopefully be matched by addi-

call does not dramatically improve when using the entire hy-
ponymy subtree from WordNet.
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Type Correct Rules
HYPO Shevardnadze ⇒ official Snow30k

ANT efficacy ⇒ ineffectiveness Lin-dep

HOLO government ⇒ official Lin-prox

HYPER arms ⇒ gun Lin-prox

˜ childbirth ⇒ motherhood Lin-dep

˜ mortgage ⇒ bank Lin-prox

˜ Captive ⇒ computer WikiFS

˜ negligence ⇒ failure CBC

˜ beatification ⇒ pope XWN?

Type Incorrect Rules
CO-HYP alcohol ⇒ cigarette CBC

˜ radiotherapy ⇒ outpatient Lin-dep

˜ teen-ager ⇒ gun Snow30k

˜ basic ⇒ paper WikiFS

˜ species ⇒ extinction Lin-prox

Table 3: Examples of lexical resources rules by types.
HYPO: hyponymy, HYPER: hypernymy (class entailment of
its members), HOLO: holonymy, ANT: antonymy, CO-HYP: co-
hyponymy. The non-categorized relations do not correspond
to any WordNet relation.

tional correct rules in a more comprehensive re-
source.

5.2 Non-standard Entailment Relations

An important finding of our analysis is that some
less standard entailment relationships have a con-
siderable impact on recall (see Table 3). These
rules, which comply with Definition 2 but do
not conform to any WordNet relation type, were
mainly contributed by Lin’s distributional re-
sources and to a smaller degree are also included
in XWN?. In Lin-dep, for example, they accounted
for approximately a third of the recall.

Among the finer grained relations we identi-
fied in this set are topical entailment (e.g. IBM
as the company entailing the topic computers),
consequential relationships (pregnancy⇒mother-
hood) and an entailment of inherent arguments by
a predicate, or of essential participants by a sce-
nario description, e.g. beatification ⇒ pope. A
comprehensive typology of these relationships re-
quires further investigation, as well as the identi-
fication and development of additional resources
from which they can be extracted.

As opposed to hyponymy and synonymy rules,
these rules are typically non-substitutable, i.e. the
RHS of the rule is unlikely to have the exact same
role in the text as the LHS. Many inference sys-

tems perform rule-based transformations, substi-
tuting the LHS by the RHS. This finding suggests
that different methods may be required to utilize
such rules for inference.

5.3 Logical Context
WordNet relations other than synonyms and hy-
ponyms, including antonyms, holonyms and hy-
pernyms (see Table 3), contributed a noticeable
share of valid rule applications for some resources.
Following common practice, these relations are
missing by construction from the other resources.

As shown in Table 2 (COR-LOG columns), such
relations accounted for a seventh of Lin-dep’s
valid rule applications, as much as was the con-
tribution of hyponyms and synonyms to this re-
source’s recall. Yet, using these rules resulted with
more erroneous applications than correct ones. As
discussed in Section 2.2, the rules induced by
these relations do conform with our lexical entail-
ment definition. However, a valid application of
these rules requires certain logical conditions to
occur, which is not the common case. We thus
suggest that such rules are included in lexical en-
tailment resources, as long as they are marked
properly by their types, allowing inference sys-
tems to utilize them only when appropriate mech-
anisms for handling logical context are in place.

5.4 Rules Priors
In Section 5.1.1 we observed that some resources
are highly sensitive to context. Hence, when con-
sidering the validity of a rule’s application, two
factors should be regarded: the actual context in
which the rule is to be applied, as well as the rule’s
prior likelihood to be valid in an arbitrary con-
text. Somewhat indicative, yet mostly indirect, in-
formation about rules’ priors is contained in some
resources. This includes sense ranks in WordNet,
SemCor statistics (Miller et al., 1993), and similar-
ity scores and rankings in Lin’s resources. Infer-
ence systems often incorporated this information,
typically as top-k or threshold-based filters (Pan-
tel and Lin, 2003; Roth and Sammons, 2007). By
empirically assessing the effect of several such fil-
ters in our setting, we found that this type of data
is indeed informative in the sense that precision
increases as the threshold rises. Yet, no specific
filters were found to improve results in terms of
F1 score (where recall is measured relatively to
the yield of the unfiltered resource) due to a sig-
nificant drop in relative recall. For example, Lin-
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prox loses more than 40% of its recall when only
the top-50 rules for each hypothesis are exploited,
and using only the first sense of WNd costs the re-
source over 60% of its recall. We thus suggest a
better strategy might be to combine the prior in-
formation with context matching scores in order
to obtain overall likelihood scores for rule appli-
cations, as in (Szpektor et al., 2008). Furthermore,
resources should include explicit information re-
garding the prior likelihoods of of their rules.

5.5 Operative Conclusions

Our findings highlight the currently limited re-
call of available resources for lexical inference.
The higher recall of Lin’s resources indicates
that many more entailment relationships can be
acquired, particularly when considering distribu-
tional evidence. Yet, available distributional ac-
quisition methods are not geared for lexical entail-
ment. This suggests the need to develop acqui-
sition methods for dedicated and more extensive
knowledge resources that would subsume the cor-
rect rules found by current distributional methods.
Furthermore, substantially better recall may be ob-
tained by acquiring non-standard lexical entail-
ment relationships, as discussed in Section 5.2, for
which a comprehensive typology is still needed.
At the same time, transformation-based inference
systems would need to handle these kinds of rules,
which are usually non-substitutable. Our results
also quantify and stress earlier findings regarding
the severe degradation in precision when rules are
applied in inappropriate contexts. This highlights
the need for resources to provide explicit informa-
tion about the suitable lexical and logical contexts
in which an entailment rule is applicable. In par-
allel, methods should be developed to utilize such
contextual information within inference systems.
Additional auxiliary information needed in lexical
resources is the prior likelihood for a given rule to
be correct in an arbitrary context.

6 Related Work

Several prior works defined lexical entailment.
WordNet’s lexical entailment is a relationship be-
tween verbs only, defined for propositions (Fell-
baum, 1998). Geffet and Dagan (2004) defined
substitutable lexical entailment as a relation be-
tween substitutable terms. We find this definition
too restrictive as non-substitutable rules may also
be useful for entailment inference. Examples are

breastfeeding ⇒ baby and hospital ⇒ medical.
Hence, Definition 2 is more broadly applicable for
defining the desired contents of lexical entailment
resources. We empirically observed that the rules
satisfying their definition are a proper subset of
the rules covered by our definition. Dagan and
Glickman (2004) referred to entailment at the sub-
sentential level by assigning truth values to sub-
propositional text fragments through their existen-
tial meaning. We find this criterion too permissive.
For instance, the existence of country implies the
existence of its flag. Yet, the meaning of flag is
typically not implied by country.

Previous works assessing rule application via
human annotation include (Pantel et al., 2007;
Szpektor et al., 2007), which evaluate acquisition
methods for lexical-syntactic rules. They posed an
additional question to the annotators asking them
to filter out invalid contexts. In our methodology
implicit context matching for the full hypothesis
was applied instead. Other related instance-based
evaluations (Giuliano and Gliozzo, 2007; Connor
and Roth, 2007) performed lexical substitutions,
but did not handle the non-substitutable cases.

7 Conclusions

This paper provides several methodological and
empirical contributions. We presented a novel
evaluation methodology for the utility of lexical-
semantic resources for semantic inference. To that
end we proposed definitions for entailment at sub-
sentential levels, addressing a gap in the textual
entailment framework. Our evaluation and analy-
sis provide a first quantitative comparative assess-
ment of the isolated utility of a range of prominent
potential resources for entailment rules. We have
shown various factors affecting rule applicability
and resources performance, while providing oper-
ative suggestions to address them in future infer-
ence systems and resources.
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Abstract

In this paper, we explore unsupervised
techniques for the task of automatic short
answer grading. We compare a number of
knowledge-based and corpus-based mea-
sures of text similarity, evaluate the effect
of domain and size on the corpus-based
measures, and also introduce a novel tech-
nique to improve the performance of the
system by integrating automatic feedback
from the student answers. Overall, our
system significantly and consistently out-
performs other unsupervised methods for
short answer grading that have been pro-
posed in the past.

1 Introduction

One of the most important aspects of the learn-
ing process is the assessment of the knowledge
acquired by the learner. In a typical examination
setting (e.g., an exam, assignment or quiz), this
assessment implies an instructor or a grader who
provides students with feedback on their answers
to questions that are related to the subject mat-
ter. There are, however, certain scenarios, such
as the large number of worldwide sites with lim-
ited teacher availability, or the individual or group
study sessions done outside of class, in which an
instructor is not available and yet students need an
assessment of their knowledge of the subject. In
these instances, we often have to turn to computer-
assisted assessment.

While some forms of computer-assisted assess-
ment do not require sophisticated text understand-
ing (e.g., multiple choice or true/false questions
can be easily graded by a system if the correct so-
lution is available), there are also student answers
that consist of free text which require an analy-
sis of the text in the answer. Research to date has
concentrated on two main subtasks of computer-
assisted assessment: the grading of essays, which
is done mainly by checking the style, grammati-
cality, and coherence of the essay (cf. (Higgins
et al., 2004)), and the assessment of short student

answers (e.g., (Leacock and Chodorow, 2003; Pul-
man and Sukkarieh, 2005)), which is the focus of
this paper.

An automatic short answer grading system is
one which automatically assigns a grade to an an-
swer provided by a student through a comparison
with one or more correct answers. It is important
to note that this is different from the related task of
paraphrase detection, since a requirement in stu-
dent answer grading is to provide a grade on a cer-
tain scale rather than a binary yes/no decision.

In this paper, we explore and evaluate a set of
unsupervised techniques for automatic short an-
swer grading. Unlike previous work, which has
either required the availability of manually crafted
patterns (Sukkarieh et al., 2004; Mitchell et al.,
2002), or large training data sets to bootstrap such
patterns (Pulman and Sukkarieh, 2005), we at-
tempt to devise an unsupervised method that re-
quires no human intervention. We address the
grading problem from a text similarity perspec-
tive and examine the usefulness of various text-
to-text semantic similarity measures for automati-
cally grading short student answers.

Specifically, in this paper we seek answers to
the following questions. First, given a number
of corpus-based and knowledge-based methods as
previously proposed in the past for word and text
semantic similarity, what are the measures that
work best for the task of short answer grading?
Second, given a corpus-based measure of similar-
ity, what is the impact of the domain and the size
of the corpus on the accuracy of the measure? Fi-
nally, can we use the student answers themselves
to improve the quality of the grading system?

2 Related Work

There are a number of approaches that have been
proposed in the past for automatic short answer
grading. Several state-of-the-art short answer
graders (Sukkarieh et al., 2004; Mitchell et al.,
2002) require manually crafted patterns which, if
matched, indicate that a question has been an-
swered correctly. If an annotated corpus is avail-
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able, these patterns can be supplemented by learn-
ing additional patterns semi-automatically. The
Oxford-UCLES system (Sukkarieh et al., 2004)
bootstraps patterns by starting with a set of key-
words and synonyms and searching through win-
dows of a text for new patterns. A later implemen-
tation of the Oxford-UCLES system (Pulman and
Sukkarieh, 2005) compares several machine learn-
ing techniques, including inductive logic program-
ming, decision tree learning, and Bayesian learn-
ing, to the earlier pattern matching approach with
encouraging results.

C-Rater (Leacock and Chodorow, 2003)
matches the syntactical features of a student
response (subject, object, and verb) to that of a
set of correct responses. The method specifically
disregards the bag-of-words approach to take
into account the difference between ”dog bites
man” and ”man bites dog” while trying to detect
changes in voice (”the man was bitten by a dog”).

Another short answer grading system, AutoTu-
tor (Wiemer-Hastings et al., 1999), has been de-
signed as an immersive tutoring environment with
a graphical ”talking head” and speech recogni-
tion to improve the overall experience for students.
AutoTutor eschews the pattern-based approach en-
tirely in favor of a bag-of-words LSA approach
(Landauer and Dumais, 1997). Later work on Au-
toTutor (Wiemer-Hastings et al., 2005; Malatesta
et al., 2002) seeks to expand upon the original bag-
of-words approach which becomes less useful as
causality and word order become more important.

These methods are often supplemented with
some light preprocessing, e.g., spelling correc-
tion, punctuation correction, pronoun resolution,
lemmatization and tagging. Likewise, in order to
facilitate their goals of providing feedback to the
student more robust than a simple ”correct” or ”in-
correct,” several systems break the gold-standard
answers into constituent concepts that must indi-
vidually be matched for the answer to be consid-
ered fully correct (Callear et al., 2001). In this way
the system can determine which parts of an answer
a student understands and which parts he or she is
struggling with.

Automatic short answer grading is closely re-
lated to the task of text similarity. While more
general than short answer grading, text similarity
is essentially the problem of detecting and com-
paring the features of two texts. One of the earli-
est approaches to text similarity is the vector-space
model (Salton et al., 1997) with a term frequency
/ inverse document frequency (tf.idf) weighting.
This model, along with the more sophisticated
LSA semantic alternative (Landauer and Dumais,
1997), has been found to work well for tasks such

as information retrieval and text classification.
Another approach (Hatzivassiloglou et al.,

1999) has been to use a machine learning algo-
rithm in which features are based on combina-
tions of simple features (e.g., a pair of nouns ap-
pear within 5 words from one another in both
texts). This method also attempts to account for
synonymy, word ordering, text length, and word
classes.

Another line of work attempts to extrapolate
text similarity from the arguably simpler prob-
lem of word similarity. (Mihalcea et al., 2006)
explores the efficacy of applying WordNet-based
word-to-word similarity measures (Pedersen et al.,
2004) to the comparison of texts and found them
generally comparable to corpus-based measures
such as LSA.

An interesting study has been performed at the
University of Adelaide (Lee et al., 2005), compar-
ing simpler word and n-gram feature vectors to
LSA and exploring the types of vector similarity
metrics (e.g., binary vs. count vectors, Jaccard
vs. cosine vs. overlap distance measure, etc.).
In this case, LSA was shown to perform better
than the word and n-gram vectors and performed
best at around 100 dimensions with binary vectors
weighted according to an entropy measure, though
the difference in measures was often subtle.

SELSA (Kanejiya et al., 2003) is a system that
attempts to add context to LSA by supplementing
the feature vectors with some simple syntactical
features, namely the part-of-speech of the previous
word. Their results indicate that SELSA does not
perform as well as LSA in the best case, but it has
a wider threshold window than LSA in which the
system can be used advantageously.

Finally, explicit semantic analysis (ESA)
(Gabrilovich and Markovitch, 2007) uses
Wikipedia as a source of knowledge for text
similarity. It creates for each text a feature vector
where each feature maps to a Wikipedia article.
Their preliminary experiments indicated that ESA
was able to significantly outperform LSA on some
text similarity tasks.

3 Data Set

In order to evaluate the methods for short answer
grading, we have created a data set of questions
from introductory computer science assignments
with answers provided by a class of undergradu-
ate students. The assignments were administered
as part of a Data Structures course at the Univer-
sity of North Texas. For each assignment, the stu-
dent answers were collected via the WebCT online
learning environment.
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The evaluations reported in this paper are car-
ried out on the answers submitted for three of the
assignments in this class. Each assignment con-
sisted of seven short-answer questions.1 Thirty
students were enrolled in the class and submitted
answers to these assignments. Thus, the data set
we work with consists of a total of 630 student an-
swers (3 assignments x 7 questions/assignment x
30 student answers/question).

The answers were independently graded by two
human judges, using an integer scale from 0 (com-
pletely incorrect) to 5 (perfect answer). Both hu-
man judges were graduate computer science stu-
dents; one was the teaching assistant in the Data
Structures class, while the other is one of the au-
thors of this paper. Table 1 shows two question-
answer pairs with three sample student answers
each. The grades assigned by the two human
judges are also included.

The evaluations are run using Pearson’s corre-
lation coefficient measured against the average of
the human-assigned grades on a per-question and
a per-assignment basis. In the per-question set-
ting, every question and the corresponding student
answer is considered as an independent data point
in the correlation, and thus the emphasis is placed
on the correctness of the grade assigned to each
answer. In the per-assignment setting, each data
point is an assignment-student pair created by to-
taling the scores given to the student for each ques-
tion in the assignment. In this setting, the em-
phasis is placed on the overall grade a student re-
ceives for the assignment rather than on the grade
received for each independent question.

The correlation between the two human judges
is measured using both settings. In the per-
question setting, the two annotators correlated at
(r=0.6443). For the per-assignment setting, the
correlation was (r=0.7228).

A deeper look into the scores given by the
two annotators indicates the underlying subjectiv-
ity in grading short answer assignments. Of the
630 grades given, only 358 (56.8%) were exactly
agreed upon by the annotators. Even more strik-
ing, a full 107 grades (17.0%) differed by more
than one point on the five point scale, and 19
grades (3.0%) differed by 4 points or more.2

1In addition, the assignments had several programming
exercises which have not been considered in any of our ex-
periments.

2An example should suffice to explain this discrepancy in
annotator scoring:Question: What does a function signature
include? Answer: The name of the function and the types of
the parameters. Student: input parameters and return type.
Scores: 1, 5.This example suggests that the graders were
not always consistent in comparing student answers to the in-
structor answer. Additionally, the instructor answer may be
insufficient to account for correct student answers, as ”return

Furthermore, on the occasions when the annota-
tors disagreed, the same annotator gave the higher
grade 79.8% of the time.

Over the course of this work, much attention
was given to our choice of correlation metric.
Previous work in text similarity and short-answer
grading seems split on the use of Pearson’s and
Spearman’s metric. It was not initially clear
that the underlying assumptions necessary for the
proper use of Pearson’s metric (e.g. normal dis-
tribution, interval measurement level, linear cor-
relation model) would be met in our experimental
setup. We considered both Spearman’s and sev-
eral less often used metrics (e.g. Kendall’s tau,
Goodman-Kruskal’s gamma), but in the end, we
have decided to follow previous work using Pear-
son’s so that our scores can be more easily com-
pared.3

4 Automatic Short Answer Grading

Our experiments are centered around the use of
measures of similarity for automatic short answer
grading. In particular, we carry out three sets
of experiments, seeking answers to the following
three research questions.

First, what are the measures of semantic sim-
ilarity that work best for the task of short an-
swer grading? To answer this question, we run
several comparative evaluations covering a num-
ber of knowledge-based and corpus-based mea-
sures of semantic similarity. While previous work
has considered such comparisons for the related
task of paraphrase identification (Mihalcea et al.,
2006), to our knowledge no comprehensive eval-
uation has been carried out for the task of short
answer grading which includes all the similarity
measures proposed to date.

Second,to what extent do the domain and the
size of the data used to train the corpus-based
measures of similarity influence the accuracy of
the measures?To address this question, we run
a set of experiments which vary the size and do-
main of the corpus used to train the LSA and the
ESA metrics, and we measure their effect on the
accuracy of short answer grading.

Finally, given a measure of similarity, can we
integrate the answers with the highest scores and
improve the accuracy of the measure?We use
a technique similar to the pseudo-relevance feed-
back method used in information retrieval (Roc-
chio, 1971) and augment the correct answer with

type” does seem to be a valid component of a ”function sig-
nature” according to some literature on the web.

3Consider this an open call for discussion in the NLP
community regarding the proper usage of correlation metrics
with the ultimate goal of consistency within the community.
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Sample questions, correct answers, and student answers Grade
Question: What is the role of a prototype program in problem solving?
Correct answer: To simulate the behavior of portions of the desired software product.
Student answer 1: A prototype program is used in problem solving to collect data for the problem. 1, 2
Student answer 2: It simulates the behavior of portions of the desired software product. 5, 5
Student answer 3: To find problem and errors in a program before it is finalized. 2, 2
Question: What are the main advantages associated with object-oriented programming?
Correct answer: Abstraction and reusability.
Student answer 1: They make it easier to reuse and adapt previously written code and they separate complex
programs into smaller, easier to understand classes. 5, 4
Student answer 2: Object oriented programming allows programmers touse an object with classes that can be
changed and manipulated while not affecting the entire object at once. 1, 1
Student answer 3: Reusable components, Extensibility, Maintainability, it reduces large problems into smaller
more manageable problems. 4, 4

Table 1: Two sample questions with short answers provided by students and the grades assigned by the
two human judges

the student answers receiving the best score ac-
cording to a similarity measure.

In all the experiments, the evaluations are run
on the data set described in the previous section.
The results are compared against a simple baseline
that assigns a grade based on a measurement of
the cosine similarity between the weighted vector-
space representations of the correct answer and the
candidate student answer. The Pearson correla-
tion for this model, using an inverse document fre-
quency derived from the British National Corpus
(BNC), is r=0.3647 for the per-question evaluation
and r=0.4897 for the per-assignment evaluation.

5 Text-to-text Semantic Similarity

We run our comparative evaluations using eight
knowledge-based measures of semantic similarity
(shortest path, Leacock & Chodorow, Lesk, Wu
& Palmer, Resnik, Lin, Jiang & Conrath, Hirst &
St. Onge), and two corpus-based measures (LSA
and ESA). For the knowledge-based measures, we
derive a text-to-text similarity metric by using the
methodology proposed in (Mihalcea et al., 2006):
for each open-class word in one of the input texts,
we use the maximum semantic similarity that can
be obtained by pairing it up with individual open-
class words in the second input text. More for-
mally, for each wordW of part-of-speech classC
in the instructor answer, we findmaxsim(W, C):

maxsim(W, C) = max SIMx(W, wi)

wherewi is a word in the student answer of class
C and theSIMx function is one of the functions
described below. All the word-to-word similarity
scores obtained in this way are summed up and
normalized with the length of the two input texts.
We provide below a short description for each of
these similarity metrics.

5.1 Knowledge-Based Measures

Theshortest path similarity is determined as:

Simpath =
1

length
(1)

wherelength is the length of the shortest path be-
tween two concepts using node-counting (includ-
ing the end nodes).

The Leacock & Chodorow (Leacock and
Chodorow, 1998) similarity is determined as:

Simlch = − log
length

2 ∗ D
(2)

wherelength is the length of the shortest path be-
tween two concepts using node-counting, andD

is the maximum depth of the taxonomy.

TheLesk similarity of two concepts is defined as
a function of the overlap between the correspond-
ing definitions, as provided by a dictionary. It is
based on an algorithm proposed by Lesk (1986) as
a solution for word sense disambiguation.

The Wu & Palmer (Wu and Palmer, 1994) simi-
larity metric measures the depth of two given con-
cepts in the WordNet taxonomy, and the depth of
the least common subsumer (LCS), and combines
these figures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(3)

The measure introduced byResnik (Resnik, 1995)
returns the information content (IC) of the LCS of
two concepts:

Simres = IC(LCS) (4)

where IC is defined as:

IC(c) = − log P (c) (5)

andP (c) is the probability of encountering an in-
stance of conceptc in a large corpus.
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The measure introduced byLin (Lin, 1998) builds
on Resnik’s measure of similarity, and adds a
normalization factor consisting of the information
content of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(6)

We also consider theJiang & Conrath (Jiang and
Conrath, 1997) measure of similarity:

Simjnc =
1

IC(concept1) + IC(concept2) − 2 ∗ IC(LCS)
(7)

Finally, we consider theHirst & St. Onge (Hirst
and St-Onge, 1998) measure of similarity, which
determines the similarity strength of a pair of
synsets by detecting lexical chains between the
pair in a text using the WordNet hierarchy.

5.2 Corpus-Based Measures

Corpus-based measures differ from knowledge-
based methods in that they do not require any en-
coded understanding of either the vocabulary or
the grammar of a text’s language. In many of
the scenarios where CAA would be advantageous,
robust language-specific resources (e.g. Word-
Net) may not be available. Thus, state-of-the-art
corpus-based measures may be the only available
approach to CAA in languages with scarce re-
sources.

One corpus-based measure of semantic similar-
ity is latent semantic analysis (LSA) proposed by
Landauer (Landauer and Dumais, 1997). In LSA,
term co-occurrences in a corpus are captured by
means of a dimensionality reduction operated by a
singular value decomposition (SVD) on the term-
by-document matrixT representing the corpus.
For the experiments reported in this section, we
run the SVD operation on several corpora includ-
ing the BNC (LSA BNC) and the entire English
Wikipedia (LSA Wikipedia).4

Explicit semantic analysis (ESA) (Gabrilovich
and Markovitch, 2007) is a variation on the stan-
dard vectorial model in which the dimensions of
the vector are directly equivalent to abstract con-
cepts. Each article in Wikipedia represents a con-
cept in the ESA vector. The relatedness of a term
to a concept is defined as the tf*idf score for the
term within the Wikipedia article, and the related-
ness between two words is the cosine of the two
concept vectors in a high-dimensional space. We
refer to this method asESA Wikipedia.

4Throughout this paper, the references to the Wikipedia
corpus refer to a version downloaded in September 2007.

5.3 Implementation

For the knowledge-based measures, we use the
WordNet-based implementation of the word-to-
word similarity metrics, as available in the Word-
Net::Similarity package (Patwardhan et al., 2003).
For latent semantic analysis, we use the InfoMap
package.5 For ESA, we use our own imple-
mentation of the ESA algorithm as described in
(Gabrilovich and Markovitch, 2006). Note that
all the word similarity measures are normalized so
that they fall within a 0–1 range. The normaliza-
tion is done by dividing the similarity score pro-
vided by a given measure with the maximum pos-
sible score for that measure.

Table 2 shows the results obtained with each of
these measures on our evaluation data set.

Measure Correlation
Knowledge-based measures

Shortest path 0.4413
Leacock & Chodorow 0.2231
Lesk 0.3630
Wu & Palmer 0.3366
Resnik 0.2520
Lin 0.3916
Jiang & Conrath 0.4499
Hirst & St-Onge 0.1961

Corpus-based measures
LSA BNC 0.4071
LSA Wikipedia 0.4286
ESA Wikipedia 0.4681

Baseline
tf*idf 0.3647

Table 2: Comparison of knowledge-based and
corpus-based measures of similarity for short an-
swer grading

6 The Role of Domain and Size

One of the key considerations when applying
corpus-based techniques is the extent to which size
and subject matter affect the overall performance
of the system. In particular, based on the underly-
ing processes involved, the LSA and ESA corpus-
based methods are expected to be especially sen-
sitive to changes in domain and size. Building the
language models depends on the relatedness of the
words in the training data which suggests that, for
instance, in a computer science domain the terms
”object” and ”oriented” will be more closely re-
lated than in a more general text. Similarly, a large
amount of training data will lead to less sparse

5http://infomap-nlp.sourceforge.net/
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vector spaces, which in turn is expected to affect
the performance of the corpus-based methods.

With this in mind, we developed two training
corpora for use with the corpus-based measures
that covered the computer science domain. The
first corpus (LSA slides) consists of several online
lecture notes associated with the class textbook,
specifically covering topics that are used as ques-
tions in our sample. The second domain-specific
corpus is a subset of Wikipedia (LSA Wikipedia
CS) consisting of articles that contain any of the
following words: computer, computing, computa-
tion, algorithm, recursive, or recursion.

The performance on the domain-specific cor-
pora is compared with the one observed on the
open-domain corpora mentioned in the previ-
ous section, namelyLSA Wikipedia and ESA
Wikipedia. In addition, for the purpose of running
a comparison with the LSA slides corpus, we also
created a random subset of the LSA Wikipedia
corpus approximately matching the size of the
LSA slides corpus. We refer to this corpus asLSA
Wikipedia (small).

Table 3 shows an overview of the various cor-
pora used in the experiments, along with the Pear-
son correlation observed on our data set.

Measure - Corpus Size Correlation
Training on generic corpora

LSA BNC 566.7MB 0.4071
LSA Wikipedia 1.8GB 0.4286
LSA Wikipedia (small) 0.3MB 0.3518
ESA Wikipedia 1.8GB 0.4681

Training on domain-specific corpora
LSA Wikipedia CS 77.1MB 0.4628
LSA slides 0.3MB 0.4146
ESA Wikipedia CS 77.1MB 0.4385

Table 3: Corpus-based measures trained on cor-
pora from different domains and of different sizes

Assuming a corpus of comparable size, we ex-
pect a measure trained on a domain-specific cor-
pus to outperform one that relies on a generic one.
Indeed, by comparing the results obtained with
LSA slides to those obtained with LSA Wikipedia
(small), we see that by using the in-domain com-
puter science slides we obtain a correlation of
r=0.4146, which is higher than the correlation
of r=0.3518 obtained with a corpus of the same
size but open-domain. The effect of the domain
is even more pronounced when we compare the
performance obtained with LSA Wikipedia CS
(r=0.4628) with the one obtained with the full LSA
Wikipedia (r=0.4286).6 The smaller, domain-

6The difference was found significant using a paired t-test

specific corpus performs better, despite the fact
that the generic corpus is 23 times larger and is a
superset of the smaller corpus. This suggests that
for LSA the quality of the texts is vastly more im-
portant than their quantity.

When using the domain-specific subset of
Wikipedia, we observe decreased performance
with ESA compared to the full Wikipedia space.
We suggest that for ESA the high-dimensionality
of the concept space7 is paramount, since many re-
lations between generic words may be lost to ESA
that can be detected latently using LSA.

In tandem with our exploration of the effects
of domain-specific data, we also look at the effect
of size on the overall performance. The main in-
tuitive trends are there, i.e., the performance ob-
tained with the large LSA-Wikipedia is better than
the one that can be obtained with LSA Wikipedia
(small). Similarly, in the domain-specific space,
the LSA Wikipedia CS corpus leads to better per-
formance than the smaller LSA slides data set.
However, an analysis carried out at a finer grained
scale, in which we calculate the performance ob-
tained with LSA when trained on 5%, 10%, ...,
100% fractions of the full LSA Wikipedia corpus,
does not reveal a close correlation between size
and performance, which suggests that further anal-
ysis is needed to determine the exact effect of cor-
pus size on performance.

7 Relevance Feedback based on Student
Answers

The automatic grading of student answers im-
plies a measure of similarity between the answers
provided by the students and the correct answer
provided by the instructor. Since we only have
one correct answer, some student answers may be
wrongly graded because of little or no similarity
with the correct answer that we have.

To address this problem, we introduce a novel
technique that feeds back from the student an-
swers themselves in a way similar to the pseudo-
relevance feedback used in information retrieval
(Rocchio, 1971). In this way, the paraphrasing that
is usually observed across student answers will en-
hance the vocabulary of the correct answer, while
at the same time maintaining the correctness of the
gold-standard answer.

Briefly, given a metric that provides similarity
scores between the student answers and the cor-
rect answer, scores are ranked from most similar

(p<0.001).
7In ESA, all the articles in Wikipedia are used as dimen-

sions, which leads to about 1.75 million dimensions in the
ESA Wikipedia corpus, compared to only 55,000 dimensions
in the ESA Wikipedia CS corpus.
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to least. The words of the top N ranked answers
are then added to the gold standard answer. The
remaining answers are then rescored according the
the new gold standard vector. In practice, we hold
the scores from the first run (i.e., with no feed-
back) constant for the top N highest-scoring an-
swers, and the second-run scores for the remaining
answers are multiplied by the first-run score of the
Nth highest-scoring answer. In this way, we keep
the original scores for the top N highest-scoring
answers (and thus prevent them from becoming ar-
tificially high), and at the same time, we guarantee
that none of the lower-scored answers will get a
new score higher than the best answers.

The effects of relevance feedback are shown in
Figure 9, which plots the Pearson correlation be-
tween automatic and human grading (Y axis) ver-
sus the number of student answers that are used
for relevance feedback (X axis).

Overall, an improvement of up to 0.047 on
the 0-1 Pearson scale can be obtained by using
this technique, with a maximum improvement ob-
served after about 4-6 iterations on average. Af-
ter an initial number of high-scored answers, it is
likely that the correctness of the answers degrades,
and thus the decrease in performance observed af-
ter an initial number of iterations. Our results in-
dicate that the LSA and WordNet similarity met-
rics respond more favorably to feedback than the
ESA metric. It is possible that supplementing the
bag-of-words in ESA (with e.g. synonyms and
phrasal differences) does not drastically alter the
resultant concept vector, and thus the overall ef-
fect is smaller.

8 Discussion

Our experiments show that several knowledge-
based and corpus-based measures of similarity
perform comparably when used for the task of
short answer grading. However, since the corpus-
based measures can be improved by account-
ing for domain and corpus size, the highest per-
formance can be obtained with a corpus-based
measure (LSA) trained on a domain-specific cor-
pus. Further improvements were also obtained
by integrating the highest-scored student answers
through a relevance feedback technique.

Table 4 summarizes the results of our experi-
ments. In addition to the per-question evaluations
that were reported throughout the paper, we also
report the per-assignment evaluation, which re-
flects a cumulative score for a student on a single
assignment, as described in Section 3.

Overall, in both the per-question and per-
assignment evaluations, we obtained the best per-
formance by using an LSA measure trained on

Correlation
Measure per-quest. per-assign.

Baselines
tf*idf 0.3647 0.4897
LSA BNC 0.4071 0.6465
Relevance Feedback based on Student Answers
WordNet shortest path 0.4887 0.6344
LSA Wikipedia CS 0.5099 0.6735
ESA Wikipedia full 0.4893 0.6498
Annotator agreement 0.6443 0.7228

Table 4: Summary of results obtained with vari-
ous similarity measures, with relevance feedback
based on six student answers. We also list the
tf*idf and the LSA trained on BNC baselines (no
feedback), as well as the annotator agreement up-
per bound.

a medium size domain-specific corpus obtained
from Wikipedia, with relevance feedback from
the four highest-scoring student answers. This
method improves significantly over the tf*idf
baseline and also over the LSA trained on BNC
model, which has been used extensively in previ-
ous work. The differences were found to be sig-
nificant using a paired t-test (p<0.001).

To gain further insights, we made an additional
analysis where we determined the ability of our
system to make a binary accept/reject decision. In
this evaluation, we map the 0-5 human grading of
the data set to an accept/reject annotation by us-
ing a threshold of 2.5. Every answer with a grade
higher than 2.5 is labeled as “accept,” while ev-
ery answer below 2.5 is labeled as “reject.” Next,
we use our best system (LSA trained on domain-
specific data with relevance feedback), and run a
ten-fold cross-validation on the data set. Specif-
ically, for each fold, the system uses the remain-
ing nine folds to automatically identify a thresh-
old to maximize the matching with the gold stan-
dard. The threshold identified in this way is used
to automatically annotate the test fold with “ac-
cept”/”reject” labels. The ten-fold cross validation
resulted in an accuracy of 92%, indicating the abil-
ity of the system to automatically make a binary
accept/reject decision.

9 Conclusions

In this paper, we explored unsupervised tech-
niques for automatic short answer grading.

We believe the paper made three important con-
tributions. First, while there are a number of word
and text similarity measures that have been pro-
posed in the past, to our knowledge no previ-
ous work has considered a comprehensive evalu-
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Figure 1: Effect of relevance feedback on performance

ation of all the measures for the task of short an-
swer grading. We filled this gap by running com-
parative evaluations of several knowledge-based
and corpus-based measures on a data set of short
student answers. Our results indicate that when
used in their original form, the results obtained
with the best knowledge-based (WordNet short-
est path and Jiang & Conrath) and corpus-based
measures (LSA and ESA) have comparable per-
formance. The benefit of the corpus-based ap-
proaches over knowledge-based approaches lies in
their language independence and the relative ease
in creating a large domain-sensitive corpus versus
a language knowledge base (e.g., WordNet).

Second, we analysed the effect of domain and
corpus size on the effectiveness of the corpus-
based measures. We found that significant im-
provements can be obtained for the LSA measure
when using a medium size domain-specific corpus
built from Wikipedia. In fact, when using LSA,
our results indicate that the corpus domain may be
significantly more important than corpus size once
a certain threshold size has been reached.

Finally, we introduced a novel technique for in-
tegrating feedback from the student answers them-
selves into the grading system. Using a method
similar to the pseudo-relevance feedback tech-
nique used in information retrieval, we were able
to improve the quality of our system by a few per-
centage points.

Overall, our best system consists of an LSA
measure trained on a domain-specific corpus built

on Wikipedia with feedback from student answers,
which was found to bring a significant absolute
improvement on the 0-1 Pearson scale of 0.14 over
the tf*idf baseline and 0.10 over the LSA BNC
model that has been used in the past.

In future work, we intend to expand our analy-
sis of both the gold-standard answer and the stu-
dent answers beyond the bag-of-words paradigm
by considering basic logical features in the text
(i.e., AND, OR, NOT) as well as the existence
of shallow grammatical features such as predicate-
argument structure(Moschitti et al., 2007) as well
as semantic classes for words. Furthermore, it may
be advantageous to expand upon the existing mea-
sures by applying machine learning techniques to
create a hybrid decision system that would exploit
the advantages of each measure.

The data set introduced in this paper, along with
the human-assigned grades, can be downloaded
from http://lit.csci.unt.edu/index.php/Downloads.

Acknowledgments
This work was partially supported by a National
Science Foundation CAREER award #0747340.
The authors are grateful to Samer Hassan for mak-
ing available his implementation of the ESA algo-
rithm.

References

D. Callear, J. Jerrams-Smith, and V. Soh. 2001.
CAA of Short Non-MCQ Answers.Proceedings of

574



the 5th International Computer Assisted Assessment
conference.

E. Gabrilovich and S. Markovitch. 2006. Overcoming
the brittleness bottleneck using Wikipedia: Enhanc-
ing text categorization with encyclopedic knowl-
edge. InProceedings of the National Conference on
Artificial Intelligence (AAAI), Boston.

E. Gabrilovich and S. Markovitch. 2007. Computing
Semantic Relatedness using Wikipedia-based Ex-
plicit Semantic Analysis.Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence, pages 6–12.

V. Hatzivassiloglou, J. Klavans, and E. Eskin. 1999.
Detecting text similarity over short passages: Ex-
ploring linguistic feature combinations via machine
learning. Proceedings of the Joint SIGDAT Con-
ference on Empirical Methods in Natural Language
Processing and Very Large Corpora.

D. Higgins, J. Burstein, D. Marcu, and C. Gentile.
2004. Evaluating multiple aspects of coherence in
student essays. InProceedings of the annual meet-
ing of the North American Chapter of the Associa-
tion for Computational Linguistics, Boston, MA.

G. Hirst and D. St-Onge, 1998.Lexical chains as rep-
resentations of contexts for the detection and correc-
tion of malaproprisms. The MIT Press.

J. Jiang and D. Conrath. 1997. Semantic similarity
based on corpus statistics and lexical taxonomy. In
Proceedings of the International Conference on Re-
search in Computational Linguistics, Taiwan.

D. Kanejiya, A. Kumar, and S. Prasad. 2003. Au-
tomatic evaluation of students’ answers using syn-
tactically enhanced LSA.Proceedings of the HLT-
NAACL 03 workshop on Building educational appli-
cations using natural language processing-Volume
2, pages 53–60.

T.K. Landauer and S.T. Dumais. 1997. A solution to
plato’s problem: The latent semantic analysis the-
ory of acquisition, induction, and representation of
knowledge.Psychological Review, 104.

C. Leacock and M. Chodorow. 1998. Combining lo-
cal context and WordNet sense similarity for word
sense identification. InWordNet, An Electronic Lex-
ical Database. The MIT Press.

C. Leacock and M. Chodorow. 2003. C-rater: Au-
tomated Scoring of Short-Answer Questions.Com-
puters and the Humanities, 37(4):389–405.

M.D. Lee, B. Pincombe, and M. Welsh. 2005. An em-
pirical evaluation of models of text document simi-
larity. Proceedings of the 27th Annual Conference
of the Cognitive Science Society, pages 1254–1259.

M.E. Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: How to tell a pine
cone from an ice cream cone. InProceedings of the
SIGDOC Conference 1986, Toronto, June.

D. Lin. 1998. An information-theoretic definition of
similarity. In Proceedings of the 15th International
Conference on Machine Learning, Madison, WI.

K.I. Malatesta, P. Wiemer-Hastings, and J. Robertson.
2002. Beyond the Short Answer Question with Re-
search Methods Tutor. InProceedings of the Intelli-
gent Tutoring Systems Conference.

R. Mihalcea, C. Corley, and C. Strapparava. 2006.
Corpus-based and knowledge-based approaches to
text semantic similarity. InProceedings of the
American Association for Artificial Intelligence
(AAAI 2006), Boston.

T. Mitchell, T. Russell, P. Broomhead, and N. Aldridge.
2002. Towards robust computerised marking of
free-text responses.Proceedings of the 6th Interna-
tional Computer Assisted Assessment (CAA) Confer-
ence.

Alessandro Moschitti, Silvia Quarteroni, Roberto
Basili, and Suresh Manandhar. 2007. Exploiting
syntactic and shallow semantic kernels for ques-
tion/answer classification. InProceedings of the
45th Conference of the Association for Computa-
tional Linguistics.

S. Patwardhan, S. Banerjee, and T. Pedersen. 2003.
Using measures of semantic relatedness for word
sense disambiguation. InProceedings of the Fourth
International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, Mexico
City, February.

T. Pedersen, S. Patwardhan, and J. Michelizzi. 2004.
WordNet:: Similarity-Measuring the Relatedness of
Concepts.Proceedings of the National Conference
on Artificial Intelligence, pages 1024–1025.

S.G. Pulman and J.Z. Sukkarieh. 2005. Automatic
Short Answer Marking.ACL WS Bldg Ed Apps us-
ing NLP.

P. Resnik. 1995. Using information content to evalu-
ate semantic similarity. InProceedings of the 14th
International Joint Conference on Artificial Intelli-
gence, Montreal, Canada.

J. Rocchio, 1971.Relevance feedback in information
retrieval. Prentice Hall, Ing. Englewood Cliffs, New
Jersey.

G. Salton, A. Wong, and C.S. Yang. 1997. A vec-
tor space model for automatic indexing. InRead-
ings in Information Retrieval, pages 273–280. Mor-
gan Kaufmann Publishers, San Francisco, CA.

J.Z. Sukkarieh, S.G. Pulman, and N. Raikes. 2004.
Auto-Marking 2: An Update on the UCLES-Oxford
University research into using Computational Lin-
guistics to Score Short, Free Text Responses.In-
ternational Association of Educational Assessment,
Philadephia.

P. Wiemer-Hastings, K. Wiemer-Hastings, and
A. Graesser. 1999. Improving an intelligent tutor’s
comprehension of students with Latent Semantic
Analysis.Artificial Intelligence in Education, pages
535–542.

P. Wiemer-Hastings, E. Arnott, and D. Allbritton.
2005. Initial results and mixed directions for re-
search methods tutor. InAIED2005 - Supplementary
Proceedings of the 12th International Conference on
Artificial Intelligence in Education, Amsterdam.

Z. Wu and M. Palmer. 1994. Verb semantics and lex-
ical selection. InProceedings of the 32nd Annual
Meeting of the Association for Computational Lin-
guistics, Las Cruces, New Mexico.

575



Proceedings of the 12th Conference of the European Chapter of the ACL, pages 576–584,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Syntactic and Semantic Kernels for Short Text Pair Categorization

Alessandro Moschitti
Department of Computer Science and Engineering

University of Trento
Via Sommarive 14

38100 POVO (TN) - Italy
moschitti@disi.unitn.it

Abstract

Automatic detection of general relations
between short texts is a complex task that
cannot be carried out only relying on lan-
guage models and bag-of-words. There-
fore, learning methods to exploit syntax
and semantics are required. In this pa-
per, we present a new kernel for the repre-
sentation of shallow semantic information
along with a comprehensive study on ker-
nel methods for the exploitation of syntac-
tic/semantic structures for short text pair
categorization. Our experiments with Sup-
port Vector Machines on question/answer
classification show that our kernels can be
used to greatly improve system accuracy.

1 Introduction

Previous work on Text Categorization (TC) has
shown that advanced linguistic processing for doc-
ument representation is often ineffective for this
task, e.g. (Lewis, 1992; Furnkranz et al., 1998;
Allan, 2000; Moschitti and Basili, 2004). In con-
trast, work in question answering suggests that
syntactic and semantic structures help in solving
TC (Voorhees, 2004; Hickl et al., 2006). From
these studies, it emerges that when the categoriza-
tion task is linguistically complex, syntax and se-
mantics may play a relevant role. In this perspec-
tive, the study of the automatic detection of re-
lationships between short texts is particularly in-
teresting. Typical examples of such relations are
given in (Giampiccolo et al., 2007) or those hold-
ing between question and answer, e.g. (Hovy et
al., 2002; Punyakanok et al., 2004; Lin and Katz,
2003), i.e. if a text fragment correctly responds to
a question.

In Question Answering, the latter problem is
mostly tackled by using different heuristics and
classifiers, which aim at extracting the best an-
swers (Chen et al., 2006; Collins-Thompson et
al., 2004). However, for definitional questions, a
more effective approach would be to test if a cor-
rect relationship between the answer and the query
holds. This, in turns, depends on the structure of
the two text fragments. Designing language mod-
els to capture such relation is too complex since
probabilistic models suffer from (i) computational
complexity issues, e.g. for the processing of large
bayesian networks, (ii) problems in effectively es-
timating and smoothing probabilities and (iii) high
sensitiveness to irrelevant features and processing
errors. In contrast, discriminative models such as
Support Vector Machines (SVMs) have theoreti-
cally been shown to be robust to noise and irrele-
vant features (Vapnik, 1995). Thus, partially cor-
rect linguistic structures may still provide a rel-
evant contribution since only the relevant infor-
mation would be taken into account. Moreover,
such a learning approach supports the use of kernel
methods which allow for an efficient and effective
representation of structured data.
SVMs and Kernel Methods have recently been

applied to natural language tasks with promising
results, e.g. (Collins and Duffy, 2002; Kudo and
Matsumoto, 2003; Cumby and Roth, 2003; Shen
et al., 2003; Moschitti and Bejan, 2004; Culotta
and Sorensen, 2004; Kudo et al., 2005; Toutanova
et al., 2004; Kazama and Torisawa, 2005; Zhang
et al., 2006; Moschitti et al., 2006). In particular,
in question classification, tree kernels, e.g. (Zhang
and Lee, 2003), have shown accuracy comparable
to the best models, e.g. (Li and Roth, 2005).
Moreover, (Shen and Lapata, 2007; Moschitti

et al., 2007; Surdeanu et al., 2008; Chali and Joty,
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2008) have shown that shallow semantic informa-
tion in the form of Predicate Argument Structures
(PASs) (Jackendoff, 1990; Johnson and Fillmore,
2000) improves the automatic detection of cor-
rect answers to a target question. In particular,
in (Moschitti et al., 2007) kernels for the process-
ing of PASs (in PropBank1 format (Kingsbury and
Palmer, 2002)) extracted from question/answer
pairs were proposed. However, the relatively high
kernel computational complexity and the limited
improvement on bag-of-words (BOW) produced
by this approach do not make the use of such tech-
nique practical for real world applications.
In this paper, we carry out a complete study on

the use of syntactic/semantic structures for rela-
tional learning from questions and answers. We
designed sequence kernels for words and Part of
Speech Tags which capture basic lexical seman-
tics and basic syntactic information. Then, we de-
sign a novel shallow semantic kernel which is far
more efficient and also more accurate than the one
proposed in (Moschitti et al., 2007).
The extensive experiments carried out on two

different corpora of questions and answers, de-
rived from Web documents and the TREC corpus,
show that:
• Kernels based on PAS, POS-tag sequences and
syntactic parse trees improve the BOW approach
on both datasets. On the TREC data the improve-
ment is interestingly high, e.g. about 61%, making
its application worthwhile.
• The new kernel for processing PASs is more ef-
ficient and effective than previous models so that
it can be practically used in systems for short text
pair categorization, e.g. question/answer classifi-
cation.
In the remainder of this paper, Section 2

presents well-known kernel functions for struc-
tural information whereas Section 3 describes our
new shallow semantic kernel. Section 4 reports
on our experiments with the above models and, fi-
nally, a conclusion is drawn in Section 5.

2 String and Tree Kernels

Feature design, especially for modeling syntactic
and semantic structures, is one of the most dif-
ficult aspects in defining a learning system as it
requires efficient feature extraction from learning
objects. Kernel methods are an interesting rep-
resentation approach as they allow for the use of

1www.cis.upenn.edu/˜ace

all object substructures as features. In this per-
spective, String Kernel (SK) proposed in (Shawe-
Taylor and Cristianini, 2004) and the Syntactic
Tree Kernel (STK) (Collins and Duffy, 2002) al-
low for modeling structured data in high dimen-
sional spaces.

2.1 String Kernels
The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences, i.e. some of the symbols of the
original string are skipped. Gaps modify the
weight associated with the target substrings as
shown in the following.
LetΣ be a finite alphabet, Σ∗ =

⋃∞
n=0 Σn is the

set of all strings. Given a string s ∈ Σ∗, |s| denotes
the length of the strings and si its compounding
symbols, i.e s = s1..s|s|, whereas s[i : j] selects
the substring sisi+1..sj−1sj from the i-th to the
j-th character. u is a subsequence of s if there
is a sequence of indexes !I = (i1, ..., i|u|), with
1 ≤ i1 < ... < i|u| ≤ |s|, such that u = si1 ..si|u|

or u = s[!I] for short. d(!I) is the distance between
the first and last character of the subsequence u in
s, i.e. d(!I) = i|u| − i1 + 1. Finally, given s1, s2

∈ Σ∗, s1s2 indicates their concatenation.
The set of all substrings of a text corpus forms a

feature space denoted by F = {u1, u2, ..} ⊂ Σ∗.
To map a string s in R∞ space, we can use the
following functions: φu(s) =

P
!I:u=s[!I] λ

d(!I) for
some λ ≤ 1. These functions count the num-
ber of occurrences of u in the string s and assign
them a weight λd(!I) proportional to their lengths.
Hence, the inner product of the feature vectors for
two strings s1 and s2 returns the sum of all com-
mon subsequences weighted according to their
frequency of occurrences and lengths, i.e.

SK(s1, s2) =
X

u∈Σ∗

φu(s1) ·φu(s2) =
X

u∈Σ∗

X

!I1:u=s1[!I1]

λd( !I1)

X

!I2:u=t[!I2]

λd( !I2) =
X

u∈Σ∗

X

!I1:u=s1[!I1]

X

!I2:u=t[!I2]

λd( !I1)+d( !I2),

where d(.) counts the number of characters in the
substrings as well as the gaps that were skipped in
the original string.

2.2 Syntactic Tree Kernel (STK)
Tree kernels compute the number of common sub-
structures between two trees T1 and T2 without
explicitly considering the whole fragment space.
Let F = {f1, f2, . . . , f|F|} be the set of tree
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Figure 1: A tree for the sentence ”Anxiety is a disease” with some of its syntactic tree fragments.

fragments and χi(n) be an indicator function,
equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel func-
tion over T1 and T2 is defined as TK(T1, T2) =∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1 and
NT2 are the sets of nodes in T1 and T2, respec-
tively and ∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

∆ function counts the number of subtrees
rooted in n1 and n2 and can be evaluated as fol-
lows (Collins and Duffy, 2002):
1. if the productions at n1 and n2 are different then
∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same,
and n1 and n2 have only leaf children (i.e. they
are pre-terminal symbols) then ∆(n1, n2) = λ;
3. if the productions at n1 and n2 are the same, and
n1 and n2 are not pre-terminals then ∆(n1, n2) =

λ
Ql(n1)

j=1 (1 + ∆(cn1(j), cn2(j))), where l(n1) is the
number of children of n1, cn(j) is the j-th child
of node n and λ is a decay factor penalizing larger
structures.
Figure 1 shows some fragments of the subtree

on the left part. These satisfy the constraint that
grammatical rules cannot be broken. For exam-
ple, [VP [VBZ NP]] is a valid fragment which has
two non-terminal symbols, VBZ and NP, as leaves
whereas [VP [VBZ]] is not a valid feature.

3 Shallow Semantic Kernels

The extraction of semantic representations from
text is a very complex task. For it, tradition-
ally used models are based on lexical similarity
and tends to neglect lexical dependencies. Re-
cently, work such as (Shen and Lapata, 2007; Sur-
deanu et al., 2008; Moschitti et al., 2007; Mos-
chitti and Quarteroni, 2008; Chali and Joty, 2008),
uses PAS to consider such dependencies but only
the latter three researches attempt to completely
exploit PAS with Shallow Semantic Tree Kernels
(SSTKs). Unfortunately, these kernels result com-
putational expensive for real world applications.
In the remainder of this section, we present our
new kernel for PASs and compare it with the pre-
vious SSTK.

PAS

A1

Disorder

rel

characterize

A0

fear

(a)

PAS

R-A0

that

rel

causes

A1

anxiety

(b)

Figure 2: Predicate Argument Structure trees associated
with the sentence: ”Panic disorder is characterized by unex-
pected and intense fear that causes anxiety.”.
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characterize
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fear

PAS

rel

characterize

PAS

A1 rel A0

PAS

A1 rel

characterize

PAS

rel

characterize

A0

Figure 3: Some of the tree substructures useful to capture
shallow semantic properties.

3.1 Shallow Semantic Structures
Shallow approaches to semantic processing are
making large strides in the direction of efficiently
and effectively deriving tacit semantic informa-
tion from text. Large data resources annotated
with levels of semantic information, such as in the
FrameNet (Johnson and Fillmore, 2000) and Prop-
Bank (PB) (Kingsbury and Palmer, 2002) projects,
make it possible to design systems for the auto-
matic extraction of predicate argument structures
(PASs) (Carreras and Màrquez, 2005). PB-based
systems produce sentence annotations like:
[A1 Panic disorder] is [rel characterized] [A0 by unexpected
and intense fear] [R−A0 that] [relcauses] [A1 anxiety].
A tree representation of the above semantic in-
formation is given by the two PAS trees in Fig-
ure 2, where the argument words are replaced by
the head word to reduce data sparseness. Hence,
the semantic similarity between sentences can be
measured in terms of the number of substructures
between the two trees. The required substructures
violate the STK constraint (about breaking pro-
duction rules), i.e. since we need any set of nodes
linked by edges of the initial tree. For example,
interesting semantic fragments of Figure 2.a are
shown in Figure 3.
Unfortunately, STK applied to PAS trees cannot

generate such fragments. To overcome this prob-
lem, a Shallow Semantic Tree Kernel (SSTK) was
designed in (Moschitti et al., 2007).

3.2 Shallow Semantic Tree Kernel (SSTK)
SSTK is obtained by applying two different steps:
first, the PAS tree is transformed by adding a layer
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of SLOT nodes as many as the number of possi-
ble argument types, where each slot is assigned to
an argument following a fixed ordering (e.g. rel,
A0, A1, A2, . . . ). For example, if an A1 is found
in the sentence annotation it will be always posi-
tioned under the third slot. This is needed to “arti-
ficially” allow SSTK to generate structures con-
taining subsets of arguments. For example, the
tree in Figure 2.a is transformed into the first tree
of Fig. 4, where ”null” just states that there is no
corresponding argument type.
Second, to discard fragments only containing

slot nodes, in the STK algorithm, a new step 0 is
added and the step 3 is modified (see Sec. 2.2):
0. if n1 (or n2) is a pre-terminal node and its child
label is null, ∆(n1, n2) = 0;
3. ∆(n1, n2) =

Ql(n1)
j=1 (1 + ∆(cn1(j), cn2(j))) − 1.

For example, Fig. 4 shows the fragments gen-
erated by SSTK. The comparison with the ideal
fragments in Fig. 3 shows that SSTK well approx-
imates the semantic features needed for the PAS
representation. The computational complexity of
SSTK is O(n2), where n is the number of the PAS
nodes (leaves excluded). Considering that the tree
including all the PB arguments contains 52 slot
nodes, the computation becomes very expensive.
To overcome this drawback, in the next section,
we propose a new kernel to efficiently process PAS
trees with no addition of slot nodes.

3.3 Semantic Role Kernel (SRK)

The idea of SRK is to produce all child subse-
quences of a PAS tree, which correspond to se-
quences of predicate arguments. For this purpose,
we can use a string kernel (SK) (see Section 2.1)
for which efficient algorithms have been devel-
oped. Once a sequence of arguments is output by
SK, for each argument, we account for the poten-
tial matches of its children, i.e. the head of the
argument (or more in general the argument word
sequence).
More formally, given two sequences of argu-

ment nodes, s1 and s2, in two PAS trees and
considering the string kernel in Sec 2.1, the
SRK(s1, s2) is defined as:

X

!I1:u=s1[ !I1]
!I2:u=s2[!I2]

Y

l=1..|u|

(1 + σ(s1[$I1l], s2[$I2l]))λ
d( !I1)+d(!I2), (1)

where u is any subsequence of argument nodes,
!Il is the index of the l-th argument node, s[!Il] is
the corresponding argument node in the sequence

s and σ(s1[!I1l], s2[!I2l]) is 1 if the heads of the ar-
guments are identical, otherwise is 0.
Proposition 1 SRK computes the number of all
possible tree substructures shared by the two eval-
uating PAS trees, where the considered substruc-
tures of a tree T are constituted by any set of nodes
(at least two) linked by edges of T .
Proof The PAS trees only contain three node lev-
els and, according to the proposition’s thesis, sub-
structures contain at least two nodes. The num-
ber of substructures shared by two trees, T1 and
T2, constituted by the root node (PAS) and the
subsequences of argument nodes is evaluated by∑

!I1:u=s1[!I1],!I2:u=s2[!I2]
λd(!I1)+d(!I2) (when λ = 1).

Given a node in a shared subsequence u, its child
(i.e. the head word) can be both in T1 and T2,
originating two different shared structures (with
or without such head node). The matches on the
heads (for each shared node of u) are combined
together generating different substructures. Thus
the number of substructures originating from u is
the product,

∏
l=1..|u|(1+σ(s1[!I1l], s2[!I2l])). This

number multiplied by all shared subsequences
leads to Eq. 1. !
We can efficiently compute SRK by following a
similar approach to the string kernel evaluation in
(Shawe-Taylor and Cristianini, 2004) by defining
the following dynamic matrix:

Dp(k, l) =
kX

i=1

lX

r=1

λk−i+l−r × γp−1(s1[1 : i], s2[1 : r]),

(2)

where γp(s1, s2) counts the number of shared sub-
structures of exactly p argument nodes between s1
and s2 and again, s[1 : i] indicates the sequence
portion from argument 1 to i. The above matrix is
then used to evaluate γp(s1a, s2b) =

(
λ2(1 + σ(h(a), h(b)))Dp(|s1|, |s2|) if a = b;

0 otherwise.
(3)

where s1a and s2b indicate the concatenation of
the sequences s and t with the argument nodes, a
and b, respectively and σ(h(a), h(b)) is 1 if the
children of a and b are identical (e.g. same head).
The interesting property is that:
Dp(k, l) = γp−1(s1[1 : k], s2[1 : l]) + λDp(k, l − 1)

+ λDp(k − 1, l) − λ2Dp(k − 1, l − 1).
(4)

To obtain the final kernel, we need to con-
sider all possible subsequence lengths. Let
m be the minimum between |s1| and |s2|,
SRK(s1, s2) =

mX

p=1

γp(s1, s2).
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Figure 4: Fragments of Fig. 2.a produced by the SSTK (similar to those of Fig. 3).

Regarding the processing time, if ρ is the max-
imum number of arguments in a predicate struc-
ture, the worst case computational complexity of
SRK is O(ρ3).

3.4 SRK vs. SSTK
A comparison between SSTK and SRK suggests
the following points: first, although the computa-
tional complexity of SRK is larger than the one
of SSTK, we will show in the experiment section
that the running time (for both training and test-
ing) is much lower. The worse case is not really
informative since as shown in (Moschitti, 2006),
we can design fast algorithm with a linear average
running time (we use such algorithm for SSTK).
Second, although SRK uses trees with only

three levels, in Eq.1, the function σ (defined to
give 1 or 0 if the heads match or not) can be sub-
stituted by any kernel function. Thus, σ can re-
cursively be an SRK (and evaluate Nested PASs
(Moschitti et al., 2007)) or any other potential ker-
nel (over the arguments). The very interesting as-
pect is that the efficient algorithm that we provide
(Eqs 2, 3 and 4) can be accordingly modified to
efficiently evaluate new kernels obtained with the
σ substitution2.
Third, the interesting difference between SRK

and SSTK (in addition to efficiency) is that SSTK
requires an ordered sequence of arguments to eval-
uate the number of argument subgroups (argu-
ments are sorted before running the kernel). This
means that the natural order is lost. SRK instead is
based on subsequence kernels so it naturally takes
into account the order which is very important:
without it, syntactic/semantic properties of pred-
icates cannot be captured, e.g. passive and active
forms have the same argument order for SSTK.
Finally, SRK gives a weight to the predicate

substructures by considering their length, which
also includes gaps, e.g. the sequence (A0, A1) is
more similar to (A0, A1) than (A0, A-LOC, A1),
in turn, the latter produces a heavier match than
(A0, A-LOC, A2, A1) (please see Section 2.1).

2For space reasons we cannot discuss it here.

This is another important property for modeling
shallow semantics similarity.

4 Experiments

Our experiments aim at studying the impact of our
kernels applied to syntactic/semantic structures for
the detection of relations between short texts. In
particular, we first show that our SRK is far more
efficient and effective than SSTK. Then, we study
the impact of the above kernels as well as se-
quence kernels based on words and Part of Speech
Tags and tree kernels for the classification of ques-
tion/answer text pairs.

4.1 Experimental Setup
The task used to test our kernels is the classifi-
cation of the correctness of 〈q, a〉 pairs, where a
is an answer for the query q. The text pair ker-
nel operates by comparing the content of ques-
tions and the content of answers in a separate fash-
ion. Thus, given two pairs p1 = 〈q1, a1〉 and
p2 = 〈q2, a2〉, a kernel function is defined as
K(p1, p2) =

∑
τ Kτ (q1, q2) +

∑
τ Kτ (a1, a2),

where τ varies across different kernel functions
described hereafter.
As a basic kernel machine, we used our

SVM-Light-TK toolkit, available at disi.unitn.
it/moschitti (which is based on SVM-Light
(Joachims, 1999) software). In it, we imple-
mented: the String Kernel (SK), the Syntactic Tree
Kernel (STK), the Shallow Semantic Tree Kernel
(SSTK) and the Semantic Role Kernel (SRK) de-
scribed in sections 2 and 3. Each kernel is associ-
ated with the above linguistic objects: (i) the linear
kernel is used with the bag-of-words (BOW) or the
bag-of-POS-tags (POS) features. (ii) SK is used
with word sequences (i.e. the Word Sequence Ker-
nel, WSK) and POS sequences (i.e. the POS Se-
quence Kernel, PSK). (iii) STK is used with syn-
tactic parse trees automatically derived with Char-
niak’s parser; (iv) SSTK and SRK are applied to
two different PAS trees (see Section 3.1), automat-
ically derived with our SRL system.
It is worth noting that, since answers often con-
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Figure 5: Efficiency of SRK and SSTK

tain more than one PAS, we applied SRK or SSTK
to all pairs P1 × P2 and sum the obtained contri-
bution, where P1 and P2 are the set of PASs of the
first and second answer3. Although different ker-
nels can be used for questions and for answers, we
used (and summed together) the same kernels ex-
cept for those based on PASs, which are only used
on answers.

4.1.1 Datasets
To train and test our text QA classifiers, we
adopted the two datasets of question/answer pairs
available at disi.unitn.it/˜silviaq, contain-
ing answers to only definitional questions. The
datasets are based on the 138 TREC 2001 test
questions labeled as “description” in (Li and Roth,
2005). Each question is paired with all the top
20 answer paragraphs extracted by two basic QA
systems: one trained with the web documents and
the other trained with the AQUAINT data used in
TREC’07.
The WEB corpus (Moschitti et al., 2007) of QA

pairs contains 1,309 sentences, 416 of which are
positive4 answers whereas the TREC corpus con-
tains 2,256 sentences, 261 of which are positive.

4.1.2 Measures and Parameterization
The accuracy of the classifiers is provided by the
average F1 over 5 different samples using 5-fold
cross-validation whereas each plot refers to a sin-
gle fold. We carried out some preliminary experi-
ments of the basic kernels on a validation set and

3More formally, let Pt and Pt′ be the sets of PASs ex-
tracted from text fragments t and t′; the resulting kernel will
beKall(Pt, Pt′) =

P
p∈Pt

P
p′∈Pt′

SRK(p, p′).
4For instance, given the question “What are inverte-

brates?”, the sentence “At least 99% of all animal species
are invertebrates, comprising . . . ” was labeled “-1” , while
“Invertebrates are animals without backbones.” was labeled
“+1”.

we noted that the F1 was maximized by using the
default cost parameters (option -c of SVM-Light),
λ = 0.04 (see Section 2). The trade-off parame-
ter varied according to different kernels on WEB
data (so it needed an ad-hoc estimation) whereas
a value of 10 was optimal for any kernel on the
TREC corpus.

4.2 Shallow Semantic Kernel Efficiency
Section 2 has illustrated that SRK is applied to
more compact PAS trees than SSTK, which runs
on large structures containing as many slots as
the number of possible predicate argument types.
This impacts on the memory occupancy as well
as on the kernel computation speed. To empiri-
cally verify our analytical findings (Section 3.3),
we divided the training (TREC) data in 9 bins of
increasing size (200 instances between two con-
tiguous bins) and we measured the learning and
test time5 for each bin. Figure 5 shows that in
both the classification and learning phases, SRK
is much faster than SSTK. With all training data,
SSTK employs 487.15 seconds whereas SRK only
uses 12.46 seconds, i.e. it is about 40 times faster,
making the experimentation of SVMs with large
datasets feasible. It is worth noting that to imple-
ment SSTK we used the fast version of STK and
that, although the PAS trees are smaller than syn-
tactic trees, they may still contain more than half
million of substructures (when they are formed by
seven arguments).

4.3 Results for Question/Answer
Classification

In these experiments, we tested different kernels
and some of their most promising combinations,
which are simply obtained by adding the different
kernel contributions6 (this yields the joint feature
space of the individual kernels).
Table 1 shows the average F1± the standard de-

viation7 over 5-folds on Web (and TREC) data of
SVMs using different kernels. We note that: (a)
BOW achieves very high accuracy, comparable to
the one produced by STK, i.e. 65.3 vs 65.1; (b)
the BOW+STK combination achieves 66.0, im-

5Processing time in seconds of a Mac-Book Pro 2.4 Ghz.
6All adding kernels are normalized to have a sim-

ilarity score between 0 and 1, i.e. K′(X1, X2) =
K(X1,X2)√

K(X1,X1)×K(X2,X2)
.

7The Std. Dev. of the difference between two classifier
F1s is much lower making statistically significant almost all
our system ranking in terms of performance.
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WEB Corpus
BOW POS PSK WSK STK SSTK SRK BOW+POS BOW+STK PSK+STK WSK+STK STK+SSTK STK+SRK

65.3±2.9 56.8±0.8 62.5±2.3 65.7±6.0 65.1±3.9 52.9±1.7 50.8±1.2 63.7±1.6 66.0±2.7 65.3±2.4 66.6±3.0 (+WSK) 68.0±2.7 (+WSK) 68.2±4.3
TREC Corpus

24.2±5.0 26.5±7.9 31.6±6.8 14.0±4.2 33.1±3.8 21.8±3.7 23.6±4.7 31.9±7.1 30.3±4.1 36.4±7.0 23.7±3.9 (+PSK) 37.2±6.9 (+PSK) 39.1±7.3

Table 1: F1 ± Std. Dev. of the question/answer classifier according to several kernels on the WEB and
TREC corpora.

proving both BOW and STK; (c) WSK (65.7) im-
proves BOW and it is enhanced by WSK+STK
(66.6), demonstrating that word sequences and
STKs are very relevant for this task; and fi-
nally, WSK+STK+SSTK is slightly improved by
WSK+STK+SRK, 68.0% vs 68.2% (not signifi-
cantly) and both improve on WSK+STK.
The above findings are interesting as the syntac-

tic information provided by STK and the semantic
information brought by WSK and SRK improve
on BOW. The high accuracy of BOW is surprising
if we consider that at classification time, instances
of the training models (e.g. support vectors) are
compared with different test examples since ques-
tions cannot be shared between training and test
set8. Therefore the answer words should be dif-
ferent and useless to generalize rules for answer
classification. However, error analysis reveals that
although questions are not shared between train-
ing and test set, there are common words in the
answers due to typical Web page patterns which
indicate if a retrieved passage is an incorrect an-
swer, e.g. Learn more about X.
Although the ability to detect these patterns is

beneficial for a QA system as it improves its over-
all accuracy, it is slightly misleading for the study
that we are carrying out. Thus, we experimented
with the TREC corpus which does not contain
Web extra-linguistic texts and it is more complex
from a QA task viewpoint (it is more difficult to
find a correct answer).
Table 1 also shows the classification results on

the TREC dataset. A comparative analysis sug-
gests that: (a) the F1 of all models is much lower
than for the Web dataset; (b) BOW shows the low-
est accuracy (24.2) and also the accuracy of its
combination with STK (30.3) is lower than the
one of STK alone (33.1); (c) PSK (31.6) improves
POS (26.5) information and PSK+STK (36.4) im-
proves on PSK and STK; and (d) PAS adds further

8Sharing questions between test and training sets would
be an error from a machine learning viewpoint as we cannot
expect new questions to be identical to those in the training
set.

information as the best model is PSK+STK+SRK,
which improves BOW from 24.2 to 39.1, i.e. 61%.
Finally, it is worth noting that SRK provides a
higher improvement (39.1-36.4) than SSTK (37.2-
36.4).
4.4 Precision/Recall Curves
To better study the benefit of the proposed linguis-
tic structures, we also plotted the Precision/Recall
curves (one fold for each corpus). Figure 6 shows
the curve of some interesting kernels applied to
the Web dataset. As expected, BOW shows the
lowest curves, although, its relevant contribution
is evident. STK improves BOW since it pro-
vides a better model generalization by exploit-
ing syntactic structures. Also, WSK can gener-
ate a more accurate model than BOW since it uses
n-grams (with gaps) and when it is summed to
STK, a very accurate model is obtained9. Finally,
WSK+STK+SRK improves all the models show-
ing the potentiality of PASs.
Such curves show that there is no superior

model. This is caused by the high contribution
of BOW, which de-emphasize all the other mod-
els’s result. In this perspective, the results on
TREC are more interesting as shown by Figure 7
since the contribution of BOW is very low making
the difference in accuracy with the other linguis-
tic models more evident. PSK+STK+SRK, which
encodes the most advanced syntactic and semantic
information, shows a very high curve which out-
performs all the others.
The analysis of the above results suggests that:

first as expected, BOW does not prove very rel-
evant to capture the relations between short texts
from examples. In the QA classification, while
BOW is useful to establish the initial ranking by
measuring the similarity between question and an-
swer, it is almost irrelevant to capture typical rules
suggesting if a description is valid or not. Indeed,
since test questions are not in the training set, their
words as well as those of candidate answers will
be different, penalizing BOW models. In these

9Some of the kernels have been removed from the figures
so that the plots result more visible.
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Figure 6: Precision/Recall curves of some kernel
combinations on the WEB dataset.
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Figure 7: Precision/Recall curves of some kernel
combinations on the TREC dataset.

conditions, we need to rely on syntactic structures
which at least allow for detecting well formed de-
scriptions.
Second, the results show that STK is important

to detect typical description patterns but also POS
sequences provide additional information since
they are less sparse than tree fragments. Such pat-
terns improve on the bag of POS-tags by about 6%
(see POS vs PSK). This is a relevant result consid-
ering that in standard text classification bigrams or
trigrams are usually ineffective.
Third, although PSK+STK generates a very rich

feature set, SRK significantly improves the classi-
fication F1 by about 3%, suggesting that shallow
semantics can be very useful to detect if an an-
swer is well formed and is related to a question.
Error analysis revealed that PAS can provide pat-
terns like:
- A0(X) R-A0(that) rel(result) A1(Y)

- A1(X) rel(characterize) A0(Y),
where X and Y need not necessarily be matched.
Finally, the best model, PSK+STK+SRK, im-

proves on BOW by 61%. This is strong evidence
that complex natural language tasks require ad-
vanced linguistic information that should be ex-
ploited by powerful algorithms such as SVMs
and using effective feature engineering techniques
such as kernel methods.

5 Conclusion
In this paper, we have studied several types
of syntactic/semantic information: bag-of-words
(BOW), bag-of-POS tags, syntactic parse trees
and predicate argument structures (PASs), for the
design of short text pair classifiers. Our learn-
ing framework is constituted by Support Vector
Machines (SVMs) and kernel methods applied
to automatically generated syntactic and semantic
structures.
In particular, we designed (i) a new Semantic

Role Kernel (SRK) based on a very fast algorithm;
(ii) a new sequence kernel over POS tags to en-
code shallow syntactic information; (iii) many ker-
nel combinations (to our knowledge no previous
work uses so many different kernels) which allow
for the study of the role of several linguistic levels
in a well defined statistical framework.
The results on two different question/answer

classification corpora suggest that (a) SRK for pro-
cessing PASs is more efficient and effective than
previous models, (b) kernels based on PAS, POS-
tag sequences and syntactic parse trees improve on
BOW on both datasets and (c) on the TREC data
the improvement is remarkably high, e.g. about
61%.
Promising future work concerns the definition

of a kernel on the entire argument information
(e.g. by means of lexical similarity between all the
words of two arguments) and the design of a dis-
course kernel to exploit the relational information
gathered from different sentence pairs. A closer
relationship between questions and answers can be
exploited with models presented in (Moschitti and
Zanzotto, 2007; Zanzotto and Moschitti, 2006).
Also the use of PAS derived from FrameNet and
PropBank (Giuglea and Moschitti, 2006) appears
to be an interesting research line.
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Abstract
Recent research has shown that language
and the socio-cognitive phenomena asso-
ciated with it can be aptly modeled and
visualized through networks of linguistic
entities. However, most of the existing
works on linguistic networks focus only
on the local properties of the networks.
This study is an attempt to analyze the
structure of languages via a purely struc-
tural technique, namely spectral analysis,
which is ideally suited for discovering the
global correlations in a network. Appli-
cation of this technique to PhoNet, the
co-occurrence network of consonants, not
only reveals several natural linguistic prin-
ciples governing the structure of the con-
sonant inventories, but is also able to quan-
tify their relative importance. We believe
that this powerful technique can be suc-
cessfully applied, in general, to study the
structure of natural languages.

1 Introduction

Language and the associated socio-cognitive phe-
nomena can be modeled as networks, where the
nodes correspond to linguistic entities and the
edges denote the pairwise interaction or relation-
ship between these entities. The study of lin-
guistic networks has been quite popular in the re-
cent times and has provided us with several in-
teresting insights into the nature of language (see
Choudhury and Mukherjee (to appear) for an ex-
tensive survey). Examples include study of the
WordNet (Sigman and Cecchi, 2002), syntactic
dependency network of words (Ferrer-i-Cancho,
2005) and network of co-occurrence of conso-
nants in sound inventories (Mukherjee et al., 2008;
Mukherjee et al., 2007).

∗This research has been conducted during the author’s in-
ternship at Microsoft Research India.

Most of the existing studies on linguistic net-
works, however, focus only on the local structural
properties such as the degree and clustering coef-
ficient of the nodes, and shortest paths between
pairs of nodes. On the other hand, although it is
a well known fact that the spectrum of a network
can provide important information about its global
structure, the use of this powerful mathematical
machinery to infer global patterns in linguistic net-
works is rarely found in the literature. Note that
spectral analysis, however, has been successfully
employed in the domains of biological and social
networks (Farkas et al., 2001; Gkantsidis et al.,
2003; Banerjee and Jost, 2007). In the context of
linguistic networks, (Belkin and Goldsmith, 2002)
is the only work we are aware of that analyzes the
eigenvectors to obtain a two dimensional visualize
of the network. Nevertheless, the work does not
study the spectrum of the graph.

The aim of the present work is to demonstrate
the use of spectral analysis for discovering the
global patterns in linguistic networks. These pat-
terns, in turn, are then interpreted in the light of ex-
isting linguistic theories to gather deeper insights
into the nature of the underlying linguistic phe-
nomena. We apply this rather generic technique
to find the principles that are responsible for shap-
ing the consonant inventories, which is a well re-
searched problem in phonology since 1931 (Tru-
betzkoy, 1931; Lindblom and Maddieson, 1988;
Boersma, 1998; Clements, 2008). The analysis
is carried out on a network defined in (Mukherjee
et al., 2007), where the consonants are the nodes
and there is an edge between two nodes u and v
if the consonants corresponding to them co-occur
in a language. The number of times they co-occur
across languages define the weight of the edge. We
explain the results obtained from the spectral anal-
ysis of the network post-facto using three linguis-
tic principles. The method also automatically re-
veals the quantitative importance of each of these
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principles.
It is worth mentioning here that earlier re-

searchers have also noted the importance of the
aforementioned principles. However, what was
not known was how much importance one should
associate with each of these principles. We also
note that the technique of spectral analysis neither
explicitly nor implicitly assumes that these princi-
ples exist or are important, but deduces them auto-
matically. Thus, we believe that spectral analysis
is a promising approach that is well suited to the
discovery of linguistic principles underlying a set
of observations represented as a network of enti-
ties. The fact that the principles “discovered” in
this study are already well established results adds
to the credibility of the method. Spectral analysis
of large linguistic networks in the future can possi-
bly reveal hitherto unknown universal principles.

The rest of the paper is organized as follows.
Sec. 2 introduces the technique of spectral anal-
ysis of networks and illustrates some of its ap-
plications. The problem of consonant inventories
and how it can be modeled and studied within the
framework of linguistic networks are described in
Sec. 3. Sec. 4 presents the spectral analysis of
the consonant co-occurrence network, the obser-
vations and interpretations. Sec. 5 concludes by
summarizing the work and the contributions and
listing out future research directions.

2 A Primer to Spectral Analysis

Spectral analysis1 is a powerful tool capable of
revealing the global structural patterns underly-
ing an enormous and complicated environment
of interacting entities. Essentially, it refers to
the systematic study of the eigenvalues and the
eigenvectors of the adjacency matrix of the net-
work of these interacting entities. Here we shall
briefly review the basic concepts involved in spec-
tral analysis and describe some of its applications
(see (Chung, 1994; Kannan and Vempala, 2008)
for details).

A network or a graph consisting of n nodes (la-
beled as 1 through n) can be represented by a n×n
square matrix A, where the entry aij represents the
weight of the edge from node i to node j. A, which
is known as the adjacency matrix, is symmetric for
an undirected graph and have binary entries for an

1The term spectral analysis is also used in the context of
signal processing, where it refers to the study of the frequency
spectrum of a signal.

unweighted graph. λ is an eigenvalue of A if there
is an n-dimensional vector x such that

Ax = λx

Any real symmetric matrix A has n (possibly non-
distinct) eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1, and
corresponding n eigenvectors that are mutually or-
thogonal. The spectrum of a graph is the set of the
distinct eigenvalues of the graph and their corre-
sponding multiplicities. It is usually represented
as a plot with the eigenvalues in x-axis and their
multiplicities plotted in the y-axis.

The spectrum of real and random graphs dis-
play several interesting properties. Banerjee and
Jost (2007) report the spectrum of several biologi-
cal networks that are significantly different from
the spectrum of artificially generated graphs2.
Spectral analysis is also closely related to Prin-
cipal Component Analysis and Multidimensional
Scaling. If the first few (say d) eigenvalues of a
matrix are much higher than the rest of the eigen-
values, then it can be concluded that the rows of
the matrix can be approximately represented as
linear combinations of d orthogonal vectors. This
further implies that the corresponding graph has
a few motifs (subgraphs) that are repeated a large
number of time to obtain the global structure of
the graph (Banerjee and Jost, to appear).

Spectral properties are representative of an n-
dimensional average behavior of the underlying
system, thereby providing considerable insight
into its global organization. For example, the prin-
cipal eigenvector (i.e., the eigenvector correspond-
ing to the largest eigenvalue) is the direction in
which the sum of the square of the projections
of the row vectors of the matrix is maximum. In
fact, the principal eigenvector of a graph is used to
compute the centrality of the nodes, which is also
known as PageRank in the context of WWW. Sim-
ilarly, the second eigen vector component is used
for graph clustering.

In the next two sections we describe how spec-
tral analysis can be applied to discover the orga-
nizing principles underneath the structure of con-
sonant inventories.

2Banerjee and Jost (2007) report the spectrum of the
graph’s Laplacian matrix rather than the adjacency matrix.
It is increasingly popular these days to analyze the spectral
properties of the graph’s Laplacian matrix. However, for rea-
sons explained later, here we will be conduct spectral analysis
of the adjacency matrix rather than its Laplacian.
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Figure 1: Illustration of the nodes and edges of PlaNet and PhoNet along with their respective adjacency
matrix representations.

3 Consonant Co-occurrence Network

The most basic unit of human languages are the
speech sounds. The repertoire of sounds that make
up the sound inventory of a language are not cho-
sen arbitrarily even though the speakers are ca-
pable of producing and perceiving a plethora of
them. In contrast, these inventories show excep-
tionally regular patterns across the languages of
the world, which is in fact, a common point of
consensus in phonology. Right from the begin-
ning of the 20th century, there have been a large
number of linguistically motivated attempts (Tru-
betzkoy, 1969; Lindblom and Maddieson, 1988;
Boersma, 1998; Clements, 2008) to explain the
formation of these patterns across the consonant
inventories. More recently, Mukherjee and his col-
leagues (Choudhury et al., 2006; Mukherjee et al.,
2007; Mukherjee et al., 2008) studied this problem
in the framework of complex networks. Since here
we shall conduct a spectral analysis of the network
defined in Mukherjee et al. (2007), we briefly sur-
vey the models and the important results of their
work.

Choudhury et al. (2006) introduced a bipartite
network model for the consonant inventories. For-
mally, a set of consonant inventories is represented
as a graph G = 〈VL, VC , Elc〉, where the nodes in
one partition correspond to the languages (VL) and
that in the other partition correspond to the conso-
nants (VC). There is an edge (vl, vc) between a
language node vl ∈ VL (representing the language

l) and a consonant node vc ∈ VC (representing the
consonant c) iff the consonant c is present in the
inventory of the language l. This network is called
the Phoneme-Language Network or PlaNet and
represent the connections between the language
and the consonant nodes through a 0-1 matrix A
as shown by a hypothetical example in Fig. 1. Fur-
ther, in (Mukherjee et al., 2007), the authors define
the Phoneme-Phoneme Network or PhoNet as the
one-mode projection of PlaNet onto the consonant
nodes, i.e., a network G = 〈VC , Ecc′ 〉, where the
nodes are the consonants and two nodes vc and
vc
′ are linked by an edge with weight equal to the

number of languages in which both c and c′ occur
together. In other words, PhoNet can be expressed
as a matrix B (see Fig. 1) such that B = AAT−D
where D is a diagonal matrix with its entries cor-
responding to the frequency of occurrence of the
consonants. Similarly, we can also construct the
one-mode projection of PlaNet onto the language
nodes (which we shall refer to as the Language-
Language Graph or LangGraph) can be expressed
as B′ = ATA −D′, where D′ is a diagonal ma-
trix with its entries corresponding to the size of the
consonant inventories for each language.

The matrix A and hence, B and B′ have been
constructed from the UCLA Phonological Seg-
ment Inventory Database (UPSID) (Maddieson,
1984) that hosts the consonant inventories of 317
languages with a total of 541 consonants found
across them. Note that, UPSID uses articulatory
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features to describe the consonants and assumes
these features to be binary-valued, which in turn
implies that every consonant can be represented
by a binary vector. Later on, we shall use this rep-
resentation for our experiments.

By construction, we have |VL| = 317, |VC | =
541, |Elc| = 7022, and |Ecc′ | = 30412. Conse-
quently, the order of the matrix A is 541 × 317
and that of the matrix B′ is 541× 541. It has been
found that the degree distribution of both PlaNet
and PhoNet roughly indicate a power-law behavior
with exponential cut-offs towards the tail (Choud-
hury et al., 2006; Mukherjee et al., 2007). Further-
more, PhoNet is also characterized by a very high
clustering coefficient. The topological properties
of the two networks and the generative model
explaining the emergence of these properties are
summarized in (Mukherjee et al., 2008). However,
all the above properties are useful in characteriz-
ing the local patterns of the network and provide
very little insight about its global structure.

4 Spectral Analysis of PhoNet

In this section we describe the procedure and re-
sults of the spectral analysis of PhoNet. We begin
with computation of the spectrum of PhoNet. Af-
ter the analysis of the spectrum, we systematically
investigate the top few eigenvectors of PhoNet
and attempt to characterize their linguistic signif-
icance. In the process, we also analyze the corre-
sponding eigenvectors of LanGraph that helps us
in characterizing the properties of languages.

4.1 Spectrum of PhoNet
Using a simple Matlab script we compute the
spectrum (i.e., the list of eignevalues along with
their multiplicities) of the matrix B correspond-
ing to PhoNet. Fig. 2(a) shows the spectral plot,
which has been obtained through binning3 with a
fixed bin size of 20. In order to have a better visu-
alization of the spectrum, in Figs. 2(b) and (c) we
further plot the top 50 (absolute) eigenvalues from
the two ends of the spectrum versus the index rep-
resenting their sorted order in doubly-logarithmic
scale. Some of the important observations that one
can make from these results are as follows.

First, the major bulk of the eigenvalues are con-
centrated at around 0. This indicates that though

3Binning is the process of dividing the entire range of a
variable into smaller intervals and counting the number of
observations within each bin or interval. In fixed binning, all
the intervals are of the same size.

the order of B is 541 × 541, its numerical rank is
quite low. Second, there are at least a few very
large eigenvalues that dominate the entire spec-
trum. In fact, 89% of the spectrum, or the square
of the Frobenius norm, is occupied by the princi-
pal (i.e., the topmost) eigenvalue, 92% is occupied
by the first and the second eigenvalues taken to-
gether, while 93% is occupied by the first three
taken together. The individual contribution of the
other eigenvalues to the spectrum is significantly
lower than that of the top three. Third, the eigen-
values on either ends of the spectrum tend to decay
gradually, mostly indicating a power-law behavior.
The power-law exponents at the positive and the
negative ends are -1.33 (the R2 value of the fit is
0.98) and -0.88 (R2 ∼ 0.92) respectively.

The numerically low rank of PhoNet suggests
that there are certain prototypical structures that
frequently repeat themselves across the consonant
inventories, thereby, increasing the number of 0
eigenvalues to a large extent. In other words, all
the rows of the matrix B (i.e., the inventories) can
be expressed as the linear combination of a few
independent row vectors, also known as factors.

Furthermore, the fact that the principal eigen-
value constitutes 89% of the Frobenius norm of the
spectrum implies that there exist one very strong
organizing principle which should be able to ex-
plain the basic structure of the inventories to a very
good extent. Since the second and third eigen-
values are also significantly larger than the rest
of the eigenvalues, one should expect two other
organizing principles, which along with the basic
principle, should be able to explain, (almost) com-
pletely, the structure of the inventories. In order
to “discover” these principles, we now focus our
attention to the first three eigenvectors of PhoNet.

4.2 The First Eigenvector of PhoNet

Fig. 2(d) shows the first eigenvector component
for each consonant node versus its frequency of
occurrence across the language inventories (i.e., its
degree in PlaNet). The figure clearly indicates that
the two are highly correlated (r = 0.99), which in
turn means that 89% of the spectrum and hence,
the organization of the consonant inventories, can
be explained to a large extent by the occurrence
frequency of the consonants. The question arises:
Does this tell us something special about the struc-
ture of PhoNet or is it always the case for any sym-
metric matrix that the principal eigenvector will
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Figure 2: Eigenvalues and eigenvectors of B. (a) Binned distribution of the eigenvalues (bin size = 20)
versus their multiplicities. (b) the top 50 (absolute) eigenvalues from the positive end of the spectrum and
their ranks. (c) Same as (b) for the negative end of the spectrum. (d), (e) and (f) respectively represents
the first, second and the third eigenvector components versus the occurrence frequency of the consonants.

be highly correlated with the frequency? We as-
sert that the former is true, and indeed, the high
correlation between the principal eigenvector and
the frequency indicates high “proportionate co-
occurrence” - a term which we will explain.

To see this, consider the following 2n× 2n ma-
trix X

X =




0 M1 0 0 0 . . .
M1 0 0 0 0 . . .
0 0 0 M2 0 . . .
0 0 M2 0 0 . . .
...

...
...

...
...

. . .




where Xi,i+1 = Xi+1,i = M(i+1)/2 for all odd
i and 0 elsewhere. Also, M1 > M2 > . . . >
Mn ≥ 1. Essentially, this matrix represents a
graph which is a collection of n disconnected
edges, each having weights M1, M2, and so on.
It is easy to see that the principal eigenvector of
this matrix is (1/

√
2, 1/

√
2, 0, 0, . . . , 0)>, which

of course is very different from the frequency vec-
tor: (M1,M1,M2,M2, . . . , Mn,Mn)>.

At the other extreme, consider an n × n ma-
trix X with Xi,j = Cfifj for some vector f =
(f1, f2, . . . fn)> that represents the frequency of
the nodes and a normalization constant C. This is
what we refer to as ”proportionate co-occurrence”

because the extent of co-occurrence between the
nodes i and j (which is Xi,j or the weight of the
edge between i and j) is exactly proportionate to
the frequencies of the two nodes. The principal
eigenvector in this case is f itself, and thus, corre-
lates perfectly with the frequencies. Unlike this
hypothetical matrix X, PhoNet has all 0 entries
in the diagonal. Nevertheless, this perturbation,
which is equivalent to subtracting f2

i from the ith

diagonal, seems to be sufficiently small to preserve
the “proportionate co-occurrence” behavior of the
adjacency matrix thereby resulting into a high cor-
relation between the principal eigenvector compo-
nent and the frequencies.

On the other hand, to construct the Lapla-
cian matrix, we would have subtracted fi

∑n
j=1 fj

from the ith diagonal entry, which is a much
larger quantity than f2

i . In fact, this operation
would have completely destroyed the correlation
between the frequency and the principal eigen-
vector component because the eigenvector corre-
sponding to the smallest4 eigenvalue of the Lapla-
cian matrix is [1, 1, . . . , 1]>.

Since the first eigenvector of B is perfectly cor-
4The role played by the top eigenvalues and eigenvectors

in the spectral analysis of the adjacency matrix is compara-
ble to that of the smallest eigenvalues and the corresponding
eigenvectors of the Laplacian matrix (Chung, 1994)
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related with the frequency of occurrence of the
consonants across languages it is reasonable to
argue that there is a universally observed innate
preference towards certain consonants. This pref-
erence is often described through the linguistic
concept of markedness, which in the context of
phonology tells us that the substantive conditions
that underlie the human capacity of speech pro-
duction and perception renders certain consonants
more favorable to be included in the inventory than
some other consonants (Clements, 2008). We ob-
serve that markedness plays a very important role
in shaping the global structure of the consonant in-
ventories. In fact, if we arrange the consonants in a
non-increasing order of the first eigenvector com-
ponents (which is equivalent to increasing order
of statistical markedness), and compare the set of
consonants present in an inventory of size s with
that of the first s entries from this hierarchy, we
find that the two are, on an average, more than
50% similar. This figure is surprisingly high be-
cause, in spite of the fact that ∀s s ¿ 541

2 , on an
average s

2 consonants in an inventory are drawn
from the first s entries of the markedness hierarchy
(a small set), whereas the rest s

2 are drawn from the
remaining (541− s) entries (a much larger set).

The high degree of proportionate co-occurrence
in PhoNet implied by this high correlation be-
tween the principal eigenvector and frequency fur-
ther indicates that the innate preference towards
certain phonemes is independent of the presence
of other phonemes in the inventory of a language.

4.3 The Second Eigenvector of PhoNet

Fig. 2(e) shows the second eigenvector component
for each node versus their occurrence frequency. It
is evident from the figure that the consonants have
been clustered into three groups. Those that have
a very low or a very high frequency club around 0
whereas, the medium frequency zone has clearly
split into two parts. In order to investigate the ba-
sis for this split we carry out the following experi-
ment.
Experiment I
(i) Remove all consonants whose frequency of oc-
currence across the inventories is very low (< 5).
(ii) Denote the absolute maximum value of the
positive component of the second eigenvector as
MAX+ and the absolute maximum value of the
negative component as MAX−. If the absolute
value of a positive component is less than 15% of

MAX+ then assign a neutral class to the corre-
sponding consonant; else assign it a positive class.
Denote the set of consonants in the positive class
by C+. Similarly, if the absolute value of a nega-
tive component is less than 15% of MAX− then
assign a neutral class to the corresponding conso-
nant; else assign it a negative class. Denote the set
of consonants in the negative class by C−.
(iii) Using the above training set of the classified
consonants (represented as boolean feature vec-
tors) learn a decision tree (C4.5 algorithm (Quin-
lan, 1993)) to determine the features that are re-
sponsible for the split of the medium frequency
zone into the negative and the positive classes.

Fig. 3(a) shows the decision rules learnt from
the above training set. It is clear from these rules
that the split into C− and C+ has taken place
mainly based on whether the consonants have
the combined “dental alveolar” feature (negative
class) or the “dental” and the “alveolar” features
separately (positive class). Such a combined fea-
ture is often termed ambiguous and its presence in
a particular consonant c of a language l indicates
that the speakers of l are unable to make a distinc-
tion as to whether c is articulated with the tongue
against the upper teeth or the alveolar ridge. In
contrast, if the features are present separately then
the speakers are capable of making this distinc-
tion. In fact, through the following experiment,
we find that the consonant inventories of almost
all the languages in UPSID get classified based on
whether they preserve this distinction or not.
Experiment II
(i) Construct B′ = ATA – D′ (i.e., the adjacency
matrix of LangGraph).
(ii) Compute the second eigenvector of B′. Once
again, the positive and the negative components
split the languages into two distinct groups L+ and
L− respectively.
(iii) For each language l ∈ L+ count the num-
ber of consonants in C+ that occur in l. Sum up
the counts for all the languages in L+ and nor-
malize this sum by |L+||C+|. Similarly, perform
the same step for the pairs (L+,C−), (L−,C+) and
(L−,C−).

From the above experiment, the values obtained
for the pairs (i) (L+,C+), (L+,C−) are 0.35, 0.08
respectively, and (ii) (L−,C+), (L−,C−) are 0.07,
0.32 respectively. This immediately implies that
almost all the languages in L+ preserve the den-
tal/alveolar distinction while those in L− do not.
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Figure 3: Decision rules obtained from the study of (a) the second, and (b) the third eigenvectors. The
classification errors for both (a) and (b) are less than 15%.

4.4 The Third Eigenvector of PhoNet

We next investigate the relationship between the
third eigenvector components of B and the occur-
rence frequency of the consonants (Fig. 2(f)). The
consonants are once again found to get clustered
into three groups, though not as clearly as in the
previous case. Therefore, in order to determine the
basis of the split, we repeat experiments I and II.
Fig. 3(b) clearly indicates that in this case the con-
sonants in C+ lack the complex features that are
considered difficult for articulation. On the other
hand, the consonants in C− are mostly composed
of such complex features. The values obtained for
the pairs (i) (L+,C+), (L+,C−) are 0.34, 0.06 re-
spectively, and (ii) (L−,C+), (L−,C−) are 0.19,
0.18 respectively. This implies that while there is
a prevalence of the consonants from C+ in the lan-
guages of L+, the consonants from C− are almost
absent. However, there is an equal prevalence of
the consonants from C+ and C− in the languages
of L−. Therefore, it can be argued that the pres-
ence of the consonants from C− in a language can
(phonologically) imply the presence of the conso-
nants from C+, but not vice versa. We do not find
any such aforementioned pattern for the fourth and

the higher eigenvector components.

4.5 Control Experiment

As a control experiment we generated a set of ran-
dom inventories and carried out the experiments
I and II on the adjacency matrix, BR, of the ran-
dom version of PhoNet. We construct these in-
ventories as follows. Let the frequency of occur-
rence for each consonant c in UPSID be denoted
by fc. Let there be 317 bins each corresponding to
a language in UPSID. fc bins are then chosen uni-
formly at random and the consonant c is packed
into these bins. Thus the consonant inventories
of the 317 languages corresponding to the bins
are generated. Note that this method of inventory
construction leads to proportionate co-occurrence.
Consequently, the first eigenvector components of
BR are highly correlated to the occurrence fre-
quency of the consonants. However, the plots of
the second and the third eigenvector components
versus the occurrence frequency of the consonants
indicate absolutely no pattern thereby, resulting in
a large number of decision rules and very high
classification errors (upto 50%).
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5 Discussion and Conclusion

Are there any linguistic inferences that can be
drawn from the results obtained through the
study of the spectral plot and the eigenvectors of
PhoNet? In fact, one can correlate several phono-
logical theories to the aforementioned observa-
tions, which have been construed by the past re-
searchers through very specific studies.

One of the most important problems in defin-
ing a feature-based classificatory system is to de-
cide when a sound in one language is different
from a similar sound in another language. Ac-
cording to Ladefoged (2005) “two sounds in dif-
ferent languages should be considered as distinct
if we can point to a third language in which the
same two sounds distinguish words”. The den-
tal versus alveolar distinction that we find to be
highly instrumental in splitting the world’s lan-
guages into two different groups (i.e., L+ and L−
obtained from the analysis of the second eigen-
vectors of B and B′) also has a strong classifi-
catory basis. It may well be the case that cer-
tain categories of sounds like the dental and the
alveolar sibilants are not sufficiently distinct to
constitute a reliable linguistic contrast (see (Lade-
foged, 2005) for reference). Nevertheless, by al-
lowing the possibility for the dental versus alveo-
lar distinction, one does not increase the complex-
ity or introduce any redundancy in the classifica-
tory system. This is because, such a distinction
is prevalent in many other sounds, some of which
are (a) nasals in Tamil (Shanmugam, 1972) and
Malayalam (Shanmugam, 1972; Ladefoged and
Maddieson, 1996), (b) laterals in Albanian (Lade-
foged and Maddieson, 1996), and (c) stops in cer-
tain dialectal variations of Swahili (Hayward et al.,
1989). Therefore, it is sensible to conclude that the
two distinct groups L+ and L− induced by our al-
gorithm are true representatives of two important
linguistic typologies.

The results obtained from the analysis of the
third eigenvectors of B and B′ indicate that im-
plicational universals also play a crucial role in
determining linguistic typologies. The two ty-
pologies that are predominant in this case con-
sist of (a) languages using only those sounds that
have simple features (e.g., plosives), and (b) lan-
guages using sounds with complex features (e.g.,
lateral, ejectives, and fricatives) that automatically
imply the presence of the sounds having sim-
ple features. The distinction between the simple

and complex phonological features is a very com-
mon hypothesis underlying the implicational hier-
archy and the corresponding typological classifi-
cation (Clements, 2008). In this context, Locke
and Pearson (1992) remark that “Infants heavily
favor stop consonants over fricatives, and there
are languages that have stops and no fricatives but
no languages that exemplify the reverse pattern.
[Such] ‘phonologically universal’ patterns, which
cut across languages and speakers are, in fact, the
phonetic properties of Homo sapiens.” (as quoted
in (Vallee et al., 2002)).

Therefore, it turns out that the methodology pre-
sented here essentially facilitates the induction of
linguistic typologies. Indeed, spectral analysis de-
rives, in a unified way, the importance of these
principles and at the same time quantifies their ap-
plicability in explaining the structural patterns ob-
served across the inventories. In this context, there
are at least two other novelties of this work. The
first novelty is in the systematic study of the spec-
tral plots (i.e., the distribution of the eigenvalues),
which is in general rare for linguistic networks,
although there have been quite a number of such
studies in the domain of biological and social net-
works (Farkas et al., 2001; Gkantsidis et al., 2003;
Banerjee and Jost, 2007). The second novelty is
in the fact that there is not much work in the com-
plex network literature that investigates the nature
of the eigenvectors and their interactions to infer
the organizing principles of the system represented
through the network.

To summarize, spectral analysis of the com-
plex network of speech sounds is able to provide
a holistic as well as quantitative explanation of
the organizing principles of the sound inventories.
This scheme for typology induction is not depen-
dent on the specific data set used as long as it is
representative of the real world. Thus, we believe
that the scheme introduced here can be applied as
a generic technique for typological classifications
of phonological, syntactic and semantic networks;
each of these are equally interesting from the per-
spective of understanding the structure and evolu-
tion of human language, and are topics of future
research.
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Via Salaria, 113 - 00198 Roma Italy
navigli@di.uniroma1.it

Abstract

We present a novel graph-based algo-
rithm for the automated disambiguation
of glosses in lexical knowledge resources.
A dictionary graph is built starting from
senses (vertices) and explicit or implicit
relations in the dictionary (edges). The
approach is based on the identification of
edge sequences which constitute cycles in
the dictionary graph (possibly with one
edge reversed) and relate a source to a
target word sense. Experiments are per-
formed on the disambiguation of ambigu-
ous words in the glosses of WordNet and
two machine-readable dictionaries.

1 Introduction

In the last two decades, we have witnessed an
increasing availability of wide-coverage lexical
knowledge resources in electronic format, most
notably thesauri (such as Roget’s Thesaurus (Ro-
get, 1911), the Macquarie Thesaurus (Bernard,
1986), etc.), machine-readable dictionaries (e.g.,
the Longman Dictionary of Contemporary En-
glish (Proctor, 1978)), computational lexicons
(e.g. WordNet (Fellbaum, 1998)), etc.

The information contained in such resources
comprises (depending on their kind) sense inven-
tories, paradigmatic relations (e.g. flesh3

n is a kind
of plant tissue1

n),1 text definitions (e.g. flesh3
n is

defined as “a soft moist part of a fruit”), usage ex-
amples, and so on.

Unfortunately, not all the semantics are made
explicit within lexical resources. Even Word-
Net, the most widespread computational lexicon
of English, provides explanatory information in
the form of textual glosses, i.e. strings of text

1We denote as wi
p the ith sense in a reference dictionary

of a word w with part of speech p.

which explain the meaning of concepts in terms
of possibly ambiguous words.

Moreover, while computational lexicons like
WordNet contain semantically explicit informa-
tion such as, among others, hypernymy and
meronymy relations, most thesauri, glossaries, and
machine-readable dictionaries are often just elec-
tronic transcriptions of their paper counterparts.
As a result, for each entry (e.g. a word sense or
thesaurus entry) they mostly provide implicit in-
formation in the form of free text.

The production of semantically richer lexical
resources can help alleviate the knowledge ac-
quisition bottleneck and potentially enable ad-
vanced Natural Language Processing applications
(Cuadros and Rigau, 2006). However, in order to
reduce the high cost of manual annotation (Ed-
monds, 2000), and to avoid the repetition of this
effort for each knowledge resource, this task must
be supported by wide-coverage automated tech-
niques which do not rely on the specific resource
at hand.

In this paper, we aim to make explicit
large quantities of semantic information implic-
itly contained in the glosses of existing wide-
coverage lexical knowledge resources (specifi-
cally, machine-readable dictionaries and computa-
tional lexicons). To this end, we present a method
for Gloss Word Sense Disambiguation (WSD),
called the Cycles and Quasi-Cycles (CQC) algo-
rithm. The algorithm is based on a novel notion
of cycles in the dictionary graph (possibly with
one edge reversed) which support a disambigua-
tion choice. First, a dictionary graph is built from
the input lexical knowledge resource. Next, the
method explicitly disambiguates the information
associated with sense entries (i.e. gloss words)
by associating senses for which the richest sets of
paths can be found in the dictionary graph.

In Section 2, we provide basic definitions,
present the gloss disambiguation algorithm, and il-
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lustrate the approach with an example. In Section
3, we present a set of experiments performed on
a variety of lexical knowledge resources, namely
WordNet and two machine-readable dictionaries.
Results are discussed in Section 4, and related
work is presented in Section 5. We give our con-
clusions in Section 6.

2 Approach

2.1 Definitions

Given a dictionary D, we define a dictionary
graph as a directed graph G = (V,E) whose ver-
tices V are the word senses in the sense inventory
of D and whose set of unlabeled edges E is ob-
tained as follows:

i) Initially, E := ∅;

ii) For each sense s ∈ V , and for each lexico-
semantic relation in D connecting sense s to
s′ ∈ V , we perform: E := E ∪ {(s, s′)};

iii) For each sense s ∈ V , let gloss(s) be the set
of content words in its part-of-speech tagged
gloss. Then for each content word w′ in
gloss(s) and for each sense s′ of w′, we
add the corresponding edge to the dictionary
graph, i.e.: E := E ∪ {(s, s′)}.

For instance, consider WordNet as our input
dictionary D. As a result of step (ii), given the se-
mantic relation “sport1n is a hypernym of racing1

n”,
the edge (racing1

n, sport1n) is added toE (similarly,
an inverse edge is added due to the hyponymy rela-
tion holding between sport1n and racing1

n). During
step (iii), the gloss of racing1

n “the sport of engag-
ing in contests of speed” is part-of-speech tagged,
obtaining the following set of content words:
{ sportn, engagev, contestn, speedn }. The fol-
lowing edges are then added to E: { (racing1

n,
sport1n), (racing1

n, sport2n), . . . , (racing1
n, sport6n),

. . . , (racing1
n, speed1

n), . . . , (racing1
n, speed5

n) }.
The above steps are performed for all the senses in
V .

We now recall the definition of graph cycle. A
cycle in a graphG is a sequence of edges ofG that
forms a path v1 → v2 → · · · → vn (vi ∈ V ) such
that the first vertex of the path corresponds to the
last, i.e. v1 = vn (Cormen et al., 1990, p. 88).
For example, the cycle in Figure 1(a) is given by
the path racing1

n → contest1n → race3
n → run3

n →
racing1

n in the WordNet dictionary graph. In fact

racing1
n

contest1n

race3
n

run3
n

(a)

racing1
n

contest1n

compete1
v

race2
v

(b)

Figure 1: An example of cycle (a) and quasi-cycle
(b) in WordNet.

contestn occurs in the gloss of racing1
n, race3

n is a
hyponym of contest1n, and so on.

We further provide the definition of quasi-cycle
as a sequence of edges in which the reversal of
the orientation of a single edge creates a cycle
(Bohman and Thoma, 2000). For instance, the
quasi-cycle in Figure 1(b) is given by the path rac-
ing1

n → contest1n → compete1
v → race2

v ← rac-
ing1

n. In fact, the reversal of the edge (racing1
n,

race2
v) creates a cycle.

Finally, we call a path a (quasi-)cycle if it is ei-
ther a cycle or a quasi-cycle. Further, we say that
a path is (quasi-)cyclic if it forms a (quasi-)cycle
in the graph.

2.2 The CQC Algorithm
Given a dictionary graph G = (V,E) built as de-
scribed in the previous section, our objective is
to disambiguate dictionary glosses with the sup-
port of (quasi-)cycles. (Quasi-)cyclic paths are in-
tuitively better than unconstrained paths as each
sense choice s is reinforced by the very fact of s
being reachable from itself through a sequence of
other senses.

Let a(s) be the set of ambiguous words to be
disambiguated in the part-of-speech tagged gloss
of sense s. Given a word w′ ∈ a(s), our aim is
to disambiguate w′ according to the sense inven-
tory of D, i.e. to assign it the right sense chosen
from its set of senses Senses(w′). To this end, we
propose the use of a graph-based algorithm which
searches the dictionary graph and collects the fol-
lowing kinds of (quasi-)cyclic paths:

i) s→ s′ → s1 → · · · → sn−2 → s (cycle)

ii) s→ s′ → s1 → · · · → sn−2 ← s
(quasi-cycle)

595



CQC-Algorithm(s, w′)
1 for each sense s′ ∈ Senses(w′)
2 CQC(s′) := DFS(s′, s)
3 All CQC :=

⋃
s′∈Senses(w′)CQC(s′)

4 for each sense s′ ∈ Senses(w′)
5 score(s′) := 0
6 for each path c ∈ CQC(s′)
7 l := length(c)
8 v := ω(l) · 1

NumCQC(All CQC,l)

9 score(s′) := score(s′) + v
10 return argmax

s′∈Senses(w′)
score(s′)

Table 1: The Cycles and Quasi-Cycles (CQC) al-
gorithm in pseudocode.

where s is our source sense, s′ is a candidate sense
of w′ ∈ gloss(s), si is a sense in V , and n is
the length of the path (given by the number of its
edges). We note that both kinds of paths start and
end with the same vertex s, and that we restrict
quasi-cycles to those whose inverted edge departs
from s. To avoid any redundancy, we require that
no vertex is repeated in the path aside from the
start/end vertex (i.e. s 6= s′ 6= si 6= sj for any
i, j ∈ {1, . . . , n− 2}).

The Cycles and Quasi-Cycles (CQC) algorithm,
reported in pseudo-code in Table 1, takes as input a
source sense s and a target wordw′ (in our setting2

w′ ∈ a(s)). It consists of two main phases.
During steps 1-3, cycles and quasi-cycles are

sought for each sense of w′. This step is per-
formed with a depth-first search (DFS, cf. (Cor-
men et al., 1990, pp. 477–479)) up to a depth
δ. To this end, we first define next(s) = {s′′ :
(s, s′′) ∈ E}, that is the set of senses which can
be directly reached from sense s. The DFS starts
from a sense s′ ∈ Senses(w′), and recursively ex-
plores the senses in next(s′) until sense s or a
sense in next(s) is encountered, obtaining a cy-
cle or a quasi-cycle, respectively. For each sense
s′ of w′ the DFS returns the full set CQC(s′)
of (quasi-)cyclic paths collected. Note that the
DFS recursively keeps track of previously visited
senses, so as to discard (quasi-)cycles including
the same sense twice. Finally, in step 3, All CQC
is set to store the cycles and quasi-cycles for all
the senses of w′.

2Note that potentially w′ can be any word of interest. The
very same algorithm can be applied to determine semantic
similarity or to disambiguate collocations.

The second phase (steps 4-10) computes a score
for each sense s′ of w′ based on the paths col-
lected for s′ during the first phase. Let c be such
a path, and let l be its length, i.e. the number of
edges in the path. Then the contribution of c to the
score of s′ is given by a function of its length ω(l),
which associates with l a number between 0 and 1.
This contribution is normalized by a factor given
byNumCQC(All CQC, l), which calculates the
overall number of paths of length l. In this work,
we will employ the function ω(l) = 1/el, which
weighs a path with the inverse of the exponential
of its length (so as to exponentially decrease the
contribution of longer paths)3. Steps 4-9 are re-
peated for each candidate sense ofw′. Finally, step
10 returns the highest-scoring sense of w′.

As a result of the systematic application of
the CQC algorithm to the dictionary graph G =
(V,E) associated with a dictionary D, a graph
Ĝ = (V, Ê) is output, where V is again the sense
inventory of D, and Ê ⊆ E, such that each edge
(s, s′) ∈ Ê either represents an unambiguous re-
lation in E (i.e. it was either a lexico-semantic re-
lation in D or a relation between s and a monose-
mous word occurring in its gloss) or is the result
of an execution of the CQC algorithm with input s
and w′ ∈ a(s).

2.3 An Example

Consider the following example: WordNet defines
the third sense of fleshn as “a soft moist part of a
fruit”. As a result of part-of-speech tagging, we
obtain:

gloss(flesh3
n) = {softa ,moista , partn , fruitn}

Let us assume we aim to disambiguate the noun
fruit. Our call to the CQC algorithm in Table 1 is
then CQC-Algorithm(flesh3

n, fruitn).
As a result of the first two steps of the algorithm,

a set of cycles and quasi-cycles for each sense of
fruitn is collected, based on a DFS starting from
the respective senses of our target word (we as-
sume δ = 5). In Figure 2, we show some of the
(quasi-)cycles collected for senses #1 and #3 of
fruitn, respectively defined as “the ripened repro-
ductive body of a seed plant” and “an amount of
a product” (we neglect sense #2 as the length and
number of its paths is not dissimilar from that of
sense #3).

3Other weight functions, such as ω(l) = 1 (which weighs
each path independent of its length) proved to perform worse.
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flesh3
n

fruit1n
berry11

n

pulpy1
a

parenchyma1
n

plant tissue1
n

lychee1
n

custard apple1
n

mango2
n

moist1a

flora2
n

edible fruit1n

skin2
n

hygrophyte1
n

(a)

flesh3
n

fruit3n

newspaper4n

mag1
n

production4
n

(b)

Figure 2: Some cycles and quasi-cycles connect-
ing flesh3

n to fruit1n (a), and fruit3n (b).

During the second phase of the algorithm, and
for each sense of fruitn, the contribution of each
(quasi-)cycle is calculated (steps 6-9 of the algo-
rithm). For example, for sense fruit1n in Figure
2(a), 5 (quasi-)cycles of length 4 and 2 of length 5
were returned by DFS(fruit1n, flesh3

n). As a result,
the following score is calculated:4

score(fruit1n) = 5
e4 · 1

NumCQC(all chains,4)

+ 2
e5 · 1

NumCQC(all chains,5)

= 5
e4·7 + 2

e5·2
= 0.013 + 0.006 = 0.019

whereas for fruit3n (see Figure 2(b)) we get:

score(fruit3n) = 2
e4 · 1

NumCQC(all chains,4)

= 2
e4·7 = 0.005

where NumCQC(All CQC, l) is the total num-
ber of cycles and quasi-cycles of length l over all
the senses of fruitn (according to Figure 2, this
amounts to 7 paths for l = 4 and 2 paths for l = 5).

Finally, the sense with the highest score (i.e.
fruit1n) is returned.

3 Experiments

To test and compare the performance of our al-
gorithm, we performed a set of experiments on a

4Note that, for the sake of simplicity, we are calculating
our scores based on the paths shown in Figure 2. However,
we tried to respect the proportion of paths collected by the
algorithm for the two senses.

variety of resources. First, we summarize the re-
sources (Section 3.1) and algorithms (Section 3.2)
that we adopted. In Section 3.3 we report our ex-
perimental results.

3.1 Resources

The following resources were used in our experi-
ments:

• WordNet (Fellbaum, 1998), the most
widespread computational lexicon of En-
glish. It encodes concepts as synsets, and
provides textual glosses and lexico-semantic
relations between synsets. Its latest version
(3.0) contains around 155,000 lemmas, and
over 200,000 word senses;

• Macquarie Concise Dictionary (Yallop,
2006), a machine-readable dictionary of
(Australian) English, which includes around
50,000 lemmas and almost 120,000 word
senses, for which it provides textual glosses
and examples;

• Ragazzini/Biagi Concise (Ragazzini and Bi-
agi, 2006), a bilingual English-Italian dic-
tionary, containing over 90,000 lemmas and
150,000 word senses. The dictionary pro-
vides Italian translations for each English
word sense, and vice versa.

We used TreeTagger (Schmid, 1997) to part-of-
speech tag the glosses in the three resources.

3.2 Algorithms

Hereafter we briefly summarize the algorithms
that we applied in our experiments:

• CQC: we applied the CQC algorithm as de-
scribed in Section 2.2;

• Cycles, which applies the CQC algorithm but
searches for cycles only (i.e. quasi-cycles are
not collected);

• An adaptation of the Lesk algorithm (Lesk,
1986), which, given a source sense s of word
w and a word w′ occurring in the gloss of s,
determines the right sense of w′ as that which
maximizes the (normalized) overlap between
each sense s′ of w′ and s:

argmax
s′∈Senses(w′)

|next∗(s) ∩ next∗(s′)|
max{|next∗(s)|, |next∗(s′)|}
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where we define next∗(s) = words(s) ∪
next(s), and words(s) is the set of lexical-
izations of sense s (e.g. the synonyms in the
synset s). When WordNet is our reference re-
source, we employ an extension of the Lesk
algorithm, namely Extended Gloss Overlap
(Banerjee and Pedersen, 2003), which ex-
tends the sense definition with words from
the definitions of related senses (such as hy-
pernyms, hyponyms, etc.). We use the same
set of relations available in the authors’ im-
plementation of the algorithm.

We also compared the performance of the above
algorithms with two standard baselines, namely
the First Sense Baseline (abbreviated as FS BL)
and the Random Baseline (Random BL).

3.3 Results

Our experiments concerned the disambiguation of
the gloss words in three datasets, one for each re-
source, namely WordNet, Macquarie Concise, and
Ragazzini/Biagi. In all datasets, given a sense s,
our set a(s) is given by the set of part-of-speech-
tagged ambiguous content words in the gloss of
sense s from our reference dictionary.

WordNet. When using WordNet as a reference
resource, given a sense s whose gloss we aim to
disambiguate, the dictionary graph includes not
only edges connecting s to senses of gloss words
(step (iii) of the graph construction procedure, cf.
Section 2.1), but also those obtained from any of
the WordNet lexico-semantics relations (step (ii)).

For WordNet gloss disambiguation, we em-
ployed the dataset used in the Senseval-3 Gloss
WSD task (Litkowski, 2004), which contains
15,179 content words from 9,257 glosses5. We
compared the performance of CQC, Cycles, Lesk,
and the two baselines. To get full coverage and
high performance, we learned a threshold for each
system below which they recur to the FS heuris-
tic. The threshold and maximum path length were
tuned on a small in-house manually-annotated
dataset of 100 glosses. The results are shown in
Table 2. We also included in the table the perfor-
mance of the best-ranking system in the Senseval-

5Recently, Princeton University released a richer corpus
of disambiguated glosses, namely the “Princeton WordNet
Gloss Corpus” (http://wordnet.princeton.edu).
However, in order to allow for a comparison with the state
of the art (see below), we decided to adopt the Senseval-3
dataset.

Algorithm Prec./Recall
CQC 64.25
Cycles 63.74
Lesk 51.75
TALP 68.60/68.30
FS BL 55.44
Random BL 26.29

Table 2: Gloss WSD performance on WordNet.

3 Gloss WSD task, namely the TALP system
(Castillo et al., 2004).

CQC outperforms all other proposed ap-
proaches, obtaining a 64.25% precision and recall.
We note that Cycles also gets high performance,
compared to Lesk and the baselines. Also, com-
pared to CQC, the difference is not statistically
significant. However, we observe that, if we do
not recur to the first sense as a backoff strategy, we
get a much lower recall for Cycles (P = 65.39, R =
26.70 for CQC, P = 72.03, R = 16.39 for Cycles).

CQC performs about 4 points below the TALP
system. As also discussed later, we believe this re-
sult is relevant, given that our approach does not
rely on additional knowledge resources, as TALP
does (though both algorithms recur to the FS back-
off strategy).

Finally, we observe that the FS baseline has
lower performance than in typical all-words dis-
ambiguation settings (usually above 60% accu-
racy). We believe that this is due to the absence
of monosemous words from the test set, and to
the possibly different distribution of senses in the
dataset.

Macquarie Concise. Automatically disam-
biguating glosses in a computational lexicon
such as WordNet is certainly useful. However,
disambiguating a machine-readable dictionary
is an even more ambitious task. In fact, while
computational lexicons typically encode some ex-
plicit semantic relations which can be used as an
aid to the disambiguation task, machine-readable
dictionaries only rarely provide sense-tagged
information (often in the form of references to
other word senses). As a result, in this latter
setting the dictionary graph typically contains
only edges obtained from the gloss words of sense
s (step (iii), Section 2.1).

To experiment with machine-readable dictio-
naries, we employed the Macquarie Concise Dic-
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Algorithm Prec./Recall
CQC 77.13
Cycles 67.63
Lesk 30.16
FS BL 51.48
Random BL 23.28

Table 3: Gloss WSD performance on Macquarie
Concise.

tionary (Yallop, 2006). A dataset was prepared
by randomly selecting 1,000 word senses from
the dictionary and annotating the content words in
their glosses according to the dictionary sense in-
ventory. Overall, 2,678 words were sense tagged.

The results are shown in Table 3. CQC obtains
an accuracy of 77.13% (in case of ties, a random
choice is made, thus leading to the same precision
and recall), Cycles achieves an accuracy of almost
10% less than CQC (the difference is statistically
significant; p < 0.01). The FS baseline, here, is
based on the first sense listed in the Macquarie
sense inventory, which – in contrast to WordNet
– does not depend on the occurrence frequency of
senses in a semantically-annotated corpus. How-
ever, we note that the FS baseline is not very dif-
ferent from that of the WordNet experiment.

We observe that the Lesk performance is very
low on this dataset (around 7 points above the Ran-
dom BL), due to the impossibility of using the
Extended Gloss Overlap approach (semantic rela-
tions are not available in the Macquarie Concise)
and to the low number of matches between source
and target entries.

Ragazzini/Biagi. Finally, we performed an ex-
periment on the Ragazzini/Biagi English-Italian
machine-readable dictionary. In this experiment,
disambiguating a word w′ in the gloss of a sense
s from one section (e.g. Italian-English) equals to
selecting a word sense s′ of w′ listed in the other
section of the dictionary (e.g. English-Italian). For
example, given the English entry race1

n, translated
as “corsan, garan”, our objective is to assign the
right Italian sense from the Italian-English section
to corsan and garan.

To apply the CQC algorithm, a simple adapta-
tion is needed, so as to allow (quasi-)cycles to con-
nect word senses from the two distinct sections.
The algorithm must seek cyclic and quasi-cyclic
paths, respectively of the kind:

Algorithm Prec./Recall
CQC 89.34
Cycles 85.40
Lesk 63.89
FS BL 73.15
Random BL 51.69

Table 4: Gloss WSD performance on Ragazz-
ini/Biagi.

i) s→ s′ → s1 → · · · → sn−2 → s

ii) s→ s′ → s1 → · · · → sn−2 ← s

where n is the path length, s and s′ are senses re-
spectively from the source (e.g. Italian/English)
and the target (e.g. English/Italian) section of the
dictionary, si is a sense from the target section for
i ≤ k and from the source section for i > k,
for some k such that 0 ≤ k ≤ n − 2. In other
words, the DFS can jump at any time from the tar-
get section to the source section. After the jump,
the depth search continues in the source section, in
the hope to reach s. For example, the following is
a cycle with k = 1:

race1
n→ corsa2

n→ gara2
n→ race1

n

where the edge between corsa2
n and gara2

n is due
to the occurrence of garan in the gloss of corsa2

n

as a domain label for that sense.
To perform this experiment, we randomly se-

lected 250 entries from each section (500 over-
all), including a total number of 1,069 translations
that we manually sense tagged. In Table 4 we re-
port the results of CQC, Cycles and Lesk on this
task. Overall, the figures are higher than in previ-
ous experiments, thanks to a lower average degree
of polysemy of the resource, which also impacts
positively on the FS baseline. However, given a
random baseline of 51.69%, the performance of
CQC, over 89% precision and recall, is signif-
icantly higher. Cycles obtains around 4 points
less than CQC (the difference is statistically sig-
nificant; p < 0.01). The performance of Lesk
(63.89%) is also much higher than in our previ-
ous experiments, thanks to the higher chance of
finding a 1:1 correspondence between the two sec-
tions. However, we observed that this does not al-
ways hold, as also supported by the better results
of CQC.
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4 Discussion

The experiments presented in the previous section
are inherently heterogeneous, due to the different
nature of the resources adopted (a computational
lexicon, a monolingual and a bilingual machine-
readable dictionary). Our aim was to show the
flexibility of our approach in tagging gloss words
with senses from the same dictionary.

We show the average polysemy of the three
datasets in Table 5. Notice that none of the
datasets included monosemous items, so our ex-
periments cannot be compared to typical all-words
disambiguation tasks, where monosemous words
are part of the test set.

Given that words in the Macquarie dataset have
a higher average polysemy than in the Word-
Net dataset, one might wonder why disambiguat-
ing glosses from a computational lexicon such as
WordNet is more difficult than performing a sim-
ilar task on a machine-readable dictionary such
as the Macquarie Concise Dictionary, which does
not provide any explicit semantic hint. We be-
lieve there are at least two reasons for this out-
come: the first specifically concerns the Senseval-
3 Gloss WSD dataset, which does not reflect the
distribution of genus-differentiae terms in dictio-
nary glosses: less than 10% of the items were hy-
pernyms, thus making the task harder. As for the
second reason, we believe that the Macquarie Con-
cise provides more clear-cut definitions, thus mak-
ing sense assignments relatively easier.

An analytical comparison of the results of Cy-
cles and CQC show that, especially for machine-
readable dictionaries, employing both cycles and
quasi-cycles is highly beneficial, as additional sup-
port is provided by the latter patterns. Our results
on WordNet prove to be more difficult to analyze,
because of the need of employing the first sense
heuristic to get full coverage. Also, the maximum
path length used for WordNet was different (δ = 3
according to our tuning, compared to δ = 4 for
Macquarie and Ragazzini/Biagi). However, quasi-
cycles are shown to provide over 10% improve-
ment in terms of recall (at the price of a decrease
in precision of 6.6 points).

Further, we note that the performance of the
CQC algorithm dramatically improves as the max-
imum score (i.e. the score which leads to a sense
assignment) increases. As a result, users can tune
the disambiguation performance based on their
specific needs (coverage, precision, etc.). For in-

WN Mac R/B
Polysemy 6.68 7.97 3.16

Table 5: Average polysemy of the three datasets.

stance, WordNet Gloss WSD can perform up to
85.7% precision and 10.1% recall if we require the
score to be≥ 0.2 and do not use the FS baseline as
a backoff strategy. Similarly, we can reach up to
93.8% prec., 20.0% recall for Macquarie Concise
(score≥ 0.12) and even 95.2% prec., 70.6% recall
(score ≥ 0.1) for Ragazzini/Biagi.

5 Related Work

Word Sense Disambiguation is a large research
field (see (Navigli, 2009) for an up-to-date
overview). However, in this paper we focused on
a specific kind of WSD, namely the disambigua-
tion of dictionary definitions. Seminal works on
the topic date back to the late 1970s, with the de-
velopment of models for the identification of tax-
onomies from lexical resources (Litkowski, 1978;
Amsler, 1980). Subsequent works focused on the
identification of genus terms (Chodorow et al.,
1985) and, more in general, on the extraction of
explicit information from machine-readable dic-
tionaries (see, e.g., (Nakamura and Nagao, 1988;
Ide and Véronis, 1993)). Kozima and Furugori
(1993) provide an approach to the construction
of ambiguous semantic networks from glosses in
the Longman Dictionary of Contemporary English
(LDOCE). In this direction, it is worth citing the
work of Vanderwende (1996) and Richardson et
al. (1998), who describe the construction of Mind-
Net, a lexical knowledge base obtained from the
automated extraction of lexico-semantic informa-
tion from two machine-readable dictionaries. As a
result, weighted relation paths are produced to in-
fer the semantic similarity between pairs of words.

Several heuristics have been presented for the
disambiguation of the genus of a dictionary defini-
tion (Wilks et al., 1996; Rigau et al., 1997). More
recently, a set of heuristic techniques has been pro-
posed to semantically annotate WordNet glosses,
leading to the release of the eXtended WordNet
(Harabagiu et al., 1999; Moldovan and Novischi,
2004). Among the methods, the cross reference
heuristic is the closest technique to our notion of
cycles and quasi-cycles. Given a pair of words w
and w′, this heuristic is based on the occurrence of
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w in the gloss of a sense s′ of w′ and, vice versa,
ofw′ in the gloss of a sense s ofw. In other words,
a graph cycle s→ s′ → s of length 2 is sought.

Based on the eXtended WordNet, a gloss dis-
ambiguation task was organized at Senseval-3
(Litkowski, 2004). Interestingly, the best perform-
ing systems, namely the TALP system (Castillo et
al., 2004), and SSI (Navigli and Velardi, 2005),
are knowledge-based and rely on rich knowledge
resources: respectively, the Multilingual Central
Repository (Atserias et al., 2004), and a propri-
etary lexical knowledge base.

In contrast, the approach presented in this paper
performs the disambiguation of ambiguous words
by exploiting only the reference dictionary itself.
Furthermore, as we showed in Section 3.3, our
method does not rely on WordNet, and can be ap-
plied to any lexical knowledge resource, including
bilingual dictionaries.

Finally, methods in the literature more focused
on a specific disambiguation task include statisti-
cal methods for the attachment of hyponyms un-
der the most likely hypernym in the WordNet tax-
onomy (Snow et al., 2006), structural approaches
based on semantic clusters and distance met-
rics (Pennacchiotti and Pantel, 2006), supervised
machine learning methods for the disambiguation
of meronymy relations (Girju et al., 2003), etc.

6 Conclusions

In this paper we presented a novel approach to dis-
ambiguate the glosses of computational lexicons
and machine-readable dictionaries, with the aim of
alleviating the knowledge acquisition bottleneck.
The method is based on the identification of cy-
cles and quasi-cycles, i.e. circular edge sequences
(possibly with one edge reversed) relating a source
to a target word sense.

The strength of the approach lies in its weakly
supervised nature: (quasi-)cycles rely exclusively
on the structure of the input lexical resources. No
additional resource (such as labeled corpora or ex-
ternal knowledge bases) is required, assuming we
do not resort to the FS baseline. As a result, the
approach can be applied to obtain a semantic net-
work from the disambiguation of virtually any lex-
ical resource available in machine-readable format
for which a sense inventory is provided.

The utility of gloss disambiguation is even
greater in bilingual dictionaries, as idiosyncrasies
such as missing or redundant translations can be

discovered, thus helping lexicographers improve
the resources6. An adaptation similar to that de-
scribed for disambiguating the Ragazzini/Biagi
can be employed for mapping pairs of lexical
resources (e.g. FrameNet (Baker et al., 1998)
to WordNet), thus contributing to the beneficial
knowledge integration process. Following this di-
rection, we are planning to further experiment on
the mapping of FrameNet, VerbNet (Kipper et al.,
2000), and other lexical resources.

The graphs output by the CQC algo-
rithm for our datasets are available from
http://lcl.uniroma1.it/cqc. We
are scheduling the release of a software pack-
age which includes our implementation of the
CQC algorithm and allows its application to any
resource for which a standard interface can be
written.

Finally, starting from the work of Budanitsky
and Hirst (2006), we plan to experiment with the
CQC algorithm when employed as a semantic sim-
ilarity measure, and compare it with the most suc-
cessful existing approaches. Although in this pa-
per we focused on the disambiguation of dictio-
nary glosses, the same approach can be applied for
disambiguating collocations according to a dictio-
nary of choice, thus providing a way to further en-
rich lexical resources with external knowledge.
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Abstract 

Many parsing techniques including pa-
rameter estimation assume the use of a 
packed parse forest for efficient and ac-
curate parsing.  However, they have sev-
eral inherent problems deriving from the 
restriction of locality in the packed parse 
forest.  Deterministic parsing is one of 
solutions that can achieve simple and fast 
parsing without the mechanisms of the 
packed parse forest by accurately choos-
ing search paths.  We propose (i) deter-
ministic shift-reduce parsing for unifica-
tion-based grammars, and (ii) best-first 
shift-reduce parsing with beam threshold-
ing for unification-based grammars.  De-
terministic parsing cannot simply be ap-
plied to unification-based grammar pars-
ing, which often fails because of its hard 
constraints.  Therefore, it is developed by 
using default unification, which almost 
always succeeds in unification by over-
writing inconsistent constraints in gram-
mars. 

1 Introduction 

Over the last few decades, probabilistic unifica-
tion-based grammar parsing has been investi-
gated intensively.  Previous studies (Abney, 
1997; Johnson et al., 1999; Kaplan et al., 2004; 
Malouf and van Noord, 2004; Miyao and Tsujii, 
2005; Riezler et al., 2000) defined a probabilistic 
model of unification-based grammars, including 

head-driven phrase structure grammar (HPSG), 
lexical functional grammar (LFG) and combina-
tory categorial grammar (CCG), as a maximum 
entropy model (Berger et al., 1996).  Geman and 
Johnson (Geman and Johnson, 2002) and Miyao 
and Tsujii (Miyao and Tsujii, 2002) proposed a 
feature forest, which is a dynamic programming 
algorithm for estimating the probabilities of all 
possible parse candidates.  A feature forest can 
estimate the model parameters without unpack-
ing the parse forest, i.e., the chart and its edges.  

Feature forests have been used successfully 
for probabilistic HPSG and CCG (Clark and Cur-
ran, 2004b; Miyao and Tsujii, 2005), and its 
parsing is empirically known to be fast and accu-
rate, especially with supertagging (Clark and 
Curran, 2004a; Ninomiya et al., 2007; Ninomiya 
et al., 2006).  Both estimation and parsing with 
the packed parse forest, however, have several 
inherent problems deriving from the restriction 
of locality.  First, feature functions can be de-
fined only for local structures, which limit the 
parser’s performance.  This is because parsers 
segment parse trees into constituents and factor 
equivalent constituents into a single constituent 
(edge) in a chart to avoid the same calculation.  
This also means that the semantic structures must 
be segmented.  This is a crucial problem when 
we think of designing semantic structures other 
than predicate argument structures, e.g., syn-
chronous grammars for machine translation.  The 
size of the constituents will be exponential if the 
semantic structures are not segmented.  Lastly, 
we need delayed evaluation for evaluating fea-
ture functions.  The application of feature func-
tions must be delayed until all the values in the 
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segmented constituents are instantiated.  This is 
because values in parse trees can propagate any-
where throughout the parse tree by unification.  
For example, values may propagate from the root 
node to terminal nodes, and the final form of the 
terminal nodes is unknown until the parser fi-
nishes constructing the whole parse tree.  Conse-
quently, the design of grammars, semantic struc-
tures, and feature functions becomes complex.  
To solve the problem of locality, several ap-
proaches, such as reranking (Charniak and John-
son, 2005), shift-reduce parsing (Yamada and 
Matsumoto, 2003), search optimization learning 
(Daumé and Marcu, 2005) and sampling me-
thods (Malouf and van Noord, 2004; Nakagawa, 
2007), were studied. 

In this paper, we investigate shift-reduce pars-
ing approach for unification-based grammars 
without the mechanisms of the packed parse for-
est.  Shift-reduce parsing for CFG and dependen-
cy parsing have recently been studied (Nivre and 
Scholz, 2004; Ratnaparkhi, 1997; Sagae and La-
vie, 2005, 2006; Yamada and Matsumoto, 2003), 
through approaches based essentially on deter-
ministic parsing.  These techniques, however, 
cannot simply be applied to unification-based 
grammar parsing because it can fail as a result of 
its hard constraints in the grammar.  Therefore, 
in this study, we propose deterministic parsing 
for unification-based grammars by using default 
unification, which almost always succeeds in 
unification by overwriting inconsistent con-
straints in the grammars.  We further pursue 
best-first shift-reduce parsing for unification-
based grammars. 

Sections 2 and 3 explain unification-based 
grammars and default unification, respectively.  
Shift-reduce parsing for unification-based gram-
mars is presented in Section 4.  Section 5 dis-
cusses our experiments, and Section 6 concludes 
the paper. 

2 Unification-based grammars 

A unification-based grammar is defined as a pair 
consisting of a set of lexical entries and a set of 
phrase-structure rules.  The lexical entries ex-
press word-specific characteristics, while the 
phrase-structure rules describe constructions of 
constituents in parse trees.  Both the phrase-
structure rules and the lexical entries are 
represented by feature structures (Carpenter, 
1992), and constraints in the grammar are forced 
by unification.  Among the phrase-structure rules, 
a binary rule is a partial function: ℱ × ℱ → ℱ , 

where ℱ is the set of all possible feature struc-
tures.  The binary rule takes two partial parse 
trees as daughters and returns a larger partial 
parse tree that consists of the daughters and their 
mother.  A unary rule is a partial function: ℱ → ℱ, which corresponds to a unary branch. 

In the experiments, we used an HPSG (Pollard 
and Sag, 1994), which is one of the sophisticated 
unification-based grammars in linguistics.  Gen-
erally, an HPSG has a small number of phrase-
structure rules and a large number of lexical en-
tries.  Figure 1 shows an example of HPSG pars-
ing of the sentence, “Spring has come.”  The up-
per part of the figure shows a partial parse tree 
for “has come,” which is obtained by unifying 
each of the lexical entries for “has” and “come” 
with a daughter feature structure of the head-
complement rule.  Larger partial parse trees are 
obtained by repeatedly applying phrase-structure 
rules to lexical/phrasal partial parse trees.  Final-
ly, the parse result is output as a parse tree that 
dominates the sentence. 

3 Default unification 

Default unification was originally investigated in 
a series of studies of lexical semantics, in order 
to deal with default inheritance in a lexicon.  It is 
also desirable, however, for robust processing, 
because (i) it almost always succeeds and (ii) a 
feature structure is relaxed such that the amount 
of information is maximized (Ninomiya et al., 
2002).  In our experiments, we tested a simpli-
fied version of Copestake’s default unification.  
Before explaining it, we first explain Carpenter’s 

 

Figure 1: Example of HPSG parsing. 
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two definitions of default unification (Carpenter, 
1993). 

 
(Credulous Default Unification) 𝐹 ⊔ಬ ௖ 𝐺 =  ൜𝐹 ⊔ 𝐺′ฬ𝐺 ′ ⊑ 𝐺 is maximal suchthat 𝐹 ⊔ 𝐺 ′is defined ൠ 

 
(Skeptical Default Unification) 𝐹 ⊔ಬ ௦ 𝐺 =  ⨅(𝐹 ⊔ಬ ௖ 𝐺) 
 𝐹  is called a strict feature structure, whose in-
formation must not be lost, and 𝐺 is called a de-
fault feature structure, whose information can be 
lost but as little as possible so that 𝐹 and 𝐺 can 
be unified. 

Credulous default unification is greedy, in that 
it tries to maximize the amount of information 
from the default feature structure, but it results in 
a set of feature structures.  Skeptical default un-
ification simply generalizes the set of feature 
structures resulting from credulous default unifi-
cation.  Skeptical default unification thus leads to 
a unique result so that the default information 
that can be found in every result of credulous 
default unification remains.  The following is an 
example of skeptical default unification: 

 [F: 𝐚]  ⊔ಬ ୱ ቎F: 1 𝐛G: 1H: 𝐜 ቏ =  ⨅ ቐ൥F: 𝐚G: 𝐛H: 𝐜൩ , ቎F: 1 𝐚G: 1H: 𝐜 ቏ቑ = ൥F: 𝐚G: ⊥H: 𝐜൩. 
 
Copestake mentioned that the problem with 

Carpenter’s default unification is its time com-
plexity (Copestake, 1993).  Carpenter’s default 
unification takes exponential time to find the op-
timal answer, because it requires checking the 
unifiability of the power set of constraints in a 
default feature structure.  Copestake thus pro-
posed another definition of default unification, as 
follows. Let 𝑃𝑉(𝐺) be a function that returns a 
set of path values in 𝐺, and let 𝑃𝐸(𝐺) be a func-
tion that returns a set of path equations, i.e., in-
formation about structure sharing in 𝐺. 

 
(Copestake’s default unification) 𝐹 ⊔ಬ ௔ 𝐺 =  𝐻 ⊔ ⨆ ൝𝐹อ𝐹 ∈ 𝑃𝑉(𝐺)and there is no 𝐹′ ∈ 𝑃𝑉(𝐺)such that 𝐻 ⊔ 𝐹′is defined and𝐻 ⊔ 𝐹 ⊔ 𝐹′is not defined ൡ, 

where 𝐻 = 𝐹 ⊔ ⨆ 𝑃𝐸(𝐺). 
 

Copestake’s default unification works effi-
ciently because all path equations in the default 
feature structure are unified with the strict fea-
ture structures, and because the unifiability of 
path values is checked one by one for each node 
in the result of unifying the path equations.  The 

implementation is almost the same as that of 
normal unification, but each node of a feature 
structure has a set of values marked as “strict” or 
“default.”  When types are involved, however, it 
is not easy to find unifiable path values in the 
default feature structure.  Therefore, we imple-
mented a more simply typed version of Corpes-
take’s default unification. 

Figure 2 shows the algorithm by which we 
implemented the simply typed version.  First, 
each node is marked as “strict” if it belongs to a 
strict feature structure and as “default” otherwise. 
The marked strict and default feature structures 

procedure forced_unification(p, q) 
   queue := {〈p, q〉}; 
   while( queue is not empty ) 
      〈p, q〉 := shift(queue); 
      p := deref(p); q := deref(q); 
      if p ≠ q 
         θ(p) ≔  θ(p) ∪ θ(q); 
         θ(q) ≔ ptr(p); 
         forall f ∈ feat(p)⋃ feat(q) 
            if f ∈ feat(p) ∧ f ∈ feat(q) 
               queue := queue ∪ 〈δ(f, p), δ(f, q)〉; 
            if f ∉ feat(p) ∧ f ∈ feat(q) 
               δ(f, p) ≔  δ(f, q); 
procedure mark(p, m) 
   p := deref(p); 
   if p has not been visited 
      θ(p) := {〈θ(p), m〉}; 
      forall f ∈ feat(p) 
         mark(δ(f, p), m); 
procedure collapse_defaults(p) 
   p := deref(p); 
   if p has not been visited 
      ts := ⊥; td := ⊥; 
      forall 〈t, 𝑠𝑡𝑟𝑖𝑐𝑡〉 ∈ θ(p) 
         ts := ts ⊔ t; 
      forall 〈t, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡〉 ∈ θ(p) 
         td := td ⊔ t; 
      if ts is not defined 
         return false; 
      if ts ⊔ td is defined 
         θ(p) := ts ⊔ td; 
      else 
         θ(p) := ts; 
      forall f ∈ feat(p) 
         collapse_defaults(δ(f, p)); 
procedure default_unification(p, q) 
   mark(p, 𝑠𝑡𝑟𝑖𝑐𝑡); 
   mark(q, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡); 
   forced_unification(p, q); 
   collapse_defaults(p); 
 θ(p) is (i) a single type, (ii) a pointer, or (iii) a set of pairs of 
types and markers in the feature structure node p. 
A marker indicates that the types in a feature structure node 
originally belong to the strict feature structures or the default 
feature structures. 
A pointer indicates that the node has been unified with other 
nodes and it points the unified node.  A function deref tra-
verses pointer nodes until it reaches to non-pointer node. δ(f, p) returns a feature structure node which is reached by 
following a feature f from p. 

 
Figure 2: Algorithm for the simply typed ver-
sion of Corpestake’s default unification. 
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are unified, whereas the types in the feature 
structure nodes are not unified but merged as a 
set of types.  Then, all types marked as “strict” 
are unified into one type for each node.  If this 
fails, the default unification also returns unifica-
tion failure as its result.  Finally, each node is 
assigned a single type, which is the result of type 
unification for all types marked as both “default” 
and “strict” if it succeeds or all types marked 
only as “strict” otherwise. 

4 Shift-reduce parsing for unification-
based grammars 

Non-deterministic shift-reduce parsing for unifi-
cation-based grammars has been studied by Bris-
coe and Carroll (Briscoe and Carroll, 1993).  
Their algorithm works non-deterministically with 
the mechanism of the packed parse forest, and 
hence it has the problem of locality in the packed 
parse forest.  This section explains our shift-
reduce parsing algorithms, which are based on 
deterministic shift-reduce CFG parsing (Sagae 
and Lavie, 2005) and best-first shift-reduce CFG 
parsing (Sagae and Lavie, 2006).  Sagae’s parser 
selects the most probable shift/reduce actions and 
non-terminal symbols without assuming explicit 
CFG rules.  Therefore, his parser can proceed 
deterministically without failure.  However, in 

the case of unification-based grammars, a deter-
ministic parser can fail as a result of its hard con-
straints in the grammar.  We propose two new 
shift-reduce parsing approaches for unification-
based grammars: deterministic shift-reduce pars-
ing and shift-reduce parsing by backtracking and 
beam search.  The major difference between our 
algorithm and Sagae’s algorithm is that we use 
default unification.  First, we explain the deter-
ministic shift-reduce parsing algorithm, and then 
we explain the shift-reduce parsing with back-
tracking and beam search. 

4.1 Deterministic shift-reduce parsing for 
unification-based grammars 

The deterministic shift-reduce parsing algorithm 
for unification-based grammars mainly compris-
es two data structures: a stack S, and a queue W.  
Items in S are partial parse trees, including a lex-
ical entry and a parse tree that dominates the 
whole input sentence.  Items in W are words and 
POSs in the input sentence.  The algorithm de-
fines two types of parser actions, shift and reduce, 
as follows. 

• Shift: A shift action removes the first item 
(a word and a POS) from W.  Then, one 
lexical entry is selected from among the 
candidate lexical entries for the item.  Fi-
nally, the selected lexical entry is put on 
the top of the stack. 

Common features: Sw(i), Sp(i), Shw(i), Shp(i), Snw(i), Snp(i), 
Ssy(i), Shsy(i), Snsy(i), wi-1, wi,wi+1, pi-2, pi-1, pi, pi+1, 
pi+2, pi+3 
Binary reduce features: d, c, spl, syl, hwl, hpl, hll, spr, syr, 
hwr, hpr, hlr 
Unary reduce features: sy, hw, hp, hl 
 
Sw(i) … head word of i-th item from the top of the stack 
Sp(i) … head POS of i-th item from the top of the stack 
Shw(i) … head word of the head daughter of i-th item from the 
top of the stack 
Shp(i) … head POS of the head daughter of i-th item from the 
top of the stack 
Snw(i) … head word of the non-head daughter of i-th item 
from the top of the stack 
Snp(i) … head POS of the non-head daughter of i-th item from 
the top of the stack 
Ssy(i) … symbol of phrase category of the i-th item from the 
top of the stack 
Shsy(i) … symbol of phrase category of the head daughter of 
the i-th item from the top of the stack 
Snsy(i) … symbol of phrase category of the non-head daughter 
of the i-th item from the top of the stack 
d … distance between head words of daughters 
c … whether a comma exists between daughters and/or inside 
daughter phrases 
sp … the number of words dominated by the phrase 
sy … symbol of phrase category 
hw … head word 
hp … head POS 
hl … head lexical entry 

 
Figure 3: Feature templates. 

Shift Features 
  [Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)] 
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)] 
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)] 
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2] 
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [wi-1, wi] [wi, wi+1] [pi-1, 
wi] [pi, wi] [pi+1, wi] [pi, pi+1, pi+2, pi+3] [pi-2, pi-1, pi] 
[pi-1, pi, pi+1] [pi, pi+1, pi+2] [pi-2, pi-1] [pi-1, pi] [pi, 
pi+1] [pi+1, pi+2] 
 
Binary Reduce Features 
[Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)] 
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)] 
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)] 
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2] 
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [d,c,hw,hp,hl] [d,c,hw,hp] [d, 
c, hw, hl] [d, c, sy, hw] [c, sp, hw, hp, hl] [c, sp, hw, hp] [c, 
sp, hw,hl] [c, sp, sy, hw] [d, c, hp, hl] [d, c, hp] [d, c, hl] [d, 
c, sy] [c, sp, hp, hl] [c, sp, hp] [c, sp, hl] [c, sp, sy] 
 
Unary Reduce Features 
[Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)] 
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)] 
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)] 
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2] 
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [hw, hp, hl] [hw, hp] [hw, hl] 
[sy, hw] [hp, hl] [hp] [hl] [sy]

 
Figure 4: Combinations of feature templates. 
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• Binary Reduce: A binary reduce action 
removes two items from the top of the 
stack.  Then, partial parse trees are derived 
by applying binary rules to the first re-
moved item and the second removed item 
as a right daughter and left daughter, re-
spectively.  Among the candidate partial 
parse trees, one is selected and put on the 
top of the stack. 

• Unary Reduce: A unary reduce action re-
moves one item from the top of the stack.  
Then, partial parse trees are derived by 
applying unary rules to the removed item.  
Among the candidate partial parse trees, 
one is selected and put on the top of the 
stack. 

Parsing fails if there is no candidate for selec-
tion (i.e., a dead end).  Parsing is considered suc-
cessfully finished when W is empty and S has 
only one item which satisfies the sentential con-
dition: the category is verb and the subcategori-
zation frame is empty.  Parsing is considered a 
non-sentential success when W is empty and S 
has only one item but it does not satisfy the sen-
tential condition. 

In our experiments, we used a maximum en-
tropy classifier to choose the parser’s action.  
Figure 3 lists the feature templates for the clas-
sifier, and Figure 4 lists the combinations of fea-
ture templates.  Many of these features were tak-
en from those listed in (Ninomiya et al., 2007), 
(Miyao and Tsujii, 2005) and (Sagae and Lavie, 
2005), including global features defined over the 
information in the stack, which cannot be used in 
parsing with the packed parse forest.  The fea-
tures for selecting shift actions are the same as 
the features used in the supertagger (Ninomiya et 
al., 2007).  Our shift-reduce parsers can be re-
garded as an extension of the supertagger. 

The deterministic parsing can fail because of 
its grammar’s hard constraints.  So, we use de-
fault unification, which almost always succeeds 
in unification.  We assume that a head daughter 
(or, an important daughter) is determined for 
each binary rule in the unification-based gram-
mar.   Default unification is used in the binary 
rule application in the same way as used in Ni-
nomiya’s offline robust parsing (Ninomiya et al., 
2002), in which a binary rule unified with the 
head daughter is the strict feature structure and 
the non-head daughter is the default feature 
structure, i.e.,  (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻, where R is a bi-
nary rule, H is a head daughter and NH is a non-

head daughter.  In the experiments, we used the 
simply typed version of Copestake’s default un-
ification in the binary rule application1.  Note 
that default unification was always used instead 
of normal unification in both training and evalua-
tion in the case of the parsers using default unifi-
cation.  Although Copestake’s default unification 
almost always succeeds, the binary rule applica-
tion can fail if the binary rule cannot be unified 
with the head daughter, or inconsistency is 
caused by path equations in the default feature 
structures.  If the rule application fails for all the 
binary rules, backtracking or beam search can be 
used for its recovery as explained in Section 4.2.  
In the experiments, we had no failure in the bi-
nary rule application with default unification. 

4.2 Shift-reduce parsing by backtracking 
and beam-search 

Another approach for recovering from the pars-
ing failure is backtracking.  When parsing fails 
or ends with non-sentential success, the parser’s 
state goes back to some old state (backtracking), 
and it chooses the second best action and tries 
parsing again.  The old state is selected so as to 
minimize the difference in the probabilities for 
selecting the best candidate and the second best 
candidate.  We define a maximum number of 
backtracking steps while parsing a sentence.  
Backtracking repeats until parsing finishes with 
sentential success or reaches the maximum num-
ber of backtracking steps.  If parsing fails to find 
a parse tree, the best continuous partial parse 
trees are output for evaluation. 

From the viewpoint of search algorithms, pars-
ing with backtracking is a sort of depth-first 
search algorithms.  Another possibility is to use 
the best-first search algorithm.  The best-first 
parser has a state priority queue, and each state 
consists of a tree stack and a word queue, which 
are the same stack and queue explained in the 
shift-reduce parsing algorithm.  Parsing proceeds 
by applying shift-reduce actions to the best state 
in the state queue.  First, the best state is re-

                                                 
1 We also implemented Ninomiya’s default unification, 
which can weaken path equation constraints.  In the prelim-
inary experiments, we tested binary rule application given 
as (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Copestake’s default unification, (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Ninomiya’s default unification, and (𝐻 ⊔ 𝑁𝐻) ⊔ಬ 𝑅 with Ninomiya’s default unification.  How-
ever, there was no significant difference of F-score among 
these three methods.  So, in the main experiments, we only 
tested (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Copestake’s default unification 
because this method is simple and stable. 
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moved from the state queue, and then shift-
reduce actions are applied to the state.  The new-
ly generated states as results of the shift-reduce 
actions are put on the queue.  This process re-
peats until it generates a state satisfying the sen-
tential condition.  We define the probability of a 
parsing state as the product of the probabilities of 
selecting actions that have been taken to reach 
the state.  We regard the state probability as the 
objective function in the best-first search algo-
rithm, i.e., the state with the highest probabilities 
is always chosen in the algorithm.  However, the 
best-first algorithm with this objective function 
searches like the breadth-first search, and hence, 
parsing is very slow or cannot be processed in a 
reasonable time.  So, we introduce beam thre-
sholding to the best-first algorithm.  The search 
space is pruned by only adding a new state to the 
state queue if its probability is greater than 1/b of 
the probability of the best state in the states that 
has had the same number of shift-reduce actions.  
In what follows, we call this algorithm beam 
search parsing. 

In the experiments, we tested both backtrack-
ing and beam search with/without default unifi-

cation.  Note that, the beam search parsing for 
unification-based grammars is very slow com-
pared to the shift-reduce CFG parsing with beam 
search.  This is because we have to copy parse 
trees, which consist of a large feature structures, 
in every step of searching to keep many states on 
the state queue.  In the case of backtracking, co-
pying is not necessary. 

5 Experiments 

We evaluated the speed and accuracy of parsing 
with Enju 2.3β, an HPSG for English (Miyao and 
Tsujii, 2005).  The lexicon for the grammar was 
extracted from Sections 02-21 of the Penn Tree-
bank (39,832 sentences).  The grammar consisted 
of 2,302 lexical entries for 11,187 words.  Two 
probabilistic classifiers for selecting shift-reduce 
actions were trained using the same portion of 
the treebank.  One is trained using normal unifi-
cation, and the other is trained using default un-
ification. 

We measured the accuracy of the predicate ar-
gument relation output of the parser.  A predi-
cate-argument relation is defined as a tuple 〈𝜎, 𝑤௛, 𝑎, 𝑤௔〉, where 𝜎 is the predicate type (e.g., 

  Section 23 (Gold POS) 
  LP 

(%) 
LR 
(%) 

LF 
(%) 

Avg. 
Time 
(ms) 

# of 
backtrack

Avg. #
of 
states 

# of 
dead 
end 

# of non- 
sentential 
success 

# of 
sentential
success 

Previous 
studies 

(Miyao and Tsujii, 2005) 87.26 86.50 86.88 604 - - - - - 
(Ninomiya et al., 2007) 89.78 89.28 89.53 234 - - - - - 

Ours 

det 76.45 82.00 79.13 122 0 - 867 35 1514 
det+du 87.78 87.45 87.61 256 0 - 0 117 2299 
back40 81.93 85.31 83.59 519 18986 - 386 23 2007 
back10 + du 87.79 87.46 87.62 267 574 - 0 45 2371 
beam(7.4) 86.17 87.77 86.96 510 - 226 369 30 2017 
beam(20.1)+du 88.67 88.79 88.48 457 - 205 0 16 2400 
beam(403.4) 89.98 89.92 89.95 10246 - 2822 71 14 2331 

           
  Section 23 (Auto POS) 
  LP 

(%) 
LR 
(%) 

LF 
(%) 

Avg. 
Time 
(ms) 

# of 
backtrack

Avg. #
of 
states 

# of 
dead 
end 

# of non 
sentential 
success 

# of 
sentential
success 

Previous 
studies 

(Miyao and Tsujii, 2005) 84.96 84.25 84.60 674 - - - - - 
(Ninomiya et al., 2007) 87.28 87.05 87.17 260 - - - - - 
(Matsuzaki et al., 2007)  86.93 86.47 86.70 30 - - - - - 
(Sagae et al., 2007)  88.50 88.00 88.20 - - - - - - 

Ours 

det 74.13 80.02 76.96 127 0 - 909 31 1476 
det+du 85.93 85.72 85.82 252 0 - 0 124 2292 
back40 78.71 82.86 80.73 568 21068 - 438 27 1951 
back10 + du 85.96 85.75 85.85 270 589 - 0 46 2370 
beam(7.4) 83.84 85.82 84.82 544 - 234 421 33 1962 
beam(20.1)+du 86.59 86.36 86.48 550 - 222 0 21 2395 
beam(403.4) 87.70 87.86 87.78 16822 - 4553 89 16 2311 

 
Table 1: Experimental results for Section 23. 
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adjective, intransitive verb), 𝑤௛ is the head word 
of the predicate, 𝑎 is the argument label (MOD-
ARG, ARG1, …, ARG4), and 𝑤௔  is the head 
word of the argument.  The labeled precision 
(LP) / labeled recall (LR) is the ratio of tuples 
correctly identified by the parser, and the labeled 
F-score (LF) is the harmonic mean of the LP and 
LR. This evaluation scheme was the same one 
used in previous evaluations of lexicalized 
grammars (Clark and Curran, 2004b; Hocken-
maier, 2003; Miyao and Tsujii, 2005).  The expe-
riments were conducted on an Intel Xeon 5160 
server with 3.0-GHz CPUs. Section 22 of the 
Penn Treebank was used as the development set, 
and the performance was evaluated using sen-
tences of ≤ 100 words in Section 23.  The LP, 
LR, and LF were evaluated for Section 23. 

Table 1 lists the results of parsing for Section 
23.  In the table, “Avg. time” is the average pars-
ing time for the tested sentences.  “# of backtrack” 
is the total number of backtracking steps that oc-
curred during parsing.  “Avg. # of states” is the 
average number of states for the tested sentences.  
“# of dead end” is the number of sentences for 
which parsing failed.  “# of non-sentential suc-
cess” is the number of sentences for which pars-
ing succeeded but did not generate a parse tree 
satisfying the sentential condition.  “det” means 
the deterministic shift-reduce parsing proposed 
in this paper.  “back𝑛” means shift-reduce pars-
ing with backtracking at most 𝑛 times for each 
sentence.  “du” indicates that default unification 
was used.  “beam𝑏” means best-first shift-reduce 
parsing with beam threshold 𝑏.  The upper half 
of the table gives the results obtained using gold 
POSs, while the lower half gives the results ob-
tained using an automatic POS tagger.  The max-
imum number of backtracking steps and the 

beam threshold were determined by observing 
the performance for the development set (Section 
22) such that the LF was maximized with a pars-
ing time of less than 500 ms/sentence (except 
“beam(403.4)”). The performance of 
“beam(403.4)” was evaluated to see the limit of 
the performance of the beam-search parsing. 

Deterministic parsing without default unifica-
tion achieved accuracy with an LF of around 
79.1% (Section 23, gold POS).  With backtrack-
ing, the LF increased to 83.6%.  Figure 5 shows 
the relation between LF and parsing time for the 
development set (Section 22, gold POS).  As 
seen in the figure, the LF increased as the parsing 
time increased.  The increase in LF for determi-
nistic parsing without default unification, how-
ever, seems to have saturated around 83.3%.  
Table 1 also shows that deterministic parsing 
with default unification achieved higher accuracy, 
with an LF of around 87.6% (Section 23, gold 
POS), without backtracking.  Default unification 
is effective: it ran faster and achieved higher ac-
curacy than deterministic parsing with normal 
unification.  The beam-search parsing without 
default unification achieved high accuracy, with 
an LF of around 87.0%, but is still worse than 
deterministic parsing with default unification.  
However, with default unification, it achieved 
the best performance, with an LF of around 
88.5%, in the settings of parsing time less than 
500ms/sentence for Section 22. 

For comparison with previous studies using 
the packed parse forest, the performances of 
Miyao’s parser, Ninomiya’s parser, Matsuzaki’s 
parser and Sagae’s parser are also listed in Table 
1.  Miyao’s parser is based on a probabilistic 
model estimated only by a feature forest.  Nino-
miya’s parser is a mixture of the feature forest 

 
Figure 5: The relation between LF and the average parsing time (Section 22, Gold POS). 
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and an HPSG supertagger.  Matsuzaki’s parser 
uses an HPSG supertagger and CFG filtering.  
Sagae’s parser is a hybrid parser with a shallow 
dependency parser.  Though parsing without the 
packed parse forest is disadvantageous to the 
parsing with the packed parse forest in terms of 
search space complexity, our model achieved 
higher accuracy than Miyao’s parser. 

“beam(403.4)” in Table 1 and “beam” in Fig-
ure 5 show possibilities of beam-search parsing.  
“beam(403.4)” was very slow, but the accuracy 
was higher than any other parsers except Sagae’s 
parser. 

Table 2 shows the behaviors of default unifi-
cation for “det+du.”  The table shows the 20 
most frequent path values that were overwritten 
by default unification in Section 22.  In most of 
the cases, the overwritten path values were in the 
selection features, i.e., subcategorization frames 
(COMPS:, SUBJ:, SPR:, CONJ:) and modifiee 
specification (MOD:).  The column of ‘Default 
type’ indicates the default types which were 
overwritten by the strict types in the column of 
‘Strict type,’ and the last column is the frequency 
of overwriting.  ‘cons’ means a non-empty list, 
and ‘nil’ means an empty list.  In most of the 
cases, modifiee and subcategorization frames 
were changed from empty to non-empty and vice 
versa.  From the table, overwriting of head in-
formation was also observed, e.g., ‘noun’ was 
changed to ‘verb.’ 

6 Conclusion and Future Work 

We have presented shift-reduce parsing approach 
for unification-based grammars, based on deter-
ministic shift-reduce parsing.  First, we presented 
deterministic parsing for unification-based 
grammars.  Deterministic parsing was difficult in 
the framework of unification-based grammar 
parsing, which often fails because of its hard 
constraints.  We introduced default unification to 
avoid the parsing failure.  Our experimental re-
sults have demonstrated the effectiveness of de-
terministic parsing with default unification.  The 
experiments revealed that deterministic parsing 
with default unification achieved high accuracy, 
with a labeled F-score (LF) of 87.6% for Section 
23 of the Penn Treebank with gold POSs.  
Second, we also presented the best-first parsing 
with beam search for unification-based gram-
mars.  The best-first parsing with beam search 
achieved the best accuracy, with an LF of 87.0%, 
in the settings without default unification.  De-
fault unification further increased LF from 
87.0% to 88.5%.  By widening the beam width, 
the best-first parsing achieved an LF of 90.0%. 
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Abstract

Named entity recognition (NER) for En-
glish typically involves one of three gold
standards: MUC, CoNLL, or BBN, all created
by costly manual annotation. Recent work
has used Wikipedia to automatically cre-
ate a massive corpus of named entity an-
notated text.

We present the first comprehensive cross-
corpus evaluation of NER. We identify
the causes of poor cross-corpus perfor-
mance and demonstrate ways of making
them more compatible. Using our process,
we develop a Wikipedia corpus which out-
performs gold standard corpora on cross-
corpus evaluation by up to 11%.

1 Introduction

Named Entity Recognition (NER), the task of iden-
tifying and classifying the names of people, organ-
isations and other entities within text, is central
to many NLP systems. NER developed from in-
formation extraction in the Message Understand-
ing Conferences (MUC) of the 1990s. By MUC 6
and 7, NER had become a distinct task: tagging
proper names, and temporal and numerical expres-
sions (Chinchor, 1998).

Statistical machine learning systems have
proven successful for NER. These learn patterns
associated with individual entity classes, mak-
ing use of many contextual, orthographic, linguis-
tic and external knowledge features. However,
they rely heavily on large annotated training cor-
pora. This need for costly expert annotation hin-
ders the creation of more task-adaptable, high-
performance named entity recognisers.

In acquiring new sources for annotated corpora,
we require an analysis of training data as a variable
in NER. This paper compares the three main gold-
standard corpora. We found that tagging mod-

els built on each corpus perform relatively poorly
when tested on the others. We therefore present
three methods for analysing internal and inter-
corpus inconsistencies. Our analysis demonstrates
that seemingly minor variations in the text itself,
starting right from tokenisation can have a huge
impact on practical NER performance.

We take this experience and apply it to a corpus
created automatically using Wikipedia. This cor-
pus was created following the method of Nothman
et al. (2008). By training the C&C tagger (Curran
and Clark, 2003) on the gold-standard corpora and
our new Wikipedia-derived training data, we eval-
uate the usefulness of the latter and explore the
nature of the training corpus as a variable in NER.

Our Wikipedia-derived corpora exceed the per-
formance of non-corresponding training and test
sets by up to 11% F -score, and can be engineered
to automatically produce models consistent with
various NE-annotation schema. We show that it is
possible to automatically create large, free, named
entity-annotated corpora for general or domain
specific tasks.

2 NER and annotated corpora

Research into NER has rarely considered the im-
pact of training corpora. The CoNLL evalua-
tions focused on machine learning methods (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meul-
der, 2003) while more recent work has often in-
volved the use of external knowledge. Since many
tagging systems utilise gazetteers of known enti-
ties, some research has focused on their automatic
extraction from the web (Etzioni et al., 2005) or
Wikipedia (Toral et al., 2008), although Mikheev
et al. (1999) and others have shown that larger
NE lists do not necessarily correspond to increased
NER performance. Nadeau et al. (2006) use such
lists in an unsupervised NE recogniser, outper-
forming some entrants of the MUC Named Entity
Task. Unlike statistical approaches which learn
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patterns associated with a particular type of entity,
these unsupervised approaches are limited to iden-
tifying common entities present in lists or those
caught by hand-built rules.

External knowledge has also been used to aug-
ment supervised NER approaches. Kazama and
Torisawa (2007) improve their F -score by 3% by
including a Wikipedia-based feature in their ma-
chine learner. Such approaches are limited by the
gold-standard data already available.

Less common is the automatic creation of train-
ing data. An et al. (2003) extracted sentences con-
taining listed entities from the web, and produced
a 1.8 million word Korean corpus that gave sim-
ilar results to manually-annotated training data.
Richman and Schone (2008) used a method sim-
ilar to Nothman et al. (2008) in order to derive
NE-annotated corpora in languages other than En-
glish. They classify Wikipedia articles in foreign
languages by transferring knowledge from English
Wikipedia via inter-language links. With these
classifications they automatically annotate entire
articles for NER training, and suggest that their re-
sults with a 340k-word Spanish corpus are compa-
rable to 20k-40k words of gold-standard training
data when using MUC-style evaluation metrics.

2.1 Gold-standard corpora

We evaluate our Wikipedia-derived corpora
against three sets of manually-annotated data from
(a) the MUC-7 Named Entity Task (MUC, 2001);
(b) the English CoNLL-03 Shared Task (Tjong
Kim Sang and De Meulder, 2003); (c) the
BBN Pronoun Coreference and Entity Type
Corpus (Weischedel and Brunstein, 2005). We
consider only the generic newswire NER task,
although domain-specific annotated corpora have
been developed for applications such as bio-text
mining (Kim et al., 2003).

Stylistic and genre differences between the
source texts affect compatibility for NER evalua-
tion e.g., the CoNLL corpus formats headlines in
all-caps, and includes non-sentential data such as
tables of sports scores.

Each corpus uses a different set of entity labels.
MUC marks locations (LOC), organisations (ORG)
and personal names (PER), in addition to numeri-
cal and time information. The CoNLL NER shared
tasks (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003) mark PER, ORG and LOC

entities, as well as a broad miscellaneous class

Corpus # tags Number of tokens
TRAIN DEV TEST

MUC-7 3 83601 18655 60436
CoNLL-03 4 203621 51362 46435
BBN 54 901894 142218 129654

Table 1: Gold-standard NE-annotated corpora

(MISC; e.g. events, artworks and nationalities).
BBN annotates the entire Penn Treebank corpus
with 105 fine-grained tags (Brunstein, 2002): 54
corresponding to CoNLL entities; 21 for numeri-
cal and time data; and 30 for other classes. For
our evaluation, BBN’s tags were reduced to the
equivalent CoNLL tags, with extra tags in the BBN

and MUC data removed. Since no MISC tags are
marked in MUC, they need to be removed from
CoNLL, BBN and Wikipedia data for comparison.

We transformed all three corpora into a com-
mon format and annotated them with part-of-
speech tags using the Penn Treebank-trained
C&C POS tagger. We altered the default MUC

tokenisation to attach periods to abbreviations
when sentence-internal. While standard training
(TRAIN), development (DEV) and final test (TEST)
set divisions were available for CoNLL and MUC,
the BBN corpus was split at our discretion: sec-
tions 03–21 for TRAIN, 00–02 for DEV and 22-24
for TEST. Corpus sizes are compared in Table 1.

2.2 Evaluating NER performance

One challenge for NER research is establishing an
appropriate evaluation metric (Nadeau and Sekine,
2007). In particular, entities may be correctly
delimited but mis-classified, or entity boundaries
may be mismatched.

MUC (Chinchor, 1998) awarded equal score for
matching type, where an entity’s class is identi-
fied with at least one boundary matching, and text,
where an entity’s boundaries are precisely delim-
ited, irrespective of the classification. This equal
weighting is unrealistic, as some boundary errors
are highly significant, while others are arbitrary.

CoNLL awarded exact (type and text) phrasal
matches, ignoring boundary issues entirely and
providing a lower-bound measure of NER per-
formance. Manning (2006) argues that CoNLL-
style evaluation is biased towards systems which
leave entities with ambiguous boundaries un-
tagged, since boundary errors amount simultane-
ously to false positives and false negatives. In both
MUC and CoNLL, micro-averaged precision, recall
and F1 score summarise the results.
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Tsai et al. (2006) compares a number of meth-
ods for relaxing boundary requirements: matching
only the left or right boundary, any tag overlap,
per-token measures, or more semantically-driven
matching. ACE evaluations instead use a customiz-
able evaluation metric with weights specified for
different types of error (NIST-ACE, 2008).

3 Corpus and error analysis approaches

To evaluate the performance impact of a corpus
we may analyse (a) the annotations themselves; or
(b) the model built on those annotations and its
performance. A corpus can be considered in isola-
tion or by comparison with other corpora. We use
three methods to explore intra- and inter-corpus
consistency in MUC, CoNLL, and BBN in Section 4.

3.1 N-gram tag variation

Dickinson and Meurers (2003) present a clever
method for finding inconsistencies within POS an-
notated corpora, which we apply to NER corpora.
Their approach finds all n-grams in a corpus which
appear multiple times, albeit with variant tags for
some sub-sequence, the nucleus (see e.g. Table
3). To remove valid ambiguity, they suggest us-
ing (a) a minimum n-gram length; (b) a minimum
margin of invariant terms around the nucleus.

For example, the BBN TRAIN corpus includes
eight occurrences of the 6-gram the San Francisco
Bay area ,. Six instances of area are tagged as non-
entities, but two instances are tagged as part of the
LOC that precedes it. The other five tokens in this
n-gram are consistently labelled.

3.2 Entity type frequency

An intuitive approach to finding discrepancies be-
tween corpora is to compare the distribution of en-
tities within each corpus. To make this manage-
able, instances need to be grouped by more than
their class labels. We used the following groups:

POS sequences: Types of candidate entities may
often be distinguished by their POS tags, e.g.
nationalities are often JJ or NNPS.

Wordtypes: Collins (2002) proposed wordtypes
where all uppercase characters map to A, low-
ercase to a, and digits to 0. Adjacent charac-
ters in the same orthographic class were col-
lapsed. However, we distinguish single from
multiple characters by duplication. e.g. USS
Nimitz (CVN-68) has wordtype AA Aaa (AA-00).

Wordtype with functions: We also map content
words to wordtypes only—function words
are retained, e.g. Bank of New England Corp.
maps to Aaa of Aaa Aaa Aaa..

No approach provides sufficient discrimination
alone: wordtype patterns are able to distinguish
within common POS tags and vice versa. Each
method can be further simplified by merging re-
peated tokens, NNP NNP becoming NNP.

By calculating the distribution of entities over
these groupings, we can find anomalies between
corpora. For instance, 4% of MUC’s and 5.9%
of BBN’s PER entities have wordtype Aaa A. Aaa,
e.g. David S. Black, while CoNLL has only 0.05% of
PERs like this. Instead, CoNLL has many names of
form A. Aaa, e.g. S. Waugh, while BBN and MUC

have none. We can therefore predict incompatibil-
ities between systems trained on BBN and evalu-
ated on CoNLL or vice-versa.

3.3 Tag sequence confusion
A confusion matrix between predicted and correct
classes is an effective method of error analysis.
For phrasal sequence tagging, this can be applied
to either exact boundary matches or on a per-token
basis, ignoring entity bounds. We instead compile
two matrices: C/P comparing correct entity classes
against predicted tag sequences; and P/C compar-
ing predicted classes to correct tag sequences.

C/P equates oversized boundaries to correct
matches, and tabulates cases of undersized bound-
aries. For example, if [ORG Johnson and Johnson] is
tagged [PER Johnson] and [PER Johnson], it is marked
in matrix coordinates (ORG, PER O PER). P/C em-
phasises oversized boundaries: if gold-standard
Mr. [PER Ross] is tagged PER, it is counted as con-
fusion between PER and O PER. To further dis-
tinguish classes of error, the entity type groupings
from Section 3.2 are also used.

This analysis is useful for both tagger evalua-
tion and cross-corpus evaluation, e.g. BBN versus
CoNLL on a BBN test set. This involves finding
confusion matrix entries where BBN and CoNLL’s
performance differs significantly, identifying com-
mon errors related to difficult instances in the test
corpus as well as errors in the NER model.

4 Comparing gold-standard corpora

We trained the C&C NER tagger (Curran and Clark,
2003) to build separate models for each gold-
standard corpus. The C&C tagger utilises a number
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TRAIN
With MISC Without MISC

CoNLL BBN MUC CoNLL BBN
MUC — — 73.5 55.5 67.5
CoNLL 81.2 62.3 65.9 82.1 62.4
BBN 54.7 86.7 77.9 53.9 88.4

Table 2: Gold standard F -scores (exact-match)

of orthographic, contextual and in-document fea-
tures, as well as gazetteers for personal names. Ta-
ble 2 shows that each training set performs much
better on corresponding (same corpus) test sets
(italics) than on test sets from other sources, also
identified by (Ciaramita and Altun, 2005). NER

research typically deals with small improvements
(∼1% F -score). The 12-32% mismatch between
training and test corpora suggests that an appropri-
ate training corpus is a much greater concern. The
exception is BBN on MUC, due to differing TEST

and DEV subject matter. Here we analyse the vari-
ation within and between the gold standards.

Table 3 lists some n-gram tag variations for BBN

and CoNLL (TRAIN + DEV). These include cases of
schematic variations (e.g. the period in Co .) and
tagging errors. Some n-grams have three variants,
e.g. the Standard & Poor ’s 500 which appears un-
tagged, as the [ORG Standard & Poor] ’s 500, or the
[ORG Standard & Poor ’s] 500. MUC is too small for
this method. CoNLL only provides only a few ex-
amples, echoing BBN in the ambiguities of trailing
periods and leading determiners or modifiers.

Wordtype distributions were also used to com-
pare the three gold standards. We investigated all
wordtypes which occur with at least twice the fre-
quency in one corpus as in another, if that word-
type was sufficiently frequent. Among the differ-
ences recovered from this analysis are:

• CoNLL has an over-representation of uppercase words
due to all-caps headlines.

• Since BBN also annotates common nouns, some have
been mistakenly labelled as proper-noun entities.

• BBN tags text like Munich-based as LOC; CoNLL
tags it as MISC; MUC separates the hyphen as a token.

• CoNLL is biased to sports and has many event names
in the form of 1990 World Cup.

• BBN separates organisation names from their products
as in [ORG Commodore] [MISC 64].

• CoNLL has few references to abbreviated US states.
• CoNLL marks conjunctions of people (e.g. Ruth and

Edwin Brooks) as a single PER entity.
• CoNLL text has Co Ltd instead of Co. Ltd.

We analysed the tag sequence confusion when
training with each corpus and testing on BBN DEV.
While full confusion matrices are too large for this
paper, Table 4 shows some examples where the

Figure 1: Deriving training data from Wikipedia

NER models disagree. MUC fails to correctly tag
U.K. and U.S.. U.K. only appears once in MUC, and
U.S. appears 22 times as ORG and 77 times as LOC.
CoNLL has only three instances of Mr., so it often
mis-labels Mr. as part of a PER entity. The MUC

model also has trouble recognising ORG names
ending with corporate abbreviations, and may fail
to identify abbreviated US state names.

Our analysis demonstrates that seemingly mi-
nor orthographic variations in the text, tokenisa-
tion and annotation schemes can have a huge im-
pact on practical NER performance.

5 From Wikipedia to NE-annotated text

Wikipedia is a collaborative, multilingual, online
encyclopedia which includes over 2.3 million arti-
cles in English alone. Our baseline approach de-
tailed in Nothman et al. (2008) exploits the hyper-
linking between articles to derive a NE corpus.

Since ∼74% of Wikipedia articles describe top-
ics covering entity classes, many of Wikipedia’s
links correspond to entity annotations in gold-
standard NE corpora. We derive a NE-annotated
corpus by the following steps:

1. Classify all articles into entity classes
2. Split Wikipedia articles into sentences
3. Label NEs according to link targets
4. Select sentences for inclusion in a corpus
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N-gram Tag # Tag #
Co . - 52 ORG 111
Smith Barney , Harris Upham & Co. - 1 ORG 9
the Contra rebels MISC 1 ORG 2
in the West is - 1 LOC 1
that the Constitution MISC 2 - 1
Chancellor of the Exchequer Nigel Lawson - 11 ORG 2
the world ’s - 80 LOC 1
1993 BellSouth Classic - 1 MISC 1
Atlanta Games LOC 1 MISC 1
Justice Minister - 1 ORG 1
GOLF - GERMAN OPEN - 2 LOC 1

Table 3: Examples of n-gram tag variations in BBN (top) and CoNLL (bottom). Nucleus is in bold.

Tag sequence Grouping # if trained on ExampleCorrect Pred. MUC CoNLL BBN
LOC LOC A.A. 101 349 343 U.K.
- PER PER Aa. Aaa 9 242 0 Mr. Watson
- LOC Aa. 16 109 0 Mr.
ORG ORG Aaa Aaa. 118 214 218 Campeau Corp.
LOC - Aaa. 20 0 3 Calif.

Table 4: Tag sequence confusion on BBN DEV when training on gold-standard corpora (no MISC)

In Figure 1, a sentence introducing Holden as an
Australian car maker based in Port Melbourne has
links to separate articles about each entity. Cues
in the linked article about Holden indicate that it is
an organisation, and the article on Port Melbourne
is likewise classified as a location. The original
sentence can then be automatically annotated with
these facts. We thus extract millions of sentences
from Wikipedia to form a new NER corpus.

We classify each article in a bootstrapping pro-
cess using its category head nouns, definitional
nouns from opening sentences, and title capital-
isation. Each article is classified as one of: un-
known; a member of a NE category (LOC, ORG,
PER, MISC, as per CoNLL); a disambiguation page
(these list possible referent articles for a given ti-
tle); or a non-entity (NON). This classifier classi-
fier achieves 89% F -score.

A sentence is selected for our corpus when all
of its capitalised words are linked to articles with a
known class. Exceptions are made for common ti-
tlecase words, e.g. I, Mr., June, and sentence-initial
words. We also infer additional links — variant ti-
tles are collected for each Wikipedia topic and are
marked up in articles which link to them — which
Nothman et al. (2008) found increases coverage.

Transforming links into annotations that con-
form to a gold standard is far from trivial. Link
boundaries need to be adjusted, e.g. to remove ex-
cess punctuation. Adjectival forms of entities (e.g.
American, Islamic) generally link to nominal arti-
cles. However, they are treated by CoNLL and our

N-gram Tag # Tag #
of Batman ’s MISC 2 PER 5
in the Netherlands - 58 LOC 4
Chicago , Illinois - 8 LOC 3
the American and LOC 1 MISC 2

Table 5: N-gram variations in the Wiki baseline

BBN mapping as MISC. POS tagging the corpus and
relabelling entities ending with JJ as MISC solves
this heuristically. Although they are capitalised in
English, personal titles (e.g. Prime Minister) are not
typically considered entities. Initially we assume
that all links immediately preceding PER entities
are titles and delete their entity classification.

6 Improving Wikipedia performance

The baseline system described above achieves
only 58.9% and 62.3% on the CoNLL and
BBN TEST sets (exact-match scoring) with 3.5-
million training tokens. We apply methods pro-
posed in Section 3 to to identify and minimise
Wikipedia errors on the BBN DEV corpus.

We begin by considering Wikipedia’s internal
consistency using n-gram tag variation (Table 5).
The breadth of Wikipedia leads to greater genuine
ambiguity, e.g. Batman (a character or a comic
strip). It also shares gold-standard inconsistencies
like leading modifiers. Variations in American and
Chicago, Illinois indicate errors in adjectival entity
labels and in correcting link boundaries.

Some errors identified with tag sequence confu-
sion are listed in Table 6. These correspond to re-
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Tag sequence Grouping # if trained on ExampleCorrect Pred. BBN Wiki
LOC LOC Aaa. 103 14 Calif.
LOC - LOC ORG Aaa , Aaa. 0 15 Norwalk , Conn.
LOC LOC Aaa-aa 23 0 Texas-based
- PER PER Aa. Aaa 4 208 Mr. Yamamoto
- PER PER Aaa Aaa 1 49 Judge Keenan
- PER Aaa 7 58 President
MISC MISC A. 25 1 R.
MISC LOC NNPS 0 39 Soviets

Table 6: Tag sequence confusion on BBN DEV with training on BBN and the Wikipedia baseline

sults of an entity type frequency analysis and mo-
tivate many of our Wikipedia extensions presented
below. In particular, personal titles are tagged as
PER rather than unlabelled; plural nationalities are
tagged LOC, not MISC; LOCs hyphenated to fol-
lowing words are not identified; nor are abbrevi-
ated US state names. Using R. to abbreviate Re-
publican in BBN is also a high-frequency error.

6.1 Inference from disambiguation pages
Our baseline system infers extra links using a set
of alternative titles identified for each article. We
extract the alternatives from the article and redirect
titles, the text of all links to the article, and the first
and last word of the article title if it is labelled PER.

Our extension is to extract additional inferred ti-
tles from Wikipedia’s disambiguation pages. Most
disambiguation pages are structured as lists of ar-
ticles that are often referred to by the title D being
disambiguated. For each link with target A that
appears at the start of a list item on D’s page, D
and its redirect aliases are added to the list of al-
ternative titles for A.

Our new source of alternative titles includes
acronyms and abbreviations (AMP links to AMP
Limited and Ampere), and given or family names
(Howard links to Howard Dean and John Howard).

6.2 Personal titles
Personal titles (e.g. Brig. Gen., Prime Minister-
elect) are capitalised in English. Titles are some-
times linked in Wikipedia, but the target articles,
e.g. U.S. President, are in Wikipedia categories like
Presidents of the United States, causing their incor-
rect classification as PER.

Our initial implementation assumed that links
immediately preceding PER entity links are titles.
While this feature improved performance, it only
captured one context for personal titles and failed
to handle instances where the title was only a
portion of the link text, such as Australian Prime
Minister-elect or Prime Minister of Australia.

To handle titles more comprehensively, we
compiled a list of the terms most frequently linked
immediately prior to PER links. These were man-
ually filtered, removing LOC or ORG mentions and
complemented with abbreviated titles extracted
from BBN, producing a list of 384 base title forms,
11 prefixes (e.g. Vice) and 3 suffixes (e.g. -elect).
Using these gazetteers, titles are stripped of erro-
neous NE tags.

6.3 Adjectival forms

In English, capitalisation is retained in adjectival
entity forms, such as American or Islamic. While
these are not exactly entities, both CoNLL and BBN

annotate them as MISC. Our baseline approach
POS tagged the corpus and marked all adjectival
entities as MISC. This missed instances where na-
tionalities are used nominally, e.g. five Italians.

We extracted 339 frequent LOC and ORG ref-
erences with POS tag JJ. Words from this list
(e.g. Italian) are relabelled MISC, irrespective of
POS tag or pluralisation (e.g. Italian/JJ, Italian/NNP,
Italian/NNPS). This unfiltered list includes some er-
rors from POS tagging, e.g. First, Emmy; and others
where MISC is rarely the appropriate tag, e.g. the
Democrats (an ORG).

6.4 Miscellaneous changes

Entity-word aliases Longest-string matching for
inferred links often adds redundant words, e.g.
both Australian and Australian people are redirects to
Australia. We therefore exclude from inference ti-
tles of form X Y where X is an alias of the same
article and Y is lowercase.

State abbreviations A gold standard may use
stylistic forms which are rare in Wikipedia. For
instance, the Wall Street Journal (BBN) uses US
state abbreviations, while Wikipedia nearly al-
ways refers to states in full. We boosted perfor-
mance by substituting a random selection of US
state names in Wikipedia with their abbreviations.
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TRAIN
With MISC No MISC

CoN. BBN MUC CoN. BBN
MUC — — 82.3 54.9 69.3
CoNLL 85.9 61.9 69.9 86.9 60.2
BBN 59.4 86.5 80.2 59.0 88.0
WP0 – no inf. 62.8 69.7 69.7 64.7 70.0
WP1 67.2 73.4 75.3 67.7 73.6
WP2 69.0 74.0 76.6 69.4 75.1
WP3 68.9 73.5 77.2 69.5 73.7
WP4 – all inf. 66.2 72.3 75.6 67.3 73.3

Table 7: Exact-match DEV F -scores

Removing rare cases We explicitly removed
sentences containing title abbreviations (e.g. Mr.)
appearing in non-PER entities such as movie titles.
Compared to newswire, these forms as personal
titles are rare in Wikipedia, so their appearance in
entities causes tagging errors. We used a similar
approach to personal names including of, which
also act as noise.

Fixing tokenization Hyphenation is a problem
in tokenisation: should London-based be one token,
two, or three? Both BBN and CoNLL treat it as one
token, but BBN labels it a LOC and CoNLL a MISC.
Our baseline had split hyphenated portions from
entities. Fixing this to match the BBN approach
improved performance significantly.

7 Experiments

We evaluated our annotation process by build-
ing separate NER models learned from Wikipedia-
derived and gold-standard data. Our results are
given as micro-averaged precision, recall and F -
scores both in terms of MUC-style and CoNLL-style
(exact-match) scoring. We evaluated all experi-
ments with and without the MISC category.

Wikipedia’s articles are freely available for
download.1 We have used data from the 2008
May 22 dump of English Wikipedia which in-
cludes 2.3 million articles. Splitting this into sen-
tences and tokenising produced 32 million sen-
tences each containing an average of 24 tokens.

Our experiments were performed with a
Wikipedia corpus of 3.5 million tokens. Although
we had up to 294 million tokens available, we
were limited by the RAM required by the C&C tag-
ger training software.

8 Results

Tables 7 and 8 show F -scores on the MUC, CoNLL,
and BBN development sets for CoNLL-style exact

1http://download.wikimedia.org/

TRAIN
With MISC No MISC

CoN. BBN MUC CoN. BBN
MUC — — 89.0 68.2 79.2
CoNLL 91.0 75.1 81.4 90.9 72.6
BBN 72.7 91.1 87.6 71.8 91.5
WP0 – no inf. 71.0 79.3 76.3 71.1 78.7
WP1 74.9 82.3 81.4 73.1 81.0
WP2 76.1 82.7 81.6 74.5 81.9
WP3 76.3 82.2 81.9 74.7 80.7
WP4 – all inf. 74.3 81.4 80.9 73.1 80.7

Table 8: MUC-style DEV F -scores

Training corpus DEV (MUC-style F )
MUC CoNLL BBN

Corresponding TRAIN 89.0 91.0 91.1
TRAIN + WP2 90.6 91.7 91.2

Table 9: Wikipedia as additional training data

TRAIN
With MISC No MISC

CoN. BBN MUC CoN. BBN
MUC — — 73.5 55.5 67.5
CoNLL 81.2 62.3 65.9 82.1 62.4
BBN 54.7 86.7 77.9 53.9 88.4
WP2 60.9 69.3 76.9 61.5 69.9

Table 10: Exact-match TEST results for WP2

TRAIN
With MISC No MISC

CoN. BBN MUC CoN. BBN
MUC — — 81.0 68.5 77.6
CoNLL 87.8 75.0 76.2 87.9 74.1
BBN 69.3 91.1 83.6 68.5 91.9
WP2 70.2 79.1 81.3 68.6 77.3

Table 11: MUC-eval TEST results for WP2

match and MUC-style evaluations (which are typi-
cally a few percent higher). The cross-corpus gold
standard experiments on the DEV sets are shown
first in both tables. As in Table 2, the performance
drops significantly when the training and test cor-
pus are from different sources. The corresponding
TEST set scores are given in Tables 9 and 10.

The second group of experiments in these ta-
bles show the performance of Wikipedia corpora
with increasing levels of link inference (described
in Section 6.1). Links inferred upon match-
ing article titles (WP1) and disambiguation ti-
tles (WP2) consistently increase F -score by ∼5%,
while surnames for PER entities (WP3) and all link
texts (WP4) tend to introduce error. A key re-
sult of our work is that the performance of non-
corresponding gold standards is often significantly
exceeded by our Wikipedia training data.

Our third group of experiments combined our
Wikipedia corpora with gold-standard data to im-
prove performance beyond traditional train-test
pairs. Table 9 shows that this approach may lead
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Token Corr. Pred. Count Why?
. ORG - 90 Inconsistencies in BBN
House ORG LOC 56 Article White House is a LOC due to classification bootstrapping
Wall - LOC 33 Wall Street is ambiguously a location and a concept
Gulf ORG LOC 29 Georgia Gulf is common in BBN, but Gulf indicates LOC
, ORG - 26 A difficult NER ambiguity in e.g. Robertson , Stephens & Co.
’s ORG - 25 Unusually high frequency of ORGs ending ’s in BBN
Senate ORG LOC 20 Classification bootstrapping identifies Senate as a house, i.e. LOC
S&P - MISC 20 Rare in Wikipedia, and inconsistently labelled in BBN
D. MISC PER 14 BBN uses D. to abbreviate Democrat

Table 12: Tokens in BBN DEV that our Wikipedia model frequently mis-tagged

Class By exact phrase By token
P R F P R F

LOC 66.7 87.9 75.9 64.4 89.8 75.0
MISC 48.8 58.7 53.3 46.5 61.6 53.0
ORG 76.9 56.5 65.1 88.9 68.1 77.1
PER 67.3 91.4 77.5 70.5 93.6 80.5
All 68.6 69.9 69.3 80.9 75.3 78.0

Table 13: Category results for WP2 on BBN TEST

to small F -score increases.
Our per-class Wikipedia results are shown in

Table 13. LOC and PER entities are relatively easy
to identify, although a low precision for PER sug-
gests that many other entities have been marked
erroneously as people, unlike the high precision
and low recall of ORG. As an ill-defined category,
with uncertain mapping between BBN and CoNLL

classes, MISC precision is unsurprisingly low. We
also show results evaluating the correct labelling
of each token, where Nothman et al. (2008) had
reported results 13% higher than phrasal match-
ing, reflecting a failure to correctly identify entity
boundaries. We have reduced this difference to
9%. A BBN-trained model gives only 5% differ-
ence between phrasal and token F -score.

Among common tagging errors, we identified:
tags continuing over additional words as in New
York-based Loews Corp. all being marked as a sin-
gle ORG; nationalities marked as LOC rather than
MISC; White House a LOC rather than ORG, as
with many sports teams; single-word ORG entities
marked as PER; titles such as Dr. included in PER

tags; mis-labelling un-tagged title-case terms and
tagged lowercase terms in the gold-standard.

The corpus analysis methods described in
Section 3 show greater similarity between our
Wikipedia-derived corpus and BBN after imple-
menting our extensions. There is nonetheless
much scope for further analysis and improvement.
Notably, the most commonly mis-tagged tokens in
BBN (see Table 12) relate more often to individual
entities and stylistic differences than to a general-
isable class of errors.

9 Conclusion

We have demonstrated the enormous variability in
performance between using NER models trained
and tested on the same corpus versus tested on
other gold standards. This variability arises from
not only mismatched annotation schemes but also
stylistic conventions, tokenisation, and missing
frequent lexical items. Therefore, NER corpora
must be carefully matched to the target text for rea-
sonable performance. We demonstrate three ap-
proaches for gauging corpus and annotation mis-
match, and apply them to MUC, CoNLL and BBN,
and our automatically-derived Wikipedia corpora.

There is much room for improving the results of
our Wikipedia-based NE annotations. In particu-
lar, a more careful approach to link inference may
further reduce incorrect boundaries of tagged en-
tities. We plan to increase the largest training set
the C&C tagger can support so that we can fully
exploit the enormous Wikipedia corpus.

However, we have shown that Wikipedia can
be used a source of free annotated data for train-
ing NER systems. Although such corpora need
to be engineered specifically to a desired appli-
cation, Wikipedia’s breadth may permit the pro-
duction of large corpora even within specific do-
mains. Our results indicate that Wikipedia data
can perform better (up to 11% for CoNLL on MUC)
than training data that is not matched to the eval-
uation, and hence is widely applicable. Trans-
forming Wikipedia into training data thus provides
a free and high-yield alternative to the laborious
manual annotation required for NER.
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Abstract

Many methods are available for comput-
ing semantic similarity between individ-
ual words, but certain NLP tasks require
the comparison of word pairs. This pa-
per presents a kernel-based framework for
application to relational reasoning tasks of
this kind. The model presented here com-
bines information about two distinct types
of word pair similarity: lexical similarity
and relational similarity. We present an
efficient and flexible technique for imple-
menting relational similarity and show the
effectiveness of combining lexical and re-
lational models by demonstrating state-of-
the-art results on a compound noun inter-
pretation task.

1 Introduction

The problem of modelling semantic similarity be-
tween words has long attracted the interest of re-
searchers in Natural Language Processing and has
been shown to be important for numerous applica-
tions. For some tasks, however, it is more appro-
priate to consider the problem of modelling sim-
ilarity between pairs of words. This is the case
when dealing with tasks involving relational or
analogical reasoning. In such tasks, the chal-
lenge is to compare pairs of words on the basis of
the semantic relation(s) holding between the mem-
bers of each pair. For example, the noun pairs
(steel,knife) and (paper,cup) are similar because
in both cases the relation N2 is made of N1 fre-
quently holds between their members. Analogi-
cal tasks are distinct from (but not unrelated to)
other kinds of “relation extraction” tasks where
each data item is tied to a specific sentence con-
text (e.g., Girju et al. (2007)).

One such relational reasoning task is the prob-
lem of compound noun interpretation, which

has received a great deal of attention in recent
years (Girju et al., 2005; Turney, 2006; But-
nariu and Veale, 2008). In English (and other
languages), the process of producing new lexical
items through compounding is very frequent and
very productive. Furthermore, the noun-noun re-
lation expressed by a given compound is not ex-
plicit in its surface form: a steel knife may be a
knife made from steel but a kitchen knife is most
likely to be a knife used in a kitchen, not a knife
made from a kitchen. The assumption made by
similarity-based interpretation methods is that the
likely meaning of a novel compound can be pre-
dicted by comparing it to previously seen com-
pounds whose meanings are known. This is a
natural framework for computational techniques;
there is also empirical evidence for similarity-
based interpretation in human compound process-
ing (Ryder, 1994; Devereux and Costello, 2007).

This paper presents an approach to relational
reasoning based on combining information about
two kinds of similarity between word pairs: lex-
ical similarity and relational similarity. The as-
sumptions underlying these two models of similar-
ity are sketched in Section 2. In Section 3 we de-
scribe how these models can be implemented for
statistical machine learning with kernel methods.
We present a new flexible and efficient kernel-
based framework for classification with relational
similarity. In Sections 4 and 5 we apply our
methods to a compound interpretation task and
demonstrate that combining models of lexical and
relational similarity can give state-of-the-art re-
sults on a compound noun interpretation task, sur-
passing the performance attained by either model
taken alone. We then discuss previous research
on relational similarity, and show that some previ-
ously proposed models can be implemented in our
framework as special cases. Given the good per-
formance achieved for compound interpretation, it
seems likely that the methods presented in this pa-
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per can also be applied successfully to other rela-
tional reasoning tasks; we suggest some directions
for future research in Section 7.

2 Two models of word pair similarity

While there is a long tradition of NLP research
on methods for calculating semantic similarity be-
tween words, calculating similarity between pairs
(or n-tuples) of words is a less well-understood
problem. In fact, the problem has rarely been
stated explicitly, though it is implicitly addressed
by most work on compound noun interpretation
and semantic relation extraction. This section de-
scribes two complementary approaches for using
distributional information extracted from corpora
to calculate noun pair similarity.

The first model of pair similarity is based on
standard methods for computing semantic similar-
ity between individual words. According to this
lexical similarity model, word pairs (w1, w2) and
(w3, w4) are judged similar if w1 is similar to w3

and w2 is similar to w4. Given a measure wsim
of word-word similarity, a measure of pair simi-
larity psim can be derived as a linear combination
of pairwise lexical similarities:

psim((w1, w2), (w3, w4)) = (1)

α[wsim(w1, w3)] + β[wsim(w2, w4)]

A great number of methods for lexical semantic
similarity have been proposed in the NLP liter-
ature. The most common paradigm for corpus-
based methods, and the one adopted here, is based
on the distributional hypothesis: that two words
are semantically similar if they have similar pat-
terns of co-occurrence with other words in some
set of contexts. Curran (2004) gives a comprehen-
sive overview of distributional methods.

The second model of pair similarity rests on the
assumption that when the members of a word pair
are mentioned in the same context, that context
is likely to yield information about the relations
holding between the words’ referents. For exam-
ple, the members of the pair (bear, forest) may
tend to co-occur in contexts containing patterns
such as w1 lives in the w2 and in the w2,. . . a w1,
suggesting that a LOCATED IN or LIVES IN re-
lation frequently holds between bears and forests.
If the contexts in which fish and reef co-occur are
similar to those found for bear and forest, this is
evidence that the same semantic relation tends to

hold between the members of each pair. A re-
lational distributional hypothesis therefore states
that two word pairs are semantically similar if their
members appear together in similar contexts.

The distinction between lexical and relational
similarity for word pair comparison is recognised
by Turney (2006) (he calls the former attributional
similarity), though the methods he presents focus
on relational similarity. Ó Séaghdha and Copes-
take’s (2007) classification of information sources
for noun compound interpretation also includes a
description of lexical and relational similarity. Ap-
proaches to compound noun interpretation have
tended to use either lexical or relational similarity,
though rarely both (see Section 6 below).

3 Kernel methods for pair similarity

3.1 Kernel methods
The kernel framework for machine learning is a
natural choice for similarity-based classification
(Shawe-Taylor and Cristianini, 2004). The cen-
tral concept in this framework is the kernel func-
tion, which can be viewed as a measure of simi-
larity between data items. Valid kernels must sat-
isfy the mathematical condition of positive semi-
definiteness; this is equivalent to requiring that the
kernel function equate to an inner product in some
vector space. The kernel can be expressed in terms
of a mapping function φ from the input space X to
a feature space F :

k(xi,xj) = 〈φ(xi), φ(xj)〉F (2)

where 〈·, ·〉F is the inner product associated with
F . X and F need not have the same dimension-
ality or be of the same type. F is by definition an
inner product space, but the elements of X need
not even be vectorial, so long as a suitable map-
ping function φ can be found. Furthermore, it is
often possible to calculate kernel values without
explicitly representing the elements of F ; this al-
lows the use of implicit feature spaces with a very
high or even infinite dimensionality.

Kernel functions have received significant at-
tention in recent years, most notably due to the
successful application of Support Vector Machines
(Cortes and Vapnik, 1995) to many problems. The
SVM algorithm learns a decision boundary be-
tween two data classes that maximises the mini-
mum distance or margin from the training points
in each class to the boundary. The geometry of the
space in which this boundary is set depends on the

622



kernel function used to compare data items. By
tailoring the choice of kernel to the task at hand,
the user can use prior knowledge and intuition to
improve classification performance.

One useful property of kernels is that any sum
or linear combination of kernel functions is itself
a valid kernel. Theoretical analyses (Cristianini
et al., 2001; Joachims et al., 2001) and empiri-
cal investigations (e.g., Gliozzo et al. (2005)) have
shown that combining kernels in this way can have
a beneficial effect when the component kernels
capture different “views” of the data while indi-
vidually attaining similar levels of discriminative
performance. In the experiments described below,
we make use of this insight to integrate lexical and
relational information for semantic classification
of compound nouns.

3.2 Lexical kernels

Ó Séaghdha and Copestake (2008) demonstrate
how standard techniques for distributional similar-
ity can be implemented in a kernel framework. In
particular, kernels for comparing probability dis-
tributions can be derived from standard probabilis-
tic distance measures through simple transforma-
tions. These distributional kernels are suited to a
data representation where each word w is identi-
fied with the a vector of conditional probabilities
(P (c1|w), . . . , P (c|C||w)) that defines a distribu-
tion over other terms c co-occurring with w. For
example, the following positive semi-definite ker-
nel between words can be derived from the well-
known Jensen-Shannon divergence:

kjsd(w1, w2) =

−
∑

c

[P (c|w1) log2(
P (c|w1)

P (c|w1) + P (c|w2)
)

+ P (c|w2) log2(
P (c|w2)

P (c|w1) + P (c|w2)
)] (3)

A straightforward method of extending this model
to word pairs is to represent each pair (w1, w2) as
the concatenation of the co-occurrence probability
vectors for w1 and w2. Taking kjsd as a measure of
word similarity and introducing parameters α and
β to scale the contributions of w1 and w2 respec-
tively, we retrieve the lexical model of pair similar-
ity defined above in (1). Without prior knowledge
of the relative importance of each pair constituent,
it is natural to set both scaling parameters to 0.5,
and this is done in the experiments below.

3.3 String embedding functions
The necessary starting point for our implementa-
tion of relational similarity is a means of compar-
ing contexts. Contexts can be represented in a va-
riety of ways, from unordered bags of words to
rich syntactic structures. The context representa-
tion adopted here is based on strings, which pre-
serve useful information about the order of words
in the context yet can be processed and compared
quite efficiently. String kernels are a family of ker-
nels that compare strings s, t by mapping them
into feature vectors φString(s), φString(t) whose
non-zero elements index the subsequences con-
tained in each string.

A string is defined as a finite sequence s =
(s1, . . . , sl) of symbols belonging to an alphabet
Σ. Σl is the set of all strings of length l, and Σ∗ is
set of all strings or the language. A subsequence
u of s is defined by a sequence of indices i =
(i1, . . . , i|u|) such that 1 ≤ i1 < · · · < i|u| ≤ |s|,
where |s| is the length of s. len(i) = i|u| − i1 + 1
is the length of the subsequence in s. An embed-
ding φString : Σ∗ → R|Σ|l is a function that maps
a string s onto a vector of positive “counts” that
correspond to subsequences contained in s.

One example of an embedding function is a
gap-weighted embedding, defined as

φgapl
(s) = [

∑
i:s[i]=u

λlen(i)]u∈Σl (4)

λ is a decay parameter between 0 and 1; the
smaller its value, the more the influence of a dis-
continuous subsequence is reduced. When l = 1
this corresponds to a “bag-of-words” embedding.
Gap-weighted string kernels implicitly compute
the similarity between two strings s, t as an inner
product 〈φ(s), φ(t)〉. Lodhi et al. (2002) present
an efficient dynamic programming algorithm that
evaluates this kernel in O(l|s||t|) time without ex-
plicitly representing the feature vectors φ(s), φ(t).

An alternative embedding is that used by Turney
(2008) in his PairClass system (see Section 6). For
the PairClass embedding φPC , an n-word context

[0−1 words] N1|2 [0−3 words] N1|2 [0−1 words]

containing target words N1, N2 is mapped onto
the 2n−2 patterns produced by substituting zero
or more of the context words with a wildcard ∗.
Unlike the patterns used by the gap-weighted em-
bedding these are not truly discontinuous, as each
wildcard must match exactly one word.
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3.4 Kernels on sets
String kernels afford a way of comparing individ-
ual contexts. In order to compute the relational
similarity of two pairs, however, we do not want to
associate each pair with a single context but rather
with the set of contexts in which they appear to-
gether. In this section, we use string embeddings
to define kernels on sets of strings.

One natural way of defining a kernel over sets
is to take the average of the pairwise basic kernel
values between members of the two sets A and B.
Let k0 be a kernel on a set X , and let A,B ⊆ X
be sets of cardinality |A| and |B| respectively. The
averaged kernel is defined as

kave(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

k0(a, b) (5)

This kernel was introduced by Gärtner et
al. (2002) in the context of multiple instance learn-
ing. It was first used for computing relational sim-
ilarity by Ó Séaghdha and Copestake (2007). The
efficiency of the kernel computation is dominated
by the |A| × |B| basic kernel calculations. When
each basic kernel calculation k0(a, b) has signifi-
cant complexity, as is the case with string kernels,
calculating kave can be slow.

A second perspective views each set as corre-
sponding to a probability distribution, and takes
the members of that set as observed samples from
that distribution. In this way a kernel on distribu-
tions can be cast as a kernel on sets. In the case of
sets whose members are strings, a string embed-
ding φString can be used to estimate a probability
distribution over subsequences for each set by tak-
ing the normalised sum of the feature mappings of
its members:

φSet(A) =
1
Z

∑
s∈A

φString(s) (6)

where Z is a normalisation factor. Different
choices of φString yield different relational simi-
larity models. In this paper we primarily use the
gap-weighted embedding φgapl

; we also discuss
the PairClass embedding φPC for comparison.

Once the embedding φSet has been calculated,
any suitable inner product can be applied to the
resulting vectors, e.g. the linear kernel (dot prod-
uct) or the Jensen-Shannon kernel defined in (3).
In the latter case, which we term kjsd below, the
natural choice for normalisation is the sum of the
entries in

∑
s∈A φString(s), ensuring that φSet(A)

has unit L1 norm and defines a probability dis-
tribution. Furthermore, scaling φSet(A) by 1

|A| ,
applying L2 vector normalisation and applying
the linear kernel retrieves the averaged set kernel
kave(A,B) as a special case of the distributional
framework for sets of strings.

Instead of requiring |A||B| basic kernel evalua-
tions for each pair of sets, distributional set kernels
only require the embedding φSet(A) to be com-
puted once for each set and then a single vector
inner product for each pair of sets. This is gen-
erally far more efficient than the kernel averaging
method. The significant drawback is that repre-
senting the feature vector for each set demands
a large amount of memory; for the gap-weighted
embedding with subsequence length l, each vec-
tor potentially contains up to |A|

(|smax|
l

)
entries,

where smax is the longest string in A. In practice,
however, the vector length will be lower due to
subsequences occurring more than once and many
strings being shorter than smax.

One way to reduce the memory load is to re-
duce the lengths of the strings used, either by re-
taining just the part of each string expected to be
informative or by discarding all strings longer than
an acceptable maximum. The PairClass embed-
ding function implicitly restricts the contexts con-
sidered by only applying to strings where no more
than three words occur between the targets, and by
ignoring all non-intervening words except single
ones adjacent to the targets. A further technique
is to trade off time efficiency for space efficiency
by computing the set kernel matrix in a blockwise
fashion. To do this, the input data is divided into
blocks of roughly equal size – the size that is rele-
vant here is the sum of the cardinalities of the sets
in a given block. Larger block sizes b therefore
allow faster computation, but they require more
memory. In the experiments described below, b
was set to 5,000 for embeddings of length l = 1
and l = 2, and to 3,000 for l = 3.

4 Experimental setup for compound
noun interpretation

4.1 Dataset
The dataset used in our experiments is Ó Séaghdha
and Copestake’s (2007) set of 1,443 compound
nouns extracted from the British National Corpus
(BNC).1 Each compound is annotated with one of

1The data are available from http://www.cl.cam.
ac.uk/˜do242/resources.html.

624



six semantic relations: BE, HAVE, IN, AGENT, IN-
STRUMENT and ABOUT. For example, air disas-
ter is labelled IN (a disaster in the air) and freight
train is labelled INSTRUMENT (a train that car-
ries freight). The best previous classification result
on this dataset was reported by Ó Séaghdha and
Copestake (2008), who achieved 61.0% accuracy
and 58.8% F-score with a purely lexical model of
compound similarity.

4.2 General Methodology
All experiments were run using the LIBSVM Sup-
port Vector Machine library.2 The one-versus-all
method was used to decompose the multiclass task
into six binary classification tasks. Performance
was evaluated using five-fold cross-validation. For
each fold the SVM cost parameter was optimised
in the range (2−6, 2−4, . . . , 212) through cross-
validation on the training set.

All kernel matrices were precomputed on near-
identical machines with 2.4 Ghz 64-bit processors
and 8Gb of memory. The kernel matrix compu-
tation is trivial to parallelise, as each cell is inde-
pendent. Spreading the computational load across
multiple processors is a simple way to reduce the
real time cost of the procedure.

4.3 Lexical features
Our implementation of the lexical similarity
model uses the same feature set as Ó Séaghdha
and Copestake (2008). Two corpora were used
to extract co-occurrence information: the writ-
ten component of the BNC (Burnard, 1995) and
the Google Web 1T 5-Gram Corpus (Brants and
Franz, 2006). For each noun appearing as a com-
pound constituent in the dataset, we estimate a co-
occurrence distribution based on the nouns in co-
ordinative constructions. Conjunctions are identi-
fied in the BNC by first parsing the corpus with
RASP (Briscoe et al., 2006) and extracting in-
stances of the conj grammatical relation. As the
5-Gram corpus does not contain full sentences it
cannot be parsed, so regular expressions were used
to extract coordinations. In each corpus, the set of
co-occurring terms is restricted to the 10,000 most
frequent conjuncts in that corpus so that each con-
stituent distribution is represented with a 10,000-
dimensional vector. The probability vector for the
compound is created by appending the two con-
stituent vectors, each scaled by 0.5 to weight both

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

constituents equally and ensure that the new vec-
tor sums to 1. To perform classification with these
features we use the Jensen-Shannon kernel (3).3

4.4 Relational features

To extract data for computing relational similarity,
we searched a large corpus for sentences in which
both constituents of a compound co-occur. The
corpora used here are the written BNC, contain-
ing 90 million words of British English balanced
across genre and text type, and the English Giga-
word Corpus, 2nd Edition (Graff et al., 2005), con-
taining 2.3 billion words of newswire text. Extrac-
tion from the Gigaword Corpus was performed at
the paragraph level as the corpus is not annotated
for sentence boundaries, and a dictionary of plural
forms and American English variants was used to
expand the coverage of the corpus trawl.

The extracted contexts were split into sentences,
tagged and lemmatised with RASP. Duplicate sen-
tences were discarded, as were sentences in which
the compound head and modifier were more than
10 words apart. Punctuation and tokens containing
non-alphanumeric characters were removed. The
compound modifier and head were replaced with
placeholder tokens M:n and H:n in each sentence
to ensure that the classifier would learn from re-
lational information only and not from lexical in-
formation about the constituents. Finally, all to-
kens more than five words to the left of the left-
most constituent or more than five words to the
right of the rightmost constituent were discarded;
this has the effect of speeding up the kernel com-
putations and should also focus the classifier on
the most informative parts of the context sen-
tences. Examples of the context strings extracted
for the modifier-head pair (history,book) are the:a
1957:m pulitizer:n prize-winning:j H:n describe:v
event:n in:i american:j M:n when:c elect:v of-
ficial:n take:v principle:v and he:p read:v con-
stantly:r usually:r H:n about:i american:j M:n
or:c biography:n.

This extraction procedure resulted in a corpus
of 1,472,798 strings. There was significant varia-
tion in the number of context strings extracted for
each compound: 288 compounds were associated
with 1,000 or more sentences, while 191 were as-

3Ó Séaghdha and Copestake (2008) achieve their single
best result with a different kernel (the Jensen-Shannon RBF
kernel), but the kernel used here (the Jensen-Shannon lin-
ear kernel) generally achieves equivalent performance and
presents one fewer parameter to optimise.
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kjsd kave

Length Acc F Acc F
1 47.9 45.8 43.6 40.4
2 51.7 49.5 49.7 48.3
3 50.7 48.4 50.1 48.6
Σ12 51.5 49.6 48.3 46.8
Σ23 52.1 49.9 50.9 49.5
Σ123 51.3 49.0 50.5 49.1
φPC 44.9 43.3 40.9 40.0

Table 1: Results for combinations of embedding
functions and set kernels

sociated with 10 or fewer and no sentences were
found for 45 constituent pairs. The largest context
sets were predominantly associated with political
or economic topics (e.g., government official, oil
price), reflecting the journalistic sources of the Gi-
gaword sentences.

Our implementation of relational similarity ap-
plies the two set kernels kave and kjsd defined in
Section 3.4 to these context sets. For each kernel
we tested gap-weighted embedding functions with
subsequence length values l in the range 1, 2, 3,
as well as summed kernels for all combinations
of values in this range. The decay parameter λ
for the subsequence feature embedding was set to
0.5 throughout, in line with previous recommen-
dations (e.g., Cancedda et al. (2003)). To inves-
tigate the effects of varying set sizes, we ran ex-
periments with context sets of maximal cardinality
q ∈ {50, 250, 1000}. These sets were randomly
sampled for each compound; for compounds asso-
ciated with fewer strings than the maximal cardi-
nality, all associated strings were used. For q = 50
we average results over five runs in order to re-
duce sampling variation. We also report some
results with the PairClass embedding φPC . The
restricted representative power of this embedding
brings greater efficiency and we were able to use
q = 5, 000; for all but 22 compounds, this allowed
the use of all contexts for which the φPC embed-
ding was defined.

5 Results

Table 1 presents results for classification with re-
lational set kernels, using q = 1, 000 for the gap-
weighted embedding. In general, there is little dif-
ference between the performance of kjsd and kave

with φgapl
; the only statistically significant differ-

ences (at p < 0.05, using paired t-tests) are be-
tween the kernels kl=1 with subsequence length

l = 1 and the summed kernels kΣ12 = kl=1+kl=2.
The best performance of 52.1% accuracy, 49.9%
F-score is obtained with the Jensen-Shannon ker-
nel kjsd computed on the summed feature embed-
dings of length 2 and 3. This is significantly lower
than the performance achieved by Ó Séaghdha
and Copestake (2008) with their lexical similar-
ity model, but it is well above the majority class
baseline (21.3%). Results for the PairClass em-
bedding are much lower than for the gap-weighted
embedding; the superiority of φgapl

is statistically
significant in all cases except l = 1.

Results for combinations of lexical co-
occurrence kernels and (gap-weighted) relational
set kernels are given in Table 2. With the excep-
tion of some combinations of the length-1 set
kernel, these results are clearly better than the
best results obtained with either the lexical or
the relational model taken alone. The best result
is obtained by the combining the lexical kernel
computed on BNC conjunction features with the
summed Jensen-Shannon set kernel kΣ23 ; this
combination achieves 63.1% accuracy and 61.6%
F-score, a statistically significant improvement (at
the p < 0.01 level) over the lexical kernel alone
and the best result yet reported for this dataset.
Also, the benefit of combining set kernels of
different subsequence lengths l is evident; of the
12 combinations presented Table 2 that include
summed set kernels, nine lead to statistically
significant improvements over the corresponding
lexical kernels taken alone (the remaining three
are also close to significance).

Our experiments also show that the distribu-
tional implementation of set kernels (6) is much
more efficient than the averaging implementation
(5). The time behaviour of the two methods
with increasing set cardinality q and subsequence
length l is illustrated in Figure 1. At the largest
tested values of q and l (1,000 and 3, respectively),
the averaging method takes over 33 days of CPU
time, while the distributional method takes just
over one day. In theory, kave scales quadratically
as q increases; this was not observed because for
many constituent pairs there are not enough con-
text strings available to keep adding as q grows
large, but the dependence is certainly superlinear.
The time taken by kjsd is theoretically linear in q,
but again scales less dramatically in practice. On
the other hand kave is linear in l, while kjsd scales
exponentially. This exponential dependence may
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kjsd kave

BNC 5-Gram BNC 5-Gram
Length Acc F Acc F Acc F Acc F
1 60.6 58.6 60.3 58.1 59.5 57.6 59.1 56.5
2 61.9* 60.4* 62.6 60.8 62.0 60.5* 61.3 59.1
3 62.5* 60.8* 61.7 59.9 62.8* 61.2** 62.3** 60.8**
Σ12 62.6* 61.0** 62.3* 60.6* 62.0* 60.3* 61.5 59.2
Σ23 63.1** 61.6** 62.3* 60.5* 62.2* 60.7* 62.0 60.3
Σ123 62.9** 61.3** 62.6 60.8* 61.9* 60.4* 62.4* 60.6*
No Set 59.9 57.8 60.2 58.1 59.9 57.8 60.2 58.1

Table 2: Results for set kernel and lexical kernel combination. */** indicate significant improvement at
the 0.05/0.01 level over the corresponding lexical kernel alone, estimated by paired t-tests.
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Figure 1: Timing results (in seconds, log-scaled) for averaged and Jensen-Shannon set kernels

seem worrying, but in practice only short subse-
quence lengths are used with string kernels. In
situations where set sizes are small but long sub-
sequence features are desired, the averaging ap-
proach may be more appropriate. However, it
seems likely that many applications will be sim-
ilar to the task considered here, where short sub-
sequences are sufficient and it is desirable to use
as much data as possible to represent each set.
We note that calculating the PairClass embedding,
which counts far fewer patterns, took just 1h21m.
For optimal efficiency, it seems best to use a gap-
weighted embedding with small set cardinality;
averaged across five runs kjsd with q = 50 and
l = Σ123 took 26m to calculate and still achieved
47.6% Accuracy, 45.1% F-score.

6 Related work

Turney et al. (2003) suggest combining various in-
formation sources for solving SAT analogy prob-
lems. However, previous work on compound in-
terpretation has generally used either lexical simi-
larity or relational similarity but not both in com-
bination. Previously proposed lexical models in-
clude the WordNet-based methods of Kim and
Baldwin (2005) and Girju et al. (2005), and the

distributional model of Ó Séaghdha and Copes-
take (2008). The idea of using relational similar-
ity to understand compounds goes back at least as
far as Lebowitz’ (1988) RESEARCHER system,
which processed patent abstracts in an incremental
fashion and associated an unseen compound with
the relation expressed in a context where the con-
stituents previously occurred.

Turney (2006) describes a method (Latent Rela-
tional Analysis) that extracts subsequence patterns
for noun pairs from a large corpus, using query
expansion to increase the recall of the search and
feature selection and dimensionality reduction to
reduce the complexity of the feature space. LRA
performs well on analogical tasks including com-
pound interpretation, but has very substantial re-
source requirements. Turney (2008) has recently
proposed a simpler SVM-based algorithm for ana-
logical classification called PairClass. While it
does not adopt a set-based or distributional model
of relational similarity, we have noted above that
PairClass implicitly uses a feature representation
similar to the one presented above as (6) by ex-
tracting subsequence patterns from observed co-
occurrences of word pair members. Indeed, Pair-
Class can be viewed as a special case of our frame-
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work; the differences from the model we have
used consist in the use of a different embedding
function φPC and a more restricted notion of con-
text, a frequency cutoff to eliminate less common
subsequences and the Gaussian kernel to compare
vectors. While we cannot compare methods di-
rectly as we do not possess the large corpus of
5 × 1010 words used by Turney, we have tested
the impact of each of these modifications on our
model.4 None improve performance with our set
kernels, but the only statistically significant effect
is that of changing the embedding model as re-
ported in section Section 5. Implementing the full
PairClass algorithm on our corpus yields 46.2%
accuracy, 44.9% F-score, which is again signifi-
cantly worse than all results for the gap-weighted
model with l > 1.

In NLP, there has not been widespread use of
set representations for data items, and hence set
classification techniques have received little at-
tention. Notable exceptions include Rosario and
Hearst (2005) and Bunescu and Mooney (2007),
who tackle relation classification and extraction
tasks by considering the set of contexts in which
the members of a candidate relation argument pair
co-occur. While this gives a set representation for
each pair, both sets of authors apply classifica-
tion methods at the level of individual set mem-
bers rather than directly comparing sets. There
is also a close connection between the multino-
mial probability model we have proposed and the
pervasive bag of words (or bag of n-grams) repre-
sentation. Distributional kernels based on a gap-
weighted feature embedding extend these models
by using bags of discontinuous n-grams and down-
weighting gappy subsequences.

A number of set kernels other than those dis-
cussed here have been proposed in the machine
learning literature, though none of these propos-
als have explicitly addressed the problem of com-
paring sets of strings or other structured objects,
and many are suitable only for comparing sets of
small cardinality. Kondor and Jebara (2003) take a
distributional approach similar to ours, fitting mul-
tivariate normal distributions to the feature space
mappings of sets A and B and comparing the map-
pings with the Bhattacharrya vector inner product.
The model described above in (6) implicitly fits
multinomial distributions in the feature space F ;

4Turney (p.c.) reports that the full PairClass model
achieves 50.0% accuracy, 49.3% F-score.

this seems more intuitive for string kernel embed-
dings that map strings onto vectors of positive-
valued “counts”. Experiments with Kondor and
Jebara’s Bhattacharrya kernel indicate that it can
in fact come close to the performances reported
in Section 5 but has significantly greater compu-
tational requirements due to the need to perform
costly matrix manipulations.

7 Conclusion and future directions

In this paper we have presented a combined model
of lexical and relational similarity for relational
reasoning tasks. We have developed an efficient
and flexible kernel-based framework for compar-
ing sets of contexts using the feature embedding
associated with a string kernel.5 By choosing a
particular embedding function and a particular in-
ner product on subsequence vectors, the previ-
ously proposed set-averaging and PairClass algo-
rithms for relational similarity can be retrieved as
special cases. Applying our methods to the task
of compound noun interpretation, we have shown
that combining lexical and relational similarity is a
very effective approach that surpasses either simi-
larity model taken individually.

Turney (2008) argues that many NLP tasks can
be formulated in terms of analogical reasoning,
and he applies his PairClass algorithm to a number
of problems including SAT verbal analogy tests,
synonym/antonym classification and distinction
between semantically similar and semantically as-
sociated words. Our future research plans include
investigating the application of our combined sim-
ilarity model to analogical tasks other than com-
pound noun interpretation. A second promising
direction is to investigate relational models for un-
supervised semantic analysis of noun compounds.
The range of semantic relations that can be ex-
pressed by compounds is the subject of some con-
troversy (Ryder, 1994), and unsupervised learning
methods offer a data-driven means of discovering
relational classes.
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Abstract

This article presents empirical evaluations
of aspects of annotation for the linguis-
tic property of animacy in Swedish, rang-
ing from manual human annotation, auto-
matic classification and, finally, an exter-
nal evaluation in the task of syntactic pars-
ing. We show that a treatment of animacy
as a lexical semantic property of noun
types enables generalization over distri-
butional properties of these nouns which
proves beneficial in automatic classifica-
tion and furthermore gives significant im-
provements in terms of parsing accuracy
for Swedish, compared to a state-of-the-
art baseline parser with gold standard ani-
macy information.

1 Introduction

The property of animacy influences linguistic phe-
nomena in a range of different languages, such
as case marking (Aissen, 2003) and argument re-
alization (Bresnan et al., 2005; de Swart et al.,
2008), and has been shown to constitute an im-
portant factor in the production and comprehen-
sion of syntactic structure (Branigan et al., 2008;
Weckerly and Kutas, 1999).1 In computational
linguistic work, animacy has been shown to pro-
vide important information in anaphora resolution
(Orăsan and Evans, 2007), argument disambigua-
tion (Dell’Orletta et al., 2005) and syntactic pars-
ing in general (Øvrelid and Nivre, 2007).

The dimension of animacy roughly distin-
guishes between entities which are alive and en-
tities which are not, however, other distinctions

1Parts of the research reported in this paper has been sup-
ported by theDeutsche Forschungsgemeinschaft(DFG,Son-
derforschungsbereich 632, project D4).

are also relevant and the animacy dimension is of-
ten viewed as a continuum ranging from humans
to inanimate objects. Following Silverstein (1976)
several animacy hierarchies have been proposed in
typological studies, focusing on thelinguistic cat-
egory of animacy, i.e., the distinctions which are
relevant for linguistic phenomena. An example of
an animacy hierarchy, taken from (Aissen, 2003),
is provided in (1):

(1) Human> Animate> Inanimate

Clearly, non-human animates, like animals, are
not less animate than humans in a biological sense,
however, humans and animals show differing lin-
guistic behaviour.

Empirical studies of animacy require human an-
notation efforts, and, in particular, a well-defined
annotation task. However, annotation studies of
animacy differ distinctly in their treatment of ani-
macy as a type or token-level phenomenon, as well
as in terms of granularity of categories. The use
of the annotated data as a computational resource
furthermore poses requirements on the annotation
which do not necessarily agree with more theo-
retical considerations. Methods for the induction
of animacy information for use in practical appli-
cations require the resolution of issues of level of
representation, as well as granularity.

This article addresses these issues through em-
pirical and experimental evaluation. We present
an in-depth study of a manually annotated data
set which indicates that animacy may be treated
as a lexical semantic property at the type level.
We then evaluate this proposal through supervised
machine learning of animacy information and fo-
cus on an in-depth error analysis of the resulting
classifier, addressing issues of granularity of the
animacy dimension. Finally, the automatically an-
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notated data set is employed in order to train a syn-
tactic parser and we investigate the effect of the an-
imacy information and contrast the automatically
acquired features with gold standard ones.

The rest of the article is structured as follows. In
section 2, we briefly discuss annotation schemes
for animacy, the annotation strategies and cate-
gories proposed there. We go on to describe anno-
tation for the binary distinction of ‘human refer-
ence’ found in a Swedish dependency treebank in
section 3 and we perform an evaluation of the con-
sistency of the human annotation in terms of lin-
guistic level. In section 4, we present experiments
in lexical acquisition of animacy based on mor-
phosyntactic features extracted from a consider-
ably larger corpus. Section 5 presents experiments
with the acquired animacy information applied in
the data-driven dependency parsing of Swedish.
Finally, section 6 concludes the article and pro-
vides some suggestions for future research.

2 Animacy annotation

Annotation for animacy is not a common compo-
nent of corpora or treebanks. However, following
from the theoretical interest in the property of an-
imacy, there have been some initiatives directed at
animacy annotation of corpus data.

Corpus studies of animacy (Yamamoto, 1999;
Dahl and Fraurud, 1996) have made use of an-
notated data, however they differ in the extent to
which the annotation has been explicitly formu-
lated as an annotation scheme. The annotation
study presented in Zaenen et. al. (2004) makes use
of a coding manual designed for a project study-
ing genitive modification (Garretson et al., 2004)
and presents an explicit annotation scheme for an-
imacy, illustrated by figure 1. The main class dis-
tinction for animacy is three-way, distinguishing
Human, Other animate and Inanimate, with sub-
classes under two of the main classes. The ‘Other
animate’ class further distinguishes Organizations
and Animals. Within the group of inanimates, fur-
ther distinctions are made between concrete and
non-concrete inanimate, as well as time and place
nominals.2

The annotation scheme described in Zaenen et.
al. (2004) annotates the markables according to

2The fact that the study focuses on genitival modification
has clearly influenced the categories distinguished, as these
are all distinctions which have been claimed to influence the
choice of genitive construction. For instance, temporal nouns
are frequent in genitive constructions, unlike the other inani-
mate nouns.

the animacy of their referent in the particular con-
text. Animacy is thus treated as a token level
property, however, has also been proposed as a
lexical semantic property of nouns (Yamamoto,
1999). The indirect encoding of animacy in lex-
ical resources, such as WordNet (Fellbaum, 1998)
can also be seen as treating animacy as a type-
level property. We may thus distinguish between a
purely type levelannotation strategy and a purely
token levelone. Type level properties hold for lex-
emes and are context-independent, i.e., indepen-
dent of the particular linguistic context, whereas
token-level properties are determined in context
and hold for referring expressions, rather than lex-
emes.

3 Human reference in Swedish

Talbanken05 is a Swedish treebank which was
created in the 1970’s and which has recently
been converted to dependency format (Nivre et
al., 2006b) and made freely available. The writ-
ten sections of the treebank consist of profes-
sional prose and student essays and amount to
197,123 running tokens, spread over 11,431 sen-
tences. Figure 2 shows the labeled dependency
graph of example (2), taken from Talbanken05.

(2) Samma
same

erfarenhet
experience

gjorde
made

engelsmännen
englishmen-DEF

‘The same experience, the Englishmen had’

_
_
_

Samma
PO
KP

erfarenhet
NN
_

gjorde
VV
PT

engelsmannen
NN
DD|HH

ROOTDT OO SS

Figure 2: Dependency representation of example
(2) from Talbanken05.

In addition to information on part-of-speech, de-
pendency head and relation, and various mor-
phosyntactic properties such as definiteness, the
annotation expresses a distinction for nominal el-
ements between reference to human and non-
human. The annotation manual (Teleman, 1974)
states that a markable should be tagged as human
(HH) if it may be replaced by the interrogative pro-
nounvem‘who’ and be referred to by the personal
pronounshan ‘he’ or hon ‘she’.

There are clear similarities between the anno-
tation for human reference found in Talbanken05
and the annotation scheme for animacy discussed
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ANIM

CONC NCONC TIME PLACE

ORG

HUM InanimateOther
animate

Figure 1: Animacy classification scheme (Zaenen et al., 2004).

above. The human/non-human contrast forms the
central distinction in the animacy dimension and,
in this respect, the annotation schemes do not con-
flict. If we compare the annotation found in Tal-
banken05 with the annotation proposed in Zaenen
et. al. (2004), we find that the schemes differ pri-
marily in the granularity of classes distinguished.
The main source of variation in class distinctions
consists in the annotation of collective nouns, in-
cluding organizations, as well as animals.

3.1 Level of annotation

We distinguished above between type and token
level annotation strategies, where a type level an-
notation strategy entails that an element consis-
tently be assigned to only one class. A token level
strategy, in contrast, does not impose this restric-
tion on the annotation and class assignment may
vary depending on the specific context. Garretson
et. al (2004) propose a token level annotation strat-
egy and state that “when coding for animacy [. . . ]
we are not considering the nominal per se (e.g., the
word ‘church’), but rather the entity that is the ref-
erent of that nominal (e.g. some particular thing in
the real world)”. This indicates that for all possible
markables, a referent should be determinable.

The brief instruction with respect to annotation
for human reference in the annotation manual for
Talbanken05 (Teleman, 1974, 223) gives leeway
for interpretation in the annotation and does not
clearly state that it should be based on token level
reference in context. It may thus be interesting
to examine the extent to which this manual an-
notation is consistent across lexemes or whether
we observe variation. We manually examine the
intersection of the two classes of noun lemmas
in the written sections of Talbanken, i.e., the set
of nouns which have been assigned both classes
by the annotators. It contains 82 noun lemmas,
which corresponds to only 1.1% of the total num-
ber of noun lemmas in the treebank (7554 lem-
mas all together). After a manual inspection of
the intersective elements along with their linguis-

tic contexts, we may group the nouns which were
assigned to both classes, into the following cate-
gories:that ‘HH’ is the tag for

Abstract nouns Nouns with underspecified or
vague type level properties with respect to ani-
macy, such as quantifying nouns, e.g.hälft ‘half’,
miljon ‘million’, as well as nouns which may be
employed with varying animacy, e.g.element‘el-
ement’,part ‘party’, as in (3) and (4):

(3) . . . också
. . . also

den
the

andra
other

partenHH

party-DEF
står
stands

utanför
outside

‘. . . also the other party is left outside’

(4) I
in

ett
a

förhållande
relationship

är
are

aldrig
never

bägge
both

parter
parties

lika
same

starka
strong

‘In a relationship, both parties are never equally
strong’

We also find that nouns which denote abstract con-
cepts regarding humans show variable annotation,
e.g. individ ‘individual’, adressat ‘addressee’,
medlem‘member’, kandidat ‘candidate’, repre-
sentant‘representative’,auktoritet ‘authority’

Reference shifting contexts These are nouns
whose type level animacy is clear but which are
employed in a specific context which shifts their
reference. Examples include metonymic usage of
nouns, as in (5) and nouns occurring in derefer-
encing constructions, such as predicative construc-
tions (6), titles (7) and idioms (8):

(5) . . .daghemmensHH

. . . kindergarten-DEF.GEN
otillräckliga
inadequate

resurser
resources

‘. . . the kindergarten’s inadequate resources’

(6) . . . för
. . . for

att
to

bli
become

en
a

bra
good

soldat
soldier

‘. . . in order to become a good soldier’

(7) . . . menar
. . . thinks

biskop
bishop

Hellsten
Hellsten

‘thinks bishop Hellsten’

(8) ta
take

studenten
student-DEF

‘graduate from highschool (lit. take the student)’
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It is interesting to note that the main variation in
annotation stems precisely from difficulties in de-
termining reference, either due to bleak type level
properties such as for the abstract nouns, or due to
properties of the context, as in the reference shift-
ing constructions. The small amount of variation
in the human annotation for animacy clearly sup-
ports a type-level approach to animacy, however,
underline the influence of the linguistic context on
the conception of animacy, as noted in the litera-
ture (Zaenen et al., 2004; Rosenbach, 2008).

4 Lexical acquisition of animacy

Even though knowledge about the animacy of a
noun clearly has some interesting implications, lit-
tle work has been done within the field of lexical
acquisition in order to automatically acquire ani-
macy information. Orăsan and Evans (2007) make
use of hyponym-relations taken from the Word-
Net resource in order to classify animate referents.
However, such a method is clearly restricted to
languages for which large scale lexical resources,
such as the WordNet, are available. The task of
animacy classification bears some resemblance to
the task of named entity recognition (NER) which
usually makes reference to a ‘person’ class. How-
ever, whereas most NER systems make extensive
use of orthographic, morphological or contextual
clues (titles, suffixes) and gazetteers, animacy for
nouns is not signaled overtly in the same way.

Following a strategy in line with work on
verb classification (Merlo and Stevenson, 2001;
Stevenson and Joanis, 2003), we set out to clas-
sify common nounlemmasbased on their mor-
phosyntactic distribution in a considerably larger
corpus. This is thus equivalent to treatment of
animacy as a lexical semantic property and the
classification strategy is based on generalization
of morphosyntactic behaviour of common nouns
over large quantities of data. Due to the small size
of the Talbanken05 treebank and the small amount
of variation, this strategy was pursued for the ac-
quisition of animacy information.

In the animacy classification of common nouns
we exploit well-documented correlations between
morphosyntactic realization and semantic proper-
ties of nouns. For instance, animate nouns tend to
be realized as agentive subjects, inanimate nouns
do not (Dahl and Fraurud, 1996). Animate nouns
make good ‘possessors’, whereas inanimate nouns
are more likely ‘possessees’ (Rosenbach, 2008).
Table 1 presents an overview of the animacy data

Class Types Tokens covered
Animate 644 6010
Inanimate 6910 34822
Total 7554 40832

Table 1: The animacy data set from Talbanken05;
number of noun lemmas (Types) and tokens in
each class.

for common nouns in Talbanken05. It is clear that
the data is highly skewed towards the non-human
class, which accounts for 91.5% of the type in-
stances. For classification we organize the data
into accumulated frequency bins, which include
all nouns with frequencies above a certain thresh-
old. We here approximate the class of ‘animate’
to ‘human’ and the class of ‘inanimate’ to ‘non-
human’. Intersective elements, see section 3.1, are
assigned to their majority class.3

4.1 Features for animacy classification

We define a feature space, which makes use of
distributional data regarding the general syntactic
properties of a noun, as well as various morpho-
logical properties. It is clear that in order for a
syntactic environment to be relevant for animacy
classification it must be, at least potentially, nom-
inal. We define thenominal potentialof a depen-
dency relation as the frequency with which it is
realized by a nominal element (noun or pronoun)
and determine empirically a threshold of .10. The
syntactic and morphological features in the feature
space are presented below:

Syntactic features A feature for each depen-
dency relation with nominal potential: (tran-
sitive) subject (SUBJ), object (OBJ), preposi-
tional complement (PA), root (ROOT)4, ap-
position (APP), conjunct (CC), determiner
(DET), predicative (PRD), complement of
comparative subjunction (UK). We also in-
clude a feature for the head of a genitive mod-
ifier, the so-called ‘possessee’, (GENHD).

Morphological features A feature for each mor-
phological distinction relevant for a noun

3When there is no majority class, i.e. in the case of ties,
the noun is removed from the data set. 12 lemmas were con-
sequently removed.

4Nominal elements may be assigned the root relation of
the dependency graph in sentence fragments which do not
contain a finite verb.
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in Swedish: gender (NEU/UTR), num-
ber (SIN/PLU), definiteness (DEF/IND), case
(NOM/GEN). Also, the part-of-speech tags
distinguish dates (DAT) and quantifying
nouns (SET), e.g. del, rad ‘part, row’, so
these are also included as features.

For extraction of distributional data for the set of
Swedish nouns we make use of the Swedish Pa-
role corpus of 21.5M tokens.5 To facilitate feature
extraction, we part-of-speech tag the corpus and
parse it with MaltParser6, which assigns a depen-
dency analysis.7

4.2 Experimental methodology

For machine learning, we make use of the Tilburg
Memory-Based Learner (TiMBL) (Daelemans et
al., 2004).8 Memory-based learning is a super-
vised machine learning method characterized by
a lazy learning algorithm which postpones learn-
ing until classification time, using thek-nearest
neighbor algorithm for the classification of unseen
instances. For animacy classification, the TiMBL
parameters are optimized on a subset of the full
data set.9

For training and testing of the classifiers, we
make use of leave-one-out cross-validation. The
baseline represents assignment of the majority
class (inanimate) to all nouns in the data set. Due
to the skewed distribution of classes, as noted
above, the baseline accuracy is very high, usu-
ally around 90%.Clearly, however, the class-based
measures of precision and recall, as well as the
combined F-score measure are more informative
for these results. The baseline F-score for the ani-
mate class is thus 0, and a main goal is to improve
on the rate of true positives for animates, while
limiting the trade-off in terms of performance for

5Parole is freely available at http://spraakbanken.gu.se
6http://www.maltparser.org
7For part-of-speech tagging, we employ the MaltTagger

– a HMM part-of-speech tagger for Swedish (Hall, 2003).
For parsing, we employ MaltParser (Nivre et al., 2006a),
a language-independent system for data-driven dependency
parsing , with the pretrained model for Swedish, which has
been trained on the tags output by the tagger.

8http://ilk.uvt.nl/software.html
9For parameter optimization we employ the

paramsearch tool, supplied with TiMBL, see
http://ilk.uvt.nl/software.html. Paramsearch implements
a hill climbing search for the optimal settings on iteratively
larger parts of the supplied data. We performed parameter
optimization on 20% of the total data set, where we balanced
the data with respect to frequency. The resulting settings are
k = 11, GainRatio feature weighting and Inverse Linear (IL)
class voting weights.

Bin Instances Baseline MBL SVM
>1000 291 89.3 97.3 95.2
>500 597 88.9 97.3 97.1
>100 1668 90.5 96.8 96.9
>50 2278 90.6 96.1 96.0
>10 3786 90.8 95.4 95.1
>0 5481 91.3 93.9 93.7

Table 2: Accuracy for MBL and SVM classifiers
on Talbanken05 nouns in accumulated frequency
bins by Parole frequency.

the majority class of inanimates, which start out
with F-scores approaching 100. For calculation of
the statistical significance of differences in the per-
formance of classifiers tested on the same data set,
McNemar’s test (Dietterich, 1998) is employed.

4.3 Results

Column four (MBL) in table 2 shows the accu-
racy obtained with all features in the general fea-
ture space. We observe a clear improvement on
all data sets (p<.0001), compared to the respec-
tive baselines. As we recall, the data sets are suc-
cessively larger, hence it seems fair to conclude
that the size of the data set partially counteracts
the lower frequency of the test nouns. It is not
surprising, however, that a method based on dis-
tributional features suffers when the absolute fre-
quencies approach 1. We obtain results for ani-
macy classification, ranging from 97.3% accuracy
to 93.9% depending on the sparsity of the data.
With an absolute frequency threshold of 10, we
obtain an accuracy of 95.4%, which constitutes a
50% reduction of error rate.

Table 3 presents the experimental results rela-
tive to class. We find that classification of the inan-
imate class is quite stable throughout the experi-
ments, whereas the classification of the minority
class of animate nouns suffers from sparse data. It
is an important point, however, that it is largely re-
call for the animate class which goes down with
increased sparseness, whereas precision remains
quite stable. All of these properties are clearly ad-
vantageous in the application to realistic data sets,
where a more conservative classifier is to be pre-
ferred.

4.4 Error analysis

The human reference annotation of the Tal-
banken05 nouns distinguishes only the classes cor-
responding to ‘human’ and ‘inanimate’ along the
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Animate Inanimate
Precision Recall FscorePrecision Recall Fscore

>1000 89.7 83.9 86.7 98.1 98.8 98.5
>500 89.1 86.4 87.7 98.3 98.7 98.5
>100 87.7 76.6 81.8 97.6 98.9 98.2
>50 85.8 70.2 77.2 97.0 98.9 97.9
>10 81.9 64.0 71.8 96.4 98.6 97.5
>0 75.7 44.9 56.4 94.9 98.6 96.7

Table 3: Precision, recall and F-scores for the two classes in MBL-experiments with a general feature
space.

>10 nouns
(a) (b)← classified as

222 125 (a) class animate
49 3390 (b) class inanimate

Table 4: Confusion matrix for the MBL-classifier
with a general feature space on the>10 data set
on Talbanken05 nouns.

animacy dimension. An interesting question is
whether the errors show evidence of the gradi-
ence in categories discussed earlier and explic-
itly expressed in the annotation scheme by Zaenen
et.al. (2004) in figure 1. If so, we would expect
erroneously classified inanimate nouns to contain
nouns of intermediate animacy, such as animals
and organizations.

The error analysis examines the performance of
the MBL-classifier employing all features on the
> 10 data set in order to abstract away from the
most serious effects of data sparseness. Table 4
shows a confusion matrix for the classification of
the nouns. If we examine the errors for the inan-
imate class we indeed find evidence of gradience
within this category. The errors contain a group
of nouns referring to animals and other living be-
ings (bacteria, algae), as listed in (9), as well as
one noun referring to an “intelligent machine”, in-
cluded in the intermediate animacy category in Za-
enen et al. (2004). Collective nouns with human
reference and organizations are also found among
the errors, listed in (11). We also find some nouns
among the errors with human denotation, listed in
(12). These are nouns which typically occur in
dereferencing contexts, such as titles, e.g.herr
‘mister’, biskop ‘bishop’ and which were anno-
tated as non-human referring by the human an-
notators.10 Finally, a group of abstract, human-

10In fact, both of these showed variable annotation in the
treebank and were assigned their majority class – inanimate

denoting nouns are also found among the errors, as
listed in (13). In summary, we find that nouns with
gradient animacy properties account for 53.1% of
the errors for the inanimate class.

(9) Animals/living beings:
alg ‘algae’,apa ‘monkey’, bakterie‘bacteria’,björn
‘bear’, djur ‘animal’, fågel ‘bird’, fladdermöss‘bat’,
myra ‘ant’, mås‘seagull’,parasit ‘parasite’

(10) Intelligent machines:
robot ‘robot’

(11) Collective nouns, organizations:
myndighet‘authority’, nation ‘nation’, företagsledning
‘corporate-board’,personal‘personell’,stiftelse
‘foundation’, idrottsklubb‘sport-club’

(12) Human-denoting nouns:
biskop‘bishop’, herr ‘mister’, nationalist
‘nationalist’, tolk ‘interpreter’

(13) Abstract, human nouns:
förlorare ‘loser’, huvudpart‘main-party’,konkurrent
‘competitor’,majoritet ‘majority’, värd ‘host’

It is interesting to note that both the hu-
man and automatic annotation showed difficul-
ties in ascertaining class for a group of ab-
stract, human-denoting nouns, likeindivid ‘indi-
vidual’, motst̊andare‘opponent’,kandidat‘candi-
date’, representant‘representative’. These were
all assigned to the animate majority class dur-
ing extraction, but were misclassified as inanimate
during classification.

4.5 SVM classifiers

In order to evaluate whether the classification
method generalizes to a different machine learn-
ing algorithm, we design an identical set of experi-
ments to the ones presented above, but where clas-
sification is performed with Support Vector Ma-
chines (SVMs) instead of MBL. We use the LIB-
SVM package (Chang and Lin, 2001) with a RBF
kernel (C = 8.0, γ = 0.5).11

– in the extraction of training data.
11As in the MBL-experiment, parameter optimization, i.e.,

choice of kernel function,C andγ values, is performed on
20% of the total data set with theeasy.py tool, supplied
with LIBSVM.
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As column 5 (SVM) in table 2 shows, the clas-
sification results are very similar to the results ob-
tained with MBL.12 We furthermore find a very
similar set of errors, and in particular, we find that
51.0 % of the errors for the inanimate class are
nouns with the gradient animacy properties pre-
sented in (9)-(13) above.

5 Parsing with animacy information

As an external evaluation of our animacy classi-
fier, we apply the induced information to the task
of syntactic parsing. Seeing that we have a tree-
bank with gold standard syntactic information and
gold standard as well as induced animacy informa-
tion, it should be possible to study the direct effect
of the added animacy information in the assign-
ment of syntactic structure.

5.1 Experimental methodology

We use the freely available MaltParser system,
which is a language-independent system for data-
driven dependency parsing (Nivre, 2006; Nivre et
al., 2006c). A set of parsers are trained on Tal-
banken05, both with and without additional an-
imacy information, the origin of which is either
the manual annotation described in section 3 or
the automatic animacy classifier described in sec-
tion 4.2- 4.4 (MBL). The common nouns in the
treebank are classified for animacy using leave-
one-out training and testing. This ensures that
the training and test instances are disjoint at all
times. Moreover, the fact that the distributional
data is taken from a separate data set ensures non-
circularity since we are not basing the classifica-
tion on gold standard parses.

All parsing experiments are performed using
10-fold cross-validation for training and testing on
the entire written part of Talbanken05. Overall
parsing accuracy will be reported using the stan-
dard metrics oflabeled attachment score(LAS)
and unlabeled attachment score(UAS).13 Statis-
tical significance is checked using Dan Bikel’s
randomized parsing evaluation comparator.14 As
our baseline, we use the settings optimized for
Swedish in the CoNLL-X shared task (Buchholz

12The SVM-classifiers generally show slightly lower re-
sults, however, only performance on the>1000 data set is
significantly lower (p<.05).

13LAS and UAS report the percentage of tokens that are as-
signed the correct headwith (labeled) orwithout (unlabeled)
the correct dependency label.

14http://www.cis.upenn.edu/∼dbikel/software.html

Gold standard Automatic
UAS LAS UAS LAS

Baseline 89.87 84.9289.87 84.92
Anim 89.81 84.9489.87 84.99

Table 5: Overall results in experiments with au-
tomatic features compared to gold standard fea-
tures, expressed as unlabeled and labeled attach-
ment scores.

and Marsi, 2006), where this parser was the best
performing parser for Swedish.

5.2 Results

The addition of automatically assigned animacy
information for common nouns (Anim) causes a
small, but significant improvement in overall re-
sults (p<.04) compared to the baseline,as well
as the corresponding gold standard experiment
(p<.04). In the gold standard experiment, the re-
sults are not significantly better than the baseline
and the main, overall, improvement from the gold
standard animacy information reported in Øvrelid
and Nivre (2007) and Øvrelid (2008) stems largely
from the animacy annotation of pronouns.15 This
indicates that the animacy information for com-
mon nouns, which has been automatically ac-
quired from a considerably larger corpus, captures
distributional distinctions which are important for
the general effect of animacy and furthermore that
the differences from the gold standard annotation
prove beneficial for the results.

We see from Table 5, that the improvement in
overall parse results is mainly in terms of depen-
dency labeling, reflected in the LAS score. A
closer error analysis shows that the performance
of the two parsers employing gold and automatic
animacy information is very similar with respect
to dependency relations and we observe an im-
proved analysis for subjects, (direct and indirect)
objects and subject predicatives with only minor
variations. This in itself is remarkable, since the
covered set of animate instances is notably smaller
in the automatically annotated data set. We fur-
thermore find that the main difference between the
gold standard and automatic Anim-experiments

15Recall that the Talbanken05 treebank contains animacy
information for all nominal elements – pronouns, proper and
common nouns. When the totality of this information is
added the overall parse results are significantly improved
(p<.0002) (Øvrelid and Nivre, 2007; Øvrelid, 2008).
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does not reside in the analysis of syntactic argu-
ments, but rather of non-arguments. One rela-
tion for which performance deteriorates with the
added information in the gold Anim-experiment
is the nominal postmodifier relation (ET) which
is employed for relative clauses and nominal PP-
attachment. With the automatically assigned fea-
ture, in contrast, we observe an improvement in
the performance for theET relation, compared to
the gold standard experiment, from a F-score in
the latter of 76.14 to 76.40 in the former. Since
this is a quite common relation, with a frequency
of 5% in the treebank as a whole, the improvement
has a clear effect on the results.

The parser’s analysis of postnominal modifica-
tion is influenced by the differences in the added
animacy annotation for the nominal head, as well
as the internal dependent. If we examine the cor-
rected errors in the automatic experiment, com-
pared to the gold standard experiment, we find ele-
ments with differing annotation. Preferences with
respect to the animacy of prepositional comple-
ments vary. In (14), the automatic annotation of
the noundjur ‘animal’ as animate results in cor-
rect assignment of theET relation to the prepo-
sition hos ‘among’, as well as correct nominal,
as opposed to verbal, attachment. This preposi-
tion is one of the few with a preference for an-
imate complements in the treebank. In contrast,
the example in (15) illustrates an error where the
automatic classification ofbarn ‘children’ as inan-
imate causes a correct analysis of the head prepo-
sition om ‘about’.16

(14) . . . samhällsbildningar
. . . societies

hos
among

olika
different

djur
animals

‘. . . social organizations among different animals’

(15) Föräldrar
parents

har
have

vårdnaden
custody-DEF

om
of

sina
their

barn
children

‘Parents have the custody of their children’

A more thorough analysis of the different factors
involved in PP-attachment is a complex task which
is clearly beyond the scope of the present study.
We may note, however, that the distinctions in-
duced by the animacy classifier based purely on
linguistic evidence proves useful for the analysis
of both arguments and non-arguments.

16Recall that the classification is based purely on linguistic
evidence and in this respect children largely pattern with the
inanimate nouns. A child is probably more like a physical
object in the sense that it is something one possesses and oth-
erwise reactsto, rather than being an agent that acts upon its
surroundings.

6 Conclusion

This article has dealt with an empirical evaluation
of animacy annotation in Swedish, where the main
focus has been on the use of such annotation for
computational purposes.

We have seen that human annotation for ani-
macy shows little variation at the type-level for
a binary animacy distinction. Following from
this observation, we have shown how a type-
level induction strategy based on morphosyntac-
tic distributional features enables automatic ani-
macy classification for noun lemmas which fur-
thermore generalizes to different machine learning
algorithms (MBL, SVM). We obtain results for an-
imacy classification, ranging from 97.3% accuracy
to 93.9% depending on the sparsity of the data.
With an absolute frequency threshold of 10, we
obtain an accuracy of 95.4%, which constitutes a
50% reduction of error rate. A detailed error anal-
ysis revealed some interesting results and we saw
that more than half of the errors performed by the
animacy classifier for the large class of inanimate
nouns actually included elements which have been
assigned an intermediate animacy status in theo-
retical work, such as animals and collective nouns.

The application of animacy annotation in the
task of syntactic parsing provided a test bed for
the applicability of the annotation, where we could
contrast the manually assigned classes with the
automatically acquired ones. The results showed
that the automatically acquired information gives
a slight, but significant improvement of overall
parse results where the gold standard annotation
does not, despite a considerably lower coverage.
This is a suprising result which highlights impor-
tant properties of the annotation. First of all, the
automatic annotation is completely consistent at
the type level. Second, the automatic animacy
classifier captures important distributional proper-
ties of the nouns, exemplified by the case of nom-
inal postmodifiers in PP-attachment. The auto-
matic annotation thus captures a purely linguistic
notion of animacy and abstracts over contextual
influence in particular instances.

Animacy has been shown to be an important
property in a range of languages, hence animacy
classification of other languages constitutes an in-
teresting line of work for the future, where empir-
ical evaluations may point to similarities and dif-
ferences in the linguistic expression of animacy.
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Abstract

A set of labeled classes of instances is ex-
tracted from text and linked into an exist-
ing conceptual hierarchy. Besides a signif-
icant increase in the coverage of the class
labels assigned to individual instances, the
resulting resource of labeled classes is
more effective than similar data derived
from the manually-created Wikipedia, in
the task of attribute extraction over con-
ceptual hierarchies.

1 Introduction

Motivation : Sharing basic intuitions and long-
term goals with other tasks within the area of Web-
based information extraction (Banko and Etzioni,
2008; Davidov and Rappoport, 2008), the task
of acquiring class attributes relies on unstructured
text available on the Web, as a data source for ex-
tracting generally-useful knowledge. In the case
of attribute extraction, the knowledge to be ex-
tracted consists in quantifiable properties of var-
ious classes (e.g.,top speed, body styleand gas
mileagefor the class ofsports cars).

Existing work on large-scale attribute extraction
focuses on producing ranked lists of attributes, for
target classes of instances available in the form
of flat sets of instances (e.g.,ferrari modena,
porsche carrera gt) sharing the same class label
(e.g.,sports cars). Independently of how the input
target classes are populated with instances (man-
ually (Paşca, 2007) or automatically (Paşca and
Van Durme, 2008)), and what type of textual data
source is used for extracting attributes (Web docu-
ments or query logs), the extraction of attributes
operates at a lexical rather than semantic level.
Indeed, the class labels of the target classes may

be not more than text surface strings (e.g.,sports
cars) or even artificially-created labels (e.g.,Car-
toonChar in lieu of cartoon characters). More-
over, although it is commonly accepted thatsports
carsare alsocars, which in turn are alsomotor ve-
hicles, the presence ofsports carsamong the input
target classes does not lead to any attributes being
extracted forcars andmotor vehicles, unless the
latter two class labels are also present explicitly
among the input target classes.

Contributions : The contributions of this paper
are threefold. First, we investigate the role of
classes of instances acquired automatically from
unstructured text, in the task of attribute extrac-
tion over concepts from existing conceptual hi-
erarchies. For this purpose, ranked lists of at-
tributes are acquired from query logs for various
concepts, after linking a set of more than 4,500
open-domain, automatically-acquired classes con-
taining a total of around 250,000 instances into
conceptual hierarchies available in WordNet (Fell-
baum, 1998). In comparison, previous work
extracts attributes for either manually-specified
classes of instances (Paşca, 2007), or for classes of
instances derived automatically but considered as
flat rather than hierarchical classes, and manually
associated to existing semantic concepts (Paşca
and Van Durme, 2008). Second, we expand the
set of classes of instances acquired from text, thus
increasing their usefulness in attribute extraction
in particular and information extraction in general.
To this effect, additional class labels (e.g.,mo-
tor vehicles) are identified for existing instances
(e.g.,ferrari modena) of existing class labels (e.g.,
sports cars), by exploiting IsA relations available
within the conceptual hierarchy (e.g.,sports cars
are alsomotor vehicles). Third, we show that
large-scale, automatically-derived classes of in-
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stances can have as much as, or even bigger, prac-
tical impact in open-domain information extrac-
tion tasks than similar data from large-scale, high-
coverage, manually-compiled resources. Specif-
ically, evaluation results indicate that the accu-
racy of the extracted lists of attributes is higher
by 8% at rank 10, 13% at rank 30 and 18% at
rank 50, when using the automatically-extracted
classes of instances rather than the comparatively
more numerous and a-priori more reliable, human-
generated, collaboratively-vetted classes of in-
stances available within Wikipedia (Remy, 2002).

2 Attribute Extraction over Hierarchies

Extraction of Flat Labeled Classes: Unstruc-
tured text from a combination of Web documents
and query logs represents the source for deriving
a flat set of labeled classes of instances, which are
necessary as input for attribute extraction experi-
ments. The labeled classes are acquired in three
stages:

1) extraction of a noisy pool of pairs of a
class label and a potential class instance, by ap-
plying a few Is-A extraction patterns, selected
from (Hearst, 1992), to Web documents:

(fruits, apple), (fruits, corn), (fruits, mango),
(fruits, orange), (foods, broccoli), (crops, lettuce),
(flowers, rose);

2) extraction of unlabeled clusters of distribu-
tionally similar phrases, by clustering vectors of
contextual features collected around the occur-
rences of the phrases within Web documents (Lin
and Pantel, 2002):

{lettuce, broccoli, corn, ..},
{carrot, mango, apple, orange, rose, ..};
3) merging and filtering of the raw pairs and un-

labeled clusters into smaller, more accurate sets of
class instances associated with class labels, in an
attempt to use unlabeled clusters to filter noisy raw
pairs instead of merely using clusters to general-
ize class labels across raw pairs (Paşca and Van
Durme, 2008):

fruits={apple, mango, orange, ..}.
To increase precision, the vocabulary of class

instances is confined to the set of queries that are
most frequently submitted to a general-purpose
Web search engine. After merging, the resulting
pairs of an instance and a class label are arranged
into instance sets (e.g.,{ferrari modena, porsche
carrera gt}), each associated with a class label
(e.g.,sports cars).

Linking Labeled Classes into Hierarchies:
Manually-constructed language resources such as
WordNet provide reliable, wide-coverage upper-
level conceptual hierarchies, by grouping together
phrases with the same meaning (e.g.,{analgesic,
painkiller, pain pill}) into sets of synonyms
(synsets), and organizing the synsets into concep-
tual hierarchies (e.g.,painkillersare a subconcept,
or a hyponym, ofdrugs) (Fellbaum, 1998). To de-
termine the points of insertion of automatically-
extracted labeled classes into hand-built Word-
Net hierarchies, the class labels are looked up in
WordNet using built-in morphological normaliza-
tion routines. When a class label (e.g.,age-related
diseases) is not found in WordNet, it is looked up
again after iteratively removing its leading words
(e.g.,related diseases, anddiseases) until a poten-
tial point of insertion is found where one or more
senses exist in WordNet for the class label.

An efficient heuristic for sense selection is to
uniformly choose the first (that is, most frequent)
sense of the class label in WordNet, as point of
insertion. Due to its simplicity, the heuristic is
bound to make errors whenever the correct sense is
not the first one, thus incorrectly linkingacademic
journals under the sense ofjournals as personal
diaries rather than periodicals, andactive volca-
noesunder the sense ofvolcanoesas fissures in
the earth, rather than mountains formed by vol-
canic material. Nevertheless, choosing the first
sense is attractive for three reasons. First, Word-
Net senses are often too fine-grained, making the
task of choosing the correct sense difficult even
for humans (Palmer et al., 2007). Second, choos-
ing the first sense from WordNet is sometimes
better than more intelligent disambiguation tech-
niques (Pradhan et al., 2007). Third, previous ex-
perimental results on linking Wikipedia classes to
WordNet concepts confirm that first-sense selec-
tion is more effective in practice than other tech-
niques (Suchanek et al., 2007). Thus, a class la-
bel and its associated instances are inserted under
the first WordNet sense available for the class la-
bel. For example,silicon valley companiesand its
associated instances (apple, hewlett packardetc.)
are inserted under the first of the 9 senses ofcom-
paniesin WordNet, which corresponds to compa-
nies as institutions created to conduct business.

In order to trade off coverage for higher preci-
sion, the heuristic can be restricted to link a class
label under the first WordNet sense available, as
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before, but only when no other senses are avail-
able at the point of insertion beyond the first sense.
With the modified heuristic, the class labelinternet
search enginesis linked under the first and only
sense ofsearch enginesin WordNet, butsilicon
valley companiesis no longer linked under the first
of the 9 senses ofcompanies.

Extraction of Attributes for Hierarchy Con-
cepts: The labeled classes of instances linked to
conceptual hierarchies constitute the input to the
acquisition of attributes of hierarchy concepts, by
mining a collection of Web search queries. The at-
tributes capture properties that are relevant to the
concept. The extraction of attributes exploits the
sets of class instances rather than the associated
class labels. More precisely, for each hierarchy
concept for which attributes must be extracted, the
instances associated to all class labels linked un-
der the subhierarchy rooted at the concept are col-
lected as a union set of instances, thus exploiting
the transitivity of IsA relations. This step is equiv-
alent to propagating the instances upwards, from
their class labels to higher-level WordNet concepts
under which the class labels are linked, up to the
root of the hierarchy. The resulting sets of in-
stances constitute the input to the acquisition of
attributes, which consists of four stages:

1) identification of a noisy pool of candidate at-
tributes, as remainders of queries that also con-
tain one of the class instances. In the case of the
conceptmovies, whose instances includejay and
silent bob strike backandkill bill , the query“cast
jay and silent bob strike back”produces the can-
didate attributecast;

2) construction of internal vector representa-
tions for each candidate attribute, based on queries
(e.g., “cast selection for kill bill”) that contain a
candidate attribute (cast) and a class instance (kill
bill ). These vectors consist of counts tied to the
frequency with which an attribute occurs with a
given “templatized” query. The latter replaces spe-
cific attributes and instances from the query with
common placeholders, e.g.,“X for Y” ;

3) construction of a reference internal vector
representation for a small set of seed attributes
provided as input. A reference vector is the nor-
malized sum of the individual vectors correspond-
ing to the seed attributes;

4) ranking of candidate attributes with respect
to each concept, by computing the similarity be-
tween their individual vector representations and

the reference vector of the seed attributes.
The result of the four stages, which are de-

scribed in more detail in (Paşca, 2007), is a ranked
list of attributes (e.g., [opening song, cast, charac-
ters,...]) for each concept (e.g.,movies).

3 Experimental Setting

Textual Data Sources: The acquisition of open-
domain knowledge relies on unstructured text
available within a combination of Web documents
maintained by, and search queries submitted to the
Google search engine. The textual data source
for extracting labeled classes of instances con-
sists of around 100 million documents in En-
glish, as available in a Web repository snapshot
from 2006. Conversely, the acquisition of open-
domain attributes relies on a random sample of
fully-anonymized queries in English submitted by
Web users in 2006. The sample contains about 50
million unique queries. Each query is accompa-
nied by its frequency of occurrence in the logs.
Other sources of similar data are available publicly
for research purposes (Gao et al., 2007).
Parameters for Extracting Labeled Classes:
When applied to the available document col-
lection, the method for extracting open-domain
classes of instances from unstructured text intro-
duced in (Paşca and Van Durme, 2008) produces
4,583 class labels associated to 258,699 unique
instances, for a total of 869,118 pairs of a class
instance and an associated class label. All col-
lected instances occur among to the top five mil-
lion queries with the highest frequency within the
input query logs. The data is further filtered by
discarding labeled classes with fewer than 25 in-
stances. The classes, examples of which are shown
in Table 1, are linked under conceptual hierarchies
available within WordNet 3.0, which contains a to-
tal of 117,798 English noun phrases grouped in
82,115 concepts (or synsets).
Parameters for Extracting Attributes : For each
target concept from the hierarchy, given the union
of all instances associated to class labels linked to
the target concept or one of its subconcepts, and
given a set of five seed attributes (e.g.,{quality,
speed, number of users, market share, reliabil-
ity} for search engines), the method described
in (Paşca, 2007) extracts ranked lists of attributes
from the input query logs. Internally, the rank-
ing of attributes uses Jensen-Shannon (Lee, 1999)
to compute similarity scores between internal rep-
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Class Label Class Size Class Instances
accounting systems 40 flexcube, myob, oracle financials, peachtree accounting, sybiz

antimicrobials 97 azithromycin, chloramphenicol, fusidic acid, quinolones, sulfa drugs
civilizations 197 ancient greece, chaldeans, etruscans, inca, indians, roman republic

elementary particles 33 axions, electrons, gravitons, leptons, muons, neutrons, positrons
farm animals 61 angora goats, burros, cattle, cows, donkeys, draft horses,mule, oxen

forages 27 alsike clover, rye grass, tall fescue, sericea lespedeza, birdsfoot trefoil
ideologies 179 egalitarianism, laissez-faire capitalism, participatory democracy

social events 436 academic conferences, afternoon teas, block parties, masquerade balls

Table 1: Examples of instances within labeled classes extracted from unstructured text, used as input for
attribute extraction experiments

resentations of seed attributes, on one hand, and
each of the newly acquired attributes, on the other
hand. Depending on the experiments, the amount
of supervision is thus limited to either 5 seed at-
tributes for each target concept, or to 5 seed at-
tributes (population, area, president, flag andcli-
mate) provided for only one of the extracted la-
beled classes, namelyeuropean countries.

Experimental Runs: The experiments consist of
four different runs, which correspond to different
choices for the source of conceptual hierarchies
and class instances linked to those hierarchies, as
illustrated in Table 2. In the first run, denoted N,
the class instances are those available within the
latest version of WordNet (3.0) itself via HasIn-
stance relations. The second run, Y, corresponds to
an extension of WordNet based on the manually-
compiled classes of instances from categories in
Wikipedia, as available in the 2007-w50-5 version
of Yago (Suchanek et al., 2007). Therefore, run Y
has the advantage of the fact that Wikipedia cat-
egories are a rich source of useful and accurate
knowledge (Nastase and Strube, 2008), which ex-
plains their previous use as a source for evaluation
gold standards (Blohm et al., 2007). The last two
runs from Table 2, Es and Ea, correspond to the
set of open-domain labeled classes acquired from
unstructured text. In both Es and Ea, class labels
are linked to the first sense available at the point
of insertion in WordNet. In Es, the class labels
are linked only if no other senses are available at
the point of insertion beyond the first sense, thus
promoting higher linkage precision at the expense
of fewer links. For example, since the phrasesim-
pressionists, sports carsandpaintershave 1, 1 and
4 senses available in WordNet respectively, the
class labelsfrench impressionistsandsports cars
are linked to the respective WordNet concepts,
whereas the class labelpainters is not. Compar-
atively, in Ea, the class labels are uniformly linked

Description Source of Hierarchy and Instances
N Y Es Ea

Include instances
√ √

- -
from WordNet?

Include instances -
√ √ √

from elsewhere?

#Instances (×103) 14.3 1,296.5 108.0 257.0
#Class labels 945 30,338 1,315 4,517

#Pairs of a class label 17.4 2,839.8 191.0 859.0
and instance (×103)

Table 2: Source of class instances for various ex-
perimental runs

to the first sense available in WordNet, regardless
of whether other senses may or may not be avail-
able. Thus, Ea trades off potentially lower preci-
sion for the benefit of higher linkage recall, and
results in more of the class labels and their asso-
ciated instances extracted from text to be linked to
WordNet than in the case of run Es.

4 Evaluation

4.1 Evaluation of Labeled Classes

Coverage of Class Instances: In run N, the in-
put class instances are the component phrases of
synsets encoded via HasInstance relations under
other synsets in WordNet. For example, the synset
corresponding to{search engine}, defined as“a
computer program that retrieves documents or
files or data from a database or from a computer
network”, has 3 HasInstance instances in Word-
Net, namelyAsk Jeeves, GoogleandYahoo. Ta-
ble 3 illustrates the coverage of the class instances
extracted from unstructured text and linked to
WordNet in runs Es and Ea respectively, relative to
all 945 WordNet synsets that contain HasInstance
instances. Note that the coverage scores are con-
servative assessments of actual coverage, since a
run (i.e., Es or Ea) receives credit for a WordNet
instance only if the run contains an instance that
is a full-length, case-insensitive match (e.g.,ask
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Concept HasInstance Instances within WordNet Cvg
Synset Offset Examples Count Es Ea

{existentialist, existentialist, 10071557 Albert Camus, Beauvoir, Camus, 8 1.00 1.00
philosopher, existential philosopher} Heidegger, Jean-Paul Sartre

{search engine} 06578654 Ask Jeeves, Google, Yahoo 3 1.00 1.00

{university} 04511002 Brown, Brown University, 44 0.61 0.77
Carnegie Mellon University

{continent} 09254614 Africa, Antarctic continent, Europe, 13 0.54 0.54
Eurasia, Gondwanaland, Laurasia

{microscopist} 10313872 Anton van Leeuwenhoek, Anton 6 0.00 0.00
van Leuwenhoek, Swammerdam

Average over all 945 WordNet concepts that have HasInstanceinstance(s) 18.71 0.21 0.40

Table 3: Coverage of class instances extracted from text andlinked to WordNet (used as input in runs Es

and Ea respectively), measured as the fraction of WordNet HasInstance instances (used as input in run
N) that occur among the class instances (Cvg=coverage)

jeeves) of the WordNet instance. On average, the
coverage scores for class instances of runs Es and
Ea relative to run N are 0.21 and 0.40 respectively,
as shown in the last row in Table 3. Comparatively,
the equivalent instance coverage for run Y, which
already includes most of the WordNet instances by
design (cf. (Suchanek et al., 2007)), is 0.59.

Relative Coverage of Class Labels: The link-
ing of class labels to WordNet concepts allows for
the expansion of the set of classes of instances ac-
quired from text, thus increasing its usefulness in
attribute extraction in particular and information
extraction in general. To this effect, additional
class labels are identified for existing instances,
in the form of component phrases of the synsets
that are superconcepts (or hypernyms, in WordNet
terminology) of the synset under which the class
label of the instance is linked in WordNet. For ex-
ample, since the class labelsports carsis linked
under the WordNet synset{sports car, sport car},
and the latter has the synset{motor vehicle, auto-
motive vehicle} among its hypernyms, the phrases
motor vehiclesand automotive vehiclesare col-
lected as new class labels1 and associated to ex-
isting instances ofsports carsfrom the original
set, such asferrari modena. No phrases are col-
lected from a selected set of 10 top-level Word-
Net synsets, including{entity} and{object, phys-
ical object}, which are deemed too general to be
useful as class labels. As illustrated in Table 4,
a collected pair of a new class label and an exist-
ing instance either does not have any impact, if the
pair already occurs in the original set of labeled

1For consistency with the original labeled classes, new
class labels collected from WordNet are converted from sin-
gular (e.g.,motor vehicle) to plural (e.g.,motor vehicles).

Already in original labeled classes:
painters alfred sisley

european countries austria
Expansion of existing labeled classes:

animals avocet
animals northern oriole

scientists howard gardner
scientists phil zimbardo

Creation of new labeled classes:
automotive vehicles acura nsx
automotive vehicles detomaso pantera

creative persons aaron copland
creative persons yoshitomo nara

Table 4: Examples of additional class labels col-
lected from WordNet, for existing instances of the
original labeled classes extracted from text

classes; or expands existing classes, if the class
label already occurs in the original set of labeled
classes but not in association to the instance; or
creates new classes of instances, if the class label
is not part of the original set. The latter two cases
aggregate to increases in coverage, relative to the
pairs from the original sets of labeled classes, of
53% for Es and 304% for Ea.

4.2 Evaluation of Attributes

Target Hierarchy Concepts: The performance of
attribute extraction is assessed over a set of 25 tar-
get concepts also used for evaluation in (Paşca,
2008). The set of 25 target concepts includes:Ac-
tor, Award, Battle, CelestialBody, ChemicalEle-
ment, City, Company, Country, Currency, Dig-
italCamera, Disease, Drug, FictionalCharacter,
Flower, Food, Holiday, Mountain, Movie, Nation-
alPark, Painter, Religion, River, SearchEngine,
Treaty, Wine. Each target concept represents ex-
actly one WordNet concept (synset). For instance,
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one of the target concepts, denotedCountry, cor-
responds to a synset situated at the internal off-
set 08544813 in WordNet 3.0, which groups to-
gether the synonymous phrasescountry, stateand
land and associates them with the definition“the
territory occupied by a nation”. The target con-
cepts exhibit variation with respect to their depths
within WordNet conceptual hierarchies, ranging
from a minimum of 5 (e.g., forFood) to a maxi-
mum of 11 (forFlower), with a mean depth of 8
over the 25 concepts.

Evaluation Procedure: The measurement of re-
call requires knowledge of the complete set of
items (in our case, attributes) to be extracted. Un-
fortunately, this number is often unavailable in in-
formation extraction tasks in general (Hasegawa
et al., 2004), and attribute extraction in particular.
Indeed, the manual enumeration of all attributes
of each target concept, to measure recall, is un-
feasible. Therefore, the evaluation focuses on the
assessment of attribute accuracy.

To remove any bias towards higher-ranked at-
tributes during the assessment of class attributes,
the ranked lists of attributes produced by each run
to be evaluated are sorted alphabetically into a
merged list. Each attribute of the merged list is
manually assigned a correctness label within its
respective class. In accordance with previously
introduced methodology, an attribute isvital if it
must be present in an ideal list of attributes of
the class (e.g.,side effectsfor Drug); okay if it
provides useful but non-essential information; and
wrong if it is incorrect (Paşca, 2007).

To compute the precision score over a ranked
list of attributes, the correctness labels are con-
verted to numeric values (vital to 1, okay to 0.5
andwrong to 0). Precision at some rankN in the
list is thus measured as the sum of the assigned
values of the firstN attributes, divided byN .

Attribute Accuracy : Figure 1 plots the precision
at ranks 1 through 50 for the ranked lists of at-
tributes extracted by various runs as an average
over the 25 target concepts, along two dimensions.
In the leftmost graphs, each of the 25 target con-
cepts counts towards the computation of precision
scores of a given run, regardless of whether any
attributes were extracted or not for the target con-
cept. In the rightmost graphs, only target con-
cepts for which some attributes were extracted are
included in the precision scores of a given run.
Thus, the leftmost graphs properly penalize a run
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Figure 1: Accuracy of the attributes extracted for
various runs, as an average over the entire set of
25 target concepts (left graphs) and as an average
over (variable) subsets of the 25 target concepts
for which some attributes were extracted in each
run (right graphs). Seed attributes are provided as
input for only one target concept (top graphs), or
for each target concept (bottom graphs)

for failing to extract any attributes for some tar-
get concepts, whereas the rightmost graphs do not
include any such penalties. On the other dimen-
sion, in the graphs at the top of Figure 1, seed at-
tributes are provided only for one class (namely,
european countries), for a total of 5 attributes over
all classes. In the graphs at the bottom of the fig-
ure, there are 5 seed attributes for each of the 25
target concepts in the graphs at the bottom of Fig-
ure 1, for a total of 5×25=125 attributes.

Several conclusions can be drawn after inspect-
ing the results. First, providing more supervi-
sion, in the form of seed attributes for all concepts
rather than for only one concept, translates into
higher attribute accuracy for all runs, as shown
by the graphs at the top vs. graphs at the bot-
tom of Figure 1. Second, in the leftmost graphs,
run N has the lowest precision scores, which is in
line with the relatively small number of instances
available in the original WordNet, as confirmed by
the counts from Table 2. Third, in the leftmost
graphs, the more restrictive run Es has lower pre-
cision scores across all ranks than its less restric-
tive counterpart Ea. In other words, adding more
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Class Precision
@10 @30 @50

N Y Es Ea N Y Es Ea N Y Es Ea

Actor 1.00 1.00 1.00 1.00 0.78 0.85 0.98 0.95 0.62 0.84 0.95 0.96
Award 0.00 0.50 0.95 0.85 0.00 0.35 0.80 0.73 0.00 0.29 0.70 0.69
Battle 0.80 0.90 0.00 0.90 0.76 0.80 0.00 0.80 0.74 0.72 0.00 0.73

CelestialBody 1.00 1.00 1.00 0.40 1.00 1.00 0.93 0.16 0.98 0.89 0.91 0.12
ChemicalElement 0.00 0.65 0.80 0.80 0.00 0.45 0.83 0.63 0.00 0.48 0.84 0.51

City 1.00 1.00 0.00 1.00 0.86 0.80 0.00 0.83 0.78 0.70 0.00 0.76
Company 0.00 1.00 0.90 1.00 0.00 0.90 0.93 0.88 0.00 0.77 0.82 0.80

Country 1.00 0.90 1.00 1.00 0.98 0.81 0.96 0.96 0.97 0.76 0.98 0.97
Currency 0.00 0.90 0.00 0.90 0.00 0.53 0.00 0.83 0.00 0.36 0.00 0.87

DigitalCamera 0.00 0.20 0.85 0.85 0.00 0.10 0.85 0.85 0.00 0.10 0.82 0.82
Disease 0.00 0.60 0.75 0.75 0.00 0.76 0.83 0.83 0.00 0.63 0.87 0.86

Drug 0.00 1.00 1.00 1.00 0.00 0.91 1.00 1.00 0.00 0.88 0.96 0.96
FictionalCharacter 0.80 0.70 0.00 0.55 0.65 0.48 0.00 0.38 0.42 0.41 0.00 0.34

Flower 0.00 0.65 0.00 0.70 0.00 0.26 0.00 0.55 0.00 0.16 0.00 0.53
Food 0.00 0.80 0.90 1.00 0.00 0.65 0.71 0.96 0.00 0.53 0.59 0.96

Holiday 0.00 0.60 0.80 0.80 0.00 0.50 0.48 0.48 0.00 0.37 0.41 0.41
Mountain 1.00 0.75 0.00 0.90 0.96 0.61 0.00 0.86 0.77 0.58 0.00 0.74

Movie 0.00 1.00 1.00 1.00 0.00 0.90 0.80 0.78 0.00 0.85 0.75 0.74
NationalPark 0.90 0.80 0.00 0.00 0.85 0.76 0.00 0.00 0.82 0.75 0.00 0.00

Painter 1.00 1.00 1.00 1.00 0.96 0.93 0.88 0.96 0.92 0.89 0.76 0.93
Religion 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.92 0.97

River 1.00 0.80 0.00 0.00 0.70 0.60 0.00 0.00 0.61 0.58 0.00 0.00
SearchEngine 0.40 0.00 0.25 0.25 0.23 0.00 0.35 0.35 0.32 0.00 0.43 0.43

Treaty 0.50 0.90 0.80 0.80 0.33 0.65 0.53 0.53 0.26 0.59 0.42 0.42
Wine 0.00 0.30 0.80 0.80 0.00 0.26 0.43 0.45 0.00 0.20 0.28 0.29

Average (over 25) 0.41 0.71 0.59 0.77 0.36 0.59 0.53 0.67 0.32 0.53 0.49 0.63
Average (over non-empty) 0.86 0.78 0.87 0.83 0.75 0.64 0.78 0.73 0.68 0.57 0.73 0.68

Table 5: Comparative accuracy of the attributes extracted by various runs, for individual concepts, as an
average over the entire set of 25 target concepts, and as an average over (variable) subsets of the 25 target
concepts for which some attributes were extracted in each run. Seed attributes are provided as input for
each target concept

restrictions may improve precision but hurts recall
of class instances, which results in lower average
precision scores for the attributes. Fourth, in the
leftmost graphs, the runs using the automatically-
extracted labeled classes (Es and Ea) not only out-
perform N, but one of them (Ea) also outperforms
Y. This is the most important result. It shows
that large-scale, automatically-derived classes of
instances can have as much as, or even bigger,
practical impact in attribute extraction than similar
data from larger (cf. Table 2), manually-compiled,
collaboratively created and maintained resources
such as Wikipedia. Concretely, in the graph on
the bottom left of Figure 1, the precision scores at
ranks 10, 30 and 50 are 0.71, 0.59 and 0.53 for run
Y, but 0.77, 0.67 and 0.63 for run Ea. The scores
correspond to attribute accuracy improvements of
8% at rank 10, 13% at rank 30, and 18% at rank
50 for run Ea over run Y. In fact, in the rightmost
graphs, that is, without taking into account target
concepts without any extracted attributes, the pre-
cision scores of both Es and Ea are higher than for

run Y across most, if not all, ranks from 1 through
50. In this case, it isE1 that produces the most
accurate attributes, in a task-based demonstration
that the more cautious linking of class labels to
WordNet concepts in Es vs. Ea leads to less cov-
erage but higher precision of the linked labeled
classes, which translates into extracted attributes
of higher accuracy but for fewer target concepts.

Analysis: The curves plotted in the two graphs
at the bottom of Figure 1 are computed as av-
erages over precision scores for individual target
concepts, which are shown in detail in Table 5.
Precision scores of 0.00 correspond to runs for
which no attributes are acquired from query logs,
because no instances are available in the subhier-
archy rooted at the respective concepts. For exam-
ple, precision scores for run N are 0.00 forAward
andDigitalCamera, among others concepts in Ta-
ble 5, due to the lack of any HasInstance instances
in WordNet for the respective concepts. The num-
ber of target concepts for which some attributes
are extracted is 12 for run N, 23 for Y, 17 for Es
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and 23 for Ea. Thus, both run N and run Es exhibit
rather binary behavior across individual classes, in
that they tend to either not retrieve any attributes or
retrieve attributes of relatively higher quality than
the other runs, causing Es and N to have the worst
precision scores in the last but one row of Table 5,
but the best precision scores in the last row of Ta-
ble 5.

The individual scores shown for Es and Ea in
Table 5 concur with the conclusion drawn earlier
from the graphs in Figure 1, that Run Es has lower
precision than Ea as an average over all target con-
cepts. Notable exceptions are the scores obtained
for the conceptsCelestialBodyandChemicalEle-
ment, where Es significantly outperforms Ea in Ta-
ble 5. This is due to confusing instances (e.g.,kobe
bryant) being associated with class labels (e.g.,
nba stars) that are incorrectly linked under the tar-
get concepts (e.g.,Star, which is a subconcept of
CelestialBodyin WordNet) in Ea, but not linked at
all and thus not causing confusion in Es.

Run Y performs better than Ea for 5 of the 25
individual concepts, includingNationalPark, for
which no instances ofnational parksor related
class labels are available in run Ea; andRiver, for
which relevant instances in the labeled classes in
Ea, but they are associated to the class labelriver
systems, which is incorrectly linked to the Word-
Net conceptsystemsrather than torivers. How-
ever, run Ea outperforms Y on 12 individual con-
cepts (e.g.,Award, DigitalCameraand Disease),
and also as an average over all classes (last two
rows in Table 5).

5 Related Work

Previous work on the automatic acquisition of at-
tributes for open-domain classes from text requires
the manual enumeration of sets of instances and
seed attributes, for each class for which attributes
are to be extracted. In contrast, the current method
operates on automatically-extracted classes. The
experiments reported in (Paşca and Van Durme,
2008) also exploit automatically-extracted classes
for the purpose of attribute extraction. However,
they operate on flat classes, as opposed to concepts
organized hierarchically. Furthermore, they re-
quire manual mappings from extracted class labels
into a selected set of evaluation classes (e.g., by
mappingriver systemsto River, football clubsto
SoccerClub, andparksto NationalPark), whereas
the current method maps class labels to concepts

automatically, by linking class labels and their as-
sociated instances to concepts. Manually-encoded
attributes available within Wikipedia articles are
used in (Wu and Weld, 2008) in order to derive
other attributes from unstructured text within Web
documents. Comparatively, the current method
extracts attributes from query logs rather than
Web documents, using labeled classes extracted
automatically rather than available in manually-
created resources, and requiring minimal supervi-
sion in the form of only 5 seed attributes provided
for only one concept, rather than thousands of at-
tributes available in millions of manually-created
Wikipedia articles. To our knowledge, there is
only one previous study (Paşca, 2008) that directly
addresses the problem of extracting attributes over
conceptual hierarchies. However, that study uses
labeled classes extracted from text with a different
method; extracts attributes for labeled classes and
propagates them upwards in the hierarchy, in order
to compute attributes of hierarchy concepts from
attributes of their subconcepts; and does not con-
sider resources similar to Wikipedia, as sources of
input labeled classes for attribute extraction.

6 Conclusion

This paper introduces an extraction framework
for exploiting labeled classes of instances to ac-
quire open-domain attributes from unstructured
text available within search query logs. The link-
ing of the labeled classes into existing conceptual
hierarchies allows for the extraction of attributes
over hierarchy concepts, without a-priori restric-
tions to specific domains of interest and with little
supervision. Experimental results show that the
extracted attributes are more accurate when us-
ing automatically-derived labeled classes, rather
than classes of instances derived from manually-
created resources such as Wikipedia. Current
work investigates the impact of the semantic dis-
tribution of the classes of instances on the overall
accuracy of attributes; the potential benefits of us-
ing more compact conceptual hierarchies (Snow
et al., 2007) on attribute accuracy; and the orga-
nization of labeled classes of instances into con-
ceptual hierarchies, as an alternative to inserting
them into existing conceptual hierarchies created
manually from scratch or automatically by filter-
ing manually-generated relations among classes
from Wikipedia (Ponzetto and Strube, 2007).
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Abstract
Current approaches to the prediction of
associations rely on just one type of in-
formation, generally taking the form of
either word space models or collocation
measures. At the moment, it is an open
question how these approaches compare
to one another. In this paper, we will
investigate the performance of these two
types of models and that of a new ap-
proach based on compounding. The best
single predictor is the log-likelihood ratio,
followed closely by the document-based
word space model. We will show, how-
ever, that an ensemble method that com-
bines these two best approaches with the
compounding algorithm achieves an in-
crease in performance of almost 30% over
the current state of the art.

1 Introduction

Associations are words that immediately come to
mind when people hear or read a given cue word.
For instance, a word like pepper calls up salt,
and wave calls up sea. Aitchinson (2003) and
Schulte im Walde and Melinger (2005) show that
such associations can be motivated by a number
of factors, from semantic similarity to colloca-
tion. Current computational models of associa-
tion, however, tend to focus on one of these, by us-
ing either collocation measures (Michelbacher et
al., 2007) or word space models (Sahlgren, 2006;
Peirsman et al., 2008). To this day, two gen-
eral problems remain. First, the literature lacks
a comprehensive comparison between these gen-
eral types of models. Second, we are still looking
for an approach that combines several sources of
information, so as to correctly predict a larger va-
riety of associations.

Most computational models of semantic rela-
tions aim to model semantic similarity in particu-

lar (Landauer and Dumais, 1997; Lin, 1998; Padó
and Lapata, 2007). In Natural Language Process-
ing, these models have applications in fields like
query expansion, thesaurus extraction, informa-
tion retrieval, etc. Similarly, in Cognitive Science,
such models have helped explain neural activa-
tion (Mitchell et al., 2008), sentence and discourse
comprehension (Burgess et al., 1998; Foltz, 1996;
Landauer and Dumais, 1997) and priming patterns
(Lowe and McDonald, 2000), to name just a few
examples. However, there are a number of appli-
cations and research fields that will surely bene-
fit from models that target the more general phe-
nomenon of association. For instance, automat-
ically predicted associations may prove useful in
models of information scent, which seek to ex-
plain the paths that users follow in their search
for relevant information on the web (Chi et al.,
2001). After all, if the visitor of a web shop
clicks on music to find the prices of iPods, this
behaviour is motivated by an associative relation
different from similarity. Other possible applica-
tions lie in the field of models of text coherence
(Landauer and Dumais, 1997) and automated es-
say grading (Kakkonen et al., 2005). In addition,
all research in Cognitive Science that we have re-
ferred to above could benefit from computational
models of association in order to study the effects
of association in comparison to those of similarity.

Our article is structured as follows. In sec-
tion 2, we will discuss the phenomenon of asso-
ciation and introduce the variety of relations that
it is motivated by. Parallel to these relations, sec-
tion 3 presents the three basic types of approaches
that we use to predict strong associations. Sec-
tion 4 will first compare the results of these three
approaches, for a total of 43 models. Section 5
will then show how these results can be improved
by the combination of several models in an ensem-
ble. Finally, section 6 wraps up with conclusions
and an outlook for future research.
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cue association
amfibie (‘amphibian’) kikker (‘frog’)
peper (‘pepper’) zout (‘salt’)
roodborstje (‘robin’) vogel (‘bird’)
granaat (‘grenade’) oorlog (‘war’)
helikopter (‘helicopter’) vliegen (‘to fly’)
werk (‘job’) geld (‘money’)
acteur (‘actor’) film (‘film’)
cello (‘cello’) muziek (‘music’)
kruk (‘stool’) bar (‘bar’)

Table 1: Examples of cues and their strongest as-
sociation.

2 Associations

There are several reasons why a word may be asso-
ciated to its cue. According to Aitchinson (2003),
the four major types of associations are, in or-
der of frequency, co-ordination (co-hyponyms like
pepper and salt), collocation (like salt and wa-
ter), superordination (insect as a hypernym of but-
terfly) and synonymy (like starved and hungry).
As a result, a computational model that is able to
predict associations accurately has to deal with a
wide range of semantic relations. Past systems,
however, generally use only one type of informa-
tion (Wettler et al., 2005; Sahlgren, 2006; Michel-
bacher et al., 2007; Peirsman et al., 2008; Wand-
macher et al., 2008), which suggests that they are
relatively restricted in the number of associations
they will find.

In this article, we will focus on a set of Dutch
cue words and their single strongest association,
collected from a large psycholinguistic experi-
ment. Table 1 gives a few examples of such cue–
association pairs. It illustrates the different types
of linguistic phenomena that an association may
be motivated by. The first three word pairs are
based on similarity. In this case, strong associ-
ations can be hyponyms (as in amphibian–frog),
co-hyponyms (as in pepper–salt) or hypernyms of
their cue (as in robin–bird). The next three pairs
represent semantic links where no relation of sim-
ilarity plays a role. Instead, the associations seem
to be motivated by a topical relation to their cue,
which is possibly reflected by their frequent co-
occurrence in a corpus. The final three word pairs
suggest that morphological factors might play a
role, too. Often, a cue and its association form
the building blocks of a compound, and it is possi-
ble that one part of a compound calls up the other.

The examples show that the process of compound-
ing can go in either direction: the compound may
consist of cue plus association (as in cellomuziek
‘cello music’), or of association plus cue (as in
filmacteur ‘film actor’). While it is not clear if it
is the compounds themselves that motivate the as-
sociation, or whether it is just the topical relation
between their two parts, they might still be able to
help identify strong associations.

3 Approaches

Motivated by the three types of cue–association
pairs that we identified in Table 1, we study three
sources of information (two types of distributional
information, and one type of morphological infor-
mation) that may provide corpus-based evidence
for strong associatedness: collocation measures,
word space models and compounding.

3.1 Collocation measures
Probably the most straightforward way to pre-
dict strong associations is to assume that a cue
and its strong association often co-occur in text.
As a result, we can use collocation measures
like point-wise mutual information (Church and
Hanks, 1989) or the log-likelihood ratio (Dunning,
1993) to predict the strong association for a given
cue. Point-wise mutual information (PMI) tells
us if two words w1 and w2 occur together more or
less often than expected on the basis of their indi-
vidual frequencies and the independence assump-
tion:

PMI(w1, w2) = log2

P (w1, w2)
P (w1) ∗ P (w2)

The log-likelihood ratio compares the like-
lihoods L of the independence hypothesis (i.e.,
p = P (w2|w1) = P (w2|¬w1)) and the de-
pendence hypothesis (i.e., p1 = P (w2|w1) 6=
P (w2|¬w1) = p2), under the assumption that the
words in a text are binomially distributed:

log λ = log
L(P (w2|w1); p) ∗ L(P (w2|¬w1); p)
L(P (w2|w1); p1) ∗ L(P (w2|¬w1); p2)

3.2 Word Space Models
A respectable proportion (in our data about 18%)
of the strong associations are motivated by se-
mantic similarity to their cue. They can be syn-
onyms, hyponyms, hypernyms, co-hyponyms or
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antonyms. Collocation measures, however, are not
specifically targeted towards the discovery of se-
mantic similarity. Instead, they model similarity
mainly as a side effect of collocation. Therefore
we also investigated a large set of computational
models that were specifically developed for the
discovery of semantic similarity. These so-called
word space models or distributional models of lex-
ical semantics are motivated by the distributional
hypothesis, which claims that semantically simi-
lar words appear in similar contexts. As a result,
they model each word in terms of its contexts in
a corpus, as a so-called context vector. Distribu-
tional similarity is then operationalized as the sim-
ilarity between two such context vectors. These
models will thus look for possible associations by
searching words with a context vector similar to
the given cue.

Crucial in the implementation of word space
models is their definition of context. In the cur-
rent literature, there are basically three popular ap-
proaches. Document-based models use some sort
of textual entity as features (Landauer and Du-
mais, 1997; Sahlgren, 2006). Their context vec-
tors note what documents, paragraphs, articles or
similar stretches of text a target word appears in.
Without dimensionality reduction, in these mod-
els two words will be distributionally similar if
they often occur together in the same paragraph,
for instance. This approach still bears some simi-
larity to the collocation measures above, since it
relies on the direct co-occurrence of two words
in text. Second, syntax-based models focus on
the syntactic relationships in which a word takes
part (Lin, 1998). Here two words will be sim-
ilar when they often appear in the same syntac-
tic roles, like subject of fly. Third, word-
based models simply use as features the words
that appear in the context of the target, without
considering the syntactic relations between them.
Context is thus defined as the set of n words
around the target (Sahlgren, 2006). Obviously, the
choice of context size will again have a major in-
fluence on the behaviour of the model. Syntax-
based and word-based models differ from collo-
cation measures and document-based models in
that they do not search for words that co-occur
directly. Instead, they look for words that often
occur together with the same context words or
syntactic relations. Even though all these models
were originally developed to model semantic sim-

ilarity relations, syntax-based models have been
shown to favour such relations more than word-
based and document-based models, which might
capture more associative relationships (Sahlgren,
2006; Van der Plas, 2008).

3.3 Compounding
As we have argued before, one characteristic of
cues and their strong associations is that they can
sometimes be combined into a compound. There-
fore we developed a third approach which dis-
covers for every cue the words in the corpus that
in combination with it lead to an existing com-
pound. Since in Dutch compounds are generally
written as one word, this is relatively easy. We at-
tached each candidate association to the cue (both
in the combination cue+association and associ-
ation+cue), following a number of simple mor-
phological rules for compounding. We then de-
termined if any of these hypothetical compounds
occurred in the corpus. The possible associa-
tions that led to an observed compound were then
ranked according to the frequency of that com-
pound.1 Note that, for languages where com-
pounds are often spelled as two words, like En-
glish, our approach will have to recognize multi-
word units to deal with this issue.

3.4 Previous research
In previous research, most attention has gone out
to the first two of our models. Sahlgren (2006)
tries to find associations with word space mod-
els. He argues that document-based models are
better suited to the discovery of associations than
word-based ones. In addition, Sahlgren (2006) as
well as Peirsman et al. (2008) show that in word-
based models, large context sizes are more effec-
tive than small ones. This supports Wandmacher
et al.’s (2008) model of associations, which uses a
context size of 75 words to the left and right of the
target. However, Peirsman et al. (2008) find that
word-based distributional models are clearly out-
performed by simple collocation measures, par-
ticularly the log-likelihood ratio. Such colloca-
tion measures are also used by Michelbacher et al.
(2007) in their classification of asymmetric associ-
ations. They show the chi-square metric to be a ro-
bust classifier of associations as either symmetric
or asymmetric, while a measure based on condi-
tional probabilities is particularly suited to model

1If both compounds cue+association and association+cue
occurred in the corpus, their frequencies were summed.

650



●

●

●
●

● ● ● ● ●
●

2 4 6 8 10

2
5

10
20

50
10

0

context size

m
ed

ia
n 

ra
nk

 o
f m

os
t f

re
qu

en
t a

ss
oc

ia
tio

n

● word−based no stoplist
word−based stoplist
pmi statistic
log−likelihood statistic
compound−based
syntax−based
document−based

Figure 1: Median rank of the strong associations.

the magnitude of asymmetry. In a similar vein,
Wettler et al. (2005) successfully predict associa-
tions on the basis of co-occurrence in text, in the
framework of associationist learning theory. De-
spite this wealth of systems, it is an open question
how their results compare to each other. More-
over, a model that combines several of these sys-
tems might outperform any basic approach.

4 Experiments

Our experiments were inspired by the association
prediction task at the ESSLLI-2008 workshop on
distributional models. We will first present this
precise setup and then go into the results and their
implications.

4.1 Setup

Our data was the Twente Nieuws Corpus (TwNC),
which contains 300 million words of Dutch news-
paper articles. This corpus was compiled at the
University of Twente and subsequently parsed by
the Alpino parser at the University of Gronin-
gen (van Noord, 2006). The newspaper arti-
cles in the corpus served as the contextual fea-
tures for the document-based system; the depen-
dency triples output by Alpino were used as in-
put for the syntax-based approach. These syntactic

features of the type subject of fly covered
eight syntactic relations — subject, direct object,
prepositional complement, adverbial prepositional
phrase, adjective modification, PP postmodifica-
tion, apposition and coordination. Finally, the col-
location measures and word-based distributional
models took into account context sizes ranging
from one to ten words to the left and right of the
target.

Because of its many parameters, the precise im-
plementation of the word space models deserves a
bit more attention. In all cases, we used the con-
text vectors in their full dimensionality. While this
is somewhat of an exception in the literature, it
has been argued that the full dimensionality leads
to the best results for word-based models at least
(Bullinaria and Levy, 2007). For the syntax-based
and word-based approaches, we only took into ac-
count features that occurred at least two times to-
gether with the target. For the word-based models,
we experimented with the use of a stoplist, which
allowed us to exclude semantically “empty” words
as features. The simple co-occurrence frequencies
in the context vectors were replaced by the point-
wise mutual information between the target and
the feature (Bullinaria and Levy, 2007; Van der
Plas, 2008). The similarity between two vectors
was operationalized as the cosine of the angle be-
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similar related, not similar
models mean med rank1 mean med rank1
pmi context 10 16.4 4 23% 25.2 9 10%
log-likelihood ratio context 10 12.8 2 41% 18.0 3 31%
syntax-based 16.3 4 22% 61.9 70 2%
word-based context 10 stoplist 10.7 3 27% 36.9 17 12%
document-based 10.1 3 26% 20.2 4 26%
compounding 80.7 101 5% 51.9 26 12%

Table 2: Performance of the models on semantically similar cue-association pairs and related but not
similar pairs.

med = median; rank1 = number of associations at rank 1

tween them. This measure is more or less stan-
dard in the literature and leads to state-of-the-art
results (Schütze, 1998; Padó and Lapata, 2007;
Bullinaria and Levy, 2007). While the cosine is a
symmetric measure, however, association strength
is asymmetric. For example, snelheid (‘speed’)
triggered auto (‘car’) no fewer than 55 times in
the experiment, whereas auto evoked snelheid a
mere 3 times. Like Michelbacher et al. (2007), we
solve this problem by focusing not on the similar-
ity score itself, but on the rank of the association in
the list of nearest neighbours to the cue. We thus
expect that auto will have a much higher rank in
the list of nearest neighbours to snelheid than vice
versa.

Our Gold Standard was based on a large-scale
psycholinguistic experiment conducted at the Uni-
versity of Leuven (De Deyne and Storms, 2008).
In this experiment, participants were asked to list
three different associations for all cue words they
were presented with. Each of the 1425 cues was
given to at least 82 participants, resulting in a to-
tal of 381,909 responses. From this set, we took
only noun cues with a single strong association.
This means we found the most frequent associ-
ation to each cue, and only included the pair in
the test set if the association occurred at least 1.5
times more often than the second most frequent
one. This resulted in a final test set of 593 cue-
association pairs. Next we brought together all the
associations in a set of candidate associations, and
complemented it with 1000 random words from
the corpus with a frequency of at least 200. From
these candidate words, we had each model select
the 100 highest scoring ones (the nearest neigh-
bours). Performance was then expressed as the
median and mean rank of the strongest association
in this list. Associations absent from the list auto-

matically received a rank of 101. Thus, the lower
the rank, the better the performance of the system.
While there are obviously many more ways of as-
sembling a test set and scoring the several systems,
we found these all gave very similar results to the
ones reported here.

4.2 Results and discussion

The median ranks of the strong associations for all
models are plotted in Figure 1. The means show
the same pattern, but give a less clear indication of
the number of associations that were suggested in
the top n most likely candidates. The most suc-
cessful approach is the log-likelihood ratio (me-
dian 3 with a context size of 10, mean 16.6),
followed by the document-based model (median
4, mean 18.4) and point-wise mutual informa-
tion (median 7 with a context size of 10, mean
23.1). Next in line are the word-based distribu-
tional models with and without a stoplist (high-
est medians at 11 and 12, highest means at 30.9
and 33.3, respectively), and then the syntax-based
word space model (median 42, mean 51.1). The
worst performance is recorded for the compound-
ing approach (median 101, mean 56.7). Overall,
corpus-based approaches that rely on direct co-
occurrence thus seem most appropriate for the pre-
diction of strong associations to a cue. This is
probably a result of two factors. First, collocation
itself is an important motivation for human asso-
ciations (Aitchinson, 2003). Second, while col-
location approaches in themselves do not target
semantic similarity, semantically similar associa-
tions are often also collocates to their cues. This is
particularly the case for co-hyponyms, like pepper
and salt, which score very high both in terms of
collocation and in terms of similarity.

Let us discuss the results of all models in a bit
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Figure 2: Performance of the models in three cue and association frequency bands.

more detail. A first factor of interest is the dif-
ference between associations that are similar to
their cue and those which are related but not simi-
lar. Most of our models show a crucial difference
in performance with respect to these two classes.
The most important results are given in Table 2.
The log-likelihood ratio gives the highest number
of associations at rank 1 for both classes. Par-
ticularly surprising is its strong performance with
respect to semantic similarity, since this relation
is only a side effect of collocation. In fact, the
log-likelihood ratio scores better at predicting se-
mantically similar associations than related but not
similar associations. Its performance moreover
lies relatively close to that of the word space mod-
els, which were specifically developed to model
semantic similarity. This underpins the observa-
tion that even associations that are semantically
similar to their cues are still highly motivated by
direct co-occurrence in text. Interestingly, only the
compounding approach has a clear preference for
associations that are related to their cue, but not
similar.

A second factor that influences the performance
of the models is frequency. In order to test its
precise impact, we split up the cues and their as-
sociations in three frequency bands of compara-
ble size. For the cues, we constructed a band
for words with a frequency of less than 500 in
the corpus (low), between 500 and 2,500 (mid)
and more than 2,500 (high). For the associations,
we had bands for words with a frequency of less
than 7,500 (low), between 7,500 and 20,000 (mid)
and more than 20,000 (high). Figure 2 shows
the performance of the most important models in

these frequency bands. With respect to cue fre-
quency, the word space models and compound-
ing approach suffer most from low frequencies
and hence, data sparseness. The log-likelihood
ratio is much more robust, while point-wise mu-
tual information even performs better with low-
frequency cues, although it does not yet reach
the performance of the document-based system
or the log-likelihood ratio. With respect to asso-
ciation frequency, the picture is different. Here
the word-based distributional models and PMI per-
form better with low-frequency associations. The
document-based approach is largely insensitive to
association frequency, while the log-likelihood ra-
tio suffers slightly from low frequencies. The per-
formance of the compounding approach decreases
most. What is particularly interesting about this
plot is that it points towards an important differ-
ence between the log-likelihood ratio and point-
wise mutual information. In its search for nearest
neighbours to a given cue word, the log-likelihood
ratio favours frequent words. This is an advanta-
geous feature in the prediction of strong associa-
tions, since people tend to give frequent words as
associations. PMI, like the syntax-based and word-
based models, lacks this characteristic. It therefore
fails to discover mid- and high-frequency associa-
tions in particular.

Finally, despite the similarity in results between
the log-likelihood ratio and the document-based
word space model, there exists substantial varia-
tion in the associations that they predict success-
fully. Table 3 gives an overview of the top ten as-
sociations that are predicted better by one model
than the other, according to the difference be-
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model cue–association pairs
document-based model cue–billiards, amphibian–frog, fair–doughnut ball, sperm whale–sea,

map–trip, avocado–green, carnivore–meat, one-wheeler–circus,
wallet–money, pinecone–wood

log-likelihood ratio top–toy, oven–hot, sorbet–ice cream, rhubarb–sour, poppy–red,
knot–rope, pepper–red, strawberry–red, massage–oil, raspberry–red

Table 3: A comparison of the document-based model and the log-likelihood ratio on the basis of the
cue–target pairs with the largest difference in log ranks between the two approaches.

tween the models in the logarithm of the rank of
the association. The log-likelihood ratio seems
to be biased towards “characteristics” of the tar-
get. For instance, it finds the strong associative
relation between poppy, pepper, strawberry, rasp-
berry and their shared colour red much better than
the document-based model, just like it finds the re-
latedness between oven and hot and rhubarb and
sour. The document-based model recovers more
associations that display a strong topical connec-
tion with their cue word. This is thanks to its re-
liance on direct co-occurrence within a large con-
text, which makes it less sensitive to semantic sim-
ilarity than word-based models. It also appears to
have less of a bias toward frequent words than the
log-likelihood ratio. Note, for instance, the pres-
ence of doughnut ball (or smoutebol in Dutch) as
the third nearest neighbour to fair, despite the fact
it occurs only once (!) in the corpus. This com-
plementarity between our two most successful ap-
proaches suggests that a combination of the two
may lead to even better results. We therefore in-
vestigated the benefits of a committee-based or en-
semble approach.

5 Ensemble-based prediction of strong
associations

Given the varied nature of cue–association rela-
tions, it could be beneficial to develop a model that
relies on more than one type of information. En-
semble methods have already proved their effec-
tiveness in the related area of automatic thesaurus
extraction (Curran, 2002), where semantic similar-
ity is the target relation. Curran (2002) explored
three ways of combining multiple ordered sets of
words: (1) mean, taking the mean rank of each
word over the ensemble; (2) harmonic, taking the
harmonic mean; (3) mixture, calculating the mean
similarity score for each word. We will study only
the first two of these approaches, as the different
metrics of our models cannot simply be combined

in a mean relatedness score. More particularly, we
will experiment with ensembles taking the (har-
monic) mean of the natural logarithm of the ranks,
since we found these to perform better than those
working with the original ranks.2

Table 4 compares the results of the most im-
portant ensembles with that of the single best ap-
proach, the log-likelihood ratio with a context size
of 10. By combining the two best approaches
from the previous section, the log-likelihood ra-
tio and the document-based model, we already
achieve a substantial increase in performance. The
mean rank of the association goes from 3 to 2,
the mean from 16.6 to 13.1 and the number of
strong associations with rank 1 climbs from 194
to 223. This is a statistically significant increase
(one-tailed paired Wilcoxon test, W = 30866,
p = .0002). Adding another word space model
to the ensemble, either a word-based or syntax-
based model, brings down performance. However,
the addition of the compound model does lead to a
clear gain in performance. This ensemble finds the
strongest association at a median rank of 2, and a
mean of 11.8. In total, 249 strong associations (out
of a total 593) are presented as the best candidate
by the model — an increase of 28.4% compared
to the log-likelihood ratio. Hence, despite its poor
performance as a simple model, the compound-
based approach can still give useful information
about the strong association of a cue word when
combined with other models. Based on the origi-
nal ranks, the increase from the previous ensem-
ble is not statistically significant (W = 23929,
p = .31). If we consider differences at the start
of the neighbour list more important and compare
the logarithms of the ranks, however, the increase
becomes significant (W = 29787.5, p = 0.0008).
Its precise impact should thus further be investi-
gated.

2In the case of the harmonic mean, we actually take the
logarithm of rank+1, in order to avoid division by zero.
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mean harmonic mean
systems med mean rank1 med mean rank1
loglik10 (baseline) 3 16.6 194
loglik10 + doc 2 13.1 223 3 13.4 211
loglik10 + doc + word10 3 13.8 182 3 14.2 187
loglik10 + doc + syn 3 14.4 179 4 14.7 184
loglik10 + doc + comp 2 11.8 249 2 12.2 221

Table 4: Results of ensemble methods.

loglik10 = log-likelihood ratio with context size 10;
doc = document-based model;
word10 = word-based model with context size 10 and a stoplist;
syn = syntax-based model;
comp = compound-based model;
med = median; rank1 = number of associations at rank 1

Let us finally take a look at the types of strong
associations that still tend to receive a low rank in
this ensemble system. The first group consists of
adjectives that refer to an inherent characteristic of
the cue word that is rarely mentioned in text. This
is the case for tennis ball–yellow, cheese–yellow,
grapefruit–bitter. The second type brings together
polysemous cues whose strongest association re-
lates to a different sense than that represented by
its corpus-based nearest neighbour. This applies
to Dutch kant, which is polysemous between side
and lace. Its strongest association, Bruges, is
clearly related to the latter meaning, but its corpus-
based neighbours ball and water suggest the for-
mer. The third type reflects human encyclopaedic
knowledge that is less central to the semantics of
the cue word. Examples are police–blue, love–red,
or triangle–maths. In many of these cases, it ap-
pears that the failure of the model to recover the
strong associations results from corpus limitations
rather than from the model itself.

6 Conclusions and future research

In this paper, we explored three types of basic ap-
proaches to the prediction of strong associations
to a given cue. Collocation measures like the log-
likelihood ratio simply recover those words that
strongly collocate with the cue. Word space mod-
els look for words that appear in similar contexts,
defined as documents, context words or syntac-
tic relations. The compounding approach, finally,
searches for words that combine with the target to
form a compound. The log-likelihood ratio with
a large context size emerged as the best predic-
tor of strong association, followed closely by the

document-based word space model. Moreover,
we showed that an ensemble method combining
the log-likelihood ratio, the document-based word
space model and the compounding approach, out-
performed any of the basic methods by almost
30%.

In a number of ways, this paper is only a first
step towards the successful modelling of cue–
association relations. First, the newspaper cor-
pus that served as our data has some restrictions,
particularly with respect to diversity of genres. It
would be interesting to investigate to what degree
a more general corpus — a web corpus, for in-
stance — would be able to accurately predict a
wider range of associations. Second, the mod-
els themselves might benefit from some additional
features. For instance, we are curious to find
out what the influence of dimensionality reduction
would be, particularly for document-based word
space models. Finally, we would like to extend
our test set from strong associations to more asso-
ciations for a given target, in order to investigate
how well the discussed models predict relative as-
sociation strength.

References
Jean Aitchinson. 2003. Words in the Mind. An Intro-

duction to the Mental Lexicon. Blackwell, Oxford.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Be-
haviour Research Methods, 39:510–526.

Curt Burgess, Kay Livesay, and Kevin Lund. 1998.
Explorations in context space: Words, sentences,
discourse. Discourse Processes, 25:211–257.

655



Ed H. Chi, Peter Pirolli, Kim Chen, and James Pitkow.
2001. Using information scent to model user infor-
mation needs and actions on the web. In Proceed-
ings of the ACM Conference on Human Factors and
Computing Systems (CHI 2001), pages 490–497.

Kenneth Ward Church and Patrick Hanks. 1989. Word
association norms, mutual information and lexicog-
raphy. In Proceedings of ACL-27, pages 76–83.

James R. Curran. 2002. Ensemble methods for au-
tomatic thesaurus extraction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-2002), pages 222–229.

Simon De Deyne and Gert Storms. 2008. Word asso-
ciations: Norms for 1,424 Dutch words in a contin-
uous task. Behaviour Research Methods, 40:198–
205.

Ted Dunning. 1993. Accurate methods for the statis-
tics of surprise and coincidence. Computational
Linguistics, 19:61–74.

Peter W. Foltz. 1996. Latent Semantic Analysis for
text-based research. Behaviour Research Methods,
Instruments, and Computers, 29:197–202.

Tuomo Kakkonen, Niko Myller, Jari Timonen, and
Erkki Sutinen. 2005. Automatic essay grading with
probabilistic latent semantic analysis. In Proceed-
ings of the 2nd Workshop on Building Educational
Applications Using NLP, pages 29–36.

Thomas K. Landauer and Susan T. Dumais. 1997. A
solution to Plato’s problem: The Latent Semantic
Analysis theory of acquisition, induction and rep-
resentation of knowledge. Psychological Review,
104(2):211–240.

Dekang Lin. 1998. Automatic retrieval and cluster-
ing of similar words. In Proceedings of COLING-
ACL98, pages 768–774, Montreal, Canada.

Will Lowe and Scott McDonald. 2000. The di-
rect route: Mediated priming in semantic space.
In Proceedings of COGSCI 2000, pages 675–680.
Lawrence Erlbaum Associates.

Lukas Michelbacher, Stefan Evert, and Hinrich
Schütze. 2007. Asymmetric association measures.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP-07).

Tom M. Mitchell, Svetlana V. Shinkareva, An-
drew Carlson, Kai-Min Chang, Vicente L. Malva,
Robert A. Mason, and Marcel Adam Just. 2008.
Predicting human brain activity associated with the
meanings of nouns. Science, 320:1191–1195.
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Abstract

In this paper we introduce the notion
of “frame relatedness”, i.e. relatedness
among prototypical situations as repre-
sented in the FrameNet database. We first
demonstrate the cognitive plausibility of
that notion through an annotation experi-
ment, and then propose different types of
computational measures to automatically
assess relatedness. Results show that our
measures provide good performance on
the task of ranking pairs of frames.

1 Introduction

Measuring relatedness among linguistic entities
is a crucial topic in NLP. Automatically assess-
ing the degree of similarity or relatedness be-
tween two words or two expressions, is of great
help in a variety of tasks, such as Question An-
swering, Recognizing Textual Entailment (RTE),
Information Extraction and discourse processing.
Since the very beginning of computational lin-
guistics, many studies have been devoted to the
definition and the implementation of automatic
measures for word relatedness (e.g. (Ruben-
stein and Goodenough, 1965; Resnik, 1995; Lin,
1998; Budanitsky and Hirst, 2006; Mohammad
and Hirst, 2006)). More recently, relatedness
between lexical-syntactic patterns has also been
studied (Lin and Pantel, 2001; Szpektor et al.,
2004), to support advanced tasks such as para-
phrasing and RTE. Unfortunately, no attention has
been paid so far to the definition of relatedness at
the more abstract situational level – i.e. related-
ness between two prototypical actions, events or
state-of-affairs, taken out of context (e.g. the sit-
uations of Killing and Death). A prominent defi-
nition of “prototypical situation” is given in frame
semantics (Fillmore, 1985), where a situation is
modelled as a conceptual structure (a frame) con-

stituted by the predicates that can evoke the situ-
ation, and the semantic roles expressing the situa-
tion’s participants.

As measures of word relatedness help in discov-
ering if two word occurrences express related con-
cepts, so measures of frame relatedness should
help to discover if two large text fragments are re-
lated or talk about similar situations. Such mea-
sures would be valuable in many tasks. For exam-
ple, consider the following fragment, in the con-
text of discourse processing:

“In the 1950s the Shah initiated Iran ’s nu-
clear research program and developed an ambi-
tious plan to produce 23,000MW from nuclear
power. The program was stopped by the Islamic
Revolution in 1979, but it was revived later in the
decade, when strategic interests began to drive the
nuclear program.”

The underlined words evoke highly related
frames, namely ACTIVITY START, ACTIV-
ITY STOP and CAUSE TO RESUME. This could
suggest to link the three textual fragments associ-
ated to the words, into a single coherent discourse
unit, where the semantic roles of the different
fragments can be easily mapped as co-referential
(e.g. “Iran’s nuclear research program” - “The
program” - “it”). Frame relatedness can also
help in RTE. Consider for example the following
entailment pair:

Text : “An avalanche has struck a popular skiing
resort in Austria, killing at least 11 people.”

Hypothesis : “Humans died in an avalanche.”

The frames KILLING and DEATH, respectively
evoked by killing and died, are highly related and
can then be mapped. Leveraging this mapping, an
RTE system could easily discover that the Text en-
tails the Hypothesis, by verifying that the fillers of
the mapped semantic roles of the two frames are
semantically equivalent.
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In this paper we investigate the notion of re-
latedness in the context of frame semantics, and
propose different types of automatic measures to
compute relatedness between frames. Our main
contributions can be summarized as follows: (1)
We empirically show that the notion of frame re-
latedness is intuitive and principled from a cogni-
tive perspective: to support this claim, we report
agreement results over a pool of human annota-
tors on the task of ranking frame pairs on relat-
edness; (2) We propose a variety of measures for
computing frame relatedness, inspired by differ-
ent approaches and by existing measures for word
relatedness; (3) We show that our measures offer
good performance, thus opening the path to the use
of frame relatedness as a practical tool for NLP,
and showing that measures for word relatedness
can be successfully adapted to frames. The paper
is organized as follows. In Section 2 we summa-
rize related work. In Section 3 we describe the ex-
periment of humans ranking frame pairs, and dis-
cuss the results. In Section 4 and 5 we respectively
introduce our relatedness measures, and test them
over a manual gold standard. In Section 6 we draw
final conclusions and outline future work.

2 Related Work

Much research in NLP has studied similarity and
relatedness between words. Rubenstein and Good-
enough (1965) were the first to propose a pro-
cedure to assess human agreement on ranking
pairs of words on relatedness. Their experi-
ment was later replicated by Resnik (1995) and
Charles (2000). All these studies reported good
levels of agreements among annotators, suggest-
ing that the notion of word relatedness is cogni-
tively principled. In our experiment in Section 3.2
we apply the same procedure to assess agreement
on ranking frames.

Measures for estimating word relatedness have
been systematically proposed since the early 90’s,
and are today widely used in NLP for various
tasks. Most measures can be classified either as
corpus-based or ontology-based. Corpus-based
measures compute relatedness looking at the dis-
tributional properties of the two words: words that
tend to co-occur in the same contexts or having
similar distributional profiles, are deemed to be
highly related. A complete survey on these mea-
sures is reported in (Mohammad and Hirst, 2006).
Ontology-based measures estimate relatedness by

studying the path connecting the two words in an
ontology or a hierarchical lexicon (e.g. WordNet).
The basic idea is that closer words are more related
than distant ones. Budanitsky and Hirst (2006)
provide an extensive survey of these measures.

Budanitsky and Hirst (2006) also point out an
important distinction, between relatedness and
similarity. Two words are related if any type of
relation stands between them, e.g. antonymy or
meronymy; they are similar when related through
an is-a like hierarchy. Similarity is then a spe-
cial case of relatedness. Following Budanitsky and
Hirst (2006), we consider two frames as similar if
they are linked via is-a like relations (e.g. GET-
TING and COMMERCE BUY), while as related if
any relation stands between them (e.g. causation
between KILLING and DEATH). In this paper, we
focus our attention solely on the notion of frame
relatedness.

3 Defining frame relatedness

In this section we check if the notion of frame re-
latedness is intuitive and principled from a cog-
nitive perspective. In Section 3.1 we first intro-
duce the basic concepts or frame semantics; in
Section 3.2 we report the agreement results ob-
tained by human annotators, on the task of ranking
a dataset of frame pairs according to relatedness.

3.1 Frame Semantics and FrameNet

Frame semantics (Fillmore, 1985) seeks to de-
scribe the meaning of a sentence as it is actu-
ally understood by characterizing the background
knowledge necessary to understand the sentence.
Background knowledge is represented in the form
of frames, conceptual structures modelling proto-
typical situations. Linguistically, a frame is a se-
mantic class containing predicates called lexical
units (LU), that can evoke the described situation
(see example in Table 1). Each frame comes with
its own set of semantic roles, called frame ele-
ments (FE). These are the participants and props in
the abstract situation described. Roles are local to
individual frames, thus avoiding the commitment
to a small set of universal roles, whose specifica-
tion has turned out to be unfeasible in the past.

The Berkeley FrameNet project (Baker et al.,
1998) has been developing a frame-semantic lexi-
con for the core vocabulary of English since 1997.
The current FrameNet release contains about 800
frames and 10,000 lexical units. Part of FrameNet
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Frame: STATEMENT
This frame contains verbs and nouns that communicate
the act of a SPEAKER to address a MESSAGE to some
ADDRESSEE using language. A number of the words
can be used performatively, such as declare and insist.

SPEAKER Evelyn said she wanted to leave.
MESSAGE Evelyn announced that she wanted

to leave.
ADDRESSEE Evelyn spoke to me about her past.
TOPIC Evelyn’s statement about her past

FE
s MEDIUM Evelyn preached to me over the

phone.

L
U

s acknowledge.v, acknowledgment.n, add.v, ad-
dress.v, admission.n, admit.v, affirm.v, affirma-
tion.n, allegation.n, allege.v, announce.v, . . .

Table 1: Example frame from FrameNet.

is also a corpus of annotated example sentences
from the British National Corpus, currently con-
taining 135,000 sentences.

In FrameNet, asymmetric frame relations can
relate two frames, forming a complex hierarchy
(Ruppenhofer et al., 2005): Inheritance: anything
true in the semantics of the parent frame, must
also be true for the other (e.g. KILLING – EX-
ECUTION). Uses: a part of the situation evoked
by one frame refers to the other. Subframe: one
frame describes a subpart of a complex situation
described in the other (e.g. CRIMINAL-PROCESS

– SENTENCING). Causative of : the action in
one frame causes the event described in the other
(e.g. KILLING – DEATH). Inchoative of : the
event in one frame ends in the state described in
the other (e.g. DEATH – DEAD OR ALIVE). Pre-
cedes: one frame temporally proceeds the other
(e.g. FALL ASLEEP – SLEEP). Perspective on:
one frame describes a specific point-of-view on a
neutral frame.

The first two are is-a like relations, while the
others are non-hierarchical.

3.2 Manually ranking related frames

We asked a pool of human annotators to manually
rank a set of frame pairs according to their relat-
edness. The goal was twofolds. First, we wanted
to check how intuitive the notion of frame related-
ness is, by computing inter-annotator agreement,
and by comparing the agreement results to those
obtained by Rubenstein and Goodenough (1965)
for word relatedness. Second, we planned to use
the produced dataset as a gold standard for test-
ing the relatedness measures, as described in Sec-
tion 5. In the rest of the section we describe the
annotation process in detail.

Dataset creation. We created two different
datasets, a simple and a controlled set, each con-
taining 155 pairs. Frame pairs in the simple
set were randomly selected from the FrameNet
database. Frame pairs in the controlled set were
either composed of two frames belonging to the
same scenario1, or being so that one frame is one
edge from the scenario of the other. This ensured
that all pairs in the controlled set contained seman-
tically related frames. Indeed, we use the con-
trolled set to check if human agreement and au-
tomatic measure accuracy get better when consid-
ering only highly related frames.

Human ranking agreement. A preliminary an-
notation phase involved a group of 15 annotators
consisting of graduate students and researchers,
native or nearly native speakers of English. For
each set, each annotator was given 15 frame pairs
from the original 155 set: 5 of these where shared
with all other annotators. This setting has three
advantages: (1) The set is small enough to obtain
a reliable annotation in a short time; (2) We can
compute the agreement among the 15 annotators
over the shared pairs; (3) We can check the relia-
bility of the final gold standard created in the sec-
ond phase (see following section) by comparing to
the annotations. Each annotator was asked to or-
der a shuffled deck of 15 cards, each one describ-
ing a pair of frames. The card contained the fol-
lowing information about the two frames: names;
definitions; the lists of core FEs; a frame anno-
tated sentence for each frame, randomly chosen
from the FrameNet database. Similarly to Ruben-
stein and Goodenough (1965) we gave the anno-
tators the following instructions: (i) After looking
through the whole deck, order the pairs according
to amount of relatedness; (ii) You may assign the
same rank to pairs having the same degree of re-
latedness (i.e. ties are allowed).

We checked the agreement among the 15 an-
notators in ranking the 5 shared pairs by using
the Kendall’s τ correlation coefficient (Kendall,
1938). Kendall’s τ can be interpreted as the dif-
ference between the probability that in the dataset
two variables are in the same order versus the
probability that they are in different orders (see
(Lapata, 2006) for details). The average corre-

1A scenario frame is a “hub” frame describing a gen-
eral topic; specific frames modelling situations related to the
topic are linked to it (e.g. COMMERCE BUY and COMMER-
CIAL TRANSACTION are linked to COMMERCE SCENARIO).
FrameNet contains 16 scenarios.

659



lation2 among annotators on the simple and con-
trolled sets was τ = 0.600 and τ = 0.547.

Gold standard ranking. The final dataset was
created by two expert annotators, jointly working
to rank the 155 pairs collected in the data creation
phase. We computed the rank correlation agree-
ment between this annotation and the 15 annota-
tion produced in the first stage. We obtained an av-
erage Kendall’s τ = 0.530 and τ = 0.566 respec-
tively on the simple and controlled sets (Standard
deviations from the average are StdDev = 0.146
and StdDev = 0.173). These results are all statis-
tically significant at the 99% level, indicating that
the notion of “frame relatedness” is intuitive and
principled for humans, and that the final datasets
are reliable enough to be used as gold standard for
our experiments. Table 2 reports the first and last
5 ranked frame pairs for the two datasets.

We compared the correlation results obtained
above on “frame relatedness”, to those derived
from previous works on “word relatedness”. This
comparison should indicate if ranking related
frames (i.e. situations) is more or less complex
and intuitive than ranking words.3 As for words,
we computed the average Kendall’s τ among three
different annotation efforts (namely, (Rubenstein
and Goodenough, 1965; Resnik, 1995; Charles,
2000)) carried out over a same dataset of 28 word
pairs originally created by Rubenstein and Goode-
nough. Note that the annotation schema followed
in the three works is the same as ours. We ob-
tained a Kendall’s τ = 0.775, which is statisti-
cally significant at the 99% level. As expected,
the correlation for word relatedness is higher than
for frames: Humans find it easier to compare two
words than two complex situations, as the former
are less complex linguistic entities than the latter.

4 Measures for frame relatedness

Manually computing relatedness between all pos-
sible frame pairs in FrameNet is an unfeasible
task. The on-going FrameNet project and auto-
matic methods for FrameNet expansion (e.g. (Pen-

2Average correlation is computed by averaging the τ ob-
tained on each pair of annotators, as suggested in (Siegel and
Castellan, 1988); note that the obtained value corresponds
to the Kendall u correlation coefficient. Ties are properly
treated with the correction factor described in (Siegel and
Castellan, 1988).

3The comparison should be taken only as indicative, as
words can be ambiguous while frames are not. A more prin-
cipled comparison should involve word senses, not words.

nacchiotti et al., 2008)) are expected to produce an
ever growing set of frames. The definition of auto-
matic measures for frame relatedness is thus a key
issue. In this section we propose different types of
such measures.

4.1 WordNet-based measures

WordNet-based measures estimate relatedness by
leveraging the WordNet hierarchy. The hypothesis
is that two frames whose sets of LUs are close in
WordNet are likely to be related. We assume that
LUs are sense-tagged, i.e. we know which Word-
Net senses of a LU map to a given frame. For ex-
ample, among the 25 senses of the LU charge.v,
only the sense charge.v#3 (“demand payment”)
maps to the frame COMMERCE COLLECT.

Given a frame F , we define SF as the set
of all WordNet senses that map to any frame’s
LU (e.g. for COMMERCE COLLECT, SF con-
tains charge.v#3, collect.v#4, bill.v#1). A generic
WordNet-based measure is then defined as fol-
lows:

wn(F1, F2) =

∑
s1∈SF1

∑
s2∈SF2

wn rel(s1, s2)

|SF1 | · |SF2 |
(1)

where wn rel(s1, s2) is a sense function estimat-
ing the relatedness between two senses in Word-
Net. Since we focus on frame relatedness, we
are interested in assigning high scores to pairs of
senses which are related by any type of relations
in WordNet (i.e. not limited to is-a). We there-
fore adopt as function wn rel the Hirst-St.Onge
measure (Hirst and St.Onge, 1998) as it accounts
for different relations. We also experiment with
the Jiang and Conrath’s (Jiang and Conrath, 1997)
measure which relies only on the is-a hierarchy,
but proved to be the best WordNet-based mea-
sure in the task of ranking words (Budanitsky
and Hirst, 2006). We call the frame relatedness
measures using the two functions respectively as
wn hso(F1, F2) and wn jcn(F1, F2).

4.2 Corpus-based measures

Corpus-based measures compute relatedness look-
ing at the distributional properties of the two
frames over a corpus. The intuition is that related
frames should occur in the same or similar con-
texts.
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SIMPLE SET CONTROLLED SET
Measure volume - Measure mass (1) Knot creation - Rope manipulation (1,5)
Communication manner - Statement (2) Shoot projectiles - Use firearm (1,5)
Giving - Sent items (3) Scouring - Scrutiny (3)
Abundance - Measure linear extent (4) Ambient temperature - Temperature (4)
Remembering information - Reporting (5) Fleeing - Escaping (5)
... ...
Research - Immobilization (126) Reason - Taking time (142)
Resurrection - Strictness (126) Rejuvenation - Physical artworks (142)
Social event - Word relations (126) Revenge - Bungling (142)
Social event - Rope manipulation (126) Security - Likelihood (142)
Sole instance - Chatting (126) Sidereal appearance - Aggregate (142)

Table 2: Human gold standard ranking: first and last 5 ranked pairs (in brackets ranks allowing ties).

4.2.1 Co-occurrence measures
Given two frames F1 and F2, the co-occurrence
measure computes relatedness as the pointwise
mutual information (pmi) between them:

pmi(F1, F2) = log2
P (F1, F2)
P (F1)P (F2)

(2)

Given a corpus C consisting of a set of documents
c ∈ C, we estimate pmi as the number of contexts
in the corpus (either documents or sentences)4 in
which the two frames co-occur:

cr occ(F1, F2) = log2
|CF1,F2 |
|CF1 ||CF2 |

(3)

where CFi is the set of documents in which Fi oc-
curs, and CF1,F2 is the set of documents in which
F1 and F2 co-occur. A frame Fi is said to occur in
a document if at least one of its LUs lFi occurs in
the document, i.e.:

CFi = {c ∈ C : ∃lFi in c} (4)

CF1,F2 = {c ∈ C : ∃lF1 and ∃lF2 in c} (5)

A limitation of the above measure is that it does
not treat ambiguity. If a word is a LU of a frame
F , but it occurs in a document with a sense
s /∈ SF , it still counts as a frame occurrence.
For example, consider the word charge.v, whose
third sense charge.v#3 maps in FrameNet to COM-
MERCE COLLECT. In the sentence: “Tripp Isen-
hour was charged with killing a hawk on pur-
pose”, charge.v co-occurs with kill.v, which in
FrameNet maps to KILLING. The sentence would
then result as a co-occurrence of the two above
frames. Unfortunately this is not the case, as
the sentence’s sense charge.v#2 does not map to
the frame. Ideally, one could solve the problem
by using a sense-tagged corpus where senses’ oc-
currences are mapped to frames. While sense-
to-frame mappings exist (e.g. mapping between

4For sake of simplicity in the rest of the section we refer
to documents, but the same holds for sentences.

frames and WordNet senses in (Shi and Mihal-
cea, 2005)), sense-tagged corpora large enough for
distributional studies are not yet available (e.g.,
the SemCor WordNet-tagged corpus (Miller et al.,
1993) consists of only 700,000 words).

We therefore circumvent the problem, by imple-
menting pmi in a weighted co-occurrence mea-
sure, which gives lower weights to co-occurrences
of ambiguous words:

cr wgt(F1, F2) = log2

∑
c∈CF1,F2

wF1(c) · wF2(c)∑
c∈CF1

wF1(c) ·
∑

c∈CF2

wF2(c)
(6)

The weighting function wF (c) estimates the
probability that the document c contains a LU
of the frame F in the correct sense. For-
mally, given the set of senses Sl of a LU (e.g.
charge.v#1...charge.v#24), we define SlF as the set
of senses mapping to the frame (e.g. charge.v#3
for COMMERCE COLLECT). The weighting func-
tion is then:

wF (c) = arg max
lF∈LF in c

P (SlF |lF ) (7)

where LF is the set of LUs of F . We estimate
P (SlF |lF ) by counting sense occurrences of lF
over the SemCor corpus:

P (SlF |lF ) =
|SlF |
|Sl|

(8)

In other terms, a frame receives a high weight in
a document when the document contains a LU
whose most frequent senses are those mapped to
the frame.5 For example, in the sentence: “Tripp
Isenhour was charged with killing a hawk on pur-
pose.”, wF (c) = 0.17, as charge.v#3 is not very
frequent in SemCor.

5In Eq.8 we use Lidstone smoothing (Lidstone, 1920) to
account for unseen senses in SemCor. Also, if a LU does not
occur in SemCor, an equal probability (corresponding to the
inverse of the number of word’s senses) is given to all senses.
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4.2.2 Distributional measure
The previous measures promote (i.e. give a higher
rank to) frames co-occurring in the same con-
texts. The distributional measure promotes frames
occurring in similar contexts. The distributional
hypothesis (Harris, 1964) has been widely and
successfully used in NLP to compute relatedness
among words (Lin, 1998), lexical patterns (Lin
and Pantel, 2001), and other entities. The underly-
ing intuition is that target entities occurring in sim-
ilar contexts are likely to be semantically related.
In our setting, we consider either documents and
sentences as valid contexts.

Each frame F is modelled by a distributional
vector ~F , whose dimensions are documents. The
value of each dimension expresses the association
ratioA(F, c) between a document c and the frame.
We say that a document is highly associated to a
frame when most of the FrameNet LUs it contains,
map to the given frame in the correct senses:

A(F, c) =

∑
l∈LF in c

P (SlF |lF )∑
Fi∈F

∑
l∈Fi in c

P (SlFi
|lFi)

(9)

where F is the set of all FrameNet frames, and
P (SlF |lF ) is as in Eq. 8. We then compute relat-
edness between two frames using cosine similar-
ity:

cr dist(F1, F2) =
~F1 · ~F2

| ~F1| ∗ | ~F2|
(10)

When we use sentences as contexts we re-
fer to cr dist sent(F1, F2), otherwise to
cr dist doc(F1, F2)

4.3 Hierarchy-based measures
A third family or relatedness measures leverages
the FrameNet hierarchy. The hierarchy forms a
directed graph of 795 nodes (frames), 1136 edges,
86 roots, 7 islands and 26 independent compo-
nents. Similarly to measures for word related-
ness, we here compute frame relatedness leverag-
ing graph-based measures over the FrameNet hi-
erarchy. The intuition is that the closer in the hier-
archy two frames are, the more related they are6.
We here experiment with the Hirst-St.Onge and
the Wu and Palmer (Wu and Palmer, 1994) mea-
sures, as they are pure taxonomic measures, i.e.
they do not require any corpus statistics.

6The Pathfinder Through FrameNet tool gives a prac-
tical proof of this intuition: http://fnps.coli.
uni-saarland.de/pathsearch.

WU and Palmer: this measure calculates relat-
edness by considering the depths of the two frames
in the hierarchy, along with the depth of their least
common subsumer (LCS):

hr wu(F1, F2) =
2·dp(LCS)

ln(F1, LCS)+ln(F2, LCS)+2·dp(LCS)
(11)

where ln is the length of the path connecting two
frames, and dp is the length of the path between
a frame and a root. If a path does not exist, then
hr wu(F1, F2) = 0.

Hirst-St.Onge: two frames are semantically
close if they are connected in the FrameNet hier-
archy through a “not too long path which does not
change direction too often”:

hr hso(F1, F2) = M− path length −k ·d (12)

where M and and k are constants, and d is the
number of changes of direction in the path. If a
path does not exist, hr hso(F1, F2) = 0. For both
measures we consider as valid edges all relations.

The FrameNet hierarchy also provides for each
relation a partial or complete FE mapping between
the two linked frames (for example the role Vic-
tim of KILLING maps to the role Protagonist of
DEATH). We leverage this property implementing
a FE overlap measure, which given the set of FEs
of the two frames, FE1 and FE2 , computes re-
latedness as the percentage of mapped FEs:

hr fe(F1, F2) =
|FE1 ∩ FE2|

max(|FE1|, |FE2|)
(13)

The intuition is that FE overlap between frames
is a more fine grained and accurate predictor of
relatedness wrt. simple frame relation measures
as those above – i.e. two frames are highly related
not only if they describe connected situations, but
also if they share many participants.

5 Experiments

We evaluate the relatedness measures by compar-
ing their rankings over the two datasets described
in Section 3.2, using the manual gold standard an-
notation as reference. As evaluation metrics we
use Kendall’s τ . As baselines, we adopt a def-
inition overlap measure that counts the percent-
age of overlapping content words in the definition
of the two frames;7 and a LU overlap baseline

7We use stems of nouns, verbs and adjectives.

662



Measure Simple Set Controlled Set
wn jcn 0.114 0.141
wn hso 0.106 0.141
cr occ sent 0.239 0.340
cr wgt sent 0.281 0.349
cr occ doc 0.143 0.227
cr wgt doc 0.173 0.240
cr dist doc 0.152 0.240
hr wu 0.139 0.286
hr hso 0.134 0.296
hr fe 0.252 0.326
def overlap baseline 0.056 0.210
LU overlap baseline 0.080 0.253
human upper bound 0.530 0.566

Table 3: Kendall’s τ correlation results for differ-
ent measures over the two dataset.

that counts the percentage of overlapping LUs be-
tween the two frames. We also defined as upper-
bound the human agreement over the gold stan-
dard. As regards distributional measures, statis-
tics are drawn from the TREC-2002 Vol.2 cor-
pus, consisting of about 110 million words, orga-
nized in 230,401 news documents and 5,433,048
sentences8. LUs probabilities in Eq. 8 are esti-
mate over the SemCor 2.0 corpus, consisting of
700,000 running words, sense-tagged with Word-
Net 2.0 senses.9. WordNet-based measures are
computed using WordNet 2.0 and implemented
as in (Patwardhan et al., 2003). Mappings be-
tween WordNet senses and FrameNet verbal LUs
are taken from Shi and Mihalcea (2005); as map-
pings for nouns and adjectives are not available,
for the WordNet-based measures we use the first
sense heuristic.

Note that some of the measures we adopt need
some degree of supervision. The WordNet-based
and the cr wgt measures rely on a WordNet-
FrameNet mapping, which has to be created man-
ually or by some reliable automatic technique.
Hierarchy-based measures instead rely on the
FrameNet hierarchy that is also a manual artifact.

5.1 Experimental Results

Table 3 reports the correlation results over the two
datasets. Table 4 reports the best 10 ranks pro-
duced by some of the best performing measures.
Results show that all measures are positively cor-
related with the human gold standard, with a level

8For computational limitations we could not afford exper-
imenting the cr dist sent measure, as the number and size of
the vectors was too big.

9We did not use directly the SemCor for drawing distribu-
tional statistics, because of its small size.

of significance beyond the p < 0.01 level , but
the wn jcn measure which is at p < 0.05. All
measures, but the WordNet-based ones, signifi-
cantly outperform the definition overlap baseline
on both datasets, and most of them also beat the
more informed LU overlap baseline.10 It is in-
teresting to notice that the two best performing
measures, namely cr wgt sent and hr fe, use re-
spectively a distributional and a hierarchy-based
strategy, suggesting that both approaches are valu-
able. WordNet-based measures are less effective,
performing close or below the baselines.

Results obtained on the simple set are in gen-
eral lower than those on the controlled set, sug-
gesting that it is easier to discriminate among pairs
of connected frames than random ones. A possi-
ble explanation is that when frames are connected,
all measures can rely on meaningful evidence for
most of the pairs, while this is not always the case
for random pairs. For example, corpus-based mea-
sures tend to suffer the problem of data sparseness
much more on the simple set, because many of the
pairs are so loosely related that statistical informa-
tion cannot significantly emerge from the corpus.

WordNet-based measures. The low perfor-
mance of these measures is mainly due to the
fact that they fail to predict relatedness for many
pairs, e.g. wn hso assigns zero to 137 and 119
pairs, respectively on the simple and controlled
sets. This is mostly caused by the limited set of
relations of the WordNet database. Most impor-
tantly in our case, WordNet misses the situational
relation (Hirst and St.Onge, 1998), which typi-
cally relates words participating in the same sit-
uation (e.g. child care - school). This is exactly
the relation that would help in mapping frames’
LUs. Another problem relates to adjectives and
adverbs: WordNet measures cannot be trustfully
applied to these part-of-speech, as they are not
hierarchically organized. Unfortunately, 18% of
FrameNet LUs are either adjectives or adverbs,
meaning that such amount of useful information
is lost. Finally, WordNet has in general an incom-
plete lexical coverage: Shi and Mihalcea (2005)
show that 7% of FrameNet verbal LUs do not have
a mapping in WordNet.

Corpus-based measures. Table 3 shows that
co-occurrence measures are effective when using

10The average level of correlation obtained by our mea-
sures is comparable to that obtained in other complex
information-ordering tasks, e.g. measuring compositionality
of verb-noun collations (Venkatapathy and Joshi, 2005)
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WN JCN CR WGT SENT HR FE
Ambient temperature - Temperature (4) Change of phase - Cause change of phase (7) Shoot projectiles - Use firearm (1,5)
Run risk - Endangering (27) Knot creation - Rope manipulation (1,5) Intentionally affect - Rope manipulation (37,5)
Run risk - Safe situation (51) Ambient temperature - Temperature (4) Knot creation - Rope manipulation (1,5)
Knot creation - Rope manipulation (1,5) Shoot projectiles - Use firearm (1,5) Ambient temperature - Temperature (4)
Endangering - Safe situation (62) Hit target - Use firearm (18) Hit target - Intentionally affect (91,5)
Shoot projectiles - Use firearm (1,5) Run risk - Safe situation (51) Safe situation - Security (28)
Scouring - Scrutiny (3) Safe situation - Security (28) Suspicion - Criminal investigation (40)
Reliance - Contingency (109) Cause impact - Hit target (10) Age - Speed (113)
Safe situation - Security (28) Rape - Arson (22) Motion noise - Motion directional (55)
Change of phase - Cause change of phase (7) Suspicion - Robbery (98) Body movement - Motion (45)

Table 4: First 10 ranked frame pairs for different relatedness measure on the Controlled Set; in brackets,
the rank in the gold standard (full list available at (suppressed)).

sentences as contexts, while correlation decreases
by about 10 points using documents as contexts.
This suggest that sentences are suitable contex-
tual units to model situational relatedness, while
documents (i.e. news) may be so large to include
unrelated situations. It is interesting to notice
that corpus-based measures promote frame pairs
which are in a non-hierarchical relation, more than
other measures do. For example the pair CHANGE

OF PHASE - CAUSE CHANGE OF PHASE score
first, and RAPE - ARSON score ninth, while the
other measures tend to rank them much lower.
By contrast, the two frames SCOURING - IN-
SPECTING which are siblings in the FrameNet hi-
erarchy and rank 17th in the gold standard, are
ranked only 126th by cr wgt sent. This is due
to the fact that hierarchically related frames are
substitutional – i.e. they tend not to co-occur
in the same documents; while otherwise related
frames are mostly in syntagmatic relation. As for
cr dist doc, it performs in line with cr wgt doc,
but their ranks differ; cr dist doc promotes more
hierarchical relations: distributional methods cap-
ture both paradigmatically and syntagmatically re-
lated entities.

Hierarchy-based measures. As results show,
the FrameNet hierarchy is a good indicator of re-
latedness, especially when considering FE map-
pings. Hierarchy-based measures promote frame
pairs related by diverse relations, with a slight pre-
dominance of is-a like ones (indeed, the FrameNet
hierarchy contains roughly twice as many is-a re-
lations as other ones). These measures are slightly
penalized by the low coverage of the FrameNet
hierarchy. For example, they assign zero to
CHANGE OF PHASE - ALTERED PHASE, as an in-
choative link connecting the frames is missing.

Correlation between measures. We computed
the Kendall’s τ among the experimented mea-
sures, to investigate if they model relatedness in

different or similar ways. As expected, measures
of the same type are highly correlated (e.g. hr fe
and hr wu have τ = 0.52), while those of differ-
ent types seem complementary, showing negative
or non-significant correlation (e.g. cr wgt sent has
τ = −0.034 with hr wu, and τ = 0.078 with
wn jcn). The LU overlap baseline shows signif-
icant correlation only with hr wu (τ = 0.284),
suggesting that in the FrameNet hierarchy frames
correlated by some relation do share LUs.

Comparison to word relatedness. The best
performing measures score about 0.200 points be-
low the human upper bound, indicating that rank-
ing frames is much easier for humans than for ma-
chines. A direct comparison to the word ranking
task, suggests that ranking frames is harder than
words, not only for humans (as reported in Sec-
tion 3.2), but also for machines: Budanitsky and
Hirst (2006) show that measures for ranking words
get much closer to the human upper-bound than
our measures do, confirming that frame related-
ness is a fairly complex notion to model.

6 Conclusions

We empirically defined a notion of frame relat-
edness. Experiments suggest that this notion is
cognitively principled, and can be safely used in
NLP tasks. We introduced a variety of measures
for automatically estimating relatedness. Results
show that our measures have good performance,
all statistically significant at the 99% level, though
improvements are expected by using other evi-
dence. As future work, we will build up and refine
these basic measures, and investigate more com-
plex ones. We will also use our measures in appli-
cations, to check their effectiveness in supporting
various tasks, e.g. in mapping frames across Text
and Hypothesis in RTE, in linking related frames
in discourse, or in inducing frames for LU which
are not in FrameNet (Baker et al., 2007).
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Abstract
An important part of question answering
is ensuring a candidate answer is plausi-
ble as a response. We present a flexible
approach based on discriminative prefer-
ence ranking to determine which of a set
of candidate answers are appropriate. Dis-
criminative methods provide superior per-
formance while at the same time allow the
flexibility of adding new and diverse fea-
tures. Experimental results on a set of fo-
cused What ...? and Which ...? questions
show that our learned preference ranking
methods perform better than alternative
solutions to the task of answer typing. A
gain of almost 0.2 in MRR for both the
first appropriate and first correct answers
is observed along with an increase in pre-
cision over the entire range of recall.

1 Introduction

Question answering (QA) systems have received a
great deal of attention because they provide both
a natural means of querying via questions and be-
cause they return short, concise answers. These
two advantages simplify the task of finding in-
formation relevant to a topic of interest. Ques-
tions convey more than simply a natural language
query; an implicit expectation of answer type is
provided along with the question words. The dis-
covery and exploitation of this implicit expected
type is called answer typing.

We introduce an answer typing method that is
sufficiently flexible to use a wide variety of fea-
tures while at the same time providing a high level
of performance. Our answer typing method avoids
the use of pre-determined classes that are often
lacking for unanticipated answer types. Because
answer typing is only part of the QA task, a flexi-
ble answer typing model ensures that answer typ-
ing can be easily and usefully incorporated into a

complete QA system. A discriminative preference
ranking model with a preference for appropriate
answers is trained and applied to unseen ques-
tions. In terms of Mean Reciprocal Rank (MRR),
we observe improvements over existing systems of
around 0.2 both in terms of the correct answer and
in terms of appropriate responses. This increase
in MRR brings the performance of our model to
near the level of a full QA system on a subset of
questions, despite the fact that we rely on answer
typing features alone.

The amount of information given about the ex-
pected answer can vary by question. If the ques-
tion contains a question focus, which we define
to be the head noun following the wh-word such
as city in “What city hosted the 1988 Winter
Olympics?”, some of the typing information is ex-
plicitly stated. In this instance, the answer is re-
quired to be a city. However, there is often addi-
tional information available about the type. In our
example, the answer must plausibly host a Winter
Olympic Games. The focus, along with the ad-
ditional information, give strong clues about what
are appropriate as responses.

We define an appropriate candidate answer as
one that a user, who does not necessarily know
the correct answer, would identify as a plausible
answer to a given question. For most questions,
there exist plausible responses that are not correct
answers to the question. For our above question,
the city of Vancouver is plausible even though it
is not correct. For the purposes of this paper, we
assume correct answers are a subset of appropri-
ate candidates. Because answer typing is only in-
tended to be a component of a full QA system, we
rely on other components to help establish the true
correctness of a candidate answer.

The remainder of the paper is organized as fol-
lows. Section 2 presents the application of dis-
criminative preference rank learning to answer
typing. Section 3 introduces the models we use
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for learning appropriate answer preferences. Sec-
tions 4 and 5 discuss our experiments and their re-
sults, respectively. Section 6 presents prior work
on answer typing and the use of discriminative
methods in QA. Finally, concluding remarks and
ideas for future work are presented in Section 7.

2 Preference Ranking

Preference ranking naturally lends itself to any
problem in which the relative ordering between
examples is more important than labels or values
assigned to those examples. The classic exam-
ple application of preference ranking (Joachims,
2002) is that of information retrieval results rank-
ing. Generally, information retrieval results are
presented in some ordering such that those higher
on the list are either more relevant to the query or
would be of greater interest to the user.

In a preference ranking task we have a set of
candidates c1, c2, ..., cn, and a ranking r such that
the relation ci <r cj holds if and only if can-
didate ci should be ranked higher than cj , for
1 ≤ i, j ≤ n and i 6= j. The ranking r can form
a total ordering, as in information retrieval, or a
partial ordering in which we have both ci ≮r cj

and cj ≮r ci. Partial orderings are useful for our
task of answer typing because they can be used to
specify candidates that are of an equivalent rank.

Given some ci <r cj , preference ranking only
considers the difference between the feature rep-
resentations of ci and cj (Φ(ci) and Φ(cj), respec-
tively) as evidence. We want to learn some weight
vector ~w such that ~w ·Φ(ci) > ~w ·Φ(cj) holds for
all pairs ci and cj that have the relation ci <r cj . In
other words, we want ~w · (Φ(ci)−Φ(cj)) > 0 and
we can use some margin in the place of 0. In the
context of Support Vector Machines (Joachims,
2002), we are trying to minimize the function:

V (~w, ~ξ) =
1
2

~w · ~w + C
∑

ξi,j (1)

subject to the constraints:

∀(ci <r cj) : ~w · (Φ(ci)− Φ(cj)) ≥ 1− ξi,j (2)

∀i, j : ξi,j ≥ 0 (3)

The margin incorporates slack variables ξi,j for
problems that are not linearly separable. This
ranking task is analogous to the SVM classi-
fication task on the pairwise difference vectors
(Φ(ci) − Φ(cj)), known as rank constraints. Un-
like classification, no explicit negative evidence is

required as ~w·(Φ(ci)−Φ(cj)) = (−1)~w·(Φ(cj)−
Φ(ci)). It is also important to note that no rank
constraints are generated for candidates for which
no order relation exists under the ranking r.

Support Vector Machines (SVMs) have previ-
ously been used for preference ranking in the
context of information retrieval (Joachims, 2002).
We adopt the same framework for answer typing
by preference ranking. The SVMlight package
(Joachims, 1999) implements the preference rank-
ing of Joachims (2002) and is used here for learn-
ing answer types.

2.1 Application to Answer Typing

Assigning meaningful scores for answer typing is
a difficult task. For example, given the question
“What city hosted the 1988 Winter Olympics?”
and the candidates New York, Calgary, and the
word blue, how can we identify New York and
Calgary as appropriate and the word blue as inap-
propriate? Scoring answer candidates is compli-
cated by the fact that a gold standard for appropri-
ateness scores does not exist. Therefore, we have
no a priori notion that New York is better than the
word blue by some amount v. Because of this, we
approach the problem of answer typing as one of
preference ranking in which the relative appropri-
ateness is more important than the absolute scores.

Preference ranking stands in contrast to classifi-
cation, in which a candidate is classified as appro-
priate or inappropriate depending on the values in
its feature representation. Unfortunately, simple
classification does not work well in the face of a
large imbalance in positive and negative examples.
In answer typing we typically have far more inap-
propriate candidates than appropriate candidates,
and this is especially true for the experiments de-
scribed in Section 4. This is indeed a problem for
our system, as neither re-weighting nor attempt-
ing to balance the set of examples with the use
of random negative examples were shown to give
better performance on development data. This is
not to say that some means of balancing the data
would not provide comparable or superior perfor-
mance, but rather that such a weighting or sam-
pling scheme is not obvious.

An additional benefit of preference ranking over
classification is that preference ranking models the
better-than relationship between candidates. Typ-
ically a set of candidate answers are all related to a
question in some way, and we wish to know which
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of the candidates are better than others. In con-
trast, binary classification simply deals with the
is/is-not relationship and will have difficulty when
two responses with similar feature values are clas-
sified differently. With preference ranking, viola-
tions of some rank constraints will affect the re-
sulting order of candidates, but sufficient ordering
information may still be present to correctly iden-
tify appropriate candidates.

To apply preference ranking to answer typing,
we learn a model over a set of questions q1, ..., qn.
Each question qi has a list of appropriate candidate
answers a(i,1), ..., a(i,u) and a list of inappropriate
candidate answers b(i,1), ..., b(i,v). The partial or-
dering r is simply the set

∀i, j, k : {a(i,j) <r b(i,k)} (4)

This means that rank constraints are only gen-
erated for candidate answers a(i,j) and b(i,k) for
question qi and not between candidates a(i,j) and
b(l,k) where i 6= l. For example, the candidate an-
swers for the question “What city hosted the 1988
Winter Olympics?” are not compared with those
for “What colour is the sky?” because our partial
ordering r does not attempt to rank candidates for
one question in relation to candidates for another.
Moreover, no rank constraints are generated be-
tween a(i,j) and a(i,k) nor b(i,j) and b(i,k) because
the partial ordering does not include orderings be-
tween two candidates of the same class. Given two
appropriate candidates to the question “What city
hosted the 1988 Winter Olympics?”, New York
and Calgary, rank constraints will not be created
for the pair (New York, Calgary).

3 Methods

We begin with the work of Pinchak and Lin (2006)
in which question contexts (dependency tree paths
involving the wh-word) are extracted from the
question and matched against those found in a cor-
pus of text. The basic idea is that words that are
appropriate as answers will appear in place of the
wh-word in these contexts when found in the cor-
pus. For example, the question “What city hosted
the 1988 Winter Olympics?” will have as one of
the question contexts “X hosted Olympics.” We
then consult a corpus to discover what replace-
ments for X were actually mentioned and smooth
the resulting distribution.

We use the model of Pinchak and Lin (2006)
to produce features for our discriminative model.

Table 1: Feature templates

Pattern Description

E(t, c)
Estimated count of term t
in context c

C(t, c)
Observed count of term t in
context c∑

t′ C(t′, c)
Count of all terms appearing
in context c∑

c′ C(t, c′)
Count of term t in all
contexts

S(t)
Count of the times t occurs
in the candidate list

These features are mostly based on question con-
texts, and are briefly summarized in Table 1. Fol-
lowing Pinchak and Lin (2006), all of our features
are derived from a limited corpus (AQUAINT);
large-scale text resources are not required for our
model to perform well. By restricting ourselves
to relatively small corpora, we believe that our ap-
proach will easily transfer to other domains or lan-
guages (provided parsing resources are available).

To address the sparseness of question contexts,
we remove lexical elements from question context
paths. This removal is performed after feature val-
ues are obtained for the fully lexicalized path; the
removal of lexical elements simply allows many
similar paths to share a single learned weight. For
example, the term Calgary in context X ← sub-
ject ← host → object → Olympics (X hosted
Olympics) is used to obtain a feature value v that
is assigned to a feature such as C(Calgary, X ←
subject ← ∗ → object → ∗) = v. Removal of
lexical elements results in a space of 73 possible
question contexts. To facilitate learning, all counts
are log values and feature vectors are normalized
to unit length.

The estimated count of term t in context c,
E(t, c), is a component of the model of Pinchak
and Lin (2006) and is calculated according to:

E(t, c) =
∑
χ

Pr(χ|t)C(χ, c) (5)

Essentially, this equation computes an expected
count for term t in question c by observing how
likely t is to be part of a cluster χ (Pr(χ|t)) and
then observing how often terms of cluster χ oc-
cur in context c (C(χ, c)). Although the model
of Pinchak and Lin (2006) is significantly more

668



complex, we use their core idea of cluster-based
smoothing to decide how often a term t will oc-
cur in a context c, regardless of whether or not t
was actually observed in c within our corpus. The
Pinchak and Lin (2006) system is unable to as-
sign individual weights to different question con-
texts, even though not all question contexts are
equally important. For example, the Pinchak and
Lin (2006) model is forced to consider a question
focus context (such as “X is a city”) to be of equal
importance to non-focus contexts (such as “X host
Olympics”). However, we have observed that it is
more important that candidate X is a city than it
hosted an Olympics in this instance. Appropriate
answers are required to be cities even though not
all cities have hosted Olympics. We wish to ad-
dress this problem with the use of discriminative
methods.

The observed count features of term t in con-
text c, C(t, c), are included to allow for combina-
tion with the estimated values from the model of
Pinchak and Lin (2006). Because Pinchak and Lin
(2006) make use of cluster-based smoothing, er-
rors may occur. By including the observed counts
of term t in context c, we hope to allow for the
use of more accurate statistics whenever they are
available, and for the smoothed counts in cases for
which they are not.

Finally, we include the frequency of a term t in
the list of candidates, S(t). The idea here is that
the correct and/or appropriate answers are likely
to be repeated many times in a list of candidate
answers. Terms that are strongly associated with
the question and appear often in results are likely
to be what the question is looking for.

Both the C(t, c) and S(t) features are exten-
sions to the Pinchak and Lin (2006) model and can
be incorporated into the Pinchak and Lin (2006)
model with varying degrees of difficulty. The
value of S(t) in particular is highly dependent on
the means used to obtain the candidate list, and the
distribution of words over the candidate list is of-
ten very different from the distribution of words in
the corpus. Because this feature value comes from
a different source than our other features, it would
be difficult to use in a non-discriminative model.

Correct answers to our set of questions are
obtained from the TREC 2002-2006 results
(Voorhees, 2002). For appropriateness labels we
turn to human annotators. Two annotators were in-
structed to label a candidate as appropriate if that

candidate was believable as an answer, even if that
candidate was not correct. For a question such as
“What city hosted the 1988 Winter Olympics?”,
all cities should be labeled as appropriate even
though only Calgary is correct. This task comes
with a moderate degree of difficulty, especially
when dealing with questions for which appropriate
answers are less obvious (such as “What kind of a
community is a Kibbutz?”). We observed an inter-
annotator (kappa) agreement of 0.73, which indi-
cates substantial agreement. This value of kappa
conveys the difficulty that even human annotators
have when trying to decide which candidates are
appropriate for a given question. Because of this
value of kappa, we adopt strict gold standard ap-
propriateness labels that are the intersection of the
two annotators’ labels (i.e., a candidate is only ap-
propriate if both annotators label it as such, other-
wise it is inappropriate).

We introduce four different models for the rank-
ing of appropriate answers, each of which makes
use of appropriateness labels in different ways:

Correctness Model: Although appropriateness
and correctness are not equivalent, this model
deals with distinguishing correct from incorrect
candidates in the hopes that the resulting model
will be able to perform well on finding both cor-
rect and appropriate answers. For learning, cor-
rect answers are placed at a rank above that of
incorrect candidates, regardless of whether or not
those candidates are appropriate. This represents
the strictest definition of appropriateness and re-
quires no human annotation.

Appropriateness Model: The correctness model
assumes only correct answers are appropriate. In
reality, this is seldom the case. For example,
documents or snipppets returned for the question
“What country did Catherine the Great rule?” will
contain not only Russia (the correct answer), but
also Germany (the nationality of her parents) and
Poland (her modern-day birthplace). To better ad-
dress this overly strict definition of appropriate-
ness, we rank all candidates labeled as appropri-
ate above those labeled as inappropriate, without
regards to correctness. Because we want to learn
a model for appropriateness, training on appropri-
ateness rather than correctness information should
produce a model closer to what we desire.

Combined Model: Discriminative preference
ranking is not limited to only two ranks. We
combine the ideas of correctness and appropri-
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ateness together to form a three-rank combined
model. This model places correct answers above
appropriate-but-incorrect candidates, which are
in turn placed above inappropriate-and-incorrect
candidates.
Reduced Model: Both the appropriateness model
and the combined model incorporate a large num-
ber of rank constraints. We can reduce the number
of rank constraints generated by simply remov-
ing all appropriate, but incorrect, candidates from
consideration and otherwise following the correct-
ness model. The main difference is that some ap-
propriate candidates are no longer assigned a low
rank. By removing appropriate, but incorrect, can-
didates from the generation of rank constraints, we
no longer rank correct answers above appropriate
candidates.

4 Experiments

To compare with the prior approach of Pinchak
and Lin (2006), we use a set of what and which
questions with question focus (questions with a
noun phrase following the wh-word). These are
a subset of the more general what, which, and who
questions dealt with by Pinchak and Lin (2006).
Although our model can accommodate a wide
range of what, which, when, and who questions,
the focused what and which questions are an easily
identifiable subclass that are rarely definitional or
otherwise complex in terms of the desired answer.
We take the set of focused what and which ques-
tions from TREC 2002-2006 (Voorhees, 2002)
comprising a total of 385 questions and performed
9-fold cross-validation, with one dedicated devel-
opment partition (the tenth partition). The devel-
opment partition was used to tune the regulariza-
tion parameter of the SVM used for testing.

Candidates are obtained by submitting the ques-
tion as-is to the Google search engine and chunk-
ing the top 20 snippets returned, resulting in an
average of 140 candidates per question. Google
snippets create a better confusion set than simply
random words for appropriate and inappropriate
candidates; many of the terms found in Google
snippets are related in some way to the question.
To ensure a correct answer is present (where pos-
sible), we append the list of correct answers to the
list of candidates.

As a measure of performance, we adopt Mean
Reciprocal Rank (MRR) for both correct and ap-
propriate answers, as well as precision-recall for

appropriate answers. MRR is useful as a mea-
sure of overall QA system performance (Voorhees,
2002), but is based only on the top correct or
appropriate answer encountered in a ranked list.
For this reason, we also show the precision-recall
curve to better understand how our models per-
form.

We compare our models with three alternative
approaches, the simplest of which is random. For
random, the candidate answers are randomly shuf-
fled and performance is averaged over a number
of runs (100). The snippet frequency approach
orders candidates based on their frequency of oc-
currence in the Google snippets, and is simply the
S(t) feature of our discriminative models in isola-
tion. We remove terms comprised solely of ques-
tion words from all approaches to prevent question
words (which tend to be very frequent in the snip-
pets) from being selected as answers. The last of
our alternative systems is an implementation of the
work of Pinchak and Lin (2006) in which the out-
put probabilities of their model are used to rank
candidates.

4.1 Results

Figures 1 and 2 show the MRR results and
precision-recall curve of our correctness model
against the alternative approaches. In comparison
to these alternative systems, we show two versions
of our correctness model. The first uses a linear
kernel and is able to outperform the alternative ap-
proaches. The second uses a radial basis function
(RBF) kernel and exhibits performance superior to
that of the linear kernel. This suggests a degree
of non-linearity present in the data that cannot be
captured by the linear kernel alone. Both the train-
ing and running times of the RBF kernel are con-
siderably larger than that of the linear kernel. The
accuracy gain of the RBF kernel must therefore be
weighed against the increased time required to use
the model.

Figures 3 and 4 give the MRR results and
precision-recall curves for our additional mod-
els in comparison with that of the correctness
model. Although losses in MRR and precision
are observed for both the appropriate and com-
bined model using the RBF kernel, the linear ker-
nel versions of these models show slight perfor-
mance gains.
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Figure 1: MRR results for the correctness model
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5 Discussion of Results

The results of our correctness model, found in Fig-
ures 1 and 2 show considerable gains over our al-
ternative systems, including that of Pinchak and
Lin (2006). The Pinchak and Lin (2006) system
was specifically designed with answer typing in
mind, although it makes use of a brittle generative
model that does not account for ranking of answer
candidates nor for the variable strength of various
question contexts. These results show that our dis-
criminative preference ranking approach creates a
better model of both correctness and appropriate-
ness via weighting of contexts, preference rank
learning, and with the incorporation of additional
related features (Table 1). The last feature, snippet
frequency, is not particularly strong on its own, but
can be easily incorporated into our discriminative
model. The ability to add a wide variety of po-
tentially helpful features is one of the strengths of
discriminative techniques in general.

By moving away from simply correct answers
in the correctness model and incorporating labeled
appropriate examples in various ways, we are able
to further improve upon the performance of our
approach. Training on appropriateness labels in-
stead of correct answers results in a loss in MRR
for the first correct answer, but a gain in MRR for
the first appropriate candidate. Unfortunately, this
does not carry over to the entire range of precision
over recall. For the linear kernel, our three ad-

Figure 2: Precision-recall of appropriate candi-
dates under the correctness model
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ditional models (appropriateness, combined, and
reduced) show consistent improvements over the
correctness model, but with the RBF kernel only
the reduced model produces a meaningful change.

The precision-recall curves of Figures 2 and 4
show remarkable consistency across the full range
of recall, despite the fact that candidates exist for
which feature values cannot easily be obtained.
Due to tagging and chunking errors, ill-formed
candidates may exist that are judged appropriate
by the annotators. For example, “explorer Her-
nando Soto” is a candidate marked appropriate
by both annotators to the question “What Span-
ish explorer discovered the Mississippi River?”
However, our context database does not include
the phrase “explorer Hernando Soto” meaning that
only a few features will have non-zero values. De-
spite these occasional problems, our models are
able to rank most correct and appropriate candi-
dates high in a ranked list.

Finally, we examine the effects of training set
size on MRR. The learning curve for a single par-
titioning under the correctness model is presented
in Figure 5. Although the model trained with
the RBF kernel exhibits some degree of instabil-
ity below 100 training questions, both the linear
and RBF models gain little benefit from additional
training questions beyond 100. This may be due
to the fact that the most common unlexicalized
question contexts have been observed in the first
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Figure 3: MRR results (RBF kernel)
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100 training examples and so therefore additional
questions simply repeat the same information. Re-
quiring only a relatively small number of training
examples means that an effective model can be
learned with relatively little input in the form of
question-answer pairs or annotated candidate lists.

6 Prior Work

The expected answer type can be captured in a
number of possible ways. By far the most com-
mon is the assignment of one or more prede-
fined types to a question during a question anal-
ysis phase. Although the vast majority of the ap-
proaches to answer type detection make use of
rules (either partly or wholly) (Harabagiu et al.,
2005; Sun et al., 2005; Wu et al., 2005; Mollá and
Gardiner, 2004), a few notable learned methods
for answer type detection exist.

One of the first attempts at learning a model for
answer type detection was made by Ittycheriah et
al. (2000; 2001) who learn a maximum entropy
classifier over the Message Understanding Confer-
ence (MUC) types. Those same MUC types are
then assigned by a named-entity tagger to iden-
tify appropriate candidate answers. Because of the
potential for unanticipated types, Ittycheriah et al.
(2000; 2001) include a Phrase type as a catch-all
class that is used when no other class is appropri-
ate. Although the classifier and named-entity tag-
ger are shown to be among the components with

Figure 4: Precision-recall of appropriate (RBF
kernel)
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the lowest error rate in their QA system, it is not
clear how much benefit is obtained from using a
relatively coarse-grained set of classes.

The approach of Li and Roth (2002) is sim-
ilar in that it uses learning for answer type de-
tection. They make use of multi-class learning
with a Sparse Network of Winnows (SNoW) and
a two-layer class hierarchy comprising a total of
fifty possible answer types. These finer-grained
classes are of more use when computing a notion
of appropriateness, although one major drawback
is that no entity tagger is discussed that can iden-
tify these types in text. Li and Roth (2002) also
rely on a rigid set of classes and so run the risk of
encountering a new question of an unseen type.

Pinchak and Lin (2006) present an alternative in
which the probability of a term being appropriate
to a question is computed directly. Instead of as-
signing an answer type to a question, the question
is broken down into a number of possibly overlap-
ping contexts. A candidate is then evaluated as to
how likely it is to appear in these contexts. Un-
fortunately, Pinchak and Lin (2006) use a brittle
generative model when combining question con-
texts that assumes all contexts are equally impor-
tant. This assumption was dealt with by Pinchak
and Lin (2006) by discarding all non-focus con-
texts with a focus context is present, but this is not
an ideal solution.

Learning methods are abundant in QA research
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Figure 5: Learning curve for MRR of the first cor-
rect answer under the correctness model
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and have been applied in a number of different
ways. Ittycheriah et al. (2000) created an en-
tire QA system based on maximum entropy com-
ponents in addition to the question classifier dis-
cussed above. Ittycheriah et al. (2000) were able
to obtain reasonable performance from learned
components alone, although future versions of the
system use non-learned components in addition to
learned components (Prager et al., 2003). The
JAVELIN I system (Nyberg et al., 2005) uses
a SVM during the answer/information extraction
phase. Although learning is applied in many QA
tasks, very few QA systems rely solely on learn-
ing. Compositional approaches, in which multiple
distinct QA techniques are combined, also show
promise for improving QA performance. Echihabi
et al. (2003) use three separate answer extraction
agents and combine the output scores with a max-
imum entropy re-ranker.

Surdeanu et al. (2008) explore preference rank-
ing for advice or “how to” questions in which a
unique correct answer is preferred over all other
candidates. Their focus is on complex-answer
questions in addition to the use of a collection of
user-generated answers rather than answer typing.
However, their use of preference ranking mirrors
the techniques we describe here in which the rela-
tive difference between two candidates at different
ranks is more important than the individual candi-
dates.

7 Conclusions and Future Work

We have introduced a means of flexible answer
typing with discriminative preference rank learn-
ing. Although answer typing does not represent a
complete QA system, it is an important component
to ensure that those candidates selected as answers
are indeed appropriate to the question being asked.
By casting the problem of evaluating appropriate-
ness as one of preference ranking, we allow for
the learning of what differentiates an appropriate
candidate from an inappropriate one.

Experimental results on focused what and
which questions show that a discriminatively
trained preference rank model is able to outper-
form alternative approaches designed for the same
task. This increase in performance comes from
both the flexibility to easily combine a number of
weighted features and because comparisons only
need to be made between appropriate and inappro-
priate candidates. A preference ranking model can
be trained from a relatively small set of example
questions, meaning that only a small number of
question/answer pairs or annotated candidate lists
are required.

The power of an answer typing system lies
in its ability to identify, in terms of some given
query, appropriate candidates. Applying the flexi-
ble model described here to a domain other than
question answering could allow for a more fo-
cused set of results. One straight-forward appli-
cation is to apply our model to the process of in-
formation or document retrieval itself. Ensuring
that there are terms present in the document ap-
propriate to the query could allow for the intel-
ligent expansion of the query. In a related vein,
queries are occasionally comprised of natural lan-
guage text fragments that can be treated similarly
to questions. Rarely are users searching for sim-
ple mentions of the query in pages; we wish to
provide them with something more useful. Our
model achieves the goal of finding those appropri-
ate related concepts.
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Abstract

We present an extensive study on the prob-
lem of detecting polarity of words. We
consider the polarity of a word to be ei-
ther positive or negative. For example,
words such asgood, beautiful , and won-

derful are considered as positive words;
whereas words such asbad, ugly, and sad

are considered negative words. We treat
polarity detection as a semi-supervised la-
bel propagation problem in a graph. In
the graph, each node represents a word
whose polarity is to be determined. Each
weighted edge encodes a relation that ex-
ists between two words. Each node (word)
can have two labels: positive or negative.
We study this framework in two differ-
ent resource availability scenarios using
WordNet and OpenOffice thesaurus when
WordNet is not available. We report our
results on three different languages: En-
glish, French, and Hindi. Our results in-
dicate that label propagation improves sig-
nificantly over the baseline and other semi-
supervised learning methods like Mincuts
and Randomized Mincuts for this task.

1 Introduction

Opinionated texts are characterized by words or
phrases that communicate positive or negative sen-
timent. Consider the following example of two
movie reviews1 shown in Figure 1. The posi-
tive review is peppered with words such asenjoy-

able, likeable, decent, breathtakingly and the negative

∗Work done as a summer intern at Google Inc.
1Source: Live Free or Die Hard,

rottentomatoes.com

Figure 1: Movie Reviews with positive (left) and
negative (right) sentiment.

comment uses words likeear-shattering, humorless,

unbearable. These terms and prior knowledge of
their polarity could be used as features in a su-
pervised classification framework to determine the
sentiment of the opinionated text (E.g., (Esuli and
Sebastiani, 2006)). Thus lexicons indicating po-
larity of such words are indispensable resources
not only in automatic sentiment analysis but also
in other natural language understanding tasks like
textual entailment. This motivation was seen in
theGeneral Enquirereffort by Stone et al. (1966)
and several others who manually construct such
lexicons for the English language.2 While it is
possible to manually build these resources for a
language, the ensuing effort is onerous. This mo-
tivates the need for automatic language-agnostic
methods for building sentiment lexicons. The im-
portance of this problem has warranted several ef-
forts in the past, some of which will be reviewed
here.

We demonstrate the application of graph-based
semi-supervised learning for induction of polar-
ity lexicons. We try several graph-based semi-

2The General Inquirer tries to classify English words
along several dimensions, including polarity.
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supervised learning methods like Mincuts, Ran-
domized Mincuts, and Label Propagation. In par-
ticular, we define a graph with nodes consisting
of the words or phrases to be classified either as
positive or negative. The edges between the nodes
encode some notion of similarity. In a transduc-
tive fashion, a few of these nodes are labeled us-
ing seed examples and the labels for the remaining
nodes are derived using these seeds. We explore
natural word-graph sources like WordNet and ex-
ploit different relations within WordNet like syn-
onymy and hypernymy. Our method is not just
confined to WordNet; any source listing synonyms
could be used. To demonstrate this, we show
the use of OpenOffice thesaurus – a free resource
available in several languages.3

We begin by discussing some related work in
Section 2 and briefly describe the learning meth-
ods we use, in Section 3. Section 4 details our
evaluation methodology along with detailed ex-
periments for English. In Section 5 we demon-
strate results in French and Hindi, as an example
of how the method could be easily applied to other
languages as well.

2 Related Work

The literature on sentiment polarity lexicon induc-
tion can be broadly classified into two categories,
those based on corpora and the ones using Word-
Net.

2.1 Corpora based approaches

One of the earliest work on learning polarity
of terms was by Hatzivassiloglou and McKeown
(1997) who deduce polarity by exploiting con-
straints on conjoined adjectives in the Wall Street
Journal corpus. For example, the conjunction
“and” links adjectives of the same polarity while
“but” links adjectives of opposite polarity. How-
ever the applicability of this method for other im-
portant classes of sentiment terms like nouns and
verbs is yet to be demonstrated. Further they as-
sume linguistic features specific to English.

Wiebe (2000) uses Lin (1998a) style distribu-
tionally similar adjectives in a cluster-and-label
process to generate sentiment lexicon of adjec-
tives.

In a different work, Riloff et al. (2003) use man-
ually derived pattern templates to extract subjec-
tive nouns by bootstrapping.

3http://www.openoffice.org

Another corpora based method due to Turney
and Littman (2003) tries to measure the semantic
orientationO(t) for a termt by

O(t) =
∑

ti∈S+

PMI(t, ti) −
∑

tj∈S−

PMI(t, tj)

whereS+ andS− are minimal sets of polar terms
that contain prototypical positive and negative
terms respectively, andPMI(t, ti) is the point-
wise mutual information (Lin, 1998b) between
the termst and ti. While this method is general
enough to be applied to several languages our aim
was to develop methods that exploit more struc-
tured sources like WordNet to leverage benefits
from the rich network structure.

Kaji and Kitsuregawa (2007) outline a method
of building sentiment lexicons for Japanese us-
ing structural cues from HTML documents. Apart
from being very specific to Japanese, excessive de-
pendence on HTML structure makes their method
brittle.

2.2 WordNet based approaches

These approaches use lexical relations defined in
WordNet to derive sentiment lexicons. A sim-
ple but high-precision method proposed by Kim
and Hovy (2006) is to add all synonyms of a po-
lar word with the same polarity and its antonyms
with reverse polarity. As demonstrated later, the
method suffers from low recall and is unsuitable in
situations when the seed polar words are too few –
not uncommon in low resource languages.

In line with Turney’s work, Kamps et. al. (2004)
try to determine sentiments of adjectives in Word-
Net by measuring relative distance of the term
from exemplars, such as “good” and “bad”. The
polarity orientation of a termt is measured as fol-
lows

O(t) =
d(t, good) − d(t, bad)

d(good, bad)

whered(.) is a WordNet based relatedness mea-
sure (Pedersen et al., 2004). Again they report re-
sults for adjectives alone.

Another relevant example is the recent work by
Mihalcea et. al. (2007) on multilingual sentiment
analysis using cross-lingual projections. This is
achieved by using bridge resources like dictionar-
ies and parallel corpora to build sentence subjec-
tivity classifiers for the target language (Roma-
nian). An interesting result from their work is that
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only a small fraction of the lexicon entries pre-
serve their polarities under translation.

The primary contributions of this paper are :

• An application of graph-based semi-
supervised learning methods for inducing
sentiment lexicons from WordNet and other
thesauri. The label propagation method
naturally allows combining several relations
from WordNet.

• Our approach works on all classes of words
and not just adjectives

• Though we report results for English, Hindi,
and French, our methods can be easily repli-
cated for other languages where WordNet is
available.4 In the absence of WordNet, any
thesaurus listing synonyms could be used.
We present one such result using the OpenOf-
fice thesaurus – a freely available multilin-
gual resource scarcely used in NLP literature.

3 Graph based semi-supervised learning

Most natural language data has some structure that
could be exploited even in the absence of fully an-
notated data. For instance, documents are simi-
lar in the terms they contain, words could be syn-
onyms of each other, and so on. Such informa-
tion can be readily encoded as a graph where the
presence of an edge between two nodes would in-
dicate a relationship between the two nodes and,
optionally, the weight on the edge could encode
strength of the relationship. This additional infor-
mation aids learning when very few annotated ex-
amples are present. We review three well known
graph based semi-supervised learning methods –
mincuts, randomized mincuts, and label propaga-
tion – that we use in induction of polarity lexicons.

3.1 Mincuts

A mincut of a weighted graphG(V,E) is a par-
titioning the verticesV into V1 andV2 such that
sum of the edge weights of all edges betweenV1

andV2 is minimal (Figure 2).
Mincuts for semi-supervised learning proposed

by Blum and Chawla (2001) tries to classify data-
points by partitioning the similarity graph such
that it minimizes the number of similar points be-
ing labeled differently. Mincuts have been used

4As of this writing, WordNet is available for more than 40
world languages (http://www.globalwordnet.org)

Figure 2: Semi-supervised classification using
mincuts

in semi-supervised learning for various tasks, in-
cluding document level sentiment analysis (Pang
and Lee, 2004). We explore the use of mincuts for
the task of sentiment lexicon learning.

3.2 Randomized Mincuts

An improvement to the basic mincut algorithm
was proposed by Blum et. al. (2004). The deter-
ministic mincut algorithm, solved using max-flow,
produces only one of the several possible mincuts.
Some of these cuts could be skewed thereby nega-
tively effecting the results. As an extreme example
consider the graph in Figure 3a. Let the nodes with
degree one be labeled as positive and negative re-
spectively, and for the purpose of illustration let
all edges be of the same weight. The graph in Fig-
ure 3a. can be partitioned in four equal cost cuts –
two of which are shown in (b) and (c). The min-

Figure 3: Problem with mincuts

cut algorithm, depending on the implementation,
will return only one of the extreme cuts (as in (b))
while the desired classification might be as shown
in Figure 3c.

The randomized mincut approach tries to ad-
dress this problem by randomly perturbing the ad-
jacency matrix by adding random noise.5 Mincut
is then performed on this perturbed graph. This is

5We use a Gaussian noiseN (0, 1).
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repeated several times and unbalanced partitions
are discarded. Finally the remaining partitions are
used to deduce the final classification by majority
voting. In the unlikely event of the voting result-
ing in a tie, we refrain from making a decision thus
favoring precision over recall.

3.3 Label propagation

Another semi-supervised learning method we use
is label propagation by Zhu and Ghahramani
(2002). The label propagation algorithm is a trans-
ductive learning framework which uses a few ex-
amples, or seeds, to label a large number of un-
labeled examples. In addition to the seed exam-
ples, the algorithm also uses a relation between the
examples. This relation should have two require-
ments:

1. It should be transitive.

2. It should encode some notion of relatedness
between the examples.

To name a few, examples of such relations in-
clude, synonymy, hypernymy, and similarity in
some metric space. This relation between the ex-
amples can be easily encoded as a graph. Thus ev-
ery node in the graph is an example and the edge
represents the relation. Also associated with each
node, is a probability distribution over the labels
for the node. For the seed nodes, this distribution
is known and kept fixed. The aim is to derive the
distributions for the remaining nodes.

Consider a graphG(V,E,W ) with verticesV ,
edgesE, and ann × n edge weight matrixW =
[wij ], wheren = |V |. The label propagation algo-
rithm minimizes a quadratic energy function

E =
1

2

∑

(i, j) ∈ E

wij(yi − yj)
2

where yi and yj are the labels assigned to the
nodesi and j respectively.6 Thus, to derive the
labels atyi, we set ∂

∂yi
E = 0 to obtain the follow-

ing update equation

yi =

∑

(i,j)∈E

wijyj

∑

(i,j)∈E

wij

In practice, we use the following iterative algo-
rithm as noted by Zhu and Ghahramani (2002). A

6For binary classificationyk ∈ {−1, +1}.

n × n stochastic transition matrixT is derived by
row-normalizingW as follows:

Tij = P (j → i) =
wij∑n

k=1 wkj

whereTij can be viewed as the transition probabil-
ity from nodej to nodei. The algorithm proceeds
as follows:

1. Assign an × C matrix Y with the initial as-
signment of labels, whereC is the number of
classes.

2. Propagate labels for all nodes by computing
Y = TY

3. Row-normalizeY such that each row adds up
to one.

4. Clamp the seed examples inY to their origi-
nal values

5. Repeat 2-5 untilY converges.

There are several points to be noted. First, we add
a special label “DEFAULT” to existing set of la-
bels and setP (DEFAULT | node = u) = 1 for all
unlabeled nodesu. For all the seed nodess with
class labelLwe defineP (L | node = s) = 1. This
ensures nodes that cannot be labeled at all7 will re-
tainP (DEFAULT) = 1 thereby leading to a quick
convergence. Second, the algorithm produces a
probability distribution over the labels for all un-
labeled points. This makes this method specially
suitable for classifier combination approaches. For
this paper, we simply select the most likely label
as the predicted label for the point. Third, the al-
gorithm eventually converges. For details on the
proof for convergence we refer the reader to Zhu
and Ghahramani (2002).

4 Evaluation and Experiments

We use the General Inquirer (GI)8 data for eval-
uation. General Inquirer is lexicon of English
words hand-labeled with categorical information
along several dimensions. One such dimension is
called valence, with 1915 words labeled “Positiv”
(sic) and 2291 words labeled “Negativ” for words
with positive and negative sentiments respectively.
Since we want to evaluate the performance of the

7As an example of such a situation, consider a discon-
nected component of unlabeled nodes with no seed in it.

8http://www.wjh.harvard.edu/∼inquirer/
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algorithms alone and not the recall issues in us-
ing WordNet, we only consider words from GI that
also occur in WordNet. This leaves us the distri-
bution of words as enumerated in Table 1.

PoS type No. of Positives No. of Negatives
Nouns 517 579
Verbs 319 562
Adjectives 547 438

Table 1: English evaluation data from General In-
quirer

All experiments reported in Sections 4.1 to 4.5
use the data described above with a 50-50 split
so that the first half is used as seeds and the sec-
ond half is used for test. Note that all the exper-
iments described below did not involve any pa-
rameter tuning thus obviating the need for a sepa-
rate development test set. The effect of number of
seeds on learning is described in Section 4.6.

4.1 Kim-Hovy method and improvements

Kim and Hovy (2006) enrich their sentiment lexi-
con from WordNet as follows. Synonyms of a pos-
itive word are positive while antonyms are treated
as negative. This basic version suffers from a very
poor recall as shown in the Figure 4 for adjectives
(see iteration 1). The recall can be improved for a
slight trade-off in precision if we re-run the above
algorithm on the output produced at the previous
level. This could be repeated iteratively until there
is no noticeable change in precision/recall. We
consider this as the best possible F1-score pro-
duced by the Kim-Hovy method. The classwise
F1 for this method is shown in Table 2. We use
these scores as our baseline.

Figure 4: Kim-Hovy method

PoS type P R F1
Nouns 92.59 21.43 34.80
Verbs 87.89 38.31 53.36
Adjectives 92.95 31.71 47.28

Table 2: Precision/Recall/F1-scores for Kim-
Hovy method

4.2 Using prototypes

We now consider measuring semantic orientation
from WordNet using prototypical examples such
as “good” and “bad” similar to Kamps et al.
(2004). Kamps et. al., report results only for
adjectives though their method could be used for
other part-of-speech types. The results for us-
ing prototypes are listed in Table 3. Note that
the seed data was fully unused except for the ex-
amples “good” and “bad”. We still test on the
same test data as earlier for comparing results.
Also note that the recall need not be 100 in this
case as we refrain from making a decision when
d(t, good) = d(t, bad).

PoS type P R F1
Nouns 48.03 99.82 64.86
Verbs 58.12 100.00 73.51
Adjectives 57.35 99.59 72.78

Table 3: Precision/Recall/F1-scores for prototype
method

4.3 Using mincuts and randomized mincuts

We now report results for mincuts and random-
ized mincuts algorithm using the WordNet syn-
onym graph. As seen in Table 4, we only observed
a marginal improvement (for verbs) over mincuts
by using randomized mincuts.

But the overall improvement of using graph-
based semi-supervised learning methods over the
Kim-Hovy and Prototype methods is quite signifi-
cant.

4.4 Using label propagation

We extract the synonym graph from WordNet with
an edge between two nodes being defined iff one
is a synonym of the other. When label propaga-
tion is performed on this graph results in Table
5 are observed. The results presented in Tables
2-5 need deeper inspection. The iterated Kim-
Hovy method suffers from poor recall. However
both mincut methods and the prototype method by
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P R F1
Nouns
Mincut 68.25 100.00 81.13
RandMincut 68.32 99.09 80.08
Verbs
Mincut 72.34 100.00 83.95
RandMincut 73.06 99.02 84.19
Adjectives
Mincut 73.78 100.00 84.91
RandMincut 73.58 100.00 84.78

Table 4: Precision/Recall/F1-scores using mincuts
and randomized mincuts

PoS type P R F1
Nouns 82.55 58.58 58.53
Verbs 81.00 85.94 83.40
Adjectives 84.76 64.02 72.95

Table 5: Precision/Recall/F1-scores for Label Pro-
pogation

Kamps et. al., have high recall as they end up
classifying every node as either positive or nega-
tive. Note that the recall for randomized mincut
is not 100 as we do not make a classification de-
cision when there is a tie in majority voting (refer
Section 3.2). Observe that the label propagation
method performs significantly better than previ-
ous graph based methods in precision. The rea-
son for lower recall is attributed to the lack of con-
nectivity between plausibly related nodes, thereby
not facilitating the “spread” of labels from the la-
beled seed nodes to the unlabeled nodes. We ad-
dress this problem by adding additional edges to
the synonym graph in the next section.

4.5 Incorporating hypernyms

The main reason for low recall in label propaga-
tion is that the WordNet synonym graph is highly
disconnected. Even nodes which are logically re-
lated have paths missing between them. For exam-
ple the positive nounscompliment and laud belong
to different synonym subgraphs without a path
between them. But incorporating the hypernym
edges the two are connected by the nounpraise.
So, we incorporated hypernyms of every node to
improve connectivity. Performing label propaga-
tion on this combined graph gives much better re-
sults (Table 6) with much higher recall and even
slightly better precision. In Table 6., we do not
report results for adjectives as WordNet does not

define hypernyms for adjectives. A natural ques-

PoS type P R F1
Nouns 83.88 99.64 91.08
Verbs 85.49 100.00 92.18
Adjectives N/A N/A N/A

Table 6: Effect of adding hypernyms

tion to ask is if we can use other WordNet relations
too. We will defer this until section 6.

4.6 Effect of number of seeds

The results reported in Sections 4.1 to 4.5 fixed
the number of seeds. We now investigate the per-
formance of the various methods on the number
of seeds used. In particular, we are interested in
performance under conditions when the number of
seeds are few – which is the motivation for using
semi-supervised learning in the first place. Fig-
ure 5 presents our results for English. Observe that
Label Propagation performs much better than our
baseline even when the number of seeds is as low
as ten. Thus label propagation is especially suited
when annotation data is extremely sparse.

One reason for mincuts performing badly with
few seeds is because they generate degenrate cuts.

5 Adapting to other languages

In order to demonstrate the ease of adaptability of
our method for other languages, we used the Hindi
WordNet9 to derive the adjective synonym graph.
We selected 489 adjectives at random from a list
of 10656 adjectives and this list was annotated by
two native speakers of the language. The anno-
tated list was then split 50-50 into seed and test
sets. Label propagation was performed using the
seed list and evaluated on the test list. The results
are listed in Table 7.

Hindi P R F1
90.99 95.10 93.00

Table 7: Evaluation on Hindi dataset

WordNet might not be freely available for all
languages or may not exist. In such cases build-
ing graph from an existing thesaurus might also
suffice. As an example, we consider French. Al-
though the French WordNet is available10, we

9http://www.cfilt.iitb.ac.in/wordnet/webhwn/
10http://www.illc.uva.nl/EuroWordNet/consortium-

ewn.html
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Figure 5: Effect of number of seeds on the F-score for Nouns, Verbs, and Adjectives. The X-axis is
number of seeds and the Y-axis is the F-score.

found the cost prohibitive to obtain it. Observe
that if we are using only the synonymy relation in
WordNet then any thesaurus can be used instead.
To demonstrate this, we consider the OpenOffice
thesaurus for French, that is freely available. The
synonym graph of French adjectives has 9707 ver-
tices and 1.6M edges. We manually annotated a
list of 316 adjectives and derived seed and test sets
using a 50-50 split. The results of label propaga-
tion on such a graph is shown in Table 8.

French P R F1
73.65 93.67 82.46

Table 8: Evaluation on French dataset

The reason for better results in Hindi compared
to French can be attributed to (1) higher inter-
annotator agreement (κ = 0.7) in Hindi compared
that in French (κ = 0.55).11 (2) The Hindi ex-
periment, like English, used WordNet while the
French experiment was performed on graphs de-
rived from the OpenOffice thesaurus due lack of
freely available French WordNet.

11We do not haveκ scores for English dataset derived from
the Harvard Inquirer project.

6 Conclusions and Future Work

This paper demonstrated the utility of graph-based
semi-supervised learning framework for building
sentiment lexicons in a variety of resource avail-
ability situations. We explored how the struc-
ture of WordNet could be leveraged to derive
polarity lexicons. The paper combines, for the
first time, relationships like synonymy and hyper-
nymy to improve label propagation results. All
of our methods are independent of language as
shown in the French and Hindi cases. We demon-
strated applicability of our approach on alterna-
tive thesaurus-derived graphs when WordNet is
not freely available, as in the case of French.

Although our current work uses WordNet and
other thesauri, in resource poor situations when
only monolingual raw text is available we can per-
form label propagation on nearest neighbor graphs
derived directly from raw text using distributional
similarity methods. This is work in progress.

We are also currently working on the possibil-
ity of including WordNet relations other than syn-
onymy and hypernymy. One relation that is in-
teresting and useful is antonymy. Antonym edges
cannot be added in a straight-forward way to the
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graph for label propagation as antonymy encodes
negative similarity (or dissimilarity) and the dis-
similarity relation is not transitive.
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Abstract
We present and evaluate a new model for
Natural Language Generation (NLG) in
Spoken Dialogue Systems, based on statis-
tical planning, given noisy feedback from
the current generation context (e.g. a user
and a surface realiser). We study its use in
a standard NLG problem: how to present
information (in this case a set of search re-
sults) to users, given the complex trade-
offs between utterance length, amount of
information conveyed, and cognitive load.
We set these trade-offs by analysing exist-
ing MATCH data. We then train a NLG pol-
icy using Reinforcement Learning (RL),
which adapts its behaviour to noisy feed-
back from the current generation context.
This policy is compared to several base-
lines derived from previous work in this
area. The learned policy significantly out-
performs all the prior approaches.

1 Introduction

Natural language allows us to achieve the same
communicative goal (“what to say”) using many
different expressions (“how to say it”). In a Spo-
ken Dialogue System (SDS), an abstract commu-
nicative goal (CG) can be generated in many dif-
ferent ways. For example, the CG to present
database results to the user can be realized as a
summary (Polifroni and Walker, 2008; Demberg
and Moore, 2006), or by comparing items (Walker
et al., 2004), or by picking one item and recom-
mending it to the user (Young et al., 2007).

Previous work has shown that it is useful to
adapt the generated output to certain features of
the dialogue context, for example user prefer-
ences, e.g. (Walker et al., 2004; Demberg and
Moore, 2006), user knowledge, e.g. (Janarthanam
and Lemon, 2008), or predicted TTS quality, e.g.
(Nakatsu and White, 2006).

In extending this previous work we treat NLG
as a statistical sequential planning problem, anal-
ogously to current statistical approaches to Dia-
logue Management (DM), e.g. (Singh et al., 2002;
Henderson et al., 2008; Rieser and Lemon, 2008a)
and “conversation as action under uncertainty”
(Paek and Horvitz, 2000). In NLG we have
similar trade-offs and unpredictability as in DM,
and in some systems the content planning and DM
tasks are overlapping. Clearly, very long system
utterances with many actions in them are to be
avoided, because users may become confused or
impatient, but each individual NLG action will
convey some (potentially) useful information to
the user. There is therefore an optimization prob-
lem to be solved. Moreover, the user judgements
or next (most likely) action after each NLG action
are unpredictable, and the behaviour of the surface
realizer may also be variable (see Section 6.2).

NLG could therefore fruitfully be approached
as a sequential statistical planning task, where
there are trade-offs and decisions to make, such as
whether to choose another NLG action (and which
one to choose) or to instead stop generating. Re-
inforcement Learning (RL) allows us to optimize
such trade-offs in the presence of uncertainty, i.e.
the chances of achieving a better state, while en-
gaging in the risk of choosing another action.

In this paper we present and evaluate a new
model for NLG in Spoken Dialogue Systems as
planning under uncertainty. In Section 2 we argue
for applying RL to NLG problems and explain the
overall framework. In Section 3 we discuss chal-
lenges for NLG for Information Presentation. In
Section 4 we present results from our analysis of
the MATCH corpus (Walker et al., 2004). In Sec-
tion 5 we present a detailed example of our pro-
posed NLG method. In Section 6 we report on
experimental results using this framework for ex-
ploring Information Presentation policies. In Sec-
tion 7 we conclude and discuss future directions.
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2 NLG as planning under uncertainty

We adopt the general framework of NLG as plan-
ning under uncertainty (see (Lemon, 2008) for the
initial version of this approach). Some aspects of
NLG have been treated as planning, e.g. (Koller
and Stone, 2007; Koller and Petrick, 2008), but
never before as statistical planning.

NLG actions take place in a stochastic environ-
ment, for example consisting of a user, a realizer,
and a TTS system, where the individual NLG ac-
tions have uncertain effects on the environment.
For example, presenting differing numbers of at-
tributes to the user, and making the user more or
less likely to choose an item, as shown by (Rieser
and Lemon, 2008b) for multimodal interaction.

Most SDS employ fixed template-based gener-
ation. Our goal, however, is to employ a stochas-
tic realizer for SDS, see for example (Stent et al.,
2004). This will introduce additional noise, which
higher level NLG decisions will need to react
to. In our framework, the NLG component must
achieve a high-level Communicative Goal from
the Dialogue Manager (e.g. to present a number
of items) through planning a sequence of lower-
level generation steps or actions, for example first
to summarize all the items and then to recommend
the highest ranking one. Each such action has un-
predictable effects due to the stochastic realizer.
For example the realizer might employ 6 attributes
when recommending item i4, but it might use only
2 (e.g. price and cuisine for restaurants), depend-
ing on its own processing constraints (see e.g. the
realizer used to collect the MATCH project data).
Likewise, the user may be likely to choose an item
after hearing a summary, or they may wish to hear
more. Generating appropriate language in context
(e.g. attributes presented so far) thus has the fol-
lowing important features in general:

• NLG is goal driven behaviour

• NLG must plan a sequence of actions

• each action changes the environment state or
context

• the effect of each action is uncertain.

These facts make it clear that the problem of
planning how to generate an utterance falls nat-
urally into the class of statistical planning prob-
lems, rather than rule-based approaches such as
(Moore et al., 2004; Walker et al., 2004), or super-
vised learning as explored in previous work, such

as classifier learning and re-ranking, e.g. (Stent et
al., 2004; Oh and Rudnicky, 2002). Supervised
approaches involve the ranking of a set of com-
pleted plans/utterances and as such cannot adapt
online to the context or the user. Reinforcement
Learning (RL) provides a principled, data-driven
optimisation framework for our type of planning
problem (Sutton and Barto, 1998).

3 The Information Presentation Problem

We will tackle the well-studied problem of Infor-
mation Presentation in NLG to show the benefits
of this approach. The task here is to find the best
way to present a set of search results to a user
(e.g. some restaurants meeting a certain set of con-
straints). This is a task common to much prior
work in NLG, e.g. (Walker et al., 2004; Demberg
and Moore, 2006; Polifroni and Walker, 2008).

In this problem, there there are many decisions
available for exploration. For instance, which pre-
sentation strategy to apply (NLG strategy selec-
tion), how many attributes of each item to present
(attribute selection), how to rank the items and at-
tributes according to different models of user pref-
erences (attribute ordering), how many (specific)
items to tell them about (conciseness), how many
sentences to use when doing so (syntactic plan-
ning), and which words to use (lexical choice) etc.
All these parameters (and potentially many more)
can be varied, and ideally, jointly optimised based
on user judgements.

We had two corpora available to study some of
the regions of this decision space. We utilise the
MATCH corpus (Walker et al., 2004) to extract an
evaluation function (also known as ”reward func-
tion”) for RL. Furthermore, we utilise the SPaRKy
corpus (Stent et al., 2004) to build a high quality
stochastic realizer. Both corpora contain data from
“overhearer” experiments targeted to Information
Presentation in dialogues in the restaurant domain.
While we are ultimately interested in how hearers
engaged in dialogues judge different Information
Presentations, results from overhearers are still di-
rectly relevant to the task.

4 MATCH corpus analysis

The MATCH project made two data sets available,
see (Stent et al., 2002) and (Whittaker et al., 2003),
which we combine to define an evaluation function
for different Information Presentation strategies.
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strategy example av.#attr av.#sentence

SUMMARY “The 4 restaurants differ in food quality, and cost.”
(#attr = 2,#sentence = 1)

2.07±.63 1.56±.5

COMPARE “Among the selected restaurants, the following offer
exceptional overall value. Aureole’s price is 71 dol-
lars. It has superb food quality, superb service and
superb decor. Daniel’s price is 82 dollars. It has su-
perb food quality, superb service and superb decor.”
(#attr = 4,#sentence = 5)

3.2±1.5 5.5±3.11

RECOMMEND “Le Madeleine has the best overall value among the
selected restaurants. Le Madeleine’s price is 40 dol-
lars and It has very good food quality. It’s in Mid-
town West. ” (#attr = 3,#sentence = 3)

2.4±.7 3.5±.53

Table 1: NLG strategies present in the MATCH corpus with average no. attributes and sentences as found
in the data.

The first data set, see (Stent et al., 2002), com-
prises 1024 ratings by 16 subjects (where we only
use the speech-based half, n = 512) on the follow-
ing presentation strategies: RECOMMEND, COM-
PARE, SUMMARY. These strategies are realized
using templates as in Table 2, and varying num-
bers of attributes. In this study the users rate the
individual presentation strategies as significantly
different (F (2) = 1361, p < .001). We find that
SUMMARY is rated significantly worse (p = .05
with Bonferroni correction) than RECOMMEND

and COMPARE, which are rated as equally good.
This suggests that one should never generate

a SUMMARY. However, SUMMARY has different
qualities from COMPARE and RECOMMEND, as
it gives users a general overview of the domain,
and probably helps the user to feel more confi-
dent when choosing an item, especially when they
are unfamiliar with the domain, as shown by (Po-
lifroni and Walker, 2008).

In order to further describe the strategies, we ex-
tracted different surface features as present in the
data (e.g. number of attributes realised, number of
sentences, number of words, number of database
items talked about, etc.) and performed a step-
wise linear regression to find the features which
were important to the overhearers (following the
PARADISE framework (Walker et al., 2000)). We
discovered a trade-off between the length of the ut-
terance (#sentence) and the number of attributes
realised (#attr), i.e. its informativeness, where
overhearers like to hear as many attributes as pos-
sible in the most concise way, as indicated by
the regression model shown in Equation 1 (R2 =

.34). 1

score = .775×#attr + (−.301)×#sentence;
(1)

The second MATCH data set, see (Whittaker et
al., 2003), comprises 1224 ratings by 17 subjects
on the NLG strategies RECOMMEND and COM-
PARE. The strategies realise varying numbers of
attributes according to different “conciseness” val-
ues: concise (1 or 2 attributes), average (3
or 4), and verbose (4,5, or 6). Overhearers
rate all conciseness levels as significantly different
(F (2) = 198.3, p < .001), with verbose rated
highest and concise rated lowest, supporting
our findings in the first data set. However, the rela-
tion between number of attributes and user ratings
is not strictly linear: ratings drop for #attr = 6.
This suggests that there is an upper limit on how
many attributes users like to hear. We expect this
to be especially true for real users engaged in ac-
tual dialogue interaction, see (Winterboer et al.,
2007). We therefore include “cognitive load” as a
variable when training the policy (see Section 6).

In addition to the trade-off between length and
informativeness for single NLG strategies, we are
interested whether this trade-off will also hold for
generating sequences of NLG actions. (Whittaker
et al., 2002), for example, generate a combined
strategy where first a SUMMARY is used to de-
scribe the retrieved subset and then they RECOM-
MEND one specific item/restaurant. For example
“The 4 restaurants are all French, but differ in

1For comparison: (Walker et al., 2000) report on R2 be-
tween .4 and .5 on a slightly lager data set.
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Figure 1: Possible NLG policies (X=stop generation)

food quality, and cost. Le Madeleine has the best
overall value among the selected restaurants. Le
Madeleine’s price is 40 dollars and It has very
good food quality. It’s in Midtown West.”

We therefore extend the set of possible strate-
gies present in the data for exploration: we allow
ordered combinations of the strategies, assuming
that only COMPARE or RECOMMEND can follow a
SUMMARY, and that only RECOMMEND can fol-
low COMPARE, resulting in 7 possible actions:

1. RECOMMEND

2. COMPARE

3. SUMMARY

4. COMPARE+RECOMMEND

5. SUMMARY+RECOMMEND

6. SUMMARY+COMPARE

7. SUMMARY+COMPARE+RECOMMEND

We then analytically solved the regression
model in Equation 1 for the 7 possible strategies
using average values from the MATCH data. This is
solved by a system of linear inequalities. Accord-
ing to this model, the best ranking strategy is to
do all the presentation strategies in one sequence,
i.e. SUMMARY+COMPARE+RECOMMEND. How-
ever, this analytic solution assumes a “one-shot”
generation strategy where there is no intermediate
feedback from the environment: users are simply
static overhearers (they cannot “barge-in” for ex-
ample), there is no variation in the behaviour of the
surface realizer, i.e. one would use fixed templates
as in MATCH, and the user has unlimited cogni-
tive capabilities. These assumptions are not real-
istic, and must be relaxed. In the next Section we

describe a worked through example of the overall
framework.

5 Method: the RL-NLG model

For the reasons discussed above, we treat the
NLG module as a statistical planner, operat-
ing in a stochastic environment, and optimise
it using Reinforcement Learning. The in-
put to the module is a Communicative Goal
supplied by the Dialogue Manager. The CG
consists of a Dialogue Act to be generated,
for example present items(i1, i2, i5, i8),
and a System Goal (SysGoal) which is
the desired user reaction, e.g. to make the
user choose one of the presented items
(user choose one of(i1, i2, i5, i8)). The
RL-NLG module must plan a sequence of lower-
level NLG actions that achieve the goal (at lowest
cost) in the current context. The context consists
of a user (who may remain silent, supply more
constraints, choose an item, or quit), and variation
from the sentence realizer described above.

Now let us walk-through one simple ut-
terance plan as carried out by this model,
as shown in Table 2. Here, we start
with the CG present items(i1, i2, i5, i8)&
user choose one of(i1, i2, i5, i8) from the
system’s DM. This initialises the NLG state (init).
The policy chooses the action SUMMARY and this
transitions us to state s1, where we observe that
4 attributes and 1 sentence have been generated,
and the user is predicted to remain silent. In this
state, the current NLG policy is to RECOMMEND

the top ranked item (i5, for this user), which takes
us to state s2, where 8 attributes have been gener-
ated in a total of 4 sentences, and the user chooses
an item. The policy holds that in states like s2 the
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init s1 s2

summarise recommend

end

stop

atts=4
user=silent

atts=8
user=choose

ENVIRONMENT:

ACTIONS:

GOAL

Reward

Figure 2: Example RL-NLG action sequence for Table 4

State Action State change/effect
init SysGoal: present items(i1, i2, i5, i8)& user choose one of(i1, i2, i5, i8) initialise state
s1 RL-NLG: SUMMARY(i1, i2, i5, i8) att=4, sent=1, user=silent
s2 RL-NLG: RECOMMEND(i5) att=8, sent=4, user=choose(i5)
end RL-NLG: stop calculate Reward

Table 2: Example utterance planning sequence for Figure 2

best thing to do is “stop” and pass the turn to the
user. This takes us to the state end, where the total
reward of this action sequence is computed (see
Section 6.3), and used to update the NLG policy
in each of the visited state-action pairs via back-
propagation.

6 Experiments

We now report on a proof-of-concept study where
we train our policy in a simulated learning envi-
ronment based on the results from the MATCH cor-
pus analysis in Section 4. Simulation-based RL
allows to explore unseen actions which are not in
the data, and thus less initial data is needed (Rieser
and Lemon, 2008b). Note, that we cannot directly
learn from the MATCH data, as therefore we would
need data from an interactive dialogue. We are
currently collecting such data in a Wizard-of-Oz
experiment.

6.1 User simulation

User simulations are commonly used to train
strategies for Dialogue Management, see for ex-
ample (Young et al., 2007). A user simulation for
NLG is very similar, in that it is a predictive model
of the most likely next user act. However, this user
act does not actually change the overall dialogue
state (e.g. by filling slots) but it only changes the

generator state. In other words, the NLG user sim-
ulation tells us what the user is most likely to do
next, if we were to stop generating now. It also
tells us the probability whether the user chooses
to “barge-in” after a system NLG action (by either
choosing an item or providing more information).

The user simulation for this study is a simple
bi-gram model, which relates the number of at-
tributes presented to the next likely user actions,
see Table 3. The user can either follow the goal
provided by the DM (SysGoal), for example
choosing an item. The user can also do some-
thing else (userElse), e.g. providing another
constraint, or the user can quit (userQuit).

For simplification, we discretise the number of
attributes into concise-average-verbose,
reflecting the conciseness values from the MATCH

data, as described in Section 4. In addition, we
assume that the user’s cognitive abilities are lim-
ited (“cognitive load”), based on the results from
the second MATCH data set in Section 4. Once the
number of attributes is more than the “magic num-
ber 7” (reflecting psychological results on short-
term memory) (Baddeley, 2001)) the user is more
likely to become confused and quit.

The probabilities in Table 3 are currently man-
ually set heuristics. We are currently conducting a
Wizard-of-Oz study in order to learn these proba-
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bilities (and other user parameters) from real data.

SysGoal userElse userQuit
concise 20.0 60.0 20.0
average 60.0 20.0 20.0
verbose 20.0 20.0 60.0

Table 3: NLG bi-gram user simulation

6.2 Realizer model
The sequential NLG model assumes a realizer,
which updates the context after each generation
step (i.e. after each single action). We estimate
the realiser’s parameters from the mean values we
found in the MATCH data (see Table 1). For this
study we first (randomly) vary the number of at-
tributes, whereas the number of sentences is fixed
(see Table 4). In current work we replace the re-
alizer model with an implemented generator that
replicates the variation found in the SPaRKy real-
izer (Stent et al., 2004).

#attr #sentence

SUMMARY 1 or 2 2
COMPARE 3 or 4 6
RECOMMEND 2 or 3 3

Table 4: Realizer parameters

6.3 Reward function
The reward function defines the final goal of the
utterance generation sequence. In this experiment
the reward is a function of the various data-driven
trade-offs as identified in the data analysis in Sec-
tion 4: utterance length and number of provided
attributes, as weighted by the regression model
in Equation 1, as well as the next predicted user
action. Since we currently only have overhearer
data, we manually estimate the reward for the
next most likely user act, to supplement the data-
driven model. If in the end state the next most
likely user act is userQuit, the learner gets a
penalty of −100, userElse receives 0 reward,
and SysGoal gains +100 reward. Again, these
hand coded scores need to be refined by a more
targeted data collection, but the other components
of the reward function are data-driven.

Note that RL learns to “make compromises”
with respect to the different trade-offs. For ex-
ample, the user is less likely to choose an item
if there are more than 7 attributes, but the real-
izer can generate 9 attributes. However, in some

contexts it might be desirable to generate all 9 at-
tributes, e.g. if the generated utterance is short.
Threshold-based approaches, in contrast, cannot
(easily) reason with respect to the current content.

6.4 State and Action Space

We now formulate the problem as a Markov De-
cision Process (MDP), relating states to actions.
Each state-action pair is associated with a transi-
tion probability, which is the probability of mov-
ing from state s at time t to state s′ at time t+1 af-
ter having performed action a when in state s. This
transition probability is computed by the environ-
ment model (i.e. user and realizer), and explic-
itly captures noise/uncertainty in the environment.
This is a major difference to other non-statistical
planning approaches. Each transition is also as-
sociated with a reinforcement signal (or reward)
rt+1 describing how good the result of action a
was when performed in state s.

The state space comprises 9 binary features rep-
resenting the number of attributes, 2 binary fea-
tures representing the predicted user’s next ac-
tion to follow the system goal or quit, as well as
a discrete feature reflecting the number of sen-
tences generated so far, as shown in Figure 3.
This results in 211 × 6 = 12, 288 distinct genera-
tion states. We trained the policy using the well
known SARSA algorithm, using linear function ap-
proximation (Sutton and Barto, 1998). The policy
was trained for 3600 simulated NLG sequences.

In future work we plan to learn lower level deci-
sions, such as lexical adaptation based on the vo-
cabulary used by the user.

6.5 Baselines

We derive the baseline policies from Informa-
tion Presentation strategies as deployed by cur-
rent dialogue systems. In total we utilise 7 differ-
ent baselines (B1-B7), which correspond to single
branches in our policy space (see Figure 1):

B1: RECOMMEND only, e.g. (Young et al., 2007)

B2: COMPARE only, e.g. (Henderson et al., 2008)

B3: SUMMARY only, e.g. (Polifroni and Walker,
2008)

B4: SUMMARY followed by RECOMMEND, e.g.
(Whittaker et al., 2002)

B5: Randomly choosing between COMPARE and
RECOMMEND, e.g. (Walker et al., 2007)
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
action:


SUMMARY

COMPARE

RECOMMEND

end

state:



attributes |1 |-|9 |:
{
0,1

}
sentence:

{
1-11

}
userGoal:

{
0,1

}
userQuit:

{
0,1

}




Figure 3: State-Action space for RL-NLG

B6: Randomly choosing between all 7 outputs

B7: Always generating whole sequence, i.e.
SUMMARY+COMPARE+RECOMMEND, as
suggested by the analytic solution (see
Section 4).

6.6 Results

We analyse the test runs (n=200) using an ANOVA
with a PostHoc T-Test (with Bonferroni correc-
tion). RL significantly (p < .001) outperforms all
baselines in terms of final reward, see Table 5. RL
is the only policy which significantly improves the
next most likely user action by adapting to features
in the current context. In contrast to conventional
approaches, RL learns to ‘control’ its environment
according to the estimated transition probabilities
and the associated rewards.

The learnt policy can be described as follows:
It either starts with SUMMARY or COMPARE af-
ter the init state, i.e. it learnt to never start with a
RECOMMEND. It stops generating after COMPARE

if the userGoal is (probably) reached (e.g. the
user is most likely to choose an item in the next
turn, which depends on the number of attributes
generated), otherwise it goes on and generates a
RECOMMEND. If it starts with SUMMARY, it al-
ways generates a COMPARE afterwards. Again, it
stops if the userGoal is (probably) reached, oth-
erwise it generates the full sequence (which corre-
sponds to the analytic solution B7).

The analytic solution B7 performs second best,
and significantly outperforms all the other base-
lines (p < .01). Still, it is significantly worse
(p < .001) than the learnt policy as this ‘one-shot-
strategy’ cannot robustly and dynamically adopt to
noise or changes in the environment.

In general, generating sequences of NLG ac-
tions rates higher than generating single actions
only: B4 and B6 rate directly after RL and B7,
while B1, B2, B3, B5 are all equally bad given
our data-driven definition of reward and environ-

ment. Furthermore, the simulated environment
allows us to replicate the results in the MATCH

corpus (see Section 4) when only comparing sin-
gle strategies: SUMMARY performs significantly
worse, while RECOMMEND and COMPARE per-
form equally well.

policy reward (±std)
B1 99.1 (±129.6)
B2 90.9 (±142.2)
B3 65.5 (±137.3)
B4 176.0 (±154.1)
B5 95.9 (±144.9)
B6 168.8 (±165.3)
B7 229.3 (±157.1)
RL 310.8 (±136.1)

Table 5: Evaluation Results (p < .001 )

7 Conclusion

We presented and evaluated a new model for Nat-
ural Language Generation (NLG) in Spoken Dia-
logue Systems, based on statistical planning. After
motivating and presenting the model, we studied
its use in Information Presentation.

We derived a data-driven model predicting
users’ judgements to different information presen-
tation actions (reward function), via a regression
analysis on MATCH data. We used this regression
model to set weights in a reward function for Re-
inforcement Learning, and so optimize a context-
adaptive presentation policy. The learnt policy was
compared to several baselines derived from previ-
ous work in this area, where the learnt policy sig-
nificantly outperforms all the baselines.

There are many possible extensions to this
model, e.g. using the same techniques to jointly
optimise choosing the number of attributes, aggre-
gation, word choice, referring expressions, and so
on, in a hierarchical manner.

689



We are currently collecting data in targeted
Wizard-of-Oz experiments, to derive a fully data-
driven training environment and test the learnt
policy with real users, following (Rieser and
Lemon, 2008b). The trained NLG strategy
will also be integrated in an end-to-end statis-
tical system within the CLASSiC project (www.
classic-project.org).
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Abstract 

In this paper, four state-of-art probabilistic 
taggers i.e. TnT tagger, TreeTagger, RF tagger 
and SVM tool, are applied to the Urdu lan-
guage. For the purpose of the experiment, a 
syntactic tagset is proposed. A training corpus 
of 100,000 tokens is used to train the models. 
Using the lexicon extracted from the training 
corpus, SVM tool shows the best accuracy of 
94.15%. After providing a separate lexicon of 
70,568 types, SVM tool again shows the best 
accuracy of 95.66%. 

1 Urdu Language 

Urdu belongs to the Indo-Aryan language family. 
It is the national language of Pakistan and is one 
of the official languages of India. The majority 
of the speakers of Urdu spread over the area of 
South Asia, South Africa and the United King-
dom1. 

Urdu is a free order language with general 
word order SOV. It shares its phonological, mor-
phological and syntactic structures with Hindi. 
Some linguists considered them as two different 
dialects of one language (Bhatia and Koul, 
2000). However, Urdu is written in Perso-arabic 
script and inherits most of the vocabulary from 
Arabic and Persian. On the other hand, Hindi is 
written in Devanagari script and inherits vocabu-
lary from Sanskrit. 

Urdu is a morphologically rich language. 
Forms of the verb, as well as case, gender, and 
number are expressed by the morphology. Urdu 
represents case with a separate character after the 
head noun of the noun phrase. Due to their sepa-
rate occurrence and their place of occurrence, 
they are sometimes considered as postpositions. 
Considering them as case markers, Urdu has no-

                                                 
1 http://www.ethnologue.com/14/show_language.asp? 
code=URD 

minative, ergative, accusative, dative, instrumen-
tal, genitive and locative cases (Butt, 1995: pg 
10). The Urdu verb phrase contains a main verb, 
a light verb describing the aspect, and a tense 
verb describing the tense of the phrase (Hardie, 
2003; Hardie, 2003a). 

2 Urdu Tagset 

There are various questions that need to be ans-
wered during the design of a tagset. The granu-
larity of the tagset is the first problem in this re-
gard. A tagset may consist either of general parts 
of speech only or it may consist of additional 
morpho-syntactic categories such as number, 
gender and case. In order to facilitate the tagger 
training and to reduce the lexical and syntactic 
ambiguity, we decided to concentrate on the syn-
tactic categories of the language. Purely syntactic 
categories lead to a smaller number of tags which 
also improves the accuracy of manual tagging2 
(Marcus et al., 1993). 

Urdu is influenced from Arabic, and can 
be considered as having three main parts of 
speech, namely noun, verb and particle (Platts, 
1909; Javed, 1981; Haq, 1987). However, some 
grammarians proposed ten main parts of speech 
for Urdu (Schmidt, 1999). The work of Urdu 
grammar writers provides a full overview of all 
the features of the language. However, in the 
perspective of the tagset, their analysis is lacking 
the computational grounds. The semantic, mor-
phological and syntactic categories are mixed in 
their distribution of parts of speech. For example, 
Haq (1987) divides the common nouns into sit-
uational (smile, sadness, darkness), locative 
(park, office, morning, evening), instrumental 
(knife, sword) and collective nouns (army, data). 

In 2003, Hardie proposed the first com-
putational part of speech tagset for Urdu (Hardie, 

                                                 
2 A part of speech tagger for Indian languages, available at 
http://shiva.iiit.ac.in/SPSAL2007 /iiit_tagset_guidelines.pdf 
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2003a). It is a morpho-syntactic tagset based on 
the EAGLES guidelines. The tagset contains 350 
different tags with information about number, 
gender, case, etc. (van Halteren, 2005). The 
EAGLES guidelines are based on three levels, 
major word classes, recommended attributes and 
optional attributes. Major word classes include 
thirteen tags: noun, verb, adjective, pro-
noun/determiner, article, adverb, adposition, con-
junction, numeral, interjection, unassigned, resi-
dual and punctuation. The recommended 
attributes include number, gender, case, finite-
ness, voice, etc.3 In this paper, we will focus on 
purely syntactic distributions thus will not go 
into the details of the recommended attributes of 
the EAGLES guidelines. Considering the 
EAGLES guidelines and the tagset of Hardie in 
comparison with the general parts of speech of 
Urdu, there are no articles in Urdu. Due to the 
phrase level and semantic differences, pronoun 
and demonstrative are separate parts of speech in 
Urdu. In the Hardie tagset, the possessive pro-
nouns like ���� /mera/ (my), ����	
 /tumhara/ 
(your), ���	� /humara/ (our) are assigned to the 
category of possessive adjective. Most of the Ur-
du grammarians consider them as pronouns 
(Platts, 1909; Javed, 1981; Haq, 1987). However, 
all these possessive pronouns require a noun in 
their noun phrase, thus show a similar behavior 
as demonstratives. The locative and temporal 
adverbs (���
 /yahan/ (here), ���� /wahan/ (there), 
�� /ab/ (now), etc.) and, the locative and tempor-
al nouns (��� /subah/ (morning),  ���  /sham/ 
(evening),  ���  /gher/ (home)) appear in a very 
similar syntactic context. In order to keep the 
structure of pronoun and noun consistent, loca-
tive and temporal adverbs are treated as pro-
nouns. The tense and aspect of a verb in Urdu is 
represented by a sequence of auxiliaries. Consid-
er the example4: 

 
��  ���   ��  �
��   ���   ���  

Hai raha Ja kerta kam Jan 
Is  Doing  Kept  Work John 

John is kept on doing work 
 
“Table 1: The aspect of the verb �
�� /kerta/ 
(doing) is represented by two separate words �� 
/ja/ and ��� /raha/ and the last word of the sen-
tence �� /hai/ (is) shows the tense of the verb.” 

                                                 
3 The details on the EAGLES guidelines can be found at: 
http://www.ilc.cnr.it/EAGLES/browse.html 
4 Urdu is written in right to left direction. 

 
The above considerations lead to the following 
tagset design for Urdu. The general parts of 
speech are noun, pronoun, demonstrative, verb, 
adjective, adverb, conjunction, particle, number 
and punctuation. The further refinement of the 
tagset is based on syntactic properties. The mor-
phologically motivated features of the language 
are not encoded in the tagset. For example, an 
Urdu verb has 60 forms which are morphologi-
cally derived from its root form. All these forms 
are annotated with the same category i.e. verb. 

During manual tagging, some words are 
hard for the linguist to disambiguate reliably. In 
order to keep the training data consistent, such 
words are assigned a separate tag. For instance, 
the semantic marker �� /se/ gets a separate tag 
due to its various confusing usages such as  loca-
tive and instrumental (Platts, 1909). 

The tagset used in the experiments reported 
in this paper contains 42 tags including three 
special tags. Nouns are divided into noun (NN) 
and proper name (PN). Demonstratives are di-
vided into personal (PD), KAF (KD), adverbial 
(AD) and relative demonstratives (RD). All four 
categories of demonstratives are ambiguous with 
four categories of pronouns. Pronouns are di-
vided into six types i.e. personal (PP), reflexive 
(RP), relative (REP), adverbial (AP), KAF (KP) 
and adverbial KAF (AKP) pronouns. Based on 
phrase level differences, genitive reflexive (GR) 
and genitive (G) are kept separate from pro-
nouns. The verb phrase is divided into verb, as-
pectual auxiliaries and tense auxiliaries. Numer-
als are divided into cardinal (CA), ordinal (OR), 
fractional (FR) and multiplicative (MUL). Con-
junctions are divided into coordinating (CC) and 
subordinating (SC) conjunctions. All semantic 
markers except ��  /se/ are kept in one category. 
Adjective (ADJ), adverb (ADV), quantifier (Q), 
measuring unit (U), intensifier (I), interjection 
(INT), negation (NEG) and question words 
(QW) are handled as separate categories. Adjec-
tival particle (A), KER (KER), SE (SE) and 
WALA (WALA) are ambiguous entities which 
are annotated with separate tags. A complete list 
of the tags with the examples is given in appen-
dix A. The examples of the weird categories such 
as WALA, KAF pronoun, KAF demonstratives, 
etc. are given in appendix B. 

3 Tagging Methodologies 

The work on automatic part of speech tagging 
started in early 1960s. Klein and Simmons 
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(1963) rule based POS tagger can be considered 
as the first automatic tagging system. In the rule 
based approach, after assigning each word its 
potential tags, a list of hand written disambigua-
tion rules are used to reduce the number of tags 
to one (Klein and Simmons, 1963; Green and 
Rubin, 1971; Hindle, 1989; Chanod and Tapa-
nainen 1994). A rule based model has the disad-
vantage of requiring lots of linguistic efforts to 
write rules for the language. 

Data-driven approaches resolve this prob-
lem by automatically extracting the information 
from an already tagged corpus. Ambiguity be-
tween the tags is resolved by selecting the most 
likely tag for a word (Bahl and Mercer, 1976; 
Church, 1988; Brill, 1992). Brill’s transformation 
based tagger uses lexical rules to assign each 
word the most frequent tag and then applies con-
textual rules over and over again to get a high 
accuracy. However, Brill’s tagger requires train-
ing on a large number of rules which reduces the 
efficiency of machine learning process. Statistic-
al approaches usually achieve an accuracy of 
96%-97% (Hardie, 2003: 295). However, statis-
tical taggers require a large training corpus to 
avoid data sparseness. The problem of low fre-
quencies can be resolved by applying different 
methods such as smoothing, decision trees, etc. 
In the next section, an overview of the statistical 
taggers is provided which are evaluated on the 
Urdu tagset. 

3.1 Probabilistic Disambiguation 

The Hidden Markov model is the most widely 
used method for statistical part of speech tag-
ging. Each tag is considered as a state. States are 
connected by transition probabilities which 
represent the cost of moving from one state to 
another. The probability of a word having a par-
ticular tag is called lexical probability. Both, the 
transitional and the lexical probabilities are used 
to select the tag of a particular word. 

As a standard HMM tagger, The TnT 
tagger is used for the experiments. The TnT tag-
ger is a trigram HMM tagger in which the transi-
tion probability depends on two preceding tags. 
The performance of the tagger was tested on 
NEGRA corpus and Penn Treebank corpus. The 
average accuracy of the tagger is 96% to 97% 
(Brants, 2000). 

The second order Markov model used by 
the TnT tagger requires large amounts of tagged 
data to get reasonable frequencies of POS tri-
grams. The TnT tagger smooths the probability 
with linear interpolation to handle the problem of 

data sparseness. The Tags of unknown words are 
predicted based on the word suffix. The longest 
ending string of an unknown word having one or 
more occurrences in the training corpus is consi-
dered as a suffix. The tag probabilities of a suffix 
are evaluated from all the words in the training 
corpus (Brants, 2000). 

In 1994, Schmid proposed a probabilistic 
part of speech tagger very similar to a HMM 
based tagger. The transition probabilities are cal-
culated by decision trees. The decision tree 
merges infrequent trigrams with similar contexts 
until the trigram frequencies are large enough to 
get reliable estimates of the transition probabili-
ties. The TreeTagger uses an unknown word 
POS guesser similar to that of the TnT tagger. 
The TreeTagger was trained on 2 million words 
of the Penn-Treebank corpus and was evaluated 
on 100,000 words. Its accuracy is compared 
against a trigram tagger built on the same data. 
The TreeTagger showed an accuracy of 96.06% 
(Schmid, 1994a). 

In 2004, Giménez and Màrquez pro-
posed a part of speech tagger (SVM tool) based 
on support vector machines and reported accura-
cy higher than all state-of-art taggers. The aim of 
the development was to have a simple, efficient, 
robust tagger with high accuracy. The support 
vector machine does a binary classification of the 
data. It constructs an N-dimensional hyperplane 
that separates the data into positive and negative 
classes. Each data element is considered as a 
vector. Those vectors which are close to the se-
parating hyperplane are called support vectors5.  

A support vector machine has to be 
trained for each tag. The complexity is controlled 
by introducing a lexicon extracted from the train-
ing data. Each word tag pair in the training cor-
pus is considered as a positive case for that tag 
class and all other tags in the lexicon are consi-
dered negative cases for that word. This feature 
avoids generating useless cases for the compari-
son of classes. 

The SVM tool was evaluated on the 
English Penn Treebank. Experiments were con-
ducted using both polynomial and linear kernels. 
When using n-gram features, the linear kernel 
showed a significant improvement in speed and 
accuracy. Unknown words are considered as the 
most ambiguous words by assigning them all 
open class POS tags. The disambiguation of un-
knowns uses features such as prefixes, suffixes, 

                                                 
5 Andrew Moore: 
http://www.autonlab.org/tutorials/svm.html 
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upper case, lower case, word length, etc. On the 
Penn Treebank corpus, SVM tool showed an ac-
curacy of 97.16% (Giménez and Màrquez, 
2004). 

In 2008, Schmid and Florian proposed a 
probabilistic POS tagger for fine grained tagsets. 
The basic idea is to consider POS tags as sets of 
attributes. The context probability of a tag is the 
product of the probabilities of its attributes. The 
probability of an attribute given the previous tags 
is estimated with a decision tree. The decision 
tree uses different context features for the predic-
tion of different attributes (Schmid and Laws, 
2008).  

The RF tagger is well suited for lan-
guages with a rich morphology and a large fine 
grained tagset. The RF tagger was evaluated on 
the German Tiger Treebank and Czech Academ-
ic corpus which contain 700 and 1200 POS tags, 
respectively. The RF tagger achieved a higher 
accuracy than TnT and SVMTool. 

Urdu is a morphologically rich language. 
Training a tagger on a large fine grained tagset 
requires a large training corpus. Therefore, the 
tagset which we are using for these experiments 
is only based on syntactic distributions. Howev-
er, it is always interesting to evaluate new dis-
ambiguation ideas like RF tagger on different 
languages. 

4 Experiments 

A corpus of approx 110,000 tokens was taken 
from a news corpus (www.jang.com.pk). In the 
filtering phase, diacritics were removed from the 
text and normalization was applied to keep the 
Unicode of the characters consistent. The prob-
lem of space insertion and space deletion was 
manually solved and space is defined as the word 
boundary. The data was randomly divided into 
two parts, 90% training corpus and 10% test cor-
pus. A part of the training set was also used as 
held out data to optimize the parameters of the 
taggers. The statistics of the training corpus and 
test corpus are shown in table 2 and table 3. The 
optimized parameters of the TreeTagger are con-
text size 2, with minimum information gain for 
decision tree 0.1 and information gain at leaf 
node 1.4. For TnT, a default trigram tagger is 
used with suffix length of 10, sparse data mode 4 
with lambda1 0.03 and lambda2 0.4. The RF 
tagger uses a context length of 4 with threshold 
of suffix tree pruning 1.5. The SVM tool is 
trained at right to left direction with model 4. 
Model 4 improves the detection of unknown 

words by artificially marking some known words 
as unknown words and then learning the model. 
 

 Training corpus Test corpus 
Tokens 100,000 9000 
Types 7514 1931 
Unknown 
Tokens 

-- 754 

Unknown 
Types 

-- 444 

“Table 2: Statistics of training and test data.” 
 
Tag Total Un-

known
Tag To-

tal 
Un-
known 

NN 2537 458 PN 459 101 
P 1216 0 AA 379 0 
VB 971 81 TA 285 0 
ADJ 510 68 ADV 158 21 

“Table 3: Eight most frequent tags in the test 
corpus.” 

In the first experiment, no external lexicon was 
provided. The types from the training corpus 
were used as the lexicon by the tagger. SVM tool 
showed the best accuracy for both known and 
unknown words. Table 4 shows the accuracies of 
all the taggers. The baseline result where each 
word is annotated with its most frequent tag, ir-
respective of the context, is 88.0%. 
 

TnT 
tagger 

TreeTagger RF tagger SVM 
tagger 

93.40% 93.02% 93.28% 94.15%
Known 

95.78% 95.60% 95.68% 96.15%
Unknown 

68.44% 65.92% 68.08% 73.21%

“Table 4: Accuracies of the taggers without us-
ing any external lexicon. SVM tool shows the 
best result for both known and unknown words.” 

The taggers show poor accuracy while detecting 
proper names. In most of the cases, proper name 
is confused with adjective and noun. This is be-
cause in Urdu, there is no clear distinction be-
tween noun and proper name. Also, the usage of 
an adjective as a proper name is a frequent phe-
nomenon in Urdu. The accuracies of open class 
tags are shown in table 5. The detailed discussion 
on the results of the taggers is done after provid-
ing an external lexicon to the taggers. 
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Tag TnT 

tagger 
Tree-
Tagger 

RF 
tagger 

SVM 
tagger 

VB 93.20% 91.86% 92.68% 94.23%
NN 94.12% 96.21% 93.89% 96.45%
PN 73.20% 66.88% 72.77% 68.62%
ADV 75.94% 72.78% 74.68% 72.15%
ADJ 85.67% 80.78% 86.5% 85.88%

“Table 5: Accuracies of open class tags without 
having an external lexicon” 

In the second stage of the experiment, a large 
lexicon consisting of 70,568 types was pro-
vided6. After adding the lexicon, there are 112 
unknown tokens and 81 unknown types in the 
test corpus7. SVM tool again showed the best 
accuracy of 95.66%. Table 6 shows the accuracy 
of the taggers. The results of open class words 
significantly improve due to the smaller number 
of unknown words in the test corpus. The total 
accuracy of open class tags and their accuracy on 
unknown words are given in table 7 and table 8 
respectively. 
 

TnT tag-
ger 

Tree-
Tagger 

RF tagger SVM 
tool 

94.91% 95.17% 95.26% 95.66% 
Known 

95.42% 95.65% 95.66% 96.11% 
Unknown 

56.25% 58.04% 64.60% 61.61% 

“Table 6: Accuracies of the taggers after adding 
the lexicon. SVM tool shows the best accuracy 
for known word disambiguation. RF tagger 
shows the best accuracy for unknown words.” 
 

Tag TnT 
tagger 

Tree-
Tagger 

RF 
tagger 

SVM 
tool 

VB 95.88% 95.88% 96.58% 96.80%
NN 94.64% 95.85% 94.79% 96.64%
PN 86.92% 79.73% 84.96% 81.70%
ADV 82.28% 79.11% 81.64% 81.01%
ADJ 91.59% 89.82% 92.37% 88.26%

“Table 7: Accuracies of open class tags after 
adding an external lexicon.” 
 
                                                 
6 Additional lexicon is taken from CRULP, Lahore, Paki-
stan (www.crulp.org). 
7 The lexicon was added by using the default settings pro-
vided by each tagger. No probability distribution informa-
tion was given with the lexicon. 

 
Tag TnT 

tagger 
Tree-
Tagger 

RF 
tagger 

SVM 
tool 

VB 28.57% 0.00% 42.86% 42.86%
NN 74.47% 95.74% 80.85% 80.85%
PN 68.18% 54.54% 63.63% 50.00%
ADV 8.33% 0.00% 8.33% 0.00% 
ADJ 30.00% 20.00% 70.00% 80.00%

“Table 8: Accuracies of open class tags on un-
known words. The number of unknown words 
with tag VB and ADJ are less than 10 in this ex-
periment.” 

The results of the taggers are analyzed by finding 
the most frequently confused pairs for all the 
taggers. It includes both the known and unknown 
words. Only those pairs are added in the table 
which have an occurrence of more than 10. Table 
9 shows the results. 
 
Confused 
pair 

TnT 
tagger

Tree-
Tagger 

RF 
tagger 

SVM 
tool 

NN ADJ 85 87 87 95 
NN PN 118 140 129 109 
NN ADV 12 15 13 15 
NN VB 14 17 12 12 
VB TA 12 0 0 0 
KER P 14 14 14 0 
ADV ADJ 11 14 13 11 
PD PP 26 26 30 14 

“Table 9: Most frequently confused tag pairs 
with total number of occurrences.” 

5 Discussion 

The output of table 9 can be analyzed in many 
ways e.g. ambiguous tags, unknown words, open 
class tags, close class tags, etc. In the close class 
tags, the most frequent errors are between de-
monstrative and pronoun, and between KER tag 
and semantic marker (P). The difference between 
demonstrative and pronoun is at the phrase level. 
Demonstratives are followed by a noun which 
belongs to the same noun phrase whereas pro-
nouns form a noun phrase by itself. Taggers ana-
lyze the language in a flat structure and are una-
ble to handle the phrase level differences. It is 
interesting to see that the SVM tool shows a 
clear improvement in detecting the phrase level 
differences over the other taggers. It might be 
due to the SVM tool ability to look not only at 
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the neighboring tags but at the neighboring 
words as well. 
 

(a) 
��  �����  ����  �!"  #�  
Gay gayain Gana log Voh 

TA  VB  NN  NN  PD  

Will sing Song people Those 

Those people will sing a song.  
)b( 

��  �����  ����  #�  
Gay Gayain gana Voh 
TA  VB  NN  PP  
Will  Sing  Song  those  

Those will sing a song. 

“Table 10: The word #� /voh/ is occurring both as 
pronoun and demonstrative. In both of the cases, 
it is followed by a noun. But looking at the 
phrases, demonstrative #� has the noun inside the 
noun phrase.” 

The second most frequent error among the closed 
class tags is the distinction between the KER tag 
�� /kay/ and the semantic marker �� /kay/. The 
KER tag always takes a verb before it and the 
semantic marker always takes a noun before it. 
The ambiguity arises when a verbal noun occurs. 
In the tagset, verbal nouns are handled as verb. 
Syntactically, verbal nouns occur at the place of 
a noun and can also take a semantic marker after 
them. This decreases the accuracy in two ways; 
the wrong disambiguation of KER tag and the 
wrong disambiguation of unknown verbal nouns. 
Due to the small amount of training data, un-
known words are frequent in the test corpus. 
Whenever an unknown word occurs at the place 
of a noun, the most probable tag for that word 
will be noun which is wrong in our case. Table 
11 shows an example of such a scenario. 
 

)a( 
$&' �� ���� ���

baad Kay kernay kam 
NN P VB NN 
after -- doing work 

After doing work 
)b( 

�� �� ��� 
kay ker kam 

KER VB NN 
-- Doing work 

(After) doing work 

“Table 11: (a) Verbal noun with semantic mark-
er, (b) syntactic structure of KER tag.”8 

All the taggers other than the SVM tool have 
difficulties to disambiguate between KER tags 
and semantic markers. 
 

)a( 
�* +��!< !� �!�!" $>	
���X
do khoraak Ko log zarorat-

mand 
VB NN P NN ADJ

give food To people needy 
Give food to the needy people 

(b) 
�* +��!< !� $>	
���X

do khoraak ko zaroratmand 
VB NN P NN 
give food To needy 

Give food to the needy 

“Table 12: (a) Occurrence of adjective with 
noun, (b) dropping of main noun from the noun 
phrase. In that case, adjective becomes the 
noun.” 

Coming to open class tags, the most frequent 
errors are between noun and the other open class 
tags in the noun phrase like proper noun, adjec-
tive and adverb. In Urdu, there is no clear dis-
tinction between noun and proper noun. The 
phenomenon of dropping of words is also fre-
quent in Urdu. If a noun in a noun phrase is 
dropped, the adjective becomes a noun in that 
phrase (see table 12). The ambiguity between 
noun and verb is due to verbal nouns as ex-
plained above (see table 11). 

6 Conclusion 

In this paper, probabilistic part of speech tagging 
technologies are tested on the Urdu language. 
The main goal of this work is to investigate 
whether general disambiguation techniques and 
standard POS taggers can be used for the tagging 
of Urdu. The results of the taggers clearly answer 
this question positively. With the small training 
corpus, all the taggers showed accuracies around 
95%. The SVM tool shows the best accuracy in 
                                                 
8 One possible solution to this problem could be to intro-
duce a separate tag for verbal nouns which will certainly 
remove the ambiguity between the KER tag and the seman-
tic marker and reduce the ambiguity between verb and 
noun. 
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disambiguating the known words and the RF 
tagger shows the best accuracy in detecting the 
tags of unknown words. 

Appendices 

Appendix A. Urdu part of speech tagset 
Following is the complete list of the tags of Ur-
du. There are some occurrences in which two 
Urdu words are mapped to the same translation 
of English. There are two reasons for that, ei-
ther the Urdu words have different case or there 
is no significant meaning difference between 
the two words which can be described by dif-
ferent English translations. 
 
Tag Example 

Personal demonstra-
tive (PD) 

Y� (we) Y
 Z (you) [\ Z 
(you9)]
 Z(this) #� Z 
(that)^� Z (that)   

Relative demonstra-
tive (RD) 

!� (that)`� Z(that) Z
�!�>�(that) 

Kaf demonstrative 
(KD) 

`� (whose){�!� Z 
(someone)  

Adverbial demonstr-
ative (AD) 

�� (now) |
 Z (then)  Z
�}*� (here) ���
 Z (here)   

Noun (NN) 

~��� (ship) `��~ Z (earth) 
���" Z (boy) ���� Z 

(above)�$�� Z (inside)  Z
��	� (with) ��� Z (like)   

Proper noun (PN) {>��� (Germany)  Z
������� (Pakistan)  

Personal pronoun 
(PP) 

��� (I)Y� Z (we) Y
 Z (you) Z
[\ (you) ]
 Z (he) #� Z 

(he) ^� Z (he)  
Reflexive pronoun 
(RP) 

*!< (myself) [\ Z 
(myself)   

Relative pronoun 
(REP) 

!�(that)`� Z(that) Z
�!�>�(that)  

Adverbial pronoun 
(AD)   

�� (now) |
 Z (then)  Z
�}*� (here) ���
 Z (here)   

Kaf pronoun (KP) �!� (who) {�!� Z 
(someone) `� Z Z (which)  

Adverbial kaf pro 
(AKP) 

�}$� (where) |� Z 
(when) ���� Z (how)   

Genitive reflexive 
(GR) �>�� (my)   

Genitives (G) ���� (my) ����	
 Z (your)  Z
���	� (our) ���
 Z (your)  

Verb (VB) �>��" (write) �
��� Z (eat)  Z
�
�� (go) ���� Z (do)  

                                                 
9 Polite form of you which is used while talking with the elders and 
with the strangers 

Aspectual auxiliary 
(AA) ]�� Z���� Z���10 

Tense auxiliary (TA) �� (is) ��� Z (are) ��
 Z 
(was) ��
 Z (were)  

Adjective (ADJ) 
Y"�� (cruel) ��!�'!< Z 

(beautiful) ���	�  Z 
(weak)   

Adverb (ADV) ��' (very) �
��� Z (very)  Z
��' (very)  

Quantifier (Q) 
��� (some) ��	
Z (all)  Z
�>
� (this much) �� Z 

(total)  

Cardinal (CA) �
� (one)�* Z (two) `�
 Z 
(three)  

Ordinal (OR) ��� (first) ����* Z 
(second) ��<\ Z (last)  

Fractional (FR) {���
!� (one fourth) Z
{��}�(two and a half)  

Multiplicative 
(MUL) 

�>� (times)�>�* Z (two 
times) 

Measuring unit (U) !��(kilo)  
Coordinating (CC) ���, (and) �
 (or)   
Subordinating (SC)   ]�,(that) ]��!�� (because)  
Intensifier (I) !
 Z{�' Z{�  
Adjectival particle �� (like)   
KER �� Z��  
Pre-title (PRT) ���� (Mr.)���� Z (Mr.)  
Post-title (POT) {� |��� Z (Mr.)  

Case marker (P)  Z�� Z �� Z {� Z !�  Z ��
�
 Z���  Z��  Z ��
 

SE (SE) ��  
WALA (WALA) �"�� Z{"�� Z���  
Negation (NEG) ]]� ���� Z[ (not/no) 

Interjection (INT) #��(hurrah)  , Z� �����
���� (Good)  

Question word 
(QW) ��� (what) �!�� Z (why)  

Sentence marker 
(SM) ‘.’, ‘?’ 

Phrase marker (PM) ‘,’ , ‘;’ 
DATE 2007, 1999 
Expression (Exp): Any word or symbol which 
is not handled in the tagset will be catered un-
der expression.  It can be mathematical sym-
bols, digits, etc.  

“Table 13: Tagset of Urdu” 

 

                                                 
10 They always occur with a verb and can not be translated stand-
alone. 
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Appendix B. Examples of WALA, Noun with 
locative behavior, KAF pronoun and KAF 
demonstrative and multiplicative. 

WALA ���: 
Attributive Demonstrative Occupation 

��� ��� ��� ]
 ��� }*�* 
Respectable This one Milk man 

   
Manner Possession Time 
��� ]���\  �!���� !�� ���  ���<� ��� ��� 

The one with the 
manner “slow” 

Flower with 
thorns 

Morning 
newspaper 

   
Place Doer -- 

�
!� ��� ���' ��� �>}�� -- 
Shoes which is 

bought from 
some other 

country 

The one whose 
study 

-- 

“Table 14: Examples of tag WALA” 

Noun with locative behavior: 
 

Adverb Noun 
���* {"�� ���� ��\ �� ����
Down shop Coming from 

downstairs 
  
Postposition Noun 
���� �� ��� ���� ���� 
Under the table Goes down 

“Table 15: Examples of noun with locative be-
havior 

Multiplicative: 
 

 �>�* �� �¡� #�)�>��*( ¢�� �£!� 

He is two times fatter than me. 

“Table 16: Example of Multiplicative 

KAF pronoun and KAF demonstrative: 
 

KAF pronoun 
!� �!�!" `� �\ ���� ��� ��¤" ¥  

Which people like mangoes? 
 

KAF Demonstrative 

!� `� �\ ���� ��� ��¤" ¥  
Which one like mangoes? 

 
Adverbial KAF pronoun 

#� �� ��� �}$� ¥  
Where did he go? 

“Table 17: Examples of KAF pronoun and KAF 
demonstrative 
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Abstract
We present several algorithms for assign-
ing heads in phrase structure trees, based
on different linguistic intuitions on the role
of heads in natural language syntax. Start-
ing point of our approach is the obser-
vation that a head-annotated treebank de-
fines a unique lexicalized tree substitution
grammar. This allows us to go back and
forth between the two representations, and
define objective functions for the unsu-
pervised learning of head assignments in
terms of features of the implicit lexical-
ized tree grammars. We evaluate algo-
rithms based on the match with gold stan-
dard head-annotations, and the compar-
ative parsing accuracy of the lexicalized
grammars they give rise to. On the first
task, we approach the accuracy of hand-
designed heuristics for English and inter-
annotation-standard agreement for Ger-
man. On the second task, the implied lex-
icalized grammars score 4% points higher
on parsing accuracy than lexicalized gram-
mars derived by commonly used heuris-
tics.

1 Introduction

The head of a phrasal constituent is a central
concept in most current grammatical theories and
many syntax-based NLP techniques. The term is
used to mark, for any nonterminal node in a syn-
tactic tree, the specific daughter node that fulfills
a special role; however, theories and applications
differ widely in what that special role is supposed
to be. In descriptive grammatical theories, the
role of the head can range from the determinant of
agreement or the locus of inflections, to the gover-
nor that selects the morphological form of its sis-
ter nodes or the constituent that is distributionally
equivalent to its parent (Corbett et al., 2006).

In computational linguistics, heads mainly
serve to select the lexical content on which the
probability of a production should depend (Char-
niak, 1997; Collins, 1999). With the increased
popularity of dependency parsing, head annota-
tions have also become a crucial level of syntac-
tic information for transforming constituency tree-
banks to dependency structures (Nivre et al., 2007)
or richer syntactic representations (e.g., Hocken-
maier and Steedman, 2007).

For the WSJ-section of the Penn Treebank, a set
of heuristic rules for assigning heads has emerged
from the work of (Magerman, 1995) and (Collins,
1999) that has been employed in a wide variety of
studies and proven extremely useful, even in rather
different applications from what the rules were
originally intended for. However, the rules are
specific to English and the treebank’s syntactic an-
notation, and do not offer much insights into how
headedness can be learned in principle or in prac-
tice. Moreover, the rules are heuristic and might
still leave room for improvement with respect to
recovering linguistic head assignment even on the
Penn WSJ corpus; in fact, we find that the head-
assignments according to the Magerman-Collins
rules correspond only in 85% of the cases to de-
pendencies such as annotated in PARC 700 De-
pendency Bank (see section 5).

Automatic methods for identifying heads are
therefore of interest, both for practical and more
fundamental linguistic reasons. In this paper we
investigate possible ways of finding heads based
on lexicalized tree structures that can be extracted
from an available treebank. The starting point
of our approach is the observation that a head-
annotated treebank (obeying the constraint that ev-
ery nonterminal node has exactly one daughter
marked as head) defines a unique lexicalized tree
substitution grammar (obeying the constraint that
every elementary tree has exactly one lexical an-
chor). This allows us to go back and forth between
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the two representations, and define objective func-
tions for the unsupervised learning of head assign-
ments in terms of features of the implicit Lexical-
ized Tree Substitution Grammars.

Using this grammar formalism (LTSGs) we will
investigate which objective functions we should
optimize for recovering heads. Should we try to
reduce uncertainty about the grammatical frames
that can be associated with a particular lexical
item? Or should we assume that linguistic head
assignments are based on the occurrence frequen-
cies of the productive units they imply?

We present two new algorithms for unsuper-
vised recovering of heads – entropy minimization
and a greedy technique we call “familiarity max-
imization” – that can be seen as ways to opera-
tionalize these last two linguistic intuitions. Both
algorithms are unsupervised, in the sense that they
are trained on data without head annotations, but
both take labeled phrase-structure trees as input.

Our work fits well with several recent ap-
proaches aimed at completely unsupervised learn-
ing of the key aspects of syntactic structure: lex-
ical categories (Schütze, 1993), phrase-structure
(Klein and Manning, 2002; Seginer, 2007),
phrasal categories (Borensztajn and Zuidema,
2007; Reichart and Rappoport, 2008) and depen-
dencies (Klein and Manning, 2004).

For the specific task addressed in this paper –
assigning heads in treebanks – we only know of
one earlier paper: Chiang and Bikel (2002). These
authors investigated a technique for identifying
heads in constituency trees based on maximiz-
ing likelihood, using EM, under a Tree Insertion
Grammar (TIG)model1. In this approach, headed-
ness in some sense becomes a state-split, allowing
for grammars that more closely match empirical
distributions over trees. The authors report some-
what disappointing results, however: the automat-
ically induced head-annotations do not lead to sig-
nificantly more accurate parsers than simple left-
most or rightmost head assignment schemes2.

In section 2 we define the grammar model we
will use. In section 3 we describe the head-
assignment algorithms. In section 4, 5 and 6 we

1The space over the possible head assignments that these
authors consider – essentially regular expressions over CFG
rules – is more restricted than in the current work where we
consider a larger “domain of locality”.

2However, the authors’ approach of using EM for induc-
ing latent information in treebanks has led to extremely ac-
curate constituency parsers, that neither make use of nor pro-
duce headedness information; see (Petrov et al., 2006)

then describe our evaluations of these algorithms.

2 Lexicalized Tree Grammars

In this section we define Lexicalised Tree Substi-
tution Grammars (LTSGs) and show how they can
be read off unambiguously from a head-annotated
treebank. LTSGs are best defined as a restriction
of the more general Probabilistic Tree Substitution
Grammars, which we describe first.

2.1 Tree Substitution Grammars

A tree substitution grammar (TSG) is a 4-tuple
〈Vn, Vt, S, T 〉 where Vn is the set of nonterminals;
Vt is the set of of terminals; S ∈ Vn is the start
symbol; and T is the set of elementary trees, hav-
ing root and internal nodes in Vn and leaf nodes in
Vn∪Vt. Two elementary trees α and β can be com-
bined by means of the substitution operation α ◦β
to produce a new tree, only if the root of β has the
same label of the leftmost nonterminal leaf of α.
The combined tree corresponds to α with the left-
most nonterminal leaf replaced with β. When the
tree resulting from a series of substitution opera-
tions is a complete parse tree, i.e. the root is the
start symbol and all leaf nodes are terminals, we
define the sequence of the elementary trees used
as a complete derivation.

A probabilistic TSG defines a probabilistic
space over the set of elementary trees: for every
τ ∈ T , P (τ) ∈ [0, 1] and

∑
τ ′:r(τ ′)=r(τ) P (τ ′) =

1, where r(τ) returns the root node of τ . Assum-
ing subsequent substitutions are stochastically in-
dependent, we define the probability of a deriva-
tion as the product of the probability of its elemen-
tary trees. If a derivation d consists of n elemen-
tary trees τ1 ◦ τ2 ◦ . . . ◦ τn, we have:

P (d) =
n∏
i=1

P (τi) (1)

Depending on the set T of elementary trees, we
might have different derivations producing the
same parse tree. For any given parse tree t, we
define δ(t) as the set of its derivations licensed by
the grammar. Since any derivation d ∈ δ(t) is a
possible way to construct the parse tree, we will
compute the probability of a parse tree as the sum
of the probabilities of its derivations:

P (t) =
∑
d∈δ(t)

∏
τ∈d

P (τ) (2)
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Lexicalized Tree Substitution Grammars are de-
fined as TSGs with the following contraint on the
set of elementary trees T : every τ in T must have
at least one terminal (the lexical anchor) among
its leaf nodes. In this paper, we are only con-
cerned with single-anchored LTSGs, in which all
elementary trees have exactly one lexical anchor.
Like TSGs, LTSGs have a weak generative ca-
pacity that is context-free; but whereas PTSGs are
both probabilistically and in terms of strong gen-
erative capacity richer than PCFGs (Bod, 1998),
LTSG are more restricted (Joshi and Schabes,
1991). This limits the usefulness of LTSGs for
modeling the full complexity of natural language
syntax; however, computationally, LTSGs have
many advantages over richer formalisms and for
the current purposes represent a useful compro-
mise between linguistic adequacy and computa-
tional complexity.

2.2 Extracting LTSGs from a head-annotated
corpus

In this section we will describe a method for as-
signing to each word token that occurs in the cor-
pus a unique elementary tree. This method de-
pends on the annotation of heads in the treebank,
such as for instance provided for the Penn Tree-
bank by the Magerman-Collins head-percolation
rules. We adopt the same constraint as used in this
scheme, that each nonterminal node in every parse
tree must have exactly one of its children anno-
tated as head. Our method is similar to (Chiang,
2000), but is even simpler in ignoring the distinc-
tion between arguments and adjuncts (and thus the
sister-adjunction operation). Figure 1 shows an
example parse tree enriched with head-annotation:
the suffix -H indicates that the specific node is the
head of the production above it.

S

NP

NNP

Ms.

NNP-H

Haag

VP-H

V-H

plays

NP

NNP-H

Elianti

Figure 1: Parse tree of the sentence “Ms. Haag
plays Elianti” annotated with head markers.

Once a parse tree is annotated with head mark-
ers in such a manner, we will be able to extract
for every leaf its spine. Starting from each lexical
production we need to move upwards towards the
root on a path of head-marked nodes until we find
the first internal node which is not marked as head
or until we reach the root of the tree. In the ex-
ample above, the verb of the sentence “plays” is
connected through head-marked nodes to the root
of the tree. In this way we can extract the 4 spines
from the parse tree in figure 1, as shown in fig-
ure 2.

NNP

Ms.

NP

NNP-H

Haag

S-H

VP-H

V-H

plays

NP

NNP-H

Elianti

Figure 2: The lexical spines of the tree in fig. 1.

It is easy to show that this procedure yields a
unique spine for each of its leaves, when applied
to a parse tree where all nonterminals have a single
head-daughter and all terminals are generated by a
unary production. Having identified the spines, we
convert them to elementary trees, by completing
every internal node with the other daughter nodes
not on the spine. In this way we have defined a
way to obtain a derivation of any parse tree com-
posed of lexical elementary trees. The 4 elemen-
tary trees completed from the previous paths are in
figure 3 with the substitution sites marked with ⇓.

NNP

Ms.

NP

NNP⇓ NNP-H

Haag

S-H

NP⇓ VP-H

V-H

plays

NP⇓

NP

NNP-H

Elianti

Figure 3: The extracted elementary trees.

3 Head Assignment Algorithms

We investigate two novel approaches to automat-
ically assign head dependencies to a training cor-
pus where the heads are not annotated: entropy
minimization and familiarity maximization. The
baselines for our experiments will be given by the
Magerman and Collins scheme together with the
random, the leftmost daughter, and the rightmost
daughter-based assignments.
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3.1 Baselines
The Magerman-Collins scheme, and very similar
versions, are well-known and described in detail
elsewhere (Magerman, 1995; Collins, 1999; Ya-
mada and Matsumoto, 2003); here we just men-
tion that it is based on a number of heuristic rules
that only use the labels of nonterminal nodes and
the ordering of daughter nodes. For instance if the
root label of a parse tree is S, the head-percolation
scheme will choose to assign the head marker to
the first daughter from the left, labeled with TO.
If no such label is present, it will look for the first
IN. If no IN is found, it will look for the first VP,
and so on. We used the freely available software
“Treep” (Chiang and Bikel, 2002) to annotate the
Penn WSJ treebank with heads.

We consider three other baselines, that are ap-
plicable to other treebanks and other languages as
well: RANDOM, where, for every node in the tree-
bank, we choose a random daughter to be marked
as head; LEFT, where the leftmost daughter is
marked; and RIGHT, where the rightmost daughter
is marked.

3.2 Minimizing Entropy
In this section we will describe an entropy based
algorithm, which aims at learning the simplest
grammar fitting the data. Specifically, we take a
“supertagging” perspective (Bangalore and Joshi,
1999) and aim at reducing the uncertainty about
which elementary tree (supertag) to assign to a
given lexical item. We achieve this by minimizing
an objective function based on the general defini-
tion of entropy in information theory.

The entropy measure that we are going to de-
scribe is calculated from the bag of lexicalized el-
ementary trees T extracted from a given training
corpus of head annotated parse trees. We define
Tl as a discrete stochastic variable, taking as val-
ues the elements from the set of all the elementary
trees having l as lexical anchor {τl1 , τl2 , . . . , τln}.
Tl thus takes n possible values with specific prob-
abilities; its entropy is then defined as:

H(Tl) = −
n∑
i=1

p(τli) log2 p(τli) (3)

The most intuitive way to assign probabilities to
each elementary tree is considering its relative fre-
quency in T . If f(τ) is the frequency of the frag-
ment τ and f(l) is the total frequency of fragments
with l as anchor we will have:

p(τlj ) =
f(τlj )

f(lex(τlj ))
=

f(τlj )
n∑
i=1

f(τli))

(4)

We will then calculate the entropy H(T ) of our
bag of elementary trees by summing the entropy of
each single discrete stochastic variable Tl for each
choice of l:

H(T ) =
|L |∑
l=1

H(Tl) (5)

In order to minimize the entropy, we apply a
hill-climbing strategy. The algorithm starts from
an already annotated tree-bank (for instance using
the RANDOM annotator) and iteratively tries out
a random change in the annotation of each parse
tree. Only if the change reduces the entropy of the
entire grammar it is kept. These steps are repeated
until no further modification which could reduce
the entropy is possible. Since the entropy measure
is defined as the sum of the function p(τ) log2 p(τ)
of each fragment τ , we do not need to re-calculate
the entropy of the entire grammar, when modify-
ing the annotation of a single parse tree. In fact:

H(T ) = −
|L |∑
l=1

n∑
i=1

p(τli) log2 p(τli)

= −
|T |∑
j=1

p(τj) log2 p(τj)

(6)

For each input parse tree under consideration,
the algorithm selects a non-terminal node and tries
to change the head annotation from its current
head-daughter to a different one. As an example,
considering the parse tree of figure 1 and the inter-
nal node NP (the leftmost one), we try to annotate
its leftmost daughter as the new head. When con-
sidering the changes that this modification brings
on the set of the elementary trees T , we understand
that there are only 4 elementary trees affected, as
shown in figure 4.

After making the change in the head annotation,
we just need to decrease the frequencies of the old
trees by one unit, and increase the ones of the new
trees by one unit. The change in the entropy of our
grammar can therefore be computed by calculat-
ing the change in the partial entropy of these four
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NP

NNP NNP

Haag

NNP

Ms.

NP

NNP

Ms.

NNP

NNP

Haag

τh τd τ ′h τ ′d

Figure 4: Lexical trees considered in the EN-
TROPY algorithm when changing the head ass-
ingnment from the second NNP to the first NNP
of the leftmost NP node of figure 1. τh is the old
head tree; τd the old dependent tree; τ ′d the new
dependent tree; τ ′h the new head tree.

elementary trees before and after the change. If
such change results in a lower entropy of the gram-
mar, the new annotation is kept, otherwise we go
back to the previous annotation. Although there is
no guarantee our algorithm finds the global min-
imum, it is very efficient and succeeds in drasti-
cally minimize the entropy from a random anno-
tated corpus.

3.3 Maximizing Familiarity
The main intuition behind our second method is
that we like to assign heads to a tree t in such
a way that the elementary trees that we can ex-
tract from t are frequently observed in other trees
as well. That is, we like to use elementary trees
which are general enough to occur in many possi-
ble constructions.

We start with building the bag of all one-anchor
lexicalized elementary trees from the training cor-
pus, consistent with any annotation of the heads.
This operation is reminiscent of the extraction of
all subtrees in Data-Oriented Parsing (Bod, 1998).
Fortunately, and unlike DOP, the number of possi-
ble lexicalised elementary trees is not exponential
in sentence length n, but polynomial: it is always
smaller than n2 if the tree is binary branching.

Next, for each node in the treebank, we need
to select a specific lexical anchor, among the ones
it dominates, and annotate the nodes in the spine
with head annotations. Our algorithm selects the
lexical anchor which maximizes the frequency of
the implied elementary tree in the bag of elemen-
tary trees. In figure 5, algorithm 1 (right) gives the
pseudo-code for the algorithm, and the tree (left)
shows an example of its usage.

3.4 Spine and POS-tag reductions
The two algorithms described in the previous two
sections are also evaluated when performing two

possible generalization operations on the elemen-
tary trees, which can be applied both alone or in
combination:

• in the spine reduction, lexicalized trees are
transformed to their respective spines. This
allows to merge elementary trees that are
slightly differing in argument structures.
• in the POStag reduction, every lexical item

of every elementary tree is replaced by its
POStag category. This allows for merging el-
ementary trees with the same internal struc-
ture but differing in lexical production.

4 Implementation details

4.1 Using CFGs for TSG parsing

When evaluating parsing accuracy of a given
LTSG, we use a CKY PCFG parser. We will
briefly describe how to set up an LTSG parser us-
ing the CFG formalism. Every elementary tree
in the LTSG should be treated by our parser as
a unique block which cannot be further decom-
posed. But to feed it to a CFG-parser, we need
to break it down into trees of depth 1. In order to
keep the integrity of every elementary tree we will
assign to its internal node a unique label. We will
achieve this by adding “@i” to each i-th internal
node encountered in T .

Finally, we read off a PCFG from the elemen-
tary trees, assigning to each PCFG rule a weight
proportional to the weight of the elementary tree it
is extracted from. In this way the PCFG is equiv-
alent to the original LTSG: it will produce exactly
the same derivation trees with the same probabil-
ities, although we would have to sum over (expo-
nentially) many derivations to obtain the correct
probabilities of a parse tree (derived tree). We ap-
proximate parse probability by computing the n-
best derivations and summing over the ones that
yield the same parse tree (by removing the “@i”-
labels). We then take the parse tree with highest
probability as best parse of the input sentence.

4.2 Unknown words and smoothing

We use a simple strategy to deal with unknown
words occurring in the test set. We replace all the
words in the training corpus occurring once, and
all the unknown words in the test set, with a spe-
cial *UNKNOWN* tag. Moreover we replace all
the numbers in the training and test set with a spe-
cial *NUMBER* tag.
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Algorithm 1: MaximizeFamiliarity(N)

Input: a non-terminal node N of a parsetree.
begin
L = null; MAX = −1;
foreach leaf l underN do
τN

l = lex. tree rooted in N and anchored in l;
F = frequency of τN

l ;
if F > MAX then
L = l; MAX = F ;

Mark all nodes in the path from N to L with heads;
foreach substitution siteNi of τN

L do
MaximizeFamiliarity(Ni);

end

Figure 5: Left: example of a parse tree in an instantiation of the “Familiarity” algorithm. Each arrow,
connecting a word to an internal node, represents the elementary tree anchored in that word and rooted
in that internal node. Numbers in parentheses give the frequencies of these trees in the bag of subtrees
collected from WSJ20. The number below each leaf gives the total frequency of the elementary trees
anchored in that lexical item. Right: pseudo-code of the “Familiarity” algorithm.

Even with unknown words treated in this way,
the lexicalized elementary trees that are extracted
from the training data are often too specific to
parse all sentences in the test set. A simple strat-
egy to ensure full coverage is to smooth with the
treebank PCFG. Specifically, we add to our gram-
mars all CFG rules that can be extracted from the
training corpus and give them a small weight pro-
portional to their frequency3. This in general will
ensure coverage, i.e. that all the sentences in the
test set can be successfully parsed, but still priori-
tizing lexicalized trees over CFG rules4.

4.3 Corpora

The evaluations of the different models were car-
ried out on the Penn Wall Street Journal corpus
(Marcus et al., 1993) for English, and the Tiger
treebank (Brants et al., 2002) for German. As gold
standard head annotations corpora, we used the
Parc 700 Dependency Bank (King et al., 2003) and
the Tiger Dependency Bank (Forst et al., 2004),
which contain independent reannotations of ex-
tracts of the WSJ and Tiger treebanks.

5 Results

We evaluate the head annotations our algorithms
find in two ways. First, we compare the head
annotations to gold standard manual annotations

3In our implementation, each CFG rule frequency is di-
vided by a factor 100.

4In this paper, we prefer these simple heuristics over more
elaborate techniques, as our goal is to compare the merits of
the different head-assignment algorithms.

of heads. Second, we evaluate constituency pars-
ing performance using an LTSG parser (trained
on the various LTSGs), and a state-of-the-art
parser (Bikel, 2004).

5.1 Gold standard head annotations
Table 1 reports the performance of different al-
gorithms against gold standard head annotations
of the WSJ and the Tiger treebank. These an-
notations were obtained by converting the depen-
dency structures of the PARC corpus (700 sen-
tences from section 23) and the Tiger Dependency
Bank (2000 sentences), into head annotations5.
Since the algorithm doesn’t guarantee that the re-
covered head annotations always follow the one-
head-per-node constraint, when evaluating the ac-
curacy of head annotations of different algorithms,
we exclude the cases in which in the gold cor-
pus no head or multiple heads are assigned to the
daughters of an internal node6, as well as cases in
which an internal node has a single daughter.

In the evaluation against gold standard de-
pendencies for the PARC and Tiger dependency
banks, we find that the FAMILIARITY algorithm
when run with POStags and Spine conversion ob-
tains around 74% recall for English and 69% for
German. The different scores of the RANDOM as-
signment for the two languages can be explained

5This procedure is not reported here for reasons of space,
but it is available for other researchers (together with the ex-
tracted head assignments) at http://staff.science.
uva.nl/˜fsangati.

6After the conversion, the percentage of incorrect heads
in PARC 700 is around 9%; in Tiger DB it is around 43%.
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by their different branching factors: trees in the
German treebank are typically more flat than those
in the English WSJ corpus. However, note that
other settings of our two annotation algorithms do
not always obtain better results than random.

When focusing on the Tiger results, we ob-
serve that the RIGHT head assignment recall is
much better than the LEFT one. This result is in
line with a classification of German as a predomi-
nantly head-final language (in contrast to English).
More surprisingly, we find a relatively low recall
of the head annotation in the Tiger treebank, when
compared to a gold standard of dependencies for
the same sentences as given by the Tiger depen-
dency bank. Detailed analysis of the differences
in head assigments between the two approaches
is left for future work; for now, we note that our
best performing algorithm approaches the inter-
annotation-scheme agreement within only 10 per-
centage points7.

5.2 Constituency Parsing results

Table 2 reports the parsing performances of our
LTSG parser on different LTSGs extracted from
the WSJ treebank, using our two heuristics to-
gether with the 4 baseline strategies (plus the re-
sult of a standard treebank PCFG). The parsing re-
sults are computed on WSJ20 (WSJ sentences up
to length 20), using sections 02-21 for training and
section 22 for testing.

We find that all but one of the head-assignment
algorithms lead to LTSGs that without any fine-
tuning perform better than the treebank PCFG. On
this metric, our best performing algorithm scores
4 percentage points higher than the Magerman-
Collins annotation scheme (a 19% error reduc-
tion). The poor results with the RIGHT assign-
ment, in contrast with the good results with the
LEFT baseline (performing even better than the
Magerman-Collins assignments), are in line with
the linguistic tradition of listing English as a pre-
dominantly head-initial language. A surprising
result is that the RANDOM-assignment gives the

7We have also used the various head-assignments to con-
vert the treebank trees to dependency structures, and used
these in turn to train a dependency parser (Nivre et al., 2005).
Results from these experiments confirm the ordering of the
various unsupervised head-assignment algorithms. Our best
results, with the FAMILIARITY algorithm, give us an Unla-
beled Attachment Score (UAS) of slightly over 50% against
a gold standard obtained by applying the Collins-Magerman
rules to the test set. This is much higher than the three base-
lines, but still considerably worse than results based on su-
pervised head-assignments.

best performing LTSG among the baselines. Note,
however, that this strategy leads to much wield-
ier grammars; with many more elementary trees
than for instance the left-head assignment, the
RANDOM strategy is apparently better equipped
to parse novel sentences. Both the FAMILIAR-
ITY and the ENTROPY strategy are at the level of
the random-head assignment, but do in fact lead to
much more compact grammars.

We have also used the same head-enriched tree-
bank as input to a state-of-the-art constituency
parser8 (Bikel, 2004), using the same training and
test set. Results, shown in table 3, confirm that
the differences in parsing success due to differ-
ent head-assignments are relatively minor, and that
even RANDOM performs well. Surprisingly, our
best FAMILIARITY algorithm performs as well as
the Collins-Magerman scheme.

LFS UFS |T|
PCFG 78.23 82.12 -
RANDOM 82.70 85.54 64k
LEFT 80.05 83.21 46k
Magerman-Collins 79.01 82.67 54k
RIGHT 73.04 77.90 49k
FAMILIARITY 84.44 87.22 42k
ENTROPY-POStags 82.81 85.80 64k
FAMILIARITY-Spine 82.67 85.35 47k
ENTROPY-POStags-Spine 82.64 85.55 64k

Table 2: Parsing accuracy on WSJ20 of the LTSGs
extracted from various head assignments, when
computing the most probable derivations for ev-
ery sentence in the test set. The Labeled F-Score
(LFS) and unlabeled F-Score (UFS) results are re-
ported. The final column gives the total number of
extracted elementary trees (in thousands).

LFS UFS
Magerman-Collins 86.20 88.35
RANDOM 84.58 86.97
RIGHT 81.62 84.41
LEFT 81.13 83.95
FAMILIARITY-POStags 86.27 88.32
FAMILIARITY-POStags-Spine 85.45 87.71
FAMILIARITY-Spine 84.41 86.83
FAMILIARITY 84.28 86.53

Table 3: Evaluation on WSJ20 of various head as-
signments on Bikel’s parser.

8Although we had to change a small part of the code,
since the parser was not able to extract heads from an en-
riched treebank, but it was only compatible with rule-based
assignments. For this reason, results are reported only as a
base of comparison.
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Gold = PARC 700 % correct
Magerman-Collins 84.51
LEFT 47.63
RANDOM 43.96
RIGHT 40.70
FAMILIARITY-POStags-Spine 74.05
FAMILIARITY-POStags 51.10
ENTROPY-POStags-Spine 43.23
FAMILIARITY-Spine 39.68
FAMILIARITY 37.40

Gold = Tiger DB % correct
Tiger TB Head Assignment† 77.39
RIGHT 52.59
RANDOM 38.66
LEFT 18.64
FAMILIARITY-POStags-Spine 68.88
FAMILIARITY-POStags 41.74
ENTROPY-POStags-Spine 37.99
FAMILIARITY 26.08
FAMILIARITY-Spine 22.21

Table 1: Percentage of correct head assignments against gold standard in Penn WSJ and Tiger.
† The Tiger treebank already comes with built-in head labels, but not for all categories. In this case the
score is computed only for the internal nodes that conform to the one head per node constraint.

6 Conclusions

In this paper we have described an empirical inves-
tigation into possible ways of enriching corpora
with head information, based on different linguis-
tic intuitions about the role of heads in natural lan-
guage syntax. We have described two novel algo-
rithms, based on entropy minimization and famil-
iarity maximization, and several variants of these
algorithms including POS-tag and spine reduction.

Evaluation of head assignments is difficult, as
no widely agreed upon gold standard annotations
exist. This is illustrated by the disparities between
the (widely used) Magerman-Collins scheme and
the Tiger-corpus head annotations on the one
hand, and the “gold standard” dependencies ac-
cording to the corresponding Dependency Banks
on the other. We have therefore not only evalu-
ated our algorithms against such gold standards,
but also tested the parsing accuracies of the im-
plicit lexicalized grammars (using three different
parsers). Although the ordering of the algorithms
on performance on these various evaluations is dif-
ferent, we find that the best performing strategies
in all cases and for two different languages are
with variants of the “familiarity” algorithm.

Interestingly, we find that the parsing results are
consistently better for the algorithms that keep the
full lexicalized elementary trees, whereas the best
matches with gold standard annotations are ob-
tained by versions that apply the POStag and spine
reductions. Given the uncertainty about the gold
standards, the possibility remains that this reflects
biases towards the most general headedness-rules
in the annotation practice rather than a linguisti-
cally real phenomenon.

Unsupervised head assignment algorithms can
be used for the many applications in NLP where

information on headedness is needed to convert
constituency trees into dependency trees, or to
extract head-lexicalised grammars from a con-
stituency treebank. Of course, it remains to be
seen which algorithm performs best in any of these
specific applications. Nevertheless, we conclude
that among currently available approaches, i.e.,
our two algorithms and the EM-based approach of
(Chiang and Bikel, 2002), “familiarity maximiza-
tion” is the most promising approach for automatic
assignments of heads in treebanks.

From a linguistic point of view, our work can
be seen as investigating ways in which distribu-
tional information can be used to determine head-
edness in phrase-structure trees. We have shown
that lexicalized tree grammars provide a promis-
ing methodology for linking alternative head as-
signments to alternative dependency structures
(needed for deeper grammatical structure, includ-
ing e.g., argument structure), as well as to alterna-
tive derivations of the same sentences (i.e. the set
of lexicalized elementary trees need to derive the
given parse tree). In future work, we aim to extend
these results by moving to more expressive gram-
matical formalisms (e.g., tree adjoining grammar)
and by distinguishing adjuncts from arguments.
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Abstract

We present a general model and concep-
tual framework for specifying architec-
tures for incremental processing in dia-
logue systems, in particular with respect
to the topology of the network of modules
that make up the system, the way informa-
tion flows through this network, how in-
formation increments are ‘packaged’, and
how these increments are processed by the
modules. This model enables the precise
specification of incremental systems and
hence facilitates detailed comparisons be-
tween systems, as well as giving guidance
on designing new systems.

1 Introduction

Dialogue processing is, by its very nature,incre-
mental. No dialogue agent (artificial or natural)
processes whole dialogues, if only for the simple
reason that dialogues arecreatedincrementally, by
participants taking turns. At this level, most cur-
rent implemented dialogue systems are incremen-
tal: they process user utterances as a whole and
produce their response utterances as a whole.

Incremental processing, as the term is com-
monly used, means more than this, however,
namely that processing starts before the input is
complete (e.g., (Kilger and Finkler, 1995)). Incre-
mental systems hence are those where “Each pro-
cessing component will be triggered into activity
by a minimal amount of its characteristic input”
(Levelt, 1989). If we assume that the character-
istic input of a dialogue system is the utterance
(see (Traum and Heeman, 1997) for an attempt to
define this unit), we would expect an incremental
system to work on units smaller than utterances.

Our aim in the work presented here is to de-
scribe and give names to the options available to

∗The work reported here was done while the second au-
thor was at the University of Potsdam.

designers of incremental systems. We define some
abstract data types, some abstract methods that
are applicable to them, and a range of possible
constraints on processing modules. The notions
introduced here allow the (abstract) specification
of a wide range of different systems, from non-
incremental pipelines to fully incremental, asyn-
chronous, parallel, predictive systems, thus mak-
ing it possible to be explicit about similarities and
differences between systems. We believe that this
will be of great use in the future development of
such systems, in that it makes clear the choices
and trade-offs one can make. While we sketch our
work on one such system, our main focus here
is on the conceptual framework. What we are
not doing here is to argue for one particular ’best
architecture’—what this is depends on the particu-
lar aims of an implementation/model and on more
low-level technical considerations (e.g., availabil-
ity of processing modules).1

In the next section, we give some examples of
differences in system architectures that we want to
capture, with respect to the topology of the net-
work of modules that make up the system, the
way information flows through this network and
how the modules process information, in partic-
ular how they deal with incrementality. In Sec-
tion 3, we present the abstract model that under-
lies the system specifications, of which we give an
example in Section 4. We close with a brief dis-
cussion of related work.

2 Motivating Examples

Figure 1 shows three examples ofmodule net-
works, representations of systems in terms of their
component modules and the connections between
them. Modules are represented by boxes, and con-
nections by arrows indicating the path and the di-

1As we are also not trying toproveproperties of the spec-
ified systems here, the formalisations we give are not sup-
ported by a formal semantics here.
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rection of information flow. Arrows not coming
from or going to modules represent the global in-
put(s) and output(s) to and from the system.

Figure 1: Module Network Topologies

One of our aims here is to facilitate exact and
concise description of the differences between
module networks such as in the example. Infor-
mally, the network on the left can be described as
a simple pipeline with no parallel paths, the one in
the middle as a pipeline enhanced with a parallel
path, and the one on the right as a star-architecture;
we want to be able to describe exactly the con-
straints that define each type of network.

A second desideratum is to be able to specify
how information flows in the system and between
the modules, again in an abstract way, without
saying much about the information itself (as the
nature of the information depends on details of
the actual modules). The directed edges in Fig-
ure 1 indicate the direction of information flow
(i.e., whose output is whose input); as an addi-
tional element, we can visualiseparallel informa-
tion streams between modules as in Figure 2 (left),
where multiple hypotheses about the same input
increments are passed on. (This isn’t meant to
imply that there are three actual communications
channels active. As described below, we will en-
code the parallelism directly on the increments.)

One way such parallelism may occur in an in-
cremental dialogue system is illustrated in Fig-
ure 2 (right), where for some stretches of an input
signal (a sound wave), alternative hypotheses are
entertained (note that the boxes here donot repre-
sent modules, but rather bits of incremental infor-
mation). We can view these alternative hypothe-

Figure 2: Parallel Information Streams (left) and
Alternative Hypotheses (right)

Figure 3: Incremental Input mapped to (less) in-
cremental output

Figure 4: Example of Hypothesis Revision

ses about the same original signal as being paral-
lel to each other (with respect to the input they are
grounded in).

We also want to be able to specify the ways in-
cremental bits of input (“minimal amounts of char-
acteristic input”) can relate to incremental bits of
output. Figure 3 shows one possible configuration,
where over time incremental bits of input (shown
in the left column) accumulate before one bit of
output (in the right column) is produced. (As for
example in a parser that waits until it can com-
pute a major phrase out of the words that are its
input.) Describing the range of possible module
behaviours with respect to such input/output rela-
tions is another important element of the abstract
model presented here.

It is in the nature of incremental processing,
where output is generated on the basis of incom-
plete input, that such output may have to be re-
vised once more information becomes available.
Figure 4 illustrates such a case. At time-stept1,
the available frames of acoustic features lead the
processor, an automatic speech recogniser, to hy-
pothesize that the word “four” has been spoken.
This hypothesis is passed on as output. However,
at time-pointt2, as additional acoustic frames have
come in, it becomes clear that “forty” is a bet-
ter hypothesis about the previous frames together
with the new ones. It is now not enough to just
output the new hypothesis: it is possible that later
modules have already started to work with the hy-
pothesis “four”, so the changed status of this hy-
pothesis has to be communicated as well. This is
shown at time-stept3. Defining such operations
and the conditions under which they are necessary
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is the final aim of our model.

3 The Model

3.1 Overview

We model a dialogue processing system in an ab-
stract way as a collection of connected processing
modules, where information is passed between the
modules along these connections. The third com-
ponent beside the modules and their connections is
the basic unit of information that is communicated
between the modules, which we call theincremen-
tal unit (IU). We will only characterise those prop-
erties of IUs that are needed for our purpose of
specifying different system types and basic oper-
ations needed for incremental processing; we will
not say anything about the actual, module specific
payloadof these units.

The processing module itself is modelled as
consisting of aLeft Buffer (LB), the Processor
proper, and aRight Buffer (RB). When talking
about operations of the Processor, we will some-
times useLeft Buffer-Incremental Unit(LB-IU)
for units in LB andRight Buffer-Incremental Unit
(RB-IU) for units in RB.

This setup is illustrated in Figure 4 above. IUs
in LB (here, acoustic frames as input to an ASR)
areconsumedby the processor (i.e., is processed),
which creates an internal result, in the case shown
here, this internal result ispostedas an RB-IU only
after a series of LB-IUs have accumulated. In our
descriptions below, we will abstract away from the
time processing takes and describe Processors as
relations between (sets of) LBs and RBs.

We begin our description of the model with the
specification of network topologies.

3.2 Network Topology

Connections between modules are expressed
throughconnectedness axiomswhich simply state
that IUs in one module’s right buffer are also in
another buffer’s left buffer. (Again, in an imple-
mented system communication between modules
will take time, but we abstract away from this
here.) This connection can also be partial or fil-
tered. For example,∀x(x ∈ RB1 ∧ NP (x) ↔
x ∈ LB2) expresses that all and only NPs in mod-
ule one’s right buffer appear in module two’s left
buffer. If desired, a given RB can be connected to
more than one LB, and more than one RB can feed
into the same LB (see the middle example in Fig-
ure 1). Together, the set of these axioms define the

network topology of a concrete system. Different
topology types can then be defined through con-
straints on module sets and their connections. I.e.,
a pipeline system is one in which it cannot hap-
pen that an IU is in more than one right buffer and
more than one left buffer.

Note that we are assuming token identity here,
and not for example copying of data struc-
tures. That is, we assume that it indeed is the
same IU that is in the left and right buffers
of connected modules. This allows a spe-
cial form of bi-directionality to be implemented,
namely one where processors are allowed to make
changes to IUs in their buffers, and where these
changes automatically percolate through the net-
work. This is different to and independent of
the bi-directionality that can be expressed through
connectedness axioms.

3.3 Incremental Units

So far, all we have said about IUs is that they are
holding a ‘minimal amount of characteristic input’
(or, of course, a minimal amount of characteris-
tic output, which is to be some other module’s in-
put). Communicating just these minimal informa-
tion bits is enough only for the simplest kind of
system that we consider, a pipeline with only a
single stream of information and no revision. If
more advanced features are desired, there needs to
be more structure to the IUs. In this section we de-
fine what we see as the most complete version of
IUs, which makes possible operations like hypoth-
esis revision, prediction, and parallel hypothesis
processing. (These operations will be explained in
the next section.) If in a particular system some of
these operations aren’t required, some of the struc-
ture on IUs can be simplified.

Informally, the representational desiderata are
as follows. First, we want to be able to repre-
sent relations between IUs produced by the same
processor. For example, in the output of an ASR,
two word-hypothesis IUs may stand in asucces-
sor relation, meaning that word 2 is what the ASR
takes to be the continuation of the utterance be-
gun with word 1. In a different situation, word 2
may be an alternative hypothesis about the same
stretch of signal as word 1, and here a different re-
lation would hold. The incremental outputs of a
parser may be related in yet another way, through
dominance: For example, a newly built IU3, rep-
resenting a VP, may want to express that it links
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via a dominance relation to IU1, a V, and IU2, an
NP, which were both posted earlier. What is com-
mon to all relations of this type is that they relate
IUs coming from the same processor(s); we will
in this case say that the IUs areon the same level.
Information about thesesame level linkswill be
useful for the consumers of IUs. For example, a
parsing module consuming ASR-output IUs will
need to do different things depending on whether
an incoming IU continues an utterance or forms an
alternative hypothesis to a string that was already
parsed.

The second relation between IUs that we want
to capture cuts across levels, by linking RB-IUs to
those LB-IUs that were used by the processor to
produce them. For this we will say that the RB-IU
is groundedin LB-IU(s). This relation then tracks
the flow of information through the modules; fol-
lowing its transitive closure one can go back from
the highest level IU, which is output by the sys-
tem, to the input IU or set of input IUs on which it
is ultimately grounded. The network spanned by
this relation will be useful in implementing the re-
vision process mentioned above when discussing
Figure 4, where the doubt about a hypothesis must
spread to all hypotheses grounded in it.

Apart from these relations, we want IUs to carry
three other types of information: a confidence
score representing the confidence its producer had
in it being accurate; a field recording whether revi-
sions of the IU are still to be expected or not; and
another field recording whether the IU has already
been processed by consumers, and if so, by whom.

Formally, we define IUs as tuplesIU =
〈I,L,G,T , C,S,P〉, where

• I is an identifier, which has to be unique for
each IU over the lifetime of a system. (That
is, at no point in the system’s life can there be
two or more IUs with the same ID.)

• L is thesame level link, holding a statement
about how, if at all, the given IU relates to
other IUs at the same level, that is, to IUs pro-
duced by the same processor. If an IU is not
linked to any other IU, this slot holds the spe-
cial value⊤.
The definition demands that the same level
links of all IUs belonging to the same larger
unit form a graph; the type of the graph will
depend on the purposes of the sending and
consuming module(s). For a one-best output
of an ASR it might be enough for the graph

to be a chain, whereas an n-best output might
be better represented as a tree (with all first
words linked to⊤) or even a lattice (as in
Figure 2 (right)); the output of a parser might
require trees (possibly underspecified).

• G is thegrounded infield, holding an ordered
list of IDs pointing to those IUs out of which
the current IU was built. For example, an IU
holding a (partial) parse might be grounded
in a set of word hypothesis IUs, and these in
turn might be grounded in sets of IUs holding
acoustic features. While thesame level link
always points to IUs on the same level, the
grounded inlink always points to IUs from
a previous level.2 The transitive closure of
this relation hence links system output IUs to
a set of system input IUs. For convenience,
we may define a predicatesupports(x,y)for
cases wherey is grounded inx; and hence
the closure of this relation links input-IUs to
the output that is (eventually) built on them.
This is also the hook for the mechanism that
realises the revision process described above
with Figure 4: if a module decides to re-
voke one of its hypotheses, it sets its confi-
dence value (see below) to 0; on noticing this
event, all consuming modules can then check
whether they have produced RB-IUs that link
to this LB-IU, and do the same for them. In
this way, information about revision will au-
tomatically percolate through the module net-
work.
Finally, an emptygrounded infield can also
be used to triggerprediction: if an RB-IU has
an emptygrounded infield, this can be under-
stood as a directive to the processor to find
evidence for this IU (i.e., to prove it), using
the information in its left buffer.

• T is the confidence(or trust) slot, through
which the generating processor can pass on
its confidence in its hypothesis. This then can
have an influence on decisions of the con-
suming processor. For example, if there are
parallel hypotheses of different quality (con-
fidence), a processor may decide to process

2The link to the previous level may be indirect. E.g.,
for an IU holding a phrase that is built out of previously
built phrases (and not words), this link may be expressed by
pointing to the same level link, meaning something like “I’m
grounded in whatever the IUs are grounded in that I link to
on the same level link, and also in the act of combination that
is expressed in that same level link”.
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(and produce output for) the best first.
A special value (e.g., 0, or -1) can be defined
to flag hypotheses that are being revoked by
a processor, as described above.

• C is thecommittedfield, holding a Boolean
value that indicates whether the producing
module has committed to the IU or not, that
is, whether it guarantees that it will never re-
voke the IU. See below for a discussion of
how such a decision may be made, and how
it travels through the module network.

• S is the seenfield. In this field consum-
ing processors can record whether they have
“looked at”—that is, attempted to process—
the IU. In the simplest case, the positive fact
can be represented simply by adding the pro-
cessor ID to the list; in more complicated
setups one may want to offer status infor-
mation like “is being processed by module
ID” or “no use has been found for IU by
module ID”. This allows processors both to
keep track of which LB-IUs they have al-
ready looked at (and hence, to more easily
identify new material that may have entered
their LB) and to recognise which of its RB-
IUs have been of use to later modules, infor-
mation which can then be used for example
to make decisions on which hypothesis to ex-
pand next.

• P finally is the actualpayload, the module-
specific unit of ‘characteristic input’, which
is what is processed by the processor in order
to produce RB-IUs.

It will also be useful later to talk about thecom-
pletenessof an IU (or of sets of IUs). This we de-
fine informally as its relation to (the type of) what
would count as amaximal input or output of the
module. For example, for an ASR module, such
maximally complete input may be the recording of
the whole utterance, for the parser maximal out-
put may be a parse of type sentence (as opposed
to one of type NP, for example).3 This allows us
to see non-incremental systems as a special case
of incremental systems, namely those with only
maximally complete IUs, which are always com-
mitted.

3This definition will only be used for abstractly classify-
ing modules. Practically, it is of course rarely possible to
know how complete or incomplete the already seen part of
an ongoing input is. Investigating how a dialogue system can
better predict completion of an utterance is in fact one of the
aims of the project in which this framework was developed.

3.4 Modules

3.4.1 Operations

We describe in this section operations that the pro-
cessors may perform on IUs. We leave open how
processors are triggered into action, we simply as-
sume that on receiving new LB-IUs or noticing
changes to LB or RB-IUs, they will eventually per-
form these operations. Again, we describe here the
complete set of operations; systems may differ in
which subset of the functions they implement.

purge LB-IUs that are revoked by their producer
(by having their confidence score set to the special
value) must be purged from the internal state of the
processor (so that they will not be used in future
updates) and all RB-IUs grounded in them must
be revoked as well.

Some reasons for revoking hypotheses have al-
ready been mentioned. For example, a speech
recogniser might decide that a previously output
word hypothesis is not valid anymore (i.e., is not
anymore among the n-best that are passed on). Or,
a parser might decide in the light of new evidence
that a certain structure it has built is a dead end,
and withdraw support for it. In all these cases,all
‘later’ hypotheses that build on this IU (i.e., all hy-
potheses that are in the transitive closure of this
IU’s supportrelation) must be purged. If all mod-
ules implement the purge operation, this revision
information will be guaranteed to travel through
the network.

update New LB-IUs are integrated into the in-
ternal state, and eventually new RB-IUs are built
based on them (not necessarily in the same fre-
quency as new LB-IUs are received; see Figure 3
above, and discussion below). The fields of the
new RB-IUs (e.g., thesame level linksand the
grounded inpointers) are filled appropriately. This
is in some sense the basic operation of a processor,
and must be implemented in all useful systems.

We can distinguish two implementation strate-
gies for dealing with updates: a) all state is thrown
away and results are computed again for the whole
input set. The result must then be compared with
the previous result to determine what the new out-
put increment is. b) The new information is in-
tegrated into internal state, and only the new out-
put increment is produced. For our purposes here,
we can abstract away from these differences and
assume that only actual increments are commu-
nicated. (Practically, it might be an advantage to
keep using an existing processor and just wrap it
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into a module that computes increments by differ-
ences.)

We can also distinguish between modules along
another dimension, namely based on which types
of updates are allowed. To do so, we must first
define the notion of a ‘right edge’ of a set of
IUs. This is easiest to explain for strings, where
the right edge simply is the end of the string, or
for a lattice, where it is the (set of) smallest ele-
ment(s). A similar notion may be defined for trees
as well (compare the ‘right frontier constraint’
of Polanyi (1988)). If now a processor only ex-
pects IUs that extend the right frontier, we can
follow Wirén (1992) in saying that it is onlyleft-
to-right incremental. Within what Wirén (1992)
calls fully incremental, we can make more dis-
tinctions, namely according to whether revisions
(as described above) and/orinsertionsare allowed.
The latter can easily be integrated into our frame-
work, by allowingsame-level linksto be changed
to fit new IUs into existing graphs.

Processors can takesupportsinformation into
account when deciding on their update order. A
processor might for example decide to first try to
use the new information (in its LB) to extend struc-
tures that have already proven useful to later mod-
ules (that is, that support new IUs). For example,
a parser might decide to follow an interpretation
path that is deemed more likely by a contextual
processing module (which has grounded hypothe-
ses in the partial path). This may result in better
use of resources—the downside of such a strategy
of course is that modules can be garden-pathed.4

Update may also work towards a goal. As men-
tioned above, putting ungrounded IUs in a mod-
ule’s RB can be understood as a request to the
module to try to find evidence for it. For exam-
ple, the dialogue manager might decide based on
the dialogue context that a certain type of dialogue
act is likely to follow. By requesting the dialogue
act recognition module to find evidence for this
hypothesis, it can direct processing resources to-
wards this task. (The dialogue recognition mod-
ule then can in turn decide on which evidence it
would like to see, and ask lower modules to prove
this. Ideally, this could filter down to the interface
module, the ASR, and guide its hypothesis form-
ing. Technically, something like this is probably
easier to realise by other means.)

4It depends on the goals behind building the model
whether this is considered a downside or desired behaviour.

We finally note that in certain setups it may be
necessary to consume different types of IUs in one
module. As explained above, we allow more than
one module to feed into another modules LB. An
example where something like this could be useful
is in the processing of multi-modal information,
where information about both words spoken and
gestures performed may be needed to compute an
interpretation.
commit There are three ways in which a proces-
sor may have to deal with commits. First, it can
decide for itself to commit RB-IUs. For example,
a parser may decide to commit to a previously built
structure if it failed to integrate into it a certain
number of new words, thus assuming that the pre-
vious structure is complete. Second, a processor
may notice that a previous module has committed
to IUs in its LB. This might be used by the proces-
sor to remove internal state kept for potential re-
visions. Eventually, this commitment of previous
modules might lead the processor to also commit
to its output, thus triggering a chain of commit-
ments.

Interestingly, it can also make sense to let com-
mits flow from right to left. For example, if the
system has committed to a certain interpretation
by making a publicly observable action (e.g., an
utterance, or a multi-modal action), this can be
represented as a commit on IUs. This information
would then travel down the processing network;
leading to the potential for a clash between a re-
voke message coming from the left and the com-
mit directive from the right. In such a case, where
the justification for an action is revoked when the
action has already been performed, self-correction
behaviours can be executed.5

3.4.2 Characterising Module Behaviour

It is also useful to be able to abstractly describe the
relation between LB-IUs and RB-IUs in a module
or a collection of modules. We do this here along
the dimensionsupdate frequency, connectedness
andcompleteness.

Update Frequency The first dimension we con-
sider here is that of how the update frequency of
LB-IUs relates to that of (connected) RB-IUs.

We write f:in=out for modules that guarantee
that every new LB-IU will lead to a new RB-IU

5In future work, we will explore in more detail if and
how through the implementation of a self-monitoring cycle
and commitsand revokesthe various types of dysfluencies
described for example by Levelt (1989) can be modelled.
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(that is grounded in the LB-IU). In such a setup,
the consuming module lags behind the sending
module only for exactly the time it needs to pro-
cess the input. Following Nivre (2004), we can
call thisstrict incrementality.

f:in≥out describes modules that potentially col-
lect a certain amount of LB-IUs before producing
an RB-IU based on them. This situation has been
depicted in Figure 3 above.

f:in≤out characterises modules that update RB
moreoften than their LB is updated. This could
happen in modules that produce endogenic infor-
mation like clock signals, or that produce contin-
uously improving hypotheses over the same input
(see below), or modules that ‘expand’ their input,
like a TTS that produces audio frames.

Connectedness We may also want to distin-
guish between modules that produce ‘island’ hy-
potheses that are, at least when initially posted, not
connected viasame level linksto previously out-
put IUs, and those that guarantee that this is not
the case. For example, to achieve anf:in=out be-
haviour, a parser may output hypotheses that are
not connected to previous hypotheses, in which
case we may call the hypotheses ‘unconnected’.
Conversely, to guarantee connectedness, a parsing
module might need to accumulate input, resulting
in an f:in≥out behaviour.6

Completeness Building on the notion of com-
pleteness of (sets of) IUs introduced above, we
can also characterise modules according to how
the completeness of LB and RB relates.

In a c:in=out-type module, the most complete
RB-IU (or set of RB-IUs) is only as complete as
the most complete (set of) LB-IU(s). That is, the
module does not speculate about completions, nor
does it lag behind. (This may technically be diffi-
cult to realise, and practically not very relevant.)

More interesting is the difference between the
following types: In ac:in≥out-type module, the
most complete RB-IU potentially lags behind the
most complete LB-IU. This will typically be the
case inf:in≥out modules. c:in≤out-type mod-
ules finally potentially produce output that ismore
complete than their input, i.e., theypredictcontin-
uations. An extreme case would be a module that
always predicts complete output, given partial in-
put. Such a module may be useful in cases where

6The notion ofconnectednessis adapted from Sturt and
Lombardo (2005), who provide evidence that the human
parser strives for connectedness.

modules have to be used later in the processing
chain that can only handle complete input (that is,
are non-incremental); we may call such a system
prefix-based predictive, semi-incremental.

With these categories in hand, we can make
further distinctions within what Dean and Boddy
(1988) callanytime algorithms. Such algorithms
are defined as a) producing output at any time,
which however b) improves in quality as the al-
gorithm is given more time. Incremental mod-
ules by definition implement a reduced form of
a): they may not produce an output at any
time, but they do produce output at more times
than non-incremental modules. This output then
also improves over time, fulfilling condition b),
since more input becomes available and either
the guesses the module made (if it is ac:out≥in
module) will improve or the completeness in
general increases (as more complete RB-IUs are
produced). Processing modules, however, can
also be anytime algorithms in a more restricted
sense, namely if they continuously produce new
and improved output even for a constant set of
LB-IUs, i.e. without changes on the input side.
(Which would bring them towards thef:out≥in be-
haviour.)

3.5 System Specification

Combining all these elements, we can finally de-
fine a system specification as the following:

• A list of modules that are part of the system.
• For each of those a description in terms

of which operations from Section 3.4.1 the
module implements, and a characterisation of
its behaviour in the terms of Section 3.4.2.

• A set of axioms describing the connections
between module buffers (and hence the net-
work topology), as explained in Section 3.2.

• Specifications of the format of the IUs that
are produced by each module, in terms of the
definition of slots in Section 3.3.

4 Example Specification

We have built a fully incremental dialogue system,
called NUMBERS (for more details see Skantze
and Schlangen (2009)), that can engage in dia-
logues in a simple domain, number dictation. The
system can not only be described in the terms ex-
plained here, but it also directly instantiates some
of the data types described here.

716



Figure 5: The NUMBERS System Architecture
(CA = communicative act)

The module network topology of the system is
shown in Figure 5. This is pretty much a stan-
dard dialogue system layout, with the exception
that prosodic analysis is done in the ASR and that
dialogue management is divided into a discourse
modelling module and an action manager. As can
be seen in the figure, there is also a self-monitoring
feedback loop—the system’s actions are sent from
the TTS to the discourse modeller. The system
has two modules that interface with the environ-
ment (i.e., are system boundaries): the ASR and
the TTS.

A single hypothesis chain connects the mod-
ules (that is, no two same level links point to the
same IU). Modules pass messages between them
that can be seen as XML-encodings of IU-tokens.
Information strictly flows from LB to RB. All IU
slots except seen (S) are realised. The purge and
commit operations are fully implemented. In the
ASR, revision occurs as already described above
with Figure 4, and word-hypothesis IUs are com-
mitted (and the speech recognition search space is
cleared) after 2 seconds of silence are detected.
(Note that later modules work with all IUs from
the moment that they are sent, and do not have
to wait for them being committed.) The parser
may revoke its hypotheses if the ASR revokes the
words it produces, but also if it recovers from a
“garden path”, having built and closed off a larger
structure too early. As a heuristic, the parser
waits until a syntactic construct is followed by
three words that are not part of it until it com-
mits. For each new discourse model increment,
the action manager may produce new communica-
tive acts (CAs), and possibly revoke previous ones
that have become obsolete. When the system has
spoken a CA, this CA becomes committed, which
is recorded by the discourse modeller.

No hypothesis testing is done (that is, no un-
grounded information is put on RBs). All modules

have af:in≥out; c:in≥out characteristic.
The system achieves a very high degree of

responsiveness—by using incremental ASR and
prosodic analysis for turn-taking decisions, it can
react in around 200ms when suitable places for
backchannels are detected, which should be com-
pared to a typical minimum latency of 750ms
in common systems where only a simple silence
threshold is used.

5 Related Work, Future Work

The model described here is inspired partially by
Young et al. (1989)’s token passing architecture;
our model can be seen as a (substantial) general-
isation of the idea of passing smaller information
bits around, out of the domain of ASR and into the
system as a whole. Some of the characterisations
of the behaviour of incremental modules were in-
spired by Kilger and Finkler (1995), but again we
generalised the definitions to fit all kinds of incre-
mental modules, not just generation.

While there recently have been a number of
papers about incremental systems (e.g., (DeVault
and Stone, 2003; Aist et al., 2006; Brick and
Scheutz, 2007)), none of those offer general con-
siderations about architectures. (Despite its title,
(Aist et al., 2006) also only describes one particu-
lar setup.)

In future work, we will give descriptions of
these systems in the terms developed here. We
are also currently exploring how more cognitively
motivated models such as that of generation by
Levelt (1989) can be specified in our model. A
further direction for extension is the implementa-
tion of modality fusion as IU-processing. Lastly,
we are now starting to work on connecting the
model for incremental processing and ground-
ing of interpretations in previous processing re-
sults described here with models of dialogue-level
grounding in the information-state update tradi-
tion (Larsson and Traum, 2000). The first point
of contact here will be the investigation of self-
corrections, as a phenomenon that connects sub-
utterance processing and discourse-level process-
ing (Ginzburg et al., 2007).
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Abstract

Multi-source statistical machine transla-
tion is the process of generating a single
translation from multiple inputs. Previous
work has focused primarily on selecting
from potential outputs of separate transla-
tion systems, and solely on multi-parallel
corpora and test sets. We demonstrate how
multi-source translation can be adapted for
multiple monolingual inputs. We also ex-
amine different approaches to dealing with
multiple sources, including consensus de-
coding, and we present a novel method
of input combination to generate lattices
for multi-source translation within a single
translation model.

1 Introduction

Multi-source statistical machine translation was
first formally defined by Och and Ney (2001)
as the process of translating multiple meaning-
equivalent source language texts into a single tar-
get language. Multi-source translation is of par-
ticular use when translating a document that has
already been translated into several languages, ei-
ther by humans or machines, and needs to be fur-
ther translated into other target languages. This
situation occurs often in large multi-lingual organ-
isations such as the United Nations and the Euro-
pean Parliament, which must translate their pro-
ceedings into the languages of the member in-
stitutions. It is also common in multi-national
companies, which need to translate product and
marketing documentation for their different mar-
kets. Clearly, any existing translations for a docu-
ment can help automatic translation into other lan-
guages. These different versions of the input can
resolve deficiencies and ambiguities (e.g., syntac-
tic and semantic ambiguity) present in a single in-
put, resulting in higher quality translation output.

In this paper, we present three models of multi-
source translation, with increasing degrees of so-
phistication, which we compare empirically on a
number of different corpora. We generalize the
definition of multi-source translation to include
any translation case with multiple inputs and a sin-
gle output, allowing for, e.g., multiple paraphrased
inputs in a single language. Our methods include
simple output selection, which treats the multi-
source translation task as many independent trans-
lation steps followed by selection of one of their
outputs (Och and Ney, 2001), and output combina-
tion, which uses consensus decoding to construct
a string from n-gram fragments of the translation
outputs (Bangalore et al., 2001). We also present
a novel method, input combination, in which we
compile the input texts into a compact lattice, over
which we perform a single decoding pass. We
show that as we add additional inputs, the simplest
output selection method performs quite poorly rel-
ative to a single input translation system, while the
latter two methods are able to make better use of
the additional inputs.

The paper is structured as follows. §2 presents
the three methods for multi-source translation in
detail: output selection, output combination, and
our novel lattice-based method for input combina-
tion. We report experiments applying these tech-
niques to three different corpora, with both mono-
lingual inputs (§3) and multilingual inputs (§4).
We finish in §5 by analyzing the benefits and draw-
backs of these approaches.

2 Approaches to Multi-Source
Translation

We now present three ways to combine multiple
inputs into a single output translation, in the con-
text of related work for each technique.
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2.1 Output Selection

The most straightforward approach to multi-
source translation, proposed by Och and Ney
(2001), is to independently translate each of the
N source languages and then select a single
translation from the outputs. Given N sources
sN
1 = s1, . . . , sN , first translate each with a sep-

arate translation system, p1, . . . , pN , to obtain N
target translations, tN

1 = t1, . . . , tN . Och and Ney
present two approaches for selecting a single tar-
get from these outputs.

The first, PROD, finds the maximiser of the
product, arg maxt∈tN

1
p(t)

∏N
n=1 pn(sn|t), where

p(t) is the language model probability. For rea-
sons of tractability, the maximisation is performed
only over targets generated by the translation sys-
tems, tN

1 , not the full space of all translations.
The PROD method requires each model to pro-
vide a model score for each tn generated by the
other models. However, this is often impossible
due to the models’ highly divergent output spaces
(Schwartz, 2008), and therefore the technique can-
not be easily applied.

The second approach, MAX, solves
arg maxt∈tN

1
maxN

n=1 p(t)pn(sn|t), which is
much easier to calculate. As with PROD, the
translation models’ outputs are used for the
candidate translations. While different models
may have different score ranges, Och and Ney
(2001) state that there is little benefit in weighting
these scores to normalise the output range. In their
experiments, they show that MAX used on pairs or
triples of language inputs can outperform a model
with single language input, but that performance
degrades as more languages are added.

These methods limit the explored space to a full
translation output of one of the inputs, and there-
fore cannot make good use of the full diversity of
the translations. In this paper we present MAX

scores as a baseline for output selection, and ap-
proximate an oracle using the BLEU metric as an
upper bound for the output selection technique.

2.2 Output Combination

Consensus decoding as a form of system combi-
nation is typically used to integrate the outputs of
multiple translation systems into a single synthetic
output that seeks to combine the best fragments
from each component system. Multi-source trans-
lation can be treated as a special case of consen-
sus decoding. Indeed, several authors have seen

the ε dog barked very loudly
a big dog barked ε loudly

sub insert – shift delete –

Table 1: Example minimum TER edit script.

0 1
the
a 2

ε
big 3

dog
4

barked
5

very
ε 6

loudly

Figure 1: Conversion of TER script from Table 1
to a confusion network.

improvements in translation quality by perform-
ing multi-source translation using generic system
combination techniques (Matusov et al., 2006;
Paulik et al., 2007).

One class of approaches to consensus decoding
focuses on construction of a confusion network
or lattice1 from translation outputs, from which
new sentences can be created using different re-
orderings or combinations of translation fragments
(e.g., Bangalore et al. (2001); Rosti et al. (2007b)).
These methods differ in the types of lattices used,
their means of creation, and scoring method used
to extract the best consensus output from the lat-
tice. The system used in this paper is a variant of
the one proposed in Rosti et al. (2007a), which we
now describe in detail.

The first step in forming a lattice is to align the
inputs. Consensus decoding systems often use the
script of edit operations that minimises the transla-
tion edit rate (TER; Snover et al. (2006)). TER is
a word-based measure of edit distance which also
allows n-gram shifts when calculating the best
match between a hypothesis and reference. Be-
cause TER describes the correspondence between
the hypothesis and reference as a sequence of in-
sertions, substitutions, deletions, and shifts, the
edit script it produces can be used to create a con-
fusion network.

Consider a reference of “The dog barked very
loudly” and a hypothesis “A big dog loudly
barked.” The TER alignment is shown in Ta-
ble 1, along with the edit operations. Note that the
matching “barked” tokens are labelled shift, as one
needs to be shifted for this match to occur. Using
the shifted hypothesis, we can form a confusion

1Different authors refer to “lattices,” “confusion net-
works,” “word sausages,” etc. to describe these data struc-
tures, and specific terminology varies from author to author.
We define a lattice as a weighted directed acyclic graph, and
a confusion network as a special case where each node n in
the ordered graph has word arcs only to node n + 1.
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Figure 2: Structure of a lattice of confusion net-
works for consensus decoding.

network as in Figure 1. Additional sentences can
be added by aligning them to the reference as well.
Each link is weighted by the number of component
sentences sharing that particular word at the given
location.

Similar to Rosti et al. (2007a), we let each hy-
pothesis take a turn as the “reference” for TER,
using it as a skeleton for a confusion network. We
then form a lattice of confusion networks (Fig-
ure 2), assigning a prior weight to each confusion
network based on the average TER of the selected
skeleton with the other hypotheses. This allows
each system to set the word order for a component
confusion network, but at the cost of a more com-
plex lattice structure.

We can score pathsP through these lattices with
the assistance of a language model. Formally, the
path score is given by:

w(P) = ν log pLM (t(P))

+
∑
d∈P

[
N∑

n=1

λn log pn(d|sn)

+ µδ(d, ε) + ξ(1− δ(d, ε))

]
where pLM is the language model probability of
the target string specified by the lattice path, t(P),
pn(d|sn) is the proportion of system n’s k-best
outputs that use arc d in path P , and the last two
terms count the number of epsilon and non-epsilon
transitions in the path. The model parameters are
λ1, . . . , λn, ν, µ, ξ, which are trained using Pow-
ell’s search to maximise the BLEU score for the
highest scoring path, arg maxP w(P).

2.3 Input Combination
Loosely defined, input combination refers to find-
ing a compact single representation of N transla-
tion inputs. The hope is that the new input pre-
serves as many of the salient differences between
the inputs as possible, while eliminating redundant
information. Lattices are well suited to this task.

0 1

ε

watch
it

2

ε
out
's

3
ε
for

4

the

purse
pick

a
ε

5

robber

thief

snatcher
burglar
crook

pocket

6
.

Figure 3: A monolingual confusion network.
Thicker lines indicate higher probability word
arcs.

When translating speech recognition output,
previous work has shown that representing the
ambiguity in the recognized text via confusion
networks leads to better translations than simply
translating the single best hypothesis of the speech
recognition system (Bertoldi et al., 2007). The ap-
plication of input lattices to other forms of input
ambiguity has been limited to encoding input re-
orderings, word segmentation, or morphological
segmentation, all showing improvements in trans-
lation quality (Costa-jussà et al., 2007; Xu et al.,
2005; Dyer et al., 2008). However, these appli-
cations encode the ambiguity arising from a sin-
gle input, while in this work we combine distinct
inputs into a more compact and expressive single
input format.

When given many monolingual inputs, we can
apply TER and construct a confusion network as
in Section 2.2.2 In this application of confusion
networks, arc weights are calculated by summing
votes from each input for a given word, and nor-
malizing all arcs leaving a node to sum to 1.

Figure 3 shows an example of a TER-derived
input from IWSLT data. Because the decoder will
handle reordering, we select the input with the
lowest average TER against the other inputs to
serve as the skeleton system, and do not create a
lattice with multiple skeletons.

The problem becomes more complex when we
consider cases of multi-lingual multi-source trans-
lation. We cannot easily apply TER across lan-
guages because there is no clear notion of an exact
match between words. Matusov et al. (2006) pro-
pose using a statistical word alignment algorithm
as a more robust way of aligning (monolingual)
outputs into a confusion network for system com-

2Barzilay and Lee (2003) construct lattices over para-
phrases using an iterative pairwise multiple sequence align-
ment (MSA) algorithm. Unlike our approach, MSA does not
allow reordering of inputs.
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bination. We take a similar approach for multi-
lingual lattice generation.

Our process consists of four steps: (i) Align
words for each of the N(N − 1) pairs of inputs;
(ii) choose an input (or many inputs) to be the
lattice skeleton; (iii) extract all minimal consis-
tent alignments between the skeleton and the other
inputs; and (iv) add links to the lattice for each
aligned phrase pair.

A multi-parallel corpus such as Europarl
(Koehn, 2005) is ideally suited for training this
setup, as training data is available for each pair of
input languages needed by the word aligner. We
used the GIZA++ word alignment tool (Och and
Ney, 2003) for aligning inputs, trained on a por-
tion of the Europarl training data for each pair.

We select a skeleton input based on which
single-language translation system performs the
best when translating a development set. For our
Europarl test condition, this was French.

We define a minimal consistent alignment
(MCA) as a member of the set of multi-word
alignment pairs that can be extracted from a many-
to-many word alignment between skeleton sen-
tence x and non-skeleton sentence y with the fol-
lowing restrictions: (i) no word in x or y is used
more than once in the set of MCAs; (ii) words
and phrases selected from y cannot be aligned to
null; and (iii) no smaller MCA can be decomposed
from a given pair. This definition is similar to
that of minimal translation units as described in
Quirk and Menezes (2006), although they allow
null words on either side.

Different word alignment approaches will result
in different sets of MCAs. For input lattices, we
want sets of MCAs with as many aligned words
as possible, while minimising the average num-
ber of words in each pair in the set. Experiments
with GIZA++ on the Europarl data showed that
the “grow-diag-final-and” word alignment sym-
metrization heuristic had the best balance between
coverage and pair length: over 85% of skeleton
words were part of a non-null minimal pair, and
the average length of each pair was roughly 1.5
words. This indicates that our lattices will pre-
serve most of the input space while collapsing eas-
ily alignable sub-segments.

Once a set of phrase alignments has been found,
we construct a lattice over the skeleton sentence
x. For each additional input yn we add a set of
links and nodes for each word in x to any relevant

¿ podría darnos las cifras correspondientes a españa y grecia ?

pouvez-vous nous donner les chiffres pour  l' espagne et la grèce ?

siffrorna förkan ni ge oss spanien och grekland ?

Figure 4: A multi-lingual alignment between
French, Spanish and Swedish, showing the min-
imal consistent alignments. The lattice generated
by this alignment is shown in Figure 5.

words in yn, rejoining at the last word in x that
is covered by the pair. Figures 4 and 5 show an
example of the alignments and lattice generated by
using a French skeleton with Spanish and Swedish
sentences.

Once a lattice is created, we can submit it to a
phrase-based decoder in place of text input. The
decoder traverses lattice nodes in a manner simi-
lar to how words are traversed in text translation.
Instead of one input word represented by each lo-
cation in the coverage vector as in text input, with
lattices there are a set of possible input word arcs,
each with its own translation possibilities. The
concept of compatible coverage vectors for the lo-
cations of translated words becomes the notion of
reachability between frontier nodes in the lattice
(Dyer et al., 2008).

It is possible to construct multi-skeleton lat-
tices by connecting up a set of N lattices, each
built around a different skeleton xn, in much the
same manner as multiple confusion networks can
be connected to form a lattice in output combina-
tion. With sufficient diversity in the input order-
ing of each skeleton, the decoder need not perform
reordering. Because of the size and complexity
of these multi-skeleton lattices, we attempt only
monotonic decoding. In this scenario, as in con-
sensus decoding, we hope to exploit the additional
word order information provided by the alternative
skeletons.

3 Experiments: Monolingual Input

We start our experimental evaluation by translat-
ing multiple monolingual inputs into a foreign lan-
guage. This is a best-case scenario for testing
and analytic purposes because we have a single
translation model from one source language to one
target language. While translating from multiple
monolingual inputs is not a common use for ma-
chine translation, it could be useful in situations
where we have a number of paraphrases of the in-
put text, e.g., cross-language information retrieval
and summarization.
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Figure 5: A multi-lingual lattice input for French, Spanish, and Swedish from Europarl dev2006.

Data sets for this condition are readily available
in the form of test sets created for machine trans-
lation evaluation, which contains multiple target
references for each source sentence. By flipping
these test sets around, we create multiple mono-
lingual inputs (the original references) and a sin-
gle reference output (the original source text). We
examine two datasets: the BTEC Italian-English
corpus (Takezawa et al., 2002), and the Multiple
Translation Chinese to English (MTC) corpora,3

as used in past years’ NIST MT evaluations.
All of our translation experiments use the

Moses decoder (Koehn et al., 2007), and are eval-
uated using BLEU-4. Moses is a phrase-based
decoder with features for lexicalized reordering,
distance-based reordering, phrase and word trans-
lation probabilities, phrase and word counts, and
an n-gram language model.

3.1 English to Italian
We use the portion of the BTEC data made avail-
able for the Italian-English translation task at
IWSLT 2007, consisting of approximately 24,000
sentences. We also use the Europarl English-
Italian parallel corpus to supplement our train-
ing data with approximately 1.2 million out-of-
domain sentences. We train a 5-gram language
model over both training corpora using SRILM
(Stolcke, 2002) with Kneser-Ney smoothing and
linear interpolation, the interpolation weight cho-
sen to minimise perplexity on the Italian side of
the development tuning set.

For multiple translation data, we use IWSLT
test sets devset1-3 which have sixteen English
translations for each Italian sentence. The Ital-
ian version of the BTEC corpus was created af-
ter the original Japanese-English version, and only
the first English translation was used to generate
the Italian data. The other fifteen versions of each
English sentence were generated as paraphrases
of the primary English translation. We explore
translation conditions using only the fifteen para-
phrased inputs (“Para.” in Table 2), as well as us-
ing all sixteen English inputs (“All”).

3LDC2002T01, LDC2003T17, LDC2004T07 and
LDC2006T04.

All Para.
BEST 40.06 24.02
ORACLE 51.64 47.27
MAX 29.32 23.94
SYSCOMB 32.89 30.39
CN INPUT 31.86 27.62

Table 2: BLEU scores on the BTEC test set for
translating English inputs into Italian.

We tune our translation models on devset1, sys-
tem combination on devset2 and report results on
devset3 for each condition.

When tuning the single input “Para.” and “All”
baselines, we include all relevant copies of the 506
lines of devset1 English data, and repeat the Ital-
ian reference fifteen or sixteen times on the target
side, resulting in a total of 7,590 and 8,096 sen-
tence pairs respectively.

The results for devset3 are shown in Table 2.
For comparison, we show the BEST score any in-
put produced, as well as an approximated ORA-
CLE output selection generated by choosing the
best BLEU-scoring output for each sentence using
a greedy search. Our output combination method,
SYSCOMB, uses no system-specific weights to
distinguish the inputs. For SYSCOMB and MAX,
we translated all versions of the English input sep-
arately, and we use the top ten distinct hypothe-
ses from each input sentence for n-best input to
SYSCOMB.

For input combination, CN INPUT, we used the
TER-based monolingual input lattice approach de-
scribed in Section 2.3, choosing as a skeleton the
input with the lowest average TER score when
compared with the other inputs (assessed sepa-
rately for each sentence). Each input was given
equal probability in the confusion network links.

Note that the quality of output from translat-
ing the primary English input is much higher than
from translating any of the paraphrases. The pri-
mary input sentence scores a BLEU of 40.06, while
the highest scoring paraphrased input manages
only a 24.02. When we look at “Para.” the dif-
ference in the scores when using a single input
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(BEST) versus all the inputs (SYSCOMB and CN
INPUT) is striking – clearly there is considerable
information in the other inputs which can radically
improve the translation output. Removing the pri-
mary input from ORACLE reinforces this observa-
tion: the score drops by only 4.37 BLEU despite
the nearly 16 BLEU drop for the single best input.

Interestingly, the output selection technique,
MAX, performs at a similar level to the combina-
tion techniques when we include the primary in-
put, but degrades when given only the lower qual-
ity translations of paraphrased input under condi-
tion “Para.” In previous work on multi-lingual out-
put selection, the MAX score degraded after two
or three outputs were combined, but even with-
out the primary reference it maintains a score near
the best single paraphrased input when combining
fifteen outputs. One possible explanation for this
is that the inputs are all being translated with the
same translation model, so comparing their scores
can give a more accurate ranking of their relative
translation quality according to the model. The
input combination method, CN INPUT, performs
better than MAX and only slightly worse than the
output combination approach.

3.2 English to Chinese

We can add an extra dimension to monolingual
multi-source translation by considering inputs of
differing quality. A multi-source translation sys-
tem can exploit features indicating the origin of the
input to improve output quality. For these exper-
iments, we use the MTC English-Chinese corpus,
parts 1–4. This data was translated from Chinese
into English by four teams of annotators, denoted
E01–E04. This allows us to examine the results
for translating the same team’s work over multiple
years.

We train on the news domain portion of the of-
ficial NIST data4 (excluding the UN and Hong
Kong data) for both the translation model and the
5-gram Chinese language model.

While we still have a single translation model,
all of our inputs are now of a traceable origin and
are known to have quality differences when judged
by human evaluators. With this information we
can tune one of two ways: We can create a set of
all input systems and replicate the reference as we
did for English to Italian translation (“All tuned”),

4http://www.nist.gov/speech/tests/mt/
2008

Team Tuning Part 3 Part 4
E01 All 16.18 15.52
E01 Self 16.02 15.63
E02 All 14.29 14.00
E02 Self 13.88 14.05
E03 All 14.99 15.06
E03 Self 15.10 14.94
E04 All 14.03 12.65
E04 Self 14.03 12.59

Table 3: BLEU scores using single inputs from
each different team on the MTC. Bold indicates
the better score between All and Self tuning.

Approach Tuning Part 3 Part 4
MAX All 15.06 15.08
MAX Self 14.97 13.75
SYSCOMB All 16.82 16.24
SYSCOMB Self 16.87 16.45

Table 4: BLEU scores for multi-source translations
of MTC test sets. Better score for each output-
based multi-source method is shown in bold.

or we can tune each input using only the version of
the tuning data generated by the same translation
team (“Self tuned”).5 For example, we can tune
a system with the MTC Part 2 data provided by
translation team E01, and then decode E01’s trans-
lations of parts 3 and 4 with the weights obtained
in tuning. The results for each system are shown
in Table 3. Despite the different tuning conditions,
there is no clear advantage to tuning to all inputs
versus tuning to each input separately – on aver-
age we see a 0.06 BLEU score advantage by using
“All” weights.

With four different inputs to our multi-source
translation system, and two ways of weighting the
features for each input, how can we best utilize
these systems in output selection and combina-
tion? We perform system combination and MAX

selection and obtain the scores shown in Table 4.
The consensus decoding approach uses system-
specific features as described in Section 2.2 to dis-
tinguish between E01-E04.

As with English to Italian, output combination
performs the best of the multi-source techniques.
MAX performs better with translations generated
by “All” weights than with “Self”, and the con-

5Note that in the “Self tuned” setting we have only a quar-
ter as much tuning data as for “All tuned”.
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Input Language test2006 test2007
French (FR) 29.72 30.21
Spanish (ES) 29.55 29.62
Swedish (SV) 29.33 29.44
Portuguese (PT) 28.75 28.79
Danish (DA) 27.20 27.48
Greek (EL) 26.93 26.78
Italian (IT) 26.82 26.51
German (DE) 24.04 24.41
Dutch (NL) 23.79 24.28
Finnish (FI) 18.96 18.85

Table 5: BLEU scores for individual translation
systems into English trained on Europarl, from
best to worst.

verse is true for SYSCOMB. Given the robust per-
formance of MAX when translation scores origi-
nated from the same translation model in English
to Italian, it is not surprising that it favors the
case where all the outputs are scored by the same
model (“All tuned”). On the other hand, diversity
amongst the system outputs has been shown to be
important to the performance of system combina-
tion techniques (Macherey and Och, 2007). This
may give an indication as to why the “Self tuned”
data produced higher scores in consensus decod-
ing – the outputs will be more highly divergent due
to their different tuning conditions.

4 Experiments: Multilingual Input

Multilingual cases are the traditional realm of
multi-source translation. We no longer have di-
rectly comparable translation models; instead each
input language has a separate set of rules for trans-
lating to the output language. However, the avail-
ability of (and demand for) multi-parallel corpora
makes this form of multi-source translation of
great practical use.

4.1 Lattice Inputs

As described in Section 2.3, lattices can be used
to provide a compact format for translating multi-
lingual inputs to a multi-source translation system.
We trim all non-skeleton node paths to a maximum
length of four to reduce complexity when decod-
ing. Such long paths are mostly a result of errors in
the original word alignments, and therefore prun-
ing these links is largely innocuous.

We train on the Europarl corpus and use the
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Figure 6: Performance for multilingual multi-
source translation (test2005) as each language in-
put is added, showing Oracle target selection,
MAX score, or just a single language input (Solo).

in-domain test sets provided for previous years’
Workshops on Statistical Machine Translation.
Because of the computational complexity of deal-
ing with so many models, we train on only the first
100,000 sentences of each parallel corpus. Sin-
gle system baseline scores for each language are
shown in Table 5.

Besides comparing the different multi-source
translation methods discussed above, in this task
we also want to examine what happens when we
use different numbers of input languages. To de-
termine the best order to add languages, we per-
formed a greedy search over oracle BLEU scores
for test set test2005. We started with the best scor-
ing single system, French to English, and in each
iteration picked one additional system that would
maximise BLEU if we always selected the trans-
lation system output closest to the reference. The
results are shown in Figure 6.

The oracle selection order differs from the or-
der of the best performing systems, which could
be due to the high scoring systems having very
similar output while lower scoring systems exhibit
greater diversity. Interestingly, the order of the
languages chosen iterates between the Roman and
Germanic language families and includes Greek
early on. This supports our claim that diversity
is important. Note though that Finnish, which is
also in a separate language family, is selected last,
most likely due to difficulties in word alignment
and translation stemming from its morphological
complexity (Birch et al., 2008). This finding might
also carry over to phrase-table triangulation (Cohn
and Lapata, 2007), where multi-parallel data is
used in training to augment a standard translation
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Approach test2006 test2007
French Only 29.72 30.21

French + Swedish
MAX 29.86 30.13
LATTICE 29.33 29.97
MULTILATTICE 29.55 29.88
SYSCOMB 31.32 31.77

French + Swedish + Spanish
MAX 30.18 30.33
LATTICE 29.98 30.45
MULTILATTICE 30.50 30.50
SYSCOMB 33.77 33.87

6 Languages
MAX 28.37 28.33
LATTICE 30.22 30.91
MULTILATTICE 30.59 30.59
SYSCOMB 35.47 36.03

Table 6: BLEU scores for multi-source translation
systems into English trained on Europarl. Single
source French decoding is shown as a baseline.

system.

We choose to evaluate translation perfor-
mance at three combination levels: two lan-
guages (French and Swedish), three languages
(+Spanish), and six languages (+Danish, Por-
tuguese, Italian). For each combination we ap-
ply MAX, SYSCOMB, French skeleton lattice in-
put translation LATTICE, and monotone decoding
over multiple skeleton lattices, MULTILATTICE.
Results are shown in Table 6.

To enable the decoder used in LATTICE and
MULTILATTICE to learn weights for different
sources, we add a feature to the phrase table for
each of the languages being translated. This fea-
ture takes as its value the number of words on the
source side of the phrase. By weighting this fea-
ture up or down for each language, the decoder can
prefer word links from specific languages.

As seen in previous work in multi-source trans-
lation, MAX output selection performs well with
two or three languages but degrades as more lan-
guages are added to the input. Conversely, our
lattice input method shows upward trends: LAT-
TICE is comparable with MAX on three inputs and
scores increase in the six language case.

Given the higher scores for output combination
over input combination, what differences can we
observe between the systems? Both systems have

features that indicate the contributions of each in-
put language to the final output. With input com-
bination, we are forced by the decoder to take the
maximum scoring path through the lattice, but in
output combination we have the aggregate vote of
word confidences generated by each system. If we
could combine word arc scores across inputs, as in
output combination, we might get a more robust
solution for taking advantage of the available sim-
ilarities on the target side of the translation. This
points to a direction for future research.

Other differences between the systems may ex-
plain the score gap between our input and output
combination approaches. Consensus decoding al-
lows you to mix and match fragments that aren’t
necessarily stored as fragments in the phrase table.
Another difference is the richer space of reorder-
ings in TER-based lattices, due to the ability of the
metric to handle long-distance alignments.

5 Conclusion

We analyzed three approaches for dealing with
multi-source translation. While MAX is mostly a
poor performer, the upper bound of output selec-
tion is stunning. The very positive results for out-
put system combination across all data conditions
are quite promising. Output combination achieves
these results while the using the limited expres-
sive power of n-best inputs. The potential of using
a more expressive format – such as lattices that
represent the joint search space of multiple mod-
els – is high. Our first attempts at adapting lattices
to multi-source translation input show promise for
future development. We have only scratched the
surface of methods for constructing input lattices,
and plan to actively continue research into improv-
ing these methods.
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Abstract
This paper presents the results of a series
of experiments which examine the impact
of two information status categories (given
and new) and frequency of occurrence on
pitch accent realisations. More specifi-
cally the experiments explore within-type
similarity of pitch accent productions and
the effect information status and frequency
of occurrence have on these productions.
The results indicate a significant influence
of both pitch accent type and information
status category on the degree of within-
type variability, in line with exemplar-
theoretic expectations.

1 Introduction

It seems both intuitive and likely that prosody
should have a significant role to play in marking
information status in speech. While there are well
established expectations concerning typical asso-
ciations between categories of information status
and categories of pitch accent, e.g. rising L∗H
accents are often a marker for givenness, there
is nevertheless some variability here (Baumann,
2006). Furthermore, little research has focused on
how pitch accent tokens of the same type are re-
alised nor have the effects of information status
and frequency of occurrence been considered.

From the perspective of speech technology, the
tasks of automatically inferring and assigning in-
formation status clearly have significant impor-
tance for speech synthesis and speech understand-
ing systems.

The research presented in this paper examines a
number of questions concerning the relationship
between two information status categories (new
and given), and how tokens of associated pitch ac-
cent types are realised. Furthermore the effect of
frequency of occurrence is also examined from an
exemplar-theoretic perspective.

The questions directly addressed in this paper
are as follows:

1. How are different tokens of a pitch accent
type realised?
Does frequency of occurrence of the pitch ac-
cent type play a role?

2. What effect does information status have on
realisations of a pitch accent type?
Does frequency of occurrence of the informa-
tion status category play a role?

3. Does frequency of occurrence in pitch ac-
cents and in information status play a role,
i.e. is there a combined effect?

In examining the realisation of pitch accent to-
kens, their degree of similarity is the characteristic
under investigation. Similarity is calculated by de-
termining the cosine of the angle between pairs of
pitch accent vector representations (see section 6).

The results in this study are examined from
an exemplar-theoretic perspective (see section 3).
The expectations within that framework are based
upon two different aspects. Firstly, it is expected
that, since all exemplars are stored, exemplars of
a type that occur often, offer the speaker a wider
selection of exemplars to choose from during pro-
duction (Schweitzer and Möbius, 2004), i.e. the
realisations are expected to be more variable than
those of a rare type. However, another aspect of
Exemplar Theory has to be considered, namely en-
trenchment (Pierrehumbert, 2001; Bybee, 2006).
The central idea here is that frequently occurring
behaviours undergo processes of entrenchment,
they become in some sense routine. Therefore re-
alisations of a very frequent type are expected to
be realised similar to each other. Thus, similarity
and variability are expressions of the same charac-
teristic: the higher the degree of similarity of pitch
accent tokens, the lower their realisation variabil-
ity.
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The structure of this paper is as follows: Sec-
tion 2 briefly examines previous work on the in-
teraction of information status categories and pitch
accents. Section 3 provides a short introduction to
Exemplar Theory. In this study similarity of pitch
accent realisations on syllables, annotated with the
information status categories of the words they be-
long to, is examined using the parametric intona-
tion model (Möhler, 1998) which is outlined in
Section 4. Section 5 discusses the corpus em-
ployed. Section 6 introduces a general methodol-
ogy which is used in the experiments in Sections 7,
8 and 9. Section 10 then presents some discussion,
conclusions and opportunities for future research.

2 Information Status and Intonation

It is commonly assumed that pitch accents are the
main correlate of information status1 in speech
(Halliday, 1967). Generally, accenting is said
to signal novelty while deaccenting signals given
information (Brown, 1983), although there is
counter evidence: various studies note given in-
formation being accented (Yule, 1980; Bard and
Aylett, 1999). Terken and Hirschberg (1994) point
out that new information can also be deaccented.

As for the question of which pitch accent type
(in terms of ToBI categories (Silverman et al.,
1992)) is typically assigned to different degrees of
givenness, Pierrehumbert and Hirschberg (1990)
find H∗ to be the standard novelty accent for En-
glish, a finding which has also been confirmed by
Baumann (2006) and Schweitzer et al. (2008) for
German. Given information on the other hand, if
accented at all, is found to carry L∗ accent in En-
glish (Pierrehumbert and Hirschberg, 1990). Bau-
mann (2006) finds deaccentuation to be the most
preferred realisation for givenness in his experi-
mental phonetics studies on German. However,
Baumann (2006) points out that H+L∗ has also
been found as a marker of givenness in a German
corpus study. Previous findings on the corpus used
in the present study found L∗H being the typical
marker for givenness (Schweitzer et al., 2008).

Leaving the phonological level and examining
correlates of information status in acoustic detail,
Kohler (1991) reports that in a falling accent, an
early peak indicates established facts, while a me-
dial peak is used to mark novelty. In a recent

1The term information status is used in (Prince, 1992) for
the first time. Before that the terms givenness, novelty or in-
formation structure were used for these concepts.

study Kügler and Féry (2008) found givenness to
lower the high tones of prenuclear pitch accents
and to cancel them out postnuclearly. These find-
ings among others (Kügler and Féry, 2008) moti-
vate an examination of the acoustic detail of pitch
accent shape across different information status
categories.

The experiments presented here go one step fur-
ther, however, in that they also investigate poten-
tial exemplar-theoretic effects.

3 Exemplar Theory

Exemplar Theory is concerned with the idea that
the acquisition of language is significantly facil-
itated by repeated exposure to concrete language
input, and it has successfully accounted for a num-
ber of language phenomena, including diachronic
language change and frequency of occurrence ef-
fects (Bybee, 2006), the emergence of gram-
matical knowledge (Abbot-Smith and Tomasello,
2006), syllable duration variability (Schweitzer
and Möbius, 2004; Walsh et al., 2007), entrench-
ment and lenition (Pierrehumbert, 2001), among
others. Central to Exemplar Theory are the notions
of exemplar storage, frequency of occurrence, re-
cency of occurrence, and similarity. There is an
increasing body of evidence which indicates that
significant storage of language input exemplars,
rich in detail, takes place in memory (Johnson,
1997; Croot and Rastle, 2004; Whiteside and Var-
ley, 1998). These stored exemplars are then em-
ployed in the categorisation of new input percepts.
Similarly, production is facilitated by accessing
these stored exemplars. Computational models of
the exemplar memory also argue that it is in a con-
stant state of flux with new inputs updating it and
old unused exemplars gradually fading away (Pier-
rehumbert, 2001).

Up to now, virtually no exemplar-theoretic re-
search has examined pitch accent prosody (but
see Marsi et al. (2003) for memory-based predic-
tion of pitch accents and prosodic boundaries, and
Walsh et al. (2008)(discussed below)) and to the
authors’ knowledge this paper represents the first
attempt to examine the relationship between pitch
accent prosody and information status from an
exemplar-theoretic perspective. Given the consid-
erable weight of evidence for the influence of fre-
quency of occurrence effects in a variety of other
linguistic domains it seems reasonable to explore
such effects on pitch accent and information sta-
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tus realisations. For example, what effect might
givenness have on a frequently/infrequently occur-
ring pitch accent? Does novelty produce a similar
result?

The search for possible frequency of occur-
rence effects takes place with respect to pitch ac-
cent shapes captured by the parametric intonation
model discussed next.

4 The Parametric Representation of
Intonation Events - PaIntE

The model approximates stretches of F0 by em-
ploying a phonetically motivated model function
(Möhler, 1998). This function consists of the sum
of two sigmoids (rising and falling) with a fixed
time delay which is selected so that the peak does
not fall below 96% of the function’s range. The re-
sulting function has six parameters which describe
the contour and were employed in the analysis: pa-
rameters a1 and a2 express the gradient of the ac-
cent’s rise and fall, parameter b describes the ac-
cent’s temporal alignment (which has been shown
to be crucial in the description of an accent’s shape
(van Santen and Möbius, 2000)), c1 and c2 model
the ranges of the rising and falling amplitude of
the accent’s contour, respectively, and parameter d
expresses the peak height of the accent.2 These six
parameters are thus appropriate to describe differ-
ent pitch accent shapes.

For the annotation of intonation the GToBI(S)
annotation scheme (Mayer, 1995) was used. In
earlier versions of PaIntE, the approximation of
the F0-contour for H∗L and H∗ was carried out on
the accented and post–accented syllables. How-
ever, for these accents the beginning of the rise is
likely to start at the preaccented syllable. In the
current version of PaIntE the window used for the
approximation of the F0-contour for H∗L and H∗
accents has been extended to the preaccented syl-
lable, so that the parameters are calculated over
the span of the accented syllables and its immedi-
ate neighbours (unless it is followed by a boundary
tone which causes the window to end at the end of
the accented syllable).

5 Corpus

The experiments that follow (sections 7, 9 and 8),
were carried out on German pitch accents from the

2Further information and illustrations concerning the me-
chanics of the PaIntE model can be found in Möhler and
Conkie (1998).

IMS Radio News Corpus (Rapp, 1998). This cor-
pus was automatically segmented and manually la-
belled according to GToBI(S) (Mayer, 1995). In
the corpus, 1233 syllables are associated with an
L∗H accent, 704 with an H∗L accent and 162 with
an H∗ accent.

The corpus contains data from three speakers,
two female and a male one, but the majority of the
data is produced by the male speaker (888 L∗H
accents, 527 H∗L accents and 152 H∗ accents). In
order to maximise the number of tokens, all three
speakers were combined. Of the analysed data,
77.92% come from the male speaker. However,
it is not necessarily the case that the same percent-
age of the variability also comes from this speaker:
Both, PaIntE and z-scoring (cf. section 6) nor-
malise across speakers, so the contribution from
each individual speaker is unclear.

The textual transcription of the corpus was an-
notated with respect to information status using
the annotation scheme proposed by Riester (2008).
In this taxonomy information status categories re-
flect the default contexts in which presuppositions
are resolved, which include e. g. discourse context,
environment context or encyclopaedic context.

The annotations are based solely on the written
text and follow strict semantic criteria. Given that
textual information alone (i.e. without prosodic
or speech related information) is not necessarily
sufficient to unambiguously determine the infor-
mation status associated with a particular word,
there are therefore cases where words have mul-
tiple annotations, reflecting underspecification of
information status. However, it is important to
note that in all the experiments reported here, only
unambiguous cases are considered.

The rich annotation scheme employed in the
corpus makes establishing inter-annotator agree-
ment a time-consuming task which is currently un-
derway. Nevertheless, the annotation process was
set up in a way to ensure a maximal smoothing of
uncertainties. Texts were independently labelled
by two annotators. Subsequently, a third, more ex-
perienced annotator compared the two results and,
in the case of discrepancies, took a final decision.

In the present study the categories given and
new are examined. These categories do not rep-
resent a binary distinction but are two extremes
from a set of clearly distinguished categories. For
the most part they correspond to the categories tex-
tually given and brand-new that are used in Bau-
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mann (2006), but their scope is more tightly con-
strained. The information status annotations are
mapped to the phonetically transcribed speech sig-
nals, from which individual syllable tokens bear-
ing information status are derived.

Syllables for which one of the PaIntE-
parameters was identified as an outlier, were re-
moved. Outliers were defined such that the upper
2.5 percentile as well as the lower 2.5 percentile
of the data were excluded. This led to a reduced
number of pitch accent tokens: 1021 L∗H accents,
571 H∗L accents and 134 H∗ accents. Thus, there
is a continuum of frequency of occurrence, high to
low, from L∗H to H∗.

With respect to information status, 102 L∗H ac-
cents, 87 H∗L accents and 21 H∗ accents were un-
ambiguously labelled as new. For givenness the
number of tokens is: 114 L∗H accents, 44 H∗L ac-
cents and 10 H∗ accents.

6 General Methodology

In the experiments the general methodology for
calculation of similarity detailed in this section
was employed.

For tokens of the pitch accent types L∗H, H∗L
and H∗, each token was modelled using the full
set of PaIntE parameters. Thus, each token was
represented in terms of a 6-dimensional vector.

For each of the pitch accent types the following
steps were carried out:

– For each 6-dimensional pitch accent category
token calculate the z-score value for each di-
mension. The z-score value represents the
number of standard deviations the value is
away from the mean value for that dimension
and allows comparison of values from differ-
ent normal distributions. The z-score is given
by:

z − scoredim =
valuedim −meandim

sdevdim
(1)

Hence, at this point each pitch accent is repre-
sented by a 6-dimensional vector where each
dimension value is a z-score.

– For each token z-scored vector calculate how
similar it is to every other z-scored vector
within the same pitch accent category, and,
in Experiment 2 and 3, with the same infor-
mation status value (e.g. new), using the co-
sine of the angle between the vectors. This is
given by:

cos(~i,~j) =
~i •~j

‖~i ‖‖ ~j ‖
(2)

where i and j are vectors of the same pitch ac-
cent category and • represents the dot prod-
uct.

Each comparison between vectors yields a
similarity score in the range [-1,1], where -1
represents high dissimilarity and 1 represents
high similarity.

The experiments that follow examine distribu-
tions of token similarity. In order to establish
whether distributions differ significantly two dif-
ferent levels of significance were employed, de-
pending on the number of pairwise comparisons
performed.

When comparing two distributions (i.e. per-
forming one test), the significance level was set to
α = 0.05. In those cases where multiple tests were
carried out (Experiment 1 and Experiment 3), the
level of significance was adjusted (Bonferroni cor-
rection) according to the following formula:

α = 1− (1− α1)
1
n (3)

where α1 represents the target significance level
(set to 0.05) and n represents the number of tests
being performed. The Bonferroni correction is of-
ten discussed controversially. The main criticism
concerns the increased likelihood of type II errors
that lead to non-significance of actually significant
findings (Pernegger, 1998). Although this conser-
vative adjustment was applied, the statistical tests
in this study resulted in significant p-values indi-
cating the robustness of the findings.

7 Experiment 1: Examining frequency of
occurrence effects in pitch accents

In accordance with the general methodology set
out in section 6, the PaIntE vectors of pitch ac-
cent tokens of types L∗H, H∗L, and H∗ were all
z-scored and, within each type, every token was
compared for similarity against every other token
of the same type, using the cosine of the angle be-
tween their vectors. In essence, this experiment
illustrates how similarly pitch accents of the same
type are realised.

Figure 1 depicts the results of the analysis. It
shows the density plot for each distribution of
cosine-similarity comparison values, whereby the
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Figure 1: Density plots for similarity within pitch ac-
cent types. All distributions differ significantly from each
other. There is a trend towards greater similarity from high-
frequency L∗H to low-frequency H∗.

distributions can be compared directly – irrespec-
tive of the different number of data points.

An initial observation is that L∗H tokens tend
to be realised fairly variably, the main portion
of the distribution is centred around zero. To-
kens of H∗L tend to be produced more simi-
larly (i.e. the distribution is centred around a
higher similarity value), and tokens of H∗ more
similarly again. These three distributions were
tested against each other for significance using the
Kolmogorov-Smirnov test (α = 0.017), yielding
p-values of p � 0.001. Thus there are significant
differences between these distributions.

What is particularly noteworthy is that a de-
crease in frequency of occurrence across pitch ac-
cent types co-occurs significantly with an increase
in within-type token similarity.

While the differences between the graphed dis-
tributions do not appear to be highly marked
the frequency of occurrence effect is nevertheless
in keeping with exemplar-theoretic expectations
as posited by Bybee (2006) and Schweitzer and
Möbius (2004), that is, the high frequency of oc-
currence entails a large number of stored exem-
plars, giving the speaker the choice from among
a large number of production targets. This wider
choice leads to a broader range of chosen targets
for different productions and thus to more variable
realisations of tokens of the same type.
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Figure 2: Density plots for similarity of H∗L tokens. To-
kens of the low-frequency information status category given
display greater similarity to each other than those of the high-
frequency information status category new.

Walsh et al. (2008) also reported significant
differences between these distributions, however,
there did not appear to be a clear frequency of oc-
currence effect. The results in the present study
differ from their results because the distributions
centre around different ranges of the similarity
scale clearly indicating that each accent type be-
haves differently in terms of similarity/variability
between the tokens of the respective type. The dif-
ferences between the two findings can be ascribed
to the augmented PaIntE model (section 4).

Given the results from this experiment, the next
experiment seeks to establish what relationship, if
any, exists between information status and pitch
accent production variability.

8 Experiment 2: Examining frequency of
occurrence effects in information
status categories

This experiment was carried out in the same man-
ner as Experiment 1 above with the exception that
in this experiment a subset of the corpus was em-
ployed: only syllables that were unambiguously
labelled with either the information status cate-
gory new or the category given were included in
the analyses. The experiment aims to investigate
the effect of information status on the similar-
ity/variability of tokens of different pitch accent
types. For each pitch accent type, tokens that were
labelled with the information status category new
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Figure 3: Density plots for similarity of L∗H tokens. The
curves differ significantly, a trend towards greater similarity
is not observable. The number of tokens for both information
status categories is comparable.

were compared to tokens labelled as given. Again,
a pairwise Kolmogorov-Smirnov test was applied
for each comparison (α = 0.05). Figure 2 depicts
the results for H∗L accents. The K-S test yielded a
highly significant difference between the two dis-
tributions (p � 0.001), reflecting the clearly visi-
ble difference between the two curves. It is note-
worthy here that for H∗L the information status
category new is more frequent than the category
given. Indeed, approximately twice as many are
labelled as new than those labelled given. Figure 2
illustrates that new H∗L accents are realised more
variably than given ones. That is, again, an in-
crease in frequency of occurrence co-occurs with
an increase in similarity, this time at the level of
information status.

Figure 3 depicts the difference in similar-
ity/variability for L∗H between new tokens and
given tokens. It is clearly visible that the two
curves do not differ as much as those under the
H∗L condition. Both curves centre around zero re-
flecting the fact that for both types the tokens are
variable. Although the Kolmogorov-Smirnov test
indicates significance (α = 0.05, p = 0.044), the
nature of the impact that information status has in
this case is unclear.

Here again an effect of frequency of occurrence
might be the reason for this result. The high fre-
quency of L∗H accents in general results in a rel-
ative high frequency of given L∗H tokens. So the
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Figure 4: Density plots for similarity of new tokens across
three pitch accent types. In comparison to fig. 1 the trend
towards greater similarity from high-frequency L∗H to low-
frequency H∗ is even more pronounced.

token number for both types is similar (102 new
L∗H tokens vs. 114 given L∗H tokens), there is
high frequency in both cases, hence variability.

These results, particularly in the case of H∗L
(fig. 2) indicate that information status affects
pitch accent realisation. The next experiment
compares the effect across different pitch accent
types.

9 Experiment 3: Examining the effect of
information status across pitch accent
types

This experiment was carried out in the same man-
ner as Experiments 1 and 2 above. For each pitch
accent type, figure 4 depicts within-type pitch ac-
cent similarity for tokens unambiguously labelled
as new.

As with Experiments 1 and 2, frequency of
occurrence once more appears to play a signifi-
cant role. Again, all Kolmogorov-Smirnov tests
yielded significant results (p < 0.017 in all cases).
Indeed, the difference between the distributions
of L∗H, H∗L, and H∗ similarity plots appears to
be considerably more prominent than in Experi-
ment 1 (see fig. 1). This indicates that under the
condition of novelty the frequency of occurrence
effect is more pronounced. In other words, there is
a considerably more noticeable difference across
the distributions of L∗H, H∗L and H∗, when nov-
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Figure 5: Density plots for similarity of given tokens across
three pitch accent types. Mid-frequency H∗L displays greater
similarity than high-frequency L∗H. For lowest frequency H∗
(only 10 tokens) the trend cannot be observed.

elty is considered: novelty compounds the fre-
quency of occurrence effect.

Figure 5 illustrates results of the same analysis
methodology but applied to tokens of pitch accents
unambiguously labelled as given. Once again
there is a considerable difference between the dis-
tributions of L∗H and H∗L tokens (p < 0.017).
And again, this difference reflects a more pro-
nounced frequency of occurrence effect for given
tokens than for all accents pooled (as described
in Experiment 1): the information status category
given compounds the frequency of occurrence ef-
fect for L∗H and H∗L.

For H∗ the result is not as clear as for the two
more frequent accents. The comparison between
H∗ and L∗H results in a significant difference
(p < 0.017) whereas the comparison between H∗
and H∗L is slightly above the conservative signif-
icance level (p = 0.0186). Moreover, the dis-
tribution is centred between the distributions for
L∗H and H∗L and it is thus not clear how to inter-
pret this result with respect to a possible frequency
of occurrence effect. However, having only ten
instances of given H∗, the explanatory power of
these comparisons is questionable.

10 Discussion

The experiments discussed above yield a num-
ber of interesting results with implications for re-
search in prosody, information status, the interac-

tion between the two domains, and for exemplar
theory.

Returning to the first question posed at the out-
set in section 1, it is quite clear from Experiment 1
that a certain amount of variability exists when
different tokens of the same pitch accent type are
produced. It is also clear, from the same experi-
ment, that the frequency of occurrence of the pitch
accent type does indeed play a role: with an in-
crease in frequency comes an increase in vari-
ability. This result is in line with the exemplar-
theoretic view that since all exemplars are stored,
exemplars of a type that occur often are more vari-
able because they offer the speaker a wider se-
lection of exemplars to choose from during pro-
duction (Schweitzer and Möbius, 2004). How-
ever, with respect to entrenchment (Pierrehum-
bert, 2001; Bybee, 2006), i.e. the idea that fre-
quently occurring behaviours undergo processes
of entrenchment, in Experiment 1 one might ex-
pect to see greater similarity in the realisations of
L∗H. However, it is important to note that while
tokens of L∗H are not particularly similar to each
other (the bulk of the distribution is around zero
(see figure 1)), they are not too dissimilar either.
That is, they rest at the midpoint of the similar-
ity continuum produced by cosine calculation, in
quite a normal looking distribution. This is not
at odds with the idea of entrenchment. As pro-
ductions of a pitch accent type become more fre-
quent, the distribution of similarity spreads from
the right side of the graph (where infrequent and
highly similar H∗ tokens lie) leftwards (through
H∗L) to the point where the L∗H distribution is
found. Beyond this point tokens are excessively
different.

The second question posed in section 1, and ad-
dressed in Experiment 2, sought to ascertain the
impact, if any, information status has on pitch ac-
cent realisation. Distributions of given and new
H∗L similarity scores differed significantly, as
did distributions of given and new L∗H similar-
ity scores, indicating that information status af-
fects realisation. In other words, for both pitch
accent types, given and new tokens behave dif-
ferently. Concerning the frequency of occurrence
of the information status categories, certainly in
the case of H∗L the higher frequency new tokens
exhibited more variability. In the case of L∗H
similar numbers of new and given tokens, possi-
bly due to the high frequency of L∗H in general,
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Figure 6: Density plots for similarity of combinations of
information status categories given and new with pitch ac-
cent types L∗H and H∗L. The distributions show a clear
trend towards greater similarity form high-frequency “given
L∗H” and “new L∗H” to mid-frequency “new H∗L” and
low-frequency “given H∗L”.

led to visually similar yet significantly different
distributions. Once again sensitivity to frequency
of occurrence seems to be present, in line with
exemplar-theoretic predictions.

The final question concerns the possibility of a
combined effect of pitch accent frequency of oc-
currence and information status frequency of oc-
currence. Figures 4 and 5 depict a clear com-
pounding effect of both information status cate-
gories across the different pitch accent types (and
their inherent frequencies) when compared to fig-
ure 1. Interestingly, the less frequently occurring
given appears to have a greater impact, particularly
on high frequency L∗H.

Figure 6 displays all possible combinations of
L∗H, H∗L, given and new. H∗ is omitted in this
graph because of the small number of tokens (10
given, 21 new) and the resulting lack of explana-
tory power. It is evident that an overall frequency
of occurrence effect can be observed: ”given L∗H”
and ”new L∗H”, which have a similar number of
instances (114 vs. 102 tokens) both centre around
zero and are thus the most leftward skewed curves
in the graph. The distribution of “new H∗L” (87
tokens) shows a trend towards the right hand side
of the graph and thus represents greater similarity
of the tokens. The distribution of similarity values
for the least frequent combination of pitch accent
and information status, “given H∗L” (44 tokens),

centres between 0.5 and 1.0 and is thus the most
rightward curve in the graph, reflecting the high-
est similarity between the tokens.

These results highlight an intricate relationship
between pitch accent production and information
status. The information status of the word influ-
ences not only the type and shape of the pitch ac-
cent (Pierrehumbert and Hirschberg, 1990; Bau-
mann, 2006; Kügler and Féry, 2008; Schweitzer et
al., 2008) but also the similarity of tokens within a
pitch accent type. Moreover, this effect is well ex-
plainable within the framework of Exemplar The-
ory as it is subject to frequency of occurrence:
tokens of rare types are produced more similar to
each other than tokens of frequent types.

In the context of speech technology, unfortu-
nately the high variability in highly frequent pitch
accents has a negative consequence, as the correla-
tion between a certain pitch accent or a certain in-
formation status category and the F0 contour is not
a one-to-one relationship. However, forewarned
is forearmed and perhaps a finer grained contex-
tual analysis might yield more context specific so-
lutions.

11 Future Work

The methodology outlined in section 6 gives a lu-
cid insight into the levels of similarity found in
pitch accent realisations. Further insights, how-
ever, could be gleaned from a fine-grained exam-
ination of the PaIntE parameters. For example,
which parameters differ and under what conditions
when examining highly variable tokens? Informa-
tion status evidently plays a role in pitch accent
production but the contexts in which this takes
place have yet to be examined. In addition, the
role of information structure (focus-background,
contrast) also needs to be investigated. A further
line of research worth pursuing concerns the im-
pact of information status on the temporal struc-
ture of spoken utterances and possible compound-
ing with frequency of occurrence effects.
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based production of prosody: Evidence from seg-
ment and syllable durations. In Speech Prosody
2004 (Nara, Japan), pages 459–462.

Katrin Schweitzer, Arndt Riester, Hans Kamp, and
Grzegorz Dogil. 2008. Phonological and acoustic
specification of information status - a semantic and
phonetic analysis. Poster at ”Experimental and The-
oretical Advances in Prosody”, Cornell University.

Kim Silverman, Mary Backman, John Pitrelli, Mari
Ostendorf, Colin Wightman, Patti Price, Janet Pier-
rehumbert, and Julia Hirschberg. 1992. Tobi: A
standard for Labeling English Prosody. In Proceed-
ings of ICSLP (Banff, Kanada), volume 2, pages
867–870, Banff, Canada.

Jacques Terken and Julia Hirschberg. 1994. Deaccen-
tuation of words representing ‘given’ information:
effects of persistence of grammatical function and
surface position. Language and Speech, 37:125–
145.

Jan P. H. van Santen and Bernd Möbius. 2000. A quan-
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Abstract

Automatic image annotation is an attrac-
tive approach for enabling convenient ac-
cess to images found in a variety of docu-
ments. Since image captions and relevant
discussions found in the text can be useful
for summarizing the content of images, it
is also possible that this text can be used to
generate salient indexing terms. Unfortu-
nately, this problem is generally domain-
specific because indexing terms that are
useful in one domain can be ineffective
in others. Thus, we present a supervised
machine learning approach to image an-
notation utilizing non-lexical features1 ex-
tracted from image-related text to select
useful terms. We apply this approach to
several subdomains of the biomedical sci-
ences and show that we are able to reduce
the number of ineffective indexing terms.

1 Introduction

Authors of biomedical publications often utilize
images and other illustrations to convey informa-
tion essential to the article and to support and re-
inforce textual content. These images are useful
in support of clinical decisions, in rich document
summaries, and for instructional purposes. The
task of delivering these images, and the publica-
tions in which they are contained, to biomedical
clinicians and researchers in an accessible way is
an information retrieval problem.

Current research in the biomedical domain (e.g.,
Antani et al., 2008; Florea et al., 2007), has in-
vestigated hybrid approaches to image retrieval,
combining elements of content-based image re-
trieval (CBIR) and annotation-based image re-
trieval (ABIR). ABIR, compared to the image-

1Non-lexical features describe attributes of image-related
text but not the text itself, e.g., unlike a bag-of-words model.

only approach of CBIR, offers a practical advan-
tage in that queries can be more naturally specified
by a human user (Inoue, 2004). However, manu-
ally annotating biomedical images is a laborious
and subjective task that often leads to noisy results.

Automatic image annotation is a more robust
approach to ABIR than manual annotation. Un-
fortunately, automatically selecting the most ap-
propriate indexing terms is an especially challeng-
ing problem for biomedical images because of
the domain-specific nature of these images and
the many vocabularies used in the biomedical sci-
ences. For example, the term “sweat gland adeno-
carcinoma” could be a useful indexing term for an
image found in a dermatology publication, but it is
less likely to have much relevance in describing an
image from a cardiology publication. On the other
hand, the term “mitral annular calcification” may
be of great relevance for cardiology images, but of
little relevance for dermatology ones.

Our problem may be summarized as follows:
Given an image, its caption, its discussion in the
article text (henceforth the image mention), and a
list of potential indexing terms, select the terms
that are most effective at describing the content of
the image. For example, assume the image shown
in Figure 1, obtained from the article “Metastatic
Hidradenocarcinoma: Efficacy of Capecitabine”
by Thomas et al. (2006) in Archives of Dermatol-
ogy, has the following potential indexing terms,

• Histopathology finding
• Reviewed
• Confirmation
• Diagnosis aspect
• Diagnosis
• Eccrine
• Sweat gland adenocarcinoma
• Lesion

which have been extracted from the image men-
tion. While most of these do not uniquely identify
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Caption: Figure 1. On recurrence, histologic features
of porocarcinoma with an intraepidermal spread of
neoplastic clusters (hematoxylin-eosin, original magni-
fication x100).

Mention: Histopathologic findings were reviewed
and confirmed a diagnosis of eccrine hidradenocarci-
noma for all lesions excised (Figure 1).

Figure 1: Example Image. We index an image
with concepts generated from its caption and dis-
cussion in the document text (mention). This im-
age is from “Metastatic Hidradenocarcinoma: Ef-
ficacy of Capecitabine” by Thomas et al. (2006)
and is reprinted with permission from the authors.

the image, we would like to automatically select
“sweat gland adenocarcinoma” and “eccrine” for
indexing because they clearly describe the content
and purpose of the image—supporting a diagno-
sis of hidradenocarinoma, an invasive cancer of
sweat glands. Note that effective indexing terms
need not be exact lexical matches of the text. Even
though “diagnosis” is an exact match, its meaning
is too broad in this context to be a useful term.

In a machine learning approach to image anno-
tation, training data based on lexical features alone
is not sufficient for finding salient indexing terms.
Indeed, we must classify terms that are not en-
countered while training. Therefore, we hypoth-
esize that non-lexical features, which have been
successfully used for speech and genre classifica-
tion tasks, among others (see Section 5 for related
work), may be useful in classifying text associated
with images. While this approach is broad enough
to apply to any retrieval task, given the goals of our
ongoing research, we restrict ourselves to studying
its feasibility in the biomedical domain.

In order to achieve this, we make use of the
previously developed MetaMap (Aronson, 2001)

tool, which maps text to concepts contained in
the Unified Medical Language System R© (UMLS)
Metathesaurus R© (Lindberg et al., 1993). The
UMLS is a compendium of several controlled vo-
cabularies in the biomedical sciences that provides
a semantic mapping relating concepts from the
various vocabularies (Section 2). We then use a su-
pervised machine learning approach, described in
Section 3, to classify the UMLS concepts as useful
indexing terms based on their non-lexical features,
gleaned from the article text and MetaMap output.

Experimental results, presented in Section 4, in-
dicate that ineffective indexing terms can be re-
duced using this classification technique. We con-
clude that ABIR approaches to biomedical im-
age retrieval as well as hybrid CBIR/ABIR ap-
proaches, which rely on both image content and
annotations, can benefit from an automatic anno-
tation process utilizing non-lexical features to aid
in the selection of useful indexing terms.

2 Image Retrieval: Recent Work

Automatic image annotation is a broad topic, and
the automatic annotation of biomedical images,
specifically, has been a frequent component of
the ImageCLEF2 cross-language image retrieval
workshop. In this section, we describe previous
work in biomedical image retrieval that forms the
basis of our approach. Refer to Section 5 for work
related to our method in general.

Demner-Fushman et al. (2007) developed a ma-
chine learning approach to identify images from
biomedical publications that are relevant to clin-
ical decision support. In this work, the authors
utilized both image and textual features to clas-
sify images based on their usefulness in evidence-
based medicine. In contrast, our work is focused
on selecting useful biomedical image indexing
terms; however, we utilize the methods developed
in their work to extract images and their related
captions and mentions.

Authors of biomedical publications often as-
semble multiple images into a single multi-panel
figure. Antani et al. (2008) developed a unique
two-phase approach for detecting and segmenting
these figures. The authors rely on cues from cap-
tions to inform an image analysis algorithm that
determines panel edge information. We make use
of this approach to uniquely associate caption and
mention text with a single image.

2http://imageclef.org/
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Our current work most directly stems from the
results of a term extraction and image annota-
tion evaluation performed by Demner-Fushman
et al. (2008). In this study, the authors uti-
lized MetaMap to extract potential indexing terms
(UMLS concepts) from image captions and men-
tions. They then asked a group of five physicians
and one medical imaging specialist (four of whom
are trained in medical informatics) to manually
classify each concept as being “useful for index-
ing” its associated images or ineffective for this
purpose. The reviewers also had the opportunity
to identify additional indexing terms that were not
automatically extracted by MetaMap.

In total, the reviewers evaluated 4006 concepts
(3,281 of which were unique), associated with
186 images from 109 different biomedical articles.
Each reviewer was given 50 randomly chosen im-
ages from the 2006–2007 issues of Archives of Fa-
cial Plastic Surgery3 and Cardiovascular Ultra-
sound4. Since MetaMap did not automatically ex-
tract all of the useful indexing terms, this selection
process exhibited high recall averaging 0.64 but
a low precision of 0.11. Indeed, assuming all the
extracted terms were selected for indexing, this re-
sults in an average F1-score of only 0.182 for the
classification problem. Our work is aimed at im-
proving this baseline classification by reducing the
number of ineffective terms selected for indexing.

3 Term Selection Method

A pictorial representation of our term extraction
and selection process is shown in Figure 2. We
rely on the previously described methods to ex-
tract images and their corresponding captions and
mentions, and the MetaMap tool to map this text
to UMLS concepts. These concepts are potential
indexing terms for the associated image.

We derive term features from various textual
items, such as the preferred name of the UMLS
concept, the MetaMap output for the concept, the
text that generated the concept, the article contain-
ing the image, and the document collection con-
taining the article. These are all described in more
detail in Section 3.2. Once the feature vectors are
built, we automatically classify the term as either
being useful for indexing the image or not.

To select useful indexing terms, we trained a
binary classifier, described in Section 3.3, in a

3http://archfaci.ama-assn.org/
4http://www.cardiovascularultrasound.com/

Figure 2: Term Extraction and Selection. We
gather features for the extracted terms and use
them to train a classifier that selects the terms that
are useful for indexing the associated images.

supervised learning scenario with data obtained
from the previous study by Demner-Fushman et al.
(2008). We obtained our evaluation data from the
2006 Archives of Dermatology5 journal. Note that
our training and evaluation data represent distinct
subdomains of the biomedical sciences.

In order to reduce noise in the classification of
our evaluation data, we asked two of the review-
ers who participated in the initial study to man-
ually classify our extracted terms as they did for
our training data. In doing so, they each eval-
uated an identical set of 1539 potential indexing
terms relating to 50 randomly chosen images from
31 different articles. We measured the perfor-
mance of our classifier in terms of how well it per-
formed against this manual evaluation. These re-
sults, as well as a discussion pertaining to the inter-
annotator agreement of the two reviewers, are pre-
sented in Section 4.

Since our general approach is not specific to the
biomedical domain, it could equally be applied in

5http://archderm.ama-assn.org/

739



any domain with an existing ontology. For exam-
ple, the UMLS and MetaMap can be replaced by
the Art and Architecture Thesaurus6 and an equiv-
alent mapping tool to annotate images related to
art and art history (Klavans et al., 2008).

3.1 Terminology

To describe our features, we adopt the following
terminology.

• A collection contains all the articles from a
given publication for a specified number of
years. For example, the 2006–2007 issues of
Cardiovascular Ultrasound represent a sin-
gle collection.

• A document is a specific biomedical article
from a particular collection and contains im-
ages and their captions and mentions.

• A phrase is the portion of text that MetaMap
maps to UMLS concepts. For example, from
the caption in Figure 1, the noun phrase “his-
tologic features” maps to four UMLS con-
cepts: “Histologic,” “Characteristics,” “Pro-
tein Domain” and “Array Feature.”

• A mapping is an assignment of a phrase to
a particular set of UMLS concepts. Each
phrase can have more than one mapping.

3.2 Features

Using this terminology, we define the following
features used to classify potential indexing terms.
We refer to these as non-lexical features because
they generally characterize UMLS concepts, go-
ing beyond the surface representation of words
and lexemes appearing in the article text.

F.1 CUI (nominal): The Concept Unique Iden-
tifier (CUI) assigned to the concept in the
UMLS Metathesaurus. We choose the con-
cept identifier as a feature because some fre-
quently mapped concepts are consistently
ineffective for indexing the images in our
training and evaluation data. For exam-
ple, the CUI for “Original,” another term
mapped from the caption shown in Figure
1, is “C0205313.” Our results indicate that
“C0205313,” which occurs 19 times in our
evaluation data, never identifies a useful in-
dexing term.

6http://www.getty.edu/research/conducting research/
vocabularies/aat/

F.2 Semantic Type (nominal): The concept’s se-
mantic categorization. There are currently
132 different semantic types7 in the UMLS
Metathesaurus. For example, The semantic
type of “Original” is “Idea or Concept.”

F.3 Presence in Caption (nominal): true if the
phrase that generated the concept is located
in the image caption; false if the phrase is
located in the image mention.

F.4 MeSH Ratio (real): The ratio of words ci in
the concept c that are also contained in the
Medical Subject Headings (MeSH terms)8

M assigned to the document to the total
number of words in the concept.

R(m) =
|{ci : ci ∈M}|

|c|
(1)

MeSH is a controlled vocabulary created by
the US National Library of Medicine (NLM)
to index biomedical articles. For example,
“Adenoma, Sweat” is one MeSH term as-
signed to “Metastatic Hidradenocarcinoma:
Efficacy of Capecitabine” (Thomas et al.,
2006), the article containing the image from
Figure 1.

F.5 Abstract Ratio (real): The ratio of words
ci in the concept c that are also in the doc-
ument’s abstract A to the total number of
words in the concept.

R(a) =
|{ci : ci ∈ A}|

|c|
(2)

F.6 Title Ratio (real): The ratio of words ci in
the concept c that are also in the document’s
title T to the total number of words in the
concept.

R(t) =
|{ci : ci ∈ T }|

|c|
(3)

F.7 Parts-of-Speech Ratio (real): The ratio of
words pi in the phrase p that have been
tagged as having part of speech s to the total
number of words in the phrase.

R(s) =
|{pi : TAG(pi) = s}|

|p|
(4)

This feature is computed for noun, verb, ad-
jective and adverb part-of-speech tags. We

7http://www.nlm.nih.gov/research/umls/META3 current
semantic types.html

8http://www.nlm.nih.gov/mesh/
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obtain tagging information from the output
of MetaMap.

F.8 Concept Ambiguity (real): The ratio of the
number of mappingsmi of phrase p that con-
tain concept c to the total number of map-
pings for the phrase:

A =
|{mp

i : c ∈ mp
i }|

|mp|
(5)

F.9 Tf-idf (real): The frequency of term ti (i.e.,
the phrase that generated the concept) times
its inverse document frequency:

tfidfi,j = tfi,j × idfi (6)

The term frequency tfi,j of term ti in docu-
ment dj is given by

tfi,j =
ni,j∑|D|

k=1 nk,j

(7)

where ni,j is the number of occurrences of ti
in dj , and the denominator is the number of
occurrences of all terms in dj . The inverse
document frequency idfi of ti is given by

idfi = log
|D|

|{dj : ti ∈ dj}|
(8)

where |D| is the total number of documents
in the collection, and the denominator is the
total number of documents that contain ti
(see Salton and Buckley, 1988).

F.10 Document Location (real): The location in
the document of the phrase that generated
the concept. This feature is continuous on
[0, 1] with 0 representing the beginning of
the document and 1 representing the end.

F.11 Concept Length (real): The length of the
concept, measured in number of characters.

For the purpose of computing F.9 and F.10, we in-
dexed each collection with the Terrier9 informa-
tion retrieval platform. Terrier was configured to
use a block indexing scheme with a Tf-idf weight-
ing model. Computation of all other features is
straightforward.

3.3 Classifier
We explored these feature vectors using various
classification approaches available in the Rapid-
Miner10 tool. Unlike many similar text and image

9http://ir.dcs.gla.ac.uk/terrier/
10http://rapid-i.com/

classification problems, we were unable to achieve
results with a Support Vector Machine (SVM)
learner (libSVMLearner) using the Radial Base
Function (RBF). Common cost and width parame-
ters were used, yet the SVM classified all terms as
ineffective. Identical results were observed using
a Naı̈ve Bayes (NB) learner.

For these reasons, we chose to use the Aver-
aged One-Dependence Estimator (AODE) learner
(Webb et al., 2005) available in RapidMiner.
AODE is capable of achieving highly accurate
classification results with the quick training time
usually associated with NB. Because this learner
does not handle continuous attributes, we pre-
processed our features with equal frequency dis-
cretization. The AODE learner was trained in a
ten-fold cross validation of our training data.

4 Results

Results relating to specific aspects of our work
(annotation, features and classification) are pre-
sented below.

4.1 Inter-Annotator Agreement

Two independent reviewers manually classified
the extracted terms from our evaluation data as
useful for indexing their associated images or not.
The inter-annotator agreement between reviewers
A and B is shown in the first row of Table 1. Al-
though both reviewers are physicians trained in
medical informatics, their initial agreement is only
moderate, with κ = 0.519. This illustrates the
subjective nature of manual ABIR and, in general,
the difficultly in reliably classifying potential in-
dexing terms for biomedical images.

Annotator Pr(a) Pr(e) κ

A/B 0.847 0.682 0.519
A/Standard 0.975 0.601 0.938
B/Standard 0.872 0.690 0.586

Table 1: Inter-annotator Agreement. The prob-
ability of agreement Pr(a), expected probability of
chance agreement Pr(e), and the associated Co-
hen’s kappa coefficient κ are given for each re-
viewer combination.

After their initial classification, the two review-
ers were instructed to collaboratively reevaluate
the subset of extracted terms upon which they dis-
agreed (roughly 15% of the terms) and create a
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Feature Gain χ2

F.1 CUI 0.003 13.331
F.2 Semantic Type 0.015 68.232
F.3 Presence in Caption 0.008 35.303
F.4 MeSH Ratio 0.043 285.701
F.5 Abstract Ratio 0.023 114.373
F.6 Title Ratio 0.021 132.651
F.7 Noun Ratio 0.053 287.494

Verb Ratio 0.009 26.723
Adjective Ratio 0.021 96.572
Adverb Ratio 0.002 5.271

F.8 Concept Ambiguity 0.008 33.824
F.9 Tf-idf 0.004 21.489
F.10 Document Location 0.002 12.245
F.11 Phrase Length 0.021 102.759

Table 2: Feature Comparison. The information
gain and chi-square statistic is shown for each fea-
ture. A higher score indicates greater influence on
term effectiveness.

gold standard evaluation. The second and third
rows of Table 1 suggest the resulting evaluation
strongly favors reviewer A’s initial classification
compared to that of reviewer B.

Since the reviewers of the training data each
classified terms from different sets of randomly
selected images, it is impossible to calculate their
inter-annotator agreement.

4.2 Effectiveness of Features

The effectiveness of individual features in describ-
ing the potential indexing terms is shown in Ta-
ble 2. We used two measures, both of which in-
dicate a similar trend, to calculate feature effec-
tiveness: Information gain (Kullback-Leibler di-
vergence) and the chi-square statistic.

Under both measures, the MeSH ratio (F.4) is
one of the most effective features. This makes
intuitive sense because MeSH terms are assigned
to articles by specially trained NLM profession-
als. Given the large size of the MeSH vocabu-
lary, it is not unreasonable to assume that an arti-
cle’s MeSH terms could be descriptive, at a coarse
granularity, of the images it contains. Also, the
subjectivity of the reviewers’ initial data calls into
question the usefulness of our training data. It
may be that MeSH terms, consistently assigned
to all documents in a particular collection, are a
more reliable determiner of the usefulness of po-

tential indexing terms. Furthermore, the study by
Demner-Fushman et al. (2008) found that, on aver-
age, roughly 25% of the additional (useful) terms
the reviewers added to the set of extracted terms
were also found in the MeSH terms assigned to
the document containing the particular image.

The abstract and title ratios (F.6 and F.5) also
had a significant effect on the classification out-
come. Similar to the argument for MeSH terms, as
these constructs are a coarse summary of the con-
tents of an article, it is not unreasonable to assume
they summarize the images contained therein.

Finally, the noun ratio (F.7) was a particularly
effective feature, and the length of the UMLS con-
cept (F.11) was moderately effective. Interest-
ingly, tf-idf and document location (F.9 and F.10),
both features computed using standard informa-
tion retrieval techniques, are among the least ef-
fective features.

4.3 Classification

While the AODE learner performed reasonably
well for this task, the difficulty encountered when
training the SVM learner may be explained as
follows. The initial inter-annotator agreement
of the evaluation data suggests that it is likely
that our training data contained contradictory or
mislabeled observations, preventing the construc-
tion of a maximal-margin hyperplane required by
the SVM. An SVM implementation utilizing soft
margins (Cortes and Vapnik, 1995) would likely
achieve better results on our data, although at the
expense of greater training time. The success of
the AODE learner in this case is probably due to
its resilience to mislabeled observations.

Annotator Precision Recall F1-score

A 0.258 0.442 0.326
B 0.200 0.225 0.212
Combined 0.326 0.224 0.266
Standard 0.453 0.229 0.304
Standarda 0.492 0.231 0.314
Training 0.502 0.332 0.400

Table 3: Classification Results. The classifier’s
precision and recall, as well as the corresponding
F1-score, are given for the responses of each re-
viewer.

aFor comparison, the classifier was also trained using the
subset of training data containing responses from reviewers
A and B only.
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Classification results are shown in Table 3. The
precision and recall of the classification scheme is
shown for the manual classification by reviewers
A and B in the first and second rows. The third
row contains the results obtained from combining
the results of the two reviewers, and the fourth row
shows the classification results compared to the
gold standard obtained after discovering the initial
inter-annotator agreement.

We hypothesized that the training data labels
may have been highly sensitive to the subjectiv-
ity of the reviewers. Therefore, we retrained the
learner with only those observations made by re-
viewers A and B (of the five total reviewers) and
again compared the classification results with the
gold standard. Not surprisingly, the F1-score of
this classification (shown in the fifth row) is some-
what improved compared to that obtained when
utilizing the full training set.

The last row in Table 3 shows the results of clas-
sifying the training data. That is, it shows the re-
sults of classifying one tenth of the data after a ten-
fold cross validation and can be considered an up-
per bound for the performance of this classifier on
our evaluation data. Notice that the associated F1-
score for this experiment is only marginally bet-
ter than that of the unseen data. This implies that
it is possible to use training data from particular
subdomains of the biomedical sciences (cardiol-
ogy and plastic surgery) to classify potential in-
dexing terms in other subdomains (dermatology).

Overall, the classifier performed best when ver-
ified with reviewer A, with an F1-score of 0.326.
Although this is relatively low for a classification
task, these results improve upon the baseline clas-
sification scheme (all extracted terms are useful
for indexing) with an F1-score of 0.182 (Demner-
Fushman et al., 2008). Thus, non-lexical features
can be leveraged, albeit to a small degree with
our current features and classifier, in automatically
selecting useful image indexing terms. In future
work, we intend to explore additional features and
alternative tools for mapping text to the UMLS.

5 Related Work

Non-lexical features have been successful in many
contexts, particularly in the areas of genre classifi-
cation and text and speech summarization.

Genre classification, unlike text classification,
discriminates between document style instead of
topic. Dewdney et al. (2001) show that non-lexical

features, such as parts of speech and line-spacing,
can be successfully used to classify genres, and
Ferizis and Bailey (2006) demonstrate that accu-
rate classification of Internet documents is possi-
ble even without the expensive part-of-speech tag-
ging of similar methods. Recall that the noun ratio
(F.7) was among the most effective of our features.

Finn and Kushmerick (2006) describe a study
in which they classified documents from various
domains as “subjective” or “objective.” They, too,
found that part-of-speech statistics as well as gen-
eral text statistics (e.g., average sentence length)
are more effective than the traditional bag-of-
words representation when classifying documents
from multiple domains. This supports the notion
that we can use non-lexical features to classify po-
tential indexing terms in one biomedical subdo-
main using training data from another.

Maskey and Hirschberg (2005) found that
prosodic features (see Ward, 2004) combined with
structural features are sufficient to summarize spo-
ken news broadcasts. Prosodic features relate to
intonational variation and are associated with par-
ticularly important items, whereas structural fea-
tures are associated with the organization of a typ-
ical broadcast: headlines, followed by a descrip-
tion of the stories, etc.

Finally, Schilder and Kondadadi (2008) de-
scribe non-lexical word-frequency features, sim-
ilar to our ratio features (F.4–F.7), which are
used with a regression SVM to efficiently gener-
ate query-based multi-document summaries.

6 Conclusion

Images convey essential information in biomedi-
cal publications. However, automatically extract-
ing and selecting useful indexing terms from the
article text is a difficult task given the domain-
specific nature of biomedical images and vocab-
ularies. In this work, we use the manual classifi-
cation results of a previous study to train a binary
classifier to automatically decide whether a poten-
tial indexing term is useful for this purpose or not.
We use non-lexical features generated for each
term with the most effective including whether the
term appears in the MeSH terms assigned to the
article and whether it is found in the article’s ti-
tle and caption. While our specific retrieval task
relates to the biomedical domain, our results in-
dicate that ABIR approaches to image retrieval in
any domain can benefit from an automatic annota-
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tion process utilizing non-lexical features to aid in
the selection of indexing terms or the reduction of
ineffective terms from a set of potential ones.
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Abstract 

This paper describes a fully incremental dia-
logue system that can engage in dialogues 
in a simple domain, number dictation. Be-
cause it uses incremental speech recognition 
and prosodic analysis, the system can give 
rapid feedback as the user is speaking, with 
a very short latency of around 200ms.  Be-
cause it uses incremental speech synthesis 
and self-monitoring, the system can react to 
feedback from the user as the system is 
speaking. A comparative evaluation shows 
that naïve users preferred this system over a 
non-incremental version, and that it was 
perceived as more human-like. 1 

1 Introduction 

A traditional simplifying assumption for spoken 
dialogue systems is that the dialogue proceeds 
with strict turn-taking between user and system. 
The minimal unit of processing in such systems 
is the utterance, which is processed in whole by 
each module of the system before it is handed on 
to the next. When the system is speaking an ut-
terance, it assumes that the user will wait for it to 
end before responding. (Some systems accept 
barge-ins, but then treat the interrupted utterance 
as basically unsaid.) 

Obviously, this is not how natural human-
human dialogue proceeds. Humans understand 
and produce language incrementally – they use 
multiple knowledge sources to determine when it 
is appropriate to speak, they give and receive 
backchannels in the middle of utterances, they 
start to speak before knowing exactly what to 
say, and they incrementally monitor the listener’s 
reactions to what they say (Clark, 1996).  

                                                           
1 The work reported in this paper was done while the first 
author was at the University of Potsdam. 

This paper presents a dialogue system, called 
NUMBERS, in which all components operate in-
crementally. We had two aims: First, to explore 
technical questions such as how the components 
of a modularized dialogue system should be ar-
ranged and made to interoperate to support in-
cremental processing, and which requirements 
incremental processing puts on dialogue system 
components (e.g., speech recognition, prosodic 
analysis, parsing, discourse modelling, action 
selection and speech synthesis).  Second, to in-
vestigate whether incremental processing can 
help us to better model certain aspects of human 
behaviour in dialogue systems – especially turn-
taking and feedback – and whether this improves 
the user’s experience of using such a system.   

2 Incremental dialogue processing  

All dialogue systems are ‘incremental’, in some 
sense – they proceed in steps through the ex-
change of ‘utterances’. However, incremental 
processing typically means more than this; a 
common requirement is that processing starts 
before the input is complete and that the first 
output increments are produced as soon as possi-
ble (e.g., Kilger & Finkler, 1995). Incremental 
modules hence are those where “Each processing 
component will be triggered into activity by a 
minimal amount of its characteristic input” 
(Levelt, 1989). If we assume that the ‘character-
istic input’ of a dialogue system is the utterance, 
this principle demands that ‘minimal amounts’ of 
an utterance already trigger activity. It should be 
noted though, that there is a trade-off between 
responsiveness and output quality, and that an 
incremental process therefore should produce 
output only as soon as it is possible to reach a 
desired output quality criterion.  

2.1 Motivations & related work 

The claim that humans do not understand and 
produce speech in utterance-sized chunks, but 
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rather incrementally, can be supported by an 
impressive amount of psycholinguistic literature 
on the subject (e.g., Tanenhaus & Brown-
Schmidt, 2008; Levelt, 1989). However, when it 
comes to spoken dialogue systems, the dominant 
minimal unit of processing has been the utter-
ance. Moreover, traditional systems follow a 
very strict sequential processing order of utter-
ances – interpretation, dialogue management, 
generation – and there is most often no monitor-
ing of whether (parts of) the generated message 
is successfully delivered.  

Allen et al. (2001) discuss some of the short-
comings of these assumptions when modelling 
more conversational human-like dialogue. First, 
they fail to account for the frequently found mid-
utterance reactions and feedback (in the form of 
acknowledgements, repetition of fragments or 
clarification requests). Second, people often 
seem to start to speak before knowing exactly 
what to say next (possibly to grab the turn), thus 
producing the utterance incrementally. Third, 
when a speaker is interrupted or receives feed-
back in the middle of an utterance, he is able to 
continue the utterance from the point where he 
was interrupted.  

Since a non-incremental system needs to proc-
ess the whole user utterance using one module at 
a time, it cannot utilise any higher level informa-
tion for deciding when the user’s turn or utter-
ance is finished, and typically has to rely only on 
silence detection and a time-out. Silence, how-
ever, is not a good indicator: sometimes there is 
silence but no turn-change is intended (e.g., hesi-
tations), sometimes there isn’t silence, but the 
turn changes (Sacks et al., 1974). Speakers ap-
pear to use other knowledge sources, such as 
prosody, syntax and semantics to detect or even 
project the end of the utterance. Attempts have 
been made to incorporate such knowledge 
sources for turn-taking decisions in spoken dia-
logue systems (e.g., Ferrer et al., 2002; Raux & 
Eskenazi, 2008). To do so, incremental dialogue 
processing is clearly needed. 

Incremental processing can also lead to better 
use of resources, since later modules can start to 
work on partial results and do not have to wait 
until earlier modules have completed processing 
the whole utterance. For example, while the 
speech recogniser starts to identify words, the 
parser can already add these to the chart. Later 
modules can also assist in the processing and for 
example resolve ambiguities as they come up. 
Stoness et al. (2004) shows how a reference reso-
lution module can help an incremental parser 

with NP suitability judgements. Similarly, Aist et 
al. (2006) shows how a VP advisor could help an 
incremental parser.  

On the output side, an incremental dialogue 
system could monitor what is actually happening 
to the utterance it produces. As discussed by 
Raux & Eskenazi (2007), most dialogue manag-
ers operate asynchronously from the output com-
ponents, which may lead to problems if the 
dialogue manager produces several actions and 
the user responds to one of them. If the input 
components do not have any information about 
the timing of the system output, they cannot re-
late them to the user’s response. This is even 
more problematic if the user reacts (for example 
with a backchannel) in the middle of system 
utterances. The system must then relate the 
user’s response to the parts of its planned output 
it has managed to realise, but also be able to stop 
speaking and possibly continue the interrupted 
utterance appropriately. A solution for handling 
mid-utterance responses from the user is pro-
posed by Dohsaka & Shimazu (1997). For in-
cremental generation and synthesis, the output 
components must also cope with the problem of 
revision (discussed in more detail below), which 
may for example lead to the need for the genera-
tion of speech repairs, as discussed by Kilger & 
Finkler (1995). 

As the survey above shows, a number of stud-
ies have been done on incrementality in different 
areas of language processing. There are, how-
ever, to our knowledge no studies on how the 
various components could or should be inte-
grated into a complete, fully incremental dia-
logue system, and how such a system might be 
perceived by naïve users, compared to a non-
incremental system. This we provide here. 

2.2 A general, abstract model 

The NUMBERS system presented in this paper can 
be seen as a specific instance (with some simpli-
fying assumptions) of a more general, abstract 
model that we have developed (Schlangen & 
Skantze, 2009). We will here only briefly de-
scribe the parts of the general model that are 
relevant for the exposition of our system. 

We model the dialogue processing system as a 
collection of connected processing modules. The 
smallest unit of information that is communi-
cated along the connections is called the incre-
mental unit (IU), the unit of the “minimal 
amount of characteristic input”. Depending on 
what the module does, IUs may be audio frames, 
words, syntactic phrases, communicative acts, 
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etc. The processing module itself is modelled as 
consisting of a Left Buffer (LB), the Processor 
proper, and a Right Buffer (RB). An example of 
two connected modules is shown in Figure 1. As 
IU1 enters the LB of module A, it may be con-
sumed by the processor. The processor may then 
produce new IUs, which are posted on the RB 
(IU2 in the example). As the example shows, the 
modules in the system are connected so that an 
IU posted on the RB in one module may be con-
sumed in the LB of another module. One RB 
may of course be connected to many other LB’s, 
and vice versa, allowing a range of different 
network topologies.    
 

 
Figure 1: Two connected modules. 

 
In the NUMBERS system, information is only 

allowed to flow from left to right, which means 
that the LB may be regarded as the input buffer 
and the RB as the output buffer. However, in the 
general model, information may flow in both 
directions.  

A more concrete example is shown in Figure 
2, which illustrates a module that does incre-
mental speech recognition. The IUs consumed 
from the LB are audio frames, and the IUs posted 
in the RB are the words that are recognised.  
 

 
Figure 2: Speech recognition as an example of incre-

mental processing. 
 

We identify three different generic module 
operations on IUs: update, purge and commit. 
First, as an IU is added to the LB, the processor 
needs to update its internal state. In the example 
above, the speech recogniser has to continuously 
add incoming audio frames to its internal state, 

and as soon as the recogniser receives enough 
audio frames to decide that the word “four” is a 
good-enough candidate, the IU holding this word 
will be put on the RB (time-point t1). If a proces-
sor only expects IUs that extend the rightmost IU 
currently produced, we can follow Wirén (1992) 
in saying that it is only left-to-right incremental.  
A fully incremental system (which we aim at 
here), on the other hand, also allows insertions 
and/or revisions.  

An example of revision is illustrated at time-
point t2 in Figure 2.  As more audio frames are 
consumed by the recogniser, the word “four” is 
no longer the best candidate for this stretch of 
audio. Thus, the module must now revoke the IU 
holding the word “four” (marked with a dotted 
outline) and add a new IU for the word “forty”. 
All other modules consuming these IUs must 
now purge them from their own states and pos-
sibly revoke other IUs. By allowing revision, a 
module may produce tentative results and thus 
make the system more responsive. 

As more audio frames are consumed in the ex-
ample above, a new word “five” is identified and 
added to the RB (time-point t3). At time-point t4, 
no more words are identified, and the module 
may decide to commit to the IUs that it has pro-
duced (marked with a darker shade). A commit-
ted IU is guaranteed to not being revoked later, 
and can hence potentially be removed from the 
processing window of later modules, freeing up 
resources. 

3 Number dictation: a micro-domain 

Building a fully incremental system with a be-
haviour more closely resembling that of human 
dialogue participants raises a series of new chal-
lenges. Therefore, in order to make the task more 
feasible, we have chosen a very limited domain – 
what might be called a micro-domain (cf. Edlund 
et al., 2008): the dictation of number sequences. 
In this scenario, the user dictates a sequence of 
numbers (such as a telephone number or a credit 
card number) to the dialogue system. This is a 
very common situation in commercial telephone-
based dialogue systems, which however operate 
in a non-incremental manner: The user is first 
asked to read out the whole number sequence, 
which the system then confirms. Should the rec-
ognition be incorrect, the user has to repeat the 
whole sequence again. In an incremental version 
of this scenario, the system might give continu-
ous feedback (such as acknowledgements and 
clarification requests) as the user is reading the 

forty five 

forty five 

four t1

forty 
four forty 

forty five 

forty five 

t2

t3

t4

time left buffer processor right buffer 
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left buffer 
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IU3 
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sequence. When the system repeats the sequence, 
the user is also given the opportunity to give 
feedback and make corrections at any time. Ob-
viously, such a dialogue will result in many more 
speaker-shifts, which in turn increases the need 
for the rapid turn-taking. Thus, while the number 
dictation task might appear simple at a first 
glance (very limited vocabulary, simple syntax 
and semantics), there are several issues – not 
typically considered in most dialogue systems – 
which an incremental and more human-like dia-
logue system must address. 

To explore dialogue phenomena in this do-
main, we gave 8 pairs of subjects the task of 
dictating number sequences to each other. The 
subjects were sitting in different rooms and used 
headsets to communicate. To induce more feed-
back behaviour, noise was randomly inserted in 
the utterances from the information giver (as in 
the setting used by Schlangen & Fernández 
(2007)). The subjects were all speaking German 
(their native tongue). The recorded dialogues 
were then transcribed and annotated. The ob-
served dialogue strategies directly influenced the 
design of our system (see below). Table 1 shows 
an example of a dialogue between a user and the 
system and illustrates some of the phenomena we 
intended to model. 

 
U.01 two five three - 
S.02 okay 
U.03 one forty, five - 
S.04 sorry, do you mean one and then forty and 

then five? 
U.05 no, one forty five 
S.06 okay, one forty five 
U.07 yeah, and six eight four - 
S.08 okay 
U.09 seven twelve nine. 
S.10 so, from the start, two five three - 
U.11 yeah 
S.12 one forty five - 
S.13 six six four - 
U.14 no, six eight four 
S.15 okay, six eight four - 
S.16 and then seven twelve nine. 
U.17 that’s right 

Table 1: An example dialogue between a user and 
the NUMBERS system. 

 
Just like in this example, a common strategy 

for the subjects was to first let the information 
giver read the number sequence and then switch 
roles and let the information follower repeat it. 
Instead of reading out the whole number se-
quence at once, subjects tended to package 

pieces of information into what Clark (1996) 
refers to as installments (in this case small 
groups of numbers). After each installment, the 
other speaker may react by giving an acknowl-
edgement (as in S.02) a clarification request (as 
in S.04), a correction (as in U.14), or do nothing 
(as after S.12).  

As there are a lot of speaker shifts, there needs 
to be a mechanism for rapid turn taking. In the 
example above, the system must recognize that 
the last digit in U.01, U.03, U.05 and U.07 ends 
an installment and calls for a reaction, while the 
last digit in U.09 ends the whole sequence. One 
information source that has been observed to be 
useful for this is prosody (Koiso et al., 1998). 
When analysing the recorded dialogues, it 
seemed like mid-sequence installments most 
often ended with a prolonged duration and a 
rising pitch, while end-sequence installments 
most often ended with a shorter duration and a 
falling pitch. How prosody is used by the 
NUMBERS system for this classification is de-
scribed in section 4.2.  

4 The NUMBERS system components 

The NUMBERS system has been implemented 
using the HIGGINS spoken dialogue system 
framework (Skantze, 2007). All modules have 
been adapted and extended to allow incremental 
processing. It took us roughly 6 months to im-
plement the changes described here to a fully 
working baseline system. Figure 3 shows the 
architecture of the system2.  
 

  
Figure 3: The system architecture.  

CA = communicative act. 
 

This is pretty much a standard dialogue system 
layout, with some exceptions that will be dis-
cussed below. Most notably perhaps is that dia-
logue management is divided into a discourse 
modelling module and an action manager. As can 

                                                           
2 A video showing an example run of the system has been 
uploaded to 
http://www.youtube.com/watch?v=_rDkb1K1si8 
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be seen in the figure, the discourse modeller also 
receives information about what the system itself 
says. The modules run asynchronously in sepa-
rate processes and communicate by sending 
XML messages containing the IUs over sockets.  

We will now characterize each system module 
by what kind of IUs they consume and produce, 
as well as the criteria for committing to an IU.  

4.1 Speech recognition  

The automatic speech recognition module (ASR) 
is based on the Sphinx 4 system (Lamere et al., 
2003). The Sphinx system is capable of incre-
mental processing, but we have added support 
for producing incremental results that are com-
patible with the HIGGINS framework. We have 
also added prosodic analysis to the system, as 
described in 4.2. For the NUMBERS domain, we 
use a very limited context-free grammar accept-
ing number words as well as some expressions 
for feedback and meta-communication.  

An illustration of the module buffers is shown 
in Figure 2 above. The module consumes audio 
frames (each 100 msec) from the LB and pro-
duces words with prosodic features in the RB. 
The RB is updated every time the sequence of 
top word hypotheses in the processing windows 
changes. After 2 seconds of silence has been 
detected, the words produced so far are commit-
ted and the speech recognition search space is 
cleared. Note that this does not mean that other 
components have to wait for this amount of si-
lence to pass before starting to process or that the 
system cannot respond until then – incremental 
results are produced as soon as the ASR deter-
mines that a word has ended.  

4.2 Prosodic analysis 

We implemented a simple form of prosodic 
analysis as a data processor in the Sphinx fron-
tend. Incremental F0-extraction is done by first 
finding pitch candidates (on the semitone scale) 
for each audio frame using the SMDSF algo-
rithm (Liu et al., 2005). An optimal path between 
the candidates is searched for, using dynamic 
programming (maximising candidate confidence 
scores and minimising F0 shifts). After this, me-
dian smoothing is applied, using a window of 5 
audio frames.  

In order for this sequence of F0 values to be 
useful, it needs to be parameterized. To find out 
whether pitch and duration could be used for the 
distinction between mid-sequence installments 
and end-sequence installments, we did a machine 
learning experiment on the installment-ending 

digits in our collected data. There were roughly 
an equal amount of both types, giving a majority 
class baseline of 50.9%. 

As features we calculated a delta pitch pa-
rameter for each word by computing the sum of 
all F0 shifts (negative or positive) in the pitch 
sequence. (Shifts larger than a certain threshold 
(100 cents) were excluded from the summariza-
tion, in order to sort out artefacts.) A duration 
parameter was derived by calculating the sum of 
the phoneme lengths in the word, divided by the 
sum of the average lengths of these phonemes in 
the whole data set. Both of these parameters 
were tested as predictors separately and in com-
bination, using the Weka Data Mining Software 
(Witten & Frank, 2005). The best results were 
obtained with a J.48 decision tree, and are shown 
in Table 2. 

 
Baseline 50.9% 
Pitch 81.2% 
Duration 62.4% 
Duration + Pitch 80.8% 

Table 2: The results of the installment classifica-
tion (accuracy). 
 
 As the table shows, the best predictor was 

simply to compare the delta pitch parameter 
against an optimal threshold. While the perform-
ance of 80.8% is significantly above baseline, it 
could certainly be better. We do not know yet 
whether the sub-optimal performance is due to 
the fact that the speakers did not always use 
these prosodic cues, or whether there is room for 
improvement in the pitch extraction and parame-
terization. 

Every time the RB of the ASR is updated, the 
delta pitch parameter is computed for each word 
and the derived threshold is used to determine a 
pitch slope class (rising/falling) for the word. 
(Note that there is no class for a flat pitch. This 
class is not really needed here, since the digits 
within installments are followed by no or only 
very short pauses.) The strategy followed by the 
system then is this: when a digit with a rising 
pitch is detected, the system plans to immedi-
ately give a mid-sequence reaction utterance, and 
does so if indeed no more words are received. If 
a digit with a falling pitch is detected, the system 
plans an end-of-sequence utterance, but waits a 
little bit longer before producing it, to see if there 
really are no more words coming in. In other 
words, the system bases its turn-taking decisions 
on a combination of ASR, prosody and silence-
thresholds, where the length of the threshold 
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differs for different prosodic signals, and where 
reactions are planned already during the silence. 
(This is in contrast to Raux & Eskenazi (2008), 
where context-dependent thresholds are used as 
well, but only simple end-pointing is performed.) 

The use of prosodic analysis in combination 
with incremental processing allows the 
NUMBERS system to give feedback after mid-
sequence installments in about 200 ms. This 
should be compared with most dialogue systems 
which first use a silence threshold of about 750-
1500 msec, after which each module must proc-
ess the utterance. 

4.3 Semantic parsing 

For semantic parsing, the incremental processing 
in the HIGGINS module PICKERING (Skantze & 
Edlund, 2004) has been extended. PICKERING is 
based on a modified chart parser which adds 
automatic relaxations to the CFG rules for ro-
bustness, and produces semantic interpretations 
in the form of concept trees. It can also use fea-
tures that are attached to incoming words, such 
as prosody and timestamps. For example, the 
number groups in U.03 and U.05 in Table 1 ren-
der different parses due to the pause lengths be-
tween the words. 

The task of PICKERING in the NUMBERS do-
main is very limited. Essentially, it identifies 
communicative acts (CAs), such as number in-
stallments. The only slightly more complex pars-
ing is that of larger numbers such as “twenty 
four”. There are also cases of “syntactic ambigu-
ity”, as illustrated in U.03 in the dialogue exam-
ple above ("forty five" as "45" or "40 5"). In the 
NUMBERS system, only 1-best hypotheses are 
communicated between the modules, but 
PICKERING can still assign a lower parsing confi-
dence score to an ambiguous interpretation, 
which triggers a clarification request in S.04. 

Figure 4 show a very simple example of the 
incremental processing in PICKERING. The LB 
contains words with prosodic features produced 
by the ASR (compare with Figure 2 above). The 
RB consists of the CAs that are identified. Each 
time a word is added to the chart, PICKERING 
continues to build the chart and then searches for 
an optimal sequence of CAs in the chart, allow-
ing non-matching words in between. To handle 
revision, a copy of the chart is saved after each 
word has been added. 

 

 
Figure 4: Incremental parsing. There is a jump in time 

between t4 and t5. 
 

As can be seen at time-point t4, even if all 
words that a CA is based on are committed, the 
parser does not automatically commit the CA. 
This is because later words may still cause a 
revision of the complex output IU that has been 
built. As a heuristic, PICKERING instead waits 
until a CA is followed by three words that are not 
part of it until it commits, as shown at time-point 
t5. After a CA has been committed, the words 
involved may be cleared from the chart. This 
way, PICKERING parses a “moving window” of 
words.  

4.4 Discourse modelling 

For discourse modelling, the HIGGINS module 
GALATEA  (Skantze, 2008) has been extended to 
operate incrementally. The task of GALATEA  is 
to interpret utterances in their context by trans-
forming ellipses into full propositions, indentify 
discourse entities, resolve anaphora and keep 
track of the grounding status of concepts (their 
confidence score and when they have been 
grounded in the discourse). As can be seen in 
Figure 3, GALATEA  models both utterances from 
the user as well as the system. This makes it 
possible for the system to monitor its own utter-
ances and relate them to the user’s utterances, by 
using timestamps produced by the ASR and the 
speech synthesiser. 

In the LB GALATEA  consumes CAs from both 
the user (partially committed, as seen in Figure 
4) and the system (always committed, see 4.6). 
In the RB GALATEA  produces an incremental 
discourse model. This model contains a list of 
resolved communicative acts and list of resolved 
discourse entities. This model is then consulted 
by an action manager which decides what the 
system should do next. The discourse model is 
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committed up to the point of the earliest non-
committed incoming CA. In the NUMBERS do-
main, the discourse entities are the number in-
stallments.  

4.5 Action management  

Based on the discourse model (from the LB), the 
action manager (AM) generates system actions 
(CAs) in semantic form (for GALATEA ) with an 
attached surface form (for the TTS), and puts 
them on the RB. (In future extensions of the sys-
tem, we will add an additional generation module 
that generates the surface form from the semantic 
form.) In the NUMBERS system, possible system 
actions are acknowledgements, clarification re-
quests and repetitions of the number sequence. 
The choice of actions to perform is based on the 
grounding status of the concepts (which is repre-
sented in the discourse model). For example, if 
the system has already clarified the first part of 
the number sequence due to an ambiguity, it does 
not need to repeat this part of the sequence again. 

The AM also attaches a desired timing to the 
produced CA, relative to the end time of last user 
utterance. For example, if a number group with a 
final rising pitch is detected, the AM may tell the 
TTS to execute the CA immediately after the 
user has stopped speaking. If there is a falling 
pitch, it may tell the TTS to wait until 500 msec 
of silence has been detected from the user before 
executing the action. If the discourse model gets 
updated during this time, the AM may revoke 
previous CAs and replace them with new ones.  

4.6 Speech synthesis 

A diphone MBROLA text-to-speech synthesiser 
(TTS) is used in the system (Dutoit et al., 1996), 
and a wrapper for handling incremental process-
ing has been implemented. The TTS consumes 
words linked to CAs from the LB, as produced 
by the AM. As described above, each CA has a 
timestamp. The TTS places them on a queue, and 
prepares to synthesise and start sending the audio 
to the speakers. When the system utterance has 
been played, the corresponding semantic con-
cepts for the CA are sent to GALATEA . If the 
TTS is interrupted, the semantic fragments of the 
CA that corresponds to the words that were spo-
ken are sent. This way, GALATEA  can monitor 
what the system actually says and provide the 
AM with this information. Since the TTS only 
sends (parts of) the CAs that have actually been 
spoken, these are always marked as committed.  

There is a direct link from the ASR to the TTS 
as well (not shown in Figure 3), informing the 

TTS of start-of-speech and end-of-speech events. 
As soon as a start-of-speech event is detected, 
the TTS stops speaking. If the TTS does not re-
ceive any new CAs from the AM as a conse-
quence of what the user said, it automatically 
resumes from the point of interruption. (This 
implements a "reactive behaviour" in the sense of 
(Brooks, 1991), which is outside of the control of 
the AM.)   

An example of this is shown in Table 1. After 
U.09, the AM decides to repeat the whole num-
ber sequence and sends a series of CAs to the 
TTS for doing this. After S.10, the user gives 
feedback in the form of an acknowledgement 
(U.11). This causes the TTS to make a pause. 
When GALATEA  receives the user feedback, it 
uses the time-stamps to find out that the feedback 
is related to the number group in S.10 and the 
grounding status for this group is boosted. When 
the AM receives the updated discourse model, it 
decides that this does not call for any revision to 
the already planned series of actions. Since the 
TTS does not receive any revisions, it resumes 
the repetition of the number sequence in S.12. 

The TTS module is fully incremental in that it 
can stop and resume speaking in the middle of an 
utterance, revise planned output, and can inform 
other components of what (parts of utterances) 
has been spoken. However, the actual text-to-
speech processing is done before the utterance 
starts and not yet incrementally as the utterance 
is spoken, which could further improve the effi-
ciency of the system. This is a topic for future 
research, together with the generation of hidden 
and overt repair as discussed by Kilger & Finkler 
(1995).  

5 Evaluation  

It is difficult to evaluate complete dialogue sys-
tems such as the one presented here, since there 
are so many different components involved (but 
see Möller et al. (2007) for methods used). In our 
case, we’re interested in the benefits of a specific 
aspect, though, namely incrementality. No 
evaluation is needed to confirm that an incre-
mental system such as this allows more flexible 
turn-taking and that it can potentially respond 
faster – this is so by design. However, we also 
want this behaviour to result in an improved user 
experience. To test whether we have achieved 
this, we implemented for comparison a non-
incremental version of the system, very much 
like a standard number dictation dialogue in a 
commercial application. In this version, the user 
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is asked to read out the whole number sequence 
in one go. After a certain amount of silence, the 
system confirms the whole sequence and asks a 
yes/no question whether it was correct. If not, the 
user has to repeat the whole sequence.  

Eight subjects were given the task of using the 
two versions of the system to dictate number 
sequences (in English) to the system. (The sub-
jects were native speakers of German with a 
good command of English.) Half of the subjects 
used the incremental version first and the other 
half started with the non-incremental version. 
They were asked to dictate eight number se-
quences to each version, resulting in 128 dia-
logues. For each sequence, they were given a 
time limit of 1 minute. After each sequence, they 
were asked whether they had succeeded in dictat-
ing the sequence or not, as well as to mark their 
agreement (on a scale from 0-6) with statements 
concerning how well they had been understood 
by the system, how responsive the system was, if 
the system behaved as expected, and how hu-
man-like the conversational partner was. After 
using both versions of the system, they were also 
asked whether they preferred one of the versions 
and to what extent (1 or 2 points, which gives a 
maximum score of 16 to any version, when total-
ling all subjects).  

There was no significant difference between 
the two versions with regard to how many of the 
tasks were completed successfully. However, the 
incremental version was clearly preferred in the 
overall judgement (9 points versus 1). Only one 
of the more specific questions yielded any sig-
nificant difference between the versions: the 
incremental version was judged to be more hu-
man-like for the successful dialogues (5,2 on 
average vs. 4,5; Wilcoxon signed rank test; 
p<0.05).  

The results from the evaluation are in line with 
what could be expected. A non-incremental sys-
tem can be very efficient if the system under-
stands the number sequence the first time, and 
the ASR vocabulary is in this case very limited, 
which explains why the success-rate was the 
same for both systems. However, the incremental 
version was experienced as more pleasant and 
human-like. One explanation for the better rating 
of the incremental version is that the acknowl-
edgements encouraged the subjects to package 
the digits into installments, which helped the 
system to better read back the sequence using the 
same installments. 

6 Conclusions and future work 

To sum up, we have presented a dialogue system 
that through the use of novel techniques (incre-
mental prosodic analysis, reactive connection 
between ASR and TTS, fully incremental archi-
tecture) achieves an unprecedented level of reac-
tiveness (from a minimum latency of 750ms, as 
typically used in dialogue systems, down to one 
of 200ms), and is consequently evaluated as 
more natural than more typical setups by human 
users. While the domain we've used is relatively 
simple, there are no principled reasons why the 
techniques introduced here should not scale up. 

In future user studies, we will explore which 
factors contribute to the improved experience of 
using an incremental system. Such factors may 
include improved responsiveness, better install-
ment packaging, and more elaborate feedback. It 
would also be interesting to find out when rapid 
responses are more important (e.g. acknowl-
edgements), and when they may be less impor-
tant (e.g., answers to task-related questions). 

We are currently investigating the transfer of 
the prosodic analysis to utterances in a larger 
domain, where similarly instructions by the user 
can be given in installments. But even within the 
currently used micro-domain, there are interest-
ing issues still to be explored. In future versions 
of the system, we will let the modules pass paral-
lel hypotheses and also improve the incremental 
generation and synthesis. Since the vocabulary is 
very limited, it would also be possible to use a 
limited domain synthesis (Black & Lenzo, 2000), 
and explore how the nuances of different back-
channels might affect the dialogue. Another chal-
lenge that can be researched within this micro-
domain is how to use the prosodic analysis for 
other tasks, such as distinguishing correction 
from dictation (for example if U.14 in Table 1 
would not begin with a “no”). In general, we 
think that this paper shows that narrowing down 
the domain while shifting the focus to the model-
ling of more low-level, conversational dialogue 
phenomena is a fruitful path. 
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Abstract

We propose an unsupervised method for
distinguishing literal and non-literal us-
ages of idiomatic expressions. Our
method determines how well a literal inter-
pretation is linked to the overall cohesive
structure of the discourse. If strong links
can be found, the expression is classified
as literal, otherwise as idiomatic. We show
that this method can help to tell apart lit-
eral and non-literal usages, even for id-
ioms which occur in canonical form.

1 Introduction

Texts frequently contain expressions whose mean-
ing is not strictly literal, such as metaphors or id-
ioms. Non-literal expressions pose a major chal-
lenge to natural language processing as they often
exhibit lexical and syntactic idiosyncrasies. For
example, idioms can violate selectional restric-
tions (as in push one’s luck under the assumption
that only concrete things can normally be pushed),
disobey typical subcategorisation constraints (e.g.,
in line without a determiner before line), or change
the default assignments of semantic roles to syn-
tactic categories (e.g., in break sth with X the ar-
gument X would typically be an instrument but for
the idiom break the ice it is more likely to fill a
patient role, as in break the ice with Russia).

To avoid erroneous analyses, a natural language
processing system should recognise if an expres-
sion is used non-literally. While there has been a
lot of work on recognising idioms (see Section 2),
most previous approaches have focused on a type-
based classification, dividing expressions into “id-
iom” or “not an idiom” irrespective of their actual
use in a discourse context. However, while some

expressions, such as by and large, always have a
non-compositional, idiomatic meaning, many id-
ioms, such as break the ice or spill the beans, share
their linguistic form with perfectly literal expres-
sions (see examples (1) and (2), respectively). For
some expressions, such as drop the ball, the lit-
eral usage can even dominate in some domains.
Hence, whether a potentially ambiguous expres-
sion has literal or non-literal meaning has to be
inferred from the discourse context.

(1) Dad had to break the ice on the chicken troughs so
that they could get water.

(2) Somehow I always end up spilling the beans all
over the floor and looking foolish when the clerk
comes to sweep them up.

Type-based idiom classification thus only ad-
dresses part of the problem. While it can au-
tomatically compile lists of potentially idiomatic
expressions, it does not say anything about the
idiomaticity of an expression in a particular
context. In this paper, we propose a novel,
cohesion-based approach for detecting non-literal
usages (token-based idiom classification). Our
approach is unsupervised and similar in spirit to
Hirst and St-Onge’s (1998) method for detecting
malapropisms. Like them, we rely on the presence
or absence of cohesive links between the words in
a text. However, unlike Hirst and St-Onge we do
not require a hand-crafted resource like WordNet
or Roget’s Thesaurus; our approach is knowledge-
lean.

2 Related Work

Most studies on idiom classification focus on type-
based classification; few researchers have worked
on token-based approaches. Type-based meth-
ods frequently exploit the fact that idioms have
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a number of properties which differentiate them
from other expressions. Apart from not having a
(strictly) compositional meaning, they also exhibit
some degree of syntactic and lexical fixedness. For
example, some idioms do not allow internal modi-
fiers (*shoot the long breeze) or passivisation (*the
bucket was kicked). They also typically only al-
low very limited lexical variation (*kick the vessel,
*strike the bucket).

Many approaches for identifying idioms focus
on one of these two aspects. For instance, mea-
sures that compute the association strength be-
tween the elements of an expression have been
employed to determine its degree of composition-
ality (Lin, 1999; Fazly and Stevenson, 2006) (see
also Villavicencio et al. (2007) for an overview
and a comparison of different measures). Other
approaches use Latent Semantic Analysis (LSA)
to determine the similarity between a potential id-
iom and its components (Baldwin et al., 2003).
Low similarity is supposed to indicate low com-
positionality. Bannard (2007) proposes to iden-
tify idiomatic expressions by looking at their syn-
tactic fixedness, i.e., how likely they are to take
modifiers or be passivised, and comparing this to
what would be expected based on the observed
behaviour of the component words. Fazly and
Stevenson (2006) combine information about syn-
tactic and lexical fixedness (i.e., estimated degree
of compositionality) into one measure.

The few token-based approaches include a
study by Katz and Giesbrecht (2006), who devise
a supervised method in which they compute the
meaning vectors for the literal and non-literal us-
ages of a given expression in the training data. An
unseen test instance of the same expression is then
labelled by performing a nearest neighbour classi-
fication. They report an average accuracy of 72%,
though their evaluation is fairly small scale, using
only one expression and 67 instances. Birke and
Sarkar (2006) model literal vs. non-literal classi-
fication as a word sense disambiguation task and
use a clustering algorithm which compares test in-
stances to two automatically constructed seed sets
(one with literal and one with non-literal expres-
sions), assigning the label of the closest set. While
the seed sets are created without immediate human
intervention they do rely on manually created re-
sources such as databases of known idioms.

Cook et al. (2007) and Fazly et al. (To appear)
propose an alternative method which crucially re-

lies on the concept of canonical form (CForm).
It is assumed that for each idiom there is a fixed
form (or a small set of those) corresponding to
the syntactic pattern(s) in which the idiom nor-
mally occurs (Riehemann, 2001).1 The canoni-
cal form allows for inflectional variation of the
head verb but not for other variations (such as
nominal inflection, choice of determiner etc.). It
has been observed that if an expression is used
idiomatically, it typically occurs in its canonical
form. For example, Riehemann (2001, p. 34)
found that for decomposable idioms 75% of the
occurrences are in canonical form, rising to 97%
for non-decomposable idioms.2 Cook et al. ex-
ploit this behaviour and propose an unsupervised
method in which an expression is classified as id-
iomatic if it occurs in canonical form and literal
otherwise. Canonical forms are determined auto-
matically using a statistical, frequency-based mea-
sure. The authors report an average accuracy of
72% for their classifier.

3 Using Lexical Cohesion to Identify
Idiomatic Expressions

3.1 Lexical Cohesion
In this paper we exploit lexical cohesion to detect
idiomatic expressions. Lexical cohesion is a prop-
erty exhibited by coherent texts: concepts referred
to in individual sentences are typically related to
other concepts mentioned elsewhere (Halliday and
Hasan, 1976). Such sequences of semantically re-
lated concepts are called lexical chains. Given
a suitable measure of semantic relatedness, such
chains can be computed automatically and have
been used successfully in a number of NLP appli-
cations, starting with Hirst and St-Onge’s (1998)
seminal work on detecting real-word spelling er-
rors. Their approach is based on the insight that
misspelled words do not “fit” their context, i.e.,
they do not normally participate in lexical chains.
Content words which do not belong to any lexi-
cal chain but which are orthographically close to
words which do, are therefore good candidates for
spelling errors.

Idioms behave similarly to spelling errors in
that they typically also do not exhibit a high de-

1This is also the form in which an idiom is usually listed
in a dictionary.

2Decomposable idioms are expressions such as spill the
beans which have a composite meaning whose parts can be
mapped to the words of the expression (e.g., spill→’reveal’,
beans→’secret’).
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gree of lexical cohesion with their context, at least
not if one assumes a literal meaning for their com-
ponent words. Hence if the component words of a
potentially idiomatic expression do not participate
in any lexical chain, it is likely that the expression
is indeed used idiomatically, otherwise it is prob-
ably used literally. For instance, in example (3),
where the expression play with fire is used in a lit-
eral sense, the word fire does participate in a chain
(shown in bold face) that also includes the words
grilling, dry-heat, cooking, and coals, while for
the non-literal usage in example (4) there are no
chains which include fire.3

(3) Grilling outdoors is much more than just an-
other dry-heat cooking method. It’s the chance
to play with fire, satisfying a primal urge to stir
around in coals .

(4) And PLO chairman Yasser Arafat has accused Is-
rael of playing with fire by supporting HAMAS in
its infancy.

Unfortunately, there are also a few cases in
which a cohesion-based approach fails. Some-
times an expression is used literally but does not
feature prominently enough in the discourse to
participate in a chain, as in example (5) where the
main focus of the discourse is on the use of mor-
phine and not on children playing with fire.4 The
opposite case also exists: sometimes idiomatic us-
ages do exhibit lexical cohesion on the component
word level. This situation is often a consequence
of a deliberate “play with words”, e.g. the use of
several related idioms or metaphors (see example
(6)). However, we found that both cases are rel-
atively rare. For instance, in a study of 75 literal
usages of various expressions, we only discovered
seven instances in which no relevant chain could
be found, including some cases where the context
was too short to establish the cohesive structure
(e.g., because the expression occurred in a head-
line).

(5) Chinamasa compared McGown’s attitude to mor-
phine to a child’s attitude to playing with fire – a
lack of concern over the risks involved.

(6) Saying that the Americans were
”playing with fire” the official press specu-
lated that the ”gunpowder barrel” which is Taiwan
might well ”explode” if Washington and Taipei do
not put a stop to their ”incendiary gesticulations.”

3Idioms may, of course, link to the surrounding discourse
with their idiomatic meaning, i.e., for play with fire one may
expect other words in the discourse which are related to the
concept “danger”.

4Though one could argue that there is a chain linking child
and play which points to the literal usage here.

3.2 Modelling Semantic Relatedness
While a cohesion-based approach to token-based
idiom classification should be intuitively success-
ful, its practical usefulness depends crucially on
the availability of a suitable method for computing
semantic relatedness. This is currently an area of
active research. There are two main approaches.
Methods based on manually built lexical knowl-
edge bases, such as WordNet, model semantic re-
latedness by computing the shortest path between
two concepts in the knowledge base and/or by
looking at word overlap in the glosses (see Budan-
itsky and Hirst (2006) for an overview). Distribu-
tional approaches, on the other hand, rely on text
corpora, and model relatedness by comparing the
contexts in which two words occur, assuming that
related words occur in similar context (e.g., Hindle
(1990), Lin (1998), Mohammad and Hirst (2006)).
More recently, there has also been research on us-
ing Wikipedia and related resources for modelling
semantic relatedness (Ponzetto and Strube, 2007;
Zesch et al., 2008).

All approaches have advantages and disadvan-
tages. WordNet-based approaches, for instance,
typically have a low coverage and only work
for so-called “classical relations” like hypernymy,
antonymy etc. Distributional approaches usually
conflate different word senses and may therefore
lead to unintuitive results. For our task, we need to
model a wide range of semantic relations (Morris
and Hirst, 2004), for example, relations based on
some kind of functional or situational association,
as between fire and coal in (3) or between ice and
water in example (1). Likewise we also need to
model relations between non-nouns, for instance
between spill and sweep up in example (2). Some
relations also require world-knowledge, as in ex-
ample (7), where the literal usage of drop the
ball is not only indicated by the presence of goal-
keeper but also by knowing that Wayne Rooney
and Kevin Campbell are both football players.

(7) When Rooney collided with the goalkeeper, caus-
ing him to drop the ball, Kevin Campbell fol-
lowed in.

We thus decided against a WordNet-based mea-
sure of semantic relatedness, opting instead for a
distributional approach, Normalized Google Dis-
tance (NGD, see Cilibrasi and Vitanyi (2007)),
which computes relatedness on the basis of page
counts returned by a search engine. NGD is a mea-
sure of association that quantifies the strength of a
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relationship between two words. It is defined as
follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log M −min{log f(x), log f(y)}
(8)

where x and y are the two words whose asso-
ciation strength is computed (e.g., fire and coal),
f(x) is the page count returned by the search en-
gine for the term x (and likewise for f(y) and y),
f(x, y) is the page count returned when querying
for “x AND y” (i.e., the number of pages that con-
tain both, x and y), and M is the number of web
pages indexed by the search engine. The basic idea
is that the more often two terms occur together rel-
ative to their overall occurrence the more closely
they are related. For most pairs of search terms
the NGD falls between 0 and 1, though in a small
number of cases NGD can exceed 1 (see Cilibrasi
and Vitanyi (2007) for a detailed discussion of the
mathematical properties of NGD).

Using web counts rather than bi-gram counts
from a corpus as the basis for computing semantic
relatedness was motivated by the fact that the web
is a significantly larger database than any com-
piled corpus, which makes it much more likely
that we can find information about the concepts we
are looking for (thus alleviating data sparseness).
The information is also more up-to-date, which is
important for modelling the kind of world knowl-
edge about named entities we need to resolve ex-
amples like (7). Furthermore, it has been shown
that web counts can be used as reliable proxies for
corpus-based counts and often lead to better sta-
tistical models (Zhu and Rosenfeld, 2001; Lapata
and Keller, 2005).

To obtain the web counts we used Yahoo rather
than Google because we found Yahoo gave us
more stable counts over time. Both the Yahoo
and the Google API seemed to have problems with
very high frequency words, so we excluded those
cases. Effectively, this amounted to filtering out
function words. As it is difficult to obtain reli-
able figures for the number of pages indexed by a
search engine, we approximated this number (M
in formula (8) above) by setting it to the number
of hits obtained for the word the, assuming that
this word occurs in virtually all English language
pages (Lapata and Keller, 2005). When generat-
ing the queries we made sure that we queried for
all combinations of inflected forms (for example

“fire AND coal” would be expanded to “fire AND
coal”, “fires AND coal”, “fire AND coals”, and
“fires AND coals”). The inflected forms were gen-
erated by the morph tools developed at the Univer-
sity of Sussex (Minnen et al., 2001).5

3.3 Cohesion-based Classifiers

We implemented two cohesion-based classifiers:
the first one computes the lexical chains for the
input text and classifies an expression as literal or
non-literal depending on whether its component
words participate in any of the chains, the second
classifier builds a cohesion graph and determines
how this graph changes when the expression is in-
serted or left out.

Chain-based classifier Various methods for
building lexical chains have been proposed in the
literature (Hirst and St-Onge, 1998; Barzilay and
Elhadad, 1997; Silber and McCoy, 2002) but the
basic idea is as follows: the content words of the
text are considered in sequence and for each word
it is determined whether it is similar enough to (the
words in) one of the existing chains to be placed
in that chain, if not it is placed in a chain of its
own. Depending on the chain building algorithm
used, a word is placed in a chain if it is related to
one other word in the chain or to all of them. The
latter strategy is more conservative and tends to
lead to shorter but more reliable chains and it is the
method we adopted here.6 Note that the chaining
algorithm has a free parameter, namely a threshold
which has to be surpassed to consider two words
related (relatedness threshold).

On the basis of the computed chains, the classi-
fier has to decide whether the target expression is
used literally or not. A simple strategy would clas-
sify an expression as literal whenever one or more
of its component words participates in any chain.
However, as the chains are potentially noisy, this
may not be the best strategy. We therefore also
evaluate the strength of the chain(s) in which the
expression participates. If a component word of
the expression participates in a long chain (and is
related to all words in the chain, as we require)

5The tools are available at: http://www.
informatics.susx.ac.uk/research/groups/
nlp/carroll/morph.html.

6If a WordNet-based relatedness measure is used, the
chaining algorithm has to perform word sense disambigua-
tion as well. As we use a distributional relatedness measure
which conflates different senses anyway, we do not have to
disambiguate here.
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then this is good evidence that the expression is
indeed used in a literal sense. For instance, in
(3) the word fire belongs to the relatively long
chain grilling – dry-heat – cooking – fire – coals,
providing strong evidence of literal usage of play
with fire. To determine the strength of the evi-
dence in favour of a literal interpretation, we take
the longest chain in which any of the component
words of the idiom participate7 and check whether
this is above a predefined threshold (the classifi-
cation threshold). Both the relatedness threshold
and the classification threshold are set empirically
by optimising on a manually annotated develop-
ment set (see Section 4.2).

Graph-based classifier The chain-based clas-
sifier has two parameters which need to be op-
timised on labelled data, making this method
weakly supervised. To overcome this drawback,
we designed a second classifier which does not
have free parameters and is thus fully unsuper-
vised. This classifier relies on cohesion graphs.
The vertices of such a cohesion graph correspond
to the (content) word tokens in the text, each pair
of vertices is connected by an edge and the edges
are weighted by the semantic relatedness (i.e., the
inverse NGD) between the two words. The co-
hesion graph for example (1) is shown in Figure 1
(for expository reasons, edge weights are excluded
from the figure). Once we have built the cohe-
sion graph we compute its connectivity (defined
as the average edge weight) and compare it to the
connectivity of the graph that results from remov-
ing the (component words of the) target expres-
sion. For instance in Figure 1, we would com-
pare the connectivity of the graph as it is shown
to the connectivity that results from removing the
dashed edges. If removing the idiom words from
the graph leads to a higher connectivity, we as-
sume that the idiom is used non-literally, other-
wise we assume it is used literally. In Figure 1,
for example, most edges would have a relatively
low weight, indicating a weak relation between the
words they link. The edge between ice and water,
however, would have a higher weight. Removing
ice from the graph would therefore lead to a de-
creased connectivity and the classifier would pre-
dict that break the ice is used in the literal sense
in example (1). Effectively, we replace the ex-

7Note, that it is not only the noun that can participate in a
chain. In example (2), the word spill can be linked to sweep
up to provide evidence of literal usage.

break ice

water

troughschicken

Dad

Figure 1: Cohesion graph for example (1)

plicit thresholds of the lexical chain method by
an implicit threshold (i.e., change in connectivity),
which does not have to be optimised.

4 Evaluating the Cohesion-Based
Approach

We tested our two cohesion-based classifiers as
well as a supervised classifier on a manually an-
notated data set. Section 4.2 gives details of the
experiments and results. We start, however, by de-
scribing the data used in the experiments.

4.1 Data

We chose 17 idioms from the Oxford Dictionary
of Idiomatic English (Cowie et al., 1997) and other
idiom lists found on the internet. The idioms were
more or less selected randomly, subject to two
constraints: First, because the focus of the present
study is on distinguishing literal and non-literal us-
age, we chose expressions for which we assumed
that the literal meaning was not too infrequent. We
thus disregarded expressions like play the second
fiddle or sail under false colours. Second, in line
with many previous approaches to idiom classifi-
cation (Fazly et al., To appear; Cook et al., 2007;
Katz and Giesbrecht, 2006), we focused mainly on
expressions of the form V+NP or V+PP as this is
a fairly large group and many of these expressions
can be used literally as well, making them an ideal
test set for our purpose. However, our approach
also works for expressions which match a differ-
ent syntactic pattern and to test the generality of
our method we included a couple of these in the
data set (e.g., get one’s feet wet). For the same rea-
son, we also included some expressions for which
we could not find a literal use in the corpus (e.g.,
back the wrong horse).

For each of the 17 expressions shown in Ta-
ble 1, we extracted all occurrences found in the
Gigaword corpus that were in canonical form (the
forms listed in the table plus inflectional varia-
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tions of the head verb).8 Hence, for rock the boat
we would extract rocked the boat and rocking the
boat but not rock a boat, rock the boats or rock
the ship. The motivation for this was two-fold.
First, as was discussed in Section 2, the vast ma-
jority of idiomatic usages are in canonical form.
This is especially true for non-decomposable id-
ioms (most of our 17 idioms), where only around
3% of the idiomatic usages are not in canonical
form. Second, we wanted to test whether our ap-
proach would be able to detect literal usages in the
set of canonical form expressions as this is pre-
cisely the set of expressions that would be classi-
fied as idiomatic by the unsupervised CForm clas-
sifier (Cook et al. (2007), Fazly et al. (To appear)).
While expressions in the canonical form are more
likely to be used idiomatically, it is still possible
to find literal usages as in examples (1) and (2).
For some expressions, such as drop the ball the
literal usage even outweighs the non-literal usage.
These literal usages would be mis-classified by the
CForm classifier.

In principle, though, our approach is very gen-
eral and would also work on expressions that are
not in canonical form and expressions whose id-
iomatic status is unclear, i.e., we do not necessar-
ily require a predefined set of idioms but could run
the classifiers on any V+NP or V+PP chunk.

For each extracted example, we included five
paragraphs of context (the current paragraph plus
the two preceding and following ones).9 This was
the context used by the classifiers. The examples
were then labelled as “literal” or “non-literal” by
an experienced annotator. If the distinction could
not be made reliably, e.g., because the context
was not long enough to disambiguate, the anno-
tator was allowed to annotate “?”. These cases
were excluded from the data sets. To estimate
the reliability of our annotation, a randomly se-
lected sample (300 instances) was annotated inde-
pendently by a second annotator. The annotations
deviated in eight cases from the original, amount-
ing to an inter-annotator agreement of over 97%
and a kappa score of 0.7 (Cohen, 1960). All de-
viations were cases in which one of the annotators
chose “?”, often because there was not sufficient
context and the annotation decision had to be made
on the basis of world knowledge.

8The extraction was done via manually built regular ex-
pressions.

9Note that paragraphs tend to be rather short in newswire.
For other genres it may be sufficient to extract one paragraph.

expression literal non-literal all
back the wrong horse 0 25 25
bite off more than one can chew 2 142 144
bite one’s tongue 16 150 166
blow one’s own trumpet 0 9 9
bounce off the wall* 39 7 46
break the ice 20 521 541
drop the ball* 688 215 903
get one’s feet wet 17 140 157
pass the buck 7 255 262
play with fire 34 532 566
pull the trigger* 11 4 15
rock the boat 8 470 478
set in stone 9 272 281
spill the beans 3 172 175
sweep under the carpet 0 9 9
swim against the tide 1 125 126
tear one’s hair out 7 54 61
all 862 3102 3964

Table 1: Idiom statistics (* indicates expressions
for which the literal usage is more common than
the non-literal one)

4.2 Experimental Set-Up and Results

For the lexical chain classifier we ran two experi-
ments. In the first, we used the data for one expres-
sion (break the ice) as a development set for opti-
mising the two parameters (the relatedness thresh-
old and the classification threshold). To find good
thresholds, a simple hill-climbing search was im-
plemented during which we increased the relat-
edness threshold in steps of 0.02 and the classi-
fication threshold (governing the minimum chain
length needed) in steps of 1. We optimised the F-
Score for the literal class, though we found that the
selected parameters varied only minimally when
optimising for accuracy. We then used the param-
eter values determined in this way and applied the
classifier to the remainder of the data.

The results obtained in this way depend to some
extent on the data set used for the parameter set-
ting.10 To control this factor, we also ran another
experiment in which we used an oracle to set the
parameters (i.e., the parameters were optimised for
the complete set). While this is not a realistic sce-
nario as it assumes that the labels of the test data
are known during parameter setting, it does pro-
vide an upper bound for the lexical chain method.

For comparison, we also implemented an in-
formed baseline classifier, which employs a sim-
ple model of cohesion, classifying expressions as

10We also ran the experiment for different development
sets and found that there was a relatively high degree of vari-
ation in the parameters selected and in the results obtained
with those settings.
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literal if the noun inside the expression (e.g., ice
for break the ice) is repeated elsewhere in the con-
text, and non-literal otherwise. One would expect
this classifier to have a high precision for literal
expressions but a low recall.

Finally, we implemented a supervised classi-
fier. Supervised classifiers have been used be-
fore for this task, notably by Katz and Giesbrecht
(2006). Our approach is slightly different: in-
stead of creating meaning vectors we look at the
word overlap11 of a test instance with the literal
and non-literal instances in the training set (for the
same expression) and then assign the label of the
closest set.

That such an approach might be promising be-
comes clear when one looks at some examples of
literal and non-literal usage. For instance, non-
literal examples of break the ice occur frequently
with words such as diplomacy, relations, dialogue
etc. Effectively these words form lexical chains
with the idiomatic meaning of break the ice. They
are absent for literal usages. A supervised classi-
fier can learn which terms are indicative of which
usage. Note that this information is expression-
specific, i.e., it is not possible to train a classifier
for play with fire on labelled examples for break
the ice. This makes the supervised approach quite
expensive in terms of annotation effort as data has
to be labelled for each expression. Nonetheless, it
is instructive to see how well one could do with
this approach. In the experiments, we ran the su-
pervised classifier in leave-one-out mode on each
expression for which we had literal examples.

Table 2 shows the results for the five classi-
fiers discussed above: the informed baseline clas-
sifier (Rep), the cohesion graph (Graph), the lexi-
cal chain classifier with the parameters optimised
on break the ice (LC), the lexical chain classifier
with the parameters set by an oracle (LC-O), and
the supervised classifier (Super). The table also
shows the accuracy that would be obtained by a
CForm classifier (Cook et al., 2007; Fazly et al.,
To appear) with gold standard canonical forms.
This classifier would label all examples in our data
set as “non-literal” (it is thus equivalent to a ma-
jority class baseline). Since the majority of ex-
amples is indeed used idiomatically, this classifier
achieves a relatively high accuracy. However, ac-
curacy is not the best evaluation measure here be-

11We used the Dice coefficient as implemented in Ted Ped-
ersen’s Text::Similarity module: http://www.d.umn.
edu/˜tpederse/text-similarity.html.

CForm Rep Graph LC LC-O Super
Acc 78.25 79.06 79.61 80.50 80.42 95.69
Pl - 70.00 52.21 62.26 53.89 84.62
Rl - 5.96 67.87 26.21 69.03 96.45
Fl - 10.98 59.02 36.90 60.53 90.15

Table 2: Accuracy, literal precision (Pl), recall
(Rl), and F-Score (Fl) for the classifiers

cause we are interested in detecting literal usages
among the canonical forms. Therefore, we also
computed the precision (Pl), recall (Rl), and F-
score (Fl) for the literal class.

It can be seen that all classifiers obtain a rela-
tively high accuracy but vary in precision, recall
and F-Score. For the CForm classifier, precision,
recall, and F-Score are undefined as it does not
label any examples as “literal”. As expected the
baseline classifier, which looks for repetitions of
the component words of the target expression, has
a relatively high precision, showing that the ex-
pression is typically used in the literal sense if part
of it is repeated in the context. The recall, though,
is very low, indicating that lexical repetition is not
a sufficient signal for literal usage.

The graph-based classifier and the globally op-
timised lexical chain classifier (LC-O) outperform
the other two unsupervised classifiers (CForm and
Rep), with an F-Score of around 60%. For both
classifiers recall is higher than precision. Note,
however, that this is an upper bound for the lexical
chain classifier that would not be obtained in a re-
alistic scenario. An example of the values that can
be expected in a realistic setting (with parameter
optimisation on a development set that is separate
from the test set) is shown in column five (LC).
Here the F-Score is much lower due to lower re-
call. This classifier is too conservative when cre-
ating the chains and deciding how to interpret the
chain structure; it thus only rarely outputs the lit-
eral class. The reason for this conservatism may
be that literal usages of break the ice (the develop-
ment data) tend to have very strong chains, hence
when optimising the parameters for this data set, it
pays to be conservative. It is positive to note that
the (unsupervised) graph-based classifier performs
just as well as the (weakly supervised) chain-based
classifier does under optimal circumstances. This
means that one can by-pass the parameter setting
and the need to label development data by employ-
ing the graph-based method.

Finally, as expected, the supervised classifier
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outperforms all other classifiers. It does so by a
large margin, which is surprising given that it is
based on relatively simplistic model. This shows
that the context in which an expression occurs
can really provide vital cues about its idiomatic-
ity. Note that our results are noticeably higher than
those reported by Cook et al. (2007), Fazly et al.
(To appear) and Katz and Giesbrecht (2006) for
similar supervised classifiers. We believe that this
may be partly explained by the size of our data set
which is significantly larger than the ones used in
these studies.

To assess how well our cohesion-based ap-
proach works for different idioms, we also com-
puted the accuracy of the graph-based classifier for
each expression individually (Table 3). We report
accuracy here rather than literal F-Score as the lat-
ter is often undefined for the individual data sets
(either because all examples of an expression are
non-literal or because the classifier only predicts
non-literal usages). It can be seen that the perfor-
mance of the classifier is generally relatively sta-
ble, with accuracies above 50% for most idioms.12

In particular, the classifier performs well on both,
expressions with a dominant non-literal meaning
and those with a dominant literal meaning; it is not
biased towards the non-literal class. For expres-
sions with a dominant literal meaning like drop the
ball, it correctly classifies more items as “literal”
(530 items, 472 of which are correct) than as “non-
literal” (373 items, 157 correct).

5 Conclusion

In this paper, we described a novel method for
token-based idiom classification. Our approach is
based on the observation that literally used expres-
sions typically exhibit cohesive ties with the sur-
rounding discourse, while idiomatic expressions
do not. Hence idiomatic expressions can be de-
tected by the absence of such ties. We propose two
methods that exploit this behaviour, one based on
lexical chains, the other based on cohesion graphs.

We showed that a cohesion-based approach is
well suited for distinguishing literal and non-
literal usages, even for expressions in canonical
form which tend to be largely idiomatic and would
all be classified as non-literal by the previously
proposed CForm classifier. Moreover, our find-

12Note that the data set for the worst performing idiom,
blow one’s own trumpet only contained 9 instances. Hence,
the low performance for this idiom may well be accidental.

expression Accuracy
back the wrong horse 68.00
bite off more than one can chew 79.17
bite one’s tongue 37.35
blow one’s own trumpet 11.11
bounce off the wall* 47.82
break the ice 85.03
drop the ball* 69.66
get one’s feet wet 64.33
pass the buck 82.44
play with fire 82.33
pull the trigger* 60.00
rock the boat 98.95
set in stone 85.41
spill the beans 83.43
sweep under the carpet 88.89
swim against the tide 93.65
tear one’s hair out 49.18

Table 3: Accuracies of the graph-based classifier
on each of the expressions (* indicates a dominant
literal usage)

ings suggest that the graph-based method per-
forms nearly as well as the best performance to be
expected for the chain-based method. This means
that the task can be addressed in a completely un-
supervised way.

While our results are encouraging they are still
below the results obtained by a basic supervised
classifier. In future work we would like to explore
whether better performance can be achieved by
adopting a bootstrapping strategy, in which we use
the examples about which the unsupervised clas-
sifier is most confident (i.e., those with the largest
difference in connectivity in either direction) as in-
put for a second stage supervised classifier.

Another potential improvement has to do with
the way in which the cohesion graph is computed.
Currently the graph includes all content words in
the context. This means that the graph is rela-
tively big and removing the potential idiom often
does not have a big effect on the connectivity; all
changes in connectivity are fairly close to zero.
In future, we want to explore intelligent strategies
for pruning the graph (e.g., by including a smaller
context). We believe that this might result in more
reliable classifications.
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Abstract

This paper describes POS tagging exper-
iments with semi-supervised training as
an extension to the (supervised) averaged
perceptron algorithm, first introduced for
this task by (Collins, 2002). Experiments
with an iterative training on standard-sized
supervised (manually annotated) dataset
(106 tokens) combined with a relatively
modest (in the order of 108 tokens) un-
supervised (plain) data in a bagging-like
fashion showed significant improvement
of the POS classification task on typo-
logically different languages, yielding bet-
ter than state-of-the-art results for English
and Czech (4.12 % and 4.86 % relative er-
ror reduction, respectively; absolute accu-
racies being 97.44 % and 95.89 %).

1 Introduction

Since 2002, we have seen a renewed interest in
improving POS tagging results for English, and
an inflow of results (initial or improved) for many
other languages. For English, after a relatively big
jump achieved by (Collins, 2002), we have seen
two significant improvements: (Toutanova et al.,
2003) and (Shen et al., 2007) pushed the results
by a significant amount each time.1

1In our final comparison, we have also included the re-
sults of (Giménez and Màrquez, 2004), because it has sur-
passed (Collins, 2002) as well and we have used this tag-
ger in the data preparation phase. See more details below.
Most recently, (Suzuki and Isozaki, 2008) published their
Semi-supervised sequential labelling method, whose results
on POS tagging seem to be optically better than (Shen et al.,
2007), but no significance tests were given and the tool is not
available for download, i.e. for repeating the results and sig-
nificance testing. Thus, we compare our results only to the
tools listed above.

Even though an improvement in POS tagging
might be a questionable enterprise (given that its
effects on other tasks, such as parsing or other
NLP problems are less than clear—at least for En-
glish), it is still an interesting problem. Moreover,
the “ideal”2 situation of having a single algorithm
(and its implementation) for many (if not all) lan-
guages has not been reached yet. We have cho-
sen Collins’ perceptron algorithm because of its
simplicity, short training times, and an apparent
room for improvement with (substantially) grow-
ing data sizes (see Figure 1). However, it is clear
that there is usually little chance to get (substan-
tially) more manually annotated data. Thus, we
have been examining the effect of adding a large
monolingual corpus to Collins’ perceptron, appro-
priately extended, for two typologically different
languages: English and Czech. It is clear however
that the features (feature templates) that the tag-
gers use are still language-dependent.

One of the goals is also to have a fast im-
plementation for tagging large amounts of data
quickly. We have experimented with various clas-
sifier combination methods, such as those de-
scribed in (Brill and Wu, 1998) or (van Halteren et
al., 2001), and got improved results, as expected.
However, we view this only as a side effect (yet, a
positive one)—our goal was to stay on the turf of
single taggers, which are both the common ground
for competing on tagger accuracy today and also
significantly faster at runtime.3 Nevertheless, we
have found that it is advantageous to use them to
(pre-)tag the large amounts of plain text data dur-

2We mean easy to use for further research on problems
requiring POS tagging, especially multilingual ones.

3And much easier to (re)implement as libraries in proto-
type systems, which is often difficult if not impossible with
other people’s code.
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Figure 1: Accuracy of the original averaged per-
ceptron, supervised training on PTB/WSJ (En-
glish)

ing the training phase.
Apart from feeding the perceptron by various

mixtures of manually tagged (“supervised”) and
auto-tagged (“unsupervised”)4 data, we have also
used various feature templates extensively; for ex-
ample, we use lexicalization (with the added twist
of lemmatization, useful especially for Czech, an
inflectionally rich language), “manual” tag clas-
sification into large classes (again, useful espe-
cially for Czech to avoid the huge, still-to-be-
overcome data sparseness for such a language5),
and sub-lexical features mainly targeted at OOV
words. Inspired i.a. by (Toutanova et al., 2003)
and (Hajič and Vidová-Hladká, 1998), we also use
“lookahead” features (however, we still remain
in the left-to-right HMM world – in this respect
our solution is closer to the older work of (Hajič
and Vidová-Hladká, 1998) than to (Toutanova et
al., 2003), who uses bidirectional dependencies
to include the right-hand side disambiguated tags,

4For brevity, we will use the terms “supervised” and “un-
supervised” data for “manually annotated” and “(automat-
ically annotated) plain (raw) text” data, respectively, even
though these adjectives are meant to describe the process of
learning, not the data themselves.

5As (Hajič, 2004) writes, Czech has 4400 plausible tags,
of which we have observed almost 2000 in the 100M cor-
pus we have used in our experiments. However, only 1100
of them have been found in the manually annotated PDT 2.0
corpus (the corpus on which we have based the supervised
experiments). The situation with word forms (tokens) is even
worse: Czech has about 20M different word forms, and the
OOV rate based on the 1.5M PDT 2.0 data and measured
against the 100M raw corpus is almost 10 %.

which we cannot.)
To summarize, we can describe our system as

follows: it is based on (Votrubec, 2006)’s imple-
mentation of (Collins, 2002), which has been fed
at each iteration by a different dataset consisting
of the supervised and unsupervised part: precisely,
by a concatenation of the manually tagged training
data (WSJ portion of the PTB 3 for English, mor-
phologically disambiguated data from PDT 2.0 for
Czech) and a chunk of automatically tagged unsu-
pervised data. The “parameters” of the training
process (feature templates, the size of the unsu-
pervised chunks added to the trainer at each itera-
tion, number of iterations, the combination of tag-
gers that should be used in the auto-tagging of the
unsupervised chunk, etc.) have been determined
empirically in a number of experiments on a de-
velopment data set. We should also note that as a
result of these development-data-based optimiza-
tions, no feature pruning has been employed (see
Section 4 for details); adding (even lexical) fea-
tures from the auto-tagged data did not give signif-
icant accuracy improvements (and only made the
training very slow).

The final taggers have surpassed the current
state-of-the-art taggers by significant margins (we
have achieved 4.12 % relative error reduction for
English and 4.86 % for Czech over the best pre-
viously published results, single or combined),
using a single tagger. However, the best En-
glish tagger combining some of the previous state-
of-the-art ones is still “optically” better (yet not
significantly—see Section 6).

2 The perceptron algorithm

We have used the Morče6 tagger (Votrubec, 2006)
as a main component in our experiments. It is a
reimplementation of the averaged perceptron de-
scribed in (Collins, 2002), which uses such fea-
tures that it behaves like an HMM tagger and thus
the standard Viterbi decoding is possible. Collins’
GEN(x) set (a set of possible tags at any given
position) is generated, in our case, using a mor-
phological analyzer for the given language (essen-

6The name “Morče” stands for “MORfologie ČEštiny”
(“Czech morphology”, see (Votrubec, 2006)), since it
has been originally developed for Czech. We keep this
name in this paper as the generic name of the aver-
aged perceptron tagger for the English-language experi-
ments as well. We have used the version available at
http://ufal.mff.cuni.cz/morce/.
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tially, a dictionary that returns all possible tags7

for an input word form). The transition and out-
put scores for the candidate tags are based on a
large number of binary-valued features and their
weights, which are determined during iterative
training by the averaged perceptron algorithm.

The binary features describe the tag being pre-
dicted and its context. They can be derived from
any information we already have about the text at
the point of decision (respecting the HMM-based
overall setting). Every feature can be true or false
in a given context, so we can consider the true fea-
tures at the current position to be the description
of a tag and its context.

For every feature, the perceptron keeps its
weight coefficient, which is (in its basic version)
an integer number, (possibly) changed at every
training sentence. After its final update, this in-
teger value is stored with the feature to be later
retrieved and used at runtime. Then, the task of
the perceptron algorithm is to sum up all the co-
efficients of true features in a given context. The
result is passed to the Viterbi algorithm as a tran-
sition and output weight for the current state.8 We
can express it as

w(C, T ) =
n∑

i=1

αi.φi(C, T ) (1)

where w(C, T ) is the transition weight for tag T
in context C, n is the number of features, αi is the
weight coefficient of the ith feature and φi(C, T )
is the evaluation of the ith feature for context C
and tag T . In the averaged perceptron, the val-
ues of every coefficient are added up at each up-
date, which happens (possibly) at each training
sentence, and their arithmetic average is used in-
stead.9 This trick makes the algorithm more re-
sistant to weight oscillations during training (or,
more precisely, at the end of it) and as a result, it
substantially improves its performance.10

7And lemmas, which are then used in some of the fea-
tures. A (high recall, low precision) “guesser” is used for
OOV words.

8Which identifies unambiguously the corresponding tag.
9Implementation note: care must be taken to avoid inte-

ger overflows, which (at 100 iterations through millions of
sentences) can happen for 32bit integers easily.

10Our experiments have shown that using averaging helps
tremendously, confirming both the theoretical and practical
results of (Collins, 2002). On Czech, using the best feature
set, the difference on the development data set is 95.96 % vs.
95.02 %. Therefore, all the results presented in the following
text use averaging.

The supervised training described in (Collins,
2002) uses manually annotated data for the esti-
mation of the weight coefficients α. The train-
ing algorithm is very simple—only integer num-
bers (counts and their sums for the averaging) are
updated for each feature at each sentence with
imperfect match(es) found against the gold stan-
dard. Therefore, it can be relatively quickly re-
trained and thus many different feature sets and
other training parameters, such as the number of
iterations, feature thresholds etc. can be con-
sidered and tested. As a result of this tuning,
our (fully supervised) version of the Morče tag-
ger gives the best accuracy among all single tag-
gers for Czech and also very good results for En-
glish, being beaten only by the tagger (Shen et al.,
2007) (by 0.10 % absolute) and (not significantly)
by (Toutanova et al., 2003).

3 The data

3.1 The “supervised” data

For English, we use the same data division of Penn
Treebank (PTB) parsed section (Marcus et al.,
1994) as all of (Collins, 2002), (Toutanova et al.,
2003), (Giménez and Màrquez, 2004) and (Shen
et al., 2007) do; for details, see Table 1.

data set tokens sentences

train (0-18) 912,344 38,220
dev-test (19-21) 131,768 5,528
eval-test (22-24) 129,654 5,463

Table 1: English supervised data set — WSJ part
of Penn Treebank 3

For Czech, we use the current standard Prague
Dependency Treebank (PDT 2.0) data sets (Hajič
et al., 2006); for details, see Table 2.

data set tokens sentences

train 1,539,241 91,049
dev-test 201,651 11,880
eval-test 219,765 13,136

Table 2: Czech supervised data set — Prague De-
pendency Treebank 2.0

3.2 The “unsupervised” data

For English, we have processed the North Amer-
ican News Text corpus (Graff, 1995) (without the
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WSJ section) with the Stanford segmenter and to-
kenizer (Toutanova et al., 2003). For Czech, we
have used the SYN2005 part of Czech National
Corpus (CNC, 2005) (with the original segmenta-
tion and tokenization).

3.3 GEN(x): The morphological analyzers

For English, we perform a very simple morpholog-
ical analysis, which reduces the full PTB tagset to
a small list of tags for each token on input. The re-
sulting list is larger than such a list derived solely
from the PTB/WSJ, but much smaller than a full
list of tags found in the PTB/WSJ.11 The English
morphological analyzer is thus (empirically) opti-
mized for precision while keeping as high recall
as possible (it still overgenerates). It consists of a
small dictionary of exceptions and a small set of
general rules, thus covering also a lot of OOV to-
kens.12

For Czech, the separate morphological analyzer
(Hajič, 2004) usually precedes the tagger. We use
the version from April 2006 (the same as (Spous-
tová et al., 2007), who reported the best previous
result on Czech tagging).

4 The perceptron feature sets

The averaged perceptron’s accuracy is determined
(to a large extent) by the set of features used. A
feature set is based on feature templates, i.e. gen-
eral patterns, which are filled in with concrete val-
ues from the training data. Czech and English
are morphosyntactically very different languages,
therefore each of them needs a different set of
feature templates. We have empirically tested
hundreds of feature templates on both languages,
taken over from previous works for direct compar-
ison, inspired by them, or based on a combination
of previous experience, error analysis and linguis-
tic intuition.

In the following sections, we present the best
performing set of feature templates as determined
on the development data set using only the super-
vised training setting; our feature templates have
thus not been influenced nor extended by the un-
supervised data.13

11The full list of tags, as used by (Shen et al., 2007), also
makes the underlying Viterbi algorithm unbearably slow.

12The English morphology tool is also downloadable as a
separate module on the paper’s accompanying website.

13Another set of experiments has shown that there is not,
perhaps surprisingly, a significant gain in doing so.

4.1 English feature templates
The best feature set for English consists of 30 fea-
ture templates. All templates predict the current
tag as a whole. A detailed description of the En-
glish feature templates can be found in Table 3.

Context predicting whole tag

Tags Previous tag
Previous two tags
First letter of previous tag

Word forms

Current word form
Previous word form
Previous two word forms
Following word form
Following two word forms
Last but one word form

Current word affixes Prefixes of length 1-9
Suffixes of length 1-9

Current word features
Contains number
Contains dash
Contains upper case letter

Table 3: Feature templates for English

A total of 1,953,463 features has been extracted
from the supervised training data using the tem-
plates from Table 3.

4.2 Czech feature templates
The best feature set for Czech consists of 63 fea-
ture templates. 26 of them predict current tag as
a whole, whereas the rest predicts only some parts
of the current tag separately (e.g., detailed POS,
gender, case) to avoid data sparseness. Such a fea-
ture is true, in an identical context, for several dif-
ferent tags belonging to the same class (e.g., shar-
ing a locative case). The individual grammatical
categories used for such classing have been cho-
sen on both linguistic grounds (POS, detailed fine-
grained POS) and also such categories have been
used which contribute most to the elimination of
the tagger errors (based on an extensive error anal-
ysis of previous results, the detailed description of
which can be found in (Votrubec, 2006)).

Several features can look ahead (to the right
of the current position) - apart from the obvious
word form, which is unambiguous, we have used
(in case of ambiguity) a random tag and lemma of
the first position to the right from the current po-
sition which might be occupied with a verb (based
on dictionary and the associated morphological
guesser restrictions).

A total of 8,440,467 features has been extracted
from the supervised training data set. A detailed
description is included in the distribution down-
loadable from the Morče website.
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5 The (un)supervised training setup

We have extended the averaged perceptron setup
in the following way: the training algorithm is
fed, in each iteration, by a concatenation of the
supervised data (the manually tagged corpus) and
the automatically pre-tagged unsupervised data,
different for each iteration (in this order). In
other words, the training algorithm proper does
not change at all: it is the data and their selection
(including the selection of the way they are auto-
matically tagged) that makes all the difference.

The following “parameters” of the (unsuper-
vised part of the) data selection had to be deter-
mined experimentally:

• the tagging process for tagging the selected
data

• the selection mechanism (sequential or ran-
dom with/without replacement)

• the size to use for each iteration

• and the use and order of concatenation with
the manually tagged data.

We have experimented with various settings to
arrive at the best performing configuration, de-
scribed below. In each subsection, we compare
the result of our ,,winning“ configuration with re-
sults of the experiments which have the selected
attributes omitted or changed; everything is mea-
sured on the development data set.

5.1 Tagging the plain data

In order to simulate the labeled training events,
we have tagged the unsupervised data simply by
a combination of the best available taggers. For
practical reasons (to avoid prohibitive training
times), we have tagged all the data in advance, i.e.
no re-tagging is performed between iterations.

The setup for the combination is as follows (the
idea is simplified from (Spoustová et al., 2007)
where it has been used in a more complex setting):

1. run N different taggers independently;

2. join the results on each position in the data
from the previous step — each token thus
ends up with between 1 and N tags, a union
of the tags output by the taggers at that posi-
tion;

3. do final disambiguation (by a single tag-
ger14).

Tagger Accuracy

Morče 97.21
Shen 97.33

Combination 97.44

Table 4: Dependence on the tagger(s) used to tag
the additional plain text data (English)16

Table 4 illustrates why it is advantageous to go
through this (still)16 complicated setup against a
single-tagger bootstrapping mechanism, which al-
ways uses the same tagger for tagging the unsu-
pervised data.

For both English and Czech, the selection of
taggers, the best combination and the best over-
all setup has been optimized on the development
data set. A bit surprisingly, the final setup is very
similar for both languages (two taggers to tag the
data in Step 1, and a third one to finish it up).

For English, we use three state-of-the-art tag-
gers: the taggers of (Toutanova et al., 2003) and
(Shen et al., 2007) in Step 1, and the SVM tag-
ger (Giménez and Màrquez, 2004) in Step 3. We
run the taggers with the parameters which were
shown to be the best in the corresponding papers.
The SVM tagger needed to be adapted to accept
the (reduced) list of possible tags.17

For Czech, we use the Feature-based tagger
(Hajič, 2004) and the Morče tagger (with the new
feature set as described in section 4) in Step 1, and
an HMM tagger (Krbec, 2005) in Step 3. This
combination outperforms the results in (Spoustová
et al., 2007) by a small margin.

5.2 Selection mechanism for the plain data
We have found that it is better to feed the training
with different chunks of the unsupervised data at
each iteration. We have then experimented with

14This tagger (possibly different from any of the N taggers
from Step 1) runs as usual, but it is given a minimal list of (at
most N ) tags that come from Step 2 only.

15”Accuracy” means accuracy of the semi-supervised
method using this tagger for pre-tagging the unsupervised
data, not the accuracy of the tagger itself.

16In fact, we have experimented with other tagger
combinations and configurations as well—with the TnT
(Brants, 2000), MaxEnt (Ratnaparkhi, 1996) and TreeTag-
ger (Schmid, 1994), with or without the Morče tagger in the
pack; see below for the winning combination.

17This patch is available on the paper’s website (see Sec-
tion 7).
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three methods of unsupervised data selection, i.e.
generating the unsupervised data chunks for each
training iteration from the ,,pool“ of sentences.
These methods are: simple sequential chopping,
randomized data selection with replacement and
randomized selection without replacement. Ta-
ble 5 demonstrates that there is practically no dif-
ference in the results. Thus, we use the sequential
chopping mechanism, mainly for its simplicity.

Method of data selection English Czech

Sequential chopping 97.44 96.21
Random without replacement 97.44 96.20

Random with replacement 97.44 96.21

Table 5: Unsupervised data selection

5.3 Joining the data

We have experimented with various sizes of the
unsupervised parts (from 500k tokens to 5M) and
also with various numbers of iterations. The best
results (on the development data set) have been
achieved with the unsupervised chunks containing
approx. 4 million tokens for English and 1 million
tokens for Czech. Each training process consists
of (at most) 100 iterations (Czech) or 50 iterations
(English); therefore, for the 50 (100) iterations we
needed only about 200,000,000 (100,000,000) to-
kens of raw texts. The best development data set
results have been (with the current setup) achieved
on the 44th (English) and 33th (Czech) iteration.

The development data set has been also used to
determine the best way to “merge” the manually
labeled data (the PTB/WSJ and the PDT 2.0 train-
ing data) and the unsupervised parts of the data.
Given the properties of the perceptron algorithm,
it is not too surprising that the best solution is to
put (the full size of) the manually labeled data first,
followed by the (four) million-token chunk of the
automatically tagged data (different data in each
chunk but of the same size for each iteration). It
corresponds to the situation when the trainer is pe-
riodically “returned to the right track” by giving it
the gold standard data time to time.

Figure 2 (English) and especially Figure 3
(Czech) demonstrate the perceptron behavior in
cases where the supervised data precede the un-
supervised data only in selected iterations. A sub-
set of these development results is also present in
Table 6.
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Figure 2: Dependence on the inclusion of the su-
pervised training data (English)

English Czech

No supervised data 97.37 95.88
Once at the beginning 97.40 96.00

Every training iteration 97.44 96.21

Table 6: Dependence on the inclusion of the su-
pervised training data

5.4 The morphological analyzers and the
perceptron feature templates

The whole experiment can be performed with
the original perceptron feature set described in
(Collins, 2002) instead of the feature set described
in this article. The results are compared in Table 7
(for English only).

Also, for English it is not necessary to use our
morphological analyzer described in section 3.3
(other variants are to use the list of tags derived
solely from the WSJ training data or to give each
token the full list of tags found in WSJ). It is
practically impossible to perform the unsupervised
training with the full list of tags (it would take sev-
eral years instead of several days with the default
setup), thus we compare only the results with mor-
phological analyzer to the results with the list of
tags derived from the training data, see Table 8.

It can be expected (some approximated exper-
iments were performed) that the results with the
full list of tags would be very similar to the results
with the morphological analyzer, i.e. the morpho-
logical analyzer is used mainly for technical rea-
sons. Our expectations are based mainly (but not

768



0 10 20 30 40 50

95
.6

95
.7

95
.8

95
.9

96
.0

96
.1

96
.2

Iteration

A
cc

ur
ac

y 
on

 d
ev

el
op

m
en

t d
at

a

Every iteration
Every 4th iteration
Every 8th iteration
Every 16th iteration
Once at the beginning    
No supervised data

Figure 3: Dependence on the inclusion of the su-
pervised training data (Czech)

only) on the supervised training results, where the
performance of the taggers using the morpholog-
ical analyzer output and using the full list of tags
are nearly the same, see Table 9.

Feature set Accuracy

Collins’ 97.38
Our’s 97.44

Table 7: Dependence on the feature set used by the
perceptron algorithm (English)

GEN(x) Accuracy

List of tags derived from train 97.13
Our morphological analyzer 97.44

Table 8: Dependence on the GEN(x)

6 Results

In Tables 10 and 11, the main results (on the eval-
test data sets) are summarized. The state-of-the
art taggers are using feature sets discribed in the
corresponding articles ((Collins, 2002), (Giménez
and Màrquez, 2004), (Toutanova et al., 2003) and
(Shen et al., 2007)), Morče supervised and Morče
semi-supervised are using feature set desribed in
section 4.

For significance tests, we have used the paired
Wilcoxon signed rank test as implemented in the
R package (R Development Core Team, 2008)

GEN(x) Accuracy

List of tags derived from train 95.89
Our morphological analyzer 97.17

Full tagset 97.15

Table 9: Supervised training results: dependence
on the GEN(x)

Tagger accuracy
Collins 97.07 %
SVM 97.16 %

Stanford 97.24 %
Shen 97.33 %

Morče supervised 97.23 %
combination 97.48 %

Morče semi-supervised 97.44 %

Table 10: Evaluation of the English taggers

Tagger accuracy
Feature-based 94.04 %

HMM 94.82 %
Morče supervised 95.67 %

combination 95.70 %
Morče semi-supervised 95.89 %

Table 11: Evaluation of the Czech taggers

in wilcox.test(), dividing the data into 100
chunks (data pairs).

6.1 English

The combination of the three existing English tag-
gers seems to be best, but it is not significantly
better than our semi-supervised approach.

The combination is significantly better than
(Shen et al., 2007) at a very high level, but more
importantly, Shen’s results (currently represent-
ing the replicable state-of-the-art in POS tagging)
have been significantly surpassed also by the semi-
supervised Morče (at the 99 % confidence level).

In addition, the semi-supervised Morče per-
forms (on single CPU and development data set)
77 times faster than the combination and 23 times
faster than (Shen et al., 2007).

6.2 Czech

The best results (Table 11) are statistically signif-
icantly better than the previous results: the semi-
supervised Morče is significantly better than both

769



the combination and the supervised (original) vari-
ant at a very high level.

7 Download

We decided to publish our system for wide use un-
der the name COMPOST (Common POS Tagger).
All the programs, patches and data files are avail-
able at the website http://ufal.mff.cuni.cz/compost
under either the original data provider license, or
under the usual GNU General Public License, un-
less they are available from the widely-known and
easily obtainable sources (such as the LDC, in
which case pointers are provided on the download
website).

The Compost website also contains easy-to-run
Linux binaries of the best English and Czech sin-
gle taggers (based on the Morče technology) as de-
scribed in Section 6.

8 Conclusion and Future Work

We have shown that the “right”18 mixture of su-
pervised and unsupervised (auto-tagged) data can
significantly improve tagging accuracy of the av-
eraged perceptron on two typologically different
languages (English and Czech), achieving the best
known accuracy to date.

To determine what is the contribution of the in-
dividual ”dimensions” of the system setting, as
described in Sect. 5, we have performed exper-
iments fixing all but one of the dimensions, and
compared their contribution (or rather, their loss
when compared to the best ”mix” overall). For
English, we found that excluding the state-of-the-
art-tagger (in fact, a carefully selected combina-
tion of taggers yielding significantly higher qual-
ity than any of them has) drops the resulting ac-
curacy the most (0.2 absolute). Significant yet
smaller drop (less than 0.1 percent) appears when
the manually tagged portion of the data is not used
or used only once (or infrequently) in the input
to the perceptron’s learner. The difference in us-
ing various feature templates (yet all largely sim-
ilar to what state-of-the-art taggers currently use)
is not significant. Similarly, the way the unsuper-
vised data is selected plays no role, either; this dif-
fers from the bagging technique (Breiman, 1996)
where it is significant. For Czech, the drop in ac-
curacy appears in all dimensions, except the unsu-
pervised data selection one. We have used novel
features inspired by previous work but not used in

18As empirically determined on the development data set.

the standard perceptron setting yet (linguistically
motivated tag classes in features, lookahead fea-
tures). Interestingly, the resulting tagger is better
than even a combination of the previous state-of-
the-art taggers (for English, this comparison is in-
conclusive).

We are working now on parallelization of the
perceptron training, which seems to be possible
(based i.a. on small-scale preliminary experiments
with only a handful of parallel processes and
specific data sharing arrangements among them).
This would further speed up the training phase, not
just as a nice bonus per se, but it would also allow
for a semi-automated feature template selection,
avoiding the (still manual) feature template prepa-
ration for individual languages. This would in turn
facilitate one of our goals to (publicly) provide
single-implementation, easy-to-maintain state-of-
the-art tagging tools for as many languages as pos-
sible (we are currently preparing Dutch, Slovak
and several other languages).19

Another area of possible future work is more
principled tag classing for languages with large
tagsets (in the order of 103), and/or adding
syntactically-motivated features; it has helped
Czech tagging accuracy even when only the “in-
trospectively” defined classes have been added. It
is an open question if a similar approach helps
English as well (certain grammatical categories
can be generalized from the current WSJ tagset as
well, such as number, degree of comparison, 3rd
person present tense).

Finally, it would be nice to merge some of the
approaches by (Toutanova et al., 2003) and (Shen
et al., 2007) with the ideas of semi-supervised
learning introduced here, since they seem orthog-
onal in at least some aspects (e.g., to replace the
rudimentary lookahead features with full bidirec-
tionality).

Acknowledgments

The research described here was supported by the
projects MSM0021620838 and LC536 of Ministry
of Education, Youth and Sports of the Czech Re-
public, GA405/09/0278 of the Grant Agency of the
Czech Republic and 1ET101120503 of Academy
of Sciences of the Czech Republic.

19Available soon also on the website.

770



References
Thorsten Brants. 2000. TnT - a Statistical Part-of-

Speech Tagger. In Proceedings of the 6th Applied
Natural Language Processing Conference, pages
224–231, Seattle, WA. ACL.

Leo Breiman. 1996. Bagging predictors. Mach.
Learn., 24(2):123–140.

Eric Brill and Jun Wu. 1998. Classifier Combination
for Improved Lexical Disambiguation. In Proceed-
ings of the 17th international conference on Compu-
tational linguistics, pages 191–195, Montreal, Que-
bec, Canada. Association for Computational Lin-
guistics.

CNC, 2005. Czech National Corpus – SYN2005. In-
stitute of Czech National Corpus, Faculty of Arts,
Charles University, Prague, Czech Republic.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Exper-
iments with Perceptron Algorithms. In EMNLP ’02:
Proceedings of the ACL-02 conference on Empirical
methods in natural language processing, volume 10,
pages 1–8, Philadelphia, PA.
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Abstract
Latent conditional models have become
popular recently in both natural language
processing and vision processing commu-
nities. However, establishing an effective
and efficient inference method on latent
conditional models remains a question. In
this paper, we describe the latent-dynamic
inference (LDI), which is able to produce
the optimal label sequence on latent con-
ditional models by using efficient search
strategy and dynamic programming. Fur-
thermore, we describe a straightforward
solution on approximating the LDI, and
show that the approximated LDI performs
as well as the exact LDI, while the speed is
much faster. Our experiments demonstrate
that the proposed inference algorithm out-
performs existing inference methods on
a variety of natural language processing
tasks.

1 Introduction

When data have distinct sub-structures, mod-
els exploiting latent variables are advantageous
in learning (Matsuzaki et al., 2005; Petrov and
Klein, 2007; Blunsom et al., 2008). Actu-
ally, discriminative probabilistic latent variable
models (DPLVMs) have recently become popu-
lar choices for performing a variety of tasks with
sub-structures, e.g., vision recognition (Morency
et al., 2007), syntactic parsing (Petrov and Klein,
2008), and syntactic chunking (Sun et al., 2008).
Morency et al. (2007) demonstrated that DPLVM
models could efficiently learn sub-structures of
natural problems, and outperform several widely-
used conventional models, e.g., support vector ma-
chines (SVMs), conditional random fields (CRFs)

and hidden Markov models (HMMs). Petrov and
Klein (2008) reported on a syntactic parsing task
that DPLVM models can learn more compact and
accurate grammars than the conventional tech-
niques without latent variables. The effectiveness
of DPLVMs was also shown on a syntactic chunk-
ing task by Sun et al. (2008).

DPLVMs outperform conventional learning
models, as described in the aforementioned pub-
lications. However, inferences on the latent condi-
tional models are remaining problems. In conven-
tional models such as CRFs, the optimal label path
can be efficiently obtained by the dynamic pro-
gramming. However, for latent conditional mod-
els such as DPLVMs, the inference is not straight-
forward because of the inclusion of latent vari-
ables.

In this paper, we propose a new inference al-
gorithm, latent dynamic inference (LDI), by sys-
tematically combining an efficient search strategy
with the dynamic programming. The LDI is an
exact inference method producing the most prob-
able label sequence. In addition, we also propose
an approximated LDI algorithm for faster speed.
We show that the approximated LDI performs as
well as the exact one. We will also discuss a
post-processing method for the LDI algorithm: the
minimum bayesian risk reranking.

The subsequent section describes an overview
of DPLVM models. We discuss the probability
distribution of DPLVM models, and present the
LDI inference in Section 3. Finally, we report
experimental results and begin our discussions in
Section 4 and Section 5.
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Figure 1: Comparison between CRF models and
DPLVM models on the training stage. x represents
the observation sequence, y represents labels and
h represents the latent variables assigned to the la-
bels. Note that only the white circles are observed
variables. Also, only the links with the current ob-
servations are shown, but for both models, long
range dependencies are possible.

2 Discriminative Probabilistic Latent
Variable Models

Given the training data, the task is to learn a map-
ping between a sequence of observations x =
x1, x2, . . . , xm and a sequence of labels y =
y1, y2, . . . , ym. Each yj is a class label for the j’th
token of a word sequence, and is a member of a
set Y of possible class labels. For each sequence,
the model also assumes a sequence of latent vari-
ables h = h1, h2, . . . , hm, which is unobservable
in training examples.

The DPLVM model is defined as follows
(Morency et al., 2007):

P (y|x,Θ) =
∑

h

P (y|h,x,Θ)P (h|x,Θ), (1)

where Θ represents the parameter vector of the
model. DPLVM models can be seen as a natural
extension of CRF models, and CRF models can
be seen as a special case of DPLVMs that employ
only one latent variable for each label.

To make the training and inference efficient, the
model is restricted to have disjointed sets of latent
variables associated with each class label. Each
hj is a member in a set Hyj of possible latent vari-
ables for the class label yj . H is defined as the set
of all possible latent variables, i.e., the union of all
Hyj sets. Since sequences which have any hj /∈
Hyj will by definition have P (y|hj ,x,Θ) = 0,
the model can be further defined as:

P (y|x,Θ) =
∑

h∈Hy1×...×Hym

P (h|x,Θ), (2)

where P (h|x,Θ) is defined by the usual condi-
tional random field formulation:

P (h|x,Θ) =
expΘ·f(h,x)∑
∀h expΘ·f(h,x)

, (3)

in which f(h,x) is a feature vector. Given a train-
ing set consisting of n labeled sequences, (xi,yi),
for i = 1 . . . n, parameter estimation is performed
by optimizing the objective function,

L(Θ) =
n∑

i=1

log P (yi|xi,Θ)−R(Θ). (4)

The first term of this equation represents a condi-
tional log-likelihood of a training data. The sec-
ond term is a regularizer that is used for reducing
overfitting in parameter estimation.

3 Latent-Dynamic Inference

On latent conditional models, marginalizing la-
tent paths exactly for producing the optimal la-
bel path is a computationally expensive prob-
lem. Nevertheless, we had an interesting observa-
tion on DPLVM models that they normally had a
highly concentrated probability mass, i.e., the ma-
jor probability are distributed on top-n ranked la-
tent paths.

Figure 2 shows the probability distribution of
a DPLVM model using a L2 regularizer with the
variance σ2 = 1.0. As can be seen, the probabil-
ity distribution is highly concentrated, e.g., 90%
of the probability is distributed on top-800 latent
paths.

Based on this observation, we propose an infer-
ence algorithm for DPLVMs by efficiently com-
bining search and dynamic programming.

3.1 LDI Inference
In the inference stage, given a test sequence x, we
want to find the most probable label sequence, y∗:

y∗ = argmaxyP (y|x,Θ∗). (5)

For latent conditional models like DPLVMs, the
y∗ cannot directly be produced by the Viterbi
algorithm because of the incorporation of latent
variables.

In this section, we describe an exact inference
algorithm, the latent-dynamic inference (LDI),
for producing the optimal label sequence y∗ on
DPLVMs (see Figure 3). In short, the algorithm
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Figure 2: The probability mass distribution of la-
tent conditional models on a NP-chunking task.
The horizontal line represents the n of top-n latent
paths. The vertical line represents the probability
mass of the top-n latent paths.

generates the best latent paths in the order of their
probabilities. Then it maps each of these to its as-
sociated label paths and uses a method to compute
their exact probabilities. It can continue to gener-
ate the next best latent path and the associated la-
bel path until there is not enough probability mass
left to beat the best label path.

In detail, an A∗ search algorithm1 (Hart et al.,
1968) with a Viterbi heuristic function is adopted
to produce top-n latent paths, h1,h2, . . .hn. In
addition, a forward-backward-style algorithm is
used to compute the exact probabilities of their
corresponding label paths, y1,y2, . . .yn. The
model then tries to determine the optimal label
path based on the top-n statistics, without enumer-
ating the remaining low-probability paths, which
could be exponentially enormous.

The optimal label path y∗ is ready when the fol-
lowing “exact-condition” is achieved:

P (y1|x,Θ)−(1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0, (6)

where y1 is the most probable label sequence
in current stage. It is straightforward to prove
that y∗ = y1, and further search is unnecessary.
This is because the remaining probability mass,
1−∑

yk∈LPn
P (yk|x,Θ), cannot beat the current

optimal label path in this case.

1A∗ search and its variants, like beam-search, are widely
used in statistical machine translation. Compared to other
search techniques, an interesting point of A∗ search is that it
can produce top-n results one-by-one in an efficient manner.

Definition:
Proj(h) = y ⇐⇒ hj ∈ Hyj for j = 1 . . . m;
P (h) = P (h|x,Θ);
P (y) = P (y|x,Θ).
Input:
weight vector Θ, and feature vector F (h,x).
Initialization:
Gap = −1; n = 0; P (y∗) = 0; LP0 = ∅.
Algorithm:

while Gap < 0 do
n = n + 1
hn = HeapPop[Θ, F (h,x)]
yn = Proj(hn)
if yn /∈ LPn−1 then

P (yn) = DynamicProg
∑

h:Proj(h)=yn
P (h)

LPn = LPn−1 ∪ {yn}
if P (yn) > P (y∗) then

y∗ = yn

Gap = P (y∗)−(1−∑
yk∈LPn

P (yk))
else

LPn = LPn−1

Output:
the most probable label sequence y∗.

Figure 3: The exact LDI inference for latent condi-
tional models. In the algorithm, HeapPop means
popping the next hypothesis from the A∗ heap; By
the definition of the A∗ search, this hypothesis (on
the top of the heap) should be the latent path with
maximum probability in current stage.

3.2 Implementation Issues

We have presented the framework of the LDI in-
ference. Here, we describe the details on imple-
menting its two important components: designing
the heuristic function, and an efficient method to
compute the probabilities of label path.

As described, the A∗ search can produce top-n
results one-by-one using a heuristic function (the
backward term). In the implementation, we use
the Viterbi algorithm (Viterbi, 1967) to compute
the admissible heuristic function for the forward-
style A∗ search:

Heui(hj) = max
h
′
i=hj∧h′∈HP

|h|
i

P
′
(h

′ |x,Θ∗), (7)

where h
′
i = hj represents a partial latent path

started from the latent variable hj . HP|h|
i rep-

resents all possible partial latent paths from the
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position i to the ending position, |h|. As de-
scribed in the Viterbi algorithm, the backward
term, Heui(hj), can be efficiently computed by
using dynamic programming to reuse the terms
(e.g., Heui+1(hj)) in previous steps. Because this
Viterbi heuristic is quite good in practice, this way
we can produce the exact top-n latent paths effi-
ciently (see efficiency comparisons in Section 5),
even though the original problem is NP-hard.

The probability of a label path, P (yn) in Fig-
ure 3, can be efficiently computed by a forward-
backward algorithm with a restriction on the target
label path:

P (y|x,Θ) =
∑

h∈Hy1×...×Hym

P (h|x,Θ). (8)

3.3 An Approximated Version of the LDI
By simply setting a threshold value on the search
step, n, we can approximate the LDI, i.e., LDI-
Approximation (LDI-A). This is a quite straight-
forward method for approximating the LDI. In
fact, we have also tried other methods for approx-
imation. Intuitively, one alternative method is to
design an approximated “exact condition” by us-
ing a factor, α, to estimate the distribution of the
remaining probability:

P (y1|x,Θ)−α(1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0. (9)

For example, if we believe that at most 50% of the
unknown probability, 1 −∑

yk∈LPn
P (yk|x,Θ),

can be distributed on a single label path, we can
set α = 0.5 to make a loose condition to stop the
inference. At first glance, this seems to be quite
natural. However, when we compared this alter-
native method with the aforementioned approxi-
mation on search steps, we found that it worked
worse than the latter, in terms of performance and
speed. Therefore, we focus on the approximation
on search steps in this paper.

3.4 Comparison with Existing Inference
Methods

In Matsuzaki et al. (2005), the Best Hidden Path
inference (BHP) was used:

yBHP = argmax
y

P (hy|x,Θ∗), (10)

where hy ∈ Hy1 × . . .×Hym . In other words,
the Best Hidden Path is the label sequence

which is directly projected from the optimal la-
tent path h∗. The BHP inference can be seen
as a special case of the LDI, which replaces the
marginalization-operation over latent paths with
the max-operation.

In Morency et al. (2007), y∗ is estimated by the
Best Point-wise Marginal Path (BMP) inference.
To estimate the label yj of token j, the marginal
probabilities P (hj = a|x,Θ) are computed for
all possible latent variables a ∈ H. Then the
marginal probabilities are summed up according
to the disjoint sets of latent variables Hyj and the
optimal label is estimated by the marginal proba-
bilities at each position i:

yBMP (i) = argmax
yi∈Y

P (yi|x,Θ∗), (11)

where

P (yi = a|x,Θ) =

∑
h∈Ha

P (h|x,Θ)∑
h P (h|x,Θ)

. (12)

Although the motivation is similar, the exact
LDI (LDI-E) inference described in this paper is a
different algorithm compared to the BLP inference
(Sun et al., 2008). For example, during the search,
the LDI-E is able to compute the exact probability
of a label path by using a restricted version of the
forward-backward algorithm, also, the exact con-
dition is different accordingly. Moreover, in this
paper, we more focus on how to approximate the
LDI inference with high performance.

The LDI-E produces y∗ while the LDI-A, the
BHP and the BMP perform estimation on y∗. We
will compare them via experiments in Section 4.

4 Experiments

In this section, we choose Bio-NER and NP-
chunking tasks for experiments. First, we describe
the implementations and settings.

We implemented DPLVMs by extending the
HCRF library developed by Morency et al. (2007).
We added a Limited-Memory BFGS optimizer
(L-BFGS) (Nocedal and Wright, 1999), and re-
implemented the code on training and inference
for higher efficiency. To reduce overfitting, we
employed a Gaussian prior (Chen and Rosenfeld,
1999). We varied the the variance of the Gaussian
prior (with values 10k, k from -3 to 3), and we
found that σ2 = 1.0 is optimal for DPLVMs on
the development data, and used it throughout the
experiments in this section.
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The training stage was kept the same as
Morency et al. (2007). In other words, there
is no need to change the conventional parameter
estimation method on DPLVM models for adapt-
ing the various inference algorithms in this paper.
For more information on training DPLVMs, refer
to Morency et al. (2007) and Petrov and Klein
(2008).

Since the CRF model is one of the most success-
ful models in sequential labeling tasks (Lafferty et
al., 2001; Sha and Pereira, 2003), in this paper, we
choosed CRFs as a baseline model for the compar-
ison. Note that the feature sets were kept the same
in DPLVMs and CRFs. Also, the optimizer and
fine tuning strategy were kept the same.

4.1 BioNLP/NLPBA-2004 Shared Task
(Bio-NER)

Our first experiment used the data from the
BioNLP/NLPBA-2004 shared task. It is a biomed-
ical named-entity recognition task on the GENIA
corpus (Kim et al., 2004). Named entity recogni-
tion aims to identify and classify technical terms
in a given domain (here, molecular biology) that
refer to concepts of interest to domain experts.
The training set consists of 2,000 abstracts from
MEDLINE; and the evaluation set consists of 404
abstracts from MEDLINE. We divided the origi-
nal training set into 1,800 abstracts for the training
data and 200 abstracts for the development data.

The task adopts the BIO encoding scheme, i.e.,
B-x for words beginning an entity x, I-x for
words continuing an entity x, and O for words be-
ing outside of all entities. The Bio-NER task con-
tains 5 different named entities with 11 BIO en-
coding labels.

The standard evaluation metrics for this task are
precision p (the fraction of output entities match-
ing the reference entities), recall r (the fraction
of reference entities returned), and the F-measure
given by F = 2pr/(p + r).

Following Okanohara et al. (2006), we used
word features, POS features and orthography fea-
tures (prefix, postfix, uppercase/lowercase, etc.),
as listed in Table 1. However, their globally depen-
dent features, like preceding-entity features, were
not used in our system. Also, to speed up the
training, features that appeared rarely in the train-
ing data were removed. For DPLVM models, we
tuned the number of latent variables per label from
2 to 5 on preliminary experiments, and used the

Word Features:
{wi−2, wi−1, wi, wi+1, wi+2, wi−1wi,
wiwi+1}
×{hi, hi−1hi}
POS Features:
{ti−2, ti−1, ti, ti+1, ti+2, ti−2ti−1, ti−1ti,
titi+1, ti+1ti+2, ti−2ti−1ti, ti−1titi+1,
titi+1ti+2}
×{hi, hi−1hi}
Orth. Features:
{oi−2, oi−1, oi, oi+1, oi+2, oi−2oi−1, oi−1oi,
oioi+1, oi+1oi+2}
×{hi, hi−1hi}

Table 1: Feature templates used in the Bio-NER
experiments. wi is the current word, ti is the cur-
rent POS tag, oi is the orthography mode of the
current word, and hi is the current latent variable
(for the case of latent models) or the current label
(for the case of conventional models). No globally
dependent features were used; also, no external re-
sources were used.

Word Features:
{wi−2, wi−1, wi, wi+1, wi+2, wi−1wi,
wiwi+1}
×{hi, hi−1hi}

Table 2: Feature templates used in the NP-
chunking experiments. wi and hi are defined fol-
lowing Table 1.

number 4.
Two sets of experiments were performed. First,

on the development data, the value of n (the search
step, see Figure 3 for its definition) was varied in
the LDI inference; the corresponding F-measure,
exactitude (the fraction of sentences that achieved
the exact condition, Eq. 6), #latent-path (num-
ber of latent paths that have been searched), and
inference-time were measured. Second, the n
tuned on the development data was employed for
the LDI on the test data, and experimental com-
parisons with the existing inference methods, the
BHP and the BMP, were made.

4.2 NP-Chunking Task

On the Bio-NER task, we have studied the LDI
on a relatively rich feature-set, including word
features, POS features and orthographic features.
However, in practice, there are many tasks with
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Models S.A. Pre. Rec. F1 Time
LDI-A 40.64 68.34 66.50 67.41 0.4K s
LDI-E 40.76 68.36 66.45 67.39 4K s
BMP 39.10 65.85 66.49 66.16 0.3K s
BHP 39.93 67.60 65.46 66.51 0.1K s
CRF 37.44 63.69 64.66 64.17 0.1K s

Table 3: On the test data of the Bio-NER task, ex-
perimental comparisons among various inference
algorithms on DPLVMs, and the performance of
CRFs. S.A. signifies sentence accuracy. As can
be seen, at a much lower cost, the LDI-A (A signi-
fies approximation) performed slightly better than
the LDI-E (E signifies exact).

only poor features available. For example, in POS-
tagging task and Chinese/Japanese word segmen-
tation task, there are only word features available.
For this reason, it is necessary to check the perfor-
mance of the LDI on poor feature-set. We chose
another popular task, the NP-chunking, for this
study. Here, we used only poor feature-set, i.e.,
feature templates that depend only on words (see
Table 2 for details), taking into account 200K fea-
tures. No external resources were used.

The NP-chunking data was extracted from the
training/test data of the CoNLL-2000 shallow-
parsing shared task (Sang and Buchholz, 2000). In
this task, the non-recursive cores of noun phrases
called base NPs are identified. The training set
consists of 8,936 sentences, and the test set con-
sists of 2,012 sentences. Our preliminary exper-
iments in this task suggested the use of 5 latent
variables for each label on latent models.

5 Results and Discussions

5.1 Bio-NER

Figure 4 shows the F-measure, exactitude, #latent-
path and inference inference time of the DPLVM-
LDI model, against the parameter n (the search
step, see Table 3), on the development dataset. As
can be seen, there was a dramatic climbing curve
on the F-measure, from 68.78% to 69.73%, when
we increased the number of the search step from
1 to 30. When n = 30, the F-measure has al-
ready reached its plateau, with the exactitude of
83.0%, and the inference time of 80 seconds. In
other words, the F-measure approached its plateau
when n went to 30, with a high exactitude and a
low inference time.
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Figure 4: (Left) F-measure, exactitude, #latent-
path (averaged number of latent paths being
searched), and inference time of the DPLVM-LDI
model, against the parameter n, on the develop-
ment dataset of the Bio-NER task. (Right) En-
largement of the beginning portion of the left fig-
ures. As can be seen, the curve of the F-measure
approached its plateau when n went to 30, with a
high exactitude and a low inference time.

Our significance test based on McNemar’s test
(Gillick and Cox, 1989) shows that the LDI with
n = 30 was significantly more accurate (P <
0.01) than the BHP inference, while the inference
time was at a comparable level. Further growth
of n after the beginning point of the plateau in-
creases the inference time linearly (roughly), but
achieved only very marginal improvement on F-
measure. This suggests that the LDI inference can
be approximated aggressively by stopping the in-
ference within a small number of search steps, n.
This can achieve high efficiency, without an obvi-
ous degradation on the performance.

Table 3 shows the experimental comparisons
among the LDI-Approximation, the LDI-Exact
(here, exact means the n is big enough, e.g., n =
10K), the BMP, and the BHP on DPLVM mod-
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Models S.A. Pre. Rec. F1 Time
LDI-A 60.98 91.76 90.59 91.17 42 s
LDI-E 60.88 91.72 90.61 91.16 1K s
BHP 59.34 91.54 90.30 90.91 25 s
CRF 58.37 90.92 90.33 90.63 18 s

Table 4: Experimental comparisons among differ-
ent inference algorithms on DPLVMs, and the per-
formance of CRFs using the same feature set on
the word features.

els. The baseline was the CRF model with the
same feature set. On the LDI-A, the parameter n
tuned on the development data was employed, i.e.,
n = 30.

To our surprise, the LDI-A performed slightly
better than the LDI-E even though the perfor-
mance difference was marginal. We expected that
LDI-A would perform worse than the LDI-E be-
cause LDI-A uses the aggressive approximation
for faster speed. We have not found the exact
cause of this interesting phenomenon, but remov-
ing latent paths with low probabilities may resem-
ble the strategy of pruning features with low fre-
quency in the training phase. Further analysis is
required in the future.

The LDI-A significantly outperformed the BHP
and the BMP, with a comparable inference time.
Also, all models of DPLVMs significantly outper-
formed CRFs.

5.2 NP-Chunking

As can be seen in Figure 5, compared to Figure 4
of the Bio-NER task, very similar curves were ob-
served in the NP-chunking task. It is interesting
because the tasks are different, and their feature
sets are very different.

The F-measure reached its plateau when n was
around 30, with a fast inference speed. This
echoes the experimental results on the Bio-NER
task. Moreover, as can be seen in Table 4, at a
much lower cost on inference time, the LDI-A per-
formed as well as the LDI-E. The LDI-A outper-
forms the BHP inference. All the DPLVM mod-
els outperformed CRFs. The experimental results
demonstrate that the LDI also works well on poor
feature-set.
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Figure 5: (Left) F-measure, exactitude, #latent-
path, and inference time of the DPLVM-LDI
model against the parameter n on the NP-
chunking development dataset. (Right) Enlarge-
ment of the beginning portion of the left figures.
The curves echo the results on the Bio-NER task.

5.3 Post-Processing of the LDI: Minimum
Bayesian Risk Reranking

Although the label sequence produced by the LDI
inference is indeed the optimal label sequence by
means of probability, in practice, it may be benefi-
cial to use some post-processing methods to adapt
the LDI towards factual evaluation metrics. For
example, in practice, many natural language pro-
cessing tasks are evaluated by F-measures based
on chunks (e.g., named entities).

We further describe in this section the MBR
reranking method for the LDI. Here MBR rerank-
ing can be seen as a natural extension of the LDI
for adapting it to various evaluation criterions,
EVAL:

yMBR=argmax
y

∑

y′∈LPn

P (y′)fEVAL(y|y′). (13)

The intuition behind our MBR reranking is the

778



Models Pre. Rec. F1 Time
LDI-A 91.76 90.59 91.17 42 s
LDI-A + MBR 92.22 90.40 91.30 61 s

Table 5: The effect of MBR reranking on the NP-
chunking task. As can be seen, MBR-reranking
improved the performance of the LDI.

“voting” by those results (label paths) produced by
the LDI inference. Each label path is a voter, and
it gives another one a “score” (the score depend-
ing on the reference y′ and the evaluation met-
ric EVAL, i.e., fEVAL(y|y′)) with a “confidence”
(the probability of this voter, i.e., P (y′)). Finally,
the label path with the highest value, combining
scores and confidences, will be the optimal result.
For more details of the MBR technique, refer to
Goel & Byrne (2000) and Kumar & Byrne (2002).

An advantage of the LDI over the BHP and the
BMP is that the LDI can efficiently produce the
probabilities of the label sequences in LPn. Such
probabilities can be used directly for performing
the MBR reranking. We will show that it is easy
to employ the MBR reranking for the LDI, be-
cause the necessary statistics (e.g., the probabili-
ties of the label paths, y1,y2, . . .yn) are already
produced. In other words, by using LDI infer-
ence, a set of possible label sequences has been
collected with associated probabilities. Although
the cardinality of the set may be small, it accounts
for most of the probability mass by the definition
of the LDI. Eq.13 can be directly applied on this
set to perform reranking.

In contrast, the BHP and the BMP inference are
unable to provide such information for the rerank-
ing. For this reason, we can only report the results
of the reranking for the LDI.

As can be seen in Table 5, MBR-reranking im-
proved the performance of the LDI on the NP-
chunking task with a poor feature set. The pre-
sented MBR reranking algorithm is a general so-
lution for various evaluation criterions. We can
see that the different evaluation criterion, EVAL,
shares the common framework in Eq. 13. In prac-
tice, it is only necessary to re-implement the com-
ponent of fEVAL(y,y′) for a different evaluation
criterion. In this paper, the evaluation criterion is
the F-measure.

6 Conclusions and Future Work

In this paper, we propose an inference method, the
LDI, which is able to decode the optimal label se-
quence on latent conditional models. We study
the properties of the LDI, and showed that it can
be approximated aggressively for high efficiency,
with no loss in the performance. On the two NLP
tasks, the LDI-A outperformed the existing infer-
ence methods on latent conditional models, and its
inference time was comparable to that of the exist-
ing inference methods.

We also briefly present a post-processing
method, i.e., MBR reranking, upon the LDI
algorithm for various evaluation purposes. It
demonstrates encouraging improvement on the
NP-chunking tasks. In the future, we plan to per-
form further experiments to make a more detailed
study on combining the LDI inference and the
MBR reranking.

The LDI inference algorithm is not necessarily
limited in linear-chain structure. It could be ex-
tended to other latent conditional models with tree
structure (e.g., syntactic parsing with latent vari-
ables), as long as it allows efficient combination
of search and dynamic-programming. This could
also be a future work.
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Abstract

We discuss text summarization in terms of
maximum coverage problem and its vari-
ant. We explore some decoding algorithms
including the ones never used in this sum-
marization formulation, such as a greedy
algorithm with performance guarantee, a
randomized algorithm, and a branch-and-
bound method. On the basis of the results
of comparative experiments, we also aug-
ment the summarization model so that it
takes into account the relevance to the doc-
ument cluster. Through experiments, we
showed that the augmented model is su-
perior to the best-performing method of
DUC’04 on ROUGE-1 without stopwords.

1 Introduction

Automatic text summarization is one of the tasks
that have long been studied in natural language
processing. This task is to create a summary, or
a short and concise document that describes the
content of a given set of documents (Mani, 2001).

One well-known approach to text summariza-
tion is the extractive method, which selects some
linguistic units (e.g., sentences) from given doc-
uments in order to generate a summary. The ex-
tractive method has an advantage that the gram-
maticality is guaranteed at least at the level of the
linguistic units. Since the actual generation of
linguistic expressions has not achieved the level
of the practical use, we focus on the extractive
method in this paper, especially the method based
on the sentence extraction. Most of the extractive
summarization methods rely on sequentially solv-
ing binary classification problems of determining
whether each sentence should be selected or not.
In such sequential methods, however, the view-
point regarding whether the summary is good as
a whole, is not taken into consideration, although
a summary conveys information as a whole.

We represent text summarization as an opti-
mization problem and attempt to globally solve
the problem. In particular, we represent text sum-
marization as a maximum coverage problem with
knapsack constraint (MCKP). One of the advan-
tages of this representation is that MCKP can di-
rectly model whether each concept in the given
documents is covered by the summary or not,
and can dispense with rather counter-intuitive ap-
proaches such as giving penalty to each pair of two
similar sentences. By formally apprehending the
target problem, we can use a lot of knowledge and
techniques developed in the combinatorial mathe-
matics, and also analyse results more precisely. In
fact, on the basis of the results of the experiments,
we augmented the summarization model.

The contributions of this paper are as follows.
We are not the first to represent text summarization
as MCKP. However, no researchers have exploited
the decoding algorithms for solving MCKP in
the summarization task. We conduct compre-
hensive comparative experiments of those algo-
rithms. Specifically, we test the greedy algorithm,
the greedy algorithm with performance guarantee,
the stack decoding, the linear relaxation problem
with randomized decoding, and the branch-and-
bound method. On the basis of the experimental
results, we then propose an augmented model that
takes into account the relevance to the document
cluster. We empirically show that the augmented
model is superior to the best-performing method
of DUC’04 on ROUGE-1 without stopwords.

2 Related Work

Carbonell and Goldstein (2000) used sequential
sentence selection in combination with maximal
marginal relevance (MMR), which gives penalty
to sentences that are similar to the already se-
lected sentences. Schiffman et al.’s method (2002)
is also based on sequential sentence selection.
Radev et al. (2004), in their method MEAD, used
a clustering technique to find the centroid, that
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is, the words with high relevance to the topic
of the document cluster. They used the centroid
to rank sentences, together with the MMR-like
redundancy score. Both relevance and redun-
dancy are taken into consideration, but no global
viewpoint is given. In CLASSY, which is the
best-performing method in DUC’04, Conroy et
al. (2004) scored sentences with the sum of tf-idf
scores of words. They also incorporated sentence
compression based on syntactic or heuristic rules.

McDonald (2007) formulated text summariza-
tion as a knapsack problem and obtained the
global solution and its approximate solutions. Its
relation to our method will be discussed in Sec-
tion 6.1. Filatova and Hatzivassiloglou (2004) first
formulated text summarization as MCKP. Their
decoding method is a greedy one and will be em-
pirically compared with other decoding methods
in this paper. Yih et al. (2007) used a slightly-
modified stack decoding. The optimization prob-
lem they solved was the MCKP with the last sen-
tence truncation. Their stack decoding is one of
the decoding methods discussed in this paper. Ye
et al. (2007) is another example of coverage-based
methods. Shen et al. (2007) regarded summariza-
tion as a sequential labelling task and solved it
with Conditional Random Fields. Although the
model is globally optimized in terms of likelihood,
the coverage of concepts is not taken into account.

3 Modeling text summarization

In this paper, we focus on the extractive summa-
rization, which generates a summary by select-
ing linguistic units (e.g., sentences) in given doc-
uments. There are two types of summarization
tasks: single-document summarization and multi-
document summarization. While single-document
summarization is to generate a summary from a
single document, multi-document summarization
is to generate a summary from multiple documents
regarding one topic. Such a set of multiple docu-
ments is called a document cluster. The method
proposed in this paper is applicable to both tasks.
In both tasks, documents are split into several lin-
guistic units D = {s1, · · · , s|D|} in preprocess-
ing. We will select some linguistic units from D to
generate a summary. Among other linguistic units
that can be used in the method, we use sentences
so that the grammaticality at the sentence level is
going to be guaranteed.

We introduce conceptual units (Filatova and

Hatzivassiloglou, 2004), which compose the
meaning of a sentence. Sentence si is represented
by a set of conceptual units {ei1, · · · , ei|si|}. For
example, the sentence “The man bought a book
and read it” could be regarded as consisting of two
conceptual units “the man bought a book” and “the
man read the book”. It is not easy, however, to
determine the appropriate granularity of concep-
tual units. A simple way would be to regard the
above sentence as consisting of four conceptual
units “man”, “book”, “buy”, and “read”. There
is some work on the definition of conceptual units.
Hovy et al. (2006) proposed to use basic elements,
which are dependency subtrees obtained by trim-
ming dependency trees. Although basic elements
were proposed for evaluation of summaries, they
can probably be used also for summary genera-
tion. However, such novel units have not proved
to be useful for summary generation. Since we fo-
cus more on algorithms and models in this paper,
we simply use words as conceptual units.

The goal of text summarization is to cover as
many conceptual units as possible using only a
small number of sentences. In other words, the
goal is to find a subset S(⊂ D) that covers as
many conceptual units as possible. In the follow-
ing, we introduce models for that purpose. We
think of the situation that the summary length must
be at most K (cardinality constraint) and the sum-
mary length is measured by the number of words
or bytes in the summary.

Let xi denote a variable which is 1 if sentence
si is selected, otherwise 0, aij denote a constant
which is 1 if sentence si contains word ej , oth-
erwise 0. We regard word ej as covered when at
least one sentence containing ej is selected as part
of the summary. That is, word ej is covered if and
only if

∑
i aijxi ≥ 1. Now our objective is to find

the binary assignment on xi with the best coverage
such that the summary length is at most K:

max. |{j|
∑

i aijxi ≥ 1}|
s.t.

∑
i cixi ≤ K; ∀i, xi ∈ {0, 1},

where ci is the cost of selecting si, i.e., the number
of words or bytes in si.

For convenience, we rewrite the problem above:

max.
∑

j zj

s.t.
∑

i cixi ≤ K; ∀j,
∑

i aijxi ≥ zj ;
∀i, xi ∈ {0, 1}; ∀j, zj ∈ {0, 1},
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where zj is 1 when ej is covered, 0 otherwise. No-
tice that this new problem is equivalent to the pre-
vious one.

Since not all the words are equally important,
we introduce weights wj on words ej . Then the
objective is restated as maximizing the weighted
sum

∑
j wjzj such that the summary length is at

most K. This problem is called maximum cov-
erage problem with knapsack constraint (MCKP),
which is an NP-hard problem (Khuller et al.,
1999). We should note that MCKP is different
from a knapsack problem. MCKP merely has a
constraint of knapsack form. Filatova and Hatzi-
vassiloglou (2004) pointed out that text summa-
rization can be formalized by MCKP.

The performance of the method depends on how
to represent words and which words to use. We
represent words with their stems. We use only
the words that are content words (nouns, verbs,
or adjectives) and not in the stopword list used in
ROUGE (Lin, 2004).

The weights wj of words are also an impor-
tant factor of good performance. We tested two
weighting schemes proposed by Yih et al. (2007).
The first one is interpolated weights, which are in-
terpolated values of the generative word probabil-
ity in the entire document and that in the beginning
part of the document (namely, the first 100 words).
Each probability is estimated with the maximum
likelihood principle. The second one is trained
weights. These values are estimated by the logis-
tic regression trained on data instances, which are
labeled 1 if the word appears in a summary in the
training dataset, 0 otherwise. The feature set for
the logistic regression includes the frequency of
the word in the document cluster and the position
of the word instance and others.

4 Algorithms for solving MCKP

We explain how to solve MCKP. We first explain
the greedy algorithm applied to text summariza-
tion by Filatova and Hatzivassiloglou (2004). We
then introduce a greedy algorithm with perfor-
mance guarantee. This algorithm has never been
applied to text summarization. We next explain the
stack decoding used by Yih et al. (2007). We then
introduce an approximate method based on linear
relaxation and a randomized algorithm, followed
by the branch-and-bound method, which provides
the exact solution.

Although the algorithms used in this paper

themselves are not novel, this work is the first
to apply the greedy algorithm with performance
guarantee, the randomized algorithm, and the
branch-and-bound to solve the MCKP and auto-
matically create a summary. In addition, we con-
duct a comparative study on summarization algo-
rithms including the above.

There are some other well-known methods for
similar problems (e.g., the method of conditional
probability (Hromkovič, 2003)). A pipage ap-
proach (Ageev and Sviridenko, 2004) has been
proposed for MCKP, but we do not use this algo-
rithm, since it requires costly partial enumeration
and solutions to many linear relaxation problems.

As in the previous section, D denotes the set of
sentences {s1, · · · , s|D|}, and S denotes a subset
of D and thus represents a summary.

4.1 Greedy algorithm

Filatova and Hatzivassiloglou (2004) used a
greedy algorithm. In this section, Wl denotes the
sum of the weights of the words covered by sen-
tence sl. W ′

l denotes the sum of the weights of the
words covered by sl, but not by current summary
S. This algorithm sequentially selects sentence sl

with the largest W ′
l .

Greedy Algorithm
U ← D, S ← φ
while U 6= φ

si ← arg maxsl∈U W ′
l

if ci +
∑

sl∈S cl ≤ K then insert si into S

delete si in U
end while
output S.

This algorithm has performance guarantee
when the problem has a unit cost (i.e., when each
sentence has the same length), but no performance
guarantee for the general case where costs can
have different values.

4.2 Greedy algorithm with performance
guarantee

We describe a greedy algorithm with performance
guarantee proposed by Khuller et al. (1999), which
proves to achieve an approximation factor of (1 −
1/e)/2 for MCKP. This algorithm sequentially se-
lects sentence sl with the largest ratio W ′

l /cl. Af-
ter the sequential selection, the set of the selected
sentences is compared with the single-sentence
summary that has the largest value of the objec-
tive function. The larger of the two is going to
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be the output of this new greedy algorithm. Here
score(S) is

∑
j wjzj , the value of the objective

function for summary S.

Greedy Algorithm with Performance Guarantee
U ← D, S ← φ
while U 6= φ

si ← arg maxsl∈U W ′
l /cl

if ci +
∑

sl∈S cl ≤ K then insert si into S

delete si in U
end while
st ← arg maxsl

Wl

if score(S) ≥ Wt, output S,
otherwise, output {st}.
They also proposed an algorithm with a better per-
formance guarantee, which is not used in this pa-
per because it is costly due to its partial enumera-
tion.

4.3 Stack decoding
Stack decoding is a decoding method proposed by
Jelinek (1969). This algorithm requires K priority
queues, k-th of which is the queue for summaries
of length k. The objective function value is used
for the priority measure. A new solution (sum-
mary) is generated by adding a sentence to a cur-
rent solution in k-th queue and inserted into a suc-
ceeding queue.1 The “pop” operation in stack de-
coding pops the candidate summary with the least
priority in the queue. By restricting the size of
each queue to a certain constant stacksize, we can
obtain an approximate solution within a practical
computational time.

Stack Decoding
for k = 0 to K − 1

for each S ∈ queues[k]
for each sl ∈ D

insert sl into S
insert S into queues[k + cl]
pop if queue-size exceeds the stacksize

end for
end for

end for
return the best solution in queues[K]

4.4 Randomized algorithm
Khuller et al. (2006) proposed a randomized al-
gorithm (Hromkovič, 2003) for MCKP. In this al-
gorithm, a relaxation linear problem is generated
by replacing the integer constraints xi ∈ {0, 1}

1We should be aware that stack in a strict data-structure
sense is not used in the algorithm.

and zj ∈ {0, 1} with linear constraints xi ∈ [0, 1]
and zj ∈ [0, 1]. The optimal solution x∗

i to the re-
laxation problem is regarded as the probability of
sentence si being selected as a part of summary:
x∗

i = P (xi = 1). The algorithm randomly se-
lects sentence si with probability x∗

i , in order to
generate a summary. It has been proved that the
expected length of each randomly-generated sum-
mary is upper-bounded by K, and the expected
value of the objective function is at least the op-
timal value multiplied by (1−1/e) (Khuller et al.,
2006). This random generation of a summary is it-
erated many times, and the summaries that are not
longer than K are stored as candidate summaries.
Among those many candidate summaries, the one
with the highest value of the objective function is
going to be the output by this algorithm.

4.5 Branch-and-bound method

The branch-and-bound method (Hromkovič,
2003) is an efficient method for finding the exact
solutions to integer problems. Since MCKP is an
NP-hard problem, it cannot generally be solved in
polynomial time under a reasonable assumption
that NP 6=P. However, if the size of the problem
is limited, sometimes we can obtain the exact
solution within a practical time by means of the
branch-and-bound method.

4.6 Weakly-constrained algorithms

In evaluation with ROUGE (Lin, 2004), sum-
maries are truncated to a target length K. Yih et
al. (2007) used a stack decoding with a slight mod-
ification, which allows the last sentence in a sum-
mary to be truncated to a target length. Let us call
this modified algorithm the weakly-constrained
stack decoding. The weakly-constrained stack de-
coding can be implemented simply by replacing
queues[k + cl] with queues[min(k + cl,K)]. We
can also think of weakly-constrained versions of
the greedy and randomized algorithms introduced
before.

In this paper, we do not adopt weakly-
constrained algorithms, because although an ad-
vantage of the extractive summarization is the
guaranteed grammaticality at the sentence level,
the summaries with a truncated sentence will relin-
quish this advantage. We mentioned the weakly-
constrained algorithms in order to explain the re-
lation between the proposed model and the model
proposed by Yih et al. (2007).
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5 Experiments and Discussion

5.1 Experimental Setting

We conducted experiments on the dataset of
DUC’04 (2004) with settings of task 2, which is
a multi-document summarization task. 50 docu-
ment clusters, each of which consists of 10 doc-
uments, are given. One summary is to be gen-
erated for each cluster. Following the most rel-
evant previous method (Yih et al., 2007), we set
the target length to 100 words. DUC’03 (2003)
dataset was used as the training dataset for trained
weights. All the documents were segmented
into sentences using a script distributed by DUC.
Words are stemmed by Porter’s stemmer (Porter,
1980). ROUGE version 1.5.5 (Lin, 2004) was
used for evaluation.2 Among others, we focus
on ROUGE-1 in the discussion of the result, be-
cause ROUGE-1 has proved to have strong corre-
lation with human annotation (Lin, 2004; Lin and
Hovy, 2003). Wilcoxon signed rank test for paired
samples with significance level 0.05 was used for
the significance test of the difference in ROUGE-
1. The simplex method and the branch-and-bound
method implemented in GLPK (Makhorin, 2006)
were used to solve respectively linear and integer
programming problems.

The methods that are compared here are the
greedy algorithm (greedy), the greedy algorithm
with performance guarantee (g-greedy), the ran-
domized algorithm (rand), the stack decoding
(stack), and the branch-and-bound method (exact).

5.2 Results

The experimental results are shown in Tables 1
and 2. The columns 1, 2, and SU4 in the ta-
bles respectively refer to ROUGE-1, ROUGE-2,
and ROUGE-SU4. In addition, rand100k refers to
the randomized algorithm with 100,000 randomly-
generated solution candidates, and stack30 refers
to stack with the stacksize being 30. The right-
most column (‘time’) shows the average computa-
tional time required for generating a summary for
a document cluster.

Both with interpolated (Table 1) and trained
weights (Table 2), g-greedy significantly outper-
formed greedy. With interpolated weights, there
was no significant difference between exact and
g-greedy, and between exact and stack30. With
trained weights, there was no significant differ-

2With options -n 4 -m -2 4 -u -f A -p 0.5 -l 100 -t 0 -d -s.

Table 1: ROUGE of MCKP with interpolated
weights. Underlined ROUGE-1 scores are signif-
icantly different from the score of exact. Compu-
tational time was measured in seconds.

ROUGE time
1 2 SU4 (sec)

greedy 0.283 0.083 0.123 <0.01
g-greedy 0.294 0.080 0.121 0.01
rand100k 0.300 0.079 0.119 1.88
stack30 0.304 0.078 0.120 4.53
exact 0.305 0.081 0.121 4.04

Table 2: ROUGE of MCKP with trained weights.
Underlined ROUGE-1 scores are significantly dif-
ferent from the score of exact. Computational time
was measured in seconds.

ROUGE time
1 2 SU4 (sec)

greedy 0.283 0.080 0.121 < 0.01
g-greedy 0.310 0.077 0.118 0.01
rand100k 0.299 0.077 0.117 1.93
stack30 0.309 0.080 0.120 4.23
exact 0.307 0.078 0.119 4.56

ence between exact and the other algorithms ex-
cept for greedy and rand100k. The result sug-
gests that approximate fast algorithms can yield
results comparable to the exact method in terms of
ROUGE-1 score. We will later discuss the results
in terms of objective function values and search
errors in Table 4.

We should notice that stack outperformed ex-
act with interpolated weights. To examine this
counter-intuitive point, we changed the stack-
size of stack with interpolated weights (inter) and
trained weights (train) from 10 to 100 and ob-
tained Table 3. This table shows that the ROUGE-
1 value does not increase as the stacksize does;
ROUGE-1 for stack with interpolated weights
does not change much with the stacksize, and the
peak of ROUGE-1 for trained weights is at the
stacksize of 20. Since stack with a larger stack-
size selects a solution from a larger number of so-
lution candidates, this result is counter-intuitive in
the sense that non-global decoding by stack has a
favorable effect.

We also counted the number of the document
clusters for which an approximate algorithm with
interpolated weights yielded the same solution as
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Table 3: ROUGE of stack with various stacksizes
size 10 20 30 50 100
inter 0.304 0.304 0.304 0.304 0.303
train 0.308 0.310 0.309 0.308 0.307

Table 4: Search errors of MCKP with interpolated
weights

solution same search error
ROUGE (=) = ⇓ ⇑
greedy 0 1 35 14

g-greedy 0 5 26 19
rand100k 6 5 25 14
stack30 16 11 8 11

exact (‘same solution’ column in Table 4). If
the approximate algorithm failed to yield the ex-
act solution (‘search error’ column), we checked
whether the search error made ROUGE score
unchanged (‘=’ column), decreased (‘⇓’ col-
umn), or increased (‘⇑’ column) compared with
ROUGE score of exact. Table 4 shows that (i)
stack30 is a better optimizer than other approx-
imate algorithms, (ii) when the search error oc-
curs, stack30 increases ROUGE-1 more often than
it decreases ROUGE-1 compared with exact in
spite of stack30’s inaccurate solution, (iii) ap-
proximate algorithms sometimes achieved better
ROUGE scores. We observed similar phenomena
for trained weights, though we skip the details due
to space limitation.

These observations on stacksize and search er-
rors suggest that there exists another maximization
problem that is more suitable to summarization.
We should attempt to find the more suitable maxi-
mization problem and solve it using some existing
optimization and approximation techniques.

6 Augmentation of the model

On the basis of the experimental results in the pre-
vious section, we augment our text summarization
model. We first examine the current model more
carefully. As mentioned before, we used words
as conceptual units because defining those units
is hard and still under development by many re-
searchers. Suppose here that a more suitable unit
has more detailed information, such as “A did B
to C”. Then the event “A did D to E” is a com-
pletely different unit from “A did B to C”. How-

ever, when words are used as conceptual units, the
two events have a redundant part “A”. It can hap-
pen that a document is concise as a summary, but
redundant on word level. By being to some extent
redundant on the word level, a summary can have
sentences that are more relevant to the document
cluster, as both of the sentences above are relevant
to the document cluster if the document cluster is
about “A”. A summary with high cohesion and co-
herence would have redundancy to some extent. In
this section, we will use this conjecture to augment
our model.

6.1 Augmented summarization model
The objective function of MCKP consists of only
one term that corresponds to coverage. We add
another term

∑
i(

∑
j wjaij)xi that corresponds

to relevance to the topic of the document clus-
ter. We represent the relevance of sentence si by
the sum of the weights of words in the sentence
(
∑

j wjaij). We take the summation of the rele-
vance values of the selected sentences:

max. (1 − λ)
∑

j wjzj + λ
∑

i(
∑

j wjaij)xi

s.t.
∑

i cixi ≤ K; ∀j,
∑

i aijxi ≥ zj ;
∀i, xi ∈ {0, 1}; ∀j, zj ∈ {0, 1},

where λ is a constant. We call this model MCKP-
Rel, because the relevance to the document cluster
is taken into account.

We discuss the relation to the model proposed
by McDonald (2007), whose objective function
consists of a relevance term and a negative re-
dundancy term. We believe that MCKP-Rel is
more intuitive and suitable for summarization, be-
cause coverage in McDonald (2007) is measured
by subtracting the redundancy represented with
the sum of similarities between two sentences,
while MCKP-Rel focuses directly on coverage.
Suppose sentence s1 contains conceptual units A
and B, s2 contains A, and s3 contains B. The
proposed coverage-based methods can capture the
fact that s1 has the same information as {s2, s3},
while similarity-based methods only learn that s1

is somewhat similar to each of s2 and s3. We
also empirically showed that our method outper-
forms McDonald (2007)’s method in experiments
on DUC’02, where our method achieved 0.354
ROUGE-1 score with interpolated weights and
0.359 with trained weights when the optimal λ is
given, while McDonald (2007)’s method yielded
at most 0.348. However, this very point can also
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Table 5: ROUGE-1 of MCKP-Rel with inter-
polated weights. The values in the parentheses
are the corresponding values of λ predicted using
DUC’03 as development data. Underlined are the
values that are significantly different from the cor-
responding values of MCKP.

interpolated trained
greedy 0.287 (0.1) 0.288 (0.8)

g-greedy 0.307 (0.3) 0.320 (0.4)
rand100k 0.310 (0.1) 0.316 (0.5)
stack30 0.324 (0.1) 0.327 (0.3)
exact 0.320 (0.3) 0.329 (0.5)

exactopt 0.327 (0.2) 0.329 (0.5)

be a drawback of our method, since our method
premises that a sentence is represented as a set
of conceptual units. Similarity-based methods are
free from such a premise. Taking advantages of
both models is left for future work.

The decoding algorithms introduced before are
also applicable to MCKP-Rel, because MCKP-Rel
can be reduced to MCKP by adding, for each sen-
tence si, a dummy conceptual unit which exists
only in si and has the weight

∑
j wjaij .

6.2 Experiments of the augmented model

We ran greedy, g-greedy, rand100k, stack30
and exact to solve MCKP-Rel. We experimented
on DUC’04 with the same experimental setting as
the previous ones.

6.2.1 Experiments with the predicted λ

We determined the value of λ for each method us-
ing DUC’03 as development data. Specifically, we
conducted experiments on DUC’03 with different
λ (∈ {0.0, 0.1, · · · , 1.0}) and simply selected the
one with the highest ROUGE-1 value.

The results with these predicted λ are shown
in Table 5. Only ROUGE-1 values are shown.
Method exactopt is exact with the optimal λ, and
can be regarded as the upperbound of MCKP-Rel.
To evaluate the appropriateness of models without
regard to search quality, we first focused on exact
and found that MCKP-Rel outperformed MCKP
with exact. This means that MCKP-Rel model
is superior to MCKP model. Among the algo-
rithms, stack30 and exact performed well. All
methods except for greedy yielded significantly
better ROUGE values compared with the corre-
sponding results in Tables 1 and 2.

Figures 1 and 2 show ROUGE-1 for different
values of λ. The leftmost part (λ = 0.0) cor-
responds to MCKP. We can see from the figures,
that MCKP-Rel at the best λ always outperforms
MCKP, and that MCKP-Rel tends to degrade for
very large λ. This means that excessive weight on
relevance has an adversative effect on performance
and therefore the coverage is important.
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Figure 1: MCKP-Rel with interpolated weights
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Figure 2: MCKP-Rel with trained weights

6.2.2 Experiments with the optimal λ

In the experiments above, we found that λ =
0.2 is the optimal value for exact with interpo-
lated weights. We suppose that this λ gives the
best model, and examined search errors as we
did in Section 5.2. We obtained Table 6, which
shows that search errors in MCKP-Rel counter-
intuitively increase (⇑) ROUGE-1 score less of-
ten than MCKP did in Table 4. This was the case
also for trained weights. This result suggests that
MCKP-Rel is more suitable to text summariza-
tion than MCKP is. However, exact with trained
weights at the optimal λ(= 0.4) in Figure 2 was
outperformed by stack30. It suggests that there is
still room for future improvement in the model.
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Table 6: Search errors of MCKP-Rel with interpo-
lated weights (λ = 0.2).

solution same search error
ROUGE (=) = ⇓ ⇑
greedy 0 2 42 6

g-greedy 1 0 34 15
rand100k 3 6 33 8
stack30 14 13 14 10

6.2.3 Comparison with DUC results
In Section 6.2.1, we empirically showed that
the augmented model MCKP-Rel is better than
MCKP, whose optimization problem is used also
in one of the state-of-the-art methods by Yih et
al. (2007). It would also be beneficial to read-
ers to directly compare our method with DUC
results. For that purpose, we conducted experi-
ments with the cardinality constraint of DUC’04,
i.e., each summary should be 665 bytes long or
shorter. Other settings remained unchanged. We
compared the MCKP-Rel with peer65 (Conroy et
al., 2004) of DUC’04, which performed best in
terms of ROUGE-1 in the competition. Tables 7
and 8 are the ROUGE-1 scores, respectively eval-
uated without and with stopwords. The latter is the
official evaluation measure of DUC’04.

Table 7: ROUGE-1 of MCKP-Rel with byte con-
straints, evaluated without stopwords. Underlined
are the values significantly different from peer65.

interpolated train
greedy 0.289 (0.1) 0.284 (0.8)

g-greedy 0.297 (0.4) 0.323 (0.3)
rand100k 0.315 (0.2) 0.308 (0.4)
stack30 0.324 (0.2) 0.323 (0.3)
exact 0.325 (0.3) 0.326 (0.5)

exactopt 0.325 (0.3) 0.329 (0.4)
peer65 0.309

In Table 7, MCKP-Rel with stack30 and exact
yielded significantly better ROUGE-1 scores than
peer65. Although stack30 and exact yielded
greater ROUGE-1 scores than peer65 also in Ta-
ble 8, the difference was not significant. Only
greedy was significantly worse than peer65.3 One

3We actually succeeded in greatly improving the
ROUGE-1 value of MCKP-Rel evaluated with stopwords by
using all the words including stopwords as conceptual units.
However, we ignore those results in this paper, because it

Table 8: ROUGE-1 of MCKP-Rel with byte con-
straints, evaluated with stopwords. Underlined are
the values significantly different from peer65.

interpolated train
greedy 0.374 (0.1) 0.377 (0.4)

g-greedy 0.371 (0.0) 0.385 (0.2)
rand100k 0.373 (0.2) 0.366 (0.3)
stack30 0.384 (0.1) 0.386 (0.3)
exact 0.383 (0.3) 0.384 (0.4)

exactopt 0.385 (0.1) 0.384 (0.4)
peer65 0.382

possible explanation on the difference between Ta-
ble 7 and Table 8 is that peer65 would probably be
tuned to the evaluation with stopwords, since it is
the official setting of DUC’04.

From these results, we can conclude that the
MCKP-Rel is at least comparable to the best-
performing method, if we choose a powerful de-
coding method, such as stack and exact.

7 Conclusion

We regarded text summarization as MCKP. We
applied some algorithms to solve the MCKP and
conducted comparative experiments. We con-
ducted comparative experiments. We also aug-
mented our model to MCKP-Rel, which takes into
consideration the relevance to the document clus-
ter and performs well.

For future work, we will try other conceptual
units such as basic elements (Hovy et al., 2006)
proposed for summary evaluation. We also plan to
include compressed sentences into the set of can-
didate sentences to be selected as done by Yih et
al. (2007). We also plan to design other decod-
ing algorithms for text summarization (e.g., pipage
approach (Ageev and Sviridenko, 2004)). As dis-
cussed in Section 6.2, integration with similarity-
based models is worth consideration. We will in-
corporate techniques for arranging sentences into
an appropriate order, while the current work con-
cerns only selection. Deshpande et al. (2007) pro-
posed a selection and ordering technique, which is
applicable only to the unit cost case such as selec-
tion and ordering of words for title generation. We
plan to refine their model so that it can be applied
to general text summarization.

just trickily uses non-content words to increase the evalua-
tion measure, disregarding the actual quality of summaries.
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Abstract

This paper presents a chunking-based dis-
criminative approach to full parsing. We
convert the task of full parsing into a series
of chunking tasks and apply a conditional
random field (CRF) model to each level
of chunking. The probability of an en-
tire parse tree is computed as the product
of the probabilities of individual chunk-
ing results. The parsing is performed in a
bottom-up manner and the best derivation
is efficiently obtained by using a depth-
first search algorithm. Experimental re-
sults demonstrate that this simple parsing
framework produces a fast and reasonably
accurate parser.

1 Introduction

Full parsing analyzes the phrase structure of a sen-
tence and provides useful input for many kinds
of high-level natural language processing such as
summarization (Knight and Marcu, 2000), pro-
noun resolution (Yang et al., 2006), and infor-
mation extraction (Miyao et al., 2008). One of
the major obstacles that discourage the use of full
parsing in large-scale natural language process-
ing applications is its computational cost. For ex-
ample, the MEDLINE corpus, a collection of ab-
stracts of biomedical papers, consists of 70 million
sentences and would require more than two years
of processing time if the parser needs one second
to process a sentence.

Generative models based on lexicalized PCFGs
enjoyed great success as the machine learning
framework for full parsing (Collins, 1999; Char-
niak, 2000), but recently discriminative models
attract more attention due to their superior accu-
racy (Charniak and Johnson, 2005; Huang, 2008)

and adaptability to new grammars and languages
(Buchholz and Marsi, 2006).

A traditional approach to discriminative full
parsing is to convert a full parsing task into a series
of classification problems. Ratnaparkhi (1997)
performs full parsing in a bottom-up and left-to-
right manner and uses a maximum entropy clas-
sifier to make decisions to construct individual
phrases. Sagae and Lavie (2006) use the shift-
reduce parsing framework and a maximum en-
tropy model for local classification to decide pars-
ing actions. These approaches are often called
history-based approaches.

A more recent approach to discriminative full
parsing is to treat the task as a single structured
prediction problem. Finkel et al. (2008) incor-
porated rich local features into a tree CRF model
and built a competitive parser. Huang (2008) pro-
posed to use a parse forest to incorporate non-local
features. They used a perceptron algorithm to op-
timize the weights of the features and achieved
state-of-the-art accuracy. Petrov and Klein (2008)
introduced latent variables in tree CRFs and pro-
posed a caching mechanism to speed up the com-
putation.

In general, the latter whole-sentence ap-
proaches give better accuracy than history-based
approaches because they can better trade off deci-
sions made in different parts in a parse tree. How-
ever, the whole-sentence approaches tend to re-
quire a large computational cost both in training
and parsing. In contrast, history-based approaches
are less computationally intensive and usually pro-
duce fast parsers.

In this paper, we present a history-based parser
using CRFs, by treating the task of full parsing as
a series of chunking problems where it recognizes
chunks in a flat input sequence. We use the linear-
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Estimated  volume  was   a   light  2.4  million  ounces  .

VBN         NN    VBD DT  JJ    CD     CD NNS   .

QPNP

Figure 1: Chunking, the first (base) level.

volume          was   a   light    million       ounces .

NP             VBD DT  JJ          QP            NNS   .

NP

Figure 2: Chunking, the 2nd level.

chain CRF model to perform chunking.
Although our parsing model falls into the cat-

egory of history-based approaches, it is one step
closer to the whole-sentence approaches because
the parser uses a whole-sequence model (i.e.
CRFs) for individual chunking tasks. In other
words, our parser could be located somewhere
between traditional history-based approaches and
whole-sentence approaches. One of our motiva-
tions for this work was that our parsing model
may achieve a better balance between accuracy
and speed than existing parsers.

It is also worth mentioning that our approach is
similar in spirit to supertagging for parsing with
lexicalized grammar formalisms such as CCG and
HPSG (Clark and Curran, 2004; Ninomiya et al.,
2006), in which significant speed-ups for parsing
time are achieved.

In this paper, we show that our approach is in-
deed appealing in that the parser runs very fast
and gives competitive accuracy. We evaluate our
parser on the standard data set for parsing exper-
iments (i.e. the Penn Treebank) and compare it
with existing approaches to full parsing.

This paper is organized as follows. Section 2
presents the overall chunk parsing strategy. Sec-
tion 3 describes the CRF model used to perform
individual chunking steps. Section 4 describes the
depth-first algorithm for finding the best derivation
of a parse tree. The part-of-speech tagger used in
the parser is described in section 5. Experimen-
tal results on the Penn Treebank corpus are pro-
vided in Section 6. Section 7 discusses possible
improvements and extensions of our work. Sec-
tion 8 offers some concluding remarks.

volume          was                    ounces          .

NP             VBD                    NP           .

VP

Figure 3: Chunking, the 3rd level.

volume                           was                   .

NP                               VP                .

S

Figure 4: Chunking, the 4th level.

2 Full Parsing by Chunking

This section describes the parsing framework em-
ployed in this work.

The parsing process is conceptually very sim-
ple. The parser first performs chunking by iden-
tifying base phrases, and converts the identified
phrases to non-terminal symbols. It then performs
chunking for the updated sequence and converts
the newly recognized phrases into non-terminal
symbols. The parser repeats this process until the
whole sequence is chunked as a sentence

Figures 1 to 4 show an example of a parsing pro-
cess by this framework. In the first (base) level,
the chunker identifies two base phrases, (NP Es-
timated volume) and (QP 2.4 million), and re-
places each phrase with its non-terminal symbol
and head1. In the second level, the chunker iden-
tifies a noun phrase, (NP a light million ounces),
and converts it into NP. This process is repeated
until the whole sentence is chunked at the fourth
level. The full parse tree is recovered from the
chunking history in a straightforward way.

This idea of converting full parsing into a se-
ries of chunking tasks is not new by any means—
the history of this kind of approach dates back to
1950s (Joshi and Hopely, 1996). More recently,
Brants (1999) used a cascaded Markov model to
parse German text. Tjong Kim Sang (2001) used
the IOB tagging method to represent chunks and
memory-based learning, and achieved an f-score
of 80.49 on the WSJ corpus. Tsuruoka and Tsu-
jii (2005) improved upon their approach by using

1The head word is identified by using the head-
percolation table (Magerman, 1995).
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Figure 5: Distribution of tree height in WSJ sec-
tions 2-21.

a maximum entropy classifier and achieved an f-
score of 85.9. However, there is still a large gap
between the accuracy of chunking-based parsers
and that of widely-used practical parsers such as
Collins parser and Charniak parser (Collins, 1999;
Charniak, 2000).

2.1 Heights of Trees

A natural question about this parsing framework is
how many levels of chunking are usually needed to
parse a sentence. We examined the distribution of
the heights of the trees in sections 2-21 of the Wall
Street Journal (WSJ) corpus. The result is shown
in Figure 5. Most of the sentences have less than
20 levels. The average was 10.0, which means we
need to perform, on average, 10 chunking tasks to
obtain a full parse tree for a sentence if the parsing
is performed in a deterministic manner.

3 Chunking with CRFs

The accuracy of chunk parsing is highly depen-
dent on the accuracy of each level of chunking.
This section describes our approach to the chunk-
ing task.

A common approach to the chunking problem
is to convert the problem into a sequence tagging
task by using the “BIO” (B for beginning, I for
inside, and O for outside) representation. For ex-
ample, the chunking process given in Figure 1 is
expressed as the following BIO sequences.

B-NP I-NP O O O B-QP I-QP O O

This representation enables us to use the linear-
chain CRF model to perform chunking, since the
task is simply assigning appropriate labels to a se-
quence.

3.1 Linear Chain CRFs

A linear chain CRF defines a single log-linear
probabilistic distribution over all possible tag se-
quencesy for the input sequencex:

p(y|x) =
1

Z(x)
exp

T∑

t=1

K∑

k=1

λkfk(t, yt, yt−1,x),

wherefk(t, yt, yt−1,x) is typically a binary func-
tion indicating the presence of featurek, λk is the
weight of the feature, andZ(X) is a normalization
function:

Z(x) =
∑

y

exp
T∑

t=1

K∑

k=1

λkfk(t, yt, yt−1,x).

This model allows us to define features on states
and edges combined with surface observations.

The weights of the features are determined in
such a way that they maximize the conditional log-
likelihood of the training data:

Lλ =
N∑

i=1

log p(y(i)|x(i)) + R(λ),

whereR(λ) is introduced for the purpose ofregu-
larization which prevents the model from overfit-
ting the training data. The L1 or L2 norm is com-
monly used in statistical natural language process-
ing (Gao et al., 2007). We used L1-regularization,
which is defined as

R(λ) =
1

C

K∑

k=1

|λk|,

where C is the meta-parameter that controls the
degree of regularization. We used the OWL-QN
algorithm (Andrew and Gao, 2007) to obtain the
parameters that maximize the L1-regularized con-
ditional log-likelihood.

3.2 Features

Table 1 shows the features used in chunking for
the base level. Since the task is basically identical
to shallow parsing by CRFs, we follow the feature
sets used in the previous work by Sha and Pereira
(2003). We use unigrams, bigrams, and trigrams
of part-of-speech (POS) tags and words.

The difference between our CRF chunker and
that in (Sha and Pereira, 2003) is that we could
not use second-order CRF models, hence we could
not use trigram features on the BIO states. We
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Symbol Unigrams s−2, s−1, s0, s+1, s+2

Symbol Bigrams s−2s−1, s−1s0, s0s+1, s+1s+2

Symbol Trigrams s−3s−2s−1, s−2s−1s0, s−1s0s+1, s0s+1s+2, s+1s+2s+3

Word Unigrams h−2, h−1, h0, h+1, h+2

Word Bigrams h−2h−1, h−1h0, h0h+1, h+1h+2

Word Trigrams h−1h0h+1

Table 1: Feature templates used in the base level chunking.s represents a terminal symbol (i.e. POS tag)
and the subscript represents a relative position.h represents a word.

found that using second order CRFs in our task
was very difficult because of the computational
cost. Recall that the computational cost for CRFs
is quadratic to the number of possible states. In
our task, we need to consider the states for all non-
terminal symbols, whereas their work is only con-
cerned with noun phrases.

Table 2 shows feature templates used in the non-
base levels of chunking. In the non-base levels of
chunking, we can use a richer set of features than
the base-level chunking because the chunker has
access to the information about the partial trees
that have been already created. In addition to the
features listed in Table 1, the chunker looks into
the daughters of the current non-terminal sym-
bol and use them as features. It also uses the
words and POS tags around the edges of the re-
gion covered by the current non-terminal symbol.
We also added a special feature to better capture
PP-attachment. The chunker looks at the head of
the second daughter of the prepositional phrase to
incorporate the semantic head of the phrase.

4 Searching for the Best Parse

The probability for an entire parse tree is com-
puted as the product of the probabilities output by
the individual CRF chunkers:

score =
h∏

i=0

p(yi|xi), (1)

wherei is the level of chunking andh is the height
of the tree. The task of full parsing is then to
choose the series of chunking results that maxi-
mizes this probability.

It should be noted that there are cases where
different derivations (chunking histories) lead to
the same parse tree (i.e. phrase structure). Strictly
speaking, therefore, what we describe here as the
probability of a parse tree is actually the proba-
bility of a single derivation. The probabilities of

the derivations should then be marginalized over
to produce the probability of a parse tree, but in
this paper we ignore this effect and simply focus
only on the best derivation.

We use a depth-first search algorithm to find the
highest probability derivation. Figure 6 shows the
algorithm in pseudo-code. The parsing process is
implemented with a recursive function. In each
level of chunking, the recursive function first in-
vokes a CRF chunker to obtain chunking hypothe-
ses for the given sequence. For each hypothesis
whose probability is high enough to have possibil-
ity of constituting the best derivation, the function
calls itself with the sequence updated by the hy-
pothesis. The parsing process is performed in a
bottom up manner and this recursive process ter-
minates if the whole sequence is chunked as a sen-
tence.

To extract multiple chunking hypotheses from
the CRF chunker, we use a branch-and-bound
algorithm rather than the A* search algorithm,
which is perhaps more commonly used in previous
studies. We do not give pseudo code, but the ba-
sic idea is as follows. It first performs the forward
Viterbi algorithm to obtain the best sequence, stor-
ing the upper bounds that are used for pruning in
branch-and-bound. It then performs a branch-and-
bound algorithm in a backward manner to retrieve
possible candidate sequences whose probabilities
are greater than the given threshold. Unlike A*
search, this method is memory efficient because it
is performed in a depth-first manner and does not
require priority queues for keeping uncompleted
hypotheses.

It is straightforward to introduce beam search in
this search algorithm—we simply limit the num-
ber of hypotheses generated by the CRF chunker.
We examine how the width of the beam affects the
parsing performance in the experiments.
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Symbol Unigrams s−2, s−1, s0, s+1, s+2

Symbol Bigrams s−2s−1, s−1s0, s0s+1, s+1s+2

Symbol Trigrams s−3s−2s−1, s−2s−1s0, s−1s0s+1, s0s+1s+2, s+1s+2s+3

Head Unigrams h−2, h−1, h0, h+1, h+2

Head Bigrams h−2h−1, h−1h0, h0h+1, h+1h+2

Head Trigrams h−1h0h+1

Symbol & Daughters s0d01, ... s0d0m

Symbol & Word/POS context s0wj−1, s0pj−1, s0wk+1 , s0pk+1

Symbol & Words on the edgess0wj , s0wk

Freshness whethers0 has been created in the level just below
PP-attachment h−1h0m02 (only whens0 = PP)

Table 2: Feature templates used in the upper level chunking.s represents a non-terminal symbol.h
represents a head percolated from the bottom for each symbol.d0i is theith daughter ofs0. wj is the
first word in the range covered bys0. wj−1 is the word precedingwj . wk is the last word in the range
covered bys0. wk+1 is the word followingwk. p represents POS tags.m02 represents the head of the
second daughter ofs0.

Word Unigram w−2, w−1, w0, w+1, wi+2

Word Bigram w−1w0, w0w+1, w−1w+1

Prefix, Suffix prefixes ofw0

suffixes ofw0

(up to length 10)
Character featuresw0 has a hyphen

w0 has a number
w0 has a capital letter
w0 is all capital

Normalized word N(w0)

Table 3: Feature templates used in the POS tagger.
w represents a word and the subscript represents a
relative position.

5 Part-of-Speech Tagging

We use the CRF model also for POS tagging.
The CRF-based POS tagger is incorporated in the
parser in exactly the same way as the other lay-
ers of chunking. In other words, the POS tagging
process is treated like the bottom layer of chunk-
ing, so the parser considers multiple probabilistic
hypotheses output by the tagger in the search al-
gorithm described in the previous section.

5.1 Features

Table 3 shows the feature templates used in the
POS tagger. Most of them are standard features
commonly used in POS tagging for English. We
used unigrams and bigrams of neighboring words,
prefixes and suffixes of the current word, and some
characteristics of the word. We also normalized

the current word by lowering capital letters and
converting all the numerals into ‘#’, and used the
normalized word as a feature.

6 Experiments

We ran parsing experiments using the Wall Street
Journal corpus. Sections 2-21 were used as the
training data. Section 22 was used as the devel-
opment data, with which we tuned the feature set
and parameters for learning and parsing. Section
23 was reserved for the final accuracy report.

The training data for the CRF chunkers were
created by converting each parse tree in the train-
ing data into a list of chunking sequences like
the ones presented in Figures 1 to 4. We trained
three CRF models, i.e., the POS tagging model,
the base chunking model, and the non-base chunk-
ing model. The training took about two days on a
single CPU.

We used theevalb script provided by Sekine and
Collins for evaluating the labeled recall/precision
of the parser outputs2. All experiments were car-
ried out on a server with 2.2 GHz AMD Opteron
processors and 16GB memory.

6.1 Chunking Performance

First, we describe the accuracy of individual
chunking processes. Table 4 shows the results
for the ten most frequently occurring symbols on
the development data. Noun phrases (NP) are the

2The script is available at http://nlp.cs.nyu.edu/evalb/. We
used the parameter file “COLLINS.prm”.
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1: procedure PARSESENTENCE(x)
2: PARSE(x, 1, 0)
3:
4: function PARSE(x, p, q)
5: if x is chunked as a complete sentence
6: return p
7: H ← PERFORMCHUNKING(x, q/p)
8: for h ∈ H in descending order of their

probabilitiesdo
9: r ← p× h.probability

10: if r > q then
11: x

′ ← UPDATESEQUENCE(x, h)
12: s← PARSE(x′, r, q)
13: if s > q then
14: q ← s
15: return q
16:
17: function PERFORMCHUNKING(x, t)
18: perform chunking with a CRF chunker and
19: return a set of chunking hypotheses whose
20: probabilities are greater thant.
21:
22: function UPDATESEQUENCE(x, h)
23: update sequencex according to chunking
24: hypothesish and return the updated
25: sequence.

Figure 6: Searching for the best parse with a
depth-first search algorithm. This pseudo-code il-
lustrates how to find the highest probability parse,
but in the real implementation, the function needs
to keep track of chunking histories as well as prob-
abilities.

most common symbol and consist of 55% of all
phrases. The accuracy of noun phrases recognition
was relatively high, but it may be useful to design
special features for this particular type of phrase,
considering the dominance of noun phrases in the
corpus. Although not directly comparable, Sha
and Pereira (2003) report almost the same level
of accuracy (94.38%) on noun phrase recognition,
using a much smaller training set. We attribute
their superior performance mainly to the use of
second-order features on state transitions. Table 4
also suggests that adverb phrases (ADVP) and ad-
jective phrases (ADJP) are more difficult to recog-
nize than other types of phrases, which coincides
with the result reported in (Collins, 1999).

It should be noted that the performance reported
in this table was evaluated using the gold standard
sequences as the input to the CRF chunkers. In the

Symbol # Samples Recall Prec. F-score
NP 317,597 94.79 94.16 94.47
VP 76,281 91.46 91.98 91.72
PP 66,979 92.84 92.61 92.72
S 33,739 91.48 90.64 91.06
ADVP 21,686 84.25 85.86 85.05
ADJP 14,422 77.27 78.46 77.86
QP 14,308 89.43 91.16 90.28
SBAR 11,603 96.42 96.97 96.69
WHNP 8,827 95.54 97.50 96.51
PRT 3,391 95.72 90.52 93.05

: : : : :
all 579,253 92.63 92.62 92.63

Table 4: Chunking performance (section 22, all
sentences).

Beam Recall Prec. F-score Time (sec)
1 86.72 87.83 87.27 16
2 88.50 88.85 88.67 41
3 88.69 89.08 88.88 61
4 88.72 89.13 88.92 92
5 88.73 89.14 88.93 119
10 88.68 89.19 88.93 179

Table 5: Beam width and parsing performance
(section 22, all sentences).

real parsing process, the chunkers have to use the
output from the previous (one level below) chun-
ker, so the quality of the input is not as good as
that used in this evaluation.

6.2 Parsing Performance

Next, we present the actual parsing performance.
The first set of experiments concerns the relation-
ship between the width of beam and the parsing
performance. Table 5 shows the results obtained
on the development data. We varied the width of
the beam from 1 to 10. The beam width of 1 cor-
responds to deterministic parsing. Somewhat un-
expectedly, the parsing accuracy did not drop sig-
nificantly even when we reduced the beam width
to a very small number such as 2 or 3.

One of the interesting findings was that re-
call scores were consistently lower than precision
scores throughout all experiments. A possible rea-
son is that, since the score of a parse is defined
as the product of all chunking probabilities, the
parser could prefer a parse tree that consists of
a small number of chunk layers. This may stem
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from the history-based model’s inability of prop-
erly trading off decisions made by different chun-
kers.

Overall, the parsing speed was very high. The
deterministic version (beam width = 1) parsed
1700 sentences in 16 seconds, which means that
the parser needed only 10 msec to parse one sen-
tence. The parsing speed decreases as we increase
the beam width.

The parser was also memory efficient. Thanks
to L1 regularization, the training process did not
result in many non-zero feature weights. The num-
bers of non-zero weight features were 58,505 (for
the base chunker), 263,889 (for the non-base chun-
ker), and 42,201 (for the POS tagger). The parser
required only 14MB of memory to run.

There was little accuracy difference between the
beam width of 4 and 5, so we adopted the beam
width of 4 for the final accuracy report on the test
data.

6.3 Comparison with Previous Work

Table 6 shows the performance of our parser on
the test data and summarizes the results of previ-
ous work. Our parser achieved an f-score of 88.4
on the test data, which is comparable to the accu-
racy achieved by recent discriminative approaches
such as Finkel et al. (2008) and Petrov & Klein
(2008), but is not as high as the state-of-the-art
accuracy achieved by the parsers that can incor-
porate global features such as Huang (2008) and
Charniak & Johnson (2005). Our parser was more
accurate than traditional history-based approaches
such as Sagae & Lavie (2006) and Ratnaparkhi
(1997), and was significantly better than previous
cascaded chunking approaches such as Tsuruoka
& Tsujii (2005) and Tjong Kim Sang (2001).

Although the comparison presented in the table
is not perfectly fair because of the differences in
hardware platforms, the results show that our pars-
ing model is a promising addition to the parsing
frameworks for building a fast and accurate parser.

7 Discussion

One of the obvious ways to improve the accuracy
of our parser is to improve the accuracy of in-
dividual CRF models. As mentioned earlier, we
were not able to use second-order features on state
transitions, which would have been very useful,
due to the problem of computational cost. Incre-
mental feature selection methods such as grafting

(Perkins et al., 2003) may help us to incorporate
such higher-order features, but the problem of de-
creased efficiency of dynamic programming in the
CRF would probably need to be addressed.

In this work, we treated the chunking problem
as a sequence labeling problem by using the BIO
representation for the chunks. However, semi-
Markov conditional random fields (semi-CRFs)
can directly handle the chunking problem by
considering all possible combinations of subse-
quences of arbitrary length (Sarawagi and Cohen,
2004). Semi-CRFs allow one to use a richer set
of features than CRFs, so the use of semi-CRFs
in our parsing framework should lead to improved
accuracy. Moreover, semi-CRFs would allow us to
incorporate some useful restrictions in producing
chunking hypotheses. For example, we could nat-
urally incorporate the restriction that every chunk
has to contain at least one symbol that has just
been created in the previous level3. It is hard for
the normal CRF model to incorporate such restric-
tions.

Introducing latent variables into the CRF model
may be another promising approach. This is the
main idea of Petrov and Klein (2008), which sig-
nificantly improved parsing accuracy.

A totally different approach to improving the
accuracy of our parser is to use the idea of “self-
training” described in (McClosky et al., 2006).
The basic idea is to create a larger set of training
data by applying an accurate parser (e.g. rerank-
ing parser) to a large amount of raw text. We can
then use the automatically created treebank as the
additional training data for our parser. This ap-
proach suggests that accurate (but slow) parsers
and fast (but not-so-accurate) parsers can actually
help each other.

Also, since it is not difficult to extend our parser
to produce N-best parsing hypotheses, one could
build a fast reranking parser by using the parser as
the base (hypotheses generating) parser.

8 Conclusion

Although the idea of treating full parsing as a se-
ries of chunking problems has a long history, there
has not been a competitive parser based on this
parsing framework. In this paper, we have demon-
strated that the framework actually enables us to

3For example, the sequence VBD DT JJ in Figure 2 can-
not be a chunk in the current level because it would have been
already chunked in the previous level if it were.
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Recall Precision F-score Time (min)
This work (deterministic) 86.3 87.5 86.9 0.5
This work (search, beam width = 4) 88.2 88.7 88.4 1.7
Huang (2008) 91.7 Unk
Finkel et al. (2008) 87.8 88.2 88.0 >250*
Petrov & Klein (2008) 88.3 3*
Sagae & Lavie (2006) 87.8 88.1 87.9 17
Charniak & Johnson (2005) 90.6 91.3 91.0 Unk
Tsuruoka & Tsujii (2005) 85.0 86.8 85.9 2
Collins (1999) 88.1 88.3 88.2 39**
Tjong Kim Sang (2001) 78.7 82.3 80.5 Unk
Charniak (2000) 89.6 89.5 89.5 23**
Ratnaparkhi (1997) 86.3 87.5 86.9 Unk

Table 6: Parsing performance on section 23 (all sentences). * estimated from the parsing time on the
training data. ** reported in (Sagae and Lavie, 2006) where Pentium 4 3.2GHz was used to run the
parsers.

build a competitive parser if we use CRF mod-
els for each level of chunking and a depth-first
search algorithm to search for the highest proba-
bility parse.

Like other discriminative learning approaches,
one of the advantages of our parser is its general-
ity. The design of our parser is very generic, and
the features used in our parser are not particularly
specific to the Penn Treebank. We expect it to be
straightforward to adapt the parser to other projec-
tive grammars and languages.

This parsing framework should be useful when
one needs to process a large amount of text or
when real time processing is required, in which
the parsing speed is of top priority. In the deter-
ministic setting, our parser only needed about 10
msec to parse a sentence.

Acknowledgments

This work described in this paper has been
funded by the Biotechnology and Biological Sci-
ences Research Council (BBSRC; BB/E004431/1)
and the European BOOTStrep project (FP6 -
028099). The research team is hosted by the
JISC/BBSRC/EPSRC sponsored National Centre
for Text Mining.

References

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. InPro-
ceedings of ICML, pages 33–40.

Thorsten Brants. 1999. Cascaded markov models. In
Proceedings of EACL.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X, pages 149–164.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. InProceedings of ACL, pages 173–180.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of NAACL 2000,
pages 132–139.

Stephen Clark and James R. Curran. 2004. The impor-
tance of supertagging for wide-coverage CCG pars-
ing. In Proceedings of COLING 2004, pages 282–
288.

Michael Collins. 1999.Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. InProceedings of ACL-
08:HLT, pages 959–967.

Jianfeng Gao, Galen Andrew, Mark Johnson, and
Kristina Toutanova. 2007. A comparative study of
parameter estimation methods for statistical natural
language processing. InProceedings of ACL, pages
824–831.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of
ACL-08:HLT, pages 586–594.

Aravind K. Joshi and Phil Hopely. 1996. A parser
from antiquity. Natural Language Engineering,
2(4):291–294.

797



Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization - step one: Sentence compres-
sion. InProceedings of AAAI/IAAI, pages 703–710.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InProceedings of ACL, pages
276–283.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of HLT-NAACL.

Yusuke Miyao, Rune Saetre, Kenji Sage, Takuya Mat-
suzaki, and Jun’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their representa-
tions. InProceedings of ACL-08:HLT, pages 46–54.

Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsu-
ruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Extremely lexicalized models for accurate and fast
HPSG parsing. InProceedings of EMNLP 2006,
pages 155–163.

Simon Perkins, Kevin Lacker, and James Theiler.
2003. Grafting: fast, incremental feature selection
by gradient descent in function space.The Journal
of Machine Learning Research, 3:1333–1356.

Slav Petrov and Dan Klein. 2008. Discriminative
log-linear grammars with latent variables. InAd-
vances in Neural Information Processing Systems 20
(NIPS), pages 1153–1160.

Adwait Ratnaparkhi. 1997. A linear observed time sta-
tistical parser based on maximum entropy models.
In Proceedings of EMNLP 1997, pages 1–10.

Kenji Sagae and Alon Lavie. 2006. A best-first proba-
bilistic shift-reduce parser. InProceedings of COL-
ING/ACL, pages 691–698.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information
extraction. InProceedings of NIPS.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. InProceedings of
HLT-NAACL.

Erik Tjong Kim Sang. 2001. Transforming a chunker
to a parser. In J. Veenstra W. Daelemans, K. Sima‘an
and J. Zavrel, editors,Computational Linguistics in
the Netherlands 2000, pages 177–188. Rodopi.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Chunk
parsing revisited. InProceedings of IWPT, pages
133–140.

Xiaofeng Yang, Jian Su, and Chew Lim Tan. 2006.
Kernel-based pronoun resolution with structured
syntactic features. InProceedings of COLING/ACL,
pages 41–48.

798



Proceedings of the 12th Conference of the European Chapter of the ACL, pages 799–807,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

MINT: A Method for Effective and Scalable Mining of  

Named Entity Transliterations from Large Comparable Corpora 

Raghavendra Udupa         K Saravanan         A Kumaran        Jagadeesh Jagarlamudi
*
          

Microsoft Research India 

Bangalore 560080 INDIA 

 [raghavu,v-sarak,kumarana,jags}@microsoft.com 

 

Abstract 

In this paper, we address the problem of min-

ing transliterations of Named Entities (NEs) 

from large comparable corpora. We leverage 

the empirical fact that multilingual news ar-

ticles with similar news content are rich in 

Named Entity Transliteration Equivalents 

(NETEs). Our mining algorithm, MINT, uses 

a cross-language document similarity model to 

align multilingual news articles and then 

mines NETEs from the aligned articles using a 

transliteration similarity model. We show that 

our approach is highly effective on 6 different 

comparable corpora between English and 4 

languages from 3 different language families. 

Furthermore, it performs substantially better 

than a state-of-the-art competitor.   

1 Introduction 

Named Entities (NEs) play a critical role in many 

Natural Language Processing and Information 

Retrieval (IR) tasks.  In Cross-Language Infor-

mation Retrieval (CLIR) systems, they play an 

even more important role as the accuracy of their 

transliterations is shown to correlate highly with 

the performance of the CLIR systems (Mandl 

and Womser-Hacker, 2005, Xu and Weischedel, 

2005).  Traditional methods for transliterations 

have not proven to be very effective in CLIR. 

Machine Transliteration systems (AbdulJaleel 

and Larkey, 2003; Al-Onaizan and Knight, 2002; 

Virga and Khudanpur, 2003) usually produce 

incorrect transliterations and translation lexcions 

such as hand-crafted or statistical dictionaries are 

too static to have good coverage of NEs
1
 occur-

ring in the current news events. Hence, there is a 

critical need for creating and continually updat-

                                                 
*
 Currently with University of Utah. 

1
 New NEs are introduced to the vocabulary of a lan-

guage every day. On an average, 260 and 452 new 

NEs appeared daily in the XIE and AFE segments of 

the LDC English Gigaword corpora respectively. 

ing multilingual Named Entity transliteration 

lexicons. 

The ubiquitous availability of comparable 

news corpora in multiple languages suggests a 

promising alternative to Machine Transliteration, 

namely, the mining of Named Entity Translitera-

tion Equivalents (NETEs) from such corpora. 

News stories are typically rich in NEs and there-

fore, comparable news corpora can be expected 

to contain NETEs (Klementiev and Roth, 2006; 

Tao et al., 2006). The large quantity and the per-

petual availability of news corpora in many of 

the world’s languages, make mining of NETEs a 

viable alternative to traditional approaches. It is 

this opportunity that we address in our work. 

    In this paper, we detail an effective and scala-

ble mining method, called MINT (MIning 

Named-entity Transliteration equivalents), for 

mining of NETEs from large comparable corpo-

ra. MINT addresses several challenges in mining 

NETEs from large comparable corpora: exhaus-

tiveness (in mining sparse NETEs), computa-

tional efficiency (in scaling on corpora size), 

language independence (in being applicable to 

many language pairs) and linguistic frugality (in 

requiring minimal external linguistic resources).   

Our contributions are as follows: 

 We give empirical evidence for the hypo-

thesis that news articles in different languages 

with reasonably similar content are rich sources 

of NETEs (Udupa, et al., 2008).  

 We demonstrate that the above insight can 

be translated into an effective approach for min-

ing NETEs from large comparable corpora even 

when similar articles are not known a priori. 

 We demonstrate MINT’s effectiveness on 

4 language pairs involving 5 languages (English, 

Hindi, Kannada, Russian, and Tamil) from 3 dif-

ferent language families, and its scalability on 

corpora of vastly different sizes (2,000 to 

200,000 articles).  

 We show that MINT’s performance is sig-

nificantly better than a state of the art method 

(Klementiev and Roth, 2006). 
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We discuss the motivation behind our ap-

proach in Section 2 and present the details in 

Section 3.  In Section 4, we describe the evalua-

tion process and in Section 5, we present the re-

sults and analysis.  We discuss related work in 

Section 6.  

2 Motivation 

MINT is based on the hypothesis that news ar-

ticles in different languages with similar content 

contain highly overlapping set of NEs. News 

articles are typically rich in NEs as news is about 

events involving people, locations, organizations, 

etc
2
. It is reasonable to expect that multilingual 

news articles reporting the same news event 

mention the same NEs in the respective languag-

es. For instance, consider the English and Hindi 

news reports from the New York Times and the 

BBC on the second oath taking of President Ba-

rack Obama (Figure 1). The articles are not pa-

rallel but discuss the same event. Naturally, they 

mention the same NEs (such as Barack Obama, 

John Roberts, White House) in the respective 

languages, and hence, are rich sources of NETEs.    

Our empirical investigation of comparable 

corpora confirmed the above insight. A study of 

                                                 
2
 News articles from the BBC corpus had, on an 

average, 12.9 NEs and new articles from the The 

New Indian Express, about 11.8 NEs. 
 

200 pairs of similar news articles published by 

The New Indian Express in 2007 in English and 

Tamil showed that 87% of the single word NEs 

in the English articles had at least one translitera-

tion equivalent in the conjugate Tamil articles.  

The MINT method leverages this empirically 

backed insight to mine NETEs from such compa-

rable corpora.   

However, there are several challenges to the 

mining process: firstly, vast majority of the NEs 

in comparable corpora are very sparse; our anal-

ysis showed that 80% of the NEs in The New 

Indian Express news corpora appear less than 5 

times in the entire corpora.  Hence, any mining 

method that depends mainly on repeated occur-

rences of the NEs in the corpora is likely to miss 

vast majority of the NETEs.  Secondly, the min-

ing method must restrict the candidate NETEs 

that need to be examined for match to a reasona-

bly small number, not only to minimize false 

positives but also to be computationally efficient.  

Thirdly, the use of linguistic tools and resources 

must be kept to a minimum as resources are 

available only in a handful of languages.  Finally, 

it is important to use as little language-specific 

knowledge as possible in order to make the min-

ing method applicable across a vast majority of 

languages of the world.  The MINT method pro-

posed in this paper addresses all the above is-

sues. 
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3 The MINT Mining Method 

MINT has two stages. In the first stage, for 

every document in the source language side, the 

set of documents in the target language side with 

similar news content are found using a cross-

language document similarity model. In the 

second stage, the NEs in the source language 

side are extracted using a Named Entity Recog-

nizer (NER) and, subsequently, for each NE in a 

source language document, its transliterations are 

mined from the corresponding target language 

documents. We present the details of the two 

stages of MINT in the remainder of this section. 

3.1 Finding Similar Document Pairs  

The first stage of MINT method (Figure 2) works 

on the documents from the comparable corpora 

(CS, CT) in languages S and T and produces a col-

lection AS,T  of similar article pairs (DS, DT).  Each 

article pair (DS, DT) in AS,T consists of an article 

(DS) in language S and an article (DT) in language 

T, that have similar content. The cross-language 

similarity between DS and DT, as measured by the 

cross-language similarity model MD, is at least  

> 0. 

 

Cross-language Document Similarity Model: 
The cross-language document similarity model 

measures the degree of similarity between a pair 

of documents in source and target languages.  

We use the negative KL-divergence between 

source and target document probability distribu-

tions as the similarity measure. 

  Given two documents DS, DT in source and tar-

get languages respectively, with TS VV , denoting 

the vocabulary of source and target languages, 

the similarity between the two documents is giv-

en by the KL-divergence measure, -KL(DS || DT), 

as: 


 TTw ST

TT

ST

V Dwp

Dwp
Dwp

)|(

)|(
log)|(   

where p(w | D) is the likelihood of word w in D. 

As we are interested in target documents which 

are similar to a given source document, we can 

ignore the numerator as it is independent of the 

target document.  Finally, expanding p(wT | Ds) 

as )|()|( S

Vw

TSS wwpDwp
SS


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we specify the 

cross-language similarity score as follows: 
 

Cross-language similarity =       

)|(log)|()|( TTST

w w

SS DwpwwpDwp
TVT SVS

 
 

 

 

3.2 Mining NETEs from Document Pairs  

The second stage of the MINT method works on 

each pair of articles (DS, DT) in the collection AS,T  

and produces a set PS,T of NETEs. Each pair (εS, 

εT) in PS,T  consists of an NE εS in language S, and 

a token εT in language T, that are transliteration 

equivalents of each other.  Furthermore, the 

transliteration similarity between εS and εT, as 

measured by the transliteration similarity model 

MT, is at least β > 0. Figure 3 outlines this algo-

rithm.  

 

Discriminative Transliteration Similarity 

Model:  

The transliteration similarity model MT measures 

the degree of transliteration equivalence between 

a source language and a target language term.  
Input: Comparable news corpora (CS, CT) in languages (S,T)  

           Crosslanguage Document Similarity Model MD for (S, T) 

           Threshold score α. 

Output: Set AS,T of pairs of similar articles (DS, DT) from (CS, CT). 

1 AS,T    ;         // Set of Similar articles (DS, DT) 

2 for each article DS in CS do 

3     XS     ;       // Set of candidates for DS. 

4      for each article dT  in CT  do 

5         score = CrossLanguageDocumentSimilarity(DS,dT,MD); 

6         if (score ≥ α) then XS   XS   (dT , score) ; 

7      end 

8     DT  = BestScoringCandidate(XS); 

9    if (DT  ≠ ) then AS,T   AS,T   (DS, DT) ; 

10 end 

CrossLanguageSimilarDocumentPairs 

Figure 2. Stage 1 of MINT 

Input:  

      Set AS,T  of similar documents (DS, DT)  in languages  

(S,T),   

      Transliteration Similarity Model MT for (S, T),  

      Threshold score β. 

Output: Set PS,T  of NETEs (εS, εT) from  AS,T ; 

1   PS,T    ;  

2   for each pair of articles (DS, DT) in AS,T  do 

3        for each named entity εS in DS do  

4            YS   ; // Set of candidates for εS. 

5            for each candidate eT  in DT  do 

6                 score = TransliterationSimilarity(εS, eT, MT) ; 

7                 if (score ≥ β)  then   YS    YS  (eT , score) ; 

8            end 

9            εT  = BestScoringCandidate(YS) ;  

10          if (εT  ≠ null) then PS,T    PS,T   (εS, εT) ; 

11      end 

12 end 

TransliterationEquivalents 

Figure 3. Stage 2 of MINT 
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We employ a logistic function as our translitera-

tion similarity model MT, as follows: 
 

 TransliterationSimilarity (εS,eT,MT) = 
),( TS1

1
ewt

e



 

where  (εS, eT) is the feature vector for the pair 

(εS, eT) and w is the weights vector.  Note that the 

transliteration similarity takes a value in the 

range [0..1]. The weights vector w is learnt dis-

criminatively over a training corpus of known 

transliteration equivalents in the given pair of 

languages. 

 

Features: The features employed by the model 

capture interesting cross-language associations 

observed in (εS, eT): 

 

 All unigrams and bigrams from the 

source and target language strings. 

 Pairs of source string n-grams and target 

string n-grams such that difference in the 

start positions of the source and target n-

grams is at most 2. Here n  2,1 . 

 Difference in the lengths of the two 

strings.  

 

Generative Transliteration Similarity Model: 

We also experimented with an extension of He’s 

W-HMM model (He, 2007). The transition prob-

ability depends on both the jump width and the 

previous source character as in the W-HMM 

model. The emission probability depends on the 

current source character and the previous target 

character unlike the W-HMM model (Udupa et 

al., 2009). Instead of using any single alignment 

of characters in the pair (wS, wT), we marginalize 

over all possible alignments: 

     11

1

11 ,|,||
1 


 jajajj

A

m

j

nm tstpsaapstP
jj

 
 

Here, jt (and resp. is ) denotes the j
th
 (and resp. 

i
th
) character in wT (and resp. wS) and 

maA 1 is 

the hidden alignment between wT and wS where 

jt is aligned to 
jas , ,m,j 1 . We estimate 

the parameters of the model using the EM algo-

rithm. The transliteration similarity score of a 

pair (wS, wT) is log P(wT  | wS) appropriately trans-

formed. 

 

 

4 Experimental Setup 

Our empirical investigation consists of experi-

ments in three data environments, with each en-

vironment providing answer to specific set of 

questions, as listed below: 

 

1. Ideal Environment (IDEAL): Given a collec-

tion AS,T of oracle-aligned article pairs (DS, DT) 

in S and T, how effective is Stage 2 of MINT in 

mining NETE from AS,T? 

2. Near Ideal Environment (NEAR-IDEAL): 

Let AS,T  be a collection of similar article pairs 

(DS, DT) in S and T. Given comparable corpora 

(CS, CT) consisting of only articles from AS,T, but 

without the knowledge of pairings between the 

articles,  

a. How effective is Stage 1 of MINT in re-

covering AS,T  from (CS, CT) ? 

b. What is the effect of Stage 1 on the 

overall effectiveness of MINT? 

3. Real Environment (REAL): Given large 

comparable corpora (CS, CT), how effective is 

MINT, end-to-end? 

 

The IDEAL environment is indeed ideal for 

MINT since every article in the comparable cor-

pora is paired with exactly one similar article in 

the other language and the pairing of articles in 

the comparable corpora is known in advance.  

We want to emphasize here that such corpora are 

indeed available in many domains such as tech-

nical documents and interlinked multilingual 

Wikipedia articles. In the IDEAL environment, 

only Stage 2 of MINT is put to test, as article 

alignments are given.  

In the NEAR-IDEAL data environment, every 

article in the comparable corpora is known to 

have exactly one conjugate article in the other 

language though the pairing itself is not known 

in advance.  In such a setting, MINT needs to 

discover the article pairing before mining NETEs 

and therefore, both stages of MINT are put to 

test.  The best performance possible in this envi-

ronment should ideally be the same as that of 

IDEAL, and any degradation points to the short-

coming of the Stage 1 of MINT.  These two en-

vironments quantify the stage-wise performance 

of the MINT method.    

Finally, in the data environment REAL, we 

test MINT on large comparable corpora, where 

even the existence of a conjugate article in the 

target side for a given article in the source side of 

the comparable corpora is not guaranteed, as in 

802



any normal large multilingual news corpora. In 

this scenario both the stages of MINT are put to 

test.  This is the toughest, and perhaps the typical 

setting in which MINT would be used.  

4.1 Comparable Corpora 

In our experiments, the source language is Eng-

lish whereas the 4 target languages are from 

three different language families (Hindi from the 

Indo-Aryan family, Russian from the Slavic fam-

ily, Kannada and Tamil from the Dravidian fami-

ly). Note that none of the five languages use a 

common script and hence identification of cog-

nates, spelling variations, suffix transformations, 

and other techniques commonly used for closely 

related languages that have a common script are 

not applicable for mining NETEs.  Table 1 sum-

marizes the 6 different comparable corpora that 

were used for the empirical investigation; 4 for 

the IDEAL and NEAR-IDEAL environments (in 

4 language pairs), and 2 for the REAL environ-

ment (in 2 language pairs). 
 

Cor-
pus 

Source -
Target 

Data 
Environ-

ment 

Articles (in 

Thousands) 
Words (in 

Millions) 

Src Tgt Src Tgt 

EK-S 
English- 

Kannada 
IDEAL& 
NEAR-IDEAL 

2.90 2.90 0.42 0.34 

ET-S 
English- 
Tamil 

IDEAL& 
NEAR-IDEAL 

2.90 2.90 0.42 0.32 

ER-S 
English- 
Russian 

IDEAL& 
NEAR-IDEAL 

2.30 2.30 1.03 0.40 

EH-S 
English- 
Hindi 

IDEAL& 
NEAR-IDEAL 

11.9 11.9 3.77 3.57 

EK-L 
English- 

Kannada 
REAL 103.8 111.0 27.5 18.2 

ET-L 
English- 
Tamil 

REAL 103.8 144.3 27.5 19.4 

Table 1: Comparable Corpora 

 

The corpora can be categorized into two sepa-

rate groups, group S (for Small) consisting of 

EK-S, ET-S, ER-S, and EH-S and group L (for 

Large) consisting of EK-L and ET-L. Corpora in 

group S are relatively small in size, and contain 

pairs of articles that have been judged by human 

annotators as similar. Corpora in group L are two 

orders of magnitude larger in size than those in 

group S and contain a large number of articles 

that may not have conjugates in the target side. 

In addition the pairings are unknown even for the 

articles that have conjugates. All comparable 

corpora had publication dates, except EH-S, 

which is known to have been published over the 

same year. 

The EK-S, ET-S, EK-L and ET-L corpora are 

from The New Indian Express news paper, whe-

reas the EH-S corpora are from Web Dunia and 

the ER-S corpora are from BBC/Lenta News 

Agency respectively. 

4.2 Cross-language Similarity Model  

The cross-language document similarity model 

requires a bilingual dictionary in the appropriate 

language pair. Therefore, we generated statistical 

dictionaries for 3 language pairs (from parallel 

corpora of the following sizes: 11K sentence 

pairs in English-Kannada, 54K in English-Hindi, 

and 14K in English-Tamil) using the GIZA++ 

statistical alignment tool
 
(Och et al., 2003), with 

5 iterations each of IBM Model 1 and HMM.  

We did not have access to an English-Russian 

parallel corpus and hence could not generate a 

dictionary for this language pair. Hence, the 

NEAR-IDEAL experiments were not run for the 

English-Russian language pair.   

Although the coverage of the dictionaries was 

low, this turned out to be not a serious issue for 

our cross-language document similarity model as 

it might have for topic based CLIR (Ballesteros 

and Croft, 1998). Unlike CLIR, where the query 

is typically smaller in length compared to the 

documents, in our case we are dealing with news 

articles of comparable size in both source and 

target languages.  

When many translations were available for a 

source word, we considered only the top-4 trans-

lations.  Further, we smoothed the document 

probability distributions with collection frequen-

cy as described in (Ponte and Croft, 1998). 

4.3 Transliteration Similarity Model  

The transliteration similarity models for each of 

the 4 language pairs were produced by learning 

over a training corpus consisting of about 16,000 

single word NETEs, in each pair of languages.  

The training corpus in English-Hindi, English-

Kannada and English-Tamil were hand-crafted 

by professionals, the English-Russian name pairs 

were culled from Wikipedia interwiki links and 

were cleaned heuristically.  Equal number of 

negative samples was used for training the mod-

els. To produce the negative samples, we paired 

each source language NE with a random non-

matching target language NE.  No language spe-

cific features were used and the same feature set 

was used in each of the 4 language pairs making 

MINT language neutral.   

In all the experiments, our source side lan-

guage is English, and the Stanford Named Entity 

Recognizer (Finkel et al, 2005) was used to ex-

tract NEs from the source side article.  It should 

be noted here that while the precision of the NER 
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used was consistently high, its recall was low, 

(~40%) especially in the New Indian Express 

corpus, perhaps due to the differences in the data 

used for training the NER and the data on which 

we used it.   

4.4 Performance Measures  

Our intention is to measure the effectiveness of 

MINT by comparing its performance with the 

oracular (human annotator) performance.  As 

transliteration equivalents must exist in the 

paired articles to be found by MINT, we focus 

only on those NEs that actually have at least one 

transliteration equivalent in the conjugate article. 

Three performance measures are of interest to 

us: the fraction of distinct NEs from source lan-

guage for which we found at least one translitera-

tion in the target side (Recall on distinct NEs), 

the fraction of distinct NETEs (Recall on distinct 

NETEs) and the Mean Reciprocal Rank (MRR) 

of the NETEs mined.  Since we are interested in 

mining not only the highly frequent but also the 

infrequent NETEs, recall metrics measure how 

effective our method is in mining NETEs ex-

haustively. The MRR score indicates how effec-

tive our method is in preferring the correct ones 

among candidates. 

To measure the performance of MINT, we 

created a test bed for each of the language pairs. 

The test beds are summarized in Table 2.  

The test beds consist of pairs of similar ar-

ticles in each of the language pairs. It should be 

noted here that as transliteration equivalents must 

exist in the paired articles to be found by MINT, 

we focus only on those NEs that actually have at 

least one transliteration equivalent in the conju-

gate article. 

5 Results & Analysis 

In this section, we present qualitative and quan-

titative performance of the MINT algorithm, in 

mining NETEs from comparable news corpora. 

All the results in Sections 5.1 to 5.3 were ob-

tained using the discriminative transliteration 

similarity model described in Section 3.2. The 

results using the generative transliteration simi-

larity model are discussed in Section 5.4. 

5.1 IDEAL Environment 

Our first set of experiments investigated the ef-

fectiveness of Stage 2 of MINT, namely the min-

ing of NETEs in an IDEAL environment. As 

MINT is provided with paired articles in this ex-

periment, all experiments for this environment 

were run on test beds created from group S cor-

pora (Table 2).  

 

 

Results in the IDEAL Environment:  

The recall measures for distinct NEs and distinct 

NETEs for the IDEAL environment are reported 

in Table 3.  
 

Test 
Bed 

Recall (%) 

Distinct NEs Distinct NETEs 

EK-ST 97.30 95.07 

ET-ST 99.11 98.06 

EH-ST 98.55 98.66 

ER-ST 93.33 85.88 

 Table 3: Recall of MINT in IDEAL 

 

Note that in the first 3 language pairs MINT was 

able to mine a transliteration equivalent for al-

most all the distinct NEs. The performance in 

English-Russian pair was relatively worse, per-

haps due to the noisy training data.   

In order to compare the effectiveness of 

MINT with a state-of-the-art NETE mining ap-

proach, we implemented the time series based 

Co-Ranking algorithm based on (Klementiev and 

Roth, 2006).  

 

Table 4 shows the MRR results in the IDEAL 

environment – both for MINT and the Co-

Ranking baseline: MINT outperformed Co-

Ranking on all the language pairs, despite not 

using time series similarity in the mining 

process.  The high MRRs (@1 and @5) indicate 

that in almost all the cases, the top-ranked candi-

date is a correct NETE.  Note that Co-Ranking 

could not be run on the EH-ST test bed as the 

articles did not have a date stamp. Co-Ranking is 

crucially dependent on time series and hence re-

quires date stamps for the articles. 

 

Test Bed 
Comparable 
Corpora 

Article 
Pairs 

Distinct 
NEs 

Distinct 
NETEs 

EK-ST EK-S 200 481 710 

ET-ST ET-S 200 449 672 

EH-ST EH-S 200 347 373 

ER-ST ER-S 100 195 347 

Table 2: Test Beds for IDEAL & NEAR-IDEAL 

Test 
Bed 

MRR@1 MRR@5 

MINT CoRanking MINT CoRanking 

EK-ST 0.94 0.26 0.95 0.29 

ET-ST 0.91 0.26 0.94 0.29 

EH-ST 0.93 - 0.95 - 

ER-ST 0.80 0.38 0.85 0.43 

Table 4: MINT & Co-Ranking in IDEAL 
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5.2 NEAR-IDEAL Environment 

The second set of experiments investigated the 

effectiveness of Stage 1 of MINT on comparable 

corpora that are constituted by pairs of similar 

articles, where the pairing information between 

the articles is with-held.  MINT reconstructed the 

pairings using the cross-language document si-

milarity model and subsequently mined NETEs. 

As in previous experiments, we ran our experi-

ments on test beds described in Section 4.4. 

 

Results in the NEAR-IDEAL Environment: 

There are two parts to this set of experiments. In 

the first part, we investigated the effectiveness of 

the cross-language document similarity model 

described in Section 3.1. Since we know the 

identity of the conjugate article for every article 

in the test bed, and articles can be ranked accord-

ing to the cross-language document similarity 

score, we simply computed the MRR for the 

documents identified in each of the test beds, 

considering only the top-2 results. Further, where 

available, we made use of the publication date of 

articles to restrict the number of target articles 

that are considered in lines 4 and 5 of the MINT 

algorithm in Figure 2.  Table 5 shows the results 

for two date windows – 3 days and 1 year. 

 
 Test 
Bed 

MRR@1 MRR@2 

3 days 1 year 3 days 1 year 

EK-ST 0.99 0.91 0.99 0.93 

ET-ST 0.96 0.83 0.97 0.87 

EH-ST - 0.81 - 0.82 

Table 5: MRR of Stage 1 in NEAR-IDEAL 

 

Subsequently, the output of the Stage 1 was giv-

en as the input to the Stage 2 of the MINT me-

thod. In Table 6 we report the MRR @1 and @5 

for the second stage, for both time windows (3 

days & 1 year). 

 

It is interesting to compare the results of MINT 

in NEAR-IDEAL data environment (Table 6) 

with MINT’s results in IDEAL environment 

(Table 4). The drop in MRR@1 is small: ~2% 

for EK-ST and ~3% for ET-ST. For EH-ST the 

drop is relatively more (~12%) as may be ex-

pected since the time window (3 days) could not 

be applied for this test bed.  

5.3 REAL Environment 

The third set of experiments investigated the ef-

fectiveness of MINT on large comparable corpo-

ra. We ran the experiments on test beds created 

from group L corpora.   

 

 Test-beds for the REAL Environment: The 

test beds for the REAL environment (Table 7) 

consisted of only English articles since we do not 

know in advance whether these articles have any 

similar articles in the target languages. 
 

 Results in the REAL Environment: In real 

environment, we examined the top 2 articles of 

returned by Stage 1 of MINT, and mined NETEs 

from them. We used a date window of 3 in Stage 

1. Table 8 summarizes the results for the REAL 

environment. 

 

We observe that the performance of MINT is 

impressive, considering the fact that the compa-

rable corpora used in the REAL environment is 

two orders of magnitude larger than those used in 

IDEAL and NEAR-IDEAL environments. This 

implies that MINT is able to effectively mine 

NETEs whenever the Stage 1 algorithm was able 

to find a good conjugate for each of the source 

language articles.  

5.4 Generative Transliteration Similarity 

Model 

We employed the extended W-HMM translitera-

tion similarity model in MINT and used it in the 

IDEAL data environment.  Table 9 shows the 

results. 

Test 
Bed 

MRR@1 MRR@5 

3 days 1 year 3 days 1 year 

EK-ST 0.92 0.87 0.94 0.90 

ET-ST 0.88 0.74 0.91 0.78 

EH-ST - 0.82 - 0.87 

Table 6: MRR of Stage 2 in NEAR-IDEAL 

Test 
Bed 

Comparable 
Corpora 

Articles 
Distinct  

NEs 

EK-LT EK-L 100 306 

ET-LT ET-L 100 228 

Table 7: Test Beds for REAL 
 

Test Bed 
MRR 

@1 @5 

EK-LT 0.86 0.88 

ET-LT 0.82 0.85 

Table 8: MRR of Stage 2 in REAL 

Test Bed 
MRR 

@1 @5 

EK-S 0.85 0.86 

ET-S 0.81 0.82 

EH-S 0.91 0.93 

Table 9:  MRR of Stage 2 in IDEAL using genera-

tive transliteration similarity model 
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We see that the results for the generative transli-

teration similarity model are good but not as 

good as those for the discriminative translitera-

tion similarity model. As we did not stem either 

the English NEs or the target language words, 

the generative model made more mistakes on 

inflected words compared to the discriminative 

model.   

5.5  Examples of Mined NETEs 

Table 10 gives some examples of the NETEs 

mined from the comparable news corpora.  

 

6  Related Work 

CLIR systems have been studied in several 

works (Ballesteros and Croft, 1998; Kraiij et al, 

2003). The limited coverage of dictionaries has 

been recognized as a problem in CLIR and MT 

(Demner-Fushman & Oard, 2002; Mandl & 

Womser-hacker, 2005; Xu &Weischedel, 2005).  

In order to address this problem, different 

kinds of approaches have been taken, from learn-

ing transformation rules from dictionaries and 

applying the rules to find cross-lingual spelling 

variants (Pirkola et al., 2003), to  learning trans-

lation lexicon from monolingual and/or compa-

rable corpora (Fung, 1995; Al-Onaizan and 

Knight, 2002; Koehn and Knight, 2002; Rapp, 

1996). While these works have focused on find-

ing translation equivalents of all class of words, 

we focus specifically on transliteration equiva-

lents of NEs.  (Munteanu and Marcu, 2006; 

Quirk et al., 2007) addresses mining of parallel 

sentences and fragments from nearly parallel 

sentences. In contrast, our approach mines 

NETEs from article pairs that may not even have 

any parallel or nearly parallel sentences.   

NETE discovery from comparable corpora 

using time series and transliteration model was 

proposed in (Klementiev and Roth, 2006), and 

extended for NETE mining for several languages 

in (Saravanan and Kumaran, 2007).  However, 

such methods miss vast majority of the NETEs 

due to their dependency on frequency signatures.   

In addition, (Klementiev and Roth, 2006) may 

not scale for large corpora, as they examine 

every word in the target side as a potential trans-

literation equivalent. NETE mining from compa-

rable corpora using phonetic mappings was pro-

posed in (Tao et al., 2006), but the need for lan-

guage specific knowledge restricts its applicabili-

ty across languages.  We proposed the idea of 

mining NETEs from multilingual articles with 

similar content in (Udupa, et al., 2008). In this 

work, we extend the approach and provide a de-

tailed description of the empirical studies. 

7  Conclusion 

In this paper, we showed that MINT, a simple 

and intuitive technique employing cross-

language document similarity and transliteration 

similarity models, is capable of mining NETEs 

effectively from large comparable news corpora. 

Our three stage empirical investigation showed 

that MINT performed close to optimal on com-

parable corpora consisting of pairs of similar ar-

ticles when the pairings are known in advance. 

MINT induced fairly good pairings and performs 

exceedingly well even when the pairings are not 

known in advance. Further, MINT outperformed 

a state-of-the-art baseline and scaled to large 

comparable corpora.  Finally, we demonstrated 

the language neutrality of MINT, by mining 

NETEs from 4 language pairs (between English 

and one of Russian, Hindi, Kannada or Tamil) 

from 3 vastly different linguistic families. 

As a future work, we plan to use the ex-

tended W-HMM model to get features for the 

discriminative transliteration similarity model. 

We also want to use a combination of the cross-

language document similarity score and the 

transliteration similarity score for scoring the 

NETEs. Finally, we would like to use the mined 

NETEs to improve the performance of the first 

stage of MINT. 
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Language 

Pair 

Source NE Transliteration 

English-
Kannada 

Woolmer ವೂಲ್ಮರ್ 

Kafeel ಕಫೀಲ್ 

Baghdad ಬಾಗ್ಾಾದ್ 

English-Tamil Lloyd லாயிட்  

Mumbai மும்பையில் 

Manchester மான்செஸ்டர் 

English-Hindi Vanhanen वैनहैनन 

Trinidad त्रित्रनदाद  

Ibuprofen इबूप्रोफेन 

English-
Russian 

Kreuzberg Крейцберге 

Gaddafi Каддафи 

Karadzic Караджич 

Table 10: Examples of Mined NETEs 
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Abstract

Existing work in the extraction of com-
monsense knowledge from text has been
primarily restricted to factoids that serve
as statements about what may possibly ob-
tain in the world. We present an ap-
proach to deriving stronger, more general
claims by abstracting over large sets of
factoids. Our goal is to coalesce the ob-
served nominals for a given predicate ar-
gument into a few predominant types, ob-
tained as WordNet synsets. The results can
be construed as generically quantified sen-
tences restricting the semantic type of an
argument position of a predicate.

1 Introduction

Our interest is ultimately in building systems
with commonsense reasoning and language un-
derstanding abilities. As is widely appreciated,
such systems will require large amounts of gen-
eral world knowledge. Large text corpora are
an attractive potential source of such knowledge.
However, current natural language understand-
ing (NLU) methods are not general and reliable
enough to enable broad assimilation, in a formal-
ized representation, of explicitly stated knowledge
in encyclopedias or similar sources. As well, such
sources typically do not cover the most obvious
facts of the world, such as that ice cream may be
delicious and may be coated with chocolate, or
that children may play in parks.

Methods currently exist for extracting simple
“factoids” like those about ice cream and children
just mentioned (see in particular (Schubert, 2002;
Schubert and Tong, 2003)), but these are quite
weak as general claims, and – being unconditional

– are unsuitable for inference chaining. Consider
however the fact that when something is said, it
is generally said by a person, organization or text
source; this a conditional statement dealing with
the potential agents of saying, and could enable
useful inferences. For example, in the sentence,
“The tires were worn and they said I had to re-
place them”, they might be mistakenly identified
with the tires, without the knowledge that saying
is something done primarily by persons, organiza-
tions or text sources. Similarly, looking into the
future one can imagine telling a household robot,
“The cat needs to drink something”, with the ex-
pectation that the robot will take into account that
if a cat drinks something, it is usually water or
milk (whereas people would often have broader
options).

The work reported here is aimed at deriving
generalizations of the latter sort from large sets of
weaker propositions, by examining the hierarchi-
cal relations among sets of types that occur in the
argument positions of verbal or other predicates.
The generalizations we are aiming at are certainly
not the only kinds derivable from text corpora (as
the extensive literature on finding isa-relations,
partonomic relations, paraphrase relations, etc. at-
tests), but as just indicated they do seem poten-
tially useful. Also, thanks to their grounding in
factoids obtained by open knowledge extraction
from large corpora, the propositions obtained are
very broad in scope, unlike knowledge extracted
in a more targeted way.

In the following we first briefly review the
method developed by Schubert and collaborators
to abstract factoids from text; we then outline our
approach to obtaining strengthened propositions
from such sets of factoids. We report positive re-
sults, while making only limited use of standard
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corpus statistics, concluding that future endeav-
ors exploring knowledge extraction and WordNet
should go beyond the heuristics employed in re-
cent work.

2 KNEXT

Schubert (2002) presented an approach to ac-
quiring general world knowledge from text
corpora based on parsing sentences and mapping
syntactic forms into logical forms (LFs), then
gleaning simple propositional factoids from these
LFs through abstraction. Logical forms were
based on Episodic Logic (Schubert and Hwang,
2000), a formalism designed to accommodate in
a straightforward way the semantic phenomena
observed in all languages, such as predication,
logical compounding, generalized quantification,
modification and reification of predicates and
propositions, and event reference. An example
from Schubert and Tong (2003) of factoids
obtained from a sentence in the Brown corpus by
their KNEXT system is the following:

Rilly or Glendora had entered her room while
she slept, bringing back her washed clothes.

A NAMED-ENTITY MAY ENTER A ROOM.
A FEMALE-INDIVIDUAL MAY HAVE A ROOM.
A FEMALE-INDIVIDUAL MAY SLEEP.
A FEMALE-INDIVIDUAL MAY HAVE CLOTHES.
CLOTHES CAN BE WASHED.

((:I (:Q DET NAMED-ENTITY) ENTER[V]
(:Q THE ROOM[N]))

(:I (:Q DET FEMALE-INDIVIDUAL) HAVE[V]
(:Q DET ROOM[N]))

(:I (:Q DET FEMALE-INDIVIDUAL) SLEEP[V])
(:I (:Q DET FEMALE-INDIVIDUAL) HAVE[V]

(:Q DET (:F PLUR CLOTHE[N])))
(:I (:Q DET (:F PLUR CLOTHE[N])) WASHED[A]))

Here the upper-case sentences are automatically
generated verbalizations of the abstracted LFs
shown beneath them.1

The initial development of KNEXT was based
on the hand-constructed parse trees in the Penn
Treebank version of the Brown corpus, but sub-
sequently Schubert and collaborators refined and
extended the system to work with parse trees ob-
tained with statistical parsers (e.g., that of Collins
(1997) or Charniak (2000)) applied to larger cor-
pora, such as the British National Corpus (BNC),
a 100 million-word, mixed genre collection, along
with Web corpora of comparable size (see work of
Van Durme et al. (2008) and Van Durme and Schu-
bert (2008) for details). The BNC yielded over 2

1Keywords like :i, :q, and :f are used to indicate in-
fix predication, unscoped quantification, and function appli-
cation, but these details need not concern us here.

factoids per sentence on average, resulting in a to-
tal collection of several million. Human judging of
the factoids indicates that about 2 out of 3 factoids
are perceived as reasonable claims.

The goal in this work, with respect to the ex-
ample given, would be to derive with the use of a
large collection of KNEXT outputs, a general state-
ment such as If something may sleep, it is probably
either an animal or a person.

3 Resources

3.1 WordNet and Senses
While the community continues to make gains
in the automatic construction of reliable, general
ontologies, the WordNet sense hierarchy (Fell-
baum, 1998) continues to be the resource of
choice for many computational linguists requiring
an ontology-like structure. In the work discussed
here we explore the potential of WordNet as an un-
derlying concept hierarchy on which to base gen-
eralization decisions.

The use of WordNet raises the challenge of
dealing with multiple semantic concepts associ-
ated with the same word, i.e., employing Word-
Net requires word sense disambiguation in order
to associate terms observed in text with concepts
(synsets) within the hierarchy.

In their work on determining selectional prefer-
ences, both Resnik (1997) and Li and Abe (1998)
relied on uniformly distributing observed frequen-
cies for a given word across all its senses, an ap-
proach later followed by Pantel et al. (2007).2 Oth-
ers within the knowledge acquisition community
have favored taking the first, most dominant sense
of each word (e.g., see Suchanek et al. (2007) and
Paşca (2008)).

As will be seen, our algorithm does not select
word senses prior to generalizing them, but rather
as a byproduct of the abstraction process. More-
over, it potentially selects multiple senses of a
word deemed equally appropriate in a given con-
text, and in that sense provides coarse-grained dis-
ambiguation. This also prevents exaggeration of
the contribution of a term to the abstraction, as a
result of being lexicalized in a particularly fine-
grained way.

3.2 Propositional Templates
While the procedure given here is not tied to a
particular formalism in representing semantic con-

2Personal communication
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text, in our experiments we make use of proposi-
tional templates, based on the verbalizations aris-
ing from KNEXT logical forms. Specifically, a
proposition F with m argument positions gener-
ates m templates, each with one of the arguments
replaced by an empty slot. Hence, the statement,
A MAN MAY GIVE A SPEECH, gives rise to two
templates, A MAN MAY GIVE A , and A MAY

GIVE A SPEECH. Such templates match statements
with identical structure except at the template’s
slots. Thus, the factoid A POLITICIAN MAY GIVE

A SPEECH would match the second template. The
slot-fillers from matching factoids (e.g., MAN and
POLITICIAN form the input lemmas to our abstrac-
tion algorithm described below.

Additional templates are generated by further
weakening predicate argument restrictions. Nouns
in a template that have not been replaced by a free
slot can be replaced with an wild-card, indicating
that anything may fill its position. While slots
accumulate their arguments, these do not, serv-
ing simply as relaxed interpretive constraints on
the original proposition. For the running exam-
ple we would have; A MAY GIVE A ?, and, A ?
MAY GIVE A , yielding observation sets pertain-
ing to things that may give, and things that may be
given.3

We have not restricted our focus to two-
argument verbal predicates; examples such as A

PERSON CAN BE HAPPY WITH A , and, A CAN

BE MAGICAL, can be seen in Section 5.

4 Deriving Types

Our method for type derivation assumes access to
a word sense taxonomy, providing:

W : set of words, potentially multi-token
N : set of nodes, e.g., word senses, or synsets
P : N → {N ∗} : parent function
S : W→ (N+) : sense function
L : N ×N→Q≥0 : path length function

L is a distance function based on P that gives
the length of the shortest path from a node to a
dominating node, with base case: L(n, n) = 1.
When appropriate, we write L(w, n) to stand for
the arithmetic mean over L(n′, n) for all senses n′

3It is these most general templates that best correlate with
existing work in verb argument preference selection; how-
ever, a given KNEXT logical form may arise from multiple
distinct syntactic constructs.

function SCORE (n ∈ N , α ∈ R+, C ⊆W ⊆ W) :
C′ ← D(n) \ C
return

P
w∈C′ L(w,n)

|C′|α

function DERIVETYPES (W ⊆ W , m ∈ N+, p ∈ (0, 1]) :
α← 1, C ← {}, R← {}
� while too few words covered
while |C| < p× |W | :
n′← argmin

n∈N \R

SCORE(n, α,C)

R←R ∪ {n′}
C←C ∪ D(n′)
if |R| > m :

� cardinality bound exceeded – restart
α← α+ δ, C ← {}, R← {}

return R

Figure 1: Algorithm for deriving slot type restrictions, with
δ representing a fixed step size.

of w that are dominated by n.4 In the definition of
S, (N+) stands for an ordered list of nodes.

We refer to a given predicate argument position
for a specified propositional template simply as a
slot. W ⊆ W will stand for the set of words found
to occupy a given slot (in the corpus employed),
and D : N→W ∗ is a function mapping a node to
the words it (partially) sense dominates. That is,
for all n ∈ N and w ∈ W , if w ∈ D(n) then
there is at least one sense n′ ∈ S(w) such that n is
an ancestor of n′ as determined through use of P .
For example, we would expect the word bank to be
dominated by a node standing for a class such as
company as well as a separate node standing for,
e.g., location.

Based on this model we give a greedy search al-
gorithm in Figure 1 for deriving slot type restric-
tions. The algorithm attempts to find a set of dom-
inating word senses that cover at least one of each
of a majority of the words in the given set of obser-
vations. The idea is to keep the number of nodes in
the dominating set small, while maintaining high
coverage and not abstracting too far upward.

For a given slot we start with a set of observed
words W , an upper bound m on the number of
types allowed in the result R, and a parameter p
setting a lower bound on the fraction of items inW
that a valid solution must dominate. For example,
when m = 3 and p = 0.9, this says we require the
solution to consist of no more than 3 nodes, which
together must dominate at least 90% of W .

The search begins with initializing the cover set
C, and the result set R as empty, with the variable

4E.g., both senses of female in WN are dominated by the
node for (organism, being), but have different path lengths.
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α set to 1. Observe that at any point in the exe-
cution of DERIVETYPES, C represents the set of
all words from W with at least one sense having
as an ancestor a node in R. While C continues to
be smaller than the percentage required for a so-
lution, nodes are added to R based on whichever
element of N has the smallest score.

The SCORE function first computes the modi-
fied coverage of n, setting C ′ to be all words in W
that are dominated by n that haven’t yet been “spo-
ken for” by a previously selected (and thus lower
scoring) node. SCORE returns the sum of the path
lengths between the elements of the modified set
of dominated nodes and n, divided by that set’s
size, scaled by the exponent α. Note when α = 1,
SCORE simply returns the average path length of
the words dominated by n.

If the size of the result grows beyond the speci-
fied threshold,R andC are reset, α is incremented
by some step size δ, and the search starts again.
As α grows, the function increasingly favors the
coverage of a node over the summed path length.
Each iteration of DERIVETYPES thus represents a
further relaxation of the desire to have the returned
nodes be as specific as possible. Eventually, α
will be such that the minimum scoring nodes will
be found high enough in the tree to cover enough
of the observations to satisfy the threshold p, at
which point R is returned.

4.1 Non-reliance on Frequency

As can be observed, our approach makes no use of
the relative or absolute frequencies of the words in
W , even though such frequencies could be added
as, e.g., relative weights on length in SCORE. This
is a purposeful decision motivated both by practi-
cal and theoretical concerns.

Practically, a large portion of the knowledge ob-
served in KNEXT output is infrequently expressed,
and yet many tend to be reasonable claims about
the world (despite their textual rarity). For ex-
ample, a template shown in Section 5, A MAY

WEAR A CRASH HELMET, was supported by just
two sentences in the BNC. However, based on
those two observations we were able to conclude
that usually If something wears a crash helmet, it
is probably a male person.

Initially our project began as an application of
the closely related MDL approach of Li and Abe
(1998), but was hindered by sparse data. We ob-
served that our absolute frequencies were often too

low to perform meaningful comparisons of rela-
tive frequency, and that different examples in de-
velopment tended to call for different trade-offs
between model cost and coverage. This was due
as much to the sometimes idiosyncratic structure
of WordNet as it was to lack of evidence.5

Theoretically, our goal is distinct from related
efforts in acquiring, e.g., verb argument selec-
tional preferences. That work is based on the de-
sire to reproduce distributional statistics underly-
ing the text, and thus relative differences in fre-
quency are the essential characteristic. In this
work we aim for general statements about the real
world, which in order to gather we rely on text as
a limited proxy view. E.g., given 40 hypothetical
sentences supporting A MAN MAY EAT A TACO,
and just 2 sentences supporting A WOMAN MAY

EAT A TACO, we would like to conclude simply
that A PERSON MAY EAT A TACO, remaining ag-
nostic as to relative frequency, as we’ve no reason
to view corpus-derived counts as (strongly) tied to
the likelihood of corresponding situations in the
world; they simply tell us what is generally possi-
ble and worth mentioning.

5 Experiments

5.1 Tuning to WordNet

Our method as described thus far is not tied to a
particular word sense taxonomy. Experiments re-
ported here relied on the following model adjust-
ments in order to make use of WordNet (version
3.0).

The function P was set to return the union of
a synset’s hypernym and instance hypernym rela-
tions.

Regarding the function L , WordNet is con-
structed such that always picking the first sense
of a given nominal tends to be correct more of-
ten than not (see discussion by McCarthy et al.
(2004)). To exploit this structural bias, we em-
ployed a modified version of L that results in
a preference for nodes corresponding to the first
sense of words to be covered, especially when the
number of distinct observations were low (such as
earlier, with crash helmet):

L(n, n) =
{

1− 1
|W | ∃w ∈W : S(w) = (n, ...)

1 otherwise

5For the given example, this method (along with the con-
straints of Table 1) led to the overly general type, living thing.
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word # gloss
abstraction 6 a general concept formed by extracting common features from specific examples
attribute 2 an abstraction belonging to or characteristic of an entity
matter 3 that which has mass and occupies space
physical entity 1 an entity that has physical existence
whole 2 an assemblage of parts that is regarded as a single entity

Table 1: 〈word, sense #〉 pairs in WordNet 3.0 considered overly general for our purposes.

Propositional Template Num.
A CAN BE WHISKERED 4
GOVERNORS MAY HAVE -S 4
A CAN BE PREGNANT 28
A PERSON MAY BUY A 105
A MAY BARK 6
A COMPANY MAY HAVE A 713
A MAY SMOKE 8
A CAN BE TASTY 33
A SONG MAY HAVE A 31
A CAN BE SUCCESSFUL 664

CAN BE AT A ROAD 20
A CAN BE MAGICAL 96

CAN BE FOR A DICTATOR 5
MAY FLOAT 5

GUIDELINES CAN BE FOR -S 4
A MAY WEAR A CRASH HELMET 2
A MAY CRASH 12

Table 2: Development templates, paired with the number of
distinct words observed to appear in the given slot.

Note that when |W | = 1, then L returns 0 for
the term’s first sense, resulting in a score of 0 for
that synset. This will be the unique minimum,
leading DERIVETYPES to act as the first-sense
heuristic when used with single observations.

Parameters were set for our data based on man-
ual experimentation using the templates seen in
Table 2. We found acceptable results when us-
ing a threshold of p = 70%, and a step size of
δ = 0.1. The cardinality bound m was set to 4
when |W | > 4, and otherwise m = 2.

In addition, we found it desirable to add a few
hard restrictions on the maximum level of general-
ity. Nodes corresponding to the word sense pairs
given in Table 1 were not allowed as abstraction
candidates, nor their ancestors, implemented by
giving infinite length to any path that crossed one
of these synsets.

5.2 Observations during Development

Our method assumes that if multiple words occur-
ring in the same slot can be subsumed under the
same abstract class, then this information should
be used to bias sense interpretation of these ob-
served words, even when it means not picking the
first sense. In general this bias is crucial to our ap-

proach, and tends to select correct senses of the
words in an argument set W . But an example
where this strategy errs was observed for the tem-
plate A MAY BARK, which yielded the general-
ization that If something barks, then it is proba-
bly a person. This was because there were numer-
ous textual occurrences of various types of people
“barking” (speaking loudly and aggressively), and
so the occurrences of dogs barking, which showed
no type variability, were interpreted as involving
the unusual sense of dog as a slur applied to cer-
tain people.

The template, A CAN BE WHISKERED, had
observations including both face and head. This
prompted experiments in allowing part holonym
relations (e.g., a face is part of a head) as part
of the definition of P , with the final decision be-
ing that such relations lead to less intuitive gen-
eralizations rather than more, and thus these re-
lation types were not included. The remaining
relation types within WordNet were individually
examined via inspection of randomly selected ex-
amples from the hierarchy. As with holonyms we
decided that using any of these additional relation
types would degrade performance.

A shortcoming was noted in WordNet, regard-
ing its ability to represent binary valued attributes,
based on the template, A CAN BE PREGNANT.
While we were able to successfully generalize to
female person, there were a number of words ob-
served which unexpectedly fell outside that asso-
ciated synset. For example, a queen and a duchess
may each be a female aristocrat, a mum may be a
female parent,6 and a fiancee has the exclusive in-
terpretation as being synonymous with the gender
entailing bride-to-be.

6 Experiments

From the entire set of BNC-derived KNEXT

propositional templates, evaluations were per-
formed on a set of 21 manually selected examples,

6Serving as a good example of distributional preferencing,
the primary sense of mum is as a flower.
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Propositional Template Num.
A MAY HAVE A BROTHER 28
A ? MAY ATTACK A 23
A FISH MAY HAVE A 38
A CAN BE FAMOUS 665
A ? MAY ENTERTAIN A 8
A MAY HAVE A CURRENCY 18
A MALE MAY BUILD A 42
A CAN BE FAST-GROWING 15
A PERSON MAY WRITE A 47
A ? MAY WRITE A 99
A PERSON MAY TRY TO GET A 11
A ? MAY TRY TO GET A 17
A MAY FALL DOWN 5
A PERSON CAN BE HAPPY WITH A 36
A ? MAY OBSERVE A 38
A MESSAGE MAY UNDERGO A 14
A ? MAY WASH A 5
A PERSON MAY PAINT A 8
A MAY FLY TO A ? 9
A ? MAY FLY TO A 4
A CAN BE NERVOUS 131

Table 3: Templates chosen for evaluation.

together representing the sorts of knowledge for
which we are most interested in deriving strength-
ened argument type restrictions. All modification
of the system ceased prior to the selection of these
templates, and the authors had no knowledge of
the underlying words observed for any particular
slot. Further, some of the templates were purpose-
fully chosen as potentially problematic, such as, A

? MAY OBSERVE A , or A PERSON MAY PAINT

A . Without additional context, templates such
as these were expected to allow for exceptionally
broad sorts of arguments.

For these 21 templates, 65 types were derived,
giving an average of 3.1 types per slot, and allow-
ing for statements such as seen in Table 4.

One way in which to measure the quality of an
argument abstraction is to go back to the under-
lying observed words, and evaluate the resultant
sense(s) implied by the chosen abstraction. We say
senses plural, as the majority of KNEXT propo-
sitions select senses that are more coarse-grained
than WordNet synsets. Thus, we wish to evaluate
these more coarse-grained sense disambiguation
results entailed by our type abstractions.7 We per-
formed this evaluation using as comparisons the
first-sense, and all-senses heuristics.

The first-sense heuristic can be thought of as
striving for maximal specificity at the risk of pre-
cluding some admissible senses (reduced recall),

7Allowing for multiple fine-grained senses to be judged
as appropriate in a given context goes back at least to Sussna
(1993); discussed more recently by, e.g., Navigli (2006).

while the all-senses heuristic insists on including
all admissible senses (perfect recall) at the risk of
including inadmissible ones.

Table 5 gives the results of two judges evaluat-
ing 314 〈word, sense〉 pairs across the 21 selected
templates. These sense pairs correspond to pick-
ing one word at random for each abstracted type
selected for each template slot. Judges were pre-
sented with a sampled word, the originating tem-
plate, and the glosses for each possible word sense
(see Figure 2). Judges did not know ahead of time
the subset of senses selected by the system (as en-
tailed by the derived type abstraction). Taking the
judges’ annotations as the gold standard, we report
precision, recall and F-score with a β of 0.5 (favor-
ing precision over recall, owing to our preference
for reliable knowledge over more).

In all cases our method gives precision results
comparable or superior to the first-sense heuristic,
while at all times giving higher recall. In partic-
ular, for the case of Primary type, corresponding
to the derived type that accounted for the largest
number of observations for the given argument
slot, our method shows strong performance across
the board, suggesting that our derived abstractions
are general enough to pick up multiple acceptable
senses for observed words, but not so general as to
allow unrelated senses.

We designed an additional test of our method’s
performance, aimed at determining whether the
distinction between admissible senses and inad-
missible ones entailed by our type abstractions
were in accord with human judgement. To this
end, we automatically chose for each template
the observed word that had the greatest num-
ber of senses not dominated by a derived type

A MAY HAVE A BROTHER
1 WOMAN : an adult female person (as opposed to a
man); ”the woman kept house while the man hunted”

2 WOMAN : a female person who plays a significant
role (wife or mistress or girlfriend) in the life of a partic-
ular man; ”he was faithful to his woman”

3 WOMAN : a human female employed to do house-
work; ”the char will clean the carpet”; ”I have a woman
who comes in four hours a day while I write”

*4 WOMAN : women as a class; ”it’s an insult to Amer-
ican womanhood”; ”woman is the glory of creation”;
”the fair sex gathered on the veranda”

Figure 2: Example of a context and senses provided for
evaluation, with the fourth sense being judged as inappropri-
ate.
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If something is famous, it is probably a person1, an artifact1, or a communication2

If ? writes something, it is probably a communication2

If a person is happy with something, it is probably a communication2, a work1, a final result1, or a state of affairs1
If a fish has something, it is probably a cognition1, a torso1, an interior2, or a state2

If something is fast growing, it is probably a group1 or a business3
If a message undergoes something, it is probably a message2, a transmission2, a happening1, or a creation1

If a male builds something, it is probably a structure1, a business3, or a group1

Table 4: Examples, both good and bad, of resultant statements able to be made post-derivation. Authors manually selected
one word from each derived synset, with subscripts referring to sense number. Types are given in order of support, and thus the
first are examples of “Primary” in Table 5.

Method
⋃

j

⋂
j Type

Prec Recall F.5 Prec Recall F.5

derived 80.2 39.2 66.4 61.5 47.5 58.1

All
first 81.5 28.5 59.4 63.1 34.7 54.2
all 59.2 100.0 64.5 37.6 100.0 42.9
derived 90.0 50.0 77.6 73.3 71.0 72.8

Primaryfirst 85.7 33.3 65.2 66.7 45.2 60.9
all 69.2 100.0 73.8 39.7 100.0 45.2

Table 5: Precision, Recall and F-score (β = 0.5) for coarse grained WSD labels using the methods: derive from corpus data,
first-sense heuristic and all-sense heuristic. Results are calculated against both the union

S
j and intersection

T
j of manual

judgements, calculated for all derived argument types, as well as Primary derived types exclusively.

THE STATEMENT ABOVE IS A REASONABLY
CLEAR, ENTIRELY PLAUSIBLE GENERAL
CLAIM AND SEEMS NEITHER TOO SPECIFIC
NOR TOO GENERAL OR VAGUE TO BE USEFUL:
1. I agree.
2. I lean towards agreement.
3. I’m not sure.
4. I lean towards disagreement.
5. I disagree.

Figure 3: Instructions for evaluating KNEXT propositions.

restriction. For each of these alternative (non-
dominated) senses, we selected the ancestor ly-
ing at the same distance towards the root from the
given sense as the average distance from the dom-
inated senses to the derived type restriction. In
the case where going this far from an alternative
sense towards the root would reach a path passing
through the derived type and one of its subsumed
senses, the distance was cut back until this was no
longer the case.

These alternative senses, guaranteed to not be
dominated by derived type restrictions, were then
presented along with the derived type and the
original template to two judges, who were given
the same instructions as used by Van Durme and
Schubert (2008), which can be found in Figure 3.

Results for this evaluation are found in Table 6,
where we see that the automatically derived type
restrictions are strongly favored over alternative

judge 1 judge 2 corr
derived 1.76 2.10 0.60
alternative 3.63 3.54 0.58

Table 6: Average assessed quality for derived and alterna-
tive synsets, paired with Pearson correlation values.

abstracted types that were possible based on the
given word. Achieving even stronger rejection of
alternative types would be difficult, since KNEXT

templates often provide insufficient context for
full disambiguation of all their constituents, and
judges were allowed to base their assessments on
any interpretation of the verbalization that they
could reasonably come up with.

7 Related Work

There is a wealth of existing research focused on
learning probabilistic models for selectional re-
strictions on syntactic arguments. Resnik (1993)
used a measure he referred to as selectional pref-
erence strength, based on the KL-divergence be-
tween the probability of a class and that class
given a predicate, with variants explored by Ribas
(1995). Li and Abe (1998) used a tree cut model
over WordNet, based on the principle of Minimum
Description Length (MDL). McCarthy has per-
formed extensive work in the areas of selectional
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preference and WSD, e.g., (McCarthy, 1997; Mc-
Carthy, 2001). Calling the generalization problem
a case of engineering in the face of sparse data,
Clark and Weir (2002) looked at a number of pre-
vious methods, one conclusion being that the ap-
proach of Li and Abe appears to over-generalize.

Cao et al. (2008) gave a distributional method
for deriving semantic restrictions for FrameNet
frames, with the aim of building an Italian
FrameNet. While our goals are related, their work
can be summarized as taking a pre-existing gold
standard, and extending it via distributional simi-
larity measures based on shallow contexts (in this
case, n-gram contexts up to length 5). We have
presented results on strengthening type restrictions
on arbitrary predicate argument structures derived
directly from text.

In describing ALICE, a system for lifelong
learning, Banko and Etzioni (2007) gave a sum-
mary of a proposition abstraction algorithm devel-
oped independently that is in some ways similar
to DERIVETYPES. Beyond differences in node
scoring and their use of the first sense heuristic,
the approach taken here differs in that it makes no
use of relative term frequency, nor contextual in-
formation outside a particular propositional tem-
plate.8 Further, while we are concerned with gen-
eral knowledge acquired over diverse texts, AL-
ICE was built as an agent meant for construct-
ing domain-specific theories, evaluated on a 2.5-
million-page collection of Web documents per-
taining specifically to nutrition.

Minimizing word sense ambiguity by focus-
ing on a specific domain was later seen in the
work of Liakata and Pulman (2008), who per-
formed hierarchical clustering using output from
their KNEXT-like system first described in (Li-
akata and Pulman, 2002). Terminal nodes of the
resultant structure were used as the basis for in-
ferring semantic type restrictions, reminiscent of
the use of CBC clusters (Pantel and Lin, 2002) by
Pantel et al. (2007), for typing the arguments of
paraphrase rules.

Assigning pre-compiled instances to their first-
sense reading in WordNet, Paşca (2008) then gen-
eralized class attributes extracted for these terms,
using as a resource Google search engine query
logs.

Katrenko and Adriaans (2008) explored a con-
8Banko and Etzioni abstracted over subsets of pre-

clustered terms, built using corpus-wide distributional fre-
quencies

strained version of the task considered here. Using
manually annotated semantic relation data from
SemEval-2007, pre-tagged with correct argument
senses, the authors chose the least common sub-
sumer for each argument of each relation consid-
ered. Our approach keeps with the intuition of
preferring specific over general concepts in Word-
Net, but allows for the handling of relations au-
tomatically discovered, whose arguments are not
pre-tagged for sense and tend to be more wide-
ranging. We note that the least common sub-
sumer for many of our predicate arguments would
in most cases be far too abstract.

8 Conclusion

As the volume of automatically acquired knowl-
edge grows, it becomes more feasible to abstract
from existential statements to stronger, more gen-
eral claims on what usually obtains in the real
world. Using a method motivated by that used
in deriving selectional preferences for verb argu-
ments, we’ve shown progress in deriving semantic
type restrictions for arbitrary predicate argument
positions, with no prior knowledge of sense in-
formation, and with no training data other than a
handful of examples used to tune a few simple pa-
rameters.

In this work we have made no use of rela-
tive term counts, nor corpus-wide, distributional
frequencies. Despite foregoing these often-used
statistics, our methods outperform abstraction
based on a strict first-sense heuristic, employed in
many related studies.

Future work may include a return to the MDL
approach of Li and Abe (1998), but using a fre-
quency model that “corrects” for the biases in texts
relative to world knowledge – for example, cor-
recting for the preponderance of people as sub-
jects of textual assertions, even for verbs like bark,
glow, or fall, which we know to be applicable to
numerous non-human entities.
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Abstract

A corpus-based technique is described to
improve the efficiency of wide-coverage
high-accuracy parsers. By keeping track
of the derivation steps which lead to the
best parse for a very large collection of
sentences, the parser learns which parse
steps can be filtered without significant
loss in parsing accuracy, but with an im-
portant increase in parsing efficiency. An
interesting characteristic of our approach
is that it is self-learning, in the sense that
it uses unannotated corpora.

1 Introduction

We consider wide-coverage high-accuracy pars-
ing systems such as Alpino, a parser for Dutch
which contains a grammar based on HPSG and
a maximum entropy disambiguation component
trained on a treebank. Even if such parsing sys-
tems now obtain satisfactory accuracy for a vari-
ety of text types, a drawback concerns the compu-
tational properties of such parsers: they typically
require lots of memory and are often very slow for
longer and very ambiguous sentences.

We present a very simple, fairly general,
corpus-based method to improve upon the prac-
tical efficiency of such parsers. We use the accu-
rate, slow, parser to parse many (unannotated) in-
put sentences. For each sentence, we keep track of
sequences of derivation steps that were required to
find the best parse of that sentence (i.e., the parse
that obtained the best score, highest probability,
according to the parser itself).

Given a large set of successful derivation step
sequences, we experimented with a variety of
simple heuristics to filter unpromising derivation
steps. A heuristic that works remarkably well
simply states that for a new input sentence, the
parser can only consider derivation step sequences

in which any sub-sequence of length N has been
observed at least once in the training data. Exper-
imental results are provided for various heuristics
and amounts of training data.

It is hard to compare fast, accurate, parsers with
slow, slightly more accurate parsers. In section 3
we propose both an on-line and an off-line appli-
cation scenario, introducing a time-out per sen-
tence, which leads to metrics for choosing be-
tween parser variants.

In the experimental part we show that, in an on-
line scenario, the most successful heuristic leads
to a parser that is more accurate than the baseline
system, except for unrealistic time-outs per sen-
tence of more than 15 minutes. Furthermore, we
show that, in an off-line scenario, the most suc-
cessful heuristic leads to a parser that is more than
four times faster than the base-line variant with the
same accuracy.

2 Background: the Alpino parser for
Dutch

The experiments are performed using the Alpino
parser for Dutch. The Alpino system is a linguis-
tically motivated, wide-coverage grammar and
parser for Dutch in the tradition of HPSG. It con-
sists of about 800 grammar rules and a large lexi-
con of over 300,000 lexemes and various rules to
recognize special constructs such as named enti-
ties, temporal expressions, etc. Heuristics have
been implemented to deal with unknown words
and word sequences. Based on the categories as-
signed to words, and the set of grammar rules
compiled from the HPSG grammar, a left-corner
parser finds the set of all parses, and stores this set
compactly in a packed parse forest. In order to se-
lect the best parse from the parse forest, a best-first
search algorithm is applied. The algorithm con-
sults a Maximum Entropy disambiguation model
to judge the quality of (partial) parses.

Although Alpino is not a dependency grammar
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in the traditional sense, dependency structures are
generated by the lexicon and grammar rules as the
value of a dedicated attribute. The dependency
structures are based on CGN (Corpus Gesproken
Nederlands, Corpus of Spoken Dutch) (Hoekstra
et al., 2003), D-Coi and LASSY (van Noord et al.,
2006).

3 Methodology: balancing efficiency and
accuracy

3.1 On-line and off-line parsing scenarios

We focus on the speed of parsing, ignoring other
computational properties such as memory usage.
Problems with respect to parsing are twofold: on
the one hand, parsing simply is too slow for many
input sentences. On the other hand, the rela-
tion between input sentence and expected speed
of parsing is typically unknown. For simple pars-
ing systems based on finite-state, context-free or
mildly context-sensitive grammars, it is possible
to establish an upper-bound of required CPU-time
based on the length of an input sentence. For the
very powerful constraint-based formalisms con-
sidered here, such upper-bounds are not avail-
able. In practice, shorter sentences typically can
be parsed fairly quickly, whereas longer sentences
sometimes can take a very very long time indeed.
As a consequence, measures such as number of
words parsed per minute, or mean parsing time per
sentence are somewhat meaningless. We therefore
introduce two slightly different scenarios which
include a time-out per sentence.

On-line scenario. In some applications, a parser
is applied on-line: an actual user is waiting for the
response of the system, and if the parser required
minutes of CPU-time, the application would not
be successful. In such a scenario, we assume that
it is possible to determine a maximum amount of
CPU-time (a time-out) per sentence, depending on
other factors such as speed of the other system
components, expected patience of users, etc. If
the parser does not finish before the time-out, it is
assumed to have not produced anything. In depen-
dency parsing, the parser produces the empty set
of dependencies in such cases, and hence such an
event has an important negative effect on the ac-
curacy of the system. By studying the relation be-
tween different time-outs and accuracy, it is possi-
ble to choose the most effective parser variant for
a particular application.

Off-line scenario. For other applications, an
off-line parsing scenario might be more appropri-
ate. For instance, if we build a question answering
system for a medical encyclopedia, and we wish to
parse all sentences of that encyclopedia once and
for all, then we are not interested in the amount of
CPU-time the parser spends on a single sentence,
but we want to know how much time it will cost to
parse everything.

In such a scenario, it often still is very useful to
set a time-out for each sentence, but in this case the
time-out can be expected to be (much) higher than
in the on-line scenario. In this scenario, we pro-
pose to study the relation between mean CPU-time
and accuracy – for various settings of the time-
out parameter. This allows us to determine, for
instance, the mean CPU-time requirements for a
given target accuracy level?

3.2 Accuracy: comparing sets of
dependencies

Let Di
p be the number of dependencies produced

by the parser for sentence i, Di
g is the number of

dependencies in the treebank parse, and Di
o is the

number of correct dependencies produced by the
parser. If no superscript is used, we aggregate over
all sentences of the test set, i.e.,:

Dp =
∑

i

Di
p Do =

∑
i

Di
o Dg =

∑
i

Di
g

We define precision (P = Do/Dp), (R =
Do/Dg) and f-score: 2P · R/(P + R).

An alternative similarity score is based on the
observation that for a given sentence of n words,
a parser would be expected to return (about) n de-
pendencies. In such cases, we can simply use the
percentage of correct dependencies as a measure
of accuracy. To allow for some discrepancies be-
tween the number of expected and returned depen-
dencies, we divide by the maximum (per sentence)
of both. This leads to the following definition of
named dependency accuracy.

Acc =
Do∑

i max(Di
g, D

i
p)

If time-outs are introduced, the difference be-
tween f-score and accuracy becomes important.
Consider the example in table 1. Here, the parser
produces reasonable results for the first three,
short, sentences, but for the final, long, sentence
no result is produced because of a time-out.
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i Di
o Di

p Di
g prec rec f-sc Acc

1 8 10 11 80 73 76 73
2 8 11 10 76 76 76 73
3 8 9 9 80 80 80 77
4 0 0 30 80 40 53 39

Table 1: Hypothetical result of parser on a test set
of four sentences. The columns labeled precision,
recall, f-score and accuracy represent aggregates
over sentences 1 . . . i.

The precision, recall and f-score after the first
three sentences is 80%. After the – much longer
– fourth sentence, recall drops considerably, but
precision remains the same. As a consequence,
the f-score is quite a bit higher than 40%: it is over
53%. The accuracy score after three sentences is
77%. Including the fourth sentence leads to a drop
in accuracy to 39%.

As this example illustrates, the f-score metric is
less sensitive to parse failures than the accuracy
score. Also, it appears that the accuracy score is
a much better characterization of the success of
this parser: after all, the parser only got 24 cor-
rect dependencies out of 60 expected dependen-
cies. The f-score measure, on the other hand, can
easily be misunderstood to suggest that the parser
does a good job for more than 50%.

4 Learning Efficient Parsing

In this section a method is defined for filtering
derivation step sequences, based on previous expe-
rience of the parser. In a training phase, the parser
is fed with thousands of sentences. For each sen-
tence it finds the best parse, and it stores the rel-
evant sequences of derivation steps, that were re-
quired to find that best parse. After the training
phase, the parser filters those sequences of deriva-
tion steps that are unlikely to be useful. By fil-
tering out unlikely derivation step sequences, effi-
ciency is expected to improve. Since certain parses
now become impossible, a drop in accuracy is ex-
pected as well.

Although the idea of filtering derivation step
sequences based on previous experience is fairly
general, we define the method in more detail with
respect to an actual parsing algorithm: the left-
corner parser along the lines of Matsumoto et al.
(1983), Pereira and Shieber (1987, section 6.5)
and van Noord (1997).

4.1 Left-corner parsing

A left-corner parser is a bottom-up parser with
top-down guidance, which is most easily ex-
plained as a non-deterministic search procedure.
A specification of the left-corner algorithm can
be provided in DCG as in figure 2 (Pereira and
Shieber, 1987, section 6.5), where the filter/2
goals should be ignored for the moment. Here,
we assume that dictionary look-up is performed
by the word/3 predicate, with the first argument
a given word, and the second argument its cate-
gory; and that rules are accessible via the predi-
cate rule/3, where the first argument represents
the mother category, and the second argument is
the possibly empty list of daughter categories. The
third argument of both the word/3 and rule/3
predicates are identifiers we need later.

In order to analyze a given sentence as an in-
stance of the top category, we look up the first
word of the string, and show that this lexical cat-
egory is a left-corner of the goal category. To
show that a given category is a left-corner of a
given goal category, a rule is selected. The left-
most daughter node of that rule is identified with
the left-corner. The other daughters of the rule are
parsed recursively. If this succeeds, it remains to
show that the mother node of the rule is a left-
corner of the goal category. The recursion stops
if a left-corner category can be identified with the
goal category.

This simple algorithm is improved and extended
in a variety of ways, as in Matsumoto et al. (1983)
and van Noord (1997), to make it efficient and
practical. The extensions include a memoization
of the parse/1 predicate and the construction of a
shared parse forest (a compact representation of
all parses).

4.2 Left-corner splines

For the left-corner parser, the derivation step
sequences that are of interested are left-corner
splines. Such a spline consists of a goal category,
and the rules and lexical entries which were used
in the left-corner, in the order from the top to the
bottom.

A spline consists of a goal category, followed
by a sequence of derivation step names. A deriva-
tion step name is typically a rule identifier, but it
can also be a lexical type, indicating the lexical
category of a word that is the left-corner. A spe-
cial derivation step name is the reserved symbol
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top

top cat

max xp(np)

np det n

det(de)
de

n

n n rel

noun(de,both,sg)
wijn

rel

rel arg(np)

rel pron(de,no obl)
die

vp

vp vpx

vpx vproj

vp arg v(np)

np pn

pn(sg,PER)
Elvis

vproj

vproj vc

vc v

verb(past(sg),transitive)
dronk

(top,[finish,top_cat,max_xp(np),np_det_n,det(de)]).

(n,[finish,n_n_rel,noun(de,both,sg)]).

(rel,[finish,rel_arg(np),rel_pron(de,no_obl)]).

(vp,[finish,vp_vpx,vpx_vproj,vp_arg_v(np),np_pn,pn(sg,PER),]).

(vproj,[finish,vproj_vc,vc_v,verb(past(sg),transitive)]).

Figure 1: Annotated derivation tree of the sentence
De wijn die Elvis dronk (The wine which Elvis
drank).

finish which is used to indicate that the cur-
rent category is identified with the goal category
(and no further rules are applied). A spline is writ-
ten (g, rn . . . r1) for goal category g and deriva-
tion step names r1 . . . rn. (g, ri . . . r1) is a partial
spline of (g, rn . . . ri . . . r1).

Consider the annotated derivation tree for the
sentence De wijn die Elvis dronk (The wine which
Elvis drank) in figure 1. Boxed leaf nodes con-
tain the lexical category as well as the corre-
sponding word. Boxed non-leaf nodes contain the
goal category (italic) and the rule-name. Non-
boxed non-leaf nodes only list the rule name. The
first left-corner spline consists of the goal cate-
gory top and the identifiers finish, top cat,
max xp(np), np det n, and the lexical type
det(de). All five left-corner splines of the ex-
ample are listed at the bottom of figure 1.

Left-corner splines of best parses of a large set
of sentences constitute the training data for the

parse(Phrase) -->
leaf(SubPhrase,Id),
{ filter(Phrase,[Id]) },
lc(SubPhrase,Phrase,[Id]).

leaf(Cat,Id) -->
[Word], { word(Word,Cat,Id) }.

leaf(Cat,Id) --> { rule(Cat,[],Id) }.

lc(Phrase,Phrase,Spline) -->
{ filter(Phrase,[finish|Spline]) }.

lc(SubPhrase,SuperPhrase,Spline) -->
rule(Phrase,[SubPhrase|Rest],Id),
{ filter(SuperPhrase,[Id|Spline]) },
parse_rest(Rest),
lc(Phrase,SuperPhrase,[Id|Spline]).

Figure 2: DCG Specification of a non-
deterministic left-corner parser, including spline
filtering.

techniques we develop to learn to parse new sen-
tences more efficiently.

4.3 Filtering left-corner splines

The left-corner parser builds left-corner splines
one step at the time. For a given goal, it first se-
lects a potential left-corner, and then continues ap-
plying rules from the bottom to the top until the
left-corner is identified with the goal category. At
every step where the algorithm attempts to extend
a left-corner spline, we now introduce a filter. The
purpose of this filter is to consider only those par-
tial left-corner splines that look promising - based
on the parser’s previous experience on the train-
ing data. The specification of the left-corner parser
given in figure 2 includes calls to this filter.

The purpose of the filter is, that at any time
the parser considers extending a left-corner spline
(g, ri−1 . . . r1) to (g, ri . . . r1), such an extension
only is allowed in promising cases. Obviously,
there are many ways such a filter could be defined.
We identify the following dimensions:

Context size. A filter for (g, ri . . . r1) will typ-
ically ignore at least some of the derivation step
names from the context. We experiment with fil-
ters which take into consideration g, ri, ri−1 (bi-
gram filter); g, ri, ri−1, ri−2 (trigram filter); and
g, ri, ri−1, ri−2, ri−3 (fourgram filter). A further
filter, labeled prefix filter, takes the full history into
account: g, ri . . . r1. The prefix filter thus ensures
that the parser only considers left-corner splines
that are partial splines of splines observed in the
training data.
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Required evidence. For the various filters, what
kind of evidence from the training data do we re-
quire in order for the filter to accept this particular
derivation step? In initial experiments, we used
relative frequencies. For instance, the trigram fil-
ter would allow any tuple g, ri−2, ri−1, ri for some
constant threshold τ , provided:

C(g, . . . riri−1ri−2 . . .)
C(g, . . . ri−1ri−2 . . .)

> τ

However, we found that filters are more effective
(and require much less space – see below), which
simply require that every step has been observed
often enough in the training data:

C(g, . . . riri−1ri−2 . . .) > τ

In particular, the case where τ = 0 gave surpris-
ingly good results.

4.4 Comparison with link table
The filter we developed is reminiscent of the link
predicate of (Pereira and Shieber, 1987). An im-
portant difference with the filter developed here
is that the link predicate removes derivation steps
which cannot lead to a successful parse (by an off-
line global analysis of the grammar), whereas we
filter out derivation steps which can lead to a full
parse, but which are not expected to lead to a best
parse. In our implementation, a variant of the link
predicate is used as well.

4.5 Implementation detail
The definition of the filter predicate depends on
our choices with respect to the dimensions identi-
fied above. For instance, if we chose the trigram
filter as our context size, then the training data can
be preprocessed in order to store all goal-trigram-
pairs with frequency above the threshold τ . Dur-
ing parsing, if the filter is given the partial spline
(g, riri−1ri−2 . . .), then a simple table look-up for
the tuple (g, ri−2ri−1ri) is sufficient (this suffices,
because each of the preceding trigrams will have
been checked earlier). In general, the filter pred-
icate needs access to a table containing a pair of
goal category and context, where the context con-
sists of sequences of derivation step names. The
table contains items for those pairs that occurred
with frequency > τ in the training data.

To access such tables efficiently, an obvious
choice is to use a hash table. The additional stor-
age requirements for such a hash table are consid-
erable. For instance, for the prefix filter four years

of newspaper text lead to a table with 941,723 en-
tries - stored as text the data takes 103Mb. To save
space, we experimented with a set-up in which
only the hash keys are stored, but the original in-
formation that the hash key was computed from, is
removed. During parsing, in order to check that a
given tuple is allowable, we compute its hash key,
and check if the hash key is in the table. If so,
the computation continues. The drawback of this
method is, that in the case a hash collision would
have occurred in an ordinary hash table, we now
simply assume that the input tuple was in the ta-
ble. In other words: the filter is potentially too
permissive in such cases. In actual practice, we did
not observe a difference with respect to accuracy
or CPU-time requirements, but the storage costs
dropped considerably.

5 Experimental Results

Some of the experiments have been performed
with the Alpino Treebank. The Alpino Treebank
(van der Beek et al., 2002) consists of manu-
ally verified dependency structures for the cdbl
(newspaper) part of the Eindhoven corpus (den
Boogaart, 1975). The treebank contains 7137 sen-
tences. Average sentence length is about 20 to-
kens.

Some further experiments are performed on the
basis of the D-Coi corpus (van Noord et al., 2006).
From this corpus, we used the manually veri-
fied syntactic annotations of the P-P-H and P-P-
L parts. The P-P-H part consists of over 2200
sentences from the Dutch daily newspaper Trouw
from 2001. Average sentence length is about 16.5
tokens. The P-P-L part contains 1115 sentences
taken from information brochures of Dutch Min-
istries. Average sentence length is about 18.5 to-
kens.

For training data, we used newspaper text from
the TwNC (Twente Newspaper) corpus (Ordelman
et al., 2007). We used Volkskrant 2001, NRC
2000, Algemeen Dagblad 1999. In addition, we
used Volkskrant 1997 newspaper data extracted
from the Volkskrant 1997 CDROM.

5.1 Results on Alpino Treebank

Figure 3 presents results obtained on the Alpino
Treebank. In the graphs, the various filters are
compared with the baseline variant of the parser.
Each of the filters outperforms the default model
for all given time-out values. In fact, the base-
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Figure 3: Accuracy versus time-out (on-line scenario), and accuracy versus mean CPU-time (off-line
scenario) for various time-outs. The graphs compare the default setting of Alpino with the effect of the
various filters based on all available training data. Evaluation on the Alpino treebank.

line parser improves upon the prefix filter only for
unrealistic time-outs larger than fifteen minutes of
CPU-time. The difference in accuracy for a given
time-out value can be considerable: as much as
12% for time-outs around 30 seconds of CPU-
time.

If we focus on mean CPU-time (off-line sce-
nario), differences are even more pronounced.
Without the filter, an accuracy of about 63% is ob-
tained for a mean CPU-time of 6 seconds. The pre-
fix filtering method obtains accuracy of more than
86% for the same mean CPU-time. For that level
of accuracy, the base-line model requires a mean
CPU-time of about 25 seconds. In other words, for
the same level of accuracy, the prefix filter leads to
a parser that is more than four times faster.

5.2 Effect of the amount of training data

In the first two graphs of figure 4 we observe the
effect of the amount of training data. As can be ex-
pected, increasing the amount of data increases the
accuracy, and decreases efficiency (because more
derivation steps have been observed, hence fewer
derivations are filtered out). Generally, models
that take into account larger parts of the history re-
quire more data to obtain good accuracy, but they
are also faster. For each of the variants, adding
more training data after about 40 million words
does not lead to much further improvement; the
little improvement that is observed, is balanced by

a slight increase in parse times too.
It is interesting to note that the accuracy of some

of the filters improves slightly upon the baseline
parser (without any filtering). This can be ex-
plained by the fact that the Alpino parser includes
a best-first beam search to select the best parse
from the parse forest. Apparently, in some cases
the filter throws away candidate parses which
would otherwise confuse this heuristic best search
procedure.

5.3 Experiment with D-Coi data

In this section, we confirm the experimental re-
sults obtained on the Alpino Treebank by perform-
ing similar experiments on the D-Coi data. The
purpose of this confirmation is twofold. On the
one hand, the Alpino Treebank might not be a
reliable test set for the Alpino parser, because it
has been used quite intensively during the devel-
opment of various components of the system. On
the other hand, we might regard the experiments in
the previous section as development experiments
from which we learn the best parameters of the
approach. The real evaluation of the technique is
now performed using only the best method found
on the development set, which is the prefix filter
with τ = 0.

We performed experiments with two parts of the
D-Coi corpus. The first data set, P-P-H, contains
newspaper data, and is therefore comparable both
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with the Alpino Treebank, and more importantly,
with the training data that we used to develop the
filters. In order to check if the success of the fil-
tering methods requires that training data and test
data need to be taken from similar texts, we also
provide experimental results on a test set consist-
ing of different material: the P-P-L part of the
D-Coi corpus, which contains text extracted from
information brochures published by Dutch Min-
istries.

The third and fourth graphs in figure 4 provide
results obtained on the P-P-H corpus. The in-
creased efficiency of the prefix filter is slightly less
pronounced. This may be due to the smaller mean
sentence length of this data set. Still, the prefix fil-
tering method performs much better for a large va-
riety of time-outs. Only for very high, unrealistic,
time-outs, the baseline parser obtains better accu-
racy. The same general trend is observed in the
P-P-L data-set. From these results we tentatively
conclude that the proposed technique is applicable
across text types and domains.

6 Discussion

One may wonder how the technique introduced in
this paper relates to techniques in which the dis-
ambiguation model is used directly during parsing
to eliminate unlikely partial parses. An example
in the context of wide coverage unification-based
parsing is the beam thresholding technique em-
ployed in the Enju HPSG parser for English (Tsu-
ruoka et al., 2004; Ninomiya et al., 2005).

In a beam-search parser, unlikely partial analy-
ses are constructed, and then - based on the proba-
bility assigned to these partial analyses - removed
from further consideration. One potential advan-
tage of the use of our filters may be, that many of
these partial analyses will not even be constructed
in the first place, and therefore no time is spent on
these alternatives at all.

We have not performed a detailed comparison,
because the statistical model employed in Alpino
contains some features which refer to arbitrary
large parts of a parse. Such non-local features are
not allowed in the Enju approach.

A parsing system may also combine both types
of techniques. In that case there is room for
further experimentation. For instance, during
the learning phase, it may be beneficial to allow
for a wider beam, to obtain more reliable filters.
During testing, the beam can perhaps be smaller

than usual, since the filters already rule out many
of the competing parses.

The idea that corpora can be used to improve
parsing efficiency was an important ingredient of
a technique that was called grammar specializa-
tion. An overview of grammar specialization tech-
niques is given in (Sima’an, 1999). For instance,
Rayner and Carter (1996) use explanation-based
learning to specialize a given general grammar to a
specific domain. They report important efficiency
gains (the parser is about three times faster), cou-
pled with a mild reduction of coverage (5% loss).

In contrast to our approach in which no manual
annotation is required, Rayner and Carter (1996)
report that for each sentence in the training data,
the best parse was selected manually from the set
of parses generated by the parser. For the exper-
iments described in the paper, this constituted an
effort of two and a half person-months. As a con-
sequence, they use only 15.000 training examples
(taken from ATIS, so presumably relatively short
sentences). In our experiments, we used up to 4
million sentences.

A further difference is related to the pruning
strategies. Our pruning strategies are extremely
simple. The cutting criteria employed in grammar
specialization either require carefully manually
tuning, or require more complicated statistical
techniques (Samuelsson, 1994); automatically
derived cutting criteria, however, perform consid-
erably worse.

A possible improvement of our approach con-
sists of predicting whether for a given input sen-
tence the filter should be used, or whether the sen-
tence appears to be ‘easy’ enough to allow for a
full parse. For instance, one may chose to use
the filter only for sentences of a given minimum
length. Initial experiments indicate that such a
setup may improve somewhat over the results pre-
sented here.
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Figure 4: The first two graphs present accuracy (left) and mean CPU-time (right) as a function of the
amount of training data used. Evaluation on 10% of the Alpino Treebank. The third and fourth graph
present accuracy versus time-out, and accuracy versus mean CPU-time for various time-outs. The graph
compares the baseline system with the parser which uses the prefix filter based on all available training
data. Evaluation on the D-Coi P-P-H 1-109 data-set (newspaper text). The two last graphs are similar,
based on the D-Coi P-P-L data-set (brochures).
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Abstract

This paper presents a new, exemplar-based
model of thematic fit. In contrast to pre-
vious models, it does not approximate
thematic fit as argument plausibility or
‘fit with verb selectional preferences’, but
directly as semantic role plausibility for
a verb-argument pair, through similarity-
based generalization from previously seen
verb-argument pairs. This makes the
model very robust for data sparsity. We
argue that the model is easily extensible to
a model of semantic role ambiguity reso-
lution during online sentence comprehen-
sion.

The model is evaluated on human seman-
tic role plausibility judgments. Its predic-
tions correlate significantly with the hu-
man judgments. It rivals two state-of-the-
art models of thematic fit and exceeds their
performance on previously unseen or low-
frequency items.

1 Introduction

Thematic fit (or semantic role plausibility) is the
plausibility of a noun phrase referent playing a
specific semantic role (like agent or patient) in
the event denoted by a verbal predicate, e.g. the
plausibility that a judge sentences someone (which
makes the judge the agent of the sentencing event)
or that a judge is sentenced him- or herself (which
makes the judge the patient). Thematic fit has been
an important concept in psycholinguistics as a pre-
dictor variable in models of human sentence com-
prehension, either to discriminate between pos-
sible structural analyses during initial processing
in constraint-based models (see MacDonald and
Seidenberg (2006) for a recent overview), or af-
ter initial syntactic processing in modular models
(e.g. Frazier (1987)). In fact, thematic fit is at the

core of the most-studied of all structural ambiguity
phenomena, the ambiguity between a main clause
or a reduced relative clause interpretation of an NP
verb-ed sequence (the MV/RR ambiguity), which
is essentially a semantic role ambiguity. If the
temporarily ambiguous sentence The judge sen-
tenced ... is continued as a main clause (e.g. The
judge sentenced him to 10 years in prison), the
noun phrase the judge would be the agent of the
verb sentenced, while it would be the patient of
sentenced in a reduced relative clause continuation
(e.g. The judge sentenced to 4 years in prison for
indecent exposure could also lose his state pen-
sion). Apart from its importance in psycholinguis-
tics, the concept of thematic fit is also relevant for
computational linguistics in general (see Padó et
al. (2007) for some examples).

A number of models that try to capture hu-
man thematic fit preferences have been developed
in recent years (Resnik, 1996; Padó et al., 2006;
Padó et al., 2007). These previous approaches rely
on the linguistic notion of verb selectional pref-
erences. The plausibility that an argument plays
a specific semantic role in the event denoted by
a verb—in other words, that a verb, role and argu-
ment occur together—is predicted by how well the
argument head fits the restrictions that the verb im-
poses on the argument candidates for the semantic
role slot under consideration (e.g. eat prefers ed-
ible arguments to fill its patient slot). Therefore,
what these models capture is actually not seman-
tic role plausibility, but argument plausibility.

The model presented here takes a different ap-
proach. Instead of predicting the plausibility of an
argument given a verb-role pair (e.g. the plausi-
bility of judge given sentence-patient), it predicts
the plausibility of a semantic role given a verb-
argument pair (e.g. the plausibility of patient given
sentence-judge), through similarity-based general-
ization from previously seen verb-argument pairs.
In the context of modeling thematic fit as a con-
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straint in the resolution of sentence-level ambigu-
ity problems like the MV/RR ambiguity, predict-
ing role fit instead of argument fit seems to be the
most straightforward approach. After all, when
thematic fit is approached in this way, the model
directly captures the semantic role ambiguity that
is at stake during the analysis of sentences that are
temporarily ambiguous between a main clause and
a reduced relative interpretation. This means that
our model of thematic fit should be very easy to
extend into a full-blown model of the resolution
of any sentence-level ambiguity that crucially re-
volves around a semantic role ambiguity. In ad-
dition, the fact that it generalizes from previously
seen verb-argument pairs, based on their similarity
to the target pair, should make it more robust than
previous approaches.

The remainder of the paper is organized as fol-
lows: in the next section, we briefly discuss two
state-of-the-art thematic fit models, the perfor-
mance of which will be compared to that of our
model. Section 3 introduces three different instan-
tiations of our model. The evaluation of the model
and the comparison of its performance with that of
the models discussed in Section 2 is presented in
Section 4. Section 5 ties everything together with
some general conclusions.

2 Previous models

In this section of the paper, we look at two state-of-
the-art models of thematic fit, developed by Padó
et al. (2006) and Padó et al. (2007). We will
not discuss the selectional preferences model of
Resnik (1996), but for a comparison between the
Resnik model and the Padó models, see Padó et al.
(2007).

2.1 Padó et al. (2006)
In their model of thematic fit, Padó et al. (2006)
use FrameNet thematic roles (Fillmore et al.,
2003) to approximate semantic roles. The the-
matic fit of a verb-role-argument triple (v, r, a) is
given by the joint probability of the role r, the ar-
gument headword a, the verb sense vs, and the
grammatical function gf of a:

Plausibilityv,r,a = P (vs, r, a, gf) (1)

Since computing this joint probability from cor-
pus co-occurrence frequencies is problematic due
to an obvious sparse data issue, the term is
decomposed into several subterms, including a

term P (a|vs, gf, r) that captures selectional pref-
erences. Good-Turing and class-based smoothing
are used to further alleviate the remaining sparse
data problem, but because of the fact that the
model can only make predictions for verbs that oc-
cur in the small FrameNet corpus, for a large num-
ber of verbs, it cannot provide any output. For the
verbs that do occur in the training corpus, how-
ever, the model’s predictions correlate very well
with human plausibility ratings.

2.2 Padó et al. (2007)
The model of Padó et al. (2007) does not use se-
mantically annotated resources, but approximates
the agent and patient relations with the syntac-
tic subject and object relations, respectively. The
plausibility of a verb-role-argument triple (v, r, a)
is found by calculating the weighted mean seman-
tic similarity of the argument headword a to all
headwords that have previously been seen together
with the verb-role pair (v, r), as shown in Equa-
tion 2. The prediction is that high semantic sim-
ilarity of a target headword a to seen headwords
for a given (v, r) tuple corresponds to high the-
matic fit of the (v, r, a) tuple, while low similarity
implies low thematic fit.

Plausibilityv,r,a =∑
a′∈Seenr(v)

w(a′)× sim(a, a′)
|Seenr(v)|

(2)

w(a′) is the weighting factor. Padó et al. (2007)
used the frequency of the previously seen ar-
gument headwords as weights. Similarity be-
tween headwords was defined as the cosine be-
tween so-called ‘dependency vector’ representa-
tions of these headwords (Padó and Lapata, 2007).
These vectors are constructed from the frequency
counts with which the target items occur at one
end of specific paths in a corpus of syntactic de-
pendency trees. The argument headword vectors
Padó et al. (2007) used in their experiments con-
sisted of 2000 features, representing the most fre-
quent (head, subject) and (head, object) pairs in
the British National Corpus (BNC). The feature-
values of the headword vectors were the log-
likelihoods of the headwords occurring at the de-
pendent end of these (relation, head) pairs (so
either as subjects or objects of the heads). The
model’s performance approaches that of the Padó
et al. (2006) model on the correlation of its predic-
tions with human ratings, and it attains higher cov-
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erage (it can provide plausibility values for a larger
proportion of the test items), since the model only
requires that the verb occurs with subject and ob-
ject arguments in the training corpus, and that the
target argument headwords occur in the training
data frequently enough to attain reliable depen-
dency vectors.

3 Exemplar-based modeling of thematic
fit

Exemplar-based models of cognition (also known
as Memory-Based Learning or instance/case-
based reasoning/learning models) (Fix and
Hodges, 1951; Cover and Hart, 1967; Daelemans
and van den Bosch, 2005) are classification
models that extrapolate their behavior from stored
representations of earlier experiences to new
situations, based on the similarity of the old and
the new situation. These models keep a database
of stored exemplars and refer to that database to
guide their behavior in new situations. Models
can extrapolate from only one similar memory
exemplar, a group of similar exemplars (a nearest
neighbor set), or even the whole exemplar mem-
ory, using some decay function to give less weight
to less similar exemplars.

Applied to our model of thematic fit, this means
that the model should have a database in which se-
mantic representations of verb-argument pairs are
stored together with the semantic roles of the ar-
guments. The plausibility of a semantic role given
a new verb-argument pair is then determined by
the support for that role among the verb-argument
pairs in memory that are semantically most similar
to the target pair.

An immediately obvious advantage of this ap-
proach should be its potential robustness for data
sparsity, since similarity-based smoothing is an in-
trinsic part of the model. Even if neither the verb
nor the argument of a verb-argument pair occur
in the exemplar memory, role plausibilities can be
predicted, as long as the similarity of the target ex-
emplar’s semantic representation with the seman-
tic representations in the exemplar memory can be
calculated. An additional advantage of similarity-
based smoothing is that it does not involve the es-
timation of an exponential number of smoothing
parameters, as is the case for backed-off smooth-
ing methods (Zavrel and Daelemans, 1997).

For this study, we will implement three different
kinds of exemplar-based models. The first model

is a basic k-Nearest Neighbor (k-NN) model. In
this model, the plausibility rating for a semantic
role given a verb-argument pair is simply deter-
mined by the (relative) frequency with which that
semantic role is assigned to the k verb-argument
pairs that are nearest (i.e. most similar) to the tar-
get verb-argument pair (these exemplars constitute
the nearest neighbor set). The second model adds
a decay function to this simple k-NN model, so
that not only the role frequency, but also the ab-
solute semantic distance between the target item
and the neighbors in the nearest neighbor set de-
termine the plausibility rating. In the third model,
a normalization factor ensures that distance of the
exemplars in the nearest neighbor set to the target
item determines their weight in the calculation of
the plausibility rating while factoring out an effect
of absolute distance.

The semantic distance between two verb-
argument exemplars is determined by the seman-
tic distance between the verbs and between the
nouns. In all models described below, the distance
between two exemplars i and j (dij) is given by
the sum of the weighted distances (δ) between the
semantic representations of the exemplars’ nouns
(n) and verbs (v):

dij = wv × δ(vi, vj) + wn × δ(ni, nj) (3)

We are not theoretically committed to any spe-
cific semantic representation or similarity metric
for the computation of δ(vi, vj) and δ(ni, nj). The
only requirement is that they should be able to dis-
tinguish nouns that typically occur in the same
contexts, but in different roles (like writer and
book), which probably excludes all vector-based
approaches that do not take into account syntactic
information (see also Padó et al. (2007)).

In the next three sections, each of the three
exemplar-based models is discussed in more de-
tail.

3.1 A basic k-NN model

The most basic of all exemplar-based models is a
k-NN model in which the preference strength of a
class upon presentation of a stimulus is simply the
relative frequency of that class among the nearest
neighbors of the stimulus. In the context of the-
matic fit, this means that the preference strength
(PS) for a semantic role response J given a verb-
argument stimulus i is found by summing the fre-
quencies of all exemplars with semantic role J
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Verb Noun Role Rating

sentence judge agent 6.9

sentence judge patient 1.3

sentence criminal agent 1.3

sentence criminal patient 6.7

Table 1: Example mean thematic fit ratings from
McRae et al. (1998)

among the k nearest neighbors of i (CkJ ) and di-
viding this by the total number of exemplars in
the k-nearest neighbor set, with k (the number of
nearest neighbors taken into consideration) being
a free parameter:

PS(RJ |Si) =

∑
j∈Ck

J
f(j)∑

l∈Ck f(l)
(4)

We will call this model the k-NN frequency model
(henceforth kNNf).

3.2 A distance decay model

The kNNf model uses the similarity between the
target exemplar and the memory exemplars only
to determine which items belong to the nearest
neighbor set. Whether these nearest neighbors are
very similar or only slightly similar to the target
exemplar, or whether there are some very similar
items but also some very dissimilar items among
those neighbors does not have any influence on
the class’s preference strength; only relative fre-
quency within the nearest neighbor set counts.

Only relying on the relative frequency of se-
mantic roles within the nearest neighbor set to pre-
dict their plausibilities might indeed be a reason-
able approach to modeling thematic fit in a lot of
cases. Being a good agent for a given verb of-
ten entails being a bad patient for that same verb
(or even in general), and the other way around.
For example, judge is a very plausible agent of
the verb sentence, while at the same time it is a
rather unlikely patient of the same verb, while it
is exactly the other way around for criminal, as
the mean participant ratings (on a 7-point scale)
in Table 1 show (these were taken from McRae
et al. (1998)). The relative frequencies of the
agent and patient roles in the nearest neighbor set
could in theory perfectly explain these ratings: a
high relative frequency of the agent role among
the nearest neighbors of the verb-argument pair

(sentence, judge) should correspond to a high
rating for the role, and implies low relative fre-
quencies for other roles such as the patient role,
which means the patient role should receive a low
rating. For (sentence, criminal) this works in
exactly the opposite way.

Solely relying on the the relative semantic role
frequencies in the nearest neighbor set might not
always work, though, since it implies that plausi-
bility ratings for different roles are always com-
pletely dependent on and therefore perfectly pre-
dictable from each other: high plausibility for a
certain semantic role given a verb-argument pair
always implies low plausibility for the other roles
in the nearest neighbor set, and low plausibility for
one semantic role invariably means higher plausi-
bility for the other ones. However, nouns can also
be more or less equally good as agents and patients
for a given verb—one is hopefully as likely to be
helped by a friend as to help a friend oneself—
or equally bad—houses only kill in horror movies,
and ‘to kill a house’ can only be made sense of in a
metaphorical way. Therefore, we also implement a
model that takes distance into account for its plau-
sibility ratings. The basic idea is that a seman-
tic role will receive a lower rating as the nearest
neighbors supporting that role become less simi-
lar to the target item. The plausibility rating for
a semantic role given a verb-argument pair in this
model is a joint function of:

1. the frequency with which the role occurs in
the set of memory exemplars that are seman-
tically most similar to the target pair

2. the target pairs similarity to those exemplars

We will call this model the Distance Decay model
(henceforth DD).

Formally, the preference strength (PS) for a se-
mantic role J (RJ ) given a verb-argument tuple i
(Si) is found by summing the distance-weighted
frequency of all exemplars with semantic role J in
the nearest neighbor set (CkJ ):

PS(RJ |Si) =
∑
j∈Ck

J

f(j)× ηj (5)

The weight of an exemplar j (ηj) is given by an
exponential decay function, taken from Shepard
(1987), over the distance between that exemplar
and the target exemplar i (dij):

ηj = e−α×dij (6)
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In Equation 6, the free parameter α determines the
rate of decay over dij . Higher values of α result in
a faster drop in similarity as dij increases.

3.3 A normalized distance decay model
In Equation 5, we do not include a denominator
that sums over the similarity strengths of all ex-
emplars in the nearest neighbor set, because we
want to keep the absolute effect of distance into
the formula, so as to be able to accurately pre-
dict the bad fit of both the agent and patient roles
for verb-argument pairs like (kill, house) or the
good fit of both agent and patient roles for a pair
like (help, friend). To find out whether a non-
normalized model is indeed a better predictor of
thematic fit than a normalized model, we also
run experiments with a normalized version of the
model presented in Section 3.2:

PS(RJ |Ti) =

∑
j∈Ck

J
f(j)× ηj∑

l∈Ck f(l)× ηl
(7)

Someone familiar with the literature on human
categorization behavior might recognize Equation
7; this model is actually simply a Generalized
Context Model (GCM) (Nosofsky, 1986), with the
‘context’ being restricted to the k nearest neigh-
bors of the target item. Therefore, we will refer to
this model using the shorthand kGCM.

4 Evaluation

4.1 The task: predicting human plausibility
judgments

The model is evaluated by comparing its predic-
tions to thematic fit or semantic role plausibility
judgments from two rating experiments with hu-
man subjects. In these tasks, participants had to
rate the plausibility of verb-role-argument triples
on a scale from 1 to 7. They were asked ques-
tions like How common is it for a judge to sen-
tence someone?, in which judge is the agent, or
How common is it for a judge to be sentenced?, in
which judge is the patient. The prediction is that
model preference strengths of semantic roles given
specific verb-argument pairs should correlate pos-
itively with participant ratings for the correspond-
ing verb-role-argument triples.

4.2 Training the model
In exemplar-based models, training the model
simply amounts to storing exemplars in memory.
Our model uses an exemplar memory that consists

of 133566 verb-role-noun triples extracted from
the Wall Street Journal and Brown parts of the
Penn Treebank (Marcus et al., 1993). These were
first annotated with semantic roles using a state-
of-the-art semantic role labeling system (Koomen
et al., 2005).

Semantic roles are approximated by PropBank
argument roles (Palmer et al., 2005). These con-
sist of a limited set of numbered roles that are used
for all verbs but are defined on a verb-by-verb ba-
sis. This contrasts with FrameNet roles, which are
sense-specific. Hence PropBank roles provide a
shallower level of semantic role annotation. They
also do not refer consistently to the same semantic
roles over different verbs, although the A0 and A1
roles in the majority of cases do correspond to the
agent and patient roles, respectively. The A2 role
refers to a third participant involved in the event,
but the label can stand for several types of seman-
tic roles, such as beneficiary or recipient. To create
the exemplar memory, all lemmatized verb-noun-
role triples that contained the A0, A1, or A2 roles
were extracted.

4.3 Testing the model

To obtain the semantic distances between nouns
and verbs for the calculation of the distance be-
tween exemplars (see Equation 3), we make use
of a thesaurus compiled by Lin (1998), which
lists the 200 nearest neighbors for a large num-
ber of English noun and verb lemmas, together
with their similarity values. This resource was
created by computing the similarity between word
dependency vectors that are composed of fre-
quency counts of (head, relation, dependent)
triples (dependency triples) in a 64-million word
parsed corpus. To compute these similarities, an
information-theoretic similarity metric was used.
The basic idea of this metric is that the similarity
between two words is the amount of information
contained in the commonality between the two
words, i.e. the frequency counts of the dependency
triples that occur in the descriptions of both words,
divided by the amount of information in the de-
scriptions of the words, i.e. the frequency counts
of the dependency triples that occur in either of
the two words. See Lin (1998) for details. These
similarity values were transformed into distances
by subtracting them from the maximum similarity
value 1.

Gain Ratio is used to determine the weights of
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the nouns and verbs in the distance calculation.
Gain Ratio is a normalization of Information Gain,
an information-theoretic measure that quantifies
how informative a feature is in the prediction of a
class label; in this case how informative in general
nouns or verbs are when one has to predict a se-
mantic role. Based on our exemplar memory, the
Gain Ratio values and so the feature weights are
0.0402 for the verbs, and 0.0333 for the nouns.

The model predictions are evaluated against
two data sets of human semantic role plausibil-
ity ratings for verb-role-noun triples (McRae et al.,
1998; Padó et al., 2006). These data sets were cho-
sen because they are the same data sets that were
originally used in the evaluation of the two other
models discussed in sections 2.1 and 2.2.

The first data set, from McRae et al. (1998),
consists of semantic role plausibility ratings for 40
verbs, each coupled with both a good agent and a
good patient, which were presented to the raters in
both roles. This means there are 40× 2× 2 = 160
items in total. We divide this data set in the same
60-item development and 100-item test sets that
were used by Padó et al. (2006) and Padó et al.
(2007) for the evaluation of their models.

For most of the McRae items, being a good
agent for a given verb also entails being a bad pa-
tient for that same verb, and the other way around.
This leads us to predict that on this data set the
kNNf model (see section 3.1) and the kGCM (see
section 3.3) should perform no worse than the DD
model (see section 3.2).

The second data set is taken from Padó et al.
(2006) and consists of 414 verb-role-noun triples.
Agent and patient ratings are more evenly dis-
tributed, so we predict that a model that exclu-
sively relies on the relative role frequencies in the
nearest neighbor sets of these items might not cap-
ture as much variability as a model that takes dis-
tance into account to weight the exemplars. There-
fore, we expect the DD model to do better than the
kNNf model on this data set. We randomly divide
the data set in a 276-item development set, and a
138-items test set.

Because of the non-normal distribution of the
test data, we use Spearman’s rank correlation test
to measure the correlation strength between the
plausibility ratings predicted by the model and the
human ratings. To estimate whether the strength
with which the predictions of the different mod-
els correlate with the human judgments differs

significantly between the models, we use an ap-
proximate test statistic described in Raghunathan
(2003). This test statistic is robust for sample size
differences, which is necessary in this case given
the fact that the models differ in their coverage.
We will refer to this statistic as the Q-statistic.

Experiments on the development sets are run
to find optimal values per model for two param-
eters: k, the number of nearest neighbors that are
taken into account for the construction of the near-
est neighbor set, and α (for the DD and kGCM
models), the rate of decay over distance (see Equa-
tion 6).

4.4 Results

4.4.1 McRae data
Results on the McRae test set are summarized in
Table 2. The first three rows contain the results
for the exemplar-based models. The last two rows
show the results of the two previous models for
comparison. The values for k and α that were
found to be optimal in the experiments on the de-
velopment set are specified where applicable.

The predictions of all three exemplar-based
models correlate significantly with the human rat-
ings, with the DD model doing somewhat bet-
ter than the kNNf model and the kGCM model,
although these differences are not significant
(Q(0.28) = 0.134, p = 2.8×10−1 andQ(0.28) =
0.116, p = 2.9×10−1, respectively). Coverage of
the exemplar-based models is very high.

When we compare the results of the exemplar-
based models with those of the Padó models, we
find that the predictions of the DD model correlate
significantly stronger with the human ratings than
the predictions of the Padó et al. (2007) model,
Q(0.98) = 4.398, p = 3.5 × 10−2. The DD
model also matches the high performance of the
Padó et al. (2006) model. Actually, the correlation
strength of the DD predictions with the human rat-
ings is higher, but that difference is not significant,
Q(0.93) = 0.285, p = 5.6 × 10−1. However, the
DD model has a much higher coverage than the
model of Padó et al. (2006), χ2(1, N = 100) =
44.5, p = 2.5× 10−11.

4.4.2 Padó data
Table 3 summarizes the results for the Padó
data set. We find that the predictions of all
three exemplar-based models correlate signifi-
cantly with the human ratings, and that there are
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Model k α Coverage ρ p

kNNf 9 - 96% .407 p = 3.9× 10−5

DD 11 5 96% .488 p = 4.6× 10−7

kGCM 9 21 96% .397 p = 6.2× 10−5

Padó et al. (2006) - - 56% .415 p = 1.5× 10−3

Padó et al. (2007) - - 91% .218 p = 3.8× 10−2

Table 2: Results for the McRae data.

Model k α Coverage ρ p

kNNf 12 - 97% .521 p = 1.1× 10−10

DD 8 21 97% .523 p = 9.1× 10−11

kGCM 10 25 97% .512 p = 2.7× 10−10

Padó et al. (2006) - - 96% .514 p = 2.9× 10−10

Padó et al. (2007) - - 98% .506 p = 3.7× 10−10

Table 3: Results for the Padó data.

no significant differences between the three model
instantiations. Coverage is again very high.

There are no significant performance differ-
ences between the exemplar-based models and the
Padó models. Correlation strengths and coverage
are more or less the same for all models.

4.5 Discussion

In general, we find that our exemplar-based, se-
mantic role predicting approach attains a very
good fit with the human semantic role plausibil-
ity ratings from both the McRae and the Padó data
set. Moreover, because of the fact that generaliza-
tion is determined by similarity-based extrapola-
tion from verb-noun pairs, the high correlations of
the model’s predictions with the human ratings are
accompanied by a very high coverage.

As concerns the comparison with the models of
Padó et al. (2006) and Padó et al. (2007) on the
Padó data, we can be brief: the exemplar-based
models’ performance matches that of the Padó
models, and basically all models perform equally
well, both on correlation strength and coverage.

However, there is a striking discrepancy be-
tween the performance of the Padó models and
the DD model on the McRae data sets. We find
that the DD model performs well for both correla-
tion strength and coverage, as opposed to the Padó
models, both of which score less well on one or
the other of these two dimensions. Although the

model of Padó et al. (2006) attains a good fit on the
McRae data, its coverage is very low. This is espe-
cially problematic considering the fact that it is ex-
actly this type of test items that is used in the kind
of sentence comprehension experiments for which
these thematic fit models should help explain the
results. The model of Padó et al. (2007) succeeds
in boosting coverage, but at the expense of corre-
lation strength, which is reduced to approximately
half the correlation strength attained by the Padó
et al. (2006) model.

The model of Padó et al. (2006) requires the
test verbs and their senses to be attested in the
FrameNet corpus to be able to make its predic-
tions. However, only 64 of the 100 test items in
the McRae data set contain verbs that are attested
in the FrameNet corpus, 8 of which involve an
unattested verb sense. On the other hand, the only
requirement for the exemplar-based model to be
able to make its predictions is that the similarities
between the verbs and the nouns in the target ex-
emplars and the memory exemplars can be com-
puted. In our case, this means that the verbs and
nouns need to have entries in the thesaurus we use
(see Section 4.3). In the McRae data set, this is the
case for all verbs, and for 48 out of the 50 nouns.
This explains the large difference in coverage be-
tween the DD model and the model of Padó et al.
(2006).

Padó et al. (2007) attribute the poorer correla-
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tion of their 2007 model with the human ratings
in the McRae data set to the much lower frequen-
cies of the nouns in that data set as compared to
the frequencies of the nouns in the Padó data set.
That is probably also the explanation for the dif-
ference in correlation strength between our model
and the model of Padó et al. (2007). Both models
use similarity-based smoothing to compensate for
low-frequency target items, but the generalization
problem caused by low frequency nouns is allevi-
ated in our model by the fact that the model not
only generalizes over nouns, but also over verbs.
Since the model can base its generalizations on
verb-noun pairs that contain the noun of the tar-
get pair coupled to a verb that is different from the
verb in the target pair, the neighbor set that it gen-
eralizes from can contain a larger number of ex-
emplars with nouns that are identical to the noun
in the target pair. The model of Padó et al. (2007)
has no access to nouns that are not coupled to the
target verb in the training corpus.

In Section 3, we predicted that the kNNf and
the kGCM should perform equally well as the DD
model on the McRae data set, because of the bal-
anced nature of that data set (all nouns are either
good agents and bad patients, or the other way
around), but that the DD model should do better
on the less balanced Padó data set. This predic-
tion is not borne out by the results, since the DD
model does not perform significantly better on ei-
ther of the data sets, although on both data sets
it achieves the highest correlation strength of all
three models. However, what we see is that the
performance difference between the DD model on
the one hand and the kNNf model and kGCM on
the other hand is larger on the McRae data than
on the Padó data, which is exactly the opposite of
what we predicted. The fact that the differences
are not significant makes us hesitant to draw any
conclusions from this finding, though.

5 Conclusion

We presented an exemplar-based model of the-
matic fit that is founded on the idea that seman-
tic role plausibility can be predicted by similarity-
based generalization over verb-argument pairs. In
contrast to previous models, this model does not
implement semantic role plausibility as ‘fit with
verb selectional preferences’, but directly captures
the semantic role ambiguity problem comprehen-
ders have to solve when confronted with sentences

that contain structural ambiguities like the MV/RR
ambiguity, namely deciding which semantic role a
noun has in the event denoted by the verb. There-
fore, the model should be easily extensible to-
wards a complete model of any sentence-level am-
biguity that revolves around a semantic role ambi-
guity.

We have shown that our model can account very
well for human semantic role plausibility judg-
ments, attaining both high correlations with hu-
man ratings and high coverage overall, and im-
proving on two state-of-the-art models, the per-
formance of which deteriorates when there is a
small overlap between the verbs in the training
corpus and in the test data, or when the test nouns
have low frequencies in the training corpus. We
suggest that this improvement is due to the fact
that our model applies similarity-based smoothing
over both nouns and verbs. Generally, one can
say that the exemplar-based model’s architecture
makes it very robust for data sparsity.

We also found that a non-normalized version
of our model that takes distance into account
to weight the memory exemplars seems to per-
form somewhat better than a simple nearest neigh-
bor model or a normalized distance decay model.
However, these performance differences are not
statistically significant, and we did not find the
predicted advantage of the non-normalized dis-
tance decay model on the Padó data set.

In future work, we will test our claim of
straightforward extensibility of the model by in-
deed extending our model to account for reading
time patterns in the online processing of sentences
exemplifying temporary semantic role ambigui-
ties, more specifically the MV/RR ambiguity. An-
other avenue for future research is to see how our
approach to thematic fit can be used to augment
existing semantic role labeling systems.
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Abstract

Concept taxonomies offer a powerful means 
for organizing knowledge, but this organiza-
tion  must  allow  for  many  overlapping  and 
fine-grained perspectives if a general-purpose 
taxonomy is  to  reflect  concepts  as  they are 
actually employed and reasoned about in ev-
eryday  usage.  We present  here  a  means  of 
bootstrapping  finely-discriminating  tax-
onomies from a variety of different  starting 
points, or seeds, that are acquired from three 
different sources: WordNet, ConceptNet and 
the web at large.  

1 Introduction

Taxonomies  provide  a  natural  and  intuitive 
means of organizing information, from the bio-
logical taxonomies of the Linnaean system to the 
layout of supermarkets and bookstores to the or-
ganizational structure of companies. Taxonomies 
also provide the structural backbone for ontolo-
gies  in  computer  science,  from common-sense 
ontologies like Cyc (Lenat and Guha, 1990) and 
SUMO (Niles and Pease, 2001) to lexical ontolo-
gies like WordNet (Miller  et al., 1990). Each of 
these uses is based on the same root-branch-leaf 
metaphor:  the  broadest  terms  with  the  widest 
scope occupy the highest positions of a taxono-
my, near the root, while specific terms with the 
most local concerns are located lower in the hier-
archy,  nearest  the  leaves.  The  more  interior 
nodes that  a taxonomy possesses,  the finer  the 
conceptual distinctions and the more gradated the 
similarity judgments it can make (e.g., Budanit-
sky and Hirst, 2006).

General-purpose  computational  taxonomies 
are called upon to perform both coarse-grained 
and  fine-grained  judgments.  In  NLP,  for  in-
stance,  the  semantics  of  “eat”  requires  just 
enough  knowledge  to  discriminate  foods  like 

tofu and cheese from non-foods like  wool  and 
steel, while specific applications in the domain of 
cooking  and  recipes  (e.g.,  Hammond’s  (1986) 
CHEF)  require  enough  discrimination  to  know 
that tofu can be replaced with clotted cheese in 
many recipes because each is a soft, white and 
bland food.  

So while much depends on the domain of us-
age, it remains an open question as to how many 
nodes a good taxonomy should possess. Prince-
ton WordNet,  for  instance,  strives for  as many 
nodes as there are word senses in English, yet it 
also contains a substantial number of composite 
nodes  that  are  lexicalized not  as  single  words, 
but as complex phrases. Print dictionaries intend-
ed for human consumption aim for some econo-
my of structure, and typically do not include the 
meaning  of  phrases  that  can  be  understood  as 
straightforward compositions of the meaning of 
their  parts  (Hanks,  2004).  But  WordNet  also 
serves another purpose, as a lexical knowledge-
base  for  computers,  not  humans,  a  context  in 
which concerns about space seem quaint. When 
space is not a issue, there seems no good reason 
to exclude nodes from a concept taxonomy mere-
ly for being composites of other ideas; the real 
test of entry is whether a given node adds value 
to a taxonomy, by increasing its level of internal 
organization through the systematic dissection of 
overly broad categories into finer, more intuitive 
and manageable clusters.

In this paper we describe a means by which 
finely-discriminating  taxonomies  can  be  grown 
from  a  variety  of  different  knowledge  seeds. 
These taxonomies comprise composite categories 
that  can  be  lexicalized  as  phrases  of  the  form 
“ADJ NOUN”, such as Sharp-Instrument, which 
represents the set of all instruments that are typi-
cally considered sharp, such as knives, scissors, 
chisels and can-openers. While WordNet already 
contains  an  equivalent  category,  named  Edge-
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Tool, which it defines with the gloss “any cutting 
tool  with a sharp cutting edge”,  it  provides  no 
structural basis for inferring that any member of 
this  category can be considered  sharp.  For  the 
most part, if two ideas (word senses) belong to 
the same semantic category X in WordNet, the 
most we can infer is that both possess the trivial 
property  X-ness.  Our  goal  here  is  to  construct 
taxonomies whose form makes explicit the actual 
properties that accrue from membership in a cat-
egory. 

Past work on related approaches to taxonomy 
creation are discussed in section 2, while section 
3  describes  the  different  knowledge  seeds  that 
serve as the starting point for our bootstrapping 
process. In section 4 we describe the bootstrap-
ping process in more detail;  such processes are 
prone to noise, so we also discuss how the ac-
quired categorizations are validated and filtered 
after each bootstrapping cycle. An evaluation of 
the key ideas is then presented in section 5, to 
determine which seed yields the highest quality 
taxonomy once bootstrapping is completed. The 
paper then concludes with some final remarks in 
section 6.

2 Related Work

Simple pattern-matching techniques can be sur-
prisingly effective for the extraction of lexico-se-
mantic relations from text when those relations 
are expressed using relatively stable and unam-
biguous  syntagmatic  patterns  (Ahlswede  and 
Evens, 1988). For instance, the work of Hearst 
(1992) typifies this surgical approach to relation 
extraction,  in  which a system fishes in  a large 
text for particular word sequences that strongly 
suggest  a  semantic  relationship  such  as  hyper-
nymy  or,  in  the  case  of  Charniak and Berland 
(1999), the part-whole relation. Such efforts offer 
high precision but can exhibit low recall on mod-
erate-sized corpora, and extract just a tiny (but 
very useful) subset of the semantic content of a 
text.  The  KnowItAll system  of  Etzioni  et  al. 
(2004)  employs  the  same  generic  patterns  as 
Hearst (e.g., “NPs such as NP1, NP2, …”),  and 
more besides, to extract a whole range of facts 
that can be exploited for web-based question-an-
swering.  Cimiano  and  Wenderoth  (2007)  also 
use a range of Hearst-like patterns to find text se-
quences in web-text that are indicative of the lex-
ico-semantic  properties  of  words;  in  particular, 
these  authors  use  phrases  like  “to  *  a  new 
NOUN” and “the purpose of NOUN is to *” to 

identify the formal (isa), agentive (made by) and 
telic (used for) roles of nouns.

Snow, Jurafsky and Ng (2004) use supervised 
learning techniques to acquire those syntagmatic 
patterns that prove most useful for extracting hy-
pernym relations from text. They train their sys-
tem using pairs of WordNet terms that exemplify 
the hypernym relation; these are used to identify 
specific sentences in corpora that are most likely 
to express the relation in lexical terms. A binary 
classifier is then trained on lexico-syntactic fea-
tures that are extracted from a dependency-struc-
ture  parse  of  these  sentences.  Kashyap  et  al., 
(2005) experiment with a bootstrapping approach 
to  growing concept  taxonomies  in  the  medical 
domain.  A  gold  standard  taxonomy  provides 
terms that are used to retrieve documents which 
are  then  hierarchically  clustered;  cohesiveness 
measures are used to yield a taxonomy of terms 
that can then further drive the retrieval and clus-
tering cycle. Kozareva  et al. (2008) use a boot-
strapping approach that extends the fixed-pattern 
approach  of  Hearst  (1992)  in  two  intriguing 
ways. First, they use a doubly-anchored retrieval 
pattern of the form “NOUNcat such as NOUNexam-

ple and  *”  to  ground the  retrieval  relative  to  a 
known example of hypernymy,  so that any val-
ues extracted for the wildcard * are likely to be 
coordinate terms of  NOUNexample and even more 
likely to be good examples of NOUNcat. Second-
ly, they construct a graph of terms that co-occur 
within this pattern to determine which terms are 
supported by others,  and by how much.  These 
authors also use two kinds of bootstrapping: the 
first  variation,  dubbed  reckless,  uses the candi-
dates extracted from the double-anchored pattern 
(via *) as exemplars (NOUNexample) for successive 
retrieval cycles; the second variation first checks 
whether a candidate is sufficiently supported to 
be used as an exemplar in future retrieval cycles.

The approach we describe here is most similar 
to that of Kozareva  et al. (2008). We too use a 
double-anchored pattern, but place the anchors in 
different  places  to  obtain  the  query  patterns 
“ADJcat NOUNcat such as *” and “ADJcat * such 
as NOUNexample”. As a result, we obtain a finely-
discriminating  taxonomy  based  on  categories 
that are explicitly annotated with the properties 
(ADJcat)  that  they  bequeath  to  their  members. 
These categories have an obvious descriptive and 
organizational  utility,  but  of  a kind that  one is 
unlikely  to  find  in  conventional  resources  like 
WordNet and Wikipedia. Kozareva et al. (2008) 
test their approach on relatively simple and ob-
jective  categories  like  states,  countries (both 
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closed sets), singers and fish (both open, the for-
mer more so than the latter), but not on complex 
categories in which members are tied both to a 
general category, like food, and to a stereotypical 
property, like  sweet (Veale and Hao, 2007). By 
validating  membership  in  these  complex  cate-
gories  using WordNet-based heuristics,  we  can 
hang these categories and members  on specific 
WordNet senses, and thus enrich WordNet with 
this additional taxonomic structure.

3 Seeds for Taxonomic Growth 

A fine-grained taxonomy can be viewed as a set 
of triples Tijk = <Ci, Dj, Pk>, where Ci denotes a 
child of the parent term Pk that possesses the dis-
criminating  property  Dj;  in  effect,  each  such 
triple expresses that Ci is a specialization of the 
complex  taxonym  Dj-Pk.  Thus,  the  belief  that 
cola  is  a  carbonated-drink  is  expressed  by the 
triple <cola, carbonated, drink>. From this triple 
we  can  identify  other  categorizations  of  cola 
(such as treat and refreshment) via the web query 
“carbonated * such as cola”, or we can identify 
other similarly fizzy drinks via the query “car-
bonated  drinks  such  as  *”.  So  this  web-based 
bootstrapping  of  fine-grained  category  hierar-
chies requires that we already possess a collec-
tion  of  fine-grained  distinctions  of  a  relatively 
high-quality.  We  now  consider  three  different 
starting points for this bootstrapping process, as 
extracted from three different resources:  Word-
Net, ConceptNet and the web at large.

3.1 WordNet 

The noun-sense taxonomy of WordNet makes a 
number  of  fine-grained  distinctions  that  prove 
useful in clustering entities into smaller and more 
natural groupings. For instance, WordNet differ-
entiates  {feline,  felid} into  the  sub-categories 
{true_cat,  cat} and  {big_cat,  cat},  the  former 
serving  to  group  domesticated  cats  with  other 
cats of a similar size, the latter serving to cluster 
cats  that  are  larger,  wilder  and  more  exotic. 
However, such fine-grained distinctions are the 
exception rather than the norm in WordNet, and 
not  one of  the  60+ words  of  the  form  Xess in 
WordNet that denote a person (such as huntress,  
waitress, Jewess, etc.) express the defining prop-
erty  female in  explicit  taxonomic  terms. 
Nonetheless, the free-text glosses associated with 
WordNet sense-entries often do state the kind of 
distinctions we would wish to find expressed as 
explicit  taxonyms.  A  shallow  parse  of  these 
glosses  thus  yields  a  sizable  number  of  fine-

grained  distinctions,  such  as  <lioness,  female,  
lion>,   <espresso,  strong,  coffee>  and  both 
<messiah, awaited, king> and <messiah, expect-
ed, deliverer>. 

3.2 ConceptNet 

Despite  its  taxonomic  organization,  WordNet 
owes much to the centralized and authority-pre-
serving  craft  of  traditional  lexicography.  Con-
ceptNet (Liu and Singh, 2004), in contrast, is a 
far less authoritative knowledge-source, one that 
owes more to the workings of the WWW than to 
conventional print dictionaries. Comprising fac-
toids culled from the template-structured contri-
butions of thousands of web users,  ConceptNet 
expresses many relationships that accurately re-
flect  a  public,  common-sense  view on a  given 
topic (from vampires to dentists) and many more 
that are simply bizarre or ill-formed. Looking to 
the relation that interests us here, the IsA rela-
tion,  ConceptNet  tells  us  that  an  espresso is  a 
strong coffee (correctly, like WordNet) but that a 
bagel is a Jewish word (confusing use with men-
tion). Likewise, we find that expressionism is an 
artistic style (correct, though WordNet deems it 
an  artistic movement) but that an  explosion is a 
suicide attack (confusing formal and telic roles). 
Since we cannot trust the content of ConceptNet 
directly, lest we bootstrap from a highly unreli-
able starting point, we use WordNet as a simple 
filter.  While  the  concise  form  of  ConceptNet 
contains over 30,000 IsA propositions, we con-
sider as our seed collection only those that define 
a noun concept (such as “espresso”) in terms of a 
binary  compound  (e.g.,  “strong coffee”)  where 
the head of the latter (e.g.,  “coffee”) denotes a 
WordNet hypernym of some sense of the former. 
This  yields  triples  such  as  <Wyoming,  great,  
state>,  <wreck,  serious,  accident>  and  <wolf,  
wild, animal>.

3.3 Web-derived Stereotypes 

Veale and Hao (2007) also use the observations 
of web-users to acquire common perceptions of 
oft-mentioned ideas, but do so by harvesting sim-
ile expressions of the form “as ADJ as a NOUN” 
directly from the web.  Their approach hinges on 
the fact that similes exploit stereotypes to draw 
out the salient properties of a target, thereby al-
lowing rich  descriptions of those stereotypes to 
be easily acquired, e.g., that snowflakes are pure 
and unique, acrobats are agile and nimble, knifes 
are  sharp and dangerous,  viruses  are  malicious 
and infectious, and so on. However, because they 
find that almost 15% of their web-harvested sim-
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iles are ironic (e.g., “as subtle as a rock”, “as bul-
letproof as a sponge-cake”, etc.), they filter irony 
from these associations by hand, to yield a siz-
able  database  of  stereotypical  attributions  that 
describes over 6000 noun concepts in terms of 
over  2000  adjectival  properties.  However,  be-
cause Veale and Hao’s data directly maps stereo-
typical properties to simile vehicles, it does not 
provide  a  parent  category  for  these  vehicles. 
Thus, the seed triples derived from this data are 
only partially instantiated;  for  instance,  we ob-
tain <surgeon, skilful, ?>, <virus, malicious, ?> 
and <dog, loyal, ?>.  This does not prove to be a 
serious  impediment,  however,  as  the  missing 
field  of  each triple  is  quickly identified during 
the first cycle of bootstrapping.

3.4 Overview of Seed Resources 

Neither of these three seeds is an entirely useful 
knowledge-base in its own right. The WordNet-
based seed is clearly a representation of conve-
nience,  since  it  contains  only  those  properties 
that can be acquired from the glosses that happen 
to be amenable  to a simple  shallow-parse.  The 
ConceptNet seed is likewise a small collection of 
low-hanging fruit, made smaller still by the use 
of WordNet as a coarse but very necessary noise-
filter.  And while the simile-derived distinctions 
obtained from Veale and Hao paint a richly de-
tailed  picture  of  the  most  frequent  objects  of 
comparison, this seed offers no coverage for the 
majority of concepts that are insufficiently note-
worthy to be found in web similes. A quantita-
tive comparison of all three seeds is provided in 
Table 1 below.

WordNet ConceptNet Simile
# terms 
in total

12,227 1,133 6512

# triples 
in total

51,314 1808 16,688

# triples 
per term

4.12 1.6 2.56

# fea-
tures

2305 550 1172

Table 1:  The size of seed collections yielded from 
different sources. 

We can see that WordNet-derived seed is clearly 
the largest and apparently the most comprehen-
sive knowledge-source of the  three:  it  contains 
the most terms (concepts), the most features (dis-
criminating properties of those concepts), and the 
most triples (which situate those concepts in par-
ent  categories  that  are  further  specialized  by 

these  discriminating  features).  But  size  is  only 
weakly suggestive of quality, and as we shall see 
in  the  next  section,  even such  dramatic  differ-
ences in scale can disappear after several cycles 
of bootstrapping. In section 5 we will then con-
sider  which  of  these  seeds  yields  the  highest 
quality taxonomies after bootstrapping has been 
applied. 

4 Bootstrapping from Seeds

The seeds of the previous section each represent 
a different starting collection of triples. It is the 
goal of the bootstrapping process to grow these 
collections  of  triples,  to  capture  more  of  the 
terms – and more of the distinctions – that a tax-
onomy is expected to know about. The expansion 
set  of  a  triple  Tijk =  <Ci,  Dj,  Pk> is  the  set  of 
triples that can be acquired from the web using 
the  following  query  expansions  (*  is  a  search 
wildcard):

1. “Dj * such as Ci”

2. “Dj Pk such as *”

In the first query, a noun is sought to yield anoth-
er categorization of Ci, while in the second, other 
members of the fine-grained category Dj-Pk are 
sought to accompany Ci. In parsing the text snip-
pets  returned by these  queries,  we also exploit 
text sequences that match the following patterns:

3. “* and Dj Pk such as *”

4. “* and Dj * such as Ci”

These last two patterns allow us to learn new dis-
criminating  features  by  noting  how  these  dis-
criminators are combined to reinforce each other 
in  some  ad-hoc  category  formulations.  For  in-
stance, the phrase “cold and refreshing beverages 
such  as  lemonade”  allows  us  to  acquire  the 
triples <lemonade, cold, beverage> and <lemon-
ade, refreshing, beverage>. This pattern is neces-
sary if the bootstrapping process is to expand be-
yond  the  limited  vocabulary  of  discriminating 
features  (Dj)  found in  the  original  seed collec-
tions of triples.

We denote the mapping from a triple T to the 
set of additional triples that can be acquired from 
the web using the above queries/patterns as  ex-
pand(T').  We currently implement this function 
using  the  Google  search  API.  Our  experiences 
with each query suggest  that  200 snippets is  a 
good search range for the first query, while 50 is 
usually more than adequate for the second. 
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We can now denote the knowledge that is ac-
quired when starting from a given seed collection 
S after t cycles of bootstrapping as Kt

S. Thus, 

K 0
S
=S

K 1
S
=K 0

S
∪

{T ∣ T '∈S ∧ T ∈expand T ' }
K t1

S
=K t

S
∪

{T ∣ T '∈K t
S
∧ T ∈expand T ' }

Web queries, and the small snippets of text that 
they return, offer just a keyhole view of language 
as it is used in real documents.  Unsurprisingly, 
the  new triples  acquired from the  web via  ex-
pand(T') are likely to be very noisy indeed. Fol-
lowing Kozareva et al. (2008), we can either in-
dulge  in  reckless  bootstrapping,  which  ignores 
the  question  of  noise  until  all  bootstrapping  is 
finished, or we can apply a noise filter after each 
incremental step.  The latter approach has the ad-
ditional advantage of keeping the search-space as 
small as possible, which is a major consideration 
when bootstrapping from sizable seeds. We use a 
simple WordNet-based filter called near-miss:  a 
new triple <Ci,  Dj,  Pk> is accepted if WordNet 
contains  a  sense  of  Ci that  is  a  descendant  of 
some sense of Pk (a hit), or a sense of Ci that is a 
descendant of the direct hypernym of some sense 
of Pk (a near-miss). This allows the bootstrapping 
process to acquire structures that are not simply a 
decorated version of the basic WordNet taxono-
my,  but  to acquire hierarchical  relations whose 
undifferentiated forms are not in WordNet (yet 
are largely compatible with WordNet). This non-
reckless bootstrapping process can be expressed 
as follows:

K t1
S
=K t

S
∪ {T ∣ T '∈K t

S
∧

T ∈ filter near−missexpand T ' }

Figure 1 and figure 2 below illustrate the rate of 
growth  of  triple-sets  from  each  of  our  three 
seeds.

Referring again to table 1, we note that while 
the ConceptNet collection is by far the smallest 
of  the three seeds – more  that  7 times smaller 
than the simile-derived seed, and almost 40 times 
smaller than the WordNet seed – this difference 
is  size  shrinks  considerably over  the  course  of 
five  bootstrapping  cycles.  The  WordNet  near-
miss filter ensures that the large body of triples 
grown from each  seed  are  broadly  sound,  and 
that  we  are  not  simply  generating  comparable 
quantities of nonsense in each case.

Figure 1: Growth in the number of acquired triples, 
over 5 cycles of bootstrapping from different seeds.

Figure 2: Growth in the number of terms described by 
the acquired triples, over 5 cycles of bootstrapping 

from different seeds.

4.1 An  Example

Consider cola, for which the simile seed has one 
triple: <cola, refreshing, beverage>. After a sin-
gle cycle of bootstrapping, we find that cola can 
now be described as an effervescent beverage, a 
sweet  beverage,  a  nonalcoholic  beverage and 
more. After a second cycle, we find it described 
as a sugary food, a fizzy drink and a dark mixer. 
After a third cycle, it is found to be a  sensitive 
beverage, an  everyday beverage and a  common 
drink. After a fourth cycle, it is also found to be 
an  irritating food and an  unhealthy drink. After 
the  fifth  cycle,  it  is  found to  be  a  stimulating 
drink, a toxic food and a corrosive substance. In 
all, the single cola triple in the simile seed yields 
14 triples after 1 cycle, 43 triples after 2 cycles, 
72 after 3 cycles, 93 after 4 cycles, and 102 after 
5 cycles. During these bootstrapping cycles, the 
description  refreshing beverage additionally be-
comes  associated  with  the  terms  champagne, 
lemonade and beer. 
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5 Empirical Evaluation

The WordNet  near-miss filter thus ensures that 
the parent field (Pk) of every triple contains a val-
ue  that  is  sensible  for  the  given  child  concept 
(Ci), but does not ensure that the discriminating 
property  (Dj)  in  each  triple  is  equally  sensible 
and apropos.  To see  whether the bootstrapping 
process  is  simply  padding  the  seed  taxonomy 
with large quantities of noise,  or whether the ac-
quired Dj values do indeed mark out the implicit 
essence of the Ci terms they describe, we need an 
evaluation framework that can quantify the onto-
logical usefulness of these Dj values. For this, we 
use  the  experimental  setup  of  Almuhareb  and 
Poesio  (2005),  who  use  information  extraction 
from the web to acquire attribute values for dif-
ferent terms/concepts, and who then compare the 
taxonomy that can be induced by clustering these 
values  with the  taxonomic  backbone  of  Word-
Net. 

Almuhareb and Poesio first created a balanced 
set  of  402  nouns  from  21  different  semantic 
classes in WordNet. They then acquired attested 
attribute values for these nouns (such as  hot for 
coffee,  red for car, etc.) using the query "(a|an|
the) * Ci  (is|was)" to find corresponding Dj val-
ues for each Ci. Unlike our work, these authors 
did  not seek to acquire hypernyms  for each Ci 

during this search, and did not try to link the ac-
quired attribute values to a particular branching 
point  (Pk) in the taxonomy (they did,  however, 
seek matching attributes for these values, such as 
Temperature for  hot, but that aspect is not rele-
vant here). They acquired 94,989 attribute values 
in all for the 402 test nouns. These values were 
then used as features of the corresponding nouns 
in  a  clustering  experiment,  using  the  CLUTO 
system of Karypis (2002). By using attribute val-
ues  as  a  basis  for  partitioning  the  set  of  402 
nouns  into  21  different  categories,  Almuhareb 
and Poesio attempted to reconstruct the original 
21  WordNet  categories  from which  the  nouns 
were drawn. The more accurate the match to the 
original WordNet clustering, the more these at-
tribute values can be seen (and used) as a repre-
sentation of conceptual structure. In their first at-
tempt, they achieved just a 56.7% clustering ac-
curacy against the original human-assigned cate-
gories of WordNet. But after using a noise-filter 
to remove almost  half of the web-harvested at-
tribute values, they achieve a higher cluster accu-
racy of 62.7%. More specifically, Poesio and Al-
muhareb achieve a cluster purity of 0.627 and a 

cluster entropy of 0.338 using 51,345 features to 
describe and cluster the 402 nouns.1

We replicate the above experiments using the 
same 402 nouns, and assess the clustering accur­
acy   (again  using  WordNet   as   a   gold­standard) 
after each bootstrapping cycle. Recall that we use 
only the Dj fields of each triple as features for the 
clustering  process,   so   the  comparison  with   the 
WordNet gold­standard is still a fair one. Once 
again, the goal is to determine how much like the 
human­crafted   WordNet   taxonomy   is   the   tax­
onomy  that   is  clustered automatically  from the 
discriminating words Dj only. The clustering ac­
curacy for all three seeds are shown in Tables 2, 
3 and 4.

Cycle  E  P # Features Coverage

1st .327 .629 907 66%

2nd .253 .712 1,482 77%

3rd .272 .717 2,114 82%

4th .312 .640 2,473 83%

5th .289 .684 2,752 83%
Table 2: Clustering accuracy using the WordNet seed 
collection (E denotes Entropy and P stands for Purity)

Cycle E P # Features Coverage

1st .115 .842 363 41%

2nd .255 .724 787 59%

3rd .286 .694 1,362 74%

4th .279 .694 1,853 79%

5th .299 .673 2,274 82%
Table 3: Clustering accuracy using the ConceptNet 

seed collection

Cycle E P # Features Coverage

1st .254 .716 837 59%

2nd .280 .712 1,338 73%

3rd .289 .693 1,944 79%

4th .313 .660 2,312 82%

5th .157 .843 2,614 82%
Table 4: Clustering accuracy using the Simile seed 

collection

The test-set of 402 nouns contains some low-fre-
quency words, such as casuarina,  cinchona,  do-
decahedron, and  concavity, and Almuhareb and 

1 We use cluster purity as a reflection of clustering accu-
racy. We express accuracy as a percentage; hence a pu-
rity of 0.627 is seen as an accuracy of 62.7%. 
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Poesio note that one third of their data-set has a 
low-frequency of between 5-100 occurrences in 
the British National Corpus. Looking to the cov-
erage  column  of  each  table,  we  thus  see  that 
there  are  words  in  the  Poesio  and  Almuhareb 
data set for which no triples can be acquired in 5 
cycles  of  bootstrapping.  Interestingly,  though 
each seed is quite different in origin and size (see 
again Table 1), all reach similar levels of cover-
age (~82%) after  5 bootstrapping cycles.   Test 
nouns for which all three seeds fail to reach a de-
scription  include  yesteryear,  nonce (very rare), 
salient (more typically an adjective), jag, droop,  
fluting,  fete,  throb,  poundage,  stinging,  rouble,  
rupee,  riel,  drachma,  escudo,  dinar,  dirham,  
lira, dispensation,  hoard,  airstream (not typical-
ly a solid compound), riverside and curling. Fig-
ures 3 and 4 summarize the key findings in the 
above tables: while bootstrapping from all three 
seeds converges to the same level of coverage, 
the simile seed clearly produces the highest qual-
ity taxonomy. 

Figure 3: Growth in the coverage from different 
seed sources. 

Figure 4: Divergence in the clustering Purity 
achieved using different seed sources. The results of 
Poesio and Almuhareb are shown as the straight line: 

y = 0.627.

Both  the  WordNet  and  ConceptNet  seeds 
achieve comparable accuracies of 68% and 67% 

respectively  after  5  cycles  of  bootstrapping, 
which compares well with the accuracy of 62.7% 
achieved  by  Poesio  and  Almuhareb.  However, 
the simile seed clearly yields the best accuracy of 
84.3%,  which  also  exceeds  the  accuracy  of 
66.4% achieved by Poesio and Almuhareb when 
using both values  and attributes (such as  Tem-
perature, Color, etc.) for clustering, or the accu-
racy of 70.9% they achieve when using attributes 
alone. Furthermore, bootstrapping from the simi-
le seed yields higher cluster accuracy on the 402-
noun data-set than Veale and Hao (2008) them-
selves achieve with their simile data on the same 
test-set (69.85%). 

But most striking of all is the concision of the 
representations that are acquired using bootstrap-
ping. The simile seed yields a high cluster accu-
racy using a pool of just 2,614 fine discrimina-
tors,  while  Poesio  and  Almuhareb  use  51,345 
features even after their feature-set has been fil-
tered  for  noise.  Though starting  from different 
initial scales, each seed converges toward a fea-
ture-set that is roughly twenty times smaller than 
that used by Poesio and Almuhareb. 

6 Conclusions

These experiments reveal that seed knowledge of 
different authoritativeness, quality and size will 
tend to converge toward roughly the same num-
ber  of  finely  discriminating  properties  and  to-
ward much the same coverage after 5 or so cy-
cles of bootstrapping. Nonetheless, quality wins 
out,  and  the  simile-derived  seed  knowledge 
shows itself to be a clearly superior basis for rea-
soning  about  the  structure  and  organization  of 
conceptual  categories.  Bootstrapping  from  the 
simile  seed yields  a slightly smaller  set of  dis-
criminating features than bootstrapping from the 
WordNet  seed,  one that  is  many times  smaller 
than the Poesio and Almuhareb feature set. What 
matters is that they are the right features to dis-
criminate with. 

There appears to be a number of reasons for 
this  significant  difference  in  quality.  For  one, 
Veale and Hao (2007) show that similes express 
highly  stereotypical  beliefs  that  strongly  influ-
ence the affective disposition of a term/concept; 
negatively  perceived  concepts  are  commonly 
used to exemplify negative properties in similes, 
while  positively perceived  concepts  are  widely 
used to exemplify positive properties. Veale and 
Hao (2008) go on to argue that similes offer a 
very concise snapshot of those widely-held be-
liefs that are the cornerstone of everyday reason-
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ing, and which should thus be the corner-stone of 
any general-purpose taxonomy.  In addition, be-
liefs expressed via the “as Dj as Ci” form of simi-
les  appear  to  lend  themselves  to  re-expression 
via the “Dj Pk such as  Ci” form; in each case, a 
concept Ci is held up as an exemplar of a salient 
property  Dj.  Since  the  “such  as”  bootstrapping 
pattern seeks out  expressions of  prototypicality 
on the web, a simile-derived seed set is likely the 
best starting point for this search.

All three seeds appear to suffer the same cov-
erage limitations,  topping out  at  about  82% of 
the words in the Poesio and Almuhareb data-set. 
Indeed,  after  5  bootstrapping  cycles,  all  three 
seeds give rise to taxonomies that overlap on 328 
words from the 402-noun test-set, accounting for 
81.59% of the test-set. In effect then, bootstrap-
ping stumbles over the same core of hard words 
in each case, no matter the seed that is used. As 
such, the problem of coverage lies not in the seed 
collection, but in the queries used to perform the 
bootstrapping.  The  same  coverage  limitations 
will thus apply to other bootstrapping approaches 
to  knowledge acquisition,  such as  Kozareva  et  
al. (2008), which rely on much the same stock 
patterns.  So  while  bootstrapping may not  be  a 
general  solution  for  acquiring  all  aspects  of  a 
general-purpose taxonomy, it is clearly useful in 
acquiring large swathes  of  such a  taxonomy if 
given  a  sufficiently  high-quality  seed  to  start 
from.
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Abstract 

In this paper, we present a feature-based me-
thod to align documents with similar content 
across two sets of bilingual comparable cor-
pora from daily news texts. We evaluate the 
contribution of each individual feature and 
investigate the incorporation of these diverse 
statistical and heuristic features for the task of 
bilingual document alignment. Experimental 
results on the English-Chinese and English-
Malay comparable news corpora show that 
our proposed Discrete Fourier Transform-
based term frequency distribution feature is 
very effective. It contributes 4.1% and 8% to 
performance improvement over Pearson’s 
correlation method on the two comparable 
corpora. In addition, when more heuristic and 
statistical features as well as a bilingual dic-
tionary are utilized, our method shows an ab-
solute performance improvement of 23.2% 
and 15.3% on the two sets of bilingual corpo-
ra when comparing with a prior information 
retrieval-based method.  

1 Introduction 

The problem of document alignment is described 
as the task of aligning documents, news articles 
for instance, across two corpora based on content 
similarity. The groups of corpora can be in the 
same or in different languages, depending on the 
purpose of one’s task. In our study, we attempt to 
align similar documents across comparable cor-
pora which are bilingual, each set written in a 
different language but having similar content and 
domain coverage for different communication 
needs. 

Previous works on monolingual document 
alignment focus on automatic alignment between 
documents and their presentation slides or be-
tween documents and their abstracts. Kan (2007) 
uses two similarity measures, Cosine and Jac-
card, to calculate the candidate alignment score 
in his SlideSeer system, a digital library software 

that retrieves documents and their narrated slide 
presentations. Daumé and Marcu (2004) use a 
phrase-based HMM model to mine the alignment 
between documents and their human-written ab-
stracts. The main purpose of this work is to in-
crease the size of the training corpus for a 
statistical-based summarization system. 

The research on similarity calculation for mul-
tilingual comparable corpora has attracted more 
attention than monolingual comparable corpora. 
However, the purpose and scenario of these 
works are rather varied. Steinberger et al. (2002) 
represent document contents using descriptor 
terms of a multilingual thesaurus EUROVOC1, 
and calculate the semantic similarity based on the 
distance between the two documents’ representa-
tions. The assignment of descriptors is trained by 
log-likelihood test and computed by ܶܨܦܫܨ, Co-
sine, and Okapi. Similarly, Pouliquen et al. 
(2004) use a linear combination of three types of 
knowledge: cognates, geographical place names 
reference, and map documents based on the 
EUROVOC. The major limitation of these works 
is the use of EUROVOC, which is a specific re-
source workable only for European languages. 

Aligning documents across parallel corpora is 
another area of interest. Patry and Langlais (2005) 
use three similarity scores, Cosine, Normalized 
Edit Distance, and Sentence Alignment Score, to 
compute the similarity between two parallel doc-
uments. An Adaboost classifier is trained on a list 
of scored text pairs labeled as parallel or non-
parallel. Then, the learned classifier is used to 
check the correctness of each alignment candidate. 
Their method is simple but effective. However, 
the features used in this method are only suitable 
for parallel corpora as the measurement is mainly 
based on structural similarity. One goal of docu-
ment alignment is for parallel sentence extraction 
for applications like statistical machine transla-
tion. Cheung and Fung (2004) highlight that most 

                                                           
1 EUROVOC is a multilingual thesaurus covering the fields 
in which the European Communities are active.  
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of the current sentence alignment models are ap-
plicable for parallel documents, rather than com-
parable documents. In addition, they argue that 
document alignment should be done before paral-
lel sentence extraction.  

Tao and Zhai (2005) propose a general method 
to extract comparable bilingual text without us-
ing any linguistic resources. The main feature of 
this method is the frequency correlation of words 
in different languages. They assume that those 
words in different languages should have similar 
frequency correlation if they are actually transla-
tions of each other. The association between two 
documents is then calculated based on this in-
formation using Pearson’s correlation together 
with two monolingual features 25ܯܤ , a term 
frequency normalization (Stephan et al., 1994), 
and ܨܦܫ. The main advantages of this approach 
are that it is purely statistical-based and it is lan-
guage-independent. However, its performance 
may be compromised due to the lack of linguistic 
knowledge, particularly across corpora which are 
linguistically very different. Recently, Munteanu 
(2006) introduces a rather simple way to get the 
group of similar content document in multilin-
gual comparable corpus by using the Lemur IR 
Toolkit (Ogilvie and Callan, 2001). This method 
first pushes all the target documents into the da-
tabase of the Lemur, and then uses a word-by-
word translation of each source document as a 
query to retrieve similar content target docu-
ments.  

This paper will leverage on previous work, 
and propose and explore diverse range of fea-
tures in our system. Our document alignment 
system consists of three stages: candidate genera-
tion, feature extraction and feature combination. 
We verify our method on two set of bilingual 
news comparable corpora English-Chinese and 
English-Malay. Experimental results show that 
1) when only using Fourier Transform-based 
term frequency, our method outperforms our re-
implementation of Tao (2005)’s method by 4.1% 
and 8% for the top 100 alignment candidates and, 
2) when using all features, our method signifi-
cantly outperforms our implementation of Mun-
teanu’s (2006) method by 23.2% and 15.3%.  

The paper is organized as follows. In section 
2, we describe the overall architecture of our sys-
tem. Section 3 discusses our improved frequency 
correlation-based feature, while Section 4 de-
scribes in detail the document relationship heu-
ristics used in our model. Section 5 reports the 
experimental results. Finally, we conclude our 
work in section 6. 

2 System Architecture 

Fig 1 shows the general architecture of our doc-
ument alignment system. It consists of three 
components: candidate generation, feature ex-
traction, and feature combination. Our system 
works on two sets of monolingual corpora to de-
rive a set of document alignments that are com-
parable in their content. 

Fig 1. Architecture for Document Alignment Model. 

2.1 Candidate Generation 

Like many other text processing systems, the 
system first defines two filtering criteria to prune 
out “clearly bad” candidates. This will dramati-
cally reduce the search space. We implement the 
following filers for this purpose: 

Date-Window Filter: As mentioned earlier, 
the data used for the present work are news cor-
pora—a text genre that has very strong links with 
the time element. The published date of docu-
ment is available in data, and can easily be used 
as an indicator to evaluate the relation between 
two articles in terms of time. Similar to Muntea-
nu’s (2006), we aim to constrain the number of 
candidates by assuming that documents with 
similar content should have publication dates 
which are fairly close to each other, even though 
they reside in two different sets of corpora. By 
imposing this constraint, both the complexity and 
the cost in computation can be reduced tremend-
ously as the number of candidates would be sig-
nificantly reduced. For example, when a 1-day 
window size is set, this means that for a given 
source document, the search for its target candi-
dates is set within 3 days of the source document: 
the same day of publication, the day after, and 
the day before. With this filter, using the data of 
one-month in our experiment, a reduction of 90% 
of all possible alignments can be achieved (sec-
tion 5.1). Moreover, with our evaluation data, 
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after filtering out document pairs using a 1-day 
window size, up to 81.6% for English-Chinese 
and 80.3% for English-Malay of the golden 
alignments are covered. If the window size is 
increased to 5, the coverage is 96.6% and 95.6% 
for two language pairs respectively. 

Title-n-Content Filter: previous date window 
filter constrains the number of candidates based 
purely on temporal information without exploit-
ing any knowledge of the documents’ contents. 
The number of candidates to be generated is thus 
dependent on the number of published articles 
per day, instead of the candidates’ potential con-
tent similarity. For this reason, we introduce 
another filter which makes use of document titles 
to gauge content-wise cross document similarity. 
As document titles are available in news data, we 
capitalize on words found in these document 
titles, favoring alignment candidates where at 
least one of the title-words in the source docu-
ment has its translation found in the content of 
the other target document. This filter can reduce 
a further 47.9% (English-Chinese) and 26.3% 
(English-Malay) of the remaining alignment can-
didates after applying the date-window filter. 

2.2 Feature Extraction 

The second step extracts all the features for each 
candidate and computes the score for each indi-
vidual feature function. In our model, the feature 
set is composed of the Title-n-Content score 
 ,(ܷܫܮ) Linguistic-Independent-Unit score ,(ܥܰܶ)
and Monolingual Term Distribution similarity 
-We will discuss all three features in sec .(ܦܶܯ)
tions 3 and 4. 

2.3 Feature Combination 

The final score for each alignment candidate is 
computed by combining all the feature function 
scores into a unique score. In literature, there are 
many methods concerning the estimation of the 
overall score for a given feature set, which vary 
from supervised to unsupervised method. Super-
vised methods such as Support Vector Machine 
(SVM) and Maximum Entropy (ME) estimate 
the weight of each feature based on training data 
which are then used to calculate the final score. 
However, these supervised learning-based me-
thods may not be applicable to our proposed is-
sue as we are motivated to build a language 
independent unsupervised system. We simply 
take a product of all normalized features to ob-
tain one unique score. This is because our fea-
tures are probabilistically independent. In our 

implementation, we normalize the scores to make 
them less sensitive to the absolute value by tak-
ing the logarithm ݈݊ሺ. ሻ as follows: 

 

ሻݔሺ݉ݎ݋݊ ൌ ൜݈݊ሺݔ ൅ ܶሻ, ݔ ൐ ሺ݁ െ ܶሻ
1, ݁ݏ݈݁  (1)

 

 

ሺ݁ െ ܶሻ is a threshold for ݔ to contribute posi-
tively to the unique score. In our experiment, we 
empirically choose ܶ  be 2.2 , and the threshold 
for ݔ is 0.51828 (as ݁ ൎ 2.71828). 

3 Monolingual Term Distribution 

3.1 Baseline Model 

The main feature used in Tao and Zhai (2005) is 
the frequency distribution similarity or frequency 
correlation of words in two given corpora. It is 
assumed that frequency distributions of topically-
related words in multilingual comparable corpora 
are often correlated due to the correlated cover-
age of the same events.  

Let ܠ ൌ ሼݔଵ, ,ଶݔ … , ܡ ௡ሽ andݔ ൌ ሼݕଵ, ,ଶݕ … ,  ௡ሽݕ
be the frequency distribution vectors of two 
words ݔ  and ݕ  in two documents respectively. 
The frequency correlation of the two words is 
computed by Pearson’s Correlation Coefficient 
in (2). 
 

,ݔሺݎ ሻݕ ൌ ∑ ௫೔௬೔
೙
೔సభ ି∑ ௫೔

೙
೔సభ ∑ ௬೔

೙
೔సభ

ටቀ∑ ௫೔
మ೙

೔సభ ିభ
೙

൫∑ ௫೔
೙
೔సభ ൯మቁቀ∑ ௬೔

మ೙
೔సభ ିభ

೙
൫∑ ௬೔

೙
೔సభ ൯మቁ

 (2)
 

The similarity of two documents is calculated 
with the addition of two features namely Inverse 
Document Frequency (ܨܦܫ) and 25ܯܤ term fre-
quency normalization shown in the equation (3). 
 
 

,ሺ݀ଵݏ ݀ଶሻ ൌ ∑ ሻݔሺܨܦܫ · ሻݕሺܨܦܫ · ,ݔሺݎ ሻݕ ·௫אௗభ,௬אௗమ

,ݔ25ሺܯܤ ݀ଵሻ · ,ݕ25ሺܯܤ ݀ଶሻ  (3)
 
 

Where 25ܯܤሺݓ, ݀ሻ  is the word frequency 
normalization for word ݓ  in document ݀ , and 
 .is the average length of a document ݊݁ܮܿ݋ܦ݁ݒܣ
 

,ݓ25ሺܯܤ ݀ሻ ൌ ௞భ௖ሺ௪,ௗሻ

௖ሺ௪,ௗሻା௞భቀଵି௕ା௕ |೏|
ಲೡ೐ವ೚೎ಽ೐೙ቁ

  (4)
 

It is noted that the key feature used by Tao and 
Zhai (2005) is the ݎሺݔ,  ሻ score which dependsݕ
purely on statistical information. Therefore, our 
motivation is to propose more features to link the 
source and target documents more effectively for 
a better performance.  

3.2 Study on Frequency Correlation 

We further investigate the frequency correlation of 
words from comparable sets of corpora compris-
ing three different languages using the above-
defined model.  
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Fig 2. Sample of frequency correlation for “Bank Dunia”, “World Bank”, and “世界银行”. 

 

 
Fig 3. Sample of frequency correlation for “Dunia”, “World”, and “世界”. 

 

 
Fig 4. Sample of frequency correlation for “Filipina”, “Information Technology”, and “联合国”. 

 
Using three months - May to July, 2006 – of daily 
newspaper in Strait Times2 (in English), Zao Bao3 
(in Chinese), and Berita Harian4 (in Malay), we 
conduct the experiments described in the follow-
ing Fig 2, Fig 3, and Fig 4 showing three different 
cases of term or word correlation. In these figures, 
the ݔ-axis denotes time and the ݕ-axis shows the 
frequency distribution of the term or word.  

Multi-word versus Single-word: Fig 2 
illustrates that the distributions for multi-word 
term such as “World Bank”, “世界银行(World 
Bank in Chinese)”, and “Bank Dunia (World 
Bank in Malay)” in the three language corpora 
are almost similar because of the discriminative 
power of that phrase. The phrase has no variance 
and contains no ambiguity. On the other hand, 
the distributions for single words may have much 
less similarity. 
                                                           
2 http://www.straitstimes.com/ an English news agency in 
Singapore. Source © Singapore Press Holdings Ltd. 
3 http://www.zaobao.com/ a Chinese news agency in Singa-
pore. Source © Singapore Press Holdings Ltd. 
4 http://cyberita.asia1.com.sg/ a Malay news agency in Sin-
gapore. Source © Singapore Press Holdings Ltd. 

Related Common Word: we also investigate 
the similarity in frequency distribution for related 
common single words in the case of “World”, 
“世界 (world in Chinese)”, and “Dunia (world in 
Malay)” as shown in Fig 3. It can be observed 
that the correlation of these common words is not 
as strong as that in the multi-word sample illu-
strated in Fig 2. The reason is that there are many 
variances of these common words, which usually 
do not have high discriminative power due to the 
ambiguities presented within them. Nonetheless, 
among these variances, there is still a small simi-
lar distribution trends that can be detected, which 
may enable us to discover the associations be-
tween them. 

Unrelated Common Word: Fig 4 shows the 
frequency distribution of three unrelated com-
mon words over the same three-month period. 
No correlation in distribution is found among 
them.
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3.3 Enhancement from Baseline Model 

3.3.1 Monolingual Term Correlation 

Due to the inadequacy of the baseline’s purely 
statistical approach, and our studies on the corre-
lations of single, multiple and commonly appear-
ing words, we propose using “term” or “multi-
word” instead of “single-word” or “word” to cal-
culate the similarity of term frequency 
distribution between two documents. This 
presents us with two main advantages. Firstly, 
the smaller number of terms compared to the 
number of words present in any document would 
imply fewer possible document alignment pairs 
for the system. This increases the computation 
speed remarkably. To extract automatically the 
list of terms in each document, we use the term 
extraction model from Vu et al. (2008). In corpo-
ra used in our experiments, the average ratios of 
word/term per document are 556/37, 410/28 and 
384/28 for English, Chinese, and Malay respec-
tively. The other advantage of using terms is that 
terms are more distinctive than words as they 
contain less ambiguity, thus enabling high corre-
lation to be observed when compared with single 
words. 

3.3.2 Bilingual Dictionary Incorporation 

In addition to using terms for the computation, 
we observed from equation (3) that the only mu-
tual feature relating the two documents is the 
frequency distribution coefficient ݎሺݔ, ሻݕ . It is 
likely that the alignment performance could be 
enhanced if more features relating the two doc-
uments are incorporated. 

Following that, we introduce a linguistic fea-
ture, ݁ݎ݋ܿܵܿ݅ܦሺݔ, ሻݕ , to the baseline model to 
enhance the association between two documents. 
This feature involves the comparison of the 
translations of words within a particular term in 
one language, and the presence of these transla-
tions in the corresponding target language term. 
If more translations obtained from a bilingual 
dictionary of words within a term are found in 
the term extracted from the other language’s 
document, it is more likely that the 2 bilingual 
terms are translations of each other. This feature 
counts the number of word translation found be-
tween the two terms, as described in the follow-
ing. Let ݐଵ  and ݐଶ  be the term list of ݀ଵ  and ݀ଶ 
respectively, the similarity score in our model is: 
,ௗ௜௖ሺ݀ଵݏ ݀ଶሻ ൌ ∑ ሻݔሺܨܦܫ · ሻݕሺܨܦܫ · ,ݔሺݎ ሻݕ ·௫א௧భ,௬א௧మ

,ݔሺ݁ݎ݋ܿܵܿ݅ܦ ሻݕ · ,ݔ25ሺܯܤ ݀ଵሻ · ,ݕ25ሺܯܤ ݀ଶሻ (5) 

3.3.3 Distribution Similarity Measurement 
using Monolingual Term 

Finally, we apply the results of time-series re-
search to replace Pearson’s correlation which is 
used in the baseline model, in our calculation of 
the similarity score of two frequency distribu-
tions. A popular technique for time sequence 
matching is to use Discrete Fourier Transform 
( ܶܨܦ ) (Agrawal et al, 1993). More recently, 
Klementiev and Roth (2006) also use F-index 
(Hetland, 2004), a score using ܶܨܦ, to calculate 
the time distribution similarity. In our model, we 
assume that the frequency chain of a word is a 
sequence, and calculate ܶܨܦ  score for each 
chain by the following formula: 

௡ܪ ൌ ෍ ݄௞. ݁ଶగ௜௞௡
ேൗ

௞ୀ଴

 (6)

In time series research, it is proven that only 
the first few ݇  coefficients of a ܶܨܦ  chain are 
strong and important for comparison (Agrawal et 
al, 1993). Our experiments in section 5 show that 
the best value for ݇ is 7 for both language pairs. 

ܴሺݔ, ሻݕ ൌ

ۉ

௫௜ܪඩ෍൫ۇ െ ௬௜൯ଶܪ
௞

௜ୀ଴
ی

ۊ

ିଵ

 (7)

The ݎሺݔ, ሻݕ  in equation (5) is replaced by 
ܴሺݔ, -ሻ in equation (8) to calculate the Monolinݕ
gual Term Distribution (ܦܶܯ) score. 

4 Document Relationship Heuristics 

Besides the ܦܶܯ, we also propose two heuristic-
based features that focus directly on the 
relationship between two multilingual documents, 
namely the Title-n-Content scoreെ ܶܰܥ , which 
measures the relationship between the title and 
content of a document pair, and Linguistic Inde-
pendent Unit score – ܷܫܮ , which make use of 
orthographic similarity between unit of words for 
the different languages.  

4.1 Title-n-Content Score (࡯ࡺࢀ) 

Besides being a filter for removing bad align-
ment candidates, ܶܰܥ  is also incorporated as a 
feature in the computation of document align-
ment score. In the corpora used, in most docu-
ments, “title” does reveal the main topic of a 
document. The use of words in a news title is 

,ெ்஽ሺ݀ଵݏ ݀ଶሻ ൌ ෍ ሻݔሺܨܦܫ · ሻݕሺܨܦܫ
௫א௧భ,௬א௧మ

· ܴሺݔ, ሻݕ · ,ݔሺ݁ݎ݋ܿܵܿ݅ܦ ሻݕ
· ,ݔ25ሺܯܤ ݀ଵሻ · ,ݕ25ሺܯܤ ݀ଶሻ 

(8)
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typically concise and conveys the essence of the 
information in the document. Thus, a high ܶܰܥ 
score would indicate a high likelihood of similar-
ity between two bilingual documents. Therefore, 
we use ܶܰܥ as a quantitative feature in our fea-
ture set. Function ܴܶሺݓ, ܿሻ checks whether the 
translation of a word in a document’s title is 
found in the content of its aligned document: 

 

ܴܶሺݓ, ܿሻ ൌ ൜1,     translation of ݓ is in ܿ
0,     else                                (9)

 

The ܶܰܥ score of document ݀௦  and ݀௧  is cal-
culated by the following formula: 
 

,ሺ݀௦ܥܰܶ ݀௧ሻ ൌ 
෍ ܴܶሺݓ௜, ܿ௧ሻ

௪೔אT౩

൅ ෍ ܴܶ൫ݓ௝, ݀௦൯
௪ೕאT౪

 (10)

Where ܿ௧  and ܿ௦  are the content of document 
݀௧ and ݀௦; and ௦ܶ and ௧ܶ are the set of title words 
of two documents. 

In addition, this method speeds up the align-
ment process without compromising perfor-
mance when compared with the calculation 
based only on contents on both sides. 

4.2 Linguistic Independent Unit (ࢁࡵࡸ) 

Linguistic Independent Unit score (LIU) is de-
fined as the piece of information, which is writ-
ten in the same way for different languages. The 
following highlight the number 25, 11, and 50 as 
linguistic-independent-units for the two sen-
tences. 

English: Between Feb 25 and March 11 this 
year, she used counterfeit $50 notes 10 times to 
pay taxi fares ranging from $2.50 to $4.20. 

Chinese:被告使用伪钞的控状，指她从 2 月

25 日至 3 月 11 日，以 50 元面额的伪钞，缴

付介于 2 元 5 角至 4 元 2 角的德士费。 

5 Experiment and Evaluation 

5.1 Experimental Setup 

The experiments were conducted on two sets of 
comparable corpora namely English-Chinese and 
English-Malay. The data are from three news 
publications in Singapore: the Strait Times (ST, 
English), Lian He Zao Bao (ZB, Chinese), and 
Berita Harian (BH, Malay). Since these languag-
es are from different language families 5 , our 
model can be considered as language indepen-
dent. 

                                                           
5 English is in Indo-European; Chinese is in Sino-Tibetan; 
Malay is in Austronesian family [Wikipedia]. 

The evaluation is conducted based on a set of 
manually aligned documents prepared by a group 
of bilingual students. It is done by carefully read-
ing through each article in the month of June 
(2006) for both sets of corpora and trying to find 
articles of similar content in the other language 
within the given time window. Alignment is 
based on similarity of content where the same 
story or event is mentioned. Any two bilingual 
articles with at least 50% content overlapping are 
considered as comparable. This set of reference 
data is cross-validated between annotators. Table 
1 shows the statistics of our reference data for 
document alignment. 
 

Language pair ST – ZB ST – BH 
Distinct source 396 176
Distinct target 437 175
Total alignments 438 183

Table 1. Statistics on evaluation data. 
 

Note that although there are 438 alignments 
for ST-ZB, the number of unique ST articles are 
396, implying that the mapping is not one-to-one. 

5.2 Evaluation Metrics 

Evaluation is performed on two levels to reflect 
performance from two different perspectives. 
“Macro evaluation” is conducted to assess the 
correctness of the alignment candidates given 
their rank among all the alignment candidates. 
“Micro evaluation” concerns about the correctness 
of the aligned documents returned for a given 
source document. 

Macro evaluation: we present the perfor-
mance for macro evaluation using average preci-
sion. It is used to evaluate the performance of a 
ranked list and gives higher score for the list that 
returns more correct alignment in the top. 

Micro evaluation: for micro evaluation, we 
evaluate the F-Score, calculated from recall and 
precision, based on the number of correct align-
ments for the top of alignment candidates for 
each source document. 

5.3 Experiment and Result 

First we implement the method of Tao and Zhai 
(2005) as the baseline. Basically, this method 
does not depend on any linguistic resources and 
calculates the similarity between two documents 
purely by comparing all possible pairs of words. 
In addition to this, we also implement Muntea-
nu’s (2006) method which uses Okapi scoring 
function from the Lemur Toolkit (Ogilvie and 
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Callan, 2001) to obtain the similarity score. This 
approach relies heavily on bilingual dictionaries. 
To assess performances more fairly, the result 
from baseline method of Tao and Zhai are com-
pared against the results of the following list of 
incremental approaches: the baseline (A); the 
baseline using term instead of word (B); replac-
ing ݎሺݔ, ,ݔሻ by ܴሺݕ  feature, with and ܶܨܦ ሻ forݕ
without bilingual dictionaries in (C) and (D) re-
spectively; and including ܷܫܮ  and ܶܰܥ  for our 
final model in (E). Our model is also compared 
our model with results from the implementation 
of Munteanu (2006) using Okapi (F), and the 
results from a combination of our model with 
Okapi (G). Table 2 and Table 3 show the expe-
rimental results for two language pairs English – 
Chinese (ST-ZB) and English – Malay (ST-BH), 
respectively. Each row displays the result of each 
experiment at a certain cut-off among the top 
returned alignments. The “Top” columns reflect 
the cut-off threshold. 

The first three cases (A), (B) and (C), which 
do not rely on linguistic resources, suggest that 

our new features lead to better performance im-
provement over the baseline. It can be seen that 
the use of term and ܶܨܦ significantly improves 
the performance. The improvement indicated by 
a sharp increase in all cases from (C) to (D) 
shows that dictionaries can indeed help ܶܨܦ fea-
tures. 

Based on the result of (E), our final model 
significantly outperforms the model of Munteanu  
(F) in both macro and micro evaluation. It is 
noted that our features rely less heavily on dic-
tionaries as it only makes use of this resource to 
translate term words and title words of a docu-
ment while Munteanu (2006) needs to translate 
entire documents, exclude stopword, and relying 
on an IR system. It is also observed that the per-
formance of (G) shows that although the incor-
poration of Okapi score in our final model (E) 
improves the average precision performance of 
ST-ZB slightly, it does not appear to be helpful 
for our ST-BH data. However, Okapi does help 
in the F-Measure on both corpora. 
 

 
Pair  Strait Times – Zao Bao 

Level  Top  A  B  C  D  E  F  G 

A
ve
/P
re
ci
si
on

 
M
ac
ro
  50  0.042  0.083  0.08  0.559  0.430  0.209  0.508 

100  0.042  0.069  0.083  0.438  0.426  0.194  0.479 

200  0.025  0.069  0.110  0.342  0.396  0.153  0.439 

500  0.025  0.054  0.110  0.270  0.351  0.111  0.376 

F‐
M
ea
su
re
 

M
ic
ro
 

1  0.005  0.007  0.009  0.297  0.315  0.157  0.333 

2  0.006  0.005  0.013  0.277  0.286  0.133  0.308 

5  0.005  0.006  0.009  0.200  0.190  0.096  0.206 

10  0.005  0.005  0.007  0.123  0.119  0.063  0.126 

20  0.006  0.008  0.007  0.073  0.074  0.038  0.076 
 

Table 2. Performance of Strait Times – Zao Bao.  

 
Pair  Strait Times – Berita Harian 

Level  Top  A  B  C  D  E  F  G 

A
ve
/P
re
ci
si
on

 
M
ac
ro
  50  0.000  0.000  0.000  0.514  0.818  0.000  0.782 

100  0.000  0.000  0.080  0.484  0.759  0.052  0.729 

200  0.000  0.008  0.090  0.443  0.687  0.073  0.673 

500  0.005  0.008  0.010  0.383  0.604  0.078  0.591 

F‐
M
ea
su
re
 

M
ic
ro
 

1  0.000  0.000  0.005  0.399  0.634  0.119  0.650 

2  0.000  0.004  0.010  0.340  0.515  0.128  0.515 

5  0.002  0.005  0.010  0.205  0.270  0.105  0.273 

10  0.004  0.014  0.013  0.130  0.150  0.076  0.150 

20  0.006  0.017  0.017  0.074  0.078  0.043  0.078 
 

Table 3. Performance of Strait Times – Berita Harian. 
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5.4 Discussion 

It can be seen from Table 2 and Table 3 that by 
exploiting the frequency distribution of terms 
using Discrete Fourier Transform instead of 
words on Pearson’s Correlation, performance is 
noticeably improved. Fig 5 shows the incremen-
tal improvement of our model for top-200 and 
top-2 alignments using macro and micro evalua-
tion respectively. The sharp increase can be seen 
in Fig 5 from point (C) onwards. 

 
Fig 5. Step-wise improvement at top-200 for macro 

and top-2 for micro evaluation. 
Fig 6 compares the performance of our system 

with Tao and Zhai (2005) and Munteanu (2006). 
It is shown that our systems outperform these 
two systems under the same experimental 
parameters. Moreover, even without the use of 
dictionaries, our system’s performance on ST-
BH data is much better than Munteanu’s (2006) 
on the same data. 

 
Fig 6. System comparison for ST-ZB and ST-BH at 
top-500 for macro and top-5 for micro evaluation. 
 
We find that dictionary usage contributes 

much more to performance improvement in ST-
BH compared to that in ST-ZB. We attribute this 
to the fact that the feature LIU already contri-

butes markedly to the increase in the perfor-
mance of ST-BH. As a result, it is harder to make 
further improvements even with the application 
of bilingual dictionaries. 

6 Conclusion and Future Work 

In this paper, we propose a feature based model 
for aligning documents from multilingual com-
parable corpora. Our feature set is selected based 
on the need for a method to be adaptable to new 
language-pairs without relying heavily on lin-
guistic resources, unsupervised learning strategy. 
Thus, in the proposed method we make use of 
simple bilingual dictionaries, which are rather 
inexpensive and easily obtained nowadays. We 
also explore diverse features, including Mono-
lingual Term Distribution ( ܦܶܯ ), Title-and-
Content (ܶܰܥ), and Linguistic Independent Unit 
-and measure their contributions in an in (ܷܫܮ)
cremental way. The experiment results show that 
our system can retrieve similar documents from 
two comparable corpora much better than using 
an information retrieval, such as that used by 
Munteanu (2006). It also performs better than a 
word correlation-based method such as Tao’s 
(2005). 

Besides document alignment as an end, there 
are many tasks that can directly benefit from 
comparable corpora with documents that are 
well-aligned. These include sentence alignment, 
term alignment, and machine translation, espe-
cially statistical machine translation. In the future, 
we aim to extract other valuable information 
from comparable corpora which benefits from 
comparable documents. 
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Abstract

Abstract-like text summarisation requires
a means of producing novel summary sen-
tences. In order to improve the grammati-
cality of the generated sentence, we model
a global (sentence) level syntactic struc-
ture. We couch statistical sentence genera-
tion as a spanning tree problem in order to
search for the best dependency tree span-
ning a set of chosen words. We also intro-
duce a new search algorithm for this task
that models argument satisfaction to im-
prove the linguistic validity of the gener-
ated tree. We treat the allocation of modi-
fiers to heads as a weighted bipartite graph
matching (or assignment) problem, a well
studied problem in graph theory. Using
BLEU to measure performance on a string
regeneration task, we found an improve-
ment, illustrating the benefit of the span-
ning tree approach armed with an argu-
ment satisfaction model.

1 Introduction

Research in statistical novel sentence generation
has the potential to extend the current capabili-
ties of automatic text summarisation technology,
moving from sentence extraction to abstract-like
summarisation. In this paper, we describe a new
algorithm that improves upon the grammaticality
of statistically generated sentences, evaluated on a
string regeneration task, which was first proposed
as a surrogate for a grammaticality test by Ban-
galore et al. (2000). In this task, a system must
regenerate the original sentence which has had its
word order scrambled.

As an evaluation task, string regeneration re-
flects the issues that challenge the sentence gen-
eration components of machine translation, para-
phrase generation, and summarisation systems

(Soricut and Marcu, 2005). Our research in sum-
marisation utilises the statistical generation algo-
rithms described in this paper to generate novel
summary sentences.

The goal of the string regeneration task is to re-
cover a sentence once its words have been ran-
domly ordered. Similarly, for a text-to-text gen-
eration scenario, the goal is to generate a sen-
tence given an unordered list of words, typically
using ann-gram language model to select the best
word ordering. N-gram language models appear
to do well at alocal level when examining word
sequences smaller thann. However, beyond this
window size, the sequence is often ungrammati-
cal. This is not surprising as these methods are un-
able to model grammaticality at the sentence level,
unless the size ofn is sufficiently large. In prac-
tice, the lack of sufficient training data means that
n is often smaller than the average sentence length.
Even if data exists, increasing the size ofn corre-
sponds to a higher degree polynomial complexity
search for the best word sequence.

In response, we introduce an algorithm for
searching for the best word sequence in a way
that attempts to model grammaticality at the sen-
tence level. Mirroring the use of spanning tree al-
gorithms in parsing (McDonald et al., 2005), we
present an approach to statistical sentence genera-
tion. Given a set of scrambled words, the approach
searches for the most probable dependency tree, as
defined by some corpus, such that it contains each
word of the input set. The tree is then traversed to
obtain the final word ordering.

In particular, we present two spanning tree al-
gorithms. We first adapt the Chu-Liu-Edmonds
(CLE) algorithm (see Chu and Liu (1965) and Ed-
monds (1967)), used in McDonald et al. (2005),
to include a basic argument model, added to keep
track of linear precedence between heads and
modifiers. While our adapted version of the CLE
algorithm finds an optimal spanning tree, this does

852



not always correspond with a linguistically valid
dependency tree, primarily because it does not at-
tempt to ensure that words in the tree have plausi-
ble numbers of arguments.

We propose an alternative dependency-
spanning tree algorithm which uses a more
fine-grained argument model representing argu-
ment positions. To find the best modifiers for
argument positions, we treat the attachment of
edges to the spanning tree as a weighted bipartite
graph matching problem (or theassignment
problem), a standard problem in graph theory.

The remainder of this paper is as follows. Sec-
tion 2 outlines the graph representation of the
spanning tree problem. We describe a standard
spanning tree algorithm in Section 3. Section 4 de-
fines a finer-grained argument model and presents
a new dependency spanning tree search algorithm.
We experiment to determine whether a global de-
pendency structure, as found by our algorithm,
improves performance on the string regeneration
problem, presenting results in Section 5. Related
work is presented in Section 6. Section 7 con-
cludes that an argument model improves the lin-
guistic plausibility of the generated trees, thus im-
proving grammaticality in text generation.

2 A Graph Representation of
Dependencies

In couching statistical generation as a spanning
tree problem, this work is the generation analog
of the parsing work by McDonald et al. (2005).
Given a bag of words with no additional con-
straints, the aim is to produce a dependency tree
containing the given words. Informally, as all de-
pendency relations between each pair of words are
possible, the set of all possible dependencies can
be represented as a graph, as noted by McDon-
ald et al. (2005). Our goal is to find the subset of
these edges corresponding to a tree with maximum
probability such that each vertex in the graph is
visited once, thus including each word once. The
resulting tree is a spanning tree, an acyclic graph
which spans all vertices. The best tree is the one
with an optimal overall score. We use negative log
probabilities so that edge weights will correspond
to costs. The overall score is the sum of the costs
of the edges in the spanning tree, which we want
to minimise. Hence, our problem is the minimum
spanning tree (MST) problem.

We define a directed graph (digraph) in a stan-

dard way,G = (V, E) whereV is a set of vertices
andE ⊆ {(u, v)|u, v ∈ V } is a set of directed
edges. For each sentencew = w1 . . . wn, we de-
fine the digraphGw = (Vw, Ew) whereVw =
{w0, w1, . . . , wn}, with w0 a dummy root vertex,
andEw = {(u, v)|u ∈ Vw, v ∈ Vw \ {w0}}.

The graph is fully connected (except for the root
vertexw0 which is only fully connected outwards)
and is a representation of possible dependencies.
For an edge(u, v), we refer tou as the head andv
as the modifier.

We extend the original formulation of McDon-
ald et al. (2005) by adding a notion ofargument
positions for a word, providing points to attach
modifiers. Adopting an approach similar to John-
son (2007), we look at the direction (left or right)
of the head with respect to the modifier; we con-
sequently define a setD = {l, r} to represent
this. SetD represents the linear precedence of the
words in the dependency relation; consequently,
it partially approximates the distinction between
syntactic roles likesubjectandobject.

Each edge has a pair of associated weights, one
for each direction, defined by the functions :
E×D → R, based on a probabilistic model of de-
pendency relations. To calculate the edge weights,
we adapt the definition of Collins (1996) to use di-
rection rather than relation type (represented in the
original as triples of non-terminals). Given a cor-
pus, for some edgee = (u, v) ∈ E and direction
d ∈ D, we calculate the edge weight as:

s((u, v), d) = −log probdep(u, v, d) (1)

We define the set of part-of-speech (PoS) tagsP
and a functionpos: V → P, which maps vertices
(representing words) to their PoS, to calculate the
probability of a dependency relation, defined as:

probdep(u, v, d)

=
cnt((u, pos(u)), (v, pos(v)), d)

co-occurs((u, pos(u)), (v, pos(v)))
(2)

wherecnt((u, pos(u)), (v, pos(v)), d) is the num-
ber of times where(v, pos(v)) and (u, pos(u))
are seen in a sentence in the training data, and
(v, pos(v)) modifies (u, pos(u)) in direction d.
The function co-occurs((u, pos(u)), (v, pos(v)))
returns the number of times that(v, pos(v)) and
(u, pos(u)) are seen in a sentence in the training
data. We adopt the same smoothing strategy as
Collins (1996), which backs off to PoS for unseen
dependency events.
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3 Generation via Spanning Trees

3.1 The Chu-Liu Edmonds Algorithm

Given the graphGw = (Vw, Ew), the Chu-Liu
Edmonds (CLE) algorithm finds a rooted directed
spanning tree, specified byTw, which is an acyclic
set of edges inEw minimising

∑

e∈Tw,d∈D s(e, d).
The algorithm is presented as Algorithm 1.1

There are two stages to the algorithm. The first
stage finds the best edge for each vertex, connect-
ing it to another vertex. To do so, alloutgoing
edges ofv, that is edges wherev is a modifier, are
considered, and the one with the best edge weight
is chosen, where best is defined as the smallest
cost. This minimisation step is used to ensure that
each modifier has only one head.

If the chosen edgesTw produce a strongly con-
nected subgraphGm

w = (Vw, Tw), then this is the
MST. If not, a cycle amongst some subset ofVw

must be handled in the second stage. Essentially,
one edge in the cycle is removed to produce a sub-
tree. This is done by finding the best edge to join
some vertex in the cycle to the main tree. This has
the effect of finding an alternative head for some
word in the cycle. The edge to the original head
is discarded (to maintain one head per modifier),
turning the cycle into a subtree. When all cycles
have been handled, applying a greedy edge selec-
tion once more will then yield the MST.

3.2 Generating a Word Sequence

Once the tree has been generated, all that remains
is to obtain an ordering of words based upon it.
Because dependency relations in the tree are either
of leftward or rightward direction, it becomes rel-
atively trivial to order child vertices with respect
to a parent vertex. The only difficulty lies in find-
ing a relative ordering for the leftward (to the par-
ent) children, and similarly for the rightward (to
the parent) children.

We traverseGm
w using a greedy algorithm to or-

der the siblings using ann-gram language model.
Algorithm 2 describes the traversal in pseudo-
code. The generated sentence is obtained by call-
ing the algorithm withw0 andTw as parameters.
The algorithm operates recursively if called on an

1Adapted from (McDonald et al., 2005) and
http://www.ce.rit.edu/ ˜ sjyeec/dmst.html . The dif-
ference concerns the direction of the edge and the edge
weight function. We have also folded the function ‘contract’
in McDonald et al. (2005) into the main algorithm. Again
following that work, we treat the functions as a data
structure permitting storage of updated edge weights.

/ * initialisation * /
Discard the edgesexitingthew0 if any.1

/ * Chu-Liu/Edmonds Algorithm * /
begin2

Tw ← (u, v) ∈ E : ∀v∈V,d∈Darg min
(u,v)

s((u, v), d)
3

if Mw = (Vw, Tw) has no cyclesthen returnMw4
forall C ⊂ Tw : C is a cycle inMw do5

(e, d)← arg min
e∗,d∗

s(e∗, d∗) : e ∈ C
6

forall c = (vh, vm, ) ∈ C anddc ∈ D do7
forall e′ = (vi, vm) ∈ E andd′ ∈ D do8

s(e′, d′)← s(e′, d′)− s(c, dc)− s(e, d)9
end10

end11
s(e, d)← s(e, d) + 112

end13
Tw ← (u, v) ∈ E : ∀v∈V,d∈Darg min

(u,v)

s((u, v), d)
14

returnMw15
end16

Algorithm 1 : The pseudo-code for the Chu-Liu
Edmonds algorithm with our adaptation to in-
clude linear precedence.

inner node. If a vertexv is a leaf in the dependency
tree, its string realisationrealise(v) is returned.

We keep track of ordered siblings with two lists,
one for each direction. If the sibling set is left-
wards, the ordered list,Rl, is initialised to be the
singleton set containing a dummy start token with
an empty realisation. If the sibling set is right-
wards then the ordered list,Rr is initialised to be
the realisation of the parent.

For some sibling setC ⊆ Vw to be ordered, the
algorithm chooses the next vertex,v ∈ C, to insert
into the appropriate ordered list,Rx, x ∈ D, by
maximising the probability of the string of words
that would result if the realisation,realise(v), were
concatenated withRx.

The probability of the concatenation is calcu-
lated based on a window of words around the join.
This window length is defined to be2×floor(n/2),
for somen, in this case,4.

If the siblings are leftwards, the window con-
sists of the lastmin(n − 1, |Rl|) previously cho-
sen words concatenated with the firstmin(n −
1, |realise(v)|). If the siblings are rightwards, the
window consists of the lastmin(n−1, |realise(v)|)
previously chosen words concatenated with the
first min(n − 1, |Rr|). The probability of a win-
dow of words,w0 . . . wj , of lengthj +1 is defined
by the following equation:

probLMO(w0 . . . wj)

=

j−k−1
∏

i=0

probMLE(wi+k|wi . . . wi+k−1)

(3)
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/ * LMO Algorithm * /
input : v, Tw wherev ∈ Vw

output: R ⊆ Vw

begin1
if isLeaf(v) then2

return{realise(v)}3
end4
else5

Cl ← getLeftChildren(v, Tw)6
Cr ← getRightChildren(v, Tw)7
Rl ← {start}8
Rr ← {realise(v)}9
while Cl 6= {} do10

c← arg max
c∈Cl

probngram(LMO(c, Tw) ∪ Rl)
11

Rl ← realise(c, Tw) ∪ Rl12
Cl ← Cl \ {c}13

end14
while Cr 6= {} do15

c← arg max
c∈Cr

probngram(Rr ∪ LMO(c, Tw))
16

Rr ← Rr ∪ realise(c, Tw)17
Cr ← Cr \ {c}18

end19
returnRl ∪ Rr20

end21
end22

Algorithm 2 : The Language Model Ordering al-
gorithm for linearising anTw.

wherek = min(n − 1, j − 1), and,

probMLE(wi+k|wi . . . wi+k−1)

=
cnt(wi . . . wi+k)

cnt(wi . . . wi+k−1)
(4)

whereprobMLE(wi+k|wi . . . wi+k−1) is the max-
imum likelihood estimaten-gram probability. We
refer to this tree linearisation method as theLan-
guage Model Ordering(LMO).

4 Using an Argument Satisfaction Model

4.1 Assigning Words to Argument Positions

One limitation of using the CLE algorithm for
generation is that the resulting tree, though max-
imal in probability, may not conform to basic lin-
guistic properties of a dependency tree. In partic-
ular, it may not have the correct number of argu-
ments for each head word. That is, a word may
have too few or too many modifiers.

To address this problem, we can take into ac-
count the argument position when assigning a
weight to an edge. When attaching an edge con-
necting a modifier to a head to the spanning tree,
we count how many modifiers the head already
has. An edge is penalised if it is improbable that
the head takes on yet another modifier, say in the
example of an attachment to a preposition whose
argument position has already been filled.

However, accounting for argument positions
makes an edge weight dynamic and dependent on

surrounding tree context. This makes the search
for an optimal tree an NP-hard problem (McDon-
ald and Satta, 2007) as all possible trees must be
considered to find an optimal solution.

Consequently, we must choose a heuristic
search algorithm for finding the locally optimum
spanning tree. By representing argument positions
that can be filled only once, we allow modifiers
to compete for argument positions and vice versa.
The CLE algorithm only considers this competi-
tion in one direction. In line 3 of Algorithm 1,
only heads compete for modifiers, and thus the so-
lution will be sub-optimal. In Wan et al. (2007),
we showed that introducing a model of argument
positions into a greedy spanning tree algorithm
had little effect on performance. Thus, to consider
both directions of competition, we design a new
algorithm for constructing (dependency) spanning
trees that casts edge selection as a weighted bipar-
tite graph matching (or assignment) problem.

This problem is to find a weighted alignments
between objects of two distinct sets, where an ob-
ject from one set is uniquely aligned to some ob-
ject in the other set. The optimal alignment is one
where the sum of alignment costs is minimal. The
graph of all possible assignments is a weighted bi-
partite graph. Here, to discuss bipartite graphs, we
will extend our notation in a fairly standard way,
to writeGp = (U, V, Ep), whereU, V are the dis-
joint sets of vertices andEp the set of edges.

In our paper, we treat the assignment between
attachment positions and words as an assignment
problem. The standard polynomial-time solution
to the assignment problem is the Kuhn-Munkres
(or Hungarian) algorithm (Kuhn, 1955).2

4.2 A Dependency-Spanning Tree Algorithm

Our alternative dependency-spanning tree algo-
rithm, presented as Algorithm 3, incrementally
adds vertices to a growing spanning tree. At
each iteration, the Kuhn-Munkres method assigns
words that are as yet unattached to argument posi-
tions already available in the tree. We focus on the
bipartite graph in Section 4.3.

Let the sentencew have the dependency graph
Gw = (Vw, Ew). At some arbitrary iteration of the
algorithm (see Figure 1), we have the following:

• Tw ⊆ Ew, the set of edges in the spanning
tree constructed so far;

2GPL code:http://sites.google.com/site/garybaker/

hungarian-algorithm/assignment
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Partially determined spanning tree:

w0

made

john

↓ l0

↓ r1 cups

of

↓ l0

↓ l1

for

↓ l0

↓ l3

johnl0 mader1 ofl0 cupsl1 forl0 madel3

Hw1
Hw2

Hw3
Hw4

Hw5
Hw6

Mw1
Mw2

Mw3
Mw4

Mw5
Mw6

coffee everyone yesterday ǫ1 ǫ2 ǫ3

Figure 1: A snapshot of the generation process.
Each word in the tree has argument positions to
which we can assign remaining words. Padding
Mw with ǫ is described in Section 4.3.

• Hw = {u, v | (u, v) ∈ Tw}, the set of ver-
tices inTw, or ‘attached vertices’, and there-
fore potential heads; and

• Mw = Vw\Hw, the set of ‘unattached ver-
tices’, and therefore potential modifiers.

For the potential heads, we want to define the set
of possible attachment positions available in the
spanning tree where the potential modifiers can at-
tach. To talk about these attachment positions, we
define the set of labelsL = {(d, j)|d ∈ D, j ∈
N}, an element(d, j) representing an attachment
point in directiond, positionj. Valid attachment
positions must be in sequential order and not miss-
ing any intermediate positions (e.g. if position 2
on the right is specified, position 1 must be also):
so we define for somei ∈ N, 0 ≤ i < N , a set
Ai ⊆ L such that if the label(d, j) ∈ Ai then the
label(d, k) ∈ Ai for 0 ≤ k < j. Collecting these,
we defineA = {Ai | 0 ≤ i < N}.

To map a potential head onto the set of attach-
ment positions, we define a functionq : Hw → A.
So, given somev ∈ Hw, q(v) = Ai for some
0 ≤ i < N . In talking about an individual attach-
ment point(d, j) ∈ q(v) for potential headv, we

/ * initialisation * /
Hw ← {w0}1
Mw ← V ′2
Uw ← {w0R1

}3
U ′

w ← {}4
Tw ← {}5

/ * The Assignment-based Algorithm * /
begin6

while Mw 6= {} andU ′

w 6= Uw do7
U ′

w ← Uw8
foreach〈u, (d, j)), v〉 ∈ Kuhn-Munkres(Gp

w =9
(Uw, Mǫ

w, Ep
w)) do

Tw ← Tw ∪ {(u, v)}10
if u ∈ Hw then11

Uw ← Uw \ {u}12
end13
Uw ← Uw ∪ next(q(u))14
Uw ← Uw ∪ next(q(m))15
q(m)← q(m) \ next(q(m))16
q(h)← q(h) \ next(q(h))17
Mw ←Mw \ {m}18
Hw ← Hw ∪ {m}19

end20
end21

end22

Algorithm 3 : The Assignment-based Depen-
dency Tree Building algorithm.

use the notationvdj . For example, when referring
to the second argument position on the right with
respect tov, we usevr2.

For the implementation of the algorithm, we
have definedq, to specify attachment points, as
follows, given somev ∈ Hw:

q(v) =















{vr1} if v = w0, the root
{vl1} if pos(v) is a preposition
L if pos(v) is a verb
{vlj |j ∈ N} otherwise

Defining q allows one to optionally incorporate
linguistic information if desired.

We define the functionnext : q(v) → A, v ∈
Hw that returns the position(d, j) with the small-
est value ofj for directiond. Finally, we write the
set of available attachment positions in the span-
ning tree asU ⊆ {(v, l) | v ∈ Hw, l ∈ q(v)}.

4.3 Finding an Assignment

To construct the bipartite graph used for the as-
signment problem at line 9 of Algorithm 3, given
our original dependency graphGw = (Vw, Ew),
and the variables defined from it above in Sec-
tion 4.2, we do the following. The first set of
vertices, of possible heads and their attachment
points, is the setUw. The second set of ver-
tices is the set of possible modifiers augmented
by dummy verticesǫi (indicating no modifica-
tion) such that this set is at least as large asUw :
M ǫ

w = Mw∪{ǫ0, . . . , ǫmax(0,|Uw|−|Mw|)}. The bi-
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partite graph is thenGp
w = (Uw, M ǫ

w, Ep
w), where

Ep
w = {(u, v) |u ∈ Uw, v ∈ M ǫ

w}.
The weights on the edges of this graph incor-

porate a model of argument counts. The weight
function is of the formsap : Ep → R. We
consider somee ∈ Ep

w: e = (v′, v) for some
v′ ∈ Uw, v ∈ M ǫ

w; andv′ = (u, (d, j)) for some
u ∈ Vw, d ∈ D, j ∈ N. s(u, M ǫ

w) is defined to re-
turn the maximum cost so that the dummy leaves
are only attached as a last resort. We then define:

sap(e)

= −log(probdep(u, v, d) × probarg(u, d, j))

(5)

whereprobdep(u, v, d) is as in equation 2, using
the original dependency graph defined in Section
2; andprobarg(u, d, j), an estimate of the prob-
ability that a wordu with i arguments assigned
already can take on more arguments, is defined as:

probarg(u, d, j)

=

∑∞
i=j+1 cntarg(u, d, i)

cnt(u, d)
(6)

wherecntarg(u, d, i) is the number of times word
u has been seen withi arguments in direction
d; andcnt(u, d) =

∑

i∈N
cntarg(u, d, i). As the

probability of argument positions beyond a certain
value fori in a given direction will be extremely
small, we approximate this sum by calculating the
probability density up to a fixed maximum, in this
case7 argument positions, and assume zero prob-
ability beyond that.

5 Evaluation

5.1 String Generation Task

The best-performing word ordering algorithm is
one that makes fewest grammatical errors. As a
surrogate measurement of grammaticality, we use
the string regeneration task. Beginning with a
human-authored sentence with its word order ran-
domised, the goal is to regenerate the original sen-
tence. Success is indicated by the proportion of the
original sentence regenerated, as measured by any
string comparison method: in our case, using the
BLEU metric (Papineni et al., 2002). One benefit
to this evaluation is that content selection, as a fac-
tor, is held constant. Specifically, the probability
of word selection is uniform for all words.

The string comparison task and its associated
metrics like BLEU are not perfect.3 The evalu-
ation can be seen as being overly strict. It as-
sumes that theonlygrammatical order is that of the
original human authored sentence, referred to as
the ‘gold standard’ sentence. Should an approach
chance upon an alternative grammatical ordering,
it would penalised. However, all algorithms and
baselines compared would suffer equally in this
respect, and so this will be less problematic when
averaging across multiple test cases.

5.2 Data Sets and Training Procedures

The Penn Treebank corpus (PTB) was used to pro-
vide a model of dependency relations and argu-
ment counts. It contains about 3 million words
of text from the Wall Street Journal (WSJ) with
human annotations of syntactic structures. Depen-
dency events were sourced from the events file of
the Collins parser package, which contains the de-
pendency events found in training sections 2-22 of
the corpus. Development was done on section 00
and testing was performed on section 23.

A 4-gram language model (LM) was also ob-
tained from the PTB training data, referred to as
PTB-LM. Additionally, a 4-gram language model
was obtained from a subsection of the BLLIP’99
Corpus (LDC number: LDC2000T43) containing
three years of WSJ data from 1987 to 1989 (Char-
niak et al., 1999). As in Collins et al. (2004),
the 1987 portion of the BLLIP corpus containing
20 million words was also used to create a lan-
guage model, referred to here as BLLIP-LM.N-
gram models were smoothed using Katz’s method,
backing off to smaller values ofn.

For this evaluation, tokenisation was based on
that provided by the PTB data set. This data
set also delimits base noun phrases (noun phrases
without nested constituents). Base noun phrases
were treated as single tokens, and the rightmost
word assumed to be the head. For the algorithms
tested, the input set for any test case consisted of
the single tokens identified by the PTB tokenisa-
tion. Additionally, the heads of base noun phrases
were included in this input set. That is, we do not
regenerate the base noun phrases.4

3Alternative grammaticality measures have been devel-
oped recently (Mutton et al., 2007). We are currently explor-
ing the use of this and other metrics.

4This would correspond to the use of a chunking algo-
rithm or a named-entity recogniser to find noun phrases that
could be re-used for sentence generation.
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Algorithms PTB-LM BLLIP-LM

Viterbi baseline 14.9 18.0
LMO baseline 24.3 26.0
CLE 26.4 26.8
AB 33.6 33.7

Figure 2: String regeneration as measured in
BLEU points (maximum 100)

5.3 Algorithms and Baselines

We compare the baselines against the Chu-Liu
Edmonds (CLE) algorithm to see if spanning
tree algorithms do indeed improve upon conven-
tional language modelling. We also compare
the Assignment-based (AB) algorithm against the
baselines and CLE to see if, additionally, mod-
elling argument assignments improves the re-
sulting tree and thus the generated word se-
quence. Two baseline generators based onn-
gram language-models were used, representing
approaches that optimise word sequences based on
the local context of then-grams.

The first baseline re-uses theLMO greedy se-
quence algorithm on the same set of input words
presented to the CLE and AB algorithms. We ap-
ply LMO in a rightward manner beginning with
a start-of-sentence token. Note that this baseline
generator, like the two spanning tree algorithms,
will score favourably using BLEU since, mini-
mally, the word order of the base noun phrases will
be correct when each is reinserted.

Since the LMO baseline reduces to bigram gen-
eration when concatenating single words, we test
a second language model baseline which always
uses a 4-gram window size. A Viterbi-like gen-
erator with a 4-gram model and a beam of 100 is
used to generate a sequence. For this baseline, re-
ferred to as theViterbi baseline, base noun phrases
were separated into their constituent words and in-
cluded in the input word set.

5.4 Results

The results are presented in Table 2. Significance
was measured using the sign test and the sampling
method outlined in (Collins et al., 2005). We will
examine the results in the PTB-LM column first.
The gain of 10 BLEU points by the LMO baseline
over the Viterbi baseline shows the performance
improvement that can be gained when reinserting
the base noun phrases.

AB: the dow at this point was down about 35 points
CLE: was down about this point 35 points the dow at
LMO: was this point about at down the down 35 points
Viterbi: the down 35 points at was about this point down

Original: at this point, the dow was down about 35 points

Figure 3: Example generated sentences using the
BLLIP-LM.

The CLE algorithm significantly out-performed
the LMO baseline by 2 BLEU points, from which
we conclude that incorporating a model for global
syntactic structure and treating the search for a
dependency tree as a spanning problem helps for
novel sentence generation. However, the real im-
provement can be seen in the performance of the
AB system which significantly out-performs all
other methods, beating the CLE algorithm by 7
BLEU points, illustrating the benefits of a model
for argument counts and of couching tree building
as an iterative set of argument assignments.

One might reasonably ask if moren-gram data
would narrow the gap between the tree algorithms
and the baselines, which encode global and lo-
cal information respectively. Examining results in
the BLLIP-LM column, all approaches improve
with the better language model. Unsurprisingly,
the improvements are most evident in the base-
lines which rely heavily on the language model.
The margin narrows between the CLE algorithm
and the LMO baseline. However, the AB algo-
rithm still out-performs all other approaches by
7 BLEU points, highlighting the benefit in mod-
elling dependency relations. Even with a language
model that is one order of magnitude larger than
the PTB-LM, the AB still maintains a sizeable lead
in performance. Figure 3 presents sample gener-
ated strings.

6 Related Work

6.1 Statistical Surface Realisers

The work in this paper is similar to research in
statistical surface realisation (for example, Langk-
ilde and Knight (1998); Bangalore and Rambow
(2000); Filippova and Strube (2008)). These start
with a semantic representation for which a specific
rendering, an ordering of words, must be deter-
mined, often using language models to govern tree
traversal. The task in this paper is different as it is
a text-to-text scenario and does not begin with a
representation of semantics.
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The dependency model and the LMO lineari-
sation algorithm are based heavily on word order
statistics. As such, the utility of this approach is
limited to human languages with minimal use of
inflections, such as English. Approaches for other
language types, for example German, have been
explored (Filippova and Strube, 2007).

6.2 Text-to-Text Generation

As a text-to-text approach, our work is more sim-
ilar to work on Information Fusion (Barzilay et
al., 1999), a sub-problem in multi-document sum-
marisation. In this work, sentences presenting the
same information, for example multiple news arti-
cles describing the same event, are merged to form
a single summary by aligning repeated words and
phrases across sentences.

Other text-to-text approaches for generating
novel sentences also aim to recycle sentence frag-
ments where possible, as we do. Work on phrase-
based statistical machine translation has been
applied to paraphrase generation (Bannard and
Callison-Burch, 2005) and multi-sentence align-
ment in summarisation (Dauḿe III and Marcu,
2004). These approaches typically usen-gram
models to find the best word sequence.

The WIDL formalism (Soricut and Marcu,
2005) was proposed to efficiently encode con-
straints that restricted possible word sequences,
for example dependency information. Though
similar, our work here does not explicitly repre-
sent the word lattice.

For these text-to-text systems, the order of ele-
ments in the generated sentence is heavily based
on the original order of words and phrases in the
input sentences from which lattices are built. Our
approach has the benefit of considering all possi-
ble orderings of words, corresponding to a wider
range of paraphrases, provided with a suitable de-
pendency model is available.

6.3 Parsing and Semantic Role Labelling

This paper presents work closely related to parsing
work by McDonald et al. (2005) which searches
for the best parse tree. Our work can be thought of
as generating projective dependency trees (that is,
without crossing dependencies).

The key difference between parsing and gener-
ation is that, in parsing, the word order is fixed,
whereas for generation, this must be determined.
In this paper, we search across all possible tree

structures whilst searching for the best word or-
dering. As a result, an argument model is needed
to identify linguistically plausible spanning trees.

We treated the alignment of modifiers to head
words as a bipartite graph matching problem. This
is similar to work in semantic role labelling by
Pad́o and Lapata (2006). The alignment of an-
swers to question types as a semantic role labelling
task using similar methods was explored by Shen
and Lapata (2007).

Our work is also strongly related to that of
Wong and Mooney (2007) which constructs sym-
bolic semantic structures via an assignment pro-
cess in order to provide surface realisers with in-
put. Our approach differs in that we do not be-
gin with a fixed set of semantic labels. Addition-
ally, our end goal is a dependency tree that encodes
word precedence order, bypassing the surface re-
alisation stage.

7 Conclusions

In this paper, we presented a new use of spanning
tree algorithms for generating sentences from an
input set of words, a task common to many text-
to-text scenarios. The algorithm finds the best de-
pendency trees in order to ensure that the result-
ing string has grammaticality modelled at a global
(sentence) level. Our algorithm incorporates a
model of argument satisfaction which is treated as
an assignment problem, using the Kuhn-Munkres
assignment algorithm. We found a significant im-
provement using BLEU to measure improvements
on the string regeneration task. We conclude that
our new algorithm based on the assignment prob-
lem and an argument model finds trees that are lin-
guistically more plausible, thereby improving the
grammaticality of the generated word sequence.
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Abstract 

We introduce an alternative approach to ex-
tracting word pair associations from corpora, 
based purely on surface distances in the text. 
We contrast it with the prevailing window-
based co-occurrence model and show it to be 
more statistically robust and to disclose a 
broader selection of significant associative re-
lationships - owing largely to the property of 
scale-independence. In the process we provide 
insights into the limiting characteristics of 
window-based methods which complement the 
sometimes conflicting application-oriented lit-
erature in this area. 

1 Introduction 

The principle of using statistical measures of co-
occurrence from corpora as a proxy for word 
association - by comparing observed frequencies 
of co-occurrence with expected frequencies - is 
relatively young. One of the most well known 
computational studies is that of Church & Hanks 
(1989). The method by which co-occurrences are 
counted, now as then, is based on a device which 
dates back at least to Weaver (1949): the context 
window. While variations on the specific notion 
of context have been explored (separation of 
content and function words, asymmetrical and 
non-contiguous contexts, the sentence or the 
document as context) and increasingly sophisti-
cated association measures have been proposed 
(see Evert, 2007, for a thorough review) the basic 
principle – that of counting token frequencies 
within a context region – remains ubiquitous. 

Herein we discuss some of the intrinsic limi-
tations of this approach, as are being felt in re-
cent research, and present a principled solution  
which does not rely on co-occurrence windows 
at all, but instead on measurements of the surface 
distance between words. 

2 The impact of window size 

The issue of how to determine appropriate win-
dow size (and shape) has often been glossed over 
in the literature, with such parameters being de-
termined arbitrarily, or empirically on a per-
application basis, and often receiving little more 
than a cursory mention under the description of 
method. For reasons that we will discuss how-
ever, the issue has been receiving increasing at-
tention. Some have attempted to address it intrin-
sically (Sahlgren 2006; Schulte im Walde & 
Melinger, 2008; Hung et al, 2001); others no less 
earnestly in the interests of specific applications 
(Lamjiri, 2003; Edmonds, 1997; Wang 2005; 
Choueka & Lusignan, 1985) (note that this di-
vide is sometimes subtle). 

The 2008 Workshop on Distributional Lexi-
cal Semantics, held in conjunction with the 
European Summer School on Logic, Language 
and Learning (ESSLLI) – hereafter the ESSLLI 
Workshop - saw this issue (along with other 
“problem” parameters in distributional lexical 
semantics) as one of its central themes, and wit-
nessed many different takes upon it. Interest-
ingly, there was little consensus, with some stud-
ies appearing on the surface to starkly contradict 
one-another. It is now generally recognized that 
window size is, like the choice of corpus or spe-
cific association measure, a parameter which can 
have a potentially profound impact upon the per-
formance of applications which aim to exploit 
co-occurrence counts. 

One widely held (and upheld) intuition - ex-
pressed throughout the literature, and echoed by 
various presenters at the ESSLLI Workshop - is 
that whereas small windows are well suited to 
the detection of syntactico-semantic associations, 
larger windows have the capacity to detect 
broader “topical” associations. More specifically, 
we can observe that small windows are unavoid-
ably limited to detecting associations manifest at 
very close distances in the text. For example, a 
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window size of two words can only ever observe 
bigrams, and cannot detect associations resulting 
from larger constructs, however ingrained in the 
language (e.g. “if … then”, “ne … pas”, “dear ... 
yours”). This is not the full story however. As, 
Rapp (2002) observes, choosing a window size 
involves making a trade-off between various 
qualities. So conversely for example, frequency 
counts within large windows, though able to de-
tect longer-range associations, are not readily 
able to distinguish them from bigram style co-
occurrences, and so some discriminatory power, 
and sensitivity to the latter, is lost. Rapp (2002) 
calls this trade-off “specificity”; equivalent ob-
servations were made by Church & Hanks 
(1989) and Church et al (1991), who refer to the 
tendency for large windows to “wash out”, 
“smear” or “defocus” those associations exhib-
ited at smaller scales. 

In the following two sections, we present 
two important and scarcely discussed facets of 
this general trade-off related to window size: that 
of scale-dependence, and that concerning the 
specific way in which the data sparseness prob-
lem is manifest. 

2.1 Scale-dependence 

It has been shown that varying the size of the 
context considered for a word can impact upon 
the performance of applications (Rapp, 2002; 
Yarowsky & Florian, 2002), there being no ideal 
window size for all applications. This is an ines-
capable symptom of the fact that varying win-
dow size fundamentally affects what is being 
measured (both in the raw data sense and linguis-
tically speaking) and so impacts upon the output 
qualitatively. As Church et al (1991) postulated, 
“It is probably necessary that the lexicographer 
adjust the window size to match the scale of phe-
nomena that he is interested in”. 

In the case of inferential lexical semantics, 
this puts strict limits on the interpretation of as-
sociation scores derived from co-occurrence 
counts and, therefore, on higher-level features 
such as context vectors and similarity measures. 
As Wang (2005) eloquently observes, with re-
spect to the application of word sense disam-
biguation, “window size is an inherent parame-
ter which is necessary for the observer to imple-
ment an observation … [the result] has no mean-
ing if a window size does not accompany”. More 
precisely, we can say that window-based co-
occurrence counts (and any word-space models 
we may derive from them) are scale-dependent. 

It follows that one cannot guarantee there to 
be an “ideal” window size within even a single 
application. Distributional lexical semantics of-
ten defers to human association norms for 
evaluation. Schulte im Walde & Melinger (2008) 
found that the correlation between co-occurrence 
derived association scores and human association 
norms were weakly dependent upon the window 
size used to calculate the former, but that certain 
associations tended to be represented at certain 
window sizes, by virtue of the fact that the best 
overall correlation was found by combining evi-
dence from all window sizes. By identifying a 
single window size (whether arbitrary or appar-
ently optimum) and treating other evidence as 
extraneous, it follows that studies may tend to 
distance their findings from one another. 

As Church et al (1991) allude, in certain 
situations the ability to tune analysis to a specific 
scale in this way may be desirable (for example, 
when explicitly searching for statistically signifi-
cant bigrams, only a 2-token window will do). In 
other scenarios however, especially where a 
trade-off in aspects of performance is found be-
tween scales, it can clearly be seen as a limita-
tion. And after all, is Church et al’s notional 
lexicographer really interested in those features 
manifest at a specific scale, or is he interested in 
a specific linguistic category of features? Not-
withstanding grammatical notions of scale (the 
clause, the sentence etc), there is as yet little evi-
dence to suggest how the two are linked. 

The existence of these trade-offs has led 
some authors towards creative solutions: looking 
for ways of varying window size dynamically in 
response to some performance measure, or si-
multaneously exploiting more than one window 
size in order to maximize the pertinent informa-
tion captured (Wang, 2005; Quasthoff, 2007; 
Lamjiri et al, 2003). When the scales at which an 
association is manifest are the quantity of interest 
and the subject of systematic study, we have 
what is known in scale-aware disciplines as 
multi-scalar analysis, of which fractal analysis is 
a variant. Although a certain amount has been 
written about the fractal or hierarchical nature of 
language, approaches to co-occurrence in lexical 
semantics remain almost exclusively mono-
scalar, with the recent work of Quasthoff (2007) 
being a rare exception. 

2.2 Data sparseness 

Another facet of the general trade-off identified 
by Rapp (2002) pertains to how limitations in-
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herent in the combination of data and co-
occurrence retrieval method are manifest. 

When applying a small window, the number 
of window positions which can be expected to 
contain a specific pair of words will tend to be 
low in comparison to the number of instances of 
each word type. In some cases, no co-occurrence 
may be observed at all between certain word 
pairs, and zero or negative association may be 
inferred (even though we might reasonably ex-
pect such co-occurrences to be feasible within 
the window, or know that a logical association 
exists). This is one manifestation of what is 
commonly referred to as the data sparseness 
problem, and was discussed by Rapp (2002) as a 
side-effect of specificity. It would of course be 
inaccurate to suggest that data sparseness itself is 
a response to window size; a larger window su-
perficially lessens the sparseness problem by 
inviting more co-occurrences, but encounters the 
same underlying paucity of information in a dif-
ferent guise: as both the size and overlap be-
tween the windows grow, the available informa-
tion is increasingly diluted both within and 
amongst the windows, resulting in an over-
smoothing of the data. This phenomenon is well 
illustrated in the extreme case of a single corpus-
sized window where - in the absence of any ex-
ternal information - observed and expected co-
occurrence frequencies are equivalent, and it is 
not possible to infer any associations at all. 

Addressing the sparseness problem with re-
spect to corpus data has received considerable 
attention in recent years. It is usually tackled by 
applying explicit smoothing methods so as to 
allow the estimation of frequencies of unseen co-
occurrences. This may involve applying insights 
on the statistical limitations of working from a 
finite sample (add-λ smoothing, Good-Turing 
smoothing), making inferences from words with 
similar co-occurrence patterns, or “backing off” 
to a more general language model based on indi-
vidual word frequencies, or even another corpus; 
for example, Keller & Lapata (2003) use the 
Web. All of these approaches attempt to mitigate 
the data sparseness manifest in the observed co-
occurrence frequencies; they do not presume to 
reduce data sparseness by improving the method 
of observation. Indeed, the general assumption 
would seem to be that the only way to minimize 
data sparseness is to use more data. However, we 
will show that, similarly to Wang’s (2005) ob-
servation concerning windowed measurements in 
general, apparent data sparseness is as much a 
manifestation of the observation method as it is 

of the data itself; there may exist much pertinent 
information in the corpus which yet remains un-
exploited. 

 

3 Proximity as association 

Comprehensive multi-scalar analyses (such as 
applied by Quasthoff, 2007; and Schulte im 
Walde & Melinger, 2008) can be laborious and 
computationally expensive, and it is not yet clear 
how to derive simple association scores and 
suchlike from the dense data they generate (typi-
cally a separate set of statistics for each window 
size examined). There do exist however rela-
tively efficient naturally scale-independent tools 
which are amenable to the detection of linguisti-
cally interesting features in text. In some do-
mains the concept of proximity (or distance – we 
will use the terms somewhat interchangeably 
here) has been used as the basis for straightfor-
ward alternatives to various frequency-based 
measures. In biogeography, for example, the dis-
persion or “clumpiness” of a population of indi-
viduals can be accurately estimated by sampling 
the distances between them (Clark & Evans, 
1954): a task more conventionally carried out by 
“quadrat” sampling, which is directly analogous 
to the window-based methods typically used to 
measure dispersion or co-occurrence in a corpus 
(see Gries, 2008, for an overview of dispersion in 
a linguistic setting). Such techniques are also 
been used in archeology. Washtell (2006) found 
evidence to suggest that distance-based ap-
proaches within the geographic domain can be 
both more accurate and more efficient than their 
window-based alternatives. 

In the present domain, the notion of prox-
imity has been applied by Savický & Hlavácová 
(2002) and Washtell (2007) - both in Gries 
(2008) - as an alternative to approaches based on 
corpus division, for quantifying the dispersion of 
words within the text. Hardcastle (2005) and 
Washtell (2007) apply this same concept to 
measuring word pair associations, the former via 
a somewhat ad-hoc approach, the latter through 
an extension of Clark-Evans (1954) dispersion 
metric to the concept of co-dispersion: the ten-
dency of unlike words to gravitate (or be simi-
larly dispersed) in the text. Terra & Clarke 
(2004) use a very similar approach in order to 
generate a probabilistic language model, where 
previously n-gram models have been used, 

The allusion to proximity as a fundamental 
indicator of lexical association does in fact per-
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meate the literature. Halliday (1966), for exam-
ple, in Church et al (1991) talked not explicitly 
of frequencies within windows, but of identify-
ing lexical associates via “some measure of sig-
nificant proximity, either a scale or at least a 
cut-off point”. For one (possibly practical) rea-
son or another, the “cut-off point” has been 
adopted and the intuition of proximity has since 
become entrained within a distinctly frequency-
oriented model. By way of example, the notion 
of proximity has been somewhat more directly 
courted in some window-based studies through 
the use of “ramped” or “weighted” windows 
(Lamjiri et al, 2003; Bullinaria & Levy, 2007), in 
which co-occurrences appearing towards the ex-
tremities of the window are discounted in some 
way. As with window size however, the specific 
implementations and resultant performances of 
this approach have been inconsistent in the litera-
ture, with different profiles (even including those 
where words are discounted towards the centre 
of the window) seeming to prove optimum under 
varying experimental conditions (compare, for 
instance, Bullinaria, 2008, and Shaol & West-
bury, 2008, from the ESSLLI Workshop). 

Performance considerations aside, a problem 
arising from mixing the metaphors of frequency 
and distance in this way is that the resultant 
measures become difficult to interpret; in the 
present case of association, it is not trivially ob-
vious how one might establish an expected value 
for a window with a given profile, or apply and 
interpret conditional probabilities and other well-
understood association measures.1 At the very 
least, Wang’s (2005) observation is exacerbated.  

3.1 Co-dispersion 

By doing away with the notion of a window en-
tirely and focusing purely upon distance informa-
tion, Halliday’s (1966) intuitions concerning 
proximity can be more naturally realized. Under 
the frequency regime, co-occurrence scores cor-
respond directly to probabilities, which are well 
understood (providing, as Wang, 2005, observes, 
that a window size is specified as a reference-
frame for their interpretation). It happens that 
similarly intuitive mechanics apply within a 
purely distance-oriented regime - a fact realised 
by Clark & Evans (1954), but not exploited by 
Hardcastle (2005). Co-dispersion, which is de-
rived from the Clark-Evans metric (and more 
descriptively entitled “co-dispersion by nearest 
                                                           
1 Existing works do not go into detail on method, so it 
is possible that this is one source of discrepancies. 

neighbour” - as there exist many ways to meas-
ure dispersion), can be generalised as follows: 
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Where, in the denominator, distabi is the in-

ter-word distance (the number of intervening 
tokens plus one) between the i th occurrence of 
word-type a in the corpus, and the nearest pre-
ceding or following occurrence of word-type b 
(if one exists before encountering (1) another 
occurrence of a or (2) the edge of the containing 
document). M is the generalized mean. In the 
numerator, freqi is the total number of occur-
rences of word-type i, n is the number of tokens 
in the corpus, and m is a constant based on the 
expected value of the mean (e.g. for the arithme-
tic mean – as used by Clark & Evans - this is 
0.5). Note that the implementation considered 
here does not distinguish word order; owing to 
this, and the constraint (1), the measure is sym-
metric.2 

Plainly put, co-dispersion calculates the ratio 
of the mean observed distance to the expected 
distance between word type pairs in the text; or 
how much closer the word types occur, on aver-
age, than would expected according to chance3. 
In this sense it is conceptually equivalent to 
Pointwise Mutual Information (PMI) and related 
association measures which are concerned with 
gauging how more frequently two words occur 
together (in a window), than would be expected 
by chance. 

Like many of its frequency-oriented cousins, 
co-dispersion can be used directly as a measure 
of association, with values in the range 
0>=CoDisp<=∞ (with a value of 1 representing 
no discernible association); and as with these 
measures, the logarithm can be taken in order to 
present the values on a scale that more meaning-
fully represents relative associations (as is the 
default with PMI). Also as with PMI et al, co-
dispersion can have a tendency to give inflated 
estimates where infrequent words are involved. 
To address this problem, a simple significance-
                                                           
2 This constraint, which was independently adopted 
by Terra & Clarke (2004), has significant computa-
tional advantages as it effectively limits the search 
distance for frequent words. 
3 The expected distance of an independent word-type 
pair is assumed to be half the distance between 
neighbouring occurrences of the more frequent word-
type, were it uniformly distributed within the corpus. 
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corrected measure, more akin to a Z-Score or T-
Score (Dennis, 1965; Church et al, 1991) can be 
formed by taking (the root of) the number of 
word-type occurrences into account (Sackett, 
2001). The same principal can be applied to PMI, 
although in practice more precise significance 
measures such as Log-Likelihood are favoured.4 

These similarities aside, co-dispersion has 
the somewhat abstract distinction of being effec-
tively based on degrees rather than probabilities. 
Although it is windowless (and therefore, as we 
will show, scale-independent), it is not without 
analogous constraints. Just as the concept of 
mean frequency employed by co-occurrence re-
quires a definition of distance (window size), the 
concept of distance employed by co-dispersion 
requires a definition of frequency. In the case 
presented here, this frequency is 1 (the nearest 
neighbour). Thus, whereas the assumption with 
co-occurrence is that the linguistically pertinent 
words are those that fall within a fixed-sized 
window of the word of interest, the assumption 
underpinning co-dispersion is that the relevant 
information lies (if at all) with the closest 
neighbouring occurrence of each word type. 
Among other things, this naturally favours the 
consideration of nearby function words, whereas 
(generally less frequent) content words are con-
sidered to be of potential relevance at some dis-
tance. That this may be a desirable property - or 
at least a workable constraint - is borne out by 
the fact that other studies have experienced suc-
cess by treating these two broad classes of words 
with separately sized windows (Lamjiri et al, 
2003). 

4 Analyses 

4.1 Scale-independence 

Table 1 shows a matrix of agreement between 
word-pair association scores produced by co-
occurrence and co-dispersion as applied to the 
unlemmatised, untagged, Brown Corpus. For co-
occurrence, window sizes of ±1, ±3, ±10, ±32, 
and ±100 words were used (based on to a - 
somewhat arbitrary - scaling factor of √10). 

The words used were a cross-section of 
stimulus-response pairs from human association 
experiments (Kiss et al, 1973), selected to give a 
uniform spread of association scores, as used in 
the ESSLLI Workshop shared task.  It is not our 
purpose in the current work to demonstrate com-
                                                           
4 Although the heuristically derived MI2 and MI3 
(Daille, 1994) have gained some popularity. 

petitive correlations with human association 
norms (which is quite a specific research area) 
and we are making no cognitive claims here. 
Their use lends convenience and a (limited) de-
gree of relevance, by allowing us to perform our 
comparison across a set of word-pairs which are 
deigned to represent a broad spread of associa-
tions according to some independent measure. 
Nonetheless, correlations with the association 
norms are presented as this was a straightforward 
step, and grounds the findings presented here in a 
more tangible context. 

Because the human stimulus-response rela-
tionship is generally asymmetric (favouring 
cases where the stimulus word evokes the re-
sponse word, but not necessarily vice-versa), the 
conditional probability of the response word was 
used, rather than PMI which is symmetric. For 
the windowless method, co-dispersion was 
adapted equivalently - by multiplying the resul-
tant association score by the number of word 
pairings divided by the number of occurrences of 
the cue word. These association scores were also 
corrected for statistical significance, as per Sack-
ett (2001). Both of these adjustments were found 
to improve correlations with human scores across 
the board, but neither impacts directly upon the 
comparative analyses performed herein. It is also 
worth mentioning that many human association 
reproduction experiments employ higher-order 
paradigmatic associations, whereas we use only 
syntagmatic associations.5 This is appropriate as 
our focus here is on the information captured at 
the base level (from which higher order features 
– paradigmatic associations, semantic categories 
etc - are invariably derived). It can be seen in the 
rightmost column of table 1 that, despite the lack 
of sophistication in our approach, all window 
sizes and the windowless approach generated 
statistically significant (if somewhat less than 
state-of-the-art) correlations with the subset of 
human association norms used. 

Owing to the relatively small size of the cor-
pus, and the removal of stop-words, a large por-
tion of the human stimulus-response pairs used 
as our basis generated no association (no 
smoothing was used as we are concerned at this 
level in raw evidence captured from the corpus). 
All correlations presented herein therefore con-
sider only those word pairs for which there was 
some evidence under the methods being com-
                                                           
5 Though interestingly, work done by Wettler et al 
(2005) suggests that paradigmatic associations may 
not be necessary for cognitive association models. 
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pared from which to generate a non-zero associa-
tion score (however statistically insignificant). 
This number of word pairs, shown in square 
brackets in the leftmost column of table 1, natu-
rally increases with window size, and is highest 
for the windowless methods. 

 

 
 
Table 1: Matrix of agreement (corrected r2) between 
association retrieval methods; and correlations with 

sample association norms (r, and p-value). 
 
The coefficients of determination (corrected 

r2 values) in the main part of table 1 show clearly 
that, as window sizes diverge, their agreement 
over the apparent association of word pairs in the 
corpus diminishes - to the point where there is 
almost as much disagreement as there is agree-
ment between windows whose size differs by a 
decimal order of magnitude. While relatively 
small, the fact that there remains a degree of in-
formation overlap between the smallest and larg-
est windows in this study (18%), illustrates that 
some word pairs exhibit associative tendencies 
which markedly transcend scale. It would follow 
that single window sizes are particularly impo-
tent where such features are of holistic interest. 

The figures in the bottom row of table 1 
show, in contrast, that there is a more-or-less 
constant level of agreement between the win-
dowless and windowed approaches, regardless 
of the window size chosen for the latter. 

Figure 1 gives a good two-dimensional sche-
matic approximation of these various relation-
ships (in the style of a Venn diagram). Analysis 
of partial correlations would give a more accu-
rate picture, but is probably unnecessary in this 
case as the areas of overlap between methods are 
large enough to leave marginal room for misrep-
resentation. It is interesting to observe that co-
dispersion appears to have a slightly higher af-
finity for the associations best detected by small 
windows in this case. Reassuringly nonetheless, 
the relative correlations with association norms 
here - and the fact that we see such significant 

overlap – do indeed suggest that co-dispersion is 
sensitive to useful information present in each of 
the various windowed methods. Note that the 
regions in Figure 1 necessarily have similar ar-
eas, as a correlation coefficient describes a sym-
metric relationship. The diagram therefore says 
nothing about the amount of information cap-
tured by each of these methods. It is this issue 
which we will look at next. 

 

 
 

Figure 1: Approximate Venn representation of agree-
ment between windowed and windowless association 

retrieval methods. 

4.2 Statistical power 

To paraphrase Kilgariff (2005), language is any-
thing but random. A good language model is one 
which best captures the non-random structure of 
language. A good measuring device for any lin-
guistic feature is therefore one which strongly 
differentiates real language from random data. 
The solid lines in figures 2a and 2b give an indi-
cation of the relative confidence levels (p-values) 
attributable to a given association score derived 
from windowed co-occurrence data. Figure 2a is 
based on a window size of ±10 words, and 2b 
±100 words. The data was generated, Monte 
Carlo style, from a 1 million word randomly 
generated corpus. For the sake of statistical con-
venience and realism, the symbols in the corpus 
were given a Zipf frequency distribution roughly 
matching that of words found in the Brown cor-
pus (and most English corpora). Unlike with the 
previous experiment, all possible word pairings 
were considered. PMI was used for measuring 
association, owing to its convenience and simi-
larity to co-dispersion, but it should be noted that 
the specific formulation of the association meas-
ure is more-or-less irrelevant in the present con-
text, where we are using relative association lev-
els between a real and random corpus as a proxy 
for how much structural information is captured 
from the corpus.  
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Figure 2a: Co-occurrence significances for a moderate 

(±10 words) window. 
 

 
 

Figure 2b: Co-occurrence significances for a large 
(±100 words) window. 

 
Precisely put, the figures show the percentage 

of times a given association score or lower was 
measured between word types in a corpus which 
is known to be devoid of any actual syntagmatic 
association. The closer to the origin these lines, 
the fewer word instances were required to be 
present in the random corpus before high levels 
of apparent association became unlikely, and so 
the fewer would be required in a real corpus be-
fore we could be confident of the import of a 
measured level of association. Consequently, if 
word pairs in a real corpus exceed these levels, 
we say that they show significant association. 

The shaded regions in figures 2a and 2b show 
the typical range of apparent association scores 
found in a real corpus – in this case the Brown 
corpus. The first thing to observe is that both the 
spread of raw association scores and their sig-
nificances are relatively constant across word 
frequencies, up to a frequency threshold which is 

linked to the window size. This constancy exists 
in spite of a remarkable variation in the raw as-
sociation scores, which are increasingly inflated 
towards the lower frequencies (indeed illustrat-
ing the importance of taking statistical signifi-
cance into account). This observed constancy is 
intuitive where long-range associations between 
words prevail: very infrequent words will tend to 
co-occur within the window less often than mod-
erately frequent words - by simple virtue of their 
number - yet when they do co-occur, the evi-
dence for association is that much stronger ow-
ing to the small size of the window relative to 
their frequency. Beyond the threshold governed 
by window size, there can be seen a sharp level-
ling out in apparent association, accompanied by 
an attendant drop in overall significance. This is 
a manifestation of Rapp’s specificity: as words 
become much more frequent than window size, 
the kinds of tight idiomatic co-occurrences and 
compound forms which would otherwise imply 
an uncommonly strong association can no longer 
be detected as such. 

A related observation is that, in spite of the 
lower random baseline exhibited by the larger 
window size, the actual significance of the asso-
ciations it reports in a real corpus are, for all 
word frequencies, lower than those reported by 
the smaller window: i.e. quantitatively speaking, 
larger windows seem to observe less! Evidently, 
apparent association is as much a function of 
window size as it is of actual syntagmatic asso-
ciation; it would be very tempting to interpret the 
association profiles in figures 2a or 2b, in isola-
tion of each other or their baseline plots, as indi-
cating some interesting scale-varying associative 
structure in the corpus, where in fact they do not. 

 

 
 
Figure 3: Significances for windowless co-dispersion. 

 

60% 
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Figure 3 is identical to figures 2a and 2b (the 
same random and real world corpora were used) 
but it represents the windowless co-dispersion 
method presented herein. It can be seen that the 
random corpus baseline comprises a smooth 
power curve which gives low initial association 
levels, rapidly settling towards the expected 
value of zero as the number of token instances 
increases. Notably, the bulk of apparent associa-
tion scores reported from the Brown Corpus are, 
while not necessarily greater, orders of magni-
tude more significant than with the windowed 
examples for all but the most frequent words 
(ranging well into the 99%+ confidence levels). 
This gain can only follow from the fact that more 
information is being taken into account: not only 
do we now consider relationships that occur at all 
scales, as previously demonstrated, but we con-
sider the exact distance between word tokens, as 
opposed to low-range ordinal values linked to 
window-averaged frequencies. There is no ob-
servable threshold effect, and without a window 
there is no reason to expect one. Accordingly, 
there is no specificity trade-off: while word pairs 
interacting at very large distances are captured 
(as per the largest of windows), very close occur-
rences are still rewarded appropriately (as per the 
smallest of window). 

 

5 Conclusions and future direction 

We have presented a novel alternative to co-
occurrence for measuring lexical association 
which, while based on similar underlying lin-
guistic intuitions, uses a very different apparatus. 
We have shown this method to gather more in-
formation from the corpus overall, and to be par-
ticularly unfettered by issues of scale. While the 
information gathered is, by definition, linguisti-
cally relevant, relevance to a given task (such as 
reproducing human association norms or per-
forming word-sense disambiguation), or superior 
performance with small corpora, does not neces-
sarily follow. Further work is to be conducted in 
applying the method to a range of linguistic 
tasks, with an initial focus on lexical semantics. 
In particular, properties of resultant word-space 
models and similarity measures beg a thorough 
investigation: while we would expect to gain 
denser higher-precision vectors, there might 
prove to be overriding qualitative differences. 
The relationship to grammatical dependency-
based contexts which often out-perform contigu-
ous contexts also begs investigation. 

It is also pertinent to explore the more fun-
damental parameters associated with the win-
dowless approach; the formulation of co-
dispersion presented herein is but one interpreta-
tion of the specific case of association. In these 
senses there is much catching-up to do. 

At the present time, given the key role of win-
dow size in determining the selection and appar-
ent strength of associations under the conven-
tional co-occurrence model - highlighted here 
and in the works of Church et al (1991), Rapp 
(2002), Wang (2005), and Schulte im Walde & 
Melinger (2008) - we would urge that this is an 
issue which window-driven studies continue to 
conscientiously address; at the very least, scale is 
a parameter which findings dependent on distri-
butional phenomena must be qualified in light of. 
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Abstract

As the arm of NLP technologies extends
beyond a small core of languages, tech-
niques for working with instances of lan-
guage data across hundreds to thousands
of languages may require revisiting and re-
calibrating the tried and true methods that
are used. Of the NLP techniques that has
been treated as “solved” is language iden-
tification (language ID) of written text.
However, we argue that language ID is
far from solved when one considers in-
put spanning not dozens of languages, but
rather hundreds to thousands, a number
that one approaches when harvesting lan-
guage data found on the Web. We formu-
late language ID as a coreference resolu-
tion problem and apply it to a Web harvest-
ing task for a specific linguistic data type
and achieve a much higher accuracy than
long accepted language ID approaches.

1 Introduction

A large number of the world’s languages have
been documented by linguists; it is now increas-
ingly common to post current research and data
to the Web, often in the form of language snip-
pets embedded in scholarly papers. A particu-
larly common format for linguistic data posted to
the Web is “interlinearized text”, a format used
to present language data and analysis relevant to
a particular argument or investigation. Since in-
terlinear examples consist of orthographically or
phonetically encoded language data aligned with
an English translation, the “corpus” of interlinear
examples found on the Web, when taken together,
constitute a significant multilingual, parallel cor-
pus covering hundreds to thousands of the world’s
languages. Previous work has discussed methods
for harvesting interlinear text off the Web (Lewis,

2006), enriching it via structural projections (Xia
and Lewis, 2007), and even making it available to
typological analyses (Lewis and Xia, 2008) and
search (Xia and Lewis, 2008).

One challenge with harvesting interlinear data
off the Web is language identification of the har-
vested data. There have been extensive studies
on language identification (language ID) of writ-
ten text, and a review of previous research on this
topic can be found in (Hughes et al., 2006). In gen-
eral, a language ID method requires a collection
of text for training, something on the order of a
thousand or more characters. These methods work
well for languages with rich language resources;
for instance, Cavnar and Trenkle’s N-gram-based
algorithm achieved an accuracy as high as 99.8%
when tested on newsgroup articles across eight
languages (Cavnar and Trenkle, 1994). However,
the performance is much worse (with accuracy
dropping to as low as 1.66%) if there is very lit-
tle language data for training and the number of
languages being evaluated reaches a few hundred.

In this paper, we treat the language ID of har-
vested linguistic data as a coreference resolution
problem. Our method, although narrowly focused
on this very specific data type, makes it possible to
collect small snippets of language data across hun-
dreds of languages and use the data for linguistic
search and bootstrapping NLP tools.

2 Background

2.1 Interlinear glossed text (IGT)

In linguistics, the practice of presenting language
data in interlinear form has a long history, go-
ing back at least to the time of the structural-
ists. Interlinear Glossed Text, orIGT, is often
used to present data and analysis on a language
that the reader may not know much about, and
is frequently included in scholarly linguistic doc-
uments. The canonical form of an IGT consists
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of three lines: a line for the language in question
(i.e., thelanguage line), an English gloss line, and
an English translation. Table 1 shows the begin-
ning of a linguistic document (Baker and Stewart,
1996) which contains two IGTs: one in lines 30-
32, and the other in lines 34-36. The line numbers
are added for the sake of convenience.

1: THE ADJ/VERB DISTINCTION:EDO EVIDENCE
2:
3: Mark C. Baker and OsamuyimenThompsonStewart
4: McGill University
....
27: The following shows a similar minimal pair fromEdo,
28: aKwa language spoken in Nigeria (Agheyisi 1990).
29:
30: (2) a.Èmèrí mòsé.
31: Mary be.beautiful(V)
32: ‘Mary is beautiful.’
33:
34: b. Èmèrí *(yé) mòsé.
35: Mary be.beautiful(A)
36: ‘Mary is beautiful (A).’
...

Table 1: A linguistic document that contains IGT:
words in boldface are potential language names

2.2 The Online Database of Interlinear text
(ODIN)

ODIN, the Online Database of INterlinear text, is
a resource built from data harvested from schol-
arly documents (Lewis, 2006). It was built in
three steps: (1) crawling the Web to retrieve doc-
uments that may contain IGT, (2) extracting IGT
from the retrieved documents, and (3) identifying
the language codes of the extracted IGTs. The
identified IGTs are then extracted and stored in a
database (the ODIN database), which can be easily
searched with a GUI interface.1

ODIN currently consists about 189,000 IGT in-
stances extracted from three thousand documents,
with close to a thousand languages represented.
In addition, there are another 130,000 additional
IGT-bearing documents that have been crawled
and are waiting for further process. Once these
additional documents are processed, the database
is expected to expand significantly.

ODIN is a valuable resource for linguists, as it
can be searched for IGTs that belong to a partic-
ular language or a language family, or those that
contain a particular linguistic construction (e.g.,
passive, wh-movement). In addition, there have

1http://odin.linguistlist.org

been some preliminary studies that show the bene-
fits of using the resource for NLP. For instance, our
previous work shows that automatically enriched
IGT data can be used to answer typological ques-
tions (e.g., the canonical word order of a language)
with a high accuracy (Lewis and Xia, 2008), and
the information could serve as prototypes for pro-
totype learning (Haghighi and Klein, 2006).

3 The language ID task for ODIN

As the size of ODIN increases dramatically, it is
crucial to have a reliable module that automati-
cally identifies the correct language code for each
new extracted IGT to be added to ODIN. The cur-
rent ODIN system uses two language identifiers:
one is based on simple heuristics, and the other
on Cavnar and Trenkle’s algorithm (1994). How-
ever, because the task here is very different from
a typical language ID task (see below), both algo-
rithms work poorly, with accuracy falling below
55%. The focus of this paper is on building new
language identifiers with a much higher accuracy.

3.1 The data set

A small portion of the IGTs in ODIN have
been assigned the correct language code semi-
automatically. Table 2 shows the size of the data
set. We use it for training and testing, and all re-
sults reported in the paper are the average of run-
ning 10-fold cross validation on the data set unless
specified otherwise.

Table 2: The data set for the language ID task
# of IGT-bearing documents 1160
# of IGT instances 15,239
# of words on the language lines77,063
# of languages 638

3.2 The special properties of the task

The task in hand is very different from a typical
language ID task in several respects:

• Large number of languages: The number of
languages in our data set is 638 and that of the
current ODIN database is close to a thousand.
As more data is added to ODIN, the number
of languages may reach several thousand as
newly added linguistic documents could refer
to any of approximately eight thousand living
or dead languages.
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• The use of language code: When dealing
with only a few dozen languages, language
names might be sufficient to identify lan-
guages. This is not true when dealing with
a large number of languages, because some
languages have multiple names, and some
language names refer to multiple languages
(see Section 4.2). To address this problem,
we use language codes, since we can (mostly)
ensure that each language code maps to ex-
actly one language, and each language maps
to exactly one code.

• Unseen languages: In this data set, about
10% of IGT instances in the test data belong
to some languages that have never appeared
in the training data. We call it theunseen
language problem. This problem turns out to
be the major obstacle to existing language ID
methods.

• Extremely limited amount of training data
per language: On average, each language in
the training data has only 23 IGTs (116 word
tokens in the language lines) available, and
45.3% of the languages have no more than
10 word tokens in the training data.

• The length of test instances: The language
lines in IGT are often very short. The aver-
age length in this data set is 5.1 words. About
0.26% of the language lines in the data set are
totally empty due to the errors introduced in
the crawling or IGT extraction steps.

• Encoding issues: For languages that do not
use Roman scripts in their writing system,
the authors of documents often choose to use
Romanized scripts (e.g., pinyin for Chinese),
making the encoding less informative.

• Multilingual documents: About 40% of doc-
uments in the data set contain IGTs from
multiple languages. Therefore, the language
ID prediction should be made for each indi-
vidual IGT, not for the whole document.

• Context information: In this task, IGTs are
part of a document and there are often various
cues in the document (e.g., language names)
that could help predict the language ID of
specific IGT instances.

Hughes and his colleagues (2006) identified
eleven open questions in the domain of language

ID that they believed were not adequately ad-
dressed in published research to date. Interest-
ingly, our task encounters eight out of the eleven
open questions. Because of these properties, ex-
isting language ID algorithms do not perform well
when applied to the task (see Section 6).

4 Using context information

Various cues in the document can help predict the
language ID of IGTs, and they are represented as
features in our systems.

4.1 Feature templates

The following feature templates are used in our ex-
periments.

(F1): The nearest language that precedes the cur-
rent IGT.

(F2): The languages that appear in the neighbor-
hood of the IGT or at the beginning or the
end of a document.2 Another feature checks
the most frequent language occurring in the
document.

(F3): For each language in the training data, we
build three token lists: one for word uni-
grams, one for morph unigrams and the third
for character ngrams (n ≤ 4). These word
lists are compared with the token lists built
from the language line of the current IGT.

(F4): Similar to (F3), but the comparison is be-
tween the token lists built from the current
IGT with the ones built from other IGTs in
the same document. If some IGTs in the
same document share the same tokens, they
are likely to belong to the same language.

Here, all the features are binary: for features in
F3 and F4, we use thresholds to turn real-valued
features into binary ones. F1-F3 features can
be calculated by looking at the documents only,
whereas F4 features require knowing the language
codes of other IGTs in the same document.

4.2 Language table

To identify language names in a document and
map language names to language codes, we need
a language table that lists all the (language code,

2For the experiments reported here, we use any line within
50 lines of the IGT or the first 50 or the last 50 lines of the
document.
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language name) pairs. There are three existing lan-
guage tables: (1) ISO 639-3 maintained by SIL
International,3 (2) the 15th edition of the Ethno-
logue,4 and (3) the list of ancient and dead lan-
guages maintained by LinguistList.5 6 We merged
the three tables, as shown in Table 3.

Table 3: Various language name tables
Language table # of lang # of lang

codes (code, name) pairs
(1) ISO 639-3 7702 9312
(2) Ethnologue v15 7299 42789
(3) LinguistList table 231 232
Merged table 7816 47728

The mapping between language names and lan-
guage codes is many-to-many. A language code
often has several alternate names in addition to the
primary name. For instance, the language code
aaa maps to names such as Alumu, Tesu, Arum,
Alumu-Tesu, Alumu, Arum-Cesu, Arum-Chessu,
and Arum-Tesu. While most language names map
to only one language code, there are exceptions.
For instance, the nameEdocan map to eitherbin
or lew. Out of 44,071 unique language names in
the merged language table, 2625 of them (5.95%)
are ambiguous.7

To identify language names in a document, we
implemented a simple language name detector that
scans the document from left to right and finds the
longest string that is a language name according
to the language table. The language name is then
mapped to language codes. If a language name is
ambiguous, all the corresponding language codes
are considered by later stages. In Table 1, the
language names identified by the detector are in
boldface. The detector can produce false positive
(e.g., Thompson) because a language name can
have other meanings. Also, the language table is
by no means complete and the detector is not able
to recognize any language names that are missing
from the table.

3http://www.sil.org/iso639-3/download.asp
4http://www.ethnologue.com/codes/default.asp#using
5http://linguistlist.org/forms/langs/GetListOfAncientLgs.html
6While ISO 639-3 is supposed to include all the language

codes appearing in the other two lists, there is a lag in the
adoption of new codes, which means the ISO 639-3 list con-
tinues to be somewhat out-of-date with the lists from which
it is compiled since these other lists change periodically.

7Among the ambiguous names, 1996 names each map to
two language codes, 407 map to three codes, 130 map to four
codes, and so on. The most ambiguous name isMiao, which
maps to fourteen language codes.

5 Formulating the language ID task

The language ID task here can be treated as two
different learning problems.

5.1 As a classification problem

The language ID task can be treated as a classifica-
tion problem. A classifier is a function that maps
a training/test instancex to a class labely, andy
is a member of a pre-defined label setC. For lan-
guage ID, the training/test instance corresponds to
a document (or an IGT in our case), andC is the
set of language codes. We call this approach the
classification (CL) approach.

Most, if not all, of previous language ID meth-
ods, fall into this category. They differ with re-
spect to the underlying learning algorithms and the
choice of features or similarity functions. When
applying a feature-based algorithm (e.g., Maxi-
mum entropy) and using the features in Section
4.1, the feature vectors for the two IGTs in Ta-
ble 1 are shown in Table 4. Each line has the for-
mat “instancename truelang code featname1
feat name2 ...”, where featnames are the names
of features that are present in the instance. Take
the first IGT as an example, its true language code
is bin; the nearest language name (nearLC) is Edo
whose language code isbin or lew; the languages
that appear before the IGT includes Edo (bin or
lew), Thompson (thp), and so on. The presence of
LMw1 bin andLMm1 bin means that the overlap
between the word/morph lists forbin and the ones
built from the current IGT is higher than some
threshold. The feature vector for the second IGT
looks similar, except that it includes a F4 feature
IIw1 bin, which says that the overlap between the
word list built from the other IGTs in the same
document with language codebin and the word
list built from the current IGT is above a thresh-
old. Note that language codes are part of feature
names; therefore, a simple feature template such
as nearest language (nearLC) corresponds to hun-
dreds or even thousands of features (nearLC xxx).

TheCL approach has several major limitations.
First, it cannot handle theunseen language prob-
lem: if an IGT in the test data belongs to a lan-
guage that does not appear in the training data, this
approach cannot classify it correctly. Second, the
lack of parameter tying in this approach makes it
unable to generalize between different languages.
For instance, if the wordGermanappears right be-
fore an IGT, the IGT is likely to be German. The
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igt1 bin nearLCbin nearLClew prev50bin prev50lew prev50thp ... LMw1 bin LMm1 bin ...

igt2 bin nearLCbin nearLClew prev50bin prev50lew prev50thp ... LMw1 bin LMm1 bin ... IIw1 bin ...

Table 4: Feature vectors for the IGTs in Table 1 when using theCL approach (Edo: bin/lew, Thompson:
thp, Kwa: etu/fip/kwb)

same is true if the wordGermanis replaced by an-
other language name. But this property cannot be
leveraged easily by theCL approach without mod-
ifying the learning algorithm. This results in a pro-
liferation of parameters, making learning harder
and more prone to overfitting.

5.2 As a coreference resolution problem

A different way of handling the language ID task
is to treat it as a coreference resolution problem: a
mention is an IGT or a language name appearing
in a document, an entity is a language code, and
finding the language code for an IGT is the same as
linking a mention (i.e., an IGT) to an entity (i.e., a
language code).8 We call this approach theCoRef
approach. The major difference between theCL
approach and theCoRefapproach is the role of
language code: in the former, language code is a
class label to be used to tag an IGT; and in the lat-
ter, language code is an entity which an IGT can
be linked to.

The language ID task shares many similarities
with a typical coreference resolution task. For
instance, language names are similar to proper
nouns in that they are often unambiguous. IGT
instances are like pronouns in that they often refer
to language names appearing in the neighborhood.
Once the language ID task is framed as aCoRef
problem, all the existing algorithms onCoRefcan
be applied to the task, as discussed below.

5.2.1 Sequence labeling using traditional
classifiers

One common approach to theCoRefproblem pro-
cesses the mentions sequentially and determine for
each mention whether it should start a new entity
or be linked to an existing mention (e.g., (Soon
et al., 2001; Ng and Cardie, 2002; Luo, 2007));
that is, the approach makes a series of decisions,

8There are minor differences between the language ID and
coreference resolution tasks. For instance, each entity inthe
language ID task must be assigned a language code. This
means that ambiguous language names will evoke multiple
entities, each with a different language code. These differ-
ences are reflected in our algorithms.

one decision per (mention, entity) pair. Apply-
ing this to the language ID task, the (mention, en-
tity) pair would correspond to an (IGT, langcode)
pair, and each decision would have two possibili-
ties: Samewhen the IGT belongs to the language
or Diff when the IGT does not. Once the decisions
are made for all the pairs, a post-processing proce-
dure would check all the pairs for an IGT and link
the IGT to the language code with which the pair
has the highest confidence score.

Using the same kinds of features in Section 4.1,
the feature vectors for the two IGTs in Table 1 are
shown in Table 5. Comparing Table 4 and 5 re-
veals the differences between theCL approach and
theCoRefapproach: theCoRefapproach has only
two class labels (SameandDiff) where theCL ap-
proach has hundreds of labels (one for each lan-
guage code); theCoRefapproach has much fewer
number of features because language code is not
part of feature names; theCoRefapproach has
more training instances as each training instance
corresponds to an (IGT, langcode) pair.

igt1-bin same nearLC prev50 LMw1 LMm1 ...
igt1-lew diff nearLC prev50 ...
igt1-thp diff prev50 ...
...

igt2-bin same nearLC prev50 LMw1 LMm1 IIw1 ...
igt2-lew diff nearLC prev50 ...
igt2-thp diff prev50 ...
...

Table 5: Feature vectors for the IGTs in Table 1
when using theCoRefapproach with sequence la-
beling methods

5.2.2 Joint Inference Using Markov Logic

Recently, joint inference has become a topic of
keen interests in both the machine learning and
NLP communities (e.g., (Bakir et al., 2007; Sut-
ton et al., 2006; Poon and Domingos, 2007)).
There have been increasing interests in formulat-
ing coreference resolution in a joint model and
conducting joint inference to leverage dependen-
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cies among the mentions and entities (e.g., (Well-
ner et al., 2004; Denis and Baldridge, 2007; Poon
and Domingos, 2008)). We have built a joint
model for language ID inMarkov logic(Richard-
son and Domingos, 2006).

Markov logic is a probabilistic extension of
first-order logic that makes it possible to com-
pactly specify probability distributions over com-
plex relational domains. AMarkov logic net-
work (MLN) is a set of weighted first-order
clauses. Together with a set of constants, it de-
fines a Markov network with one node per ground
atom and one feature per ground clause. The
weight of a feature is the weight of the first-order
clause that originated it. The probability of a
statex in such a network is given byP (x) =
(1/Z) exp (

∑
i
wifi(x)), whereZ is a normaliza-

tion constant,wi is the weight of theith clause,
fi = 1 if the ith clause is true, andfi = 0
otherwise. Conditional probabilities can be com-
puted using Markov chain Monte Carlo (e.g., MC-
SAT (Poon and Domingos, 2006)). The weights
can be learned using pseudo-likelihood training
with L-BFGS (Richardson and Domingos, 2006).
Markov logic is one of the most powerful rep-
resentations for joint inference with uncertainty,
and an implementation of its existing learning and
inference algorithms is publicly available in the
Alchemy package (Kok et al., 2007).

To use the features defined in Section 4.1, our
MLN includes two evidence predicates: the first
one isHasFeature(i, l, f) wheref is a feature in
F1-F3. The predicate is true iff the IGT-language
pair (i, l) has featuref . The second predicate is
HasRelation(i1, i2, r) wherer is a relation that
corresponds to a feature inF4; this predicate is
true iff relationr holds between two IGTsi1, i2.
The query predicate isIsSame(i, l), which is true
iff IGT i is in languagel. Table 6 shows the pred-
icates instantiated from the two IGTs in Table 1.

The language ID task can be captured in our
MLN with just three formulas:

IsSame(i, l)

HasFeature(i, l,+f) ⇒ IsSame(i, l)

HasRelation(i1, i2,+r)∧ IsSame(i1, l)
⇒ IsSame(i2, l)

The first formula captures the default probabil-
ity that an IGT belongs to a particular language.

IsSame(igt1, bin)
HasFeature(igt1, bin, nearLC)
HasFeature(igt1, bin, prev50)
HasFeature(igt1, bin, LMw1)
...
HasFeature(igt1, lew, nearLC)
HasFeature(igt1, lew, prev50)
...
IsSame(igt2, bin)
HasFeature(igt2, bin, nearLC)
HasFeature(igt2, bin, prev50)
HasFeature(igt2, bin, LMw1)
...
HasRelation(igt1, igt2, IIw1)
...

Table 6: The predicates instantiated from the IGTs
in Table 1

The second one captures the conditional likeli-
hoods of an IGT being in a language given the fea-
tures. The third formula says that two IGTs prob-
ably belong to the same language if they have a
certain relationr.

The plus sign beforef and r in the formulas
signifies that the MLN will learn a separate weight
for each individual featuref and relationr. Note
that there is no plus sign beforei and l, allowing
the MLN to achieve parameter tying by sharing the
same weights for different instances or languages.

5.2.3 The advantage of theCorefapproach

Both methods of theCoRefapproach address the
limitations of theCL approach: both can handle
theunseen language problem, and both do param-
eter tying in a natural way. Not only does parame-
ter tying reduce the number of parameters, it also
makes it possible to accumulate evidence among
different languages and different IGTs.

6 Experiments

In this section, we compare the two approaches
to the language ID task: theCL approach and the
CoRef approach. In our experiments, we run 10-
fold cross validation (90% for training and 10%
for testing) on the data set in Table 2 and report
the average of language ID accuracy.

The two approaches have different upper
bounds. The upper bound of theCL approach is
the percentage of IGTs in the test data that be-
long to aseenlanguage. The upper bound of the
CoRefapproach is the percentage of IGTs in the
test data that belong to a language whose language
name appears in the same document. For the data
set in Table 2, the upper bounds are 90.33% and
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Table 7: The performance of theCL approach (# of classes: about 600, # of training instances=13,723)
Upper bound of TextCat MaxEnt classifier using context information

CL approach F1 F1-F2 F1-F3 F1-F4 (cheating)
# of features N/A N/A 769 5492 8226 8793
w/o the language filter 90.33 51.38 49.74 61.55 64.19 66.47
w/ the language filter 88.95 60.72 56.69 64.95 67.03 69.20

97.31% respectively. When the training data is
much smaller, the upper bound of theCL approach
would decrease tremendously, whereas the upper
bound of theCoRefapproach remains the same.

6.1 TheCL approach

As mentioned before, most existing language ID
algorithm falls into this category. We chose
TextCat,9 an implementation of Cavnar-Trenkle’s
algorithm (1994), as an example of these algo-
rithms. In order to take advantage of the con-
text information, we trained several classifiers
(e.g., decision tree, Naive Bayes, and maximum
entropy) using the Mallet package (McCallum,
2002) and a SVM classifier using the libSVM
package (Chang and Lin, 2001).

The result is in Table 7. The first column shows
the upper bound of theCL approach; the second
column is the result of running TextCat;10 the rest
of the table lists the result of running a MaxEnt
classifier with different feature sets.11 F4 features
require knowing the language code of other IGTs
in the document. In the F1-F4 cheating exper-
iments, the language codes of other IGTs come
from the gold standard. We did not implement
beam search for this because the difference be-
tween the cheating results and the results without
F4 features is relatively small and both are much
worse than the results in theCoRefapproach.

In Table 7, the first row shows the number of
features; the second row shows the accuracy of the
two classifiers; the last row is the accuracy when
a post-processing filter is added: the filter takes
the ranked language list produced by a classifier,
throws away all the languages in the list that do
not appear in the document, and then outputs the
highest ranked language in the remaining list.

There are several observations. First, applying
the post-processing filter improves performance,

9http://odur.let.rug.nl/ vannoord/TextCat/
10We varied the lexicon size (m) – an important tuned pa-

rameter for the algorithm – from 100 and 800 and observed
a minor change to accuracy. The numbers reported here are
with lexicon size set to 800.

11The MaxEnt classifier slightly outperforms other classi-
fiers with the same feature set.

albeit it also lowers the upper bound of algorithms
as the correct language names might not appear
in the document. Second, the MaxEnt classifier
has hundreds of classes, thousands of features, and
millions of model parameters. This will cause se-
vere sparse data and overfitting problems.

6.2 TheCoRefapproach

For theCoRefapproach, we built two systems as
described in Section 5: the first system is a Max-
Ent classifier with beam search, and the second
one is a MLN for joint inference.12 The results
are in Table 8.13

In the first system, the values of F4 features
for the test data come from the gold standard
in the F1-F4 cheating experiments, and come
from beam search in the non-cheating experi-
ments.14 In the second system, the predicate
HasRelation(i1, i2, r) instantiated from the test
data is treated as evidence in the F1-F4 cheat-
ing experiments, and as query in the F1-F4 non-
cheating experiments.

The results for the two systems are very similar
since they use same kinds of features. However,
with Markov logic, it is easy to add predicates and
formulas to allow joint inference. Therefore, we
believe that Markov logic offers more potential to
incorporate arbitrary prior knowledge and lever-
age further opportunities in joint inference.

Tables 7-8 show that, with the same kind of fea-
tures and the same amount of training data, the
CoRefapproach has higher upper bound, fewer
model parameters, more training instances, and
much higher accuracy than theCL approach. This
study shows that properly formulating a task into
a learning problem is very important.

12For learning and inference, we used the existing im-
plementations of pseudo-likelihood training and MC-SAT in
Alchemy with default parameters.

13No language filter is needed since the approach links an
IGT to only the language names appearing in the document.

14It turns out that for this task the size of beam does not
matter much and simply using the top choice by the Max-
Ent classifier for each IGT almost always produces the best
results, so that is the setting used for this table and Table 9.
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Table 8: The performance of theCoRefapproach (# of classes=2, # of training instances=511,039)
Upper bound of F1 F1-F2 F1-F3 F1-F4 F1-F4
CoRef approach (cheating) (Non-cheating)

# of features N/A 2 12 17 22 22
Sequence labeling 97.31 54.37 66.32 83.49 90.26 85.10
Markov logic model 97.31 54.98 65.94 83.44 90.37 84.70

Table 9: The performance of theCoRefapproach with less training data (the upper bound of theCoref
approach remains 97.31%)

% of training F1 F1-F2 F1-F3 F1-F4 F1-F4 Upper bound of
data used (cheating) (non-cheating) theCL approach
0.1% 54.37 54.84 65.28 81.21 70.15 1.66
0.5% 54.37 62.78 76.74 87.17 80.24 21.15
1.0% 54.37 60.58 76.09 87.24 81.20 28.92
10% 54.37 62.13 77.07 87.20 83.08 54.45

6.3 Experiments with much less data

Table 8 shows that theCoRefapproach has very
few features and a much larger number of training
instances; therefore, it is likely that the approach
would work well even with much less training
data. To test the idea, we trained the model with
only a small fraction of the original training data
and tested on the same test data. The results with
the first system are in Table 9. Notice that the up-
per bound of theCoRefapproach remains the same
as before. In contrast, the upper bound for theCL
model is much lower, as shown in the last column
of the table. The table shows when there is very
little training data, theCoRefapproach still per-
forms decently, whereas theCL approach would
totally fail due to the extremely low upper bounds.

6.4 Error analysis

Several factors contribute to the gap between the
best CoRefsystem and its upper bound. First,
when several language names appear in close
range, the surface positions of the language names
are often insufficient to determine the prominence
of the languages. For instance, in pattern “Similar
to L1, L2 ...”, L2 is the more prominent thanL1;
whereas in pattern “L1, a L2 language, ...”, L1 is.
The system sometimes chooses a wrong language
in this case.

Second, the language name detector described
in Section 4.2 produces many false negative (due
to the incompleteness of the language table) and
false positive (due to the fact that language names
often have other meanings).

Third, when a language name is ambiguous,
choosing the correct language code often requires
knowledge that might not even be present in the

document. For instance, a language name could
refer to a list of related languages spoken in the
same region, and assigning a correct language
code would require knowledge about the subtle
differences among those languages.

7 Conclusion and future work

In this paper we describe a language identification
methodology that achieves high accuracy with a
very small amount of training data for hundreds
of languages, significantly outperforming existing
language ID algorithms applied to the task. The
gain comes from two sources: by taking advan-
tage of context information in the document, and
by formulating the task as a coreference resolution
problem.

Our method can be adapted to harvest other
kinds of linguistic data from the Web (e.g., lexicon
entries, word lists, transcriptions, etc.) and build
other ODIN-like resources. Providing a means for
rapidly increasing the amount of data in ODIN,
while at the same timeautomatically increasing
the number of languages, can have a significant
positive impact on the linguistic community, a
community that already benefits from the existing
search facility in ODIN. Likewise, the increased
size of the resulting ODIN database could pro-
vide sufficient data to bootstrap NLP tools (e.g.,
POS taggers and parsers) for a large number of
low-density languages, greatly benefitting both the
fields of linguistics and NLP.
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Abstract

We investigate the possibility of exploit-
ing character-based dependency for Chi-
nese information processing. As Chinese
text is made up of character sequences
rather than word sequences, word in Chi-
nese is not so natural a concept as in En-
glish, nor is word easy to be defined with-
out argument for such a language. There-
fore we propose a character-level depen-
dency scheme to represent primary lin-
guistic relationships within a Chinese sen-
tence. The usefulness of character depen-
dencies are verified through two special-
ized dependency parsing tasks. The first
is to handle trivial character dependencies
that are equally transformed from tradi-
tional word boundaries. The second fur-
thermore considers the case that annotated
internal character dependencies inside a
word are involved. Both of these results
from character-level dependency parsing
are positive. This study provides an alter-
native way to formularize basic character-
and word-level representation for Chinese.

1 Introduction

In many human languages, word can be naturally
identified from writing. However, this is not the
case for Chinese, for Chinese is born to be written
in character1 sequence rather than word sequence,
namely, no natural separators such as blanks ex-
ist between words. As word does not appear in
a natural way as most European languages2, it

1Character here stands for various tokens occurring in
a naturally written Chinese text, including Chinese charac-
ter(hanzi), punctuation, and foreign letters. However, Chi-
nese characters often cover the most part.

2Even in European languages, a naive but necessary
method to properly define word is to list them all by hand.
Thank the first anonymous reviewer who points this fact.

brings the argument about how to determine the
word-hood in Chinese. Linguists’ views about
what is a Chinese word diverge so greatly that
multiple word segmentation standards have been
proposed for computational linguistics tasks since
the first Bakeoff (Bakeoff-1, or Bakeoff-2003)3

(Sproat and Emerson, 2003).
Up to Bakeoff-4,sevenword segmentation stan-

dards have been proposed. However, this does not
effectively solve the open problem what a Chi-
nese word should exactly be but raises another is-
sue: what a segmentation standard should be se-
lected for the successive application. As word
often plays a basic role for the further language
processing, if it cannot be determined in a uni-
fied way, then all successive tasks will be affected
more or less.

Motivated by dependency representation for
syntactic parsing since (Collins, 1999) that has
been drawn more and more interests in recent
years, we suggest that character-level dependen-
cies can be adopted to alleviate this difficulty in
Chinese processing. If we regard traditional word
boundary as a linear representation for neighbored
characters, then character-level dependencies can
provide a way to represent non-linear relations be-
tween non-neighbored characters. To show that
character dependencies can be useful, we develop
a parsing scheme for the related learning task and
demonstrate its effectiveness.

The rest of the paper is organized as fol-
lows. The next section shows the drawbacks of
the current word boundary representation through
some language examples. Section 3 describes
a character-level dependency parsing scheme for
traditional word segmentation task and reports its
evaluation results. Section 4 verifies the useful-
ness of annotated character dependencies inside a
word. Section 5 looks into a few issues concern-

3First International Chinese Word Segmentation Bakeoff,
available at http://www.sighan.org/bakeoff2003.
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ing the role of character dependencies. Section 6
concludes the paper.

2 To Segment or Not: That Is the
Question

Though most words can be unambiguously de-
fined in Chinese text, some word boundaries are
not so easily determined. We show such three ex-
amples as the following.

The first example is from the MSRA segmented
corpus of Bakeoff-2 (Bakeoff-2005) (Emerson,
2005):� / Ü / / / �®½®ìÊÆéÇ¬ / ¬l /\| /y /0

a / piece of / “ / Beijing City Beijing Opera
OK Sodality / member / entrance / ticket / ”

As the guideline of MSRA standard requires any
organization’s full name as a word, many long
words in this form are frequently encountered.
Though this type of ‘words’ may be regarded as an
effective unit to some extent, some smaller mean-
ingful constituents can be still identified inside
them. Some researchers argue that these should
be seen as phrases rather than words. In fact, e.g.,
a machine translation system will have to segment
this type of words into some smaller units for a
proper translation.

The second example is from the PKU corpus of
Bakeoff-2,¥I / 7 / H� / ��,

China / in / South Africa / embassy

(the Chinese embassy in South Africa)

This example demonstrates how researchers can
also feel inconvenient if an organization name is
segmented into pieces. Though the word ‘��,’(embassy) is right after ‘H�’(South Africa)
in the above phrase, the embassy does not belong
to South Africa but China, and it is only located in
South Africa.

The third example is an abbreviation that makes
use of the characteristics of Chinese characters.(Ï / � / n / Ê

Week / one / three / five

(Monday, Wednesday and Friday)

This example shows that there will be in a
dilemma to perform segmentation over these char-
acters. If a segmentation position locates before
‘n’(three) or ‘Ê’(five), then this will make them
meaningless or losing its original meaning at least
because either of these two characters should log-
ically follow the substring ‘(Ï’ (week) to con-
struct the expected word ‘(Ïn’(Wednesday) or
‘(ÏÊ’ (Friday). Otherwise, to make all the
above five characters as a word will have to ig-
nore all these logical dependent relations among
these characters and segment it later for a proper
tackling as the above first example.

All these examples suggest that dependencies
exist between discontinuous characters, and word
boundary representation is insufficient to handle
these cases. This motivates us to introduce char-
acter dependencies.

3 Character-Level Dependency Parsing

Character dependency is proposed as an alterna-
tive to word boundary. The idea itself is extremely
simple, character dependencies inside sequence
are annotated or formally defined in the similar
way that syntactic dependencies over words are
usually annotated.

We will initially develop a character-level de-
pendency parsing scheme in this section. Es-
pecially, we show character dependencies, even
those trivial ones that are equally transformed
from pre-defined word boundaries, can be effec-
tively captured in a parsing way.

3.1 Formularization

Using a character-level dependency representa-
tion, we first show how a word segmentation task
can be transformed into a dependency parsing
problem. Since word segmentation is traditionally
formularized as an unlabeled character chunking
task since (Xue, 2003), only unlabeled dependen-
cies are concerned in the transformation. There are
many ways to transform chunks in a sequence into
dependency representation. However, for the sake
of simplicity, only well-formed and projective out-
put sequences are considered for our processing.

Borrowing the notation from (Nivre and Nils-
son, 2005), an unlabeled dependency graph is for-
mally defined as follows:

An unlabeled dependency graph for a string
of cliques (i.e., words and characters)W =
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Figure 1: Two character dependency schemes

w1...wn is an unlabeled directed graphD =
(W,A), where

(a) W is the set of ordered nodes, i.e. clique
tokens in the input string, ordered by a
linear precedence relation<,

(b) A is a set of unlabeled arcs(wi, wj),
wherewi, wj ∈ W ,

If (wi, wj) ∈ A, wi is called the head ofwj

andwj a dependent ofwi. Traditionally, the no-
tation wi → wj means(wi, wj) ∈ A; wi →∗

wj denotes the reflexive and transitive closure of
the (unlabeled) arc relation. We assume that the
designed dependency structure satisfies the fol-
lowing common constraints in existing literature
(Nivre, 2006).

(1) D is weakly connected, that is, the cor-
responding undirected graph is connected.
(CONNECTEDNESS)

(2) The graphD is acyclic, i.e., ifwi → wj then
notwj →

∗ wi. (ACYCLICITY)

(3) There is at most one arc(wi, wj) ∈ A, ∀wj ∈
W . (SINGLE-HEAD)

(4) An arcwi → wk is projective iff, for every
wordwj occurring betweenwi andwk in the
string (wi < wj < wk or wi > wj > wk),
wi →

∗ wj . (PROJECTIVITY)

We say thatD is well-formed iff it is acyclic and
connected, andD is projective iff every arcs inA
are projective. Note that the above four conditions
entail that the graphD is a single-rooted tree. For
an arcwi → wj, if wi < wj, then it is called right-
arc, otherwise left-arc.

Following the above four constraints and con-
sidering segmentation characteristics, we may
have two character dependency representation
schemes as shown in Figure 1 by using a series
of trivial dependencies inside or outside a word.
Note that we use arc direction to distinguish con-
nected and segmented relation among characters.
The scheme with the assistant root node before the
sequence in Figure 1 is called SchemeB, and the
other SchemeE.

3.2 Shift-reduce Parsing

According to (McDonald and Nivre, 2007), all
data-driven models for dependency parsing that
have been proposed in recent years can be de-
scribed as either graph-based or transition-based.
Since both dependency schemes that we construct
for parsing are well-formed and projective, the lat-
ter is chosen as the parsing framework for the sake
of efficiency. In detail, a shift-reduce method is
adopted as in (Nivre, 2003).

The method is step-wise and a classifier is used
to make a parsing decision step by step. In each
step, the classifier checks a clique pair4, namely,
TOP, the top of a stack that consists of the pro-
cessed cliques, and,INPUT, the first clique in the
unprocessed sequence, to determine if a dependent
relation should be established between them. Be-
sides two arc-building actions, a shift action and a
reduce action are also defined, as follows,

Left-arc: Add an arc fromINPUT to TOPand
pop the stack.

Right-arc: Add an arc fromTOPto INPUT and
pushINPUT onto the stack.

Reduce: PopTOPfrom the stack.
Shift: PushINPUT onto the stack.
In this work, we adopt a left-to-right arc-eager

parsing model, that means that the parser scans the
input sequence from left to right and right depen-
dents are attached to their heads as soon as possi-
ble (Hall et al., 2007). In the implementation, as
for SchemeE, all four actions are required to pass
through an input sequence. However, only three
actions, i.e., reduce action will never be used, are
needed for SchemeB.

3.3 Learning Model and Features

While memory-based and margin-based learn-
ing approaches such as support vector machines
are popularly applied to shift-reduce parsing, we
apply maximum entropy model as the learning
model for efficient training and producing some
comparable results. Our implementation of max-
imum entropy adopts L-BFGS algorithm for pa-
rameter optimization as usual. No additional fea-
ture selection techniques are used.

With notations defined in Table 1, a feature set
as shown in Table 2 is adopted. Here, we explain
some terms in Tables 1 and 2.

4Here, clique means character or word in a sequence,
which depends on what constructs the sequence.
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Table 1: Feature Notations

Notation Meaning
s The character in the top of stack
s
−1,... The first character below the top of stack, etc.

i, i+1,... The first (second) character in the
unprocessed sequence, etc.

dprel Dependent label
h Head
lm Leftmost child
rm Rightmost child
rn Right nearest child
char Character form
. ’s, i.e., ‘s.dprel’ means dependent label

of character in the top of stack
+ Feature combination, i.e., ‘s.char+i.char’

means boths.charandi.char work as a
feature function.

Since we only considered unlabeled depen-
dency parsing,dprel means the arc direction from
the head, either left or right. The featurecur-
root returns the root of a partial parsing tree that
includes a specified node. The featurecnseqre-
turns a substring started from a given character. It
checks the direction of the arc that passes the given
character and collects all characters with the same
arc direction to yield an output substring until the
arc direction is changed. Note that all combina-
tional features concerned with this one can be re-
garded as word-level features.

The featureav is derived from unsupervised
segmentation as in (Zhao and Kit, 2008a), and
the accessor variety(AV) (Feng et al., 2004) is
adopted as the unsupervised segmentation crite-
rion. The AV value of a substrings is defined as

AV (s) = min{Lav(s), Rav(s)},

where the left and right AV valuesLav(s) and
Rav(s) are defined, respectively, as the numbers
of its distinct predecessor and successor charac-
ters. In this work, AV values for substrings are
derived from unlabeled training and test corpora
by substring counting. Multiple features are used
to represent substrings of various lengths identi-
fied by the AV criterion. Formally put, the feature
function for an-character substrings with a score
AV (s) is defined as

avn = t, if 2t ≤ AV (s) < 2t+1, (1)

wheret is an integer to logarithmize the score and
taken as the feature value. For an overlap character
of several substrings, we only choose the one with

Table 2: Features for Parsing

Basic Extension
x.char itself, its previous two and next two

characters, and all bigrams within the
five-character window. (x is s or i.)
s.h.char
s.dprel
s.rm.dprel
s
−1.cnseq

s
−1.cnseq+s.char

s
−1.curroot.lm.cnseq

s
−1.curroot.lm.cnseq+s.char

s
−1.curroot.lm.cnseq+i.char

s
−1.curroot.lm.cnseq+s

−1.cnseq
s
−1.curroot.lm.cnseq+s.char+s

−1.cnseq
s
−1.curroot.lm.cnseq+i.char+s

−1.cnseq
s.avn+i.avn, n = 1, 2, 3, 4, 5

preact
−1

preact
−2

preact
−2+preact

−1

the greatest AV score to activate the above feature
function for that character.

The featurepreactn returns the previous pars-
ing action type, and the subscriptn stands for the
action order before the current action.

3.4 Decoding

Without Markovian feature likepreact−1, a shift-
reduce parser can scan through an input sequence
in linear time. That is, the decoding of a parsing
method for word segmentation will be extremely
fast. The time complexity of decoding will be2L
for SchemeE, andL for SchemeB, whereL is
the length of the input sequence.

However, it is somewhat complicated as Marko-
vian features are involved. Following the work of
(Duan et al., 2007), the decoding in this case is to
search a parsing action sequence with the maximal
probability.

Sdi
= argmax

∏

i

p(di|di−1di−2...),

whereSdi
is the object parsing action sequence,

p(di|di−1...) is the conditional probability, anddi

is i-th parsing action. We use a beam search al-
gorithm as in (Ratnaparkhi, 1996) to find the ob-
ject parsing action sequence. The time complex-
ity of this beam search algorithm will be4BL for
SchemeE and3BL for SchemeB, whereB is the
beam width.

3.5 Related Methods

Among character-based learning techniques for
word segmentation, we may identify two main
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types, classification (GOH et al., 2004) and tag-
ging (Low et al., 2005). Both character classifi-
cation and tagging need to define the position of
character inside a word. Traditionally, the four
tags, b, m, e, and s stand, respectively, for the
beginning, midle, end of a word, and asingle-
character as word since (Xue, 2003). The follow-
ing n-gram features from (Xue, 2003; Low et al.,
2005) are used as basic features,

(a) Cn(n = −2,−1, 0, 1, 2),

(b) CnCn+1(n = −2,−1, 0, 1),

(c) C−1C1,

whereC stands for a character and the subscripts
for the relative order to the current characterC0. In
addition, the featureav that is defined in equation
(1) is also taken as an option.avn (n=1,...,5) is
applied as feature for the current character.

While word segmentation is conducted as a
classification task, each individual character will
be simply assigned a tag with the maximal prob-
ability given by the classifier. In this case, we re-
store word boundary only according to two tags
b ands. However, the output tag sequence given
by character classification may include illegal tag
transition (e.g.,m is aftere.). In (Low et al., 2005),
a dynamic programming algorithm is adopted to
find a tag sequence with the maximal joint prob-
ability from all legal tag sequences. If such a dy-
namic programming decoding is adopted, then this
method for word segmentation is regarded as char-
acter tagging5.

The time complexity of character-based classifi-
cation method for decoding isL, which is the best
result in decoding velocity. As dynamic program-
ming is applied, the time complexity will be16L
with four tags.

Recently, conditional random fields (CRFs) be-
comes popular for word segmentation since it pro-
vides slightly better performance than maximum
entropy method does (Peng et al., 2004). How-
ever, CRFs is a structural learning tool rather than
a simple classification framework. As shift-reduce
parsing is a typical step-wise method that checks

5Someone may argue that maximum entropy Markov
model (MEMM) is truly a tagging tool. Yes, this method was
initialized by (Xue, 2003). However, our empirical results
show that MEMM never outperforms maximum entropy plus
dynamic programming decoding as (Low et al., 2005) in Chi-
nese word segmentation. We also know that the latter reports
the best results in Bakeoff-2. This is why MEMM method is
excluded from our comparison.

each character one by one, it is reasonable to com-
pare it to a classification method over characters.

3.6 Evaluation Results

Table 3: Corpus size of Bakeoff-2 in number of
words

AS CityU MSRA PKU
Training(M) 5.45 1.46 2.37 1.1

Test(K) 122 41 107 104

The experiments in this section are performed
in all four corpora from Bakeoff-2. Corpus size
information is in Table 3.

Traditionally, word segmentation performance
is measured by F-score (F = 2RP/(R + P ) ),
where the recall (R) and precision (P ) are the pro-
portions of the correctly segmented words to all
words in, respectively, the gold-standard segmen-
tation and a segmenter’s output. To compute the
word F-score, all parsing results will be restored
to word boundaries according to the direction of
output arcs.

Table 4: The results of parsing and classifica-
tion/tagging approaches using different feature
combinations

S.a Feature AS CityU MSRA PKU
Basicb .935 .922 .950 .917

B +AVc .941 .933 .956 .927
+Prevd .937 .923 .951 .918

+AV+Prev .942 .935 .958 .929
Basic .940 .932 .957 .926

E +AV .948 .947 .964 .942
+Prev .944 .940 .962 .931

+AV+Prev .949 .951 .967 .943
n-gram/ce .933 .923 .948 .923

Cf +AV/c .942 .936 .957 .933
n-gram/dg .945 .938 .956 .936

+AV/d .950 .949 .966 .945
aScheme
bFeatures in top two blocks of Table 2.
cFive av features are added on the above basic features.
dThree Markovian features in Table 2 are added on the above

basic features.
e/c: Classification
fCharacter classification or tagging using maximum entropy
g/d: Only search in legal tag sequences.

Our comparison with existing work will be con-
ducted in closed test of Bakeoff. The rule for the
closed test is that no additional information be-
yond training corpus is allowed, while open test
of Bakeoff is without such restrict.
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The results with different dependency schemes
are in Table 4. As the featurepreact is involved,
a beam search algorithm with width 5 is used to
decode, otherwise, a simple shift-reduce decod-
ing is used. We see that the performance given
by SchemeE is much better than that by Scheme
B. The results of character-based classification
and tagging methods are at the bottom of Table 46.
It is observed that the parsing method outperforms
classification and tagging method without Marko-
vian features or decoding throughout the whole se-
quence. As full features are used, the former and
the latter provide the similar performance.

Due to using a global model like CRFs, our pre-
vious work in (Zhao et al., 2006; Zhao and Kit,
2008c) reported the best results over the evaluated
corpora of Bakeoff-2 until now7. Though those
results are slightly better than the results here, we
still see that the results of character-level depen-
dency parsing approach (SchemeE) are compara-
ble to those state-of-the-art ones on each evaluated
corpus.

4 Character Dependencies inside a Word

We further consider exploiting annotated charac-
ter dependencies inside a word (internal depen-
dencies). A parsing task for these internal de-
pendencies incorporated with trivial external de-
pendencies8 that are transformed from common
word boundaries are correspondingly proposed us-
ing the same parsing way as the previous section.

4.1 Annotation of Internal Dependencies

In Subsection 3.1, we assign trivial character de-
pendencies inside a word for the parsing task of
word segmentation, i.e., each character as the head
of its predecessor or successor. These trivial for-
mally defined dependencies may be against the
syntactic or semantic senses of those characters,
as we have discussed in Section 2. Now we will
consider human annotated character dependencies
inside a word.

As such an corpus with annotated inter-
nal dependencies has not been available until

6Only the results of open track are reported in (Low et
al., 2005), while we give a comparison following closed track
rules, so, our results here are not comparable to those of (Low
et al., 2005).

7As n-gram features are used, F-scores in (Zhao et al.,
2006) are, AS:0.953, CityU:0.948, MSRA:0.974,PKU:0.952.

8We correspondingly call dependencies that mark word
boundary external dependencies that correspond to internal
dependencies.

now, we launched an annotation job based on
UPUC segmented corpus of Bakeoff-3(Bakeoff-
2006)(Levow, 2006). The training corpus is with
880K characters and test corpus 270K. However,
the essential of the annotation job is actually con-
ducted in a lexicon.

After a lexicon is extracted from CTB seg-
mented corpus, we use a top-down strategy to an-
notate internal dependencies inside these words
from the lexicon. A long word is first split
into some smaller constituents, and dependencies
among these constituents are determined, char-
acter dependencies inside each constituents are
then annotated. Some simple rules are adopted
to determine dependency relation, e.g., modifiers
are kept marking as dependants and the only
rest constituent will be marked as head at last.
Some words are hard to determine internal depen-
dency relation, such as foreign names, e.g., ‘Ä:ß’(Portugal) and ‘ê.õB’(Maradona), and
uninterrupted words (ë�
), e.g., ‘é¬’(ant)
and ‘"h’(clover). In this case, we simply adopt
a series of linear dependencies with the last char-
acter as head to mark these words.

In the previous section, we have shown that
SchemeE is a better dependency representation
for encoding word boundaries. Thus annotated
internal dependencies are used to replace those
trivial internal dependencies in SchemeE to ob-
tain the corpus that we require. Note that now
we cannot distinguish internal and external de-
pendencies only according to the arc direction
any more, as both left- and right-arc can ap-
pear for internal character dependency represen-
tation. Thus two labeled left arcs, external and
internal, are used for the annotation disambigua-
tion. As internal dependencies are introduced,
we find that some words (about 10%) are con-
structed by two or more parallel constituent parts
according to our annotations, this not only lets
two labeled arcs insufficiently distinguish internal-
and external dependencies, but also makes pars-
ing extremely difficult, namely, a great amount
of non-projective dependencies will appear if we
directly introduce these internal dependencies.
Again, we adopt a series of linear dependencies
with the last character as head to represent in-
ternal dependencies for these words by ignor-
ing their parallel constituents. To handle the re-
mained non-projectivities, a strengthened pseudo-
projectivization technique as in (Zhao and Kit,
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Figure 2: Annotated internal dependencies (Arc
labele notes trivial external dependencies.)

Table 5: Features for internal dependency parsing

Basic Extension
s.char itself, its next two characters, and all bigrams

within the three-character window.
i.char its previous one and next three characters, and

all bigrams within the four-character window.
s.char+i.char
s.h.char
s.rm.dprel
s.curtree
s.curtree+s.char
s
−1.curtree+s.char

s.curroot.lm.curtree
s
−1.curroot.lm.curtree

s.curroot.lm.curtree+s.char
s
−1.curroot.lm.curtree+s.char

s.curtree+s.curroot.lm.curtree
s
−1.curtree+s

−1.curroot.lm.curtree
s.curtree+s.curroot.lm.curtree+s.char
s
−1.curtree+s

−1.curroot.lm.curtree+s.char
s
−1.curtree+s

−1.curroot.lm.curtree+i.char
x.avn, n = 1, ..., 5 (x is s or i.)
s.avn+i.avn, n = 1, ..., 5

preact
−1

preact
−2

preact
−2+preact

−1

2008b) is used during parsing. An annotated ex-
ample is illustrated in Figure 2.

4.2 Learning of Internal Dependencies

To demonstrate internal character dependencies
are helpful for further processing. A series of
similar word segmentation experiments as in Sub-
section 3.6 are performed. Note that this task is
slightly different from the previous one, as it is a
five-class parsing action classification task as left
arc has two labels to differ internal and external
dependencies. Thus a different feature set has to
be used. However, all input sequences are still pro-
jective.

Features listed in Table 5 are adopted for the
parsing task that annotated character dependencies
exist inside words. The featurecurtree in Table
5 is similar tocnseqof Table 2. It first greedily
searches all connected character started from the
given one until an arc with external label is found
over some character. Then it collects all characters
that has been reached to yield an output substring
as feature value.

A comparison of classification/tagging and
parsing methods is given in Table 6. To evalu-
ate the results with word F-score, all external de-
pendencies in outputs are restored as word bound-
aries. There are three models are evaluated in Ta-
ble 6. It is shown that there is a significant perfor-
mance enhancement as annotated internal charac-
ter dependency is introduced. This positive result
shows that annotated internal character dependen-
cies are meaningful.

Table 6: Comparison of different methods

Approacha basic +AV +Prevb +AV+Prev
Class/Tagc .918 .935 .928 .941

Parsing/wod .921 .937 .924 .942
Parsing/we .925 .940 .929 .945

aThe highest F-score in Bakeoff-3 is 0.933.
bAs for the tagging method, this means dynamic pro-

gramming decoding; As for the parsing method, this means
three Markovian features.

cCharacter-based classification or tagging method
dUsing trivial internal dependencies in SchemeE.
eUsing annotated internal character dependencies.

5 Is Word Still Necessary?

Note that this work is not about joint learning
of word boundaries and syntactic dependencies
such as (Luo, 2003), where a character-based tag-
ging method is used for syntactic constituent pars-
ing from unsegmented Chinese text. Instead, this
work is to explore an alternative way to repre-
sent “word-hood” in Chinese, which is based on
character-level dependencies instead of traditional
word boundaries definition.

Though considering dependencies among
words is not novel (Gao and Suzuki, 2004),
we recognize that this study is the first work
concerned with character dependency. This
study originally intends to lead us to consider an
alternative way that can play the similar role as
word boundary annotations.

In Chinese, not word but character is the actual
minimal unit for either writing or speaking. Word-
hood has been carefully defined by many means,
and this effort results in multi-standard segmented
corpora provided by a series of Bakeoff evalu-
ations. However, from the view of linguistics,
Bakeoff does not solve the problem but technically
skirts round it. As one asks what a Chinese word
is, Bakeoff just answers that we have many def-
initions and each one is fine. Instead, motivated
from the results of the previous two sections, we
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suggest that character dependency representation
could present a natural and unified way to allevi-
ate the drawbacks of word boundary representa-
tion that is only able to represent the relation of
neighbored characters.

Table 7: What we have done for character depen-
dency

Internal External Our work
trivial trivial Section 3

annotated trivial Section 4
annotated ?

If we regard that our current work is stepping
into more and more annotated character dependen-
cies as shown in Table 7, then it is natural to ex-
tend annotated internal character dependencies to
the whole sequence without those unnatural word
boundary constraints. In this sense, internal and
external character dependency will not need be
differed any more. A full character-level depen-
dency tree is illustrated as shown in Figure 3(a)9

With the help of such a tree, we may define word
or even phrase according to what part of subtree is
picked up. Word-hood, if we still need this con-
cept, can be freely determined later as further pro-
cessing purpose requires.

(a)

(b)

Figure 3: Extended character dependencies

Basically we only consider unlabeled depen-
dencies in this work, and dependant labels can be
emptied to do something else, e.g., Figure 3(b)
shows how to extend internal character dependen-
cies of Figure 2 to accommodate part-of-speech
tags. This extension can also be transplanted to a
full character dependency tree of Figure 3(a), then
this may leads to a character-based labeled syntac-
tic dependency tree. In brief, we see that charac-

9We may easily build such a corpus by embedding an-
notated internal dependencies into a word-level dependency
tree bank. As UPUC corpus of Bakeoff-3 just follows the
word segmentation convention of Chinese tree bank, we have
built such a full character-level dependency tree corpus.

ter dependencies provide a more general and nat-
ural way to reflect character relations within a se-
quence than word boundary annotations do.

6 Conclusion and Future Work

In this study, we initially investigate the possibil-
ity of exploiting character dependencies for Chi-
nese. To show that character-level dependency
can be a good alternative to word boundary rep-
resentation for Chinese, we carry out a series of
parsing experiments. The techniques are devel-
oped step by step. Firstly, we show that word seg-
mentation task can be effectively re-formularized
character-level dependency parsing. The results of
a character-level dependency parser can be com-
parable with traditional methods. Secondly, we
consider annotated character dependencies inside
a word. We show that a parser can still effectively
capture both these annotated internal character de-
pendencies and trivial external dependencies that
are transformed from word boundaries. The exper-
imental results show that annotated internal depen-
dencies even bring performance enhancement and
indirectly verify the usefulness of them. Finally,
we suggest that a full annotated character depen-
dency tree can be constructed over all possible
character pairs within a given sequence, though its
usefulness needs to be explored in the future.
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